mmc: sdhci-acpi: Set MMC_CAP_CMD_DURING_TFR for Intel eMMC controllers
[deliverable/linux.git] / drivers / mtd / nand / fsl_ifc_nand.c
1 /*
2 * Freescale Integrated Flash Controller NAND driver
3 *
4 * Copyright 2011-2012 Freescale Semiconductor, Inc
5 *
6 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/of_address.h>
27 #include <linux/slab.h>
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/nand.h>
30 #include <linux/mtd/partitions.h>
31 #include <linux/mtd/nand_ecc.h>
32 #include <linux/fsl_ifc.h>
33
34 #define ERR_BYTE 0xFF /* Value returned for read
35 bytes when read failed */
36 #define IFC_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait
37 for IFC NAND Machine */
38
39 struct fsl_ifc_ctrl;
40
41 /* mtd information per set */
42 struct fsl_ifc_mtd {
43 struct nand_chip chip;
44 struct fsl_ifc_ctrl *ctrl;
45
46 struct device *dev;
47 int bank; /* Chip select bank number */
48 unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
49 u8 __iomem *vbase; /* Chip select base virtual address */
50 };
51
52 /* overview of the fsl ifc controller */
53 struct fsl_ifc_nand_ctrl {
54 struct nand_hw_control controller;
55 struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
56
57 void __iomem *addr; /* Address of assigned IFC buffer */
58 unsigned int page; /* Last page written to / read from */
59 unsigned int read_bytes;/* Number of bytes read during command */
60 unsigned int column; /* Saved column from SEQIN */
61 unsigned int index; /* Pointer to next byte to 'read' */
62 unsigned int oob; /* Non zero if operating on OOB data */
63 unsigned int eccread; /* Non zero for a full-page ECC read */
64 unsigned int counter; /* counter for the initializations */
65 unsigned int max_bitflips; /* Saved during READ0 cmd */
66 };
67
68 static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
69
70 /*
71 * Generic flash bbt descriptors
72 */
73 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
74 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
75
76 static struct nand_bbt_descr bbt_main_descr = {
77 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
78 NAND_BBT_2BIT | NAND_BBT_VERSION,
79 .offs = 2, /* 0 on 8-bit small page */
80 .len = 4,
81 .veroffs = 6,
82 .maxblocks = 4,
83 .pattern = bbt_pattern,
84 };
85
86 static struct nand_bbt_descr bbt_mirror_descr = {
87 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
88 NAND_BBT_2BIT | NAND_BBT_VERSION,
89 .offs = 2, /* 0 on 8-bit small page */
90 .len = 4,
91 .veroffs = 6,
92 .maxblocks = 4,
93 .pattern = mirror_pattern,
94 };
95
96 static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section,
97 struct mtd_oob_region *oobregion)
98 {
99 struct nand_chip *chip = mtd_to_nand(mtd);
100
101 if (section)
102 return -ERANGE;
103
104 oobregion->offset = 8;
105 oobregion->length = chip->ecc.total;
106
107 return 0;
108 }
109
110 static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section,
111 struct mtd_oob_region *oobregion)
112 {
113 struct nand_chip *chip = mtd_to_nand(mtd);
114
115 if (section > 1)
116 return -ERANGE;
117
118 if (mtd->writesize == 512 &&
119 !(chip->options & NAND_BUSWIDTH_16)) {
120 if (!section) {
121 oobregion->offset = 0;
122 oobregion->length = 5;
123 } else {
124 oobregion->offset = 6;
125 oobregion->length = 2;
126 }
127
128 return 0;
129 }
130
131 if (!section) {
132 oobregion->offset = 2;
133 oobregion->length = 6;
134 } else {
135 oobregion->offset = chip->ecc.total + 8;
136 oobregion->length = mtd->oobsize - oobregion->offset;
137 }
138
139 return 0;
140 }
141
142 static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = {
143 .ecc = fsl_ifc_ooblayout_ecc,
144 .free = fsl_ifc_ooblayout_free,
145 };
146
147 /*
148 * Set up the IFC hardware block and page address fields, and the ifc nand
149 * structure addr field to point to the correct IFC buffer in memory
