RDMA/nes: don't leak skb if carrier down
[deliverable/linux.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
5 *
6 * Additional technical information is available on
7 * http://www.linux-mtd.infradead.org/doc/nand.html
8 *
9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
11 *
12 * Credits:
13 * David Woodhouse for adding multichip support
14 *
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
18 * TODO:
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
21 * if we have HW ECC support.
22 * BBT table is not serialized, has to be fixed
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/mm.h>
39 #include <linux/types.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/nand_ecc.h>
43 #include <linux/mtd/nand_bch.h>
44 #include <linux/interrupt.h>
45 #include <linux/bitops.h>
46 #include <linux/leds.h>
47 #include <linux/io.h>
48 #include <linux/mtd/partitions.h>
49 #include <linux/of_mtd.h>
50
51 /* Define default oob placement schemes for large and small page devices */
52 static struct nand_ecclayout nand_oob_8 = {
53 .eccbytes = 3,
54 .eccpos = {0, 1, 2},
55 .oobfree = {
56 {.offset = 3,
57 .length = 2},
58 {.offset = 6,
59 .length = 2} }
60 };
61
62 static struct nand_ecclayout nand_oob_16 = {
63 .eccbytes = 6,
64 .eccpos = {0, 1, 2, 3, 6, 7},
65 .oobfree = {
66 {.offset = 8,
67 . length = 8} }
68 };
69
70 static struct nand_ecclayout nand_oob_64 = {
71 .eccbytes = 24,
72 .eccpos = {
73 40, 41, 42, 43, 44, 45, 46, 47,
74 48, 49, 50, 51, 52, 53, 54, 55,
75 56, 57, 58, 59, 60, 61, 62, 63},
76 .oobfree = {
77 {.offset = 2,
78 .length = 38} }
79 };
80
81 static struct nand_ecclayout nand_oob_128 = {
82 .eccbytes = 48,
83 .eccpos = {
84 80, 81, 82, 83, 84, 85, 86, 87,
85 88, 89, 90, 91, 92, 93, 94, 95,
86 96, 97, 98, 99, 100, 101, 102, 103,
87 104, 105, 106, 107, 108, 109, 110, 111,
88 112, 113, 114, 115, 116, 117, 118, 119,
89 120, 121, 122, 123, 124, 125, 126, 127},
90 .oobfree = {
91 {.offset = 2,
92 .length = 78} }
93 };
94
95 static int nand_get_device(struct mtd_info *mtd, int new_state);
96
97 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
98 struct mtd_oob_ops *ops);
99
100 /*
101 * For devices which display every fart in the system on a separate LED. Is
102 * compiled away when LED support is disabled.
103 */
104 DEFINE_LED_TRIGGER(nand_led_trigger);
105
106 static int check_offs_len(struct mtd_info *mtd,
107 loff_t ofs, uint64_t len)
108 {
109 struct nand_chip *chip = mtd_to_nand(mtd);
110 int ret = 0;
111
112 /* Start address must align on block boundary */
113 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
114 pr_debug("%s: unaligned address\n", __func__);
115 ret = -EINVAL;
116 }
117
118 /* Length must align on block boundary */
119 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
120 pr_debug("%s: length not block aligned\n", __func__);
121 ret = -EINVAL;
122 }
123
124 return ret;
125 }
126
127 /**
128 * nand_release_device - [GENERIC] release chip
129 * @mtd: MTD device structure
130 *
131 * Release chip lock and wake up anyone waiting on the device.
132 */
133 static void nand_release_device(struct mtd_info *mtd)
134 {
135 struct nand_chip *chip = mtd_to_nand(mtd);
136
137 /* Release the controller and the chip */
138 spin_lock(&chip->controller->lock);
139 chip->controller->active = NULL;
140 chip->state = FL_READY;
141 wake_up(&chip->controller->wq);
142 spin_unlock(&chip->controller->lock);
143 }
144
145 /**
146 * nand_read_byte - [DEFAULT] read one byte from the chip
147 * @mtd: MTD device structure
148 *
149 * Default read function for 8bit buswidth
150 */
151 static uint8_t nand_read_byte(struct mtd_info *mtd)
152 {
153 struct nand_chip *chip = mtd_to_nand(mtd);
154 return readb(chip->IO_ADDR_R);
155 }
156
157 /**
158 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
159 * @mtd: MTD device structure
160 *
161 * Default read function for 16bit buswidth with endianness conversion.
162 *
163 */
164 static uint8_t nand_read_byte16(struct mtd_info *mtd)
165 {
166 struct nand_chip *chip = mtd_to_nand(mtd);
167 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
168 }
169
170 /**
171 * nand_read_word - [DEFAULT] read one word from the chip
172 * @mtd: MTD device structure
173 *
174 * Default read function for 16bit buswidth without endianness conversion.
175 */
176 static u16 nand_read_word(struct mtd_info *mtd)
177 {
178 struct nand_chip *chip = mtd_to_nand(mtd);
179 return readw(chip->IO_ADDR_R);
180 }
181
182 /**
183 * nand_select_chip - [DEFAULT] control CE line
184 * @mtd: MTD device structure
185 * @chipnr: chipnumber to select, -1 for deselect
186 *
187 * Default select function for 1 chip devices.
188 */
189 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
190 {
191 struct nand_chip *chip = mtd_to_nand(mtd);
192
193 switch (chipnr) {
194 case -1:
195 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
196 break;
197 case 0:
198 break;
199
200 default:
201 BUG();
202 }
203 }
204
205 /**
206 * nand_write_byte - [DEFAULT] write single byte to chip
207 * @mtd: MTD device structure
208 * @byte: value to write
209 *
210 * Default function to write a byte to I/O[7:0]
211 */
212 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
213 {
214 struct nand_chip *chip = mtd_to_nand(mtd);
215
216 chip->write_buf(mtd, &byte, 1);
217 }
218
219 /**
220 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
221 * @mtd: MTD device structure
222 * @byte: value to write
223 *
224 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
225 */
226 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
227 {
228 struct nand_chip *chip = mtd_to_nand(mtd);
229 uint16_t word = byte;
230
231 /*
232 * It's not entirely clear what should happen to I/O[15:8] when writing
233 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
234 *
235 * When the host supports a 16-bit bus width, only data is
236 * transferred at the 16-bit width. All address and command line
237 * transfers shall use only the lower 8-bits of the data bus. During
238 * command transfers, the host may place any value on the upper
239 * 8-bits of the data bus. During address transfers, the host shall
240 * set the upper 8-bits of the data bus to 00h.
241 *
242 * One user of the write_byte callback is nand_onfi_set_features. The
243 * four parameters are specified to be written to I/O[7:0], but this is
244 * neither an address nor a command transfer. Let's assume a 0 on the
245 * upper I/O lines is OK.
246 */
247 chip->write_buf(mtd, (uint8_t *)&word, 2);
248 }
249
250 /**
251 * nand_write_buf - [DEFAULT] write buffer to chip
252 * @mtd: MTD device structure
253 * @buf: data buffer
254 * @len: number of bytes to write
255 *
256 * Default write function for 8bit buswidth.
257 */
258 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
259 {
260 struct nand_chip *chip = mtd_to_nand(mtd);
261
262 iowrite8_rep(chip->IO_ADDR_W, buf, len);
263 }
264
265 /**
266 * nand_read_buf - [DEFAULT] read chip data into buffer
267 * @mtd: MTD device structure
268 * @buf: buffer to store date
269 * @len: number of bytes to read
270 *
271 * Default read function for 8bit buswidth.
272 */
273 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
274 {
275 struct nand_chip *chip = mtd_to_nand(mtd);
276
277 ioread8_rep(chip->IO_ADDR_R, buf, len);
278 }
279
280 /**
281 * nand_write_buf16 - [DEFAULT] write buffer to chip
282 * @mtd: MTD device structure
283 * @buf: data buffer
284 * @len: number of bytes to write
285 *
286 * Default write function for 16bit buswidth.
287 */
288 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
289 {
290 struct nand_chip *chip = mtd_to_nand(mtd);
291 u16 *p = (u16 *) buf;
292
293 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
294 }
295
296 /**
297 * nand_read_buf16 - [DEFAULT] read chip data into buffer
298 * @mtd: MTD device structure
299 * @buf: buffer to store date
300 * @len: number of bytes to read
301 *
302 * Default read function for 16bit buswidth.
303 */
304 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
305 {
306 struct nand_chip *chip = mtd_to_nand(mtd);
307 u16 *p = (u16 *) buf;
308
309 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
310 }
311
312 /**
313 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
314 * @mtd: MTD device structure
315 * @ofs: offset from device start
316 *
317 * Check, if the block is bad.
318 */
319 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
320 {
321 int page, res = 0, i = 0;
322 struct nand_chip *chip = mtd_to_nand(mtd);
323 u16 bad;
324
325 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
326 ofs += mtd->erasesize - mtd->writesize;
327
328 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
329
330 do {
331 if (chip->options & NAND_BUSWIDTH_16) {
332 chip->cmdfunc(mtd, NAND_CMD_READOOB,
333 chip->badblockpos & 0xFE, page);
334 bad = cpu_to_le16(chip->read_word(mtd));
335 if (chip->badblockpos & 0x1)
336 bad >>= 8;
337 else
338 bad &= 0xFF;
339 } else {
340 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
341 page);
342 bad = chip->read_byte(mtd);
343 }
344
345 if (likely(chip->badblockbits == 8))
346 res = bad != 0xFF;
347 else
348 res = hweight8(bad) < chip->badblockbits;
349 ofs += mtd->writesize;
350 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
351 i++;
352 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
353
354 return res;
355 }
356
357 /**
358 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
359 * @mtd: MTD device structure
360 * @ofs: offset from device start
361 *
362 * This is the default implementation, which can be overridden by a hardware
363 * specific driver. It provides the details for writing a bad block marker to a
364 * block.
365 */
366 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
367 {
368 struct nand_chip *chip = mtd_to_nand(mtd);
369 struct mtd_oob_ops ops;
370 uint8_t buf[2] = { 0, 0 };
371 int ret = 0, res, i = 0;
372
373 memset(&ops, 0, sizeof(ops));
374 ops.oobbuf = buf;
375 ops.ooboffs = chip->badblockpos;
376 if (chip->options & NAND_BUSWIDTH_16) {
377 ops.ooboffs &= ~0x01;
378 ops.len = ops.ooblen = 2;
379 } else {
380 ops.len = ops.ooblen = 1;
381 }
382 ops.mode = MTD_OPS_PLACE_OOB;
383
384 /* Write to first/last page(s) if necessary */
385 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
386 ofs += mtd->erasesize - mtd->writesize;
387 do {
388 res = nand_do_write_oob(mtd, ofs, &ops);
389 if (!ret)
390 ret = res;
391
392 i++;
393 ofs += mtd->writesize;
394 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
395
396 return ret;
397 }
398
399 /**
400 * nand_block_markbad_lowlevel - mark a block bad
401 * @mtd: MTD device structure
402 * @ofs: offset from device start
403 *
404 * This function performs the generic NAND bad block marking steps (i.e., bad
405 * block table(s) and/or marker(s)). We only allow the hardware driver to
406 * specify how to write bad block markers to OOB (chip->block_markbad).
407 *
408 * We try operations in the following order:
409 * (1) erase the affected block, to allow OOB marker to be written cleanly
410 * (2) write bad block marker to OOB area of affected block (unless flag
411 * NAND_BBT_NO_OOB_BBM is present)
412 * (3) update the BBT
413 * Note that we retain the first error encountered in (2) or (3), finish the
414 * procedures, and dump the error in the end.
415 */
416 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
417 {
418 struct nand_chip *chip = mtd_to_nand(mtd);
419 int res, ret = 0;
420
421 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
422 struct erase_info einfo;
423
424 /* Attempt erase before marking OOB */
425 memset(&einfo, 0, sizeof(einfo));
426 einfo.mtd = mtd;
427 einfo.addr = ofs;
428 einfo.len = 1ULL << chip->phys_erase_shift;
429 nand_erase_nand(mtd, &einfo, 0);
430
431 /* Write bad block marker to OOB */
432 nand_get_device(mtd, FL_WRITING);
433 ret = chip->block_markbad(mtd, ofs);
434 nand_release_device(mtd);
435 }
436
437 /* Mark block bad in BBT */
438 if (chip->bbt) {
439 res = nand_markbad_bbt(mtd, ofs);
440 if (!ret)
441 ret = res;
442 }
443
444 if (!ret)
445 mtd->ecc_stats.badblocks++;
446
447 return ret;
448 }
449
450 /**
451 * nand_check_wp - [GENERIC] check if the chip is write protected
452 * @mtd: MTD device structure
453 *
454 * Check, if the device is write protected. The function expects, that the
455 * device is already selected.
456 */
457 static int nand_check_wp(struct mtd_info *mtd)
458 {
459 struct nand_chip *chip = mtd_to_nand(mtd);
460
461 /* Broken xD cards report WP despite being writable */
462 if (chip->options & NAND_BROKEN_XD)
463 return 0;
464
465 /* Check the WP bit */
466 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
467 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
468 }
469
470 /**
471 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
472 * @mtd: MTD device structure
473 * @ofs: offset from device start
474 *
475 * Check if the block is marked as reserved.
476 */
477 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
478 {
479 struct nand_chip *chip = mtd_to_nand(mtd);
480
481 if (!chip->bbt)
482 return 0;
483 /* Return info from the table */
484 return nand_isreserved_bbt(mtd, ofs);
485 }
486
487 /**
488 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
489 * @mtd: MTD device structure
490 * @ofs: offset from device start
491 * @allowbbt: 1, if its allowed to access the bbt area
492 *
493 * Check, if the block is bad. Either by reading the bad block table or
494 * calling of the scan function.
495 */
496 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
497 {
498 struct nand_chip *chip = mtd_to_nand(mtd);
499
500 if (!chip->bbt)
501 return chip->block_bad(mtd, ofs);
502
503 /* Return info from the table */
504 return nand_isbad_bbt(mtd, ofs, allowbbt);
505 }
506
507 /**
508 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
509 * @mtd: MTD device structure
510 * @timeo: Timeout
511 *
512 * Helper function for nand_wait_ready used when needing to wait in interrupt
513 * context.
514 */
515 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
516 {
517 struct nand_chip *chip = mtd_to_nand(mtd);
518 int i;
519
520 /* Wait for the device to get ready */
521 for (i = 0; i < timeo; i++) {
522 if (chip->dev_ready(mtd))
523 break;
524 touch_softlockup_watchdog();
525 mdelay(1);
526 }
527 }
528
529 /**
530 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
531 * @mtd: MTD device structure
532 *
533 * Wait for the ready pin after a command, and warn if a timeout occurs.
534 */
535 void nand_wait_ready(struct mtd_info *mtd)
536 {
537 struct nand_chip *chip = mtd_to_nand(mtd);
538 unsigned long timeo = 400;
539
540 if (in_interrupt() || oops_in_progress)
541 return panic_nand_wait_ready(mtd, timeo);
542
543 led_trigger_event(nand_led_trigger, LED_FULL);
544 /* Wait until command is processed or timeout occurs */
545 timeo = jiffies + msecs_to_jiffies(timeo);
546 do {
547 if (chip->dev_ready(mtd))
548 goto out;
549 cond_resched();
550 } while (time_before(jiffies, timeo));
551
552 if (!chip->dev_ready(mtd))
553 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
554 out:
555 led_trigger_event(nand_led_trigger, LED_OFF);
556 }
557 EXPORT_SYMBOL_GPL(nand_wait_ready);
558
559 /**
560 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
561 * @mtd: MTD device structure
562 * @timeo: Timeout in ms
563 *
564 * Wait for status ready (i.e. command done) or timeout.
565 */
566 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
567 {
568 register struct nand_chip *chip = mtd_to_nand(mtd);
569
570 timeo = jiffies + msecs_to_jiffies(timeo);
571 do {
572 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
573 break;
574 touch_softlockup_watchdog();
575 } while (time_before(jiffies, timeo));
576 };
577
578 /**
579 * nand_command - [DEFAULT] Send command to NAND device
580 * @mtd: MTD device structure
581 * @command: the command to be sent
582 * @column: the column address for this command, -1 if none
583 * @page_addr: the page address for this command, -1 if none
584 *
585 * Send command to NAND device. This function is used for small page devices
586 * (512 Bytes per page).
