Merge branches 'x86/amd', 'x86/vt-d', 'arm/exynos', 'arm/mediatek' and 'arm/renesas...
[deliverable/linux.git] / drivers / net / dsa / b53 / b53_common.c
1 /*
2 * B53 switch driver main logic
3 *
4 * Copyright (C) 2011-2013 Jonas Gorski <jogo@openwrt.org>
5 * Copyright (C) 2016 Florian Fainelli <f.fainelli@gmail.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/delay.h>
23 #include <linux/export.h>
24 #include <linux/gpio.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/platform_data/b53.h>
28 #include <linux/phy.h>
29 #include <linux/etherdevice.h>
30 #include <linux/if_bridge.h>
31 #include <net/dsa.h>
32 #include <net/switchdev.h>
33
34 #include "b53_regs.h"
35 #include "b53_priv.h"
36
37 struct b53_mib_desc {
38 u8 size;
39 u8 offset;
40 const char *name;
41 };
42
43 /* BCM5365 MIB counters */
44 static const struct b53_mib_desc b53_mibs_65[] = {
45 { 8, 0x00, "TxOctets" },
46 { 4, 0x08, "TxDropPkts" },
47 { 4, 0x10, "TxBroadcastPkts" },
48 { 4, 0x14, "TxMulticastPkts" },
49 { 4, 0x18, "TxUnicastPkts" },
50 { 4, 0x1c, "TxCollisions" },
51 { 4, 0x20, "TxSingleCollision" },
52 { 4, 0x24, "TxMultipleCollision" },
53 { 4, 0x28, "TxDeferredTransmit" },
54 { 4, 0x2c, "TxLateCollision" },
55 { 4, 0x30, "TxExcessiveCollision" },
56 { 4, 0x38, "TxPausePkts" },
57 { 8, 0x44, "RxOctets" },
58 { 4, 0x4c, "RxUndersizePkts" },
59 { 4, 0x50, "RxPausePkts" },
60 { 4, 0x54, "Pkts64Octets" },
61 { 4, 0x58, "Pkts65to127Octets" },
62 { 4, 0x5c, "Pkts128to255Octets" },
63 { 4, 0x60, "Pkts256to511Octets" },
64 { 4, 0x64, "Pkts512to1023Octets" },
65 { 4, 0x68, "Pkts1024to1522Octets" },
66 { 4, 0x6c, "RxOversizePkts" },
67 { 4, 0x70, "RxJabbers" },
68 { 4, 0x74, "RxAlignmentErrors" },
69 { 4, 0x78, "RxFCSErrors" },
70 { 8, 0x7c, "RxGoodOctets" },
71 { 4, 0x84, "RxDropPkts" },
72 { 4, 0x88, "RxUnicastPkts" },
73 { 4, 0x8c, "RxMulticastPkts" },
74 { 4, 0x90, "RxBroadcastPkts" },
75 { 4, 0x94, "RxSAChanges" },
76 { 4, 0x98, "RxFragments" },
77 };
78
79 #define B53_MIBS_65_SIZE ARRAY_SIZE(b53_mibs_65)
80
81 /* BCM63xx MIB counters */
82 static const struct b53_mib_desc b53_mibs_63xx[] = {
83 { 8, 0x00, "TxOctets" },
84 { 4, 0x08, "TxDropPkts" },
85 { 4, 0x0c, "TxQoSPkts" },
86 { 4, 0x10, "TxBroadcastPkts" },
87 { 4, 0x14, "TxMulticastPkts" },
88 { 4, 0x18, "TxUnicastPkts" },
89 { 4, 0x1c, "TxCollisions" },
90 { 4, 0x20, "TxSingleCollision" },
91 { 4, 0x24, "TxMultipleCollision" },
92 { 4, 0x28, "TxDeferredTransmit" },
93 { 4, 0x2c, "TxLateCollision" },
94 { 4, 0x30, "TxExcessiveCollision" },
95 { 4, 0x38, "TxPausePkts" },
96 { 8, 0x3c, "TxQoSOctets" },
97 { 8, 0x44, "RxOctets" },
98 { 4, 0x4c, "RxUndersizePkts" },
99 { 4, 0x50, "RxPausePkts" },
100 { 4, 0x54, "Pkts64Octets" },
101 { 4, 0x58, "Pkts65to127Octets" },
102 { 4, 0x5c, "Pkts128to255Octets" },
103 { 4, 0x60, "Pkts256to511Octets" },
104 { 4, 0x64, "Pkts512to1023Octets" },
105 { 4, 0x68, "Pkts1024to1522Octets" },
106 { 4, 0x6c, "RxOversizePkts" },
107 { 4, 0x70, "RxJabbers" },
108 { 4, 0x74, "RxAlignmentErrors" },
109 { 4, 0x78, "RxFCSErrors" },
110 { 8, 0x7c, "RxGoodOctets" },
111 { 4, 0x84, "RxDropPkts" },
112 { 4, 0x88, "RxUnicastPkts" },
113 { 4, 0x8c, "RxMulticastPkts" },
114 { 4, 0x90, "RxBroadcastPkts" },
115 { 4, 0x94, "RxSAChanges" },
116 { 4, 0x98, "RxFragments" },
117 { 4, 0xa0, "RxSymbolErrors" },
118 { 4, 0xa4, "RxQoSPkts" },
119 { 8, 0xa8, "RxQoSOctets" },
120 { 4, 0xb0, "Pkts1523to2047Octets" },
121 { 4, 0xb4, "Pkts2048to4095Octets" },
122 { 4, 0xb8, "Pkts4096to8191Octets" },
123 { 4, 0xbc, "Pkts8192to9728Octets" },
124 { 4, 0xc0, "RxDiscarded" },
125 };
126
127 #define B53_MIBS_63XX_SIZE ARRAY_SIZE(b53_mibs_63xx)
128
129 /* MIB counters */
130 static const struct b53_mib_desc b53_mibs[] = {
131 { 8, 0x00, "TxOctets" },
132 { 4, 0x08, "TxDropPkts" },