150 */
151 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
152 {
153 struct nand_chip *chip = mtd_to_nand(mtd);
154 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
155 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
156 struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
157 int buf_num;
158
159 ifc_nand_ctrl->page = page_addr;
160 /* Program ROW0/COL0 */
161 ifc_out32(page_addr, &ifc->ifc_nand.row0);
162 ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0);
163
164 buf_num = page_addr & priv->bufnum_mask;
165
166 ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
167 ifc_nand_ctrl->index = column;
168
169 /* for OOB data point to the second half of the buffer */
170 if (oob)
171 ifc_nand_ctrl->index += mtd->writesize;
172 }
173
174 static int is_blank(struct mtd_info *mtd, unsigned int bufnum)
175 {
176 struct nand_chip *chip = mtd_to_nand(mtd);
177 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
178 u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2);
179 u32 __iomem *mainarea = (u32 __iomem *)addr;
180 u8 __iomem *oob = addr + mtd->writesize;
181 struct mtd_oob_region oobregion = { };
182 int i, section = 0;
183
184 for (i = 0; i < mtd->writesize / 4; i++) {
185 if (__raw_readl(&mainarea[i]) != 0xffffffff)
186 return 0;
187 }
188
189 mtd_ooblayout_ecc(mtd, section++, &oobregion);
190 while (oobregion.length) {
191 for (i = 0; i < oobregion.length; i++) {
192 if (__raw_readb(&oob[oobregion.offset + i]) != 0xff)
193 return 0;
194 }
195
196 mtd_ooblayout_ecc(mtd, section++, &oobregion);
197 }
198
199 return 1;
200 }
201
202 /* returns nonzero if entire page is blank */
203 static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
204 u32 *eccstat, unsigned int bufnum)
205 {
206 u32 reg = eccstat[bufnum / 4];
207 int errors;
208
209 errors = (reg >> ((3 - bufnum % 4) * 8)) & 15;
210
211 return errors;
212 }
213
214 /*
215 * execute IFC NAND command and wait for it to complete
216 */
217 static void fsl_ifc_run_command(struct mtd_info *mtd)
218 {
219 struct nand_chip *chip = mtd_to_nand(mtd);
220 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
221 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
222 struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
223 struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
224 u32 eccstat[4];
225 int i;
226
227 /* set the chip select for NAND Transaction */
228 ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT,
229 &ifc->ifc_nand.nand_csel);
230
231 dev_vdbg(priv->dev,
232 "%s: fir0=%08x fcr0=%08x\n",
233 __func__,
234 ifc_in32(&ifc->ifc_nand.nand_fir0),
235 ifc_in32(&ifc->ifc_nand.nand_fcr0));
236
237 ctrl->nand_stat = 0;
238
239 /* start read/write seq */
240 ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt);
241
242 /* wait for command complete flag or timeout */
243 wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
244 msecs_to_jiffies(IFC_TIMEOUT_MSECS));
245
246 /* ctrl->nand_stat will be updated from IRQ context */
247 if (!ctrl->nand_stat)
248 dev_err(priv->dev, "Controller is not responding\n");
249 if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
250 dev_err(priv->dev, "NAND Flash Timeout Error\n");
251 if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
252 dev_err(priv->dev, "NAND Flash Write Protect Error\n");
253
254 nctrl->max_bitflips = 0;
255
256 if (nctrl->eccread) {
257 int errors;
258 int bufnum = nctrl->page & priv->bufnum_mask;
259 int sector = bufnum * chip->ecc.steps;
260 int sector_end = sector + chip->ecc.steps - 1;
261
262 for (i = sector / 4; i <= sector_end / 4; i++)
263 eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
264
265 for (i = sector; i <= sector_end; i++) {
266 errors = check_read_ecc(mtd, ctrl, eccstat, i);
267
268 if (errors == 15) {
269 /*
270 * Uncorrectable error.