587 */
588 static void nand_command(struct mtd_info *mtd, unsigned int command,
589 int column, int page_addr)
590 {
591 register struct nand_chip *chip = mtd_to_nand(mtd);
592 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
593
594 /* Write out the command to the device */
595 if (command == NAND_CMD_SEQIN) {
596 int readcmd;
597
598 if (column >= mtd->writesize) {
599 /* OOB area */
600 column -= mtd->writesize;
601 readcmd = NAND_CMD_READOOB;
602 } else if (column < 256) {
603 /* First 256 bytes --> READ0 */
604 readcmd = NAND_CMD_READ0;
605 } else {
606 column -= 256;
607 readcmd = NAND_CMD_READ1;
608 }
609 chip->cmd_ctrl(mtd, readcmd, ctrl);
610 ctrl &= ~NAND_CTRL_CHANGE;
611 }
612 chip->cmd_ctrl(mtd, command, ctrl);
613
614 /* Address cycle, when necessary */
615 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
616 /* Serially input address */
617 if (column != -1) {
618 /* Adjust columns for 16 bit buswidth */
619 if (chip->options & NAND_BUSWIDTH_16 &&
620 !nand_opcode_8bits(command))
621 column >>= 1;
622 chip->cmd_ctrl(mtd, column, ctrl);
623 ctrl &= ~NAND_CTRL_CHANGE;
624 }
625 if (page_addr != -1) {
626 chip->cmd_ctrl(mtd, page_addr, ctrl);
627 ctrl &= ~NAND_CTRL_CHANGE;
628 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
629 /* One more address cycle for devices > 32MiB */
630 if (chip->chipsize > (32 << 20))
631 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
632 }
633 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
634
635 /*
636 * Program and erase have their own busy handlers status and sequential
637 * in needs no delay
638 */
639 switch (command) {
640
641 case NAND_CMD_PAGEPROG:
642 case NAND_CMD_ERASE1:
643 case NAND_CMD_ERASE2:
644 case NAND_CMD_SEQIN:
645 case NAND_CMD_STATUS:
646 return;
647
648 case NAND_CMD_RESET:
649 if (chip->dev_ready)
650 break;
651 udelay(chip->chip_delay);
652 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
653 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
654 chip->cmd_ctrl(mtd,
655 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
656 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
657 nand_wait_status_ready(mtd, 250);
658 return;
659
660 /* This applies to read commands */
661 default:
662 /*
663 * If we don't have access to the busy pin, we apply the given
664 * command delay
665 */
666 if (!chip->dev_ready) {
667 udelay(chip->chip_delay);
668 return;
669 }
670 }
671 /*
672 * Apply this short delay always to ensure that we do wait tWB in
673 * any case on any machine.
674 */
675 ndelay(100);
676
677 nand_wait_ready(mtd);
678 }
679
680 /**
681 * nand_command_lp - [DEFAULT] Send command to NAND large page device
682 * @mtd: MTD device structure
683 * @command: the command to be sent
684 * @column: the column address for this command, -1 if none
685 * @page_addr: the page address for this command, -1 if none
686 *
687 * Send command to NAND device. This is the version for the new large page
688 * devices. We don't have the separate regions as we have in the small page
689 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
690 */
691 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
692 int column, int page_addr)
693 {
694 register struct nand_chip *chip = mtd_to_nand(mtd);
695
696 /* Emulate NAND_CMD_READOOB */
697 if (command == NAND_CMD_READOOB) {
698 column += mtd->writesize;
699 command = NAND_CMD_READ0;
700 }
701
702 /* Command latch cycle */
703 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
704
705 if (column != -1 || page_addr != -1) {
706 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
707
708 /* Serially input address */
709 if (column != -1) {
710 /* Adjust columns for 16 bit buswidth */
711 if (chip->options & NAND_BUSWIDTH_16 &&
712 !nand_opcode_8bits(command))
713 column >>= 1;
714 chip->cmd_ctrl(mtd, column, ctrl);
715 ctrl &= ~NAND_CTRL_CHANGE;
716 chip->cmd_ctrl(mtd, column >> 8, ctrl);
717 }
718 if (page_addr != -1) {
719 chip->cmd_ctrl(mtd, page_addr, ctrl);
720 chip->cmd_ctrl(mtd, page_addr >> 8,
721 NAND_NCE | NAND_ALE);
722 /* One more address cycle for devices > 128MiB */
723 if (chip->chipsize > (128 << 20))
724 chip->cmd_ctrl(mtd, page_addr >> 16,
725 NAND_NCE | NAND_ALE);
726 }
727 }
728 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
729
730 /*
731 * Program and erase have their own busy handlers status, sequential
732 * in and status need no delay.
733 */
734 switch (command) {
735
736 case NAND_CMD_CACHEDPROG:
737 case NAND_CMD_PAGEPROG:
738 case NAND_CMD_ERASE1:
739 case NAND_CMD_ERASE2:
740 case NAND_CMD_SEQIN:
741 case NAND_CMD_RNDIN:
742 case NAND_CMD_STATUS:
743 return;
744
745 case NAND_CMD_RESET:
746 if (chip->dev_ready)
747 break;
748 udelay(chip->chip_delay);
749 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
750 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
751 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
752 NAND_NCE | NAND_CTRL_CHANGE);
753 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
754 nand_wait_status_ready(mtd, 250);
755 return;
756
757 case NAND_CMD_RNDOUT:
758 /* No ready / busy check necessary */
759 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
760 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
761 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
762 NAND_NCE | NAND_CTRL_CHANGE);
763 return;
764
765 case NAND_CMD_READ0:
766 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
767 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
768 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
769 NAND_NCE | NAND_CTRL_CHANGE);
770
771 /* This applies to read commands */
772 default:
773 /*
774 * If we don't have access to the busy pin, we apply the given
775 * command delay.
776 */
777 if (!chip->dev_ready) {
778 udelay(chip->chip_delay);
779 return;
780 }
781 }
782
783 /*
784 * Apply this short delay always to ensure that we do wait tWB in
785 * any case on any machine.
786 */
787 ndelay(100);
788
789 nand_wait_ready(mtd);
790 }
791
792 /**
793 * panic_nand_get_device - [GENERIC] Get chip for selected access
794 * @chip: the nand chip descriptor
795 * @mtd: MTD device structure
796 * @new_state: the state which is requested
797 *
798 * Used when in panic, no locks are taken.
799 */
800 static void panic_nand_get_device(struct nand_chip *chip,
801 struct mtd_info *mtd, int new_state)
802 {
803 /* Hardware controller shared among independent devices */
804 chip->controller->active = chip;
805 chip->state = new_state;
806 }
807
808 /**
809 * nand_get_device - [GENERIC] Get chip for selected access
810 * @mtd: MTD device structure
811 * @new_state: the state which is requested
812 *
813 * Get the device and lock it for exclusive access
814 */
815 static int
816 nand_get_device(struct mtd_info *mtd, int new_state)
817 {
818 struct nand_chip *chip = mtd_to_nand(mtd);
819 spinlock_t *lock = &chip->controller->lock;
820 wait_queue_head_t *wq = &chip->controller->wq;
821 DECLARE_WAITQUEUE(wait, current);
822 retry:
823 spin_lock(lock);
824
825 /* Hardware controller shared among independent devices */
826 if (!chip->controller->active)
827 chip->controller->active = chip;
828
829 if (chip->controller->active == chip && chip->state == FL_READY) {
830 chip->state = new_state;
831 spin_unlock(lock);
832 return 0;
833 }
834 if (new_state == FL_PM_SUSPENDED) {
835 if (chip->controller->active->state == FL_PM_SUSPENDED) {
836 chip->state = FL_PM_SUSPENDED;
837 spin_unlock(lock);
838 return 0;
839 }
840 }
841 set_current_state(TASK_UNINTERRUPTIBLE);
842 add_wait_queue(wq, &wait);
843 spin_unlock(lock);
844 schedule();
845 remove_wait_queue(wq, &wait);
846 goto retry;
847 }
848
849 /**
850 * panic_nand_wait - [GENERIC] wait until the command is done
851 * @mtd: MTD device structure
852 * @chip: NAND chip structure
853 * @timeo: timeout
854 *
855 * Wait for command done. This is a helper function for nand_wait used when
856 * we are in interrupt context. May happen when in panic and trying to write
857 * an oops through mtdoops.
858 */
859 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
860 unsigned long timeo)
861 {
862 int i;
863 for (i = 0; i < timeo; i++) {
864 if (chip->dev_ready) {
865 if (chip->dev_ready(mtd))
866 break;
867 } else {
868 if (chip->read_byte(mtd) & NAND_STATUS_READY)
869 break;
870 }
871 mdelay(1);
872 }
873 }
874
875 /**
876 * nand_wait - [DEFAULT] wait until the command is done
877 * @mtd: MTD device structure
878 * @chip: NAND chip structure
879 *
880 * Wait for command done. This applies to erase and program only.
881 */
882 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
883 {
884
885 int status;
886 unsigned long timeo = 400;
887
888 led_trigger_event(nand_led_trigger, LED_FULL);
889
890 /*
891 * Apply this short delay always to ensure that we do wait tWB in any
892 * case on any machine.
893 */
894 ndelay(100);
895
896 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
897
898 if (in_interrupt() || oops_in_progress)
899 panic_nand_wait(mtd, chip, timeo);
900 else {
901 timeo = jiffies + msecs_to_jiffies(timeo);
902 do {
903 if (chip->dev_ready) {
904 if (chip->dev_ready(mtd))
905 break;
906 } else {
907 if (chip->read_byte(mtd) & NAND_STATUS_READY)
908 break;
909 }
910 cond_resched();
911 } while (time_before(jiffies, timeo));
912 }
913 led_trigger_event(nand_led_trigger, LED_OFF);
914
915 status = (int)chip->read_byte(mtd);
916 /* This can happen if in case of timeout or buggy dev_ready */
917 WARN_ON(!(status & NAND_STATUS_READY));
918 return status;
919 }
920
921 /**
922 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
923 * @mtd: mtd info
924 * @ofs: offset to start unlock from
925 * @len: length to unlock
926 * @invert: when = 0, unlock the range of blocks within the lower and
927 * upper boundary address
928 * when = 1, unlock the range of blocks outside the boundaries
929 * of the lower and upper boundary address
930 *
931 * Returs unlock status.
932 */
933 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
934 uint64_t len, int invert)
935 {
936 int ret = 0;
937 int status, page;
938 struct nand_chip *chip = mtd_to_nand(mtd);
939
940 /* Submit address of first page to unlock */
941 page = ofs >> chip->page_shift;
942 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
943
944 /* Submit address of last page to unlock */
945 page = (ofs + len) >> chip->page_shift;
946 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
947 (page | invert) & chip->pagemask);
948
949 /* Call wait ready function */
950 status = chip->waitfunc(mtd, chip);
951 /* See if device thinks it succeeded */
952 if (status & NAND_STATUS_FAIL) {
953 pr_debug("%s: error status = 0x%08x\n",
954 __func__, status);
955 ret = -EIO;
956 }
957
958 return ret;
959 }
960
961 /**
962 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
963 * @mtd: mtd info
964 * @ofs: offset to start unlock from
965 * @len: length to unlock
966 *
967 * Returns unlock status.
968 */
969 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
970 {
971 int ret = 0;
972 int chipnr;
973 struct nand_chip *chip = mtd_to_nand(mtd);
974
975 pr_debug("%s: start = 0x%012llx, len = %llu\n",
976 __func__, (unsigned long long)ofs, len);
977
978 if (check_offs_len(mtd, ofs, len))
979 return -EINVAL;
980
981 /* Align to last block address if size addresses end of the device */
982 if (ofs + len == mtd->size)
983 len -= mtd->erasesize;
984
985 nand_get_device(mtd, FL_UNLOCKING);
986
987 /* Shift to get chip number */
988 chipnr = ofs >> chip->chip_shift;
989
990 chip->select_chip(mtd, chipnr);
991
992 /*
993 * Reset the chip.
994 * If we want to check the WP through READ STATUS and check the bit 7
995 * we must reset the chip
996 * some operation can also clear the bit 7 of status register
997 * eg. erase/program a locked block
998 */
999 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1000
1001 /* Check, if it is write protected */
1002 if (nand_check_wp(mtd)) {
1003 pr_debug("%s: device is write protected!\n",
1004 __func__);
1005 ret = -EIO;
1006 goto out;
1007 }
1008
1009 ret = __nand_unlock(mtd, ofs, len, 0);
1010
1011 out:
1012 chip->select_chip(mtd, -1);
1013 nand_release_device(mtd);
1014
1015 return ret;
1016 }
1017 EXPORT_SYMBOL(nand_unlock);
1018
1019 /**
1020 * nand_lock - [REPLACEABLE] locks all blocks present in the device
1021 * @mtd: mtd info
1022 * @ofs: offset to start unlock from
1023 * @len: length to unlock
1024 *
1025 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1026 * have this feature, but it allows only to lock all blocks, not for specified
1027 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1028 * now.
1029 *
1030 * Returns lock status.
1031 */
1032 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1033 {
1034 int ret = 0;
1035 int chipnr, status, page;
1036 struct nand_chip *chip = mtd_to_nand(mtd);
1037
1038 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1039 __func__, (unsigned long long)ofs, len);
1040
1041 if (check_offs_len(mtd, ofs, len))
1042 return -EINVAL;
1043
1044 nand_get_device(mtd, FL_LOCKING);
1045
1046 /* Shift to get chip number */
1047 chipnr = ofs >> chip->chip_shift;
1048
1049 chip->select_chip(mtd, chipnr);
1050
1051 /*
1052 * Reset the chip.
1053 * If we want to check the WP through READ STATUS and check the bit 7
1054 * we must reset the chip
1055 * some operation can also clear the bit 7 of status register
1056 * eg. erase/program a locked block
1057 */
1058 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1059
1060 /* Check, if it is write protected */
1061 if (nand_check_wp(mtd)) {
1062 pr_debug("%s: device is write protected!\n",
1063 __func__);
1064 status = MTD_ERASE_FAILED;
1065 ret = -EIO;
1066 goto out;
1067 }
1068
1069 /* Submit address of first page to lock */
1070 page = ofs >> chip->page_shift;
1071 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1072
1073 /* Call wait ready function */
1074 status = chip->waitfunc(mtd, chip);
1075 /* See if device thinks it succeeded */
1076 if (status & NAND_STATUS_FAIL) {
1077 pr_debug("%s: error status = 0x%08x\n",
1078 __func__, status);
1079 ret = -EIO;
1080 goto out;
1081 }
1082
1083 ret = __nand_unlock(mtd, ofs, len, 0x1);
1084
1085 out:
1086 chip->select_chip(mtd, -1);
1087 nand_release_device(mtd);
1088
1089 return ret;
1090 }
1091 EXPORT_SYMBOL(nand_lock);
1092
1093 /**
1094 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1095 * @buf: buffer to test
1096 * @len: buffer length
1097 * @bitflips_threshold: maximum number of bitflips
1098 *
1099 * Check if a buffer contains only 0xff, which means the underlying region
1100 * has been erased and is ready to be programmed.
1101 * The bitflips_threshold specify the maximum number of bitflips before
1102 * considering the region is not erased.
1103 * Note: The logic of this function has been extracted from the memweight
1104 * implementation, except that nand_check_erased_buf function exit before
1105 * testing the whole buffer if the number of bitflips exceed the
1106 * bitflips_threshold value.
1107 *
1108 * Returns a positive number of bitflips less than or equal to
1109 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1110 * threshold.
1111 */
1112 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1113 {
1114 const unsigned char *bitmap = buf;
1115 int bitflips = 0;
1116 int weight;
1117
1118 for (; len && ((uintptr_t)bitmap) % sizeof(long);
1119 len--, bitmap++) {
1120 weight = hweight8(*bitmap);
1121 bitflips += BITS_PER_BYTE - weight;
1122 if (unlikely(bitflips > bitflips_threshold))
1123 return -EBADMSG;
1124 }
1125
1126 for (; len >= sizeof(long);
1127 len -= sizeof(long), bitmap += sizeof(long)) {
1128 weight = hweight_long(*((unsigned long *)bitmap));
1129 bitflips += BITS_PER_LONG - weight;
1130 if (unlikely(bitflips > bitflips_threshold))
1131 return -EBADMSG;
1132 }
1133
1134 for (; len > 0; len--, bitmap++) {
1135 weight = hweight8(*bitmap);
1136 bitflips += BITS_PER_BYTE - weight;
1137 if (unlikely(bitflips > bitflips_threshold))
1138 return -EBADMSG;
1139 }
1140
1141 return bitflips;
1142 }
1143
1144 /**
1145 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1146 * 0xff data
1147 * @data: data buffer to test
1148 * @datalen: data length
1149 * @ecc: ECC buffer
1150 * @ecclen: ECC length
1151 * @extraoob: extra OOB buffer
1152 * @extraooblen: extra OOB length
1153 * @bitflips_threshold: maximum number of bitflips
1154 *
1155 * Check if a data buffer and its associated ECC and OOB data contains only
1156 * 0xff pattern, which means the underlying region has been erased and is
1157 * ready to be programmed.
1158 * The bitflips_threshold specify the maximum number of bitflips before
1159 * considering the region as not erased.
1160 *
1161 * Note:
1162 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1163 * different from the NAND page size. When fixing bitflips, ECC engines will
1164 * report the number of errors per chunk, and the NAND core infrastructure
1165 * expect you to return the maximum number of bitflips for the whole page.
