arm/xen: fix SMP guests boot
[deliverable/linux.git] / drivers / net / can / usb / ems_usb.c
1 /*
2 * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3 *
4 * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19 #include <linux/signal.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/usb.h>
24
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/error.h>
28
29 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
30 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
31 MODULE_LICENSE("GPL v2");
32
33 /* Control-Values for CPC_Control() Command Subject Selection */
34 #define CONTR_CAN_MESSAGE 0x04
35 #define CONTR_CAN_STATE 0x0C
36 #define CONTR_BUS_ERROR 0x1C
37
38 /* Control Command Actions */
39 #define CONTR_CONT_OFF 0
40 #define CONTR_CONT_ON 1
41 #define CONTR_ONCE 2
42
43 /* Messages from CPC to PC */
44 #define CPC_MSG_TYPE_CAN_FRAME 1 /* CAN data frame */
45 #define CPC_MSG_TYPE_RTR_FRAME 8 /* CAN remote frame */
46 #define CPC_MSG_TYPE_CAN_PARAMS 12 /* Actual CAN parameters */
47 #define CPC_MSG_TYPE_CAN_STATE 14 /* CAN state message */
48 #define CPC_MSG_TYPE_EXT_CAN_FRAME 16 /* Extended CAN data frame */
49 #define CPC_MSG_TYPE_EXT_RTR_FRAME 17 /* Extended remote frame */
50 #define CPC_MSG_TYPE_CONTROL 19 /* change interface behavior */
51 #define CPC_MSG_TYPE_CONFIRM 20 /* command processed confirmation */
52 #define CPC_MSG_TYPE_OVERRUN 21 /* overrun events */
53 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
54 #define CPC_MSG_TYPE_ERR_COUNTER 25 /* RX/TX error counter */
55
56 /* Messages from the PC to the CPC interface */
57 #define CPC_CMD_TYPE_CAN_FRAME 1 /* CAN data frame */
58 #define CPC_CMD_TYPE_CONTROL 3 /* control of interface behavior */
59 #define CPC_CMD_TYPE_CAN_PARAMS 6 /* set CAN parameters */
60 #define CPC_CMD_TYPE_RTR_FRAME 13 /* CAN remote frame */
61 #define CPC_CMD_TYPE_CAN_STATE 14 /* CAN state message */
62 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15 /* Extended CAN data frame */
63 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16 /* Extended CAN remote frame */
64 #define CPC_CMD_TYPE_CAN_EXIT 200 /* exit the CAN */
65
66 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
67 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8 /* clear CPC_MSG queue */
68 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
69
70 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
71
72 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
73
74 /* Overrun types */
75 #define CPC_OVR_EVENT_CAN 0x01
76 #define CPC_OVR_EVENT_CANSTATE 0x02
77 #define CPC_OVR_EVENT_BUSERROR 0x04
78
79 /*
80 * If the CAN controller lost a message we indicate it with the highest bit
81 * set in the count field.
82 */
83 #define CPC_OVR_HW 0x80
84
85 /* Size of the "struct ems_cpc_msg" without the union */
86 #define CPC_MSG_HEADER_LEN 11
87 #define CPC_CAN_MSG_MIN_SIZE 5
88
89 /* Define these values to match your devices */
90 #define USB_CPCUSB_VENDOR_ID 0x12D6
91
92 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
93
94 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
95 #define SJA1000_MOD_NORMAL 0x00
96 #define SJA1000_MOD_RM 0x01
97
98 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
99 #define SJA1000_ECC_SEG 0x1F
100 #define SJA1000_ECC_DIR 0x20
101 #define SJA1000_ECC_ERR 0x06
102 #define SJA1000_ECC_BIT 0x00
103 #define SJA1000_ECC_FORM 0x40
104 #define SJA1000_ECC_STUFF 0x80
105 #define SJA1000_ECC_MASK 0xc0
106
107 /* Status register content */
108 #define SJA1000_SR_BS 0x80
109 #define SJA1000_SR_ES 0x40
110
111 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
112
113 /*
114 * The device actually uses a 16MHz clock to generate the CAN clock
115 * but it expects SJA1000 bit settings based on 8MHz (is internally
116 * converted).
