Merge remote-tracking branches 'regulator/topic/tps65218' and 'regulator/topic/tps800...
[deliverable/linux.git] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller NAND driver
2 *
3 * Copyright © 2006-2007, 2010 Freescale Semiconductor
4 *
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
7 * Jack Lan <jack.lan@freescale.com>
8 * Roy Zang <tie-fei.zang@freescale.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/kernel.h>
28 #include <linux/string.h>
29 #include <linux/ioport.h>
30 #include <linux/of_address.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
40
41 #include <asm/io.h>
42 #include <asm/fsl_lbc.h>
43
44 #define MAX_BANKS 8
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
47
48 /* mtd information per set */
49
50 struct fsl_elbc_mtd {
51 struct nand_chip chip;
52 struct fsl_lbc_ctrl *ctrl;
53
54 struct device *dev;
55 int bank; /* Chip select bank number */
56 u8 __iomem *vbase; /* Chip select base virtual address */
57 int page_size; /* NAND page size (0=512, 1=2048) */
58 unsigned int fmr; /* FCM Flash Mode Register value */
59 };
60
61 /* Freescale eLBC FCM controller information */
62
63 struct fsl_elbc_fcm_ctrl {
64 struct nand_hw_control controller;
65 struct fsl_elbc_mtd *chips[MAX_BANKS];
66
67 u8 __iomem *addr; /* Address of assigned FCM buffer */
68 unsigned int page; /* Last page written to / read from */
69 unsigned int read_bytes; /* Number of bytes read during command */
70 unsigned int column; /* Saved column from SEQIN */
71 unsigned int index; /* Pointer to next byte to 'read' */
72 unsigned int status; /* status read from LTESR after last op */
73 unsigned int mdr; /* UPM/FCM Data Register value */
74 unsigned int use_mdr; /* Non zero if the MDR is to be set */
75 unsigned int oob; /* Non zero if operating on OOB data */
76 unsigned int counter; /* counter for the initializations */
77 unsigned int max_bitflips; /* Saved during READ0 cmd */
78 };
79
80 /* These map to the positions used by the FCM hardware ECC generator */
81
82 static int fsl_elbc_ooblayout_ecc(struct mtd_info *mtd, int section,
83 struct mtd_oob_region *oobregion)
84 {
85 struct nand_chip *chip = mtd_to_nand(mtd);
86 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
87
88 if (section >= chip->ecc.steps)
89 return -ERANGE;
90
91 oobregion->offset = (16 * section) + 6;
92 if (priv->fmr & FMR_ECCM)
93 oobregion->offset += 2;
94
95 oobregion->length = chip->ecc.bytes;
96
97 return 0;
98 }
99
100 static int fsl_elbc_ooblayout_free(struct mtd_info *mtd, int section,
101 struct mtd_oob_region *oobregion)
102 {
103 struct nand_chip *chip = mtd_to_nand(mtd);
104 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
105
106 if (section > chip->ecc.steps)
107 return -ERANGE;
108
109 if (!section) {
110 oobregion->offset = 0;
111 if (mtd->writesize > 512)
112 oobregion->offset++;
113 oobregion->length = (priv->fmr & FMR_ECCM) ? 7 : 5;
114 } else {
115 oobregion->offset = (16 * section) -
116 ((priv->fmr & FMR_ECCM) ? 5 : 7);
117 if (section < chip->ecc.steps)
118 oobregion->length = 13;
119 else
120 oobregion->length = mtd->oobsize - oobregion->offset;
121 }
122
123 return 0;
124 }
125
126 static const struct mtd_ooblayout_ops fsl_elbc_ooblayout_ops = {
127 .ecc = fsl_elbc_ooblayout_ecc,
128 .free = fsl_elbc_ooblayout_free,
129 };
130
131 /*
132 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
133 * interfere with ECC positions, that's why we implement our own descriptors.