1166 * This is why you should always use this function on a single chunk and
1167 * not on the whole page. After checking each chunk you should update your
1168 * max_bitflips value accordingly.
1169 * 2/ When checking for bitflips in erased pages you should not only check
1170 * the payload data but also their associated ECC data, because a user might
1171 * have programmed almost all bits to 1 but a few. In this case, we
1172 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1173 * this case.
1174 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1175 * data are protected by the ECC engine.
1176 * It could also be used if you support subpages and want to attach some
1177 * extra OOB data to an ECC chunk.
1178 *
1179 * Returns a positive number of bitflips less than or equal to
1180 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1181 * threshold. In case of success, the passed buffers are filled with 0xff.
1182 */
1183 int nand_check_erased_ecc_chunk(void *data, int datalen,
1184 void *ecc, int ecclen,
1185 void *extraoob, int extraooblen,
1186 int bitflips_threshold)
1187 {
1188 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1189
1190 data_bitflips = nand_check_erased_buf(data, datalen,
1191 bitflips_threshold);
1192 if (data_bitflips < 0)
1193 return data_bitflips;
1194
1195 bitflips_threshold -= data_bitflips;
1196
1197 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1198 if (ecc_bitflips < 0)
1199 return ecc_bitflips;
1200
1201 bitflips_threshold -= ecc_bitflips;
1202
1203 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1204 bitflips_threshold);
1205 if (extraoob_bitflips < 0)
1206 return extraoob_bitflips;
1207
1208 if (data_bitflips)
1209 memset(data, 0xff, datalen);
1210
1211 if (ecc_bitflips)
1212 memset(ecc, 0xff, ecclen);
1213
1214 if (extraoob_bitflips)
1215 memset(extraoob, 0xff, extraooblen);
1216
1217 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1218 }
1219 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1220
1221 /**
1222 * nand_read_page_raw - [INTERN] read raw page data without ecc
1223 * @mtd: mtd info structure
1224 * @chip: nand chip info structure
1225 * @buf: buffer to store read data
1226 * @oob_required: caller requires OOB data read to chip->oob_poi
1227 * @page: page number to read
1228 *
1229 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1230 */
1231 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1232 uint8_t *buf, int oob_required, int page)
1233 {
1234 chip->read_buf(mtd, buf, mtd->writesize);
1235 if (oob_required)
1236 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1237 return 0;
1238 }
1239
1240 /**
1241 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1242 * @mtd: mtd info structure
1243 * @chip: nand chip info structure
1244 * @buf: buffer to store read data
1245 * @oob_required: caller requires OOB data read to chip->oob_poi
1246 * @page: page number to read
1247 *
1248 * We need a special oob layout and handling even when OOB isn't used.
1249 */
1250 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1251 struct nand_chip *chip, uint8_t *buf,
1252 int oob_required, int page)
1253 {
1254 int eccsize = chip->ecc.size;
1255 int eccbytes = chip->ecc.bytes;
1256 uint8_t *oob = chip->oob_poi;
1257 int steps, size;
1258
1259 for (steps = chip->ecc.steps; steps > 0; steps--) {
1260 chip->read_buf(mtd, buf, eccsize);
1261 buf += eccsize;
1262
1263 if (chip->ecc.prepad) {
1264 chip->read_buf(mtd, oob, chip->ecc.prepad);
1265 oob += chip->ecc.prepad;
1266 }
1267
1268 chip->read_buf(mtd, oob, eccbytes);
1269 oob += eccbytes;
1270
1271 if (chip->ecc.postpad) {
1272 chip->read_buf(mtd, oob, chip->ecc.postpad);
1273 oob += chip->ecc.postpad;
1274 }
1275 }
1276
1277 size = mtd->oobsize - (oob - chip->oob_poi);
1278 if (size)
1279 chip->read_buf(mtd, oob, size);
1280
1281 return 0;
1282 }
1283
1284 /**
1285 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1286 * @mtd: mtd info structure
1287 * @chip: nand chip info structure
1288 * @buf: buffer to store read data
1289 * @oob_required: caller requires OOB data read to chip->oob_poi
1290 * @page: page number to read
1291 */
1292 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1293 uint8_t *buf, int oob_required, int page)
1294 {
1295 int i, eccsize = chip->ecc.size;
1296 int eccbytes = chip->ecc.bytes;
1297 int eccsteps = chip->ecc.steps;
1298 uint8_t *p = buf;
1299 uint8_t *ecc_calc = chip->buffers->ecccalc;
1300 uint8_t *ecc_code = chip->buffers->ecccode;
1301 uint32_t *eccpos = chip->ecc.layout->eccpos;
1302 unsigned int max_bitflips = 0;
1303
1304 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1305
1306 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1307 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1308
1309 for (i = 0; i < chip->ecc.total; i++)
1310 ecc_code[i] = chip->oob_poi[eccpos[i]];
1311
1312 eccsteps = chip->ecc.steps;
1313 p = buf;
1314
1315 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1316 int stat;
1317
1318 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1319 if (stat < 0) {
1320 mtd->ecc_stats.failed++;
1321 } else {
1322 mtd->ecc_stats.corrected += stat;
1323 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1324 }
1325 }
1326 return max_bitflips;
1327 }
1328
1329 /**
1330 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1331 * @mtd: mtd info structure
1332 * @chip: nand chip info structure
1333 * @data_offs: offset of requested data within the page
1334 * @readlen: data length
1335 * @bufpoi: buffer to store read data
1336 * @page: page number to read
1337 */
1338 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1339 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1340 int page)
1341 {
1342 int start_step, end_step, num_steps;
1343 uint32_t *eccpos = chip->ecc.layout->eccpos;
1344 uint8_t *p;
1345 int data_col_addr, i, gaps = 0;
1346 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1347 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1348 int index;
1349 unsigned int max_bitflips = 0;
1350
1351 /* Column address within the page aligned to ECC size (256bytes) */
1352 start_step = data_offs / chip->ecc.size;
1353 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1354 num_steps = end_step - start_step + 1;
1355 index = start_step * chip->ecc.bytes;
1356
1357 /* Data size aligned to ECC ecc.size */
1358 datafrag_len = num_steps * chip->ecc.size;
1359 eccfrag_len = num_steps * chip->ecc.bytes;
1360
1361 data_col_addr = start_step * chip->ecc.size;
1362 /* If we read not a page aligned data */
1363 if (data_col_addr != 0)
1364 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1365
1366 p = bufpoi + data_col_addr;
1367 chip->read_buf(mtd, p, datafrag_len);
1368
1369 /* Calculate ECC */
1370 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1371 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1372
1373 /*
1374 * The performance is faster if we position offsets according to
1375 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1376 */
1377 for (i = 0; i < eccfrag_len - 1; i++) {
1378 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1379 gaps = 1;
1380 break;
1381 }
1382 }
1383 if (gaps) {
1384 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1385 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1386 } else {
1387 /*
1388 * Send the command to read the particular ECC bytes take care
1389 * about buswidth alignment in read_buf.
1390 */
1391 aligned_pos = eccpos[index] & ~(busw - 1);
1392 aligned_len = eccfrag_len;
1393 if (eccpos[index] & (busw - 1))
1394 aligned_len++;
1395 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1396 aligned_len++;
1397
1398 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1399 mtd->writesize + aligned_pos, -1);
1400 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1401 }
1402
1403 for (i = 0; i < eccfrag_len; i++)
1404 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1405
1406 p = bufpoi + data_col_addr;
1407 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1408 int stat;
1409
1410 stat = chip->ecc.correct(mtd, p,
1411 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1412 if (stat == -EBADMSG &&
1413 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1414 /* check for empty pages with bitflips */
1415 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1416 &chip->buffers->ecccode[i],
1417 chip->ecc.bytes,
1418 NULL, 0,
1419 chip->ecc.strength);
1420 }
1421
1422 if (stat < 0) {
1423 mtd->ecc_stats.failed++;
1424 } else {
1425 mtd->ecc_stats.corrected += stat;
1426 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1427 }
1428 }
1429 return max_bitflips;
1430 }
1431
1432 /**
1433 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1434 * @mtd: mtd info structure
1435 * @chip: nand chip info structure
1436 * @buf: buffer to store read data
1437 * @oob_required: caller requires OOB data read to chip->oob_poi
1438 * @page: page number to read
1439 *
1440 * Not for syndrome calculating ECC controllers which need a special oob layout.
1441 */
1442 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1443 uint8_t *buf, int oob_required, int page)
1444 {
1445 int i, eccsize = chip->ecc.size;
1446 int eccbytes = chip->ecc.bytes;
1447 int eccsteps = chip->ecc.steps;
1448 uint8_t *p = buf;
1449 uint8_t *ecc_calc = chip->buffers->ecccalc;
1450 uint8_t *ecc_code = chip->buffers->ecccode;
1451 uint32_t *eccpos = chip->ecc.layout->eccpos;
1452 unsigned int max_bitflips = 0;
1453
1454 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1455 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1456 chip->read_buf(mtd, p, eccsize);
1457 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1458 }
1459 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1460
1461 for (i = 0; i < chip->ecc.total; i++)
1462 ecc_code[i] = chip->oob_poi[eccpos[i]];
1463
1464 eccsteps = chip->ecc.steps;
1465 p = buf;
1466
1467 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1468 int stat;
1469
1470 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1471 if (stat == -EBADMSG &&
1472 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1473 /* check for empty pages with bitflips */
1474 stat = nand_check_erased_ecc_chunk(p, eccsize,
1475 &ecc_code[i], eccbytes,
1476 NULL, 0,
1477 chip->ecc.strength);
1478 }
1479
1480 if (stat < 0) {
1481 mtd->ecc_stats.failed++;
1482 } else {
1483 mtd->ecc_stats.corrected += stat;
1484 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1485 }
1486 }
1487 return max_bitflips;
1488 }
1489
1490 /**
1491 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1492 * @mtd: mtd info structure
1493 * @chip: nand chip info structure
1494 * @buf: buffer to store read data
1495 * @oob_required: caller requires OOB data read to chip->oob_poi
1496 * @page: page number to read
1497 *
1498 * Hardware ECC for large page chips, require OOB to be read first. For this
1499 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1500 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1501 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1502 * the data area, by overwriting the NAND manufacturer bad block markings.
1503 */
1504 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1505 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1506 {
1507 int i, eccsize = chip->ecc.size;
1508 int eccbytes = chip->ecc.bytes;
1509 int eccsteps = chip->ecc.steps;
1510 uint8_t *p = buf;
1511 uint8_t *ecc_code = chip->buffers->ecccode;
1512 uint32_t *eccpos = chip->ecc.layout->eccpos;
1513 uint8_t *ecc_calc = chip->buffers->ecccalc;
1514 unsigned int max_bitflips = 0;
1515
1516 /* Read the OOB area first */
1517 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1518 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1519 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1520
1521 for (i = 0; i < chip->ecc.total; i++)
1522 ecc_code[i] = chip->oob_poi[eccpos[i]];
1523
1524 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1525 int stat;
1526
1527 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1528 chip->read_buf(mtd, p, eccsize);
1529 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1530
1531 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1532 if (stat == -EBADMSG &&
1533 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1534 /* check for empty pages with bitflips */
1535 stat = nand_check_erased_ecc_chunk(p, eccsize,
1536 &ecc_code[i], eccbytes,
1537 NULL, 0,
1538 chip->ecc.strength);
1539 }
1540
1541 if (stat < 0) {
1542 mtd->ecc_stats.failed++;
1543 } else {
1544 mtd->ecc_stats.corrected += stat;
1545 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1546 }
1547 }
1548 return max_bitflips;
1549 }
1550
1551 /**
1552 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1553 * @mtd: mtd info structure
1554 * @chip: nand chip info structure
1555 * @buf: buffer to store read data
1556 * @oob_required: caller requires OOB data read to chip->oob_poi
1557 * @page: page number to read
1558 *
1559 * The hw generator calculates the error syndrome automatically. Therefore we
1560 * need a special oob layout and handling.
1561 */
1562 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1563 uint8_t *buf, int oob_required, int page)
1564 {
1565 int i, eccsize = chip->ecc.size;
1566 int eccbytes = chip->ecc.bytes;
1567 int eccsteps = chip->ecc.steps;
1568 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1569 uint8_t *p = buf;
1570 uint8_t *oob = chip->oob_poi;
1571 unsigned int max_bitflips = 0;
1572
1573 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1574 int stat;
1575
1576 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1577 chip->read_buf(mtd, p, eccsize);
1578
1579 if (chip->ecc.prepad) {
1580 chip->read_buf(mtd, oob, chip->ecc.prepad);
1581 oob += chip->ecc.prepad;
1582 }
1583
1584 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1585 chip->read_buf(mtd, oob, eccbytes);
1586 stat = chip->ecc.correct(mtd, p, oob, NULL);
1587
1588 oob += eccbytes;
1589
1590 if (chip->ecc.postpad) {
1591 chip->read_buf(mtd, oob, chip->ecc.postpad);
1592 oob += chip->ecc.postpad;
1593 }
1594
1595 if (stat == -EBADMSG &&
1596 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1597 /* check for empty pages with bitflips */
1598 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1599 oob - eccpadbytes,
1600 eccpadbytes,
1601 NULL, 0,
1602 chip->ecc.strength);
1603 }
1604
1605 if (stat < 0) {
1606 mtd->ecc_stats.failed++;
1607 } else {
1608 mtd->ecc_stats.corrected += stat;
1609 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1610 }
1611 }
1612
1613 /* Calculate remaining oob bytes */
1614 i = mtd->oobsize - (oob - chip->oob_poi);
1615 if (i)
1616 chip->read_buf(mtd, oob, i);
1617
1618 return max_bitflips;
1619 }
1620
1621 /**
1622 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1623 * @chip: nand chip structure
1624 * @oob: oob destination address
1625 * @ops: oob ops structure
1626 * @len: size of oob to transfer
1627 */
1628 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1629 struct mtd_oob_ops *ops, size_t len)
1630 {
1631 switch (ops->mode) {
1632
1633 case MTD_OPS_PLACE_OOB:
1634 case MTD_OPS_RAW:
1635 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1636 return oob + len;
1637
1638 case MTD_OPS_AUTO_OOB: {
1639 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1640 uint32_t boffs = 0, roffs = ops->ooboffs;
1641 size_t bytes = 0;
1642
1643 for (; free->length && len; free++, len -= bytes) {
1644 /* Read request not from offset 0? */
1645 if (unlikely(roffs)) {
1646 if (roffs >= free->length) {
1647 roffs -= free->length;
1648 continue;
1649 }
1650 boffs = free->offset + roffs;
1651 bytes = min_t(size_t, len,
1652 (free->length - roffs));
1653 roffs = 0;
1654 } else {
1655 bytes = min_t(size_t, len, free->length);
1656 boffs = free->offset;
1657 }
1658 memcpy(oob, chip->oob_poi + boffs, bytes);
1659 oob += bytes;
1660 }
1661 return oob;
1662 }
1663 default:
1664 BUG();
1665 }
1666 return NULL;
1667 }
1668
1669 /**
1670 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1671 * @mtd: MTD device structure
1672 * @retry_mode: the retry mode to use
1673 *
1674 * Some vendors supply a special command to shift the Vt threshold, to be used
1675 * when there are too many bitflips in a page (i.e., ECC error). After setting
1676 * a new threshold, the host should retry reading the page.
1677 */
1678 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1679 {
1680 struct nand_chip *chip = mtd_to_nand(mtd);
1681
1682 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1683
1684 if (retry_mode >= chip->read_retries)
1685 return -EINVAL;
1686
1687 if (!chip->setup_read_retry)
1688 return -EOPNOTSUPP;
1689
1690 return chip->setup_read_retry(mtd, retry_mode);
1691 }
1692
1693 /**
1694 * nand_do_read_ops - [INTERN] Read data with ECC
1695 * @mtd: MTD device structure
1696 * @from: offset to read from
1697 * @ops: oob ops structure
1698 *
1699 * Internal function. Called with chip held.