271 * OK only if the whole page is blank.
272 *
273 * We disable ECCER reporting due to...
274 * erratum IFC-A002770 -- so report it now if we
275 * see an uncorrectable error in ECCSTAT.
276 */
277 if (!is_blank(mtd, bufnum))
278 ctrl->nand_stat |=
279 IFC_NAND_EVTER_STAT_ECCER;
280 break;
281 }
282
283 mtd->ecc_stats.corrected += errors;
284 nctrl->max_bitflips = max_t(unsigned int,
285 nctrl->max_bitflips,
286 errors);
287 }
288
289 nctrl->eccread = 0;
290 }
291 }
292
293 static void fsl_ifc_do_read(struct nand_chip *chip,
294 int oob,
295 struct mtd_info *mtd)
296 {
297 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
298 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
299 struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
300
301 /* Program FIR/IFC_NAND_FCR0 for Small/Large page */
302 if (mtd->writesize > 512) {
303 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
304 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
305 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
306 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
307 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT),
308 &ifc->ifc_nand.nand_fir0);
309 ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
310
311 ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
312 (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT),
313 &ifc->ifc_nand.nand_fcr0);
314 } else {
315 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
316 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
317 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
318 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT),
319 &ifc->ifc_nand.nand_fir0);
320 ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
321
322 if (oob)
323 ifc_out32(NAND_CMD_READOOB <<
324 IFC_NAND_FCR0_CMD0_SHIFT,
325 &ifc->ifc_nand.nand_fcr0);
326 else
327 ifc_out32(NAND_CMD_READ0 <<
328 IFC_NAND_FCR0_CMD0_SHIFT,
329 &ifc->ifc_nand.nand_fcr0);
330 }
331 }
332
333 /* cmdfunc send commands to the IFC NAND Machine */
334 static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
335 int column, int page_addr) {
336 struct nand_chip *chip = mtd_to_nand(mtd);
337 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
338 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
339 struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
340
341 /* clear the read buffer */
342 ifc_nand_ctrl->read_bytes = 0;
343 if (command != NAND_CMD_PAGEPROG)
344 ifc_nand_ctrl->index = 0;
345
346 switch (command) {
347 /* READ0 read the entire buffer to use hardware ECC. */
348 case NAND_CMD_READ0:
349 ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
350 set_addr(mtd, 0, page_addr, 0);
351
352 ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
353 ifc_nand_ctrl->index += column;
354
355 if (chip->ecc.mode == NAND_ECC_HW)
356 ifc_nand_ctrl->eccread = 1;
357
358 fsl_ifc_do_read(chip, 0, mtd);
359 fsl_ifc_run_command(mtd);
360 return;
361
362 /* READOOB reads only the OOB because no ECC is performed. */
363 case NAND_CMD_READOOB:
364 ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr);
365 set_addr(mtd, column, page_addr, 1);
366
367 ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
368
369 fsl_ifc_do_read(chip, 1, mtd);
370 fsl_ifc_run_command(mtd);
371
372 return;
373
374 case NAND_CMD_READID:
375 case NAND_CMD_PARAM: {
376 int timing = IFC_FIR_OP_RB;
377 if (command == NAND_CMD_PARAM)
378 timing = IFC_FIR_OP_RBCD;
379
380 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
381 (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
382 (timing << IFC_NAND_FIR0_OP2_SHIFT),
383 &ifc->ifc_nand.nand_fir0);
384 ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT,
385 &ifc->ifc_nand.nand_fcr0);
386 ifc_out32(column, &ifc->ifc_nand.row3);
387
388 /*
389 * although currently it's 8 bytes for READID, we always read
390 * the maximum 256 bytes(for PARAM)
391 */
392 ifc_out32(256, &ifc->ifc_nand.nand_fbcr);
393 ifc_nand_ctrl->read_bytes = 256;
394
395 set_addr(mtd, 0, 0, 0);
396 fsl_ifc_run_command(mtd);
397 return;
398 }
399
400 /* ERASE1 stores the block and page address */
401 case NAND_CMD_ERASE1:
402 set_addr(mtd, 0, page_addr, 0);
403 return;
404
405 /* ERASE2 uses the block and page address from ERASE1 */
406 case NAND_CMD_ERASE2:
407 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
408 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