134 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
135 */
136 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
137 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
138
139 static struct nand_bbt_descr bbt_main_descr = {
140 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
141 NAND_BBT_2BIT | NAND_BBT_VERSION,
142 .offs = 11,
143 .len = 4,
144 .veroffs = 15,
145 .maxblocks = 4,
146 .pattern = bbt_pattern,
147 };
148
149 static struct nand_bbt_descr bbt_mirror_descr = {
150 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
151 NAND_BBT_2BIT | NAND_BBT_VERSION,
152 .offs = 11,
153 .len = 4,
154 .veroffs = 15,
155 .maxblocks = 4,
156 .pattern = mirror_pattern,
157 };
158
159 /*=================================*/
160
161 /*
162 * Set up the FCM hardware block and page address fields, and the fcm
163 * structure addr field to point to the correct FCM buffer in memory
164 */
165 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
166 {
167 struct nand_chip *chip = mtd_to_nand(mtd);
168 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
169 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
170 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
171 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
172 int buf_num;
173
174 elbc_fcm_ctrl->page = page_addr;
175
176 if (priv->page_size) {
177 /*
178 * large page size chip : FPAR[PI] save the lowest 6 bits,
179 * FBAR[BLK] save the other bits.
180 */
181 out_be32(&lbc->fbar, page_addr >> 6);
182 out_be32(&lbc->fpar,
183 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
184 (oob ? FPAR_LP_MS : 0) | column);
185 buf_num = (page_addr & 1) << 2;
186 } else {
187 /*
188 * small page size chip : FPAR[PI] save the lowest 5 bits,
189 * FBAR[BLK] save the other bits.
190 */
191 out_be32(&lbc->fbar, page_addr >> 5);
192 out_be32(&lbc->fpar,
193 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
194 (oob ? FPAR_SP_MS : 0) | column);
195 buf_num = page_addr & 7;
196 }
197
198 elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
199 elbc_fcm_ctrl->index = column;
200
201 /* for OOB data point to the second half of the buffer */
202 if (oob)
203 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
204
205 dev_vdbg(priv->dev, "set_addr: bank=%d, "
206 "elbc_fcm_ctrl->addr=0x%p (0x%p), "
207 "index %x, pes %d ps %d\n",
208 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
209 elbc_fcm_ctrl->index,
210 chip->phys_erase_shift, chip->page_shift);
211 }
212
213 /*
214 * execute FCM command and wait for it to complete
215 */
216 static int fsl_elbc_run_command(struct mtd_info *mtd)
217 {
218 struct nand_chip *chip = mtd_to_nand(mtd);
219 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
220 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
221 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
222 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
223
224 /* Setup the FMR[OP] to execute without write protection */
225 out_be32(&lbc->fmr, priv->fmr | 3);
226 if (elbc_fcm_ctrl->use_mdr)
227 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
228
229 dev_vdbg(priv->dev,
230 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
231 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
232 dev_vdbg(priv->dev,
233 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
234 "fbcr=%08x bank=%d\n",
235 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
236 in_be32(&lbc->fbcr), priv->bank);
237
238 ctrl->irq_status = 0;
239 /* execute special operation */
240 out_be32(&lbc->lsor, priv->bank);
241
242 /* wait for FCM complete flag or timeout */
243 wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
244 FCM_TIMEOUT_MSECS * HZ/1000);
245 elbc_fcm_ctrl->status = ctrl->irq_status;
246 /* store mdr value in case it was needed */
247 if (elbc_fcm_ctrl->use_mdr)
248 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
249
250 elbc_fcm_ctrl->use_mdr = 0;
251
252 if (elbc_fcm_ctrl->status != LTESR_CC) {
253 dev_info(priv->dev,
254 "command failed: fir %x fcr %x status %x mdr %x\n",
255 in_be32(&lbc->fir), in_be32(&lbc->fcr),
256 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
257 return -EIO;
258 }
259
260 if (chip->ecc.mode != NAND_ECC_HW)
261 return 0;
262
263 elbc_fcm_ctrl->max_bitflips = 0;
264
265 if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
266 uint32_t lteccr = in_be32(&lbc->lteccr);
267 /*
268 * if command was a full page read and the ELBC
269 * has the LTECCR register, then bits 12-15 (ppc order) of
270 * LTECCR indicates which 512 byte sub-pages had fixed errors.
271 * bits 28-31 are uncorrectable errors, marked elsewhere.
272 * for small page nand only 1 bit is used.