1700 */
1701 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1702 struct mtd_oob_ops *ops)
1703 {
1704 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1705 struct nand_chip *chip = mtd_to_nand(mtd);
1706 int ret = 0;
1707 uint32_t readlen = ops->len;
1708 uint32_t oobreadlen = ops->ooblen;
1709 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1710
1711 uint8_t *bufpoi, *oob, *buf;
1712 int use_bufpoi;
1713 unsigned int max_bitflips = 0;
1714 int retry_mode = 0;
1715 bool ecc_fail = false;
1716
1717 chipnr = (int)(from >> chip->chip_shift);
1718 chip->select_chip(mtd, chipnr);
1719
1720 realpage = (int)(from >> chip->page_shift);
1721 page = realpage & chip->pagemask;
1722
1723 col = (int)(from & (mtd->writesize - 1));
1724
1725 buf = ops->datbuf;
1726 oob = ops->oobbuf;
1727 oob_required = oob ? 1 : 0;
1728
1729 while (1) {
1730 unsigned int ecc_failures = mtd->ecc_stats.failed;
1731
1732 bytes = min(mtd->writesize - col, readlen);
1733 aligned = (bytes == mtd->writesize);
1734
1735 if (!aligned)
1736 use_bufpoi = 1;
1737 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1738 use_bufpoi = !virt_addr_valid(buf);
1739 else
1740 use_bufpoi = 0;
1741
1742 /* Is the current page in the buffer? */
1743 if (realpage != chip->pagebuf || oob) {
1744 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1745
1746 if (use_bufpoi && aligned)
1747 pr_debug("%s: using read bounce buffer for buf@%p\n",
1748 __func__, buf);
1749
1750 read_retry:
1751 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1752
1753 /*
1754 * Now read the page into the buffer. Absent an error,
1755 * the read methods return max bitflips per ecc step.
1756 */
1757 if (unlikely(ops->mode == MTD_OPS_RAW))
1758 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1759 oob_required,
1760 page);
1761 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1762 !oob)
1763 ret = chip->ecc.read_subpage(mtd, chip,
1764 col, bytes, bufpoi,
1765 page);
1766 else
1767 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1768 oob_required, page);
1769 if (ret < 0) {
1770 if (use_bufpoi)
1771 /* Invalidate page cache */
1772 chip->pagebuf = -1;
1773 break;
1774 }
1775
1776 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1777
1778 /* Transfer not aligned data */
1779 if (use_bufpoi) {
1780 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1781 !(mtd->ecc_stats.failed - ecc_failures) &&
1782 (ops->mode != MTD_OPS_RAW)) {
1783 chip->pagebuf = realpage;
1784 chip->pagebuf_bitflips = ret;
1785 } else {
1786 /* Invalidate page cache */
1787 chip->pagebuf = -1;
1788 }
1789 memcpy(buf, chip->buffers->databuf + col, bytes);
1790 }
1791
1792 if (unlikely(oob)) {
1793 int toread = min(oobreadlen, max_oobsize);
1794
1795 if (toread) {
1796 oob = nand_transfer_oob(chip,
1797 oob, ops, toread);
1798 oobreadlen -= toread;
1799 }
1800 }
1801
1802 if (chip->options & NAND_NEED_READRDY) {
1803 /* Apply delay or wait for ready/busy pin */
1804 if (!chip->dev_ready)
1805 udelay(chip->chip_delay);
1806 else
1807 nand_wait_ready(mtd);
1808 }
1809
1810 if (mtd->ecc_stats.failed - ecc_failures) {
1811 if (retry_mode + 1 < chip->read_retries) {
1812 retry_mode++;
1813 ret = nand_setup_read_retry(mtd,
1814 retry_mode);
1815 if (ret < 0)
1816 break;
1817
1818 /* Reset failures; retry */
1819 mtd->ecc_stats.failed = ecc_failures;
1820 goto read_retry;
1821 } else {
1822 /* No more retry modes; real failure */
1823 ecc_fail = true;
1824 }
1825 }
1826
1827 buf += bytes;
1828 } else {
1829 memcpy(buf, chip->buffers->databuf + col, bytes);
1830 buf += bytes;
1831 max_bitflips = max_t(unsigned int, max_bitflips,
1832 chip->pagebuf_bitflips);
1833 }
1834
1835 readlen -= bytes;
1836
1837 /* Reset to retry mode 0 */
1838 if (retry_mode) {
1839 ret = nand_setup_read_retry(mtd, 0);
1840 if (ret < 0)
1841 break;
1842 retry_mode = 0;
1843 }
1844
1845 if (!readlen)
1846 break;
1847
1848 /* For subsequent reads align to page boundary */
1849 col = 0;
1850 /* Increment page address */
1851 realpage++;
1852
1853 page = realpage & chip->pagemask;
1854 /* Check, if we cross a chip boundary */
1855 if (!page) {
1856 chipnr++;
1857 chip->select_chip(mtd, -1);
1858 chip->select_chip(mtd, chipnr);
1859 }
1860 }
1861 chip->select_chip(mtd, -1);
1862
1863 ops->retlen = ops->len - (size_t) readlen;
1864 if (oob)
1865 ops->oobretlen = ops->ooblen - oobreadlen;
1866
1867 if (ret < 0)
1868 return ret;
1869
1870 if (ecc_fail)
1871 return -EBADMSG;
1872
1873 return max_bitflips;
1874 }
1875
1876 /**
1877 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1878 * @mtd: MTD device structure
1879 * @from: offset to read from
1880 * @len: number of bytes to read
1881 * @retlen: pointer to variable to store the number of read bytes
1882 * @buf: the databuffer to put data
1883 *
1884 * Get hold of the chip and call nand_do_read.
1885 */
1886 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1887 size_t *retlen, uint8_t *buf)
1888 {
1889 struct mtd_oob_ops ops;
1890 int ret;
1891
1892 nand_get_device(mtd, FL_READING);
1893 memset(&ops, 0, sizeof(ops));
1894 ops.len = len;
1895 ops.datbuf = buf;
1896 ops.mode = MTD_OPS_PLACE_OOB;
1897 ret = nand_do_read_ops(mtd, from, &ops);
1898 *retlen = ops.retlen;
1899 nand_release_device(mtd);
1900 return ret;
1901 }
1902
1903 /**
1904 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1905 * @mtd: mtd info structure
1906 * @chip: nand chip info structure
1907 * @page: page number to read
1908 */
1909 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1910 int page)
1911 {
1912 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1913 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1914 return 0;
1915 }
1916
1917 /**
1918 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1919 * with syndromes
1920 * @mtd: mtd info structure
1921 * @chip: nand chip info structure
1922 * @page: page number to read
1923 */
1924 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1925 int page)
1926 {
1927 int length = mtd->oobsize;
1928 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1929 int eccsize = chip->ecc.size;
1930 uint8_t *bufpoi = chip->oob_poi;
1931 int i, toread, sndrnd = 0, pos;
1932
1933 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1934 for (i = 0; i < chip->ecc.steps; i++) {
1935 if (sndrnd) {
1936 pos = eccsize + i * (eccsize + chunk);
1937 if (mtd->writesize > 512)
1938 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1939 else
1940 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1941 } else
1942 sndrnd = 1;
1943 toread = min_t(int, length, chunk);
1944 chip->read_buf(mtd, bufpoi, toread);
1945 bufpoi += toread;
1946 length -= toread;
1947 }
1948 if (length > 0)
1949 chip->read_buf(mtd, bufpoi, length);
1950
1951 return 0;
1952 }
1953
1954 /**
1955 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1956 * @mtd: mtd info structure
1957 * @chip: nand chip info structure
1958 * @page: page number to write
1959 */
1960 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1961 int page)
1962 {
1963 int status = 0;
1964 const uint8_t *buf = chip->oob_poi;
1965 int length = mtd->oobsize;
1966
1967 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1968 chip->write_buf(mtd, buf, length);
1969 /* Send command to program the OOB data */
1970 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1971
1972 status = chip->waitfunc(mtd, chip);
1973
1974 return status & NAND_STATUS_FAIL ? -EIO : 0;
1975 }
1976
1977 /**
1978 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1979 * with syndrome - only for large page flash
1980 * @mtd: mtd info structure
1981 * @chip: nand chip info structure
1982 * @page: page number to write
1983 */
1984 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1985 struct nand_chip *chip, int page)
1986 {
1987 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1988 int eccsize = chip->ecc.size, length = mtd->oobsize;
1989 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1990 const uint8_t *bufpoi = chip->oob_poi;
1991
1992 /*
1993 * data-ecc-data-ecc ... ecc-oob
1994 * or
1995 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1996 */
1997 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1998 pos = steps * (eccsize + chunk);
1999 steps = 0;
2000 } else
2001 pos = eccsize;
2002
2003 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
2004 for (i = 0; i < steps; i++) {
2005 if (sndcmd) {
2006 if (mtd->writesize <= 512) {
2007 uint32_t fill = 0xFFFFFFFF;
2008
2009 len = eccsize;
2010 while (len > 0) {
2011 int num = min_t(int, len, 4);
2012 chip->write_buf(mtd, (uint8_t *)&fill,
2013 num);
2014 len -= num;
2015 }
2016 } else {
2017 pos = eccsize + i * (eccsize + chunk);
2018 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2019 }
2020 } else
2021 sndcmd = 1;
2022 len = min_t(int, length, chunk);
2023 chip->write_buf(mtd, bufpoi, len);
2024 bufpoi += len;
2025 length -= len;
2026 }
2027 if (length > 0)
2028 chip->write_buf(mtd, bufpoi, length);
2029
2030 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2031 status = chip->waitfunc(mtd, chip);
2032
2033 return status & NAND_STATUS_FAIL ? -EIO : 0;
2034 }
2035
2036 /**
2037 * nand_do_read_oob - [INTERN] NAND read out-of-band
2038 * @mtd: MTD device structure
2039 * @from: offset to read from
2040 * @ops: oob operations description structure
2041 *
2042 * NAND read out-of-band data from the spare area.
2043 */
2044 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2045 struct mtd_oob_ops *ops)
2046 {
2047 int page, realpage, chipnr;
2048 struct nand_chip *chip = mtd_to_nand(mtd);
2049 struct mtd_ecc_stats stats;
2050 int readlen = ops->ooblen;
2051 int len;
2052 uint8_t *buf = ops->oobbuf;
2053 int ret = 0;
2054
2055 pr_debug("%s: from = 0x%08Lx, len = %i\n",
2056 __func__, (unsigned long long)from, readlen);
2057
2058 stats = mtd->ecc_stats;
2059
2060 len = mtd_oobavail(mtd, ops);
2061
2062 if (unlikely(ops->ooboffs >= len)) {
2063 pr_debug("%s: attempt to start read outside oob\n",
2064 __func__);
2065 return -EINVAL;
2066 }
2067
2068 /* Do not allow reads past end of device */
2069 if (unlikely(from >= mtd->size ||
2070 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2071 (from >> chip->page_shift)) * len)) {
2072 pr_debug("%s: attempt to read beyond end of device\n",
2073 __func__);
2074 return -EINVAL;
2075 }
2076
2077 chipnr = (int)(from >> chip->chip_shift);
2078 chip->select_chip(mtd, chipnr);
2079
2080 /* Shift to get page */
2081 realpage = (int)(from >> chip->page_shift);
2082 page = realpage & chip->pagemask;
2083
2084 while (1) {
2085 if (ops->mode == MTD_OPS_RAW)
2086 ret = chip->ecc.read_oob_raw(mtd, chip, page);
2087 else
2088 ret = chip->ecc.read_oob(mtd, chip, page);
2089
2090 if (ret < 0)
2091 break;
2092
2093 len = min(len, readlen);
2094 buf = nand_transfer_oob(chip, buf, ops, len);
2095
2096 if (chip->options & NAND_NEED_READRDY) {
2097 /* Apply delay or wait for ready/busy pin */
2098 if (!chip->dev_ready)
2099 udelay(chip->chip_delay);
2100 else
2101 nand_wait_ready(mtd);
2102 }
2103
2104 readlen -= len;
2105 if (!readlen)
2106 break;
2107
2108 /* Increment page address */
2109 realpage++;
2110
2111 page = realpage & chip->pagemask;
2112 /* Check, if we cross a chip boundary */
2113 if (!page) {
2114 chipnr++;
2115 chip->select_chip(mtd, -1);
2116 chip->select_chip(mtd, chipnr);
2117 }
2118 }
2119 chip->select_chip(mtd, -1);
2120
2121 ops->oobretlen = ops->ooblen - readlen;
2122
2123 if (ret < 0)
2124 return ret;
2125
2126 if (mtd->ecc_stats.failed - stats.failed)
2127 return -EBADMSG;
2128
2129 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
2130 }
2131
2132 /**
2133 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2134 * @mtd: MTD device structure
2135 * @from: offset to read from
2136 * @ops: oob operation description structure
2137 *
2138 * NAND read data and/or out-of-band data.
2139 */
2140 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2141 struct mtd_oob_ops *ops)
2142 {
2143 int ret = -ENOTSUPP;
2144
2145 ops->retlen = 0;
2146
2147 /* Do not allow reads past end of device */
2148 if (ops->datbuf && (from + ops->len) > mtd->size) {
2149 pr_debug("%s: attempt to read beyond end of device\n",
2150 __func__);
2151 return -EINVAL;
2152 }
2153
2154 nand_get_device(mtd, FL_READING);
2155
2156 switch (ops->mode) {
2157 case MTD_OPS_PLACE_OOB:
2158 case MTD_OPS_AUTO_OOB:
2159 case MTD_OPS_RAW:
2160 break;
2161
2162 default:
2163 goto out;
2164 }
2165
2166 if (!ops->datbuf)
2167 ret = nand_do_read_oob(mtd, from, ops);
2168 else
2169 ret = nand_do_read_ops(mtd, from, ops);
2170
2171 out:
2172 nand_release_device(mtd);
2173 return ret;
2174 }
2175
2176
2177 /**
2178 * nand_write_page_raw - [INTERN] raw page write function
2179 * @mtd: mtd info structure
2180 * @chip: nand chip info structure
2181 * @buf: data buffer
2182 * @oob_required: must write chip->oob_poi to OOB
2183 * @page: page number to write
2184 *
2185 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2186 */
2187 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2188 const uint8_t *buf, int oob_required, int page)
2189 {
2190 chip->write_buf(mtd, buf, mtd->writesize);
2191 if (oob_required)
2192 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2193
2194 return 0;
2195 }
2196
2197 /**
2198 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2199 * @mtd: mtd info structure
2200 * @chip: nand chip info structure
2201 * @buf: data buffer
2202 * @oob_required: must write chip->oob_poi to OOB
2203 * @page: page number to write
2204 *
2205 * We need a special oob layout and handling even when ECC isn't checked.
2206 */
2207 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2208 struct nand_chip *chip,
2209 const uint8_t *buf, int oob_required,
2210 int page)
2211 {
2212 int eccsize = chip->ecc.size;
2213 int eccbytes = chip->ecc.bytes;
2214 uint8_t *oob = chip->oob_poi;
2215 int steps, size;
2216
2217 for (steps = chip->ecc.steps; steps > 0; steps--) {
2218 chip->write_buf(mtd, buf, eccsize);
2219 buf += eccsize;
2220
2221 if (chip->ecc.prepad) {
2222 chip->write_buf(mtd, oob, chip->ecc.prepad);
2223 oob += chip->ecc.prepad;
2224 }
2225
2226 chip->write_buf(mtd, oob, eccbytes);
2227 oob += eccbytes;
2228
2229 if (chip->ecc.postpad) {
2230 chip->write_buf(mtd, oob, chip->ecc.postpad);
2231 oob += chip->ecc.postpad;
2232 }
2233 }
2234
2235 size = mtd->oobsize - (oob - chip->oob_poi);
2236 if (size)
2237 chip->write_buf(mtd, oob, size);
2238
2239 return 0;
2240 }
2241 /**
2242 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2243 * @mtd: mtd info structure
2244 * @chip: nand chip info structure
2245 * @buf: data buffer
2246 * @oob_required: must write chip->oob_poi to OOB
2247 * @page: page number to write
2248 */
2249 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2250 const uint8_t *buf, int oob_required,
2251 int page)
2252 {
2253 int i, eccsize = chip->ecc.size;
2254 int eccbytes = chip->ecc.bytes;
2255 int eccsteps = chip->ecc.steps;
2256 uint8_t *ecc_calc = chip->buffers->ecccalc;
2257 const uint8_t *p = buf;
2258 uint32_t *eccpos = chip->ecc.layout->eccpos;
2259
2260 /* Software ECC calculation */
2261 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2262 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2263
2264 for (i = 0; i < chip->ecc.total; i++)
2265 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2266
2267 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2268 }
2269
2270 /**
2271 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2272 * @mtd: mtd info structure
2273 * @chip: nand chip info structure
2274 * @buf: data buffer
2275 * @oob_required: must write chip->oob_poi to OOB
2276 * @page: page number to write
2277 */
2278 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2279 const uint8_t *buf, int oob_required,
2280 int page)
2281 {
2282 int i, eccsize = chip->ecc.size;
2283 int eccbytes = chip->ecc.bytes;
2284 int eccsteps = chip->ecc.steps;
2285 uint8_t *ecc_calc = chip->buffers->ecccalc;
2286 const uint8_t *p = buf;
2287 uint32_t *eccpos = chip->ecc.layout->eccpos;
2288
2289 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2290 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2291 chip->write_buf(mtd, p, eccsize);
2292 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2293 }
2294
2295 for (i = 0; i < chip->ecc.total; i++)
2296 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2297
2298 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2299
2300 return 0;
2301 }
2302
2303
2304 /**
2305 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2306 * @mtd: mtd info structure
2307 * @chip: nand chip info structure
2308 * @offset: column address of subpage within the page
2309 * @data_len: data length
2310 * @buf: data buffer
2311 * @oob_required: must write chip->oob_poi to OOB
2312 * @page: page number to write
2313 */
2314 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2315 struct nand_chip *chip, uint32_t offset,
2316 uint32_t data_len, const uint8_t *buf,
2317 int oob_required, int page)
2318 {
2319 uint8_t *oob_buf = chip->oob_poi;
2320 uint8_t *ecc_calc = chip->buffers->ecccalc;
2321 int ecc_size = chip->ecc.size;
2322 int ecc_bytes = chip->ecc.bytes;
2323 int ecc_steps = chip->ecc.steps;
2324 uint32_t *eccpos = chip->ecc.layout->eccpos;
2325 uint32_t start_step = offset / ecc_size;
2326 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2327 int oob_bytes = mtd->oobsize / ecc_steps;
2328 int step, i;
2329
2330 for (step = 0; step < ecc_steps; step++) {
2331 /* configure controller for WRITE access */
2332 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2333
2334 /* write data (untouched subpages already masked by 0xFF) */
2335 chip->write_buf(mtd, buf, ecc_size);
2336
2337 /* mask ECC of un-touched subpages by padding 0xFF */
2338 if ((step < start_step) || (step > end_step))
2339 memset(ecc_calc, 0xff, ecc_bytes);
2340 else
2341 chip->ecc.calculate(mtd, buf, ecc_calc);
2342
2343 /* mask OOB of un-touched subpages by padding 0xFF */
2344 /* if oob_required, preserve OOB metadata of written subpage */
2345 if (!oob_required || (step < start_step) || (step > end_step))
2346 memset(oob_buf, 0xff, oob_bytes);
2347
2348 buf += ecc_size;
2349 ecc_calc += ecc_bytes;
2350 oob_buf += oob_bytes;
2351 }
2352
2353 /* copy calculated ECC for whole page to chip->buffer->oob */
2354 /* this include masked-value(0xFF) for unwritten subpages */
2355 ecc_calc = chip->buffers->ecccalc;
2356 for (i = 0; i < chip->ecc.total; i++)
2357 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2358
2359 /* write OOB buffer to NAND device */
2360 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2361
2362 return 0;
2363 }
2364
2365
2366 /**
2367 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2368 * @mtd: mtd info structure
2369 * @chip: nand chip info structure
2370 * @buf: data buffer
2371 * @oob_required: must write chip->oob_poi to OOB
2372 * @page: page number to write
2373 *
2374 * The hw generator calculates the error syndrome automatically. Therefore we
2375 * need a special oob layout and handling.