409 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT),
410 &ifc->ifc_nand.nand_fir0);
411
412 ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
413 (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT),
414 &ifc->ifc_nand.nand_fcr0);
415
416 ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
417 ifc_nand_ctrl->read_bytes = 0;
418 fsl_ifc_run_command(mtd);
419 return;
420
421 /* SEQIN sets up the addr buffer and all registers except the length */
422 case NAND_CMD_SEQIN: {
423 u32 nand_fcr0;
424 ifc_nand_ctrl->column = column;
425 ifc_nand_ctrl->oob = 0;
426
427 if (mtd->writesize > 512) {
428 nand_fcr0 =
429 (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
430 (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
431 (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
432
433 ifc_out32(
434 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
435 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
436 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
437 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
438 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT),
439 &ifc->ifc_nand.nand_fir0);
440 ifc_out32(
441 (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
442 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) |
443 (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT),
444 &ifc->ifc_nand.nand_fir1);
445 } else {
446 nand_fcr0 = ((NAND_CMD_PAGEPROG <<
447 IFC_NAND_FCR0_CMD1_SHIFT) |
448 (NAND_CMD_SEQIN <<
449 IFC_NAND_FCR0_CMD2_SHIFT) |
450 (NAND_CMD_STATUS <<
451 IFC_NAND_FCR0_CMD3_SHIFT));
452
453 ifc_out32(
454 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
455 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
456 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
457 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
458 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT),
459 &ifc->ifc_nand.nand_fir0);
460 ifc_out32(
461 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
462 (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
463 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) |
464 (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT),
465 &ifc->ifc_nand.nand_fir1);
466
467 if (column >= mtd->writesize)
468 nand_fcr0 |=
469 NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
470 else
471 nand_fcr0 |=
472 NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
473 }
474
475 if (column >= mtd->writesize) {
476 /* OOB area --> READOOB */
477 column -= mtd->writesize;
478 ifc_nand_ctrl->oob = 1;
479 }
480 ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0);
481 set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
482 return;
483 }
484
485 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
486 case NAND_CMD_PAGEPROG: {
487 if (ifc_nand_ctrl->oob) {
488 ifc_out32(ifc_nand_ctrl->index -
489 ifc_nand_ctrl->column,
490 &ifc->ifc_nand.nand_fbcr);
491 } else {
492 ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
493 }
494
495 fsl_ifc_run_command(mtd);
496 return;
497 }
498
499 case NAND_CMD_STATUS: {
500 void __iomem *addr;
501
502 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
503 (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT),
504 &ifc->ifc_nand.nand_fir0);
505 ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
506 &ifc->ifc_nand.nand_fcr0);
507 ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
508 set_addr(mtd, 0, 0, 0);
509 ifc_nand_ctrl->read_bytes = 1;
510
511 fsl_ifc_run_command(mtd);
512
513 /*
514 * The chip always seems to report that it is
515 * write-protected, even when it is not.
516 */
517 addr = ifc_nand_ctrl->addr;
518 if (chip->options & NAND_BUSWIDTH_16)
519 ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr);
520 else
521 ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr);
522 return;
523 }
524
525 case NAND_CMD_RESET:
526 ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT,
527 &ifc->ifc_nand.nand_fir0);
528 ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT,
529 &ifc->ifc_nand.nand_fcr0);
530 fsl_ifc_run_command(mtd);
531 return;
532
533 default:
534 dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
535 __func__, command);
536 }
537 }
538
539 static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
540 {
541 /* The hardware does not seem to support multiple
542 * chips per bank.