273 * if the ELBC doesn't have the lteccr register it reads 0
274 * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
275 * count the number of sub-pages with bitflips and update
276 * ecc_stats.corrected accordingly.
277 */
278 if (lteccr & 0x000F000F)
279 out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
280 if (lteccr & 0x000F0000) {
281 mtd->ecc_stats.corrected++;
282 elbc_fcm_ctrl->max_bitflips = 1;
283 }
284 }
285
286 return 0;
287 }
288
289 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
290 {
291 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
292 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
293 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
294
295 if (priv->page_size) {
296 out_be32(&lbc->fir,
297 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
298 (FIR_OP_CA << FIR_OP1_SHIFT) |
299 (FIR_OP_PA << FIR_OP2_SHIFT) |
300 (FIR_OP_CM1 << FIR_OP3_SHIFT) |
301 (FIR_OP_RBW << FIR_OP4_SHIFT));
302
303 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
304 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
305 } else {
306 out_be32(&lbc->fir,
307 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
308 (FIR_OP_CA << FIR_OP1_SHIFT) |
309 (FIR_OP_PA << FIR_OP2_SHIFT) |
310 (FIR_OP_RBW << FIR_OP3_SHIFT));
311
312 if (oob)
313 out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
314 else
315 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
316 }
317 }
318
319 /* cmdfunc send commands to the FCM */
320 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
321 int column, int page_addr)
322 {
323 struct nand_chip *chip = mtd_to_nand(mtd);
324 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
325 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
326 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
327 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
328
329 elbc_fcm_ctrl->use_mdr = 0;
330
331 /* clear the read buffer */
332 elbc_fcm_ctrl->read_bytes = 0;
333 if (command != NAND_CMD_PAGEPROG)
334 elbc_fcm_ctrl->index = 0;
335
336 switch (command) {
337 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
338 case NAND_CMD_READ1:
339 column += 256;
340
341 /* fall-through */
342 case NAND_CMD_READ0:
343 dev_dbg(priv->dev,
344 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
345 " 0x%x, column: 0x%x.\n", page_addr, column);
346
347
348 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
349 set_addr(mtd, 0, page_addr, 0);
350
351 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
352 elbc_fcm_ctrl->index += column;
353
354 fsl_elbc_do_read(chip, 0);
355 fsl_elbc_run_command(mtd);
356 return;
357
358 /* READOOB reads only the OOB because no ECC is performed. */
359 case NAND_CMD_READOOB:
360 dev_vdbg(priv->dev,
361 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
362 " 0x%x, column: 0x%x.\n", page_addr, column);
363
364 out_be32(&lbc->fbcr, mtd->oobsize - column);
365 set_addr(mtd, column, page_addr, 1);
366
367 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
368
369 fsl_elbc_do_read(chip, 1);
370 fsl_elbc_run_command(mtd);
371 return;
372
373 case NAND_CMD_READID:
374 case NAND_CMD_PARAM:
375 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
376
377 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
378 (FIR_OP_UA << FIR_OP1_SHIFT) |
379 (FIR_OP_RBW << FIR_OP2_SHIFT));
380 out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
381 /*
382 * although currently it's 8 bytes for READID, we always read
383 * the maximum 256 bytes(for PARAM)
384 */
385 out_be32(&lbc->fbcr, 256);
386 elbc_fcm_ctrl->read_bytes = 256;
387 elbc_fcm_ctrl->use_mdr = 1;
388 elbc_fcm_ctrl->mdr = column;
389 set_addr(mtd, 0, 0, 0);
390 fsl_elbc_run_command(mtd);
391 return;
392
393 /* ERASE1 stores the block and page address */
394 case NAND_CMD_ERASE1:
395 dev_vdbg(priv->dev,
396 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
397 "page_addr: 0x%x.\n", page_addr);
398 set_addr(mtd, 0, page_addr, 0);
399 return;
400
401 /* ERASE2 uses the block and page address from ERASE1 */
402 case NAND_CMD_ERASE2:
403 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
404
405 out_be32(&lbc->fir,