2376 */
2377 static int nand_write_page_syndrome(struct mtd_info *mtd,
2378 struct nand_chip *chip,
2379 const uint8_t *buf, int oob_required,
2380 int page)
2381 {
2382 int i, eccsize = chip->ecc.size;
2383 int eccbytes = chip->ecc.bytes;
2384 int eccsteps = chip->ecc.steps;
2385 const uint8_t *p = buf;
2386 uint8_t *oob = chip->oob_poi;
2387
2388 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2389
2390 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2391 chip->write_buf(mtd, p, eccsize);
2392
2393 if (chip->ecc.prepad) {
2394 chip->write_buf(mtd, oob, chip->ecc.prepad);
2395 oob += chip->ecc.prepad;
2396 }
2397
2398 chip->ecc.calculate(mtd, p, oob);
2399 chip->write_buf(mtd, oob, eccbytes);
2400 oob += eccbytes;
2401
2402 if (chip->ecc.postpad) {
2403 chip->write_buf(mtd, oob, chip->ecc.postpad);
2404 oob += chip->ecc.postpad;
2405 }
2406 }
2407
2408 /* Calculate remaining oob bytes */
2409 i = mtd->oobsize - (oob - chip->oob_poi);
2410 if (i)
2411 chip->write_buf(mtd, oob, i);
2412
2413 return 0;
2414 }
2415
2416 /**
2417 * nand_write_page - [REPLACEABLE] write one page
2418 * @mtd: MTD device structure
2419 * @chip: NAND chip descriptor
2420 * @offset: address offset within the page
2421 * @data_len: length of actual data to be written
2422 * @buf: the data to write
2423 * @oob_required: must write chip->oob_poi to OOB
2424 * @page: page number to write
2425 * @cached: cached programming
2426 * @raw: use _raw version of write_page
2427 */
2428 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2429 uint32_t offset, int data_len, const uint8_t *buf,
2430 int oob_required, int page, int cached, int raw)
2431 {
2432 int status, subpage;
2433
2434 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2435 chip->ecc.write_subpage)
2436 subpage = offset || (data_len < mtd->writesize);
2437 else
2438 subpage = 0;
2439
2440 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2441
2442 if (unlikely(raw))
2443 status = chip->ecc.write_page_raw(mtd, chip, buf,
2444 oob_required, page);
2445 else if (subpage)
2446 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2447 buf, oob_required, page);
2448 else
2449 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2450 page);
2451
2452 if (status < 0)
2453 return status;
2454
2455 /*
2456 * Cached progamming disabled for now. Not sure if it's worth the
2457 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2458 */
2459 cached = 0;
2460
2461 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2462
2463 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2464 status = chip->waitfunc(mtd, chip);
2465 /*
2466 * See if operation failed and additional status checks are
2467 * available.
2468 */
2469 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2470 status = chip->errstat(mtd, chip, FL_WRITING, status,
2471 page);
2472
2473 if (status & NAND_STATUS_FAIL)
2474 return -EIO;
2475 } else {
2476 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2477 status = chip->waitfunc(mtd, chip);
2478 }
2479
2480 return 0;
2481 }
2482
2483 /**
2484 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2485 * @mtd: MTD device structure
2486 * @oob: oob data buffer
2487 * @len: oob data write length
2488 * @ops: oob ops structure
2489 */
2490 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2491 struct mtd_oob_ops *ops)
2492 {
2493 struct nand_chip *chip = mtd_to_nand(mtd);
2494
2495 /*
2496 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2497 * data from a previous OOB read.
2498 */
2499 memset(chip->oob_poi, 0xff, mtd->oobsize);
2500
2501 switch (ops->mode) {
2502
2503 case MTD_OPS_PLACE_OOB:
2504 case MTD_OPS_RAW:
2505 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2506 return oob + len;
2507
2508 case MTD_OPS_AUTO_OOB: {
2509 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2510 uint32_t boffs = 0, woffs = ops->ooboffs;
2511 size_t bytes = 0;
2512
2513 for (; free->length && len; free++, len -= bytes) {
2514 /* Write request not from offset 0? */
2515 if (unlikely(woffs)) {
2516 if (woffs >= free->length) {
2517 woffs -= free->length;
2518 continue;
2519 }
2520 boffs = free->offset + woffs;
2521 bytes = min_t(size_t, len,
2522 (free->length - woffs));
2523 woffs = 0;
2524 } else {
2525 bytes = min_t(size_t, len, free->length);
2526 boffs = free->offset;
2527 }
2528 memcpy(chip->oob_poi + boffs, oob, bytes);
2529 oob += bytes;
2530 }
2531 return oob;
2532 }
2533 default:
2534 BUG();
2535 }
2536 return NULL;
2537 }
2538
2539 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2540
2541 /**
2542 * nand_do_write_ops - [INTERN] NAND write with ECC
2543 * @mtd: MTD device structure
2544 * @to: offset to write to
2545 * @ops: oob operations description structure
2546 *
2547 * NAND write with ECC.
2548 */
2549 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2550 struct mtd_oob_ops *ops)
2551 {
2552 int chipnr, realpage, page, blockmask, column;
2553 struct nand_chip *chip = mtd_to_nand(mtd);
2554 uint32_t writelen = ops->len;
2555
2556 uint32_t oobwritelen = ops->ooblen;
2557 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2558
2559 uint8_t *oob = ops->oobbuf;
2560 uint8_t *buf = ops->datbuf;
2561 int ret;
2562 int oob_required = oob ? 1 : 0;
2563
2564 ops->retlen = 0;
2565 if (!writelen)
2566 return 0;
2567
2568 /* Reject writes, which are not page aligned */
2569 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2570 pr_notice("%s: attempt to write non page aligned data\n",
2571 __func__);
2572 return -EINVAL;
2573 }
2574
2575 column = to & (mtd->writesize - 1);
2576
2577 chipnr = (int)(to >> chip->chip_shift);
2578 chip->select_chip(mtd, chipnr);
2579
2580 /* Check, if it is write protected */
2581 if (nand_check_wp(mtd)) {
2582 ret = -EIO;
2583 goto err_out;
2584 }
2585
2586 realpage = (int)(to >> chip->page_shift);
2587 page = realpage & chip->pagemask;
2588 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2589
2590 /* Invalidate the page cache, when we write to the cached page */
2591 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2592 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2593 chip->pagebuf = -1;
2594
2595 /* Don't allow multipage oob writes with offset */
2596 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2597 ret = -EINVAL;
2598 goto err_out;
2599 }
2600
2601 while (1) {
2602 int bytes = mtd->writesize;
2603 int cached = writelen > bytes && page != blockmask;
2604 uint8_t *wbuf = buf;
2605 int use_bufpoi;
2606 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2607
2608 if (part_pagewr)
2609 use_bufpoi = 1;
2610 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2611 use_bufpoi = !virt_addr_valid(buf);
2612 else
2613 use_bufpoi = 0;
2614
2615 /* Partial page write?, or need to use bounce buffer */
2616 if (use_bufpoi) {
2617 pr_debug("%s: using write bounce buffer for buf@%p\n",
2618 __func__, buf);
2619 cached = 0;
2620 if (part_pagewr)
2621 bytes = min_t(int, bytes - column, writelen);
2622 chip->pagebuf = -1;
2623 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2624 memcpy(&chip->buffers->databuf[column], buf, bytes);
2625 wbuf = chip->buffers->databuf;
2626 }
2627
2628 if (unlikely(oob)) {
2629 size_t len = min(oobwritelen, oobmaxlen);
2630 oob = nand_fill_oob(mtd, oob, len, ops);
2631 oobwritelen -= len;
2632 } else {
2633 /* We still need to erase leftover OOB data */
2634 memset(chip->oob_poi, 0xff, mtd->oobsize);
2635 }
2636 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2637 oob_required, page, cached,
2638 (ops->mode == MTD_OPS_RAW));
2639 if (ret)
2640 break;
2641
2642 writelen -= bytes;
2643 if (!writelen)
2644 break;
2645
2646 column = 0;
2647 buf += bytes;
2648 realpage++;
2649
2650 page = realpage & chip->pagemask;
2651 /* Check, if we cross a chip boundary */
2652 if (!page) {
2653 chipnr++;
2654 chip->select_chip(mtd, -1);
2655 chip->select_chip(mtd, chipnr);
2656 }
2657 }
2658
2659 ops->retlen = ops->len - writelen;
2660 if (unlikely(oob))
2661 ops->oobretlen = ops->ooblen;
2662
2663 err_out:
2664 chip->select_chip(mtd, -1);
2665 return ret;
2666 }
2667
2668 /**
2669 * panic_nand_write - [MTD Interface] NAND write with ECC
2670 * @mtd: MTD device structure
2671 * @to: offset to write to
2672 * @len: number of bytes to write
2673 * @retlen: pointer to variable to store the number of written bytes
2674 * @buf: the data to write
2675 *
2676 * NAND write with ECC. Used when performing writes in interrupt context, this
2677 * may for example be called by mtdoops when writing an oops while in panic.
2678 */
2679 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2680 size_t *retlen, const uint8_t *buf)
2681 {
2682 struct nand_chip *chip = mtd_to_nand(mtd);
2683 struct mtd_oob_ops ops;
2684 int ret;
2685
2686 /* Wait for the device to get ready */
2687 panic_nand_wait(mtd, chip, 400);
2688
2689 /* Grab the device */
2690 panic_nand_get_device(chip, mtd, FL_WRITING);
2691
2692 memset(&ops, 0, sizeof(ops));
2693 ops.len = len;
2694 ops.datbuf = (uint8_t *)buf;
2695 ops.mode = MTD_OPS_PLACE_OOB;
2696
2697 ret = nand_do_write_ops(mtd, to, &ops);
2698
2699 *retlen = ops.retlen;
2700 return ret;
2701 }
2702
2703 /**
2704 * nand_write - [MTD Interface] NAND write with ECC
2705 * @mtd: MTD device structure
2706 * @to: offset to write to
2707 * @len: number of bytes to write
2708 * @retlen: pointer to variable to store the number of written bytes
2709 * @buf: the data to write
2710 *
2711 * NAND write with ECC.
2712 */
2713 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2714 size_t *retlen, const uint8_t *buf)
2715 {
2716 struct mtd_oob_ops ops;
2717 int ret;
2718
2719 nand_get_device(mtd, FL_WRITING);
2720 memset(&ops, 0, sizeof(ops));
2721 ops.len = len;
2722 ops.datbuf = (uint8_t *)buf;
2723 ops.mode = MTD_OPS_PLACE_OOB;
2724 ret = nand_do_write_ops(mtd, to, &ops);
2725 *retlen = ops.retlen;
2726 nand_release_device(mtd);
2727 return ret;
2728 }
2729
2730 /**
2731 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2732 * @mtd: MTD device structure
2733 * @to: offset to write to
2734 * @ops: oob operation description structure
2735 *
2736 * NAND write out-of-band.
2737 */
2738 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2739 struct mtd_oob_ops *ops)
2740 {
2741 int chipnr, page, status, len;
2742 struct nand_chip *chip = mtd_to_nand(mtd);
2743
2744 pr_debug("%s: to = 0x%08x, len = %i\n",
2745 __func__, (unsigned int)to, (int)ops->ooblen);
2746
2747 len = mtd_oobavail(mtd, ops);
2748
2749 /* Do not allow write past end of page */
2750 if ((ops->ooboffs + ops->ooblen) > len) {
2751 pr_debug("%s: attempt to write past end of page\n",
2752 __func__);
2753 return -EINVAL;
2754 }
2755
2756 if (unlikely(ops->ooboffs >= len)) {
2757 pr_debug("%s: attempt to start write outside oob\n",
2758 __func__);
2759 return -EINVAL;
2760 }
2761
2762 /* Do not allow write past end of device */
2763 if (unlikely(to >= mtd->size ||
2764 ops->ooboffs + ops->ooblen >
2765 ((mtd->size >> chip->page_shift) -
2766 (to >> chip->page_shift)) * len)) {
2767 pr_debug("%s: attempt to write beyond end of device\n",
2768 __func__);
2769 return -EINVAL;
2770 }
2771
2772 chipnr = (int)(to >> chip->chip_shift);
2773 chip->select_chip(mtd, chipnr);
2774
2775 /* Shift to get page */
2776 page = (int)(to >> chip->page_shift);
2777
2778 /*
2779 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2780 * of my DiskOnChip 2000 test units) will clear the whole data page too
2781 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2782 * it in the doc2000 driver in August 1999. dwmw2.
2783 */
2784 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2785
2786 /* Check, if it is write protected */
2787 if (nand_check_wp(mtd)) {
2788 chip->select_chip(mtd, -1);
2789 return -EROFS;
2790 }
2791
2792 /* Invalidate the page cache, if we write to the cached page */
2793 if (page == chip->pagebuf)
2794 chip->pagebuf = -1;
2795
2796 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2797
2798 if (ops->mode == MTD_OPS_RAW)
2799 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2800 else
2801 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2802
2803 chip->select_chip(mtd, -1);
2804
2805 if (status)
2806 return status;
2807
2808 ops->oobretlen = ops->ooblen;
2809
2810 return 0;
2811 }
2812
2813 /**
2814 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2815 * @mtd: MTD device structure
2816 * @to: offset to write to
2817 * @ops: oob operation description structure
2818 */
2819 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2820 struct mtd_oob_ops *ops)
2821 {
2822 int ret = -ENOTSUPP;
2823
2824 ops->retlen = 0;
2825
2826 /* Do not allow writes past end of device */
2827 if (ops->datbuf && (to + ops->len) > mtd->size) {
2828 pr_debug("%s: attempt to write beyond end of device\n",
2829 __func__);
2830 return -EINVAL;
2831 }
2832
2833 nand_get_device(mtd, FL_WRITING);
2834
2835 switch (ops->mode) {
2836 case MTD_OPS_PLACE_OOB:
2837 case MTD_OPS_AUTO_OOB:
2838 case MTD_OPS_RAW:
2839 break;
2840
2841 default:
2842 goto out;
2843 }
2844
2845 if (!ops->datbuf)
2846 ret = nand_do_write_oob(mtd, to, ops);
2847 else
2848 ret = nand_do_write_ops(mtd, to, ops);
2849
2850 out:
2851 nand_release_device(mtd);
2852 return ret;
2853 }
2854
2855 /**
2856 * single_erase - [GENERIC] NAND standard block erase command function
2857 * @mtd: MTD device structure
2858 * @page: the page address of the block which will be erased
2859 *
2860 * Standard erase command for NAND chips. Returns NAND status.