117 */
118 #define EMS_USB_ARM7_CLOCK 8000000
119
120 #define CPC_TX_QUEUE_TRIGGER_LOW 25
121 #define CPC_TX_QUEUE_TRIGGER_HIGH 35
122
123 /*
124 * CAN-Message representation in a CPC_MSG. Message object type is
125 * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
126 * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
127 */
128 struct cpc_can_msg {
129 __le32 id;
130 u8 length;
131 u8 msg[8];
132 };
133
134 /* Representation of the CAN parameters for the SJA1000 controller */
135 struct cpc_sja1000_params {
136 u8 mode;
137 u8 acc_code0;
138 u8 acc_code1;
139 u8 acc_code2;
140 u8 acc_code3;
141 u8 acc_mask0;
142 u8 acc_mask1;
143 u8 acc_mask2;
144 u8 acc_mask3;
145 u8 btr0;
146 u8 btr1;
147 u8 outp_contr;
148 };
149
150 /* CAN params message representation */
151 struct cpc_can_params {
152 u8 cc_type;
153
154 /* Will support M16C CAN controller in the future */
155 union {
156 struct cpc_sja1000_params sja1000;
157 } cc_params;
158 };
159
160 /* Structure for confirmed message handling */
161 struct cpc_confirm {
162 u8 error; /* error code */
163 };
164
165 /* Structure for overrun conditions */
166 struct cpc_overrun {
167 u8 event;
168 u8 count;
169 };
170
171 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
172 struct cpc_sja1000_can_error {
173 u8 ecc;
174 u8 rxerr;
175 u8 txerr;
176 };
177
178 /* structure for CAN error conditions */
179 struct cpc_can_error {
180 u8 ecode;
181
182 struct {
183 u8 cc_type;
184
185 /* Other controllers may also provide error code capture regs */
186 union {
187 struct cpc_sja1000_can_error sja1000;
188 } regs;
189 } cc;
190 };
191
192 /*
193 * Structure containing RX/TX error counter. This structure is used to request
194 * the values of the CAN controllers TX and RX error counter.
195 */
196 struct cpc_can_err_counter {
197 u8 rx;
198 u8 tx;
199 };
200
201 /* Main message type used between library and application */
202 struct __packed ems_cpc_msg {
203 u8 type; /* type of message */
204 u8 length; /* length of data within union 'msg' */
205 u8 msgid; /* confirmation handle */
206 __le32 ts_sec; /* timestamp in seconds */
207 __le32 ts_nsec; /* timestamp in nano seconds */
208
209 union {
210 u8 generic[64];
211 struct cpc_can_msg can_msg;
212 struct cpc_can_params can_params;
213 struct cpc_confirm confirmation;
214 struct cpc_overrun overrun;
215 struct cpc_can_error error;
216 struct cpc_can_err_counter err_counter;
217 u8 can_state;
218 } msg;
219 };
220
221 /*
222 * Table of devices that work with this driver
223 * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
224 */
225 static struct usb_device_id ems_usb_table[] = {
226 {USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
227 {} /* Terminating entry */
228 };
229
230 MODULE_DEVICE_TABLE(usb, ems_usb_table);
231
232 #define RX_BUFFER_SIZE 64
233 #define CPC_HEADER_SIZE 4
234 #define INTR_IN_BUFFER_SIZE 4
235
236 #define MAX_RX_URBS 10
237 #define MAX_TX_URBS 10
238
239 struct ems_usb;
240
241 struct ems_tx_urb_context {
242 struct ems_usb *dev;
243
244 u32 echo_index;
245 u8 dlc;
246 };
247
248 struct ems_usb {
249 struct can_priv can; /* must be the first member */
250
251 struct sk_buff *echo_skb[MAX_TX_URBS];
252
253 struct usb_device *udev;
254 struct net_device *netdev;
255
256 atomic_t active_tx_urbs;
257 struct usb_anchor tx_submitted;
258 struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
259
260 struct usb_anchor rx_submitted;
261
262 struct urb *intr_urb;
263
264 u8 *tx_msg_buffer;
265
266 u8 *intr_in_buffer;
267 unsigned int free_slots; /* remember number of available slots */