406 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
407 (FIR_OP_PA << FIR_OP1_SHIFT) |
408 (FIR_OP_CM2 << FIR_OP2_SHIFT) |
409 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
410 (FIR_OP_RS << FIR_OP4_SHIFT));
411
412 out_be32(&lbc->fcr,
413 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
414 (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
415 (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
416
417 out_be32(&lbc->fbcr, 0);
418 elbc_fcm_ctrl->read_bytes = 0;
419 elbc_fcm_ctrl->use_mdr = 1;
420
421 fsl_elbc_run_command(mtd);
422 return;
423
424 /* SEQIN sets up the addr buffer and all registers except the length */
425 case NAND_CMD_SEQIN: {
426 __be32 fcr;
427 dev_vdbg(priv->dev,
428 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
429 "page_addr: 0x%x, column: 0x%x.\n",
430 page_addr, column);
431
432 elbc_fcm_ctrl->column = column;
433 elbc_fcm_ctrl->use_mdr = 1;
434
435 if (column >= mtd->writesize) {
436 /* OOB area */
437 column -= mtd->writesize;
438 elbc_fcm_ctrl->oob = 1;
439 } else {
440 WARN_ON(column != 0);
441 elbc_fcm_ctrl->oob = 0;
442 }
443
444 fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
445 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
446 (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
447
448 if (priv->page_size) {
449 out_be32(&lbc->fir,
450 (FIR_OP_CM2 << FIR_OP0_SHIFT) |
451 (FIR_OP_CA << FIR_OP1_SHIFT) |
452 (FIR_OP_PA << FIR_OP2_SHIFT) |
453 (FIR_OP_WB << FIR_OP3_SHIFT) |
454 (FIR_OP_CM3 << FIR_OP4_SHIFT) |
455 (FIR_OP_CW1 << FIR_OP5_SHIFT) |
456 (FIR_OP_RS << FIR_OP6_SHIFT));
457 } else {
458 out_be32(&lbc->fir,
459 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
460 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
461 (FIR_OP_CA << FIR_OP2_SHIFT) |
462 (FIR_OP_PA << FIR_OP3_SHIFT) |
463 (FIR_OP_WB << FIR_OP4_SHIFT) |
464 (FIR_OP_CM3 << FIR_OP5_SHIFT) |
465 (FIR_OP_CW1 << FIR_OP6_SHIFT) |
466 (FIR_OP_RS << FIR_OP7_SHIFT));
467
468 if (elbc_fcm_ctrl->oob)
469 /* OOB area --> READOOB */
470 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
471 else
472 /* First 256 bytes --> READ0 */
473 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
474 }
475
476 out_be32(&lbc->fcr, fcr);
477 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
478 return;
479 }
480
481 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
482 case NAND_CMD_PAGEPROG: {
483 dev_vdbg(priv->dev,
484 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
485 "writing %d bytes.\n", elbc_fcm_ctrl->index);
486
487 /* if the write did not start at 0 or is not a full page
488 * then set the exact length, otherwise use a full page
489 * write so the HW generates the ECC.
490 */
491 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
492 elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
493 out_be32(&lbc->fbcr,
494 elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
495 else
496 out_be32(&lbc->fbcr, 0);
497
498 fsl_elbc_run_command(mtd);
499 return;
500 }
501
502 /* CMD_STATUS must read the status byte while CEB is active */
503 /* Note - it does not wait for the ready line */
504 case NAND_CMD_STATUS:
505 out_be32(&lbc->fir,
506 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
507 (FIR_OP_RBW << FIR_OP1_SHIFT));
508 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
509 out_be32(&lbc->fbcr, 1);
510 set_addr(mtd, 0, 0, 0);
511 elbc_fcm_ctrl->read_bytes = 1;
512
513 fsl_elbc_run_command(mtd);
514
515 /* The chip always seems to report that it is
516 * write-protected, even when it is not.
517 */
518 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
519 return;
520
521 /* RESET without waiting for the ready line */
522 case NAND_CMD_RESET:
523 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
524 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
525 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
526 fsl_elbc_run_command(mtd);
527 return;
528
529 default:
530 dev_err(priv->dev,
531 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
532 command);
533 }
534 }
535
536 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
537 {
538 /* The hardware does not seem to support multiple
539 * chips per bank.