2861 */
2862 static int single_erase(struct mtd_info *mtd, int page)
2863 {
2864 struct nand_chip *chip = mtd_to_nand(mtd);
2865 /* Send commands to erase a block */
2866 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2867 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2868
2869 return chip->waitfunc(mtd, chip);
2870 }
2871
2872 /**
2873 * nand_erase - [MTD Interface] erase block(s)
2874 * @mtd: MTD device structure
2875 * @instr: erase instruction
2876 *
2877 * Erase one ore more blocks.
2878 */
2879 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2880 {
2881 return nand_erase_nand(mtd, instr, 0);
2882 }
2883
2884 /**
2885 * nand_erase_nand - [INTERN] erase block(s)
2886 * @mtd: MTD device structure
2887 * @instr: erase instruction
2888 * @allowbbt: allow erasing the bbt area
2889 *
2890 * Erase one ore more blocks.
2891 */
2892 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2893 int allowbbt)
2894 {
2895 int page, status, pages_per_block, ret, chipnr;
2896 struct nand_chip *chip = mtd_to_nand(mtd);
2897 loff_t len;
2898
2899 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2900 __func__, (unsigned long long)instr->addr,
2901 (unsigned long long)instr->len);
2902
2903 if (check_offs_len(mtd, instr->addr, instr->len))
2904 return -EINVAL;
2905
2906 /* Grab the lock and see if the device is available */
2907 nand_get_device(mtd, FL_ERASING);
2908
2909 /* Shift to get first page */
2910 page = (int)(instr->addr >> chip->page_shift);
2911 chipnr = (int)(instr->addr >> chip->chip_shift);
2912
2913 /* Calculate pages in each block */
2914 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2915
2916 /* Select the NAND device */
2917 chip->select_chip(mtd, chipnr);
2918
2919 /* Check, if it is write protected */
2920 if (nand_check_wp(mtd)) {
2921 pr_debug("%s: device is write protected!\n",
2922 __func__);
2923 instr->state = MTD_ERASE_FAILED;
2924 goto erase_exit;
2925 }
2926
2927 /* Loop through the pages */
2928 len = instr->len;
2929
2930 instr->state = MTD_ERASING;
2931
2932 while (len) {
2933 /* Check if we have a bad block, we do not erase bad blocks! */
2934 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2935 chip->page_shift, allowbbt)) {
2936 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2937 __func__, page);
2938 instr->state = MTD_ERASE_FAILED;
2939 goto erase_exit;
2940 }
2941
2942 /*
2943 * Invalidate the page cache, if we erase the block which
2944 * contains the current cached page.
2945 */
2946 if (page <= chip->pagebuf && chip->pagebuf <
2947 (page + pages_per_block))
2948 chip->pagebuf = -1;
2949
2950 status = chip->erase(mtd, page & chip->pagemask);
2951
2952 /*
2953 * See if operation failed and additional status checks are
2954 * available
2955 */
2956 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2957 status = chip->errstat(mtd, chip, FL_ERASING,
2958 status, page);
2959
2960 /* See if block erase succeeded */
2961 if (status & NAND_STATUS_FAIL) {
2962 pr_debug("%s: failed erase, page 0x%08x\n",
2963 __func__, page);
2964 instr->state = MTD_ERASE_FAILED;
2965 instr->fail_addr =
2966 ((loff_t)page << chip->page_shift);
2967 goto erase_exit;
2968 }
2969
2970 /* Increment page address and decrement length */
2971 len -= (1ULL << chip->phys_erase_shift);
2972 page += pages_per_block;
2973
2974 /* Check, if we cross a chip boundary */
2975 if (len && !(page & chip->pagemask)) {
2976 chipnr++;
2977 chip->select_chip(mtd, -1);
2978 chip->select_chip(mtd, chipnr);
2979 }
2980 }
2981 instr->state = MTD_ERASE_DONE;
2982
2983 erase_exit:
2984
2985 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2986
2987 /* Deselect and wake up anyone waiting on the device */
2988 chip->select_chip(mtd, -1);
2989 nand_release_device(mtd);
2990
2991 /* Do call back function */
2992 if (!ret)
2993 mtd_erase_callback(instr);
2994
2995 /* Return more or less happy */
2996 return ret;
2997 }
2998
2999 /**
3000 * nand_sync - [MTD Interface] sync
3001 * @mtd: MTD device structure
3002 *
3003 * Sync is actually a wait for chip ready function.
3004 */
3005 static void nand_sync(struct mtd_info *mtd)
3006 {
3007 pr_debug("%s: called\n", __func__);
3008
3009 /* Grab the lock and see if the device is available */
3010 nand_get_device(mtd, FL_SYNCING);
3011 /* Release it and go back */
3012 nand_release_device(mtd);
3013 }
3014
3015 /**
3016 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3017 * @mtd: MTD device structure
3018 * @offs: offset relative to mtd start
3019 */
3020 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
3021 {
3022 struct nand_chip *chip = mtd_to_nand(mtd);
3023 int chipnr = (int)(offs >> chip->chip_shift);
3024 int ret;
3025
3026 /* Select the NAND device */
3027 nand_get_device(mtd, FL_READING);
3028 chip->select_chip(mtd, chipnr);
3029
3030 ret = nand_block_checkbad(mtd, offs, 0);
3031
3032 chip->select_chip(mtd, -1);
3033 nand_release_device(mtd);
3034
3035 return ret;
3036 }
3037
3038 /**
3039 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3040 * @mtd: MTD device structure
3041 * @ofs: offset relative to mtd start
3042 */
3043 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
3044 {
3045 int ret;
3046
3047 ret = nand_block_isbad(mtd, ofs);
3048 if (ret) {
3049 /* If it was bad already, return success and do nothing */
3050 if (ret > 0)
3051 return 0;
3052 return ret;
3053 }
3054
3055 return nand_block_markbad_lowlevel(mtd, ofs);
3056 }
3057
3058 /**
3059 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3060 * @mtd: MTD device structure
3061 * @chip: nand chip info structure
3062 * @addr: feature address.
3063 * @subfeature_param: the subfeature parameters, a four bytes array.
3064 */
3065 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3066 int addr, uint8_t *subfeature_param)
3067 {
3068 int status;
3069 int i;
3070
3071 if (!chip->onfi_version ||
3072 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3073 & ONFI_OPT_CMD_SET_GET_FEATURES))
3074 return -EINVAL;
3075
3076 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3077 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3078 chip->write_byte(mtd, subfeature_param[i]);
3079
3080 status = chip->waitfunc(mtd, chip);
3081 if (status & NAND_STATUS_FAIL)
3082 return -EIO;
3083 return 0;
3084 }
3085
3086 /**
3087 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3088 * @mtd: MTD device structure
3089 * @chip: nand chip info structure
3090 * @addr: feature address.
3091 * @subfeature_param: the subfeature parameters, a four bytes array.
3092 */
3093 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3094 int addr, uint8_t *subfeature_param)
3095 {
3096 int i;
3097
3098 if (!chip->onfi_version ||
3099 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3100 & ONFI_OPT_CMD_SET_GET_FEATURES))
3101 return -EINVAL;
3102
3103 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3104 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3105 *subfeature_param++ = chip->read_byte(mtd);
3106 return 0;
3107 }
3108
3109 /**
3110 * nand_suspend - [MTD Interface] Suspend the NAND flash
3111 * @mtd: MTD device structure
3112 */
3113 static int nand_suspend(struct mtd_info *mtd)
3114 {
3115 return nand_get_device(mtd, FL_PM_SUSPENDED);
3116 }
3117
3118 /**
3119 * nand_resume - [MTD Interface] Resume the NAND flash
3120 * @mtd: MTD device structure
3121 */
3122 static void nand_resume(struct mtd_info *mtd)
3123 {
3124 struct nand_chip *chip = mtd_to_nand(mtd);
3125
3126 if (chip->state == FL_PM_SUSPENDED)
3127 nand_release_device(mtd);
3128 else
3129 pr_err("%s called for a chip which is not in suspended state\n",
3130 __func__);
3131 }
3132
3133 /**
3134 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3135 * prevent further operations
3136 * @mtd: MTD device structure
3137 */
3138 static void nand_shutdown(struct mtd_info *mtd)
3139 {
3140 nand_get_device(mtd, FL_PM_SUSPENDED);
3141 }
3142
3143 /* Set default functions */
3144 static void nand_set_defaults(struct nand_chip *chip, int busw)
3145 {
3146 /* check for proper chip_delay setup, set 20us if not */
3147 if (!chip->chip_delay)
3148 chip->chip_delay = 20;
3149
3150 /* check, if a user supplied command function given */
3151 if (chip->cmdfunc == NULL)
3152 chip->cmdfunc = nand_command;
3153
3154 /* check, if a user supplied wait function given */
3155 if (chip->waitfunc == NULL)
3156 chip->waitfunc = nand_wait;
3157
3158 if (!chip->select_chip)
3159 chip->select_chip = nand_select_chip;
3160
3161 /* set for ONFI nand */
3162 if (!chip->onfi_set_features)
3163 chip->onfi_set_features = nand_onfi_set_features;
3164 if (!chip->onfi_get_features)
3165 chip->onfi_get_features = nand_onfi_get_features;
3166
3167 /* If called twice, pointers that depend on busw may need to be reset */
3168 if (!chip->read_byte || chip->read_byte == nand_read_byte)
3169 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3170 if (!chip->read_word)
3171 chip->read_word = nand_read_word;
3172 if (!chip->block_bad)
3173 chip->block_bad = nand_block_bad;
3174 if (!chip->block_markbad)
3175 chip->block_markbad = nand_default_block_markbad;
3176 if (!chip->write_buf || chip->write_buf == nand_write_buf)
3177 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3178 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3179 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3180 if (!chip->read_buf || chip->read_buf == nand_read_buf)
3181 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3182 if (!chip->scan_bbt)
3183 chip->scan_bbt = nand_default_bbt;
3184
3185 if (!chip->controller) {
3186 chip->controller = &chip->hwcontrol;
3187 spin_lock_init(&chip->controller->lock);
3188 init_waitqueue_head(&chip->controller->wq);
3189 }
3190
3191 }
3192
3193 /* Sanitize ONFI strings so we can safely print them */
3194 static void sanitize_string(uint8_t *s, size_t len)
3195 {
3196 ssize_t i;
3197
3198 /* Null terminate */
3199 s[len - 1] = 0;
3200
3201 /* Remove non printable chars */
3202 for (i = 0; i < len - 1; i++) {
3203 if (s[i] < ' ' || s[i] > 127)
3204 s[i] = '?';
3205 }
3206
3207 /* Remove trailing spaces */
3208 strim(s);
3209 }
3210
3211 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3212 {
3213 int i;
3214 while (len--) {
3215 crc ^= *p++ << 8;
3216 for (i = 0; i < 8; i++)
3217 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3218 }
3219
3220 return crc;
3221 }
3222
3223 /* Parse the Extended Parameter Page. */
3224 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3225 struct nand_chip *chip, struct nand_onfi_params *p)
3226 {
3227 struct onfi_ext_param_page *ep;
3228 struct onfi_ext_section *s;
3229 struct onfi_ext_ecc_info *ecc;
3230 uint8_t *cursor;
3231 int ret = -EINVAL;
3232 int len;
3233 int i;
3234
3235 len = le16_to_cpu(p->ext_param_page_length) * 16;
3236 ep = kmalloc(len, GFP_KERNEL);
3237 if (!ep)
3238 return -ENOMEM;
3239
3240 /* Send our own NAND_CMD_PARAM. */
3241 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3242
3243 /* Use the Change Read Column command to skip the ONFI param pages. */
3244 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3245 sizeof(*p) * p->num_of_param_pages , -1);
3246
3247 /* Read out the Extended Parameter Page. */
3248 chip->read_buf(mtd, (uint8_t *)ep, len);
3249 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3250 != le16_to_cpu(ep->crc))) {
3251 pr_debug("fail in the CRC.\n");
3252 goto ext_out;
3253 }
3254
3255 /*
3256 * Check the signature.
3257 * Do not strictly follow the ONFI spec, maybe changed in future.
3258 */
3259 if (strncmp(ep->sig, "EPPS", 4)) {
3260 pr_debug("The signature is invalid.\n");
3261 goto ext_out;
3262 }
3263
3264 /* find the ECC section. */
3265 cursor = (uint8_t *)(ep + 1);
3266 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3267 s = ep->sections + i;
3268 if (s->type == ONFI_SECTION_TYPE_2)
3269 break;
3270 cursor += s->length * 16;
3271 }
3272 if (i == ONFI_EXT_SECTION_MAX) {
3273 pr_debug("We can not find the ECC section.\n");
3274 goto ext_out;
3275 }
3276
3277 /* get the info we want. */
3278 ecc = (struct onfi_ext_ecc_info *)cursor;
3279
3280 if (!ecc->codeword_size) {
3281 pr_debug("Invalid codeword size\n");
3282 goto ext_out;
3283 }
3284
3285 chip->ecc_strength_ds = ecc->ecc_bits;
3286 chip->ecc_step_ds = 1 << ecc->codeword_size;
3287 ret = 0;
3288
3289 ext_out:
3290 kfree(ep);
3291 return ret;
3292 }
3293
3294 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3295 {
3296 struct nand_chip *chip = mtd_to_nand(mtd);
3297 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3298
3299 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3300 feature);
3301 }
3302
3303 /*
3304 * Configure chip properties from Micron vendor-specific ONFI table
3305 */
3306 static void nand_onfi_detect_micron(struct nand_chip *chip,
3307 struct nand_onfi_params *p)
3308 {
3309 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3310
3311 if (le16_to_cpu(p->vendor_revision) < 1)
3312 return;
3313
3314 chip->read_retries = micron->read_retry_options;
3315 chip->setup_read_retry = nand_setup_read_retry_micron;
3316 }
3317
3318 /*
3319 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3320 */
3321 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3322 int *busw)
3323 {
3324 struct nand_onfi_params *p = &chip->onfi_params;
3325 int i, j;
3326 int val;
3327
3328 /* Try ONFI for unknown chip or LP */
3329 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3330 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3331 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3332 return 0;
3333
3334 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3335 for (i = 0; i < 3; i++) {
3336 for (j = 0; j < sizeof(*p); j++)
3337 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3338 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3339 le16_to_cpu(p->crc)) {
3340 break;
3341 }
3342 }
3343
3344 if (i == 3) {
3345 pr_err("Could not find valid ONFI parameter page; aborting\n");
3346 return 0;
3347 }
3348
3349 /* Check version */
3350 val = le16_to_cpu(p->revision);
3351 if (val & (1 << 5))
3352 chip->onfi_version = 23;
3353 else if (val & (1 << 4))
3354 chip->onfi_version = 22;
3355 else if (val & (1 << 3))
3356 chip->onfi_version = 21;
3357 else if (val & (1 << 2))
3358 chip->onfi_version = 20;
3359 else if (val & (1 << 1))
3360 chip->onfi_version = 10;
3361
3362 if (!chip->onfi_version) {
3363 pr_info("unsupported ONFI version: %d\n", val);
3364 return 0;
3365 }
3366
3367 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3368 sanitize_string(p->model, sizeof(p->model));
3369 if (!mtd->name)
3370 mtd->name = p->model;
3371
3372 mtd->writesize = le32_to_cpu(p->byte_per_page);
3373
3374 /*
3375 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3376 * (don't ask me who thought of this...). MTD assumes that these
3377 * dimensions will be power-of-2, so just truncate the remaining area.
3378 */
3379 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3380 mtd->erasesize *= mtd->writesize;
3381
3382 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3383
3384 /* See erasesize comment */
3385 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3386 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3387 chip->bits_per_cell = p->bits_per_cell;
3388
3389 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3390 *busw = NAND_BUSWIDTH_16;
3391 else
3392 *busw = 0;
3393
3394 if (p->ecc_bits != 0xff) {
3395 chip->ecc_strength_ds = p->ecc_bits;
3396 chip->ecc_step_ds = 512;
3397 } else if (chip->onfi_version >= 21 &&
3398 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3399
3400 /*
3401 * The nand_flash_detect_ext_param_page() uses the
3402 * Change Read Column command which maybe not supported
3403 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3404 * now. We do not replace user supplied command function.