543 */
544 }
545
546 /*
547 * Write buf to the IFC NAND Controller Data Buffer
548 */
549 static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
550 {
551 struct nand_chip *chip = mtd_to_nand(mtd);
552 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
553 unsigned int bufsize = mtd->writesize + mtd->oobsize;
554
555 if (len <= 0) {
556 dev_err(priv->dev, "%s: len %d bytes", __func__, len);
557 return;
558 }
559
560 if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
561 dev_err(priv->dev,
562 "%s: beyond end of buffer (%d requested, %u available)\n",
563 __func__, len, bufsize - ifc_nand_ctrl->index);
564 len = bufsize - ifc_nand_ctrl->index;
565 }
566
567 memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len);
568 ifc_nand_ctrl->index += len;
569 }
570
571 /*
572 * Read a byte from either the IFC hardware buffer
573 * read function for 8-bit buswidth
574 */
575 static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd)
576 {
577 struct nand_chip *chip = mtd_to_nand(mtd);
578 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
579 unsigned int offset;
580
581 /*
582 * If there are still bytes in the IFC buffer, then use the
583 * next byte.
584 */
585 if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
586 offset = ifc_nand_ctrl->index++;
587 return ifc_in8(ifc_nand_ctrl->addr + offset);
588 }
589
590 dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
591 return ERR_BYTE;
592 }
593
594 /*
595 * Read two bytes from the IFC hardware buffer
596 * read function for 16-bit buswith
597 */
598 static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
599 {
600 struct nand_chip *chip = mtd_to_nand(mtd);
601 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
602 uint16_t data;
603
604 /*
605 * If there are still bytes in the IFC buffer, then use the
606 * next byte.
607 */
608 if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
609 data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index);
610 ifc_nand_ctrl->index += 2;
611 return (uint8_t) data;
612 }
613
614 dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
615 return ERR_BYTE;
616 }
617
618 /*
619 * Read from the IFC Controller Data Buffer
620 */
621 static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
622 {
623 struct nand_chip *chip = mtd_to_nand(mtd);
624 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
625 int avail;
626
627 if (len < 0) {
628 dev_err(priv->dev, "%s: len %d bytes", __func__, len);
629 return;
630 }
631
632 avail = min((unsigned int)len,
633 ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
634 memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail);
635 ifc_nand_ctrl->index += avail;
636
637 if (len > avail)
638 dev_err(priv->dev,
639 "%s: beyond end of buffer (%d requested, %d available)\n",
640 __func__, len, avail);
641 }
642
643 /*
644 * This function is called after Program and Erase Operations to
645 * check for success or failure.
646 */
647 static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
648 {
649 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
650 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
651 struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
652 u32 nand_fsr;
653
654 /* Use READ_STATUS command, but wait for the device to be ready */
655 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
656 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT),
657 &ifc->ifc_nand.nand_fir0);
658 ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
659 &ifc->ifc_nand.nand_fcr0);
660 ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
661 set_addr(mtd, 0, 0, 0);
662 ifc_nand_ctrl->read_bytes = 1;
663
664 fsl_ifc_run_command(mtd);
665
666 nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
667
668 /*
669 * The chip always seems to report that it is
670 * write-protected, even when it is not.
671 */
672 return nand_fsr | NAND_STATUS_WP;
673 }
674
675 static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
676 uint8_t *buf, int oob_required, int page)
677 {
678 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
679 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
680 struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
681
682 fsl_ifc_read_buf(mtd, buf, mtd->writesize);
683 if (oob_required)
684 fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
685
686 if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER)
687 dev_err(priv->dev, "NAND Flash ECC Uncorrectable Error\n");
688
689 if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
690 mtd->ecc_stats.failed++;
691
692 return nctrl->max_bitflips;
693 }
694
695 /* ECC will be calculated automatically, and errors will be detected in
696 * waitfunc.