540 */
541 }
542
543 /*
544 * Write buf to the FCM Controller Data Buffer
545 */
546 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
547 {
548 struct nand_chip *chip = mtd_to_nand(mtd);
549 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
550 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
551 unsigned int bufsize = mtd->writesize + mtd->oobsize;
552
553 if (len <= 0) {
554 dev_err(priv->dev, "write_buf of %d bytes", len);
555 elbc_fcm_ctrl->status = 0;
556 return;
557 }
558
559 if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
560 dev_err(priv->dev,
561 "write_buf beyond end of buffer "
562 "(%d requested, %u available)\n",
563 len, bufsize - elbc_fcm_ctrl->index);
564 len = bufsize - elbc_fcm_ctrl->index;
565 }
566
567 memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
568 /*
569 * This is workaround for the weird elbc hangs during nand write,
570 * Scott Wood says: "...perhaps difference in how long it takes a
571 * write to make it through the localbus compared to a write to IMMR
572 * is causing problems, and sync isn't helping for some reason."
573 * Reading back the last byte helps though.
574 */
575 in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
576
577 elbc_fcm_ctrl->index += len;
578 }
579
580 /*
581 * read a byte from either the FCM hardware buffer if it has any data left
582 * otherwise issue a command to read a single byte.
583 */
584 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
585 {
586 struct nand_chip *chip = mtd_to_nand(mtd);
587 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
588 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
589
590 /* If there are still bytes in the FCM, then use the next byte. */
591 if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
592 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
593
594 dev_err(priv->dev, "read_byte beyond end of buffer\n");
595 return ERR_BYTE;
596 }
597
598 /*
599 * Read from the FCM Controller Data Buffer
600 */
601 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
602 {
603 struct nand_chip *chip = mtd_to_nand(mtd);
604 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
605 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
606 int avail;
607
608 if (len < 0)
609 return;
610
611 avail = min((unsigned int)len,
612 elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
613 memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
614 elbc_fcm_ctrl->index += avail;
615
616 if (len > avail)
617 dev_err(priv->dev,
618 "read_buf beyond end of buffer "
619 "(%d requested, %d available)\n",
620 len, avail);
621 }
622
623 /* This function is called after Program and Erase Operations to
624 * check for success or failure.
625 */
626 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
627 {
628 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
629 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
630
631 if (elbc_fcm_ctrl->status != LTESR_CC)
632 return NAND_STATUS_FAIL;
633
634 /* The chip always seems to report that it is
635 * write-protected, even when it is not.
636 */
637 return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
638 }
639
640 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
641 {
642 struct nand_chip *chip = mtd_to_nand(mtd);
643 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
644 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
645 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
646 unsigned int al;
647
648 /* calculate FMR Address Length field */
649 al = 0;
650 if (chip->pagemask & 0xffff0000)
651 al++;
652 if (chip->pagemask & 0xff000000)
653 al++;
654
655 priv->fmr |= al << FMR_AL_SHIFT;
656
657 dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
658 chip->numchips);
659 dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
660 chip->chipsize);
661 dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
662 chip->pagemask);
663 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
664 chip->chip_delay);
665 dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
666 chip->badblockpos);
667 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
668 chip->chip_shift);
669 dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
670 chip->page_shift);
671 dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
672 chip->phys_erase_shift);
673 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
674 chip->ecc.mode);
675 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
676 chip->ecc.steps);
677 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
678 chip->ecc.bytes);
679 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
680 chip->ecc.total);
681 dev_dbg(priv->dev, "fsl_elbc_init: mtd->ooblayout = %p\n",
682 mtd->ooblayout);
683 dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
684 dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
685 dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
686 mtd->erasesize);
687 dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
688 mtd->writesize);
689 dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
690 mtd->oobsize);
691
692 /* adjust Option Register and ECC to match Flash page size */
693 if (mtd->writesize == 512) {
694 priv->page_size = 0;
695 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
696 } else if (mtd->writesize == 2048) {
697 priv->page_size = 1;
698 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
699 } else {
700 dev_err(priv->dev,
701 "fsl_elbc_init: page size %d is not supported\n",
702 mtd->writesize);
703 return -1;
704 }
705
706 return 0;
707 }
708
709 static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
710 uint8_t *buf, int oob_required, int page)
711 {
712 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
713 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
714 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
715
716 fsl_elbc_read_buf(mtd, buf, mtd->writesize);
717 if (oob_required)
718 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
719
720 if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
721 mtd->ecc_stats.failed++;
722
723 return elbc_fcm_ctrl->max_bitflips;
724 }
725
726 /* ECC will be calculated automatically, and errors will be detected in
727 * waitfunc.