3405 */
3406 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3407 chip->cmdfunc = nand_command_lp;
3408
3409 /* The Extended Parameter Page is supported since ONFI 2.1. */
3410 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3411 pr_warn("Failed to detect ONFI extended param page\n");
3412 } else {
3413 pr_warn("Could not retrieve ONFI ECC requirements\n");
3414 }
3415
3416 if (p->jedec_id == NAND_MFR_MICRON)
3417 nand_onfi_detect_micron(chip, p);
3418
3419 return 1;
3420 }
3421
3422 /*
3423 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3424 */
3425 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3426 int *busw)
3427 {
3428 struct nand_jedec_params *p = &chip->jedec_params;
3429 struct jedec_ecc_info *ecc;
3430 int val;
3431 int i, j;
3432
3433 /* Try JEDEC for unknown chip or LP */
3434 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3435 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3436 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3437 chip->read_byte(mtd) != 'C')
3438 return 0;
3439
3440 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3441 for (i = 0; i < 3; i++) {
3442 for (j = 0; j < sizeof(*p); j++)
3443 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3444
3445 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3446 le16_to_cpu(p->crc))
3447 break;
3448 }
3449
3450 if (i == 3) {
3451 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3452 return 0;
3453 }
3454
3455 /* Check version */
3456 val = le16_to_cpu(p->revision);
3457 if (val & (1 << 2))
3458 chip->jedec_version = 10;
3459 else if (val & (1 << 1))
3460 chip->jedec_version = 1; /* vendor specific version */
3461
3462 if (!chip->jedec_version) {
3463 pr_info("unsupported JEDEC version: %d\n", val);
3464 return 0;
3465 }
3466
3467 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3468 sanitize_string(p->model, sizeof(p->model));
3469 if (!mtd->name)
3470 mtd->name = p->model;
3471
3472 mtd->writesize = le32_to_cpu(p->byte_per_page);
3473
3474 /* Please reference to the comment for nand_flash_detect_onfi. */
3475 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3476 mtd->erasesize *= mtd->writesize;
3477
3478 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3479
3480 /* Please reference to the comment for nand_flash_detect_onfi. */
3481 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3482 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3483 chip->bits_per_cell = p->bits_per_cell;
3484
3485 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3486 *busw = NAND_BUSWIDTH_16;
3487 else
3488 *busw = 0;
3489
3490 /* ECC info */
3491 ecc = &p->ecc_info[0];
3492
3493 if (ecc->codeword_size >= 9) {
3494 chip->ecc_strength_ds = ecc->ecc_bits;
3495 chip->ecc_step_ds = 1 << ecc->codeword_size;
3496 } else {
3497 pr_warn("Invalid codeword size\n");
3498 }
3499
3500 return 1;
3501 }
3502
3503 /*
3504 * nand_id_has_period - Check if an ID string has a given wraparound period
3505 * @id_data: the ID string
3506 * @arrlen: the length of the @id_data array
3507 * @period: the period of repitition
3508 *
3509 * Check if an ID string is repeated within a given sequence of bytes at
3510 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3511 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3512 * if the repetition has a period of @period; otherwise, returns zero.
3513 */
3514 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3515 {
3516 int i, j;
3517 for (i = 0; i < period; i++)
3518 for (j = i + period; j < arrlen; j += period)
3519 if (id_data[i] != id_data[j])
3520 return 0;
3521 return 1;
3522 }
3523
3524 /*
3525 * nand_id_len - Get the length of an ID string returned by CMD_READID
3526 * @id_data: the ID string
3527 * @arrlen: the length of the @id_data array
3528
3529 * Returns the length of the ID string, according to known wraparound/trailing
3530 * zero patterns. If no pattern exists, returns the length of the array.
3531 */
3532 static int nand_id_len(u8 *id_data, int arrlen)
3533 {
3534 int last_nonzero, period;
3535
3536 /* Find last non-zero byte */
3537 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3538 if (id_data[last_nonzero])
3539 break;
3540
3541 /* All zeros */
3542 if (last_nonzero < 0)
3543 return 0;
3544
3545 /* Calculate wraparound period */
3546 for (period = 1; period < arrlen; period++)
3547 if (nand_id_has_period(id_data, arrlen, period))
3548 break;
3549
3550 /* There's a repeated pattern */
3551 if (period < arrlen)
3552 return period;
3553
3554 /* There are trailing zeros */
3555 if (last_nonzero < arrlen - 1)
3556 return last_nonzero + 1;
3557
3558 /* No pattern detected */
3559 return arrlen;
3560 }
3561
3562 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3563 static int nand_get_bits_per_cell(u8 cellinfo)
3564 {
3565 int bits;
3566
3567 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3568 bits >>= NAND_CI_CELLTYPE_SHIFT;
3569 return bits + 1;
3570 }
3571
3572 /*
3573 * Many new NAND share similar device ID codes, which represent the size of the
3574 * chip. The rest of the parameters must be decoded according to generic or
3575 * manufacturer-specific "extended ID" decoding patterns.
3576 */
3577 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3578 u8 id_data[8], int *busw)
3579 {
3580 int extid, id_len;
3581 /* The 3rd id byte holds MLC / multichip data */
3582 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3583 /* The 4th id byte is the important one */
3584 extid = id_data[3];
3585
3586 id_len = nand_id_len(id_data, 8);
3587
3588 /*
3589 * Field definitions are in the following datasheets:
3590 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3591 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3592 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3593 *
3594 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3595 * ID to decide what to do.
3596 */
3597 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3598 !nand_is_slc(chip) && id_data[5] != 0x00) {
3599 /* Calc pagesize */
3600 mtd->writesize = 2048 << (extid & 0x03);
3601 extid >>= 2;
3602 /* Calc oobsize */
3603 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3604 case 1:
3605 mtd->oobsize = 128;
3606 break;
3607 case 2:
3608 mtd->oobsize = 218;
3609 break;
3610 case 3:
3611 mtd->oobsize = 400;
3612 break;
3613 case 4:
3614 mtd->oobsize = 436;
3615 break;
3616 case 5:
3617 mtd->oobsize = 512;
3618 break;
3619 case 6:
3620 mtd->oobsize = 640;
3621 break;
3622 case 7:
3623 default: /* Other cases are "reserved" (unknown) */
3624 mtd->oobsize = 1024;
3625 break;
3626 }
3627 extid >>= 2;
3628 /* Calc blocksize */
3629 mtd->erasesize = (128 * 1024) <<
3630 (((extid >> 1) & 0x04) | (extid & 0x03));
3631 *busw = 0;
3632 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3633 !nand_is_slc(chip)) {
3634 unsigned int tmp;
3635
3636 /* Calc pagesize */
3637 mtd->writesize = 2048 << (extid & 0x03);
3638 extid >>= 2;
3639 /* Calc oobsize */
3640 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3641 case 0:
3642 mtd->oobsize = 128;
3643 break;
3644 case 1:
3645 mtd->oobsize = 224;
3646 break;
3647 case 2:
3648 mtd->oobsize = 448;
3649 break;
3650 case 3:
3651 mtd->oobsize = 64;
3652 break;
3653 case 4:
3654 mtd->oobsize = 32;
3655 break;
3656 case 5:
3657 mtd->oobsize = 16;
3658 break;
3659 default:
3660 mtd->oobsize = 640;
3661 break;
3662 }
3663 extid >>= 2;
3664 /* Calc blocksize */
3665 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3666 if (tmp < 0x03)
3667 mtd->erasesize = (128 * 1024) << tmp;
3668 else if (tmp == 0x03)
3669 mtd->erasesize = 768 * 1024;
3670 else
3671 mtd->erasesize = (64 * 1024) << tmp;
3672 *busw = 0;
3673 } else {
3674 /* Calc pagesize */
3675 mtd->writesize = 1024 << (extid & 0x03);
3676 extid >>= 2;
3677 /* Calc oobsize */
3678 mtd->oobsize = (8 << (extid & 0x01)) *
3679 (mtd->writesize >> 9);
3680 extid >>= 2;
3681 /* Calc blocksize. Blocksize is multiples of 64KiB */
3682 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3683 extid >>= 2;
3684 /* Get buswidth information */
3685 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3686
3687 /*
3688 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3689 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3690 * follows:
3691 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3692 * 110b -> 24nm
3693 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3694 */
3695 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3696 nand_is_slc(chip) &&
3697 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3698 !(id_data[4] & 0x80) /* !BENAND */) {
3699 mtd->oobsize = 32 * mtd->writesize >> 9;
3700 }
3701
3702 }
3703 }
3704
3705 /*
3706 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3707 * decodes a matching ID table entry and assigns the MTD size parameters for
3708 * the chip.
3709 */
3710 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3711 struct nand_flash_dev *type, u8 id_data[8],
3712 int *busw)
3713 {
3714 int maf_id = id_data[0];
3715
3716 mtd->erasesize = type->erasesize;
3717 mtd->writesize = type->pagesize;
3718 mtd->oobsize = mtd->writesize / 32;
3719 *busw = type->options & NAND_BUSWIDTH_16;
3720
3721 /* All legacy ID NAND are small-page, SLC */
3722 chip->bits_per_cell = 1;
3723
3724 /*
3725 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3726 * some Spansion chips have erasesize that conflicts with size
3727 * listed in nand_ids table.
3728 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3729 */
3730 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3731 && id_data[6] == 0x00 && id_data[7] == 0x00
3732 && mtd->writesize == 512) {
3733 mtd->erasesize = 128 * 1024;
3734 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3735 }
3736 }
3737
3738 /*
3739 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3740 * heuristic patterns using various detected parameters (e.g., manufacturer,
3741 * page size, cell-type information).
3742 */
3743 static void nand_decode_bbm_options(struct mtd_info *mtd,
3744 struct nand_chip *chip, u8 id_data[8])
3745 {
3746 int maf_id = id_data[0];
3747
3748 /* Set the bad block position */
3749 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3750 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3751 else
3752 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3753
3754 /*
3755 * Bad block marker is stored in the last page of each block on Samsung
3756 * and Hynix MLC devices; stored in first two pages of each block on
3757 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3758 * AMD/Spansion, and Macronix. All others scan only the first page.
3759 */
3760 if (!nand_is_slc(chip) &&
3761 (maf_id == NAND_MFR_SAMSUNG ||
3762 maf_id == NAND_MFR_HYNIX))
3763 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3764 else if ((nand_is_slc(chip) &&
3765 (maf_id == NAND_MFR_SAMSUNG ||
3766 maf_id == NAND_MFR_HYNIX ||
3767 maf_id == NAND_MFR_TOSHIBA ||
3768 maf_id == NAND_MFR_AMD ||
3769 maf_id == NAND_MFR_MACRONIX)) ||
3770 (mtd->writesize == 2048 &&
3771 maf_id == NAND_MFR_MICRON))
3772 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3773 }
3774
3775 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3776 {
3777 return type->id_len;
3778 }
3779
3780 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3781 struct nand_flash_dev *type, u8 *id_data, int *busw)
3782 {
3783 if (!strncmp(type->id, id_data, type->id_len)) {
3784 mtd->writesize = type->pagesize;
3785 mtd->erasesize = type->erasesize;
3786 mtd->oobsize = type->oobsize;
3787
3788 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3789 chip->chipsize = (uint64_t)type->chipsize << 20;
3790 chip->options |= type->options;
3791 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3792 chip->ecc_step_ds = NAND_ECC_STEP(type);
3793 chip->onfi_timing_mode_default =
3794 type->onfi_timing_mode_default;
3795
3796 *busw = type->options & NAND_BUSWIDTH_16;
3797
3798 if (!mtd->name)
3799 mtd->name = type->name;
3800
3801 return true;
3802 }
3803 return false;
3804 }
3805
3806 /*
3807 * Get the flash and manufacturer id and lookup if the type is supported.
3808 */
3809 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3810 struct nand_chip *chip,
3811 int *maf_id, int *dev_id,
3812 struct nand_flash_dev *type)
3813 {
3814 int busw;
3815 int i, maf_idx;
3816 u8 id_data[8];
3817
3818 /* Select the device */
3819 chip->select_chip(mtd, 0);
3820
3821 /*
3822 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3823 * after power-up.
3824 */
3825 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3826
3827 /* Send the command for reading device ID */
3828 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3829
3830 /* Read manufacturer and device IDs */
3831 *maf_id = chip->read_byte(mtd);
3832 *dev_id = chip->read_byte(mtd);
3833
3834 /*
3835 * Try again to make sure, as some systems the bus-hold or other
3836 * interface concerns can cause random data which looks like a
3837 * possibly credible NAND flash to appear. If the two results do
3838 * not match, ignore the device completely.
3839 */
3840
3841 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3842
3843 /* Read entire ID string */
3844 for (i = 0; i < 8; i++)
3845 id_data[i] = chip->read_byte(mtd);
3846
3847 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3848 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3849 *maf_id, *dev_id, id_data[0], id_data[1]);
3850 return ERR_PTR(-ENODEV);
3851 }
3852
3853 if (!type)
3854 type = nand_flash_ids;
3855
3856 for (; type->name != NULL; type++) {
3857 if (is_full_id_nand(type)) {
3858 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3859 goto ident_done;
3860 } else if (*dev_id == type->dev_id) {
3861 break;
3862 }
3863 }
3864
3865 chip->onfi_version = 0;
3866 if (!type->name || !type->pagesize) {
3867 /* Check if the chip is ONFI compliant */
3868 if (nand_flash_detect_onfi(mtd, chip, &busw))
3869 goto ident_done;
3870
3871 /* Check if the chip is JEDEC compliant */
3872 if (nand_flash_detect_jedec(mtd, chip, &busw))
3873 goto ident_done;
3874 }
3875
3876 if (!type->name)
3877 return ERR_PTR(-ENODEV);
3878
3879 if (!mtd->name)
3880 mtd->name = type->name;
3881
3882 chip->chipsize = (uint64_t)type->chipsize << 20;
3883
3884 if (!type->pagesize) {
3885 /* Decode parameters from extended ID */
3886 nand_decode_ext_id(mtd, chip, id_data, &busw);
3887 } else {
3888 nand_decode_id(mtd, chip, type, id_data, &busw);
3889 }
3890 /* Get chip options */
3891 chip->options |= type->options;
3892
3893 /*
3894 * Check if chip is not a Samsung device. Do not clear the
3895 * options for chips which do not have an extended id.
3896 */
3897 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3898 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3899 ident_done:
3900
3901 /* Try to identify manufacturer */
3902 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3903 if (nand_manuf_ids[maf_idx].id == *maf_id)
3904 break;
3905 }
3906
3907 if (chip->options & NAND_BUSWIDTH_AUTO) {
3908 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3909 chip->options |= busw;
3910 nand_set_defaults(chip, busw);
3911 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3912 /*
3913 * Check, if buswidth is correct. Hardware drivers should set
3914 * chip correct!
3915 */
3916 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3917 *maf_id, *dev_id);
3918 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3919 pr_warn("bus width %d instead %d bit\n",
3920 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3921 busw ? 16 : 8);
3922 return ERR_PTR(-EINVAL);
3923 }
3924
3925 nand_decode_bbm_options(mtd, chip, id_data);
3926
3927 /* Calculate the address shift from the page size */
3928 chip->page_shift = ffs(mtd->writesize) - 1;
3929 /* Convert chipsize to number of pages per chip -1 */
3930 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3931
3932 chip->bbt_erase_shift = chip->phys_erase_shift =
3933 ffs(mtd->erasesize) - 1;
3934 if (chip->chipsize & 0xffffffff)
3935 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3936 else {
3937 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3938 chip->chip_shift += 32 - 1;
3939 }
3940
3941 chip->badblockbits = 8;
3942 chip->erase = single_erase;
3943
3944 /* Do not replace user supplied command function! */
3945 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3946 chip->cmdfunc = nand_command_lp;
3947
3948 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3949 *maf_id, *dev_id);
3950
3951 if (chip->onfi_version)
3952 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3953 chip->onfi_params.model);
3954 else if (chip->jedec_version)
3955 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3956 chip->jedec_params.model);
3957 else
3958 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3959 type->name);
3960
3961 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3962 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3963 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3964 return type;
3965 }
3966
3967 static int nand_dt_init(struct nand_chip *chip)
3968 {
3969 struct device_node *dn = nand_get_flash_node(chip);
3970 int ecc_mode, ecc_strength, ecc_step;
3971
3972 if (!dn)
3973 return 0;
3974
3975 if (of_get_nand_bus_width(dn) == 16)
3976 chip->options |= NAND_BUSWIDTH_16;
3977
3978 if (of_get_nand_on_flash_bbt(dn))
3979 chip->bbt_options |= NAND_BBT_USE_FLASH;
3980
3981 ecc_mode = of_get_nand_ecc_mode(dn);
3982 ecc_strength = of_get_nand_ecc_strength(dn);
3983 ecc_step = of_get_nand_ecc_step_size(dn);
3984
3985 if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3986 (!(ecc_step >= 0) && ecc_strength >= 0)) {
3987 pr_err("must set both strength and step size in DT\n");
3988 return -EINVAL;
3989 }
3990
3991 if (ecc_mode >= 0)
3992 chip->ecc.mode = ecc_mode;
3993
3994 if (ecc_strength >= 0)
3995 chip->ecc.strength = ecc_strength;
3996
3997 if (ecc_step > 0)
3998 chip->ecc.size = ecc_step;
3999
4000 return 0;
4001 }
4002
4003 /**
4004 * nand_scan_ident - [NAND Interface] Scan for the NAND device
4005 * @mtd: MTD device structure
4006 * @maxchips: number of chips to scan for
4007 * @table: alternative NAND ID table
4008 *
4009 * This is the first phase of the normal nand_scan() function. It reads the
4010 * flash ID and sets up MTD fields accordingly.