268
269 struct ems_cpc_msg active_params; /* active controller parameters */
270 };
271
272 static void ems_usb_read_interrupt_callback(struct urb *urb)
273 {
274 struct ems_usb *dev = urb->context;
275 struct net_device *netdev = dev->netdev;
276 int err;
277
278 if (!netif_device_present(netdev))
279 return;
280
281 switch (urb->status) {
282 case 0:
283 dev->free_slots = dev->intr_in_buffer[1];
284 if (dev->free_slots > CPC_TX_QUEUE_TRIGGER_HIGH &&
285 netif_queue_stopped(netdev))
286 netif_wake_queue(netdev);
287 break;
288
289 case -ECONNRESET: /* unlink */
290 case -ENOENT:
291 case -ESHUTDOWN:
292 return;
293
294 default:
295 netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
296 break;
297 }
298
299 err = usb_submit_urb(urb, GFP_ATOMIC);
300
301 if (err == -ENODEV)
302 netif_device_detach(netdev);
303 else if (err)
304 netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
305 }
306
307 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
308 {
309 struct can_frame *cf;
310 struct sk_buff *skb;
311 int i;
312 struct net_device_stats *stats = &dev->netdev->stats;
313
314 skb = alloc_can_skb(dev->netdev, &cf);
315 if (skb == NULL)
316 return;
317
318 cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
319 cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
320
321 if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
322 msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
323 cf->can_id |= CAN_EFF_FLAG;
324
325 if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
326 msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
327 cf->can_id |= CAN_RTR_FLAG;
328 } else {
329 for (i = 0; i < cf->can_dlc; i++)
330 cf->data[i] = msg->msg.can_msg.msg[i];
331 }
332
333 stats->rx_packets++;
334 stats->rx_bytes += cf->can_dlc;
335 netif_rx(skb);
336 }
337
338 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
339 {
340 struct can_frame *cf;
341 struct sk_buff *skb;
342 struct net_device_stats *stats = &dev->netdev->stats;
343
344 skb = alloc_can_err_skb(dev->netdev, &cf);
345 if (skb == NULL)
346 return;
347
348 if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
349 u8 state = msg->msg.can_state;
350
351 if (state & SJA1000_SR_BS) {
352 dev->can.state = CAN_STATE_BUS_OFF;
353 cf->can_id |= CAN_ERR_BUSOFF;
354
355 dev->can.can_stats.bus_off++;
356 can_bus_off(dev->netdev);
357 } else if (state & SJA1000_SR_ES) {
358 dev->can.state = CAN_STATE_ERROR_WARNING;
359 dev->can.can_stats.error_warning++;
360 } else {
361 dev->can.state = CAN_STATE_ERROR_ACTIVE;
362 dev->can.can_stats.error_passive++;
363 }
364 } else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
365 u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
366 u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
367 u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
368
369 /* bus error interrupt */
370 dev->can.can_stats.bus_error++;
371 stats->rx_errors++;
372
373 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
374
375 switch (ecc & SJA1000_ECC_MASK) {
376 case SJA1000_ECC_BIT:
377 cf->data[2] |= CAN_ERR_PROT_BIT;
378 break;
379 case SJA1000_ECC_FORM:
380 cf->data[2] |= CAN_ERR_PROT_FORM;
381 break;
382 case SJA1000_ECC_STUFF:
383 cf->data[2] |= CAN_ERR_PROT_STUFF;
384 break;
385 default:
386 cf->data[3] = ecc & SJA1000_ECC_SEG;
387 break;
388 }
389
390 /* Error occurred during transmission? */
391 if ((ecc & SJA1000_ECC_DIR) == 0)
392 cf->data[2] |= CAN_ERR_PROT_TX;
393
394 if (dev->can.state == CAN_STATE_ERROR_WARNING ||
395 dev->can.state == CAN_STATE_ERROR_PASSIVE) {
396 cf->data[1] = (txerr > rxerr) ?