728 */
729 static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
730 const uint8_t *buf, int oob_required, int page)
731 {
732 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
733 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
734
735 return 0;
736 }
737
738 /* ECC will be calculated automatically, and errors will be detected in
739 * waitfunc.
740 */
741 static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip,
742 uint32_t offset, uint32_t data_len,
743 const uint8_t *buf, int oob_required, int page)
744 {
745 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
746 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
747
748 return 0;
749 }
750
751 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
752 {
753 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
754 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
755 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
756 struct nand_chip *chip = &priv->chip;
757 struct mtd_info *mtd = nand_to_mtd(chip);
758
759 dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
760
761 /* Fill in fsl_elbc_mtd structure */
762 mtd->dev.parent = priv->dev;
763 nand_set_flash_node(chip, priv->dev->of_node);
764
765 /* set timeout to maximum */
766 priv->fmr = 15 << FMR_CWTO_SHIFT;
767 if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
768 priv->fmr |= FMR_ECCM;
769
770 /* fill in nand_chip structure */
771 /* set up function call table */
772 chip->read_byte = fsl_elbc_read_byte;
773 chip->write_buf = fsl_elbc_write_buf;
774 chip->read_buf = fsl_elbc_read_buf;
775 chip->select_chip = fsl_elbc_select_chip;
776 chip->cmdfunc = fsl_elbc_cmdfunc;
777 chip->waitfunc = fsl_elbc_wait;
778
779 chip->bbt_td = &bbt_main_descr;
780 chip->bbt_md = &bbt_mirror_descr;
781
782 /* set up nand options */
783 chip->bbt_options = NAND_BBT_USE_FLASH;
784
785 chip->controller = &elbc_fcm_ctrl->controller;
786 nand_set_controller_data(chip, priv);
787
788 chip->ecc.read_page = fsl_elbc_read_page;
789 chip->ecc.write_page = fsl_elbc_write_page;
790 chip->ecc.write_subpage = fsl_elbc_write_subpage;
791
792 /* If CS Base Register selects full hardware ECC then use it */
793 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
794 BR_DECC_CHK_GEN) {
795 chip->ecc.mode = NAND_ECC_HW;
796 mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops);
797 chip->ecc.size = 512;
798 chip->ecc.bytes = 3;
799 chip->ecc.strength = 1;
800 } else {
801 /* otherwise fall back to default software ECC */
802 chip->ecc.mode = NAND_ECC_SOFT;
803 chip->ecc.algo = NAND_ECC_HAMMING;
804 }
805
806 return 0;
807 }
808
809 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
810 {
811 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
812 struct mtd_info *mtd = nand_to_mtd(&priv->chip);
813
814 nand_release(mtd);
815
816 kfree(mtd->name);
817
818 if (priv->vbase)
819 iounmap(priv->vbase);
820
821 elbc_fcm_ctrl->chips[priv->bank] = NULL;
822 kfree(priv);
823 return 0;
824 }
825
826 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
827
828 static int fsl_elbc_nand_probe(struct platform_device *pdev)
829 {
830 struct fsl_lbc_regs __iomem *lbc;
831 struct fsl_elbc_mtd *priv;
832 struct resource res;
833 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
834 static const char *part_probe_types[]
835 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
836 int ret;
837 int bank;
838 struct device *dev;
839 struct device_node *node = pdev->dev.of_node;
840 struct mtd_info *mtd;
841
842 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
843 return -ENODEV;
844 lbc = fsl_lbc_ctrl_dev->regs;
845 dev = fsl_lbc_ctrl_dev->dev;
846