4011 *
4012 * The mtd->owner field must be set to the module of the caller.
4013 */
4014 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4015 struct nand_flash_dev *table)
4016 {
4017 int i, nand_maf_id, nand_dev_id;
4018 struct nand_chip *chip = mtd_to_nand(mtd);
4019 struct nand_flash_dev *type;
4020 int ret;
4021
4022 ret = nand_dt_init(chip);
4023 if (ret)
4024 return ret;
4025
4026 if (!mtd->name && mtd->dev.parent)
4027 mtd->name = dev_name(mtd->dev.parent);
4028
4029 /* Set the default functions */
4030 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
4031
4032 /* Read the flash type */
4033 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4034 &nand_dev_id, table);
4035
4036 if (IS_ERR(type)) {
4037 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4038 pr_warn("No NAND device found\n");
4039 chip->select_chip(mtd, -1);
4040 return PTR_ERR(type);
4041 }
4042
4043 chip->select_chip(mtd, -1);
4044
4045 /* Check for a chip array */
4046 for (i = 1; i < maxchips; i++) {
4047 chip->select_chip(mtd, i);
4048 /* See comment in nand_get_flash_type for reset */
4049 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
4050 /* Send the command for reading device ID */
4051 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4052 /* Read manufacturer and device IDs */
4053 if (nand_maf_id != chip->read_byte(mtd) ||
4054 nand_dev_id != chip->read_byte(mtd)) {
4055 chip->select_chip(mtd, -1);
4056 break;
4057 }
4058 chip->select_chip(mtd, -1);
4059 }
4060 if (i > 1)
4061 pr_info("%d chips detected\n", i);
4062
4063 /* Store the number of chips and calc total size for mtd */
4064 chip->numchips = i;
4065 mtd->size = i * chip->chipsize;
4066
4067 return 0;
4068 }
4069 EXPORT_SYMBOL(nand_scan_ident);
4070
4071 /*
4072 * Check if the chip configuration meet the datasheet requirements.
4073
4074 * If our configuration corrects A bits per B bytes and the minimum
4075 * required correction level is X bits per Y bytes, then we must ensure
4076 * both of the following are true:
4077 *
4078 * (1) A / B >= X / Y
4079 * (2) A >= X
4080 *
4081 * Requirement (1) ensures we can correct for the required bitflip density.
4082 * Requirement (2) ensures we can correct even when all bitflips are clumped
4083 * in the same sector.
4084 */
4085 static bool nand_ecc_strength_good(struct mtd_info *mtd)
4086 {
4087 struct nand_chip *chip = mtd_to_nand(mtd);
4088 struct nand_ecc_ctrl *ecc = &chip->ecc;
4089 int corr, ds_corr;
4090
4091 if (ecc->size == 0 || chip->ecc_step_ds == 0)
4092 /* Not enough information */
4093 return true;
4094
4095 /*
4096 * We get the number of corrected bits per page to compare
4097 * the correction density.
4098 */
4099 corr = (mtd->writesize * ecc->strength) / ecc->size;
4100 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4101
4102 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4103 }
4104
4105 /**
4106 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4107 * @mtd: MTD device structure
4108 *
4109 * This is the second phase of the normal nand_scan() function. It fills out
4110 * all the uninitialized function pointers with the defaults and scans for a
4111 * bad block table if appropriate.
4112 */
4113 int nand_scan_tail(struct mtd_info *mtd)
4114 {
4115 int i;
4116 struct nand_chip *chip = mtd_to_nand(mtd);
4117 struct nand_ecc_ctrl *ecc = &chip->ecc;
4118 struct nand_buffers *nbuf;
4119
4120 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4121 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4122 !(chip->bbt_options & NAND_BBT_USE_FLASH));
4123
4124 if (!(chip->options & NAND_OWN_BUFFERS)) {
4125 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
4126 + mtd->oobsize * 3, GFP_KERNEL);
4127 if (!nbuf)
4128 return -ENOMEM;
4129 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
4130 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
4131 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
4132
4133 chip->buffers = nbuf;
4134 } else {
4135 if (!chip->buffers)
4136 return -ENOMEM;
4137 }
4138
4139 /* Set the internal oob buffer location, just after the page data */
4140 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
4141
4142 /*
4143 * If no default placement scheme is given, select an appropriate one.
4144 */
4145 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
4146 switch (mtd->oobsize) {
4147 case 8:
4148 ecc->layout = &nand_oob_8;
4149 break;
4150 case 16:
4151 ecc->layout = &nand_oob_16;
4152 break;
4153 case 64:
4154 ecc->layout = &nand_oob_64;
4155 break;
4156 case 128:
4157 ecc->layout = &nand_oob_128;
4158 break;
4159 default:
4160 pr_warn("No oob scheme defined for oobsize %d\n",
4161 mtd->oobsize);
4162 BUG();
4163 }
4164 }
4165
4166 if (!chip->write_page)
4167 chip->write_page = nand_write_page;
4168
4169 /*
4170 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4171 * selected and we have 256 byte pagesize fallback to software ECC
4172 */
4173
4174 switch (ecc->mode) {
4175 case NAND_ECC_HW_OOB_FIRST:
4176 /* Similar to NAND_ECC_HW, but a separate read_page handle */
4177 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4178 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4179 BUG();
4180 }
4181 if (!ecc->read_page)
4182 ecc->read_page = nand_read_page_hwecc_oob_first;
4183
4184 case NAND_ECC_HW:
4185 /* Use standard hwecc read page function? */
4186 if (!ecc->read_page)
4187 ecc->read_page = nand_read_page_hwecc;
4188 if (!ecc->write_page)
4189 ecc->write_page = nand_write_page_hwecc;
4190 if (!ecc->read_page_raw)
4191 ecc->read_page_raw = nand_read_page_raw;
4192 if (!ecc->write_page_raw)
4193 ecc->write_page_raw = nand_write_page_raw;
4194 if (!ecc->read_oob)
4195 ecc->read_oob = nand_read_oob_std;
4196 if (!ecc->write_oob)
4197 ecc->write_oob = nand_write_oob_std;
4198 if (!ecc->read_subpage)
4199 ecc->read_subpage = nand_read_subpage;
4200 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4201 ecc->write_subpage = nand_write_subpage_hwecc;
4202
4203 case NAND_ECC_HW_SYNDROME:
4204 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4205 (!ecc->read_page ||
4206 ecc->read_page == nand_read_page_hwecc ||
4207 !ecc->write_page ||
4208 ecc->write_page == nand_write_page_hwecc)) {
4209 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4210 BUG();
4211 }
4212 /* Use standard syndrome read/write page function? */
4213 if (!ecc->read_page)
4214 ecc->read_page = nand_read_page_syndrome;
4215 if (!ecc->write_page)
4216 ecc->write_page = nand_write_page_syndrome;
4217 if (!ecc->read_page_raw)
4218 ecc->read_page_raw = nand_read_page_raw_syndrome;
4219 if (!ecc->write_page_raw)
4220 ecc->write_page_raw = nand_write_page_raw_syndrome;
4221 if (!ecc->read_oob)
4222 ecc->read_oob = nand_read_oob_syndrome;
4223 if (!ecc->write_oob)
4224 ecc->write_oob = nand_write_oob_syndrome;
4225
4226 if (mtd->writesize >= ecc->size) {
4227 if (!ecc->strength) {
4228 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4229 BUG();
4230 }
4231 break;
4232 }
4233 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4234 ecc->size, mtd->writesize);
4235 ecc->mode = NAND_ECC_SOFT;
4236
4237 case NAND_ECC_SOFT:
4238 ecc->calculate = nand_calculate_ecc;
4239 ecc->correct = nand_correct_data;
4240 ecc->read_page = nand_read_page_swecc;
4241 ecc->read_subpage = nand_read_subpage;
4242 ecc->write_page = nand_write_page_swecc;
4243 ecc->read_page_raw = nand_read_page_raw;
4244 ecc->write_page_raw = nand_write_page_raw;
4245 ecc->read_oob = nand_read_oob_std;
4246 ecc->write_oob = nand_write_oob_std;
4247 if (!ecc->size)
4248 ecc->size = 256;
4249 ecc->bytes = 3;
4250 ecc->strength = 1;
4251 break;
4252
4253 case NAND_ECC_SOFT_BCH:
4254 if (!mtd_nand_has_bch()) {
4255 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4256 BUG();
4257 }
4258 ecc->calculate = nand_bch_calculate_ecc;
4259 ecc->correct = nand_bch_correct_data;
4260 ecc->read_page = nand_read_page_swecc;
4261 ecc->read_subpage = nand_read_subpage;
4262 ecc->write_page = nand_write_page_swecc;
4263 ecc->read_page_raw = nand_read_page_raw;
4264 ecc->write_page_raw = nand_write_page_raw;
4265 ecc->read_oob = nand_read_oob_std;
4266 ecc->write_oob = nand_write_oob_std;
4267 /*
4268 * Board driver should supply ecc.size and ecc.strength values
4269 * to select how many bits are correctable. Otherwise, default
4270 * to 4 bits for large page devices.
4271 */
4272 if (!ecc->size && (mtd->oobsize >= 64)) {
4273 ecc->size = 512;
4274 ecc->strength = 4;
4275 }
4276
4277 /* See nand_bch_init() for details. */
4278 ecc->bytes = 0;
4279 ecc->priv = nand_bch_init(mtd);
4280 if (!ecc->priv) {
4281 pr_warn("BCH ECC initialization failed!\n");
4282 BUG();
4283 }
4284 break;
4285
4286 case NAND_ECC_NONE:
4287 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4288 ecc->read_page = nand_read_page_raw;
4289 ecc->write_page = nand_write_page_raw;
4290 ecc->read_oob = nand_read_oob_std;
4291 ecc->read_page_raw = nand_read_page_raw;
4292 ecc->write_page_raw = nand_write_page_raw;
4293 ecc->write_oob = nand_write_oob_std;
4294 ecc->size = mtd->writesize;
4295 ecc->bytes = 0;
4296 ecc->strength = 0;
4297 break;
4298
4299 default:
4300 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4301 BUG();
4302 }
4303
4304 /* For many systems, the standard OOB write also works for raw */
4305 if (!ecc->read_oob_raw)
4306 ecc->read_oob_raw = ecc->read_oob;
4307 if (!ecc->write_oob_raw)
4308 ecc->write_oob_raw = ecc->write_oob;
4309
4310 /*
4311 * The number of bytes available for a client to place data into
4312 * the out of band area.
4313 */
4314 mtd->oobavail = 0;
4315 if (ecc->layout) {
4316 for (i = 0; ecc->layout->oobfree[i].length; i++)
4317 mtd->oobavail += ecc->layout->oobfree[i].length;
4318 }
4319
4320 /* ECC sanity check: warn if it's too weak */
4321 if (!nand_ecc_strength_good(mtd))
4322 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4323 mtd->name);
4324
4325 /*
4326 * Set the number of read / write steps for one page depending on ECC
4327 * mode.
4328 */
4329 ecc->steps = mtd->writesize / ecc->size;
4330 if (ecc->steps * ecc->size != mtd->writesize) {
4331 pr_warn("Invalid ECC parameters\n");
4332 BUG();
4333 }
4334 ecc->total = ecc->steps * ecc->bytes;
4335
4336 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4337 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4338 switch (ecc->steps) {
4339 case 2:
4340 mtd->subpage_sft = 1;
4341 break;
4342 case 4:
4343 case 8:
4344 case 16:
4345 mtd->subpage_sft = 2;
4346 break;
4347 }
4348 }
4349 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4350
4351 /* Initialize state */
4352 chip->state = FL_READY;
4353
4354 /* Invalidate the pagebuffer reference */
4355 chip->pagebuf = -1;
4356
4357 /* Large page NAND with SOFT_ECC should support subpage reads */
4358 switch (ecc->mode) {
4359 case NAND_ECC_SOFT:
4360 case NAND_ECC_SOFT_BCH:
4361 if (chip->page_shift > 9)
4362 chip->options |= NAND_SUBPAGE_READ;
4363 break;
4364
4365 default:
4366 break;
4367 }
4368
4369 /* Fill in remaining MTD driver data */
4370 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4371 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4372 MTD_CAP_NANDFLASH;
4373 mtd->_erase = nand_erase;
4374 mtd->_point = NULL;
4375 mtd->_unpoint = NULL;
4376 mtd->_read = nand_read;
4377 mtd->_write = nand_write;
4378 mtd->_panic_write = panic_nand_write;
4379 mtd->_read_oob = nand_read_oob;
4380 mtd->_write_oob = nand_write_oob;
4381 mtd->_sync = nand_sync;
4382 mtd->_lock = NULL;
4383 mtd->_unlock = NULL;
4384 mtd->_suspend = nand_suspend;
4385 mtd->_resume = nand_resume;
4386 mtd->_reboot = nand_shutdown;
4387 mtd->_block_isreserved = nand_block_isreserved;
4388 mtd->_block_isbad = nand_block_isbad;
4389 mtd->_block_markbad = nand_block_markbad;
4390 mtd->writebufsize = mtd->writesize;
4391
4392 /* propagate ecc info to mtd_info */
4393 mtd->ecclayout = ecc->layout;
4394 mtd->ecc_strength = ecc->strength;
4395 mtd->ecc_step_size = ecc->size;
4396 /*
4397 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4398 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4399 * properly set.
4400 */
4401 if (!mtd->bitflip_threshold)
4402 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4403
4404 /* Check, if we should skip the bad block table scan */
4405 if (chip->options & NAND_SKIP_BBTSCAN)
4406 return 0;
4407
4408 /* Build bad block table */
4409 return chip->scan_bbt(mtd);
4410 }
4411 EXPORT_SYMBOL(nand_scan_tail);
4412
4413 /*
4414 * is_module_text_address() isn't exported, and it's mostly a pointless
4415 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4416 * to call us from in-kernel code if the core NAND support is modular.
4417 */
4418 #ifdef MODULE
4419 #define caller_is_module() (1)
4420 #else
4421 #define caller_is_module() \
4422 is_module_text_address((unsigned long)__builtin_return_address(0))
4423 #endif
4424
4425 /**
4426 * nand_scan - [NAND Interface] Scan for the NAND device
4427 * @mtd: MTD device structure
4428 * @maxchips: number of chips to scan for
4429 *
4430 * This fills out all the uninitialized function pointers with the defaults.
4431 * The flash ID is read and the mtd/chip structures are filled with the
4432 * appropriate values. The mtd->owner field must be set to the module of the
4433 * caller.
4434 */
4435 int nand_scan(struct mtd_info *mtd, int maxchips)
4436 {
4437 int ret;
4438
4439 /* Many callers got this wrong, so check for it for a while... */
4440 if (!mtd->owner && caller_is_module()) {
4441 pr_crit("%s called with NULL mtd->owner!\n", __func__);
4442 BUG();
4443 }
4444
4445 ret = nand_scan_ident(mtd, maxchips, NULL);
4446 if (!ret)
4447 ret = nand_scan_tail(mtd);
4448 return ret;
4449 }
4450 EXPORT_SYMBOL(nand_scan);
4451
4452 /**
4453 * nand_release - [NAND Interface] Free resources held by the NAND device
4454 * @mtd: MTD device structure
4455 */
4456 void nand_release(struct mtd_info *mtd)
4457 {
4458 struct nand_chip *chip = mtd_to_nand(mtd);
4459
4460 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4461 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4462
4463 mtd_device_unregister(mtd);
4464
4465 /* Free bad block table memory */
4466 kfree(chip->bbt);
4467 if (!(chip->options & NAND_OWN_BUFFERS))
4468 kfree(chip->buffers);
4469
4470 /* Free bad block descriptor memory */
4471 if (chip->badblock_pattern && chip->badblock_pattern->options
4472 & NAND_BBT_DYNAMICSTRUCT)
4473 kfree(chip->badblock_pattern);
4474 }
4475 EXPORT_SYMBOL_GPL(nand_release);
4476
4477 static int __init nand_base_init(void)
4478 {
4479 led_trigger_register_simple("nand-disk", &nand_led_trigger);
4480 return 0;
4481 }
4482
4483 static void __exit nand_base_exit(void)
4484 {
4485 led_trigger_unregister_simple(nand_led_trigger);
4486 }
4487
4488 module_init(nand_base_init);
4489 module_exit(nand_base_exit);
4490
4491 MODULE_LICENSE("GPL");
4492 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4493 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4494 MODULE_DESCRIPTION("Generic NAND flash driver code");
This page took 0.143758 seconds and 5 git commands to generate.