397 CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
398 }
399 } else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
400 cf->can_id |= CAN_ERR_CRTL;
401 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
402
403 stats->rx_over_errors++;
404 stats->rx_errors++;
405 }
406
407 stats->rx_packets++;
408 stats->rx_bytes += cf->can_dlc;
409 netif_rx(skb);
410 }
411
412 /*
413 * callback for bulk IN urb
414 */
415 static void ems_usb_read_bulk_callback(struct urb *urb)
416 {
417 struct ems_usb *dev = urb->context;
418 struct net_device *netdev;
419 int retval;
420
421 netdev = dev->netdev;
422
423 if (!netif_device_present(netdev))
424 return;
425
426 switch (urb->status) {
427 case 0: /* success */
428 break;
429
430 case -ENOENT:
431 return;
432
433 default:
434 netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
435 goto resubmit_urb;
436 }
437
438 if (urb->actual_length > CPC_HEADER_SIZE) {
439 struct ems_cpc_msg *msg;
440 u8 *ibuf = urb->transfer_buffer;
441 u8 msg_count, start;
442
443 msg_count = ibuf[0] & ~0x80;
444
445 start = CPC_HEADER_SIZE;
446
447 while (msg_count) {
448 msg = (struct ems_cpc_msg *)&ibuf[start];
449
450 switch (msg->type) {
451 case CPC_MSG_TYPE_CAN_STATE:
452 /* Process CAN state changes */
453 ems_usb_rx_err(dev, msg);
454 break;
455
456 case CPC_MSG_TYPE_CAN_FRAME:
457 case CPC_MSG_TYPE_EXT_CAN_FRAME:
458 case CPC_MSG_TYPE_RTR_FRAME:
459 case CPC_MSG_TYPE_EXT_RTR_FRAME:
460 ems_usb_rx_can_msg(dev, msg);
461 break;
462
463 case CPC_MSG_TYPE_CAN_FRAME_ERROR:
464 /* Process errorframe */
465 ems_usb_rx_err(dev, msg);
466 break;
467
468 case CPC_MSG_TYPE_OVERRUN:
469 /* Message lost while receiving */
470 ems_usb_rx_err(dev, msg);
471 break;
472 }
473
474 start += CPC_MSG_HEADER_LEN + msg->length;
475 msg_count--;
476
477 if (start > urb->transfer_buffer_length) {
478 netdev_err(netdev, "format error\n");
479 break;
480 }
481 }
482 }
483
484 resubmit_urb:
485 usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
486 urb->transfer_buffer, RX_BUFFER_SIZE,
487 ems_usb_read_bulk_callback, dev);
488
489 retval = usb_submit_urb(urb, GFP_ATOMIC);
490
491 if (retval == -ENODEV)
492 netif_device_detach(netdev);
493 else if (retval)
494 netdev_err(netdev,
495 "failed resubmitting read bulk urb: %d\n", retval);
496 }
497
498 /*
499 * callback for bulk IN urb
500 */
501 static void ems_usb_write_bulk_callback(struct urb *urb)
502 {
503 struct ems_tx_urb_context *context = urb->context;
504 struct ems_usb *dev;
505 struct net_device *netdev;
506
507 BUG_ON(!context);
508
509 dev = context->dev;
510 netdev = dev->netdev;
511
512 /* free up our allocated buffer */
513 usb_free_coherent(urb->dev, urb->transfer_buffer_length,
514 urb->transfer_buffer, urb->transfer_dma);
515
516 atomic_dec(&dev->active_tx_urbs);
517
518 if (!netif_device_present(netdev))
519 return;
520
521 if (urb->status)
522 netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
523
524 netif_trans_update(netdev);
525
526 /* transmission complete interrupt */
527 netdev->stats.tx_packets++;
528 netdev->stats.tx_bytes += context->dlc;
529
530 can_get_echo_skb(netdev, context->echo_index);
531
532 /* Release context */
533 context->echo_index = MAX_TX_URBS;
534
535 }
536
537 /*
538 * Send the given CPC command synchronously
539 */
540 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
541 {
542 int actual_length;
543
544 /* Copy payload */
545 memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
546 msg->length + CPC_MSG_HEADER_LEN);
547
548 /* Clear header */
549 memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
550
551 return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
552 &dev->tx_msg_buffer[0],
553 msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
554 &actual_length, 1000);
555 }
556
557 /*
558 * Change CAN controllers' mode register
559 */
560 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
561 {
562 dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
563
564 return ems_usb_command_msg(dev, &dev->active_params);
565 }
566
567 /*
568 * Send a CPC_Control command to change behaviour when interface receives a CAN
569 * message, bus error or CAN state changed notifications.