697 */
698 static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
699 const uint8_t *buf, int oob_required, int page)
700 {
701 fsl_ifc_write_buf(mtd, buf, mtd->writesize);
702 fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
703
704 return 0;
705 }
706
707 static int fsl_ifc_chip_init_tail(struct mtd_info *mtd)
708 {
709 struct nand_chip *chip = mtd_to_nand(mtd);
710 struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
711
712 dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
713 chip->numchips);
714 dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
715 chip->chipsize);
716 dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
717 chip->pagemask);
718 dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__,
719 chip->chip_delay);
720 dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
721 chip->badblockpos);
722 dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
723 chip->chip_shift);
724 dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
725 chip->page_shift);
726 dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
727 chip->phys_erase_shift);
728 dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__,
729 chip->ecc.mode);
730 dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
731 chip->ecc.steps);
732 dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
733 chip->ecc.bytes);
734 dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
735 chip->ecc.total);
736 dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__,
737 mtd->ooblayout);
738 dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
739 dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
740 dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
741 mtd->erasesize);
742 dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
743 mtd->writesize);
744 dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
745 mtd->oobsize);
746
747 return 0;
748 }
749
750 static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
751 {
752 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
753 struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
754 struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
755 uint32_t csor = 0, csor_8k = 0, csor_ext = 0;
756 uint32_t cs = priv->bank;
757
758 /* Save CSOR and CSOR_ext */
759 csor = ifc_in32(&ifc_global->csor_cs[cs].csor);
760 csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext);
761
762 /* chage PageSize 8K and SpareSize 1K*/
763 csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
764 ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor);
765 ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext);
766
767 /* READID */
768 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
769 (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
770 (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT),
771 &ifc_runtime->ifc_nand.nand_fir0);
772 ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT,
773 &ifc_runtime->ifc_nand.nand_fcr0);
774 ifc_out32(0x0, &ifc_runtime->ifc_nand.row3);
775
776 ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr);
777
778 /* Program ROW0/COL0 */
779 ifc_out32(0x0, &ifc_runtime->ifc_nand.row0);
780 ifc_out32(0x0, &ifc_runtime->ifc_nand.col0);
781
782 /* set the chip select for NAND Transaction */
783 ifc_out32(cs << IFC_NAND_CSEL_SHIFT,
784 &ifc_runtime->ifc_nand.nand_csel);
785
786 /* start read seq */
787 ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT,
788 &ifc_runtime->ifc_nand.nandseq_strt);
789
790 /* wait for command complete flag or timeout */
791 wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
792 msecs_to_jiffies(IFC_TIMEOUT_MSECS));
793
794 if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
795 printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n");
796
797 /* Restore CSOR and CSOR_ext */
798 ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
799 ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext);
800 }
801
802 static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
803 {