847 /* get, allocate and map the memory resource */
848 ret = of_address_to_resource(node, 0, &res);
849 if (ret) {
850 dev_err(dev, "failed to get resource\n");
851 return ret;
852 }
853
854 /* find which chip select it is connected to */
855 for (bank = 0; bank < MAX_BANKS; bank++)
856 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
857 (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
858 (in_be32(&lbc->bank[bank].br) &
859 in_be32(&lbc->bank[bank].or) & BR_BA)
860 == fsl_lbc_addr(res.start))
861 break;
862
863 if (bank >= MAX_BANKS) {
864 dev_err(dev, "address did not match any chip selects\n");
865 return -ENODEV;
866 }
867
868 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
869 if (!priv)
870 return -ENOMEM;
871
872 mutex_lock(&fsl_elbc_nand_mutex);
873 if (!fsl_lbc_ctrl_dev->nand) {
874 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
875 if (!elbc_fcm_ctrl) {
876 mutex_unlock(&fsl_elbc_nand_mutex);
877 ret = -ENOMEM;
878 goto err;
879 }
880 elbc_fcm_ctrl->counter++;
881
882 spin_lock_init(&elbc_fcm_ctrl->controller.lock);
883 init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
884 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
885 } else {
886 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
887 }
888 mutex_unlock(&fsl_elbc_nand_mutex);
889
890 elbc_fcm_ctrl->chips[bank] = priv;
891 priv->bank = bank;
892 priv->ctrl = fsl_lbc_ctrl_dev;
893 priv->dev = &pdev->dev;
894 dev_set_drvdata(priv->dev, priv);
895
896 priv->vbase = ioremap(res.start, resource_size(&res));
897 if (!priv->vbase) {
898 dev_err(dev, "failed to map chip region\n");
899 ret = -ENOMEM;
900 goto err;
901 }
902
903 mtd = nand_to_mtd(&priv->chip);
904 mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
905 if (!nand_to_mtd(&priv->chip)->name) {
906 ret = -ENOMEM;
907 goto err;
908 }
909
910 ret = fsl_elbc_chip_init(priv);
911 if (ret)
912 goto err;
913
914 ret = nand_scan_ident(mtd, 1, NULL);
915 if (ret)
916 goto err;
917
918 ret = fsl_elbc_chip_init_tail(mtd);
919 if (ret)
920 goto err;
921
922 ret = nand_scan_tail(mtd);
923 if (ret)
924 goto err;
925
926 /* First look for RedBoot table or partitions on the command
927 * line, these take precedence over device tree information */
928 mtd_device_parse_register(mtd, part_probe_types, NULL,
929 NULL, 0);
930
931 printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
932 (unsigned long long)res.start, priv->bank);
933 return 0;
934
935 err:
936 fsl_elbc_chip_remove(priv);
937 return ret;
938 }
939
940 static int fsl_elbc_nand_remove(struct platform_device *pdev)
941 {
942 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
943 struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
944
945 fsl_elbc_chip_remove(priv);
946
947 mutex_lock(&fsl_elbc_nand_mutex);
948 elbc_fcm_ctrl->counter--;
949 if (!elbc_fcm_ctrl->counter) {
950 fsl_lbc_ctrl_dev->nand = NULL;
951 kfree(elbc_fcm_ctrl);
952 }
953 mutex_unlock(&fsl_elbc_nand_mutex);
954
955 return 0;
956
957 }
958
959 static const struct of_device_id fsl_elbc_nand_match[] = {
960 { .compatible = "fsl,elbc-fcm-nand", },
961 {}
962 };
963 MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match);
964
965 static struct platform_driver fsl_elbc_nand_driver = {
966 .driver = {
967 .name = "fsl,elbc-fcm-nand",
968 .of_match_table = fsl_elbc_nand_match,
969 },
970 .probe = fsl_elbc_nand_probe,
971 .remove = fsl_elbc_nand_remove,
972 };
973
974 module_platform_driver(fsl_elbc_nand_driver);
975
976 MODULE_LICENSE("GPL");
977 MODULE_AUTHOR("Freescale");
978 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");
This page took 0.051629 seconds and 5 git commands to generate.