570 */
571 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
572 {
573 struct ems_cpc_msg cmd;
574
575 cmd.type = CPC_CMD_TYPE_CONTROL;
576 cmd.length = CPC_MSG_HEADER_LEN + 1;
577
578 cmd.msgid = 0;
579
580 cmd.msg.generic[0] = val;
581
582 return ems_usb_command_msg(dev, &cmd);
583 }
584
585 /*
586 * Start interface
587 */
588 static int ems_usb_start(struct ems_usb *dev)
589 {
590 struct net_device *netdev = dev->netdev;
591 int err, i;
592
593 dev->intr_in_buffer[0] = 0;
594 dev->free_slots = 50; /* initial size */
595
596 for (i = 0; i < MAX_RX_URBS; i++) {
597 struct urb *urb = NULL;
598 u8 *buf = NULL;
599
600 /* create a URB, and a buffer for it */
601 urb = usb_alloc_urb(0, GFP_KERNEL);
602 if (!urb) {
603 netdev_err(netdev, "No memory left for URBs\n");
604 err = -ENOMEM;
605 break;
606 }
607
608 buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
609 &urb->transfer_dma);
610 if (!buf) {
611 netdev_err(netdev, "No memory left for USB buffer\n");
612 usb_free_urb(urb);
613 err = -ENOMEM;
614 break;
615 }
616
617 usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
618 buf, RX_BUFFER_SIZE,
619 ems_usb_read_bulk_callback, dev);
620 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
621 usb_anchor_urb(urb, &dev->rx_submitted);
622
623 err = usb_submit_urb(urb, GFP_KERNEL);
624 if (err) {
625 usb_unanchor_urb(urb);
626 usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
627 urb->transfer_dma);
628 usb_free_urb(urb);
629 break;
630 }
631
632 /* Drop reference, USB core will take care of freeing it */
633 usb_free_urb(urb);
634 }
635
636 /* Did we submit any URBs */
637 if (i == 0) {
638 netdev_warn(netdev, "couldn't setup read URBs\n");
639 return err;
640 }
641
642 /* Warn if we've couldn't transmit all the URBs */
643 if (i < MAX_RX_URBS)
644 netdev_warn(netdev, "rx performance may be slow\n");
645
646 /* Setup and start interrupt URB */
647 usb_fill_int_urb(dev->intr_urb, dev->udev,
648 usb_rcvintpipe(dev->udev, 1),
649 dev->intr_in_buffer,
650 INTR_IN_BUFFER_SIZE,
651 ems_usb_read_interrupt_callback, dev, 1);
652
653 err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
654 if (err) {
655 netdev_warn(netdev, "intr URB submit failed: %d\n", err);
656
657 return err;
658 }
659
660 /* CPC-USB will transfer received message to host */
661 err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
662 if (err)
663 goto failed;
664
665 /* CPC-USB will transfer CAN state changes to host */
666 err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
667 if (err)
668 goto failed;
669
670 /* CPC-USB will transfer bus errors to host */
671 err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
672 if (err)
673 goto failed;
674
675 err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
676 if (err)
677 goto failed;
678
679 dev->can.state = CAN_STATE_ERROR_ACTIVE;
680
681 return 0;
682
683 failed:
684 netdev_warn(netdev, "couldn't submit control: %d\n", err);
685
686 return err;
687 }
688
689 static void unlink_all_urbs(struct ems_usb *dev)
690 {
691 int i;
692
693 usb_unlink_urb(dev->intr_urb);
694
695 usb_kill_anchored_urbs(&dev->rx_submitted);
696
697 usb_kill_anchored_urbs(&dev->tx_submitted);
698 atomic_set(&dev->active_tx_urbs, 0);
699
700 for (i = 0; i < MAX_TX_URBS; i++)
701 dev->tx_contexts[i].echo_index = MAX_TX_URBS;
702 }
703
704 static int ems_usb_open(struct net_device *netdev)
705 {
706 struct ems_usb *dev = netdev_priv(netdev);
707 int err;
708
709 err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
710 if (err)
711 return err;
712
713 /* common open */
714 err = open_candev(netdev);
715 if (err)
716 return err;
717
718 /* finally start device */
719 err = ems_usb_start(dev);
720 if (err) {
721 if (err == -ENODEV)
722 netif_device_detach(dev->netdev);
723
724 netdev_warn(netdev, "couldn't start device: %d\n", err);
725
726 close_candev(netdev);
727
728 return err;
729 }
730
731
732 netif_start_queue(netdev);
733
734 return 0;
735 }
736
737 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
738 {
739 struct ems_usb *dev = netdev_priv(netdev);
740 struct ems_tx_urb_context *context = NULL;
741 struct net_device_stats *stats = &netdev->stats;
742 struct can_frame *cf = (struct can_frame *)skb->data;
743 struct ems_cpc_msg *msg;
744 struct urb *urb;
745 u8 *buf;
746 int i, err;
747 size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
748 + sizeof(struct cpc_can_msg);
749
750 if (can_dropped_invalid_skb(netdev, skb))
751 return NETDEV_TX_OK;
752
753 /* create a URB, and a buffer for it, and copy the data to the URB */
754 urb = usb_alloc_urb(0, GFP_ATOMIC);
755 if (!urb) {
756 netdev_err(netdev, "No memory left for URBs\n");
757 goto nomem;
758 }
759
760 buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
761 if (!buf) {
762 netdev_err(netdev, "No memory left for USB buffer\n");
763 usb_free_urb(urb);
764 goto nomem;
765 }
766
767 msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
768
769 msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
770 msg->msg.can_msg.length = cf->can_dlc;
771
772 if (cf->can_id & CAN_RTR_FLAG) {
773 msg->type = cf->can_id & CAN_EFF_FLAG ?
774 CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
775
776 msg->length = CPC_CAN_MSG_MIN_SIZE;
777 } else {
778 msg->type = cf->can_id & CAN_EFF_FLAG ?
779 CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
780
781 for (i = 0; i < cf->can_dlc; i++)
782 msg->msg.can_msg.msg[i] = cf->data[i];
783
784 msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
785 }
786
787 for (i = 0; i < MAX_TX_URBS; i++) {
788 if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
789 context = &dev->tx_contexts[i];
790 break;
791 }
792 }
793
794 /*
795 * May never happen! When this happens we'd more URBs in flight as
796 * allowed (MAX_TX_URBS).