804 struct fsl_ifc_ctrl *ctrl = priv->ctrl;
805 struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
806 struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
807 struct nand_chip *chip = &priv->chip;
808 struct mtd_info *mtd = nand_to_mtd(&priv->chip);
809 u32 csor;
810
811 /* Fill in fsl_ifc_mtd structure */
812 mtd->dev.parent = priv->dev;
813 nand_set_flash_node(chip, priv->dev->of_node);
814
815 /* fill in nand_chip structure */
816 /* set up function call table */
817 if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr))
818 & CSPR_PORT_SIZE_16)
819 chip->read_byte = fsl_ifc_read_byte16;
820 else
821 chip->read_byte = fsl_ifc_read_byte;
822
823 chip->write_buf = fsl_ifc_write_buf;
824 chip->read_buf = fsl_ifc_read_buf;
825 chip->select_chip = fsl_ifc_select_chip;
826 chip->cmdfunc = fsl_ifc_cmdfunc;
827 chip->waitfunc = fsl_ifc_wait;
828
829 chip->bbt_td = &bbt_main_descr;
830 chip->bbt_md = &bbt_mirror_descr;
831
832 ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr);
833
834 /* set up nand options */
835 chip->bbt_options = NAND_BBT_USE_FLASH;
836 chip->options = NAND_NO_SUBPAGE_WRITE;
837
838 if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)
839 & CSPR_PORT_SIZE_16) {
840 chip->read_byte = fsl_ifc_read_byte16;
841 chip->options |= NAND_BUSWIDTH_16;
842 } else {
843 chip->read_byte = fsl_ifc_read_byte;
844 }
845
846 chip->controller = &ifc_nand_ctrl->controller;
847 nand_set_controller_data(chip, priv);
848
849 chip->ecc.read_page = fsl_ifc_read_page;
850 chip->ecc.write_page = fsl_ifc_write_page;
851
852 csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor);
853
854 switch (csor & CSOR_NAND_PGS_MASK) {
855 case CSOR_NAND_PGS_512:
856 if (!(chip->options & NAND_BUSWIDTH_16)) {
857 /* Avoid conflict with bad block marker */
858 bbt_main_descr.offs = 0;
859 bbt_mirror_descr.offs = 0;
860 }
861
862 priv->bufnum_mask = 15;
863 break;
864
865 case CSOR_NAND_PGS_2K:
866 priv->bufnum_mask = 3;
867 break;
868
869 case CSOR_NAND_PGS_4K:
870 priv->bufnum_mask = 1;
871 break;
872
873 case CSOR_NAND_PGS_8K:
874 priv->bufnum_mask = 0;
875 break;
876
877 default:
878 dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
879 return -ENODEV;
880 }
881
882 /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
883 if (csor & CSOR_NAND_ECC_DEC_EN) {
884 chip->ecc.mode = NAND_ECC_HW;
885 mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops);
886
887 /* Hardware generates ECC per 512 Bytes */
888 chip->ecc.size = 512;
889 if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) {
890 chip->ecc.bytes = 8;
891 chip->ecc.strength = 4;
892 } else {
893 chip->ecc.bytes = 16;
894 chip->ecc.strength = 8;
895 }
896 } else {
897 chip->ecc.mode = NAND_ECC_SOFT;
898 chip->ecc.algo = NAND_ECC_HAMMING;
899 }
900
901 if (ctrl->version == FSL_IFC_VERSION_1_1_0)
902 fsl_ifc_sram_init(priv);
903
904 return 0;
905 }
906
907 static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
908 {
909 struct mtd_info *mtd = nand_to_mtd(&priv->chip);
910
911 nand_release(mtd);
912
913 kfree(mtd->name);
914
915 if (priv->vbase)
916 iounmap(priv->vbase);
917
918 ifc_nand_ctrl->chips[priv->bank] = NULL;
919
920 return 0;
921 }
922
923 static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank,
924 phys_addr_t addr)
925 {
926 u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr);
927
928 if (!(cspr & CSPR_V))
929 return 0;
930 if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
931 return 0;
932
933 return (cspr & CSPR_BA) == convert_ifc_address(addr);
934 }
935
936 static DEFINE_MUTEX(fsl_ifc_nand_mutex);
937
938 static int fsl_ifc_nand_probe(struct platform_device *dev)
939 {
940 struct fsl_ifc_runtime __iomem *ifc;
941 struct fsl_ifc_mtd *priv;
942 struct resource res;
943 static const char *part_probe_types[]
944 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
945 int ret;
946 int bank;
947 struct device_node *node = dev->dev.of_node;
948 struct mtd_info *mtd;
949
950 if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs)
951 return -ENODEV;