797 */
798 if (!context) {
799 usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
800 usb_free_urb(urb);
801
802 netdev_warn(netdev, "couldn't find free context\n");
803
804 return NETDEV_TX_BUSY;
805 }
806
807 context->dev = dev;
808 context->echo_index = i;
809 context->dlc = cf->can_dlc;
810
811 usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
812 size, ems_usb_write_bulk_callback, context);
813 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
814 usb_anchor_urb(urb, &dev->tx_submitted);
815
816 can_put_echo_skb(skb, netdev, context->echo_index);
817
818 atomic_inc(&dev->active_tx_urbs);
819
820 err = usb_submit_urb(urb, GFP_ATOMIC);
821 if (unlikely(err)) {
822 can_free_echo_skb(netdev, context->echo_index);
823
824 usb_unanchor_urb(urb);
825 usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
826 dev_kfree_skb(skb);
827
828 atomic_dec(&dev->active_tx_urbs);
829
830 if (err == -ENODEV) {
831 netif_device_detach(netdev);
832 } else {
833 netdev_warn(netdev, "failed tx_urb %d\n", err);
834
835 stats->tx_dropped++;
836 }
837 } else {
838 netif_trans_update(netdev);
839
840 /* Slow down tx path */
841 if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
842 dev->free_slots < CPC_TX_QUEUE_TRIGGER_LOW) {
843 netif_stop_queue(netdev);
844 }
845 }
846
847 /*
848 * Release our reference to this URB, the USB core will eventually free
849 * it entirely.
850 */
851 usb_free_urb(urb);
852
853 return NETDEV_TX_OK;
854
855 nomem:
856 dev_kfree_skb(skb);
857 stats->tx_dropped++;
858
859 return NETDEV_TX_OK;
860 }
861
862 static int ems_usb_close(struct net_device *netdev)
863 {
864 struct ems_usb *dev = netdev_priv(netdev);
865
866 /* Stop polling */
867 unlink_all_urbs(dev);
868
869 netif_stop_queue(netdev);
870
871 /* Set CAN controller to reset mode */
872 if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
873 netdev_warn(netdev, "couldn't stop device");
874
875 close_candev(netdev);
876
877 return 0;
878 }
879
880 static const struct net_device_ops ems_usb_netdev_ops = {
881 .ndo_open = ems_usb_open,
882 .ndo_stop = ems_usb_close,
883 .ndo_start_xmit = ems_usb_start_xmit,
884 .ndo_change_mtu = can_change_mtu,
885 };
886
887 static const struct can_bittiming_const ems_usb_bittiming_const = {
888 .name = "ems_usb",
889 .tseg1_min = 1,
890 .tseg1_max = 16,
891 .tseg2_min = 1,
892 .tseg2_max = 8,
893 .sjw_max = 4,
894 .brp_min = 1,
895 .brp_max = 64,
896 .brp_inc = 1,
897 };
898
899 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
900 {
901 struct ems_usb *dev = netdev_priv(netdev);
902
903 switch (mode) {
904 case CAN_MODE_START:
905 if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
906 netdev_warn(netdev, "couldn't start device");
907
908 if (netif_queue_stopped(netdev))
909 netif_wake_queue(netdev);
910 break;
911
912 default:
913 return -EOPNOTSUPP;
914 }
915
916 return 0;
917 }
918
919 static int ems_usb_set_bittiming(struct net_device *netdev)
920 {
921 struct ems_usb *dev = netdev_priv(netdev);
922 struct can_bittiming *bt = &dev->can.bittiming;
923 u8 btr0, btr1;
924
925 btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
926 btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
927 (((bt->phase_seg2 - 1) & 0x7) << 4);
928 if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
929 btr1 |= 0x80;
930
931 netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
932
933 dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
934 dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
935
936 return ems_usb_command_msg(dev, &dev->active_params);
937 }
938
939 static void init_params_sja1000(struct ems_cpc_msg *msg)
940 {
941 struct cpc_sja1000_params *sja1000 =
942 &msg->msg.can_params.cc_params.sja1000;
943
944 msg->type = CPC_CMD_TYPE_CAN_PARAMS;
945 msg->length = sizeof(struct cpc_can_params);
946 msg->msgid = 0;
947
948 msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
949
950 /* Acceptance filter open */
951 sja1000->acc_code0 = 0x00;
952 sja1000->acc_code1 = 0x00;
953 sja1000->acc_code2 = 0x00;
954 sja1000->acc_code3 = 0x00;
955
956 /* Acceptance filter open */
957 sja1000->acc_mask0 = 0xFF;
958 sja1000->acc_mask1 = 0xFF;
959 sja1000->acc_mask2 = 0xFF;
960 sja1000->acc_mask3 = 0xFF;
961
962 sja1000->btr0 = 0;
963 sja1000->btr1 = 0;
964
965 sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
966 sja1000->mode = SJA1000_MOD_RM;
967 }
968
969 /*
970 * probe function for new CPC-USB devices
971 */
972 static int ems_usb_probe(struct usb_interface *intf,
973 const struct usb_device_id *id)
974 {
975 struct net_device *netdev;
976 struct ems_usb *dev;
977 int i, err = -ENOMEM;
978
979 netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
980 if (!netdev) {
981 dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
982 return -ENOMEM;
983 }
984
985 dev = netdev_priv(netdev);
986
987 dev->udev = interface_to_usbdev(intf);
988 dev->netdev = netdev;
989
990 dev->can.state = CAN_STATE_STOPPED;
991 dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
992 dev->can.bittiming_const = &ems_usb_bittiming_const;
993 dev->can.do_set_bittiming = ems_usb_set_bittiming;
994 dev->can.do_set_mode = ems_usb_set_mode;
995 dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
996
997 netdev->netdev_ops = &ems_usb_netdev_ops;
998
999 netdev->flags |= IFF_ECHO; /* we support local echo */
1000
1001 init_usb_anchor(&dev->rx_submitted);
1002
1003 init_usb_anchor(&dev->tx_submitted);
1004 atomic_set(&dev->active_tx_urbs, 0);
1005
1006 for (i = 0; i < MAX_TX_URBS; i++)
1007 dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1008
1009 dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1010 if (!dev->intr_urb) {
1011 dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1012 goto cleanup_candev;
1013 }
1014
1015 dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1016 if (!dev->intr_in_buffer)
1017 goto cleanup_intr_urb;
1018
1019 dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1020 sizeof(struct ems_cpc_msg), GFP_KERNEL);
1021 if (!dev->tx_msg_buffer)
1022 goto cleanup_intr_in_buffer;
1023
1024 usb_set_intfdata(intf, dev);
1025
1026 SET_NETDEV_DEV(netdev, &intf->dev);
1027
1028 init_params_sja1000(&dev->active_params);
1029
1030 err = ems_usb_command_msg(dev, &dev->active_params);
1031 if (err) {
1032 netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1033 goto cleanup_tx_msg_buffer;
1034 }
1035
1036 err = register_candev(netdev);
1037 if (err) {
1038 netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1039 goto cleanup_tx_msg_buffer;
1040 }
1041
1042 return 0;
1043
1044 cleanup_tx_msg_buffer:
1045 kfree(dev->tx_msg_buffer);
1046
1047 cleanup_intr_in_buffer:
1048 kfree(dev->intr_in_buffer);
1049
1050 cleanup_intr_urb:
1051 usb_free_urb(dev->intr_urb);
1052
1053 cleanup_candev:
1054 free_candev(netdev);
1055
1056 return err;
1057 }
1058
1059 /*
1060 * called by the usb core when the device is removed from the system
1061 */
1062 static void ems_usb_disconnect(struct usb_interface *intf)
1063 {
1064 struct ems_usb *dev = usb_get_intfdata(intf);
1065
1066 usb_set_intfdata(intf, NULL);
1067
1068 if (dev) {
1069 unregister_netdev(dev->netdev);
1070 free_candev(dev->netdev);
1071
1072 unlink_all_urbs(dev);
1073
1074 usb_free_urb(dev->intr_urb);
1075
1076 kfree(dev->intr_in_buffer);
1077 }
1078 }
1079
1080 /* usb specific object needed to register this driver with the usb subsystem */
1081 static struct usb_driver ems_usb_driver = {
1082 .name = "ems_usb",
1083 .probe = ems_usb_probe,
1084 .disconnect = ems_usb_disconnect,
1085 .id_table = ems_usb_table,
1086 };
1087
1088 module_usb_driver(ems_usb_driver);
This page took 0.074908 seconds and 5 git commands to generate.