952 ifc = fsl_ifc_ctrl_dev->rregs;
953
954 /* get, allocate and map the memory resource */
955 ret = of_address_to_resource(node, 0, &res);
956 if (ret) {
957 dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
958 return ret;
959 }
960
961 /* find which chip select it is connected to */
962 for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) {
963 if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start))
964 break;
965 }
966
967 if (bank >= fsl_ifc_ctrl_dev->banks) {
968 dev_err(&dev->dev, "%s: address did not match any chip selects\n",
969 __func__);
970 return -ENODEV;
971 }
972
973 priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
974 if (!priv)
975 return -ENOMEM;
976
977 mutex_lock(&fsl_ifc_nand_mutex);
978 if (!fsl_ifc_ctrl_dev->nand) {
979 ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
980 if (!ifc_nand_ctrl) {
981 mutex_unlock(&fsl_ifc_nand_mutex);
982 return -ENOMEM;
983 }
984
985 ifc_nand_ctrl->read_bytes = 0;
986 ifc_nand_ctrl->index = 0;
987 ifc_nand_ctrl->addr = NULL;
988 fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
989
990 spin_lock_init(&ifc_nand_ctrl->controller.lock);
991 init_waitqueue_head(&ifc_nand_ctrl->controller.wq);
992 } else {
993 ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
994 }
995 mutex_unlock(&fsl_ifc_nand_mutex);
996
997 ifc_nand_ctrl->chips[bank] = priv;
998 priv->bank = bank;
999 priv->ctrl = fsl_ifc_ctrl_dev;
1000 priv->dev = &dev->dev;
1001
1002 priv->vbase = ioremap(res.start, resource_size(&res));
1003 if (!priv->vbase) {
1004 dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
1005 ret = -ENOMEM;
1006 goto err;
1007 }
1008
1009 dev_set_drvdata(priv->dev, priv);
1010
1011 ifc_out32(IFC_NAND_EVTER_EN_OPC_EN |
1012 IFC_NAND_EVTER_EN_FTOER_EN |
1013 IFC_NAND_EVTER_EN_WPER_EN,
1014 &ifc->ifc_nand.nand_evter_en);
1015
1016 /* enable NAND Machine Interrupts */
1017 ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN |
1018 IFC_NAND_EVTER_INTR_FTOERIR_EN |
1019 IFC_NAND_EVTER_INTR_WPERIR_EN,
1020 &ifc->ifc_nand.nand_evter_intr_en);
1021
1022 mtd = nand_to_mtd(&priv->chip);
1023 mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
1024 if (!mtd->name) {
1025 ret = -ENOMEM;
1026 goto err;
1027 }
1028
1029 ret = fsl_ifc_chip_init(priv);
1030 if (ret)
1031 goto err;
1032
1033 ret = nand_scan_ident(mtd, 1, NULL);
1034 if (ret)
1035 goto err;
1036
1037 ret = fsl_ifc_chip_init_tail(mtd);
1038 if (ret)
1039 goto err;
1040
1041 ret = nand_scan_tail(mtd);
1042 if (ret)
1043 goto err;
1044
1045 /* First look for RedBoot table or partitions on the command
1046 * line, these take precedence over device tree information */
1047 mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
1048
1049 dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
1050 (unsigned long long)res.start, priv->bank);
1051 return 0;
1052
1053 err:
1054 fsl_ifc_chip_remove(priv);
1055 return ret;
1056 }
1057
1058 static int fsl_ifc_nand_remove(struct platform_device *dev)
1059 {
1060 struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
1061
1062 fsl_ifc_chip_remove(priv);
1063
1064 mutex_lock(&fsl_ifc_nand_mutex);
1065 ifc_nand_ctrl->counter--;
1066 if (!ifc_nand_ctrl->counter) {
1067 fsl_ifc_ctrl_dev->nand = NULL;
1068 kfree(ifc_nand_ctrl);
1069 }
1070 mutex_unlock(&fsl_ifc_nand_mutex);
1071
1072 return 0;
1073 }
1074
1075 static const struct of_device_id fsl_ifc_nand_match[] = {
1076 {
1077 .compatible = "fsl,ifc-nand",
1078 },
1079 {}
1080 };
1081 MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match);
1082
1083 static struct platform_driver fsl_ifc_nand_driver = {
1084 .driver = {
1085 .name = "fsl,ifc-nand",
1086 .of_match_table = fsl_ifc_nand_match,
1087 },
1088 .probe = fsl_ifc_nand_probe,
1089 .remove = fsl_ifc_nand_remove,
1090 };
1091
1092 module_platform_driver(fsl_ifc_nand_driver);
1093
1094 MODULE_LICENSE("GPL");
1095 MODULE_AUTHOR("Freescale");
1096 MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");
This page took 0.081088 seconds and 5 git commands to generate.