133 { 4, 0x10, "TxBroadcastPkts" },
134 { 4, 0x14, "TxMulticastPkts" },
135 { 4, 0x18, "TxUnicastPkts" },
136 { 4, 0x1c, "TxCollisions" },
137 { 4, 0x20, "TxSingleCollision" },
138 { 4, 0x24, "TxMultipleCollision" },
139 { 4, 0x28, "TxDeferredTransmit" },
140 { 4, 0x2c, "TxLateCollision" },
141 { 4, 0x30, "TxExcessiveCollision" },
142 { 4, 0x38, "TxPausePkts" },
143 { 8, 0x50, "RxOctets" },
144 { 4, 0x58, "RxUndersizePkts" },
145 { 4, 0x5c, "RxPausePkts" },
146 { 4, 0x60, "Pkts64Octets" },
147 { 4, 0x64, "Pkts65to127Octets" },
148 { 4, 0x68, "Pkts128to255Octets" },
149 { 4, 0x6c, "Pkts256to511Octets" },
150 { 4, 0x70, "Pkts512to1023Octets" },
151 { 4, 0x74, "Pkts1024to1522Octets" },
152 { 4, 0x78, "RxOversizePkts" },
153 { 4, 0x7c, "RxJabbers" },
154 { 4, 0x80, "RxAlignmentErrors" },
155 { 4, 0x84, "RxFCSErrors" },
156 { 8, 0x88, "RxGoodOctets" },
157 { 4, 0x90, "RxDropPkts" },
158 { 4, 0x94, "RxUnicastPkts" },
159 { 4, 0x98, "RxMulticastPkts" },
160 { 4, 0x9c, "RxBroadcastPkts" },
161 { 4, 0xa0, "RxSAChanges" },
162 { 4, 0xa4, "RxFragments" },
163 { 4, 0xa8, "RxJumboPkts" },
164 { 4, 0xac, "RxSymbolErrors" },
165 { 4, 0xc0, "RxDiscarded" },
166 };
167
168 #define B53_MIBS_SIZE ARRAY_SIZE(b53_mibs)
169
170 static int b53_do_vlan_op(struct b53_device *dev, u8 op)
171 {
172 unsigned int i;
173
174 b53_write8(dev, B53_ARLIO_PAGE, dev->vta_regs[0], VTA_START_CMD | op);
175
176 for (i = 0; i < 10; i++) {
177 u8 vta;
178
179 b53_read8(dev, B53_ARLIO_PAGE, dev->vta_regs[0], &vta);
180 if (!(vta & VTA_START_CMD))
181 return 0;
182
183 usleep_range(100, 200);
184 }
185
186 return -EIO;
187 }
188
189 static void b53_set_vlan_entry(struct b53_device *dev, u16 vid,
190 struct b53_vlan *vlan)
191 {
192 if (is5325(dev)) {
193 u32 entry = 0;
194
195 if (vlan->members) {
196 entry = ((vlan->untag & VA_UNTAG_MASK_25) <<
197 VA_UNTAG_S_25) | vlan->members;
198 if (dev->core_rev >= 3)
199 entry |= VA_VALID_25_R4 | vid << VA_VID_HIGH_S;
200 else
201 entry |= VA_VALID_25;
202 }
203
204 b53_write32(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_25, entry);
205 b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, vid |
206 VTA_RW_STATE_WR | VTA_RW_OP_EN);
207 } else if (is5365(dev)) {
208 u16 entry = 0;
209
210 if (vlan->members)
211 entry = ((vlan->untag & VA_UNTAG_MASK_65) <<
212 VA_UNTAG_S_65) | vlan->members | VA_VALID_65;
213
214 b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_65, entry);
215 b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_65, vid |
216 VTA_RW_STATE_WR | VTA_RW_OP_EN);
217 } else {
218 b53_write16(dev, B53_ARLIO_PAGE, dev->vta_regs[1], vid);
219 b53_write32(dev, B53_ARLIO_PAGE, dev->vta_regs[2],
220 (vlan->untag << VTE_UNTAG_S) | vlan->members);
221
222 b53_do_vlan_op(dev, VTA_CMD_WRITE);
223 }
224
225 dev_dbg(dev->ds->dev, "VID: %d, members: 0x%04x, untag: 0x%04x\n",
226 vid, vlan->members, vlan->untag);
227 }
228
229 static void b53_get_vlan_entry(struct b53_device *dev, u16 vid,
230 struct b53_vlan *vlan)
231 {
232 if (is5325(dev)) {
233 u32 entry = 0;
234
235 b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, vid |
236 VTA_RW_STATE_RD | VTA_RW_OP_EN);
237 b53_read32(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_25, &entry);
238
239 if (dev->core_rev >= 3)
240 vlan->valid = !!(entry & VA_VALID_25_R4);
241 else
242 vlan->valid = !!(entry & VA_VALID_25);
243 vlan->members = entry & VA_MEMBER_MASK;
244 vlan->untag = (entry >> VA_UNTAG_S_25) & VA_UNTAG_MASK_25;
245
246 } else if (is5365(dev)) {
247 u16 entry = 0;
248
249 b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_65, vid |
250 VTA_RW_STATE_WR | VTA_RW_OP_EN);
251 b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_65, &entry);
252
253 vlan->valid = !!(entry & VA_VALID_65);
254 vlan->members = entry & VA_MEMBER_MASK;
255 vlan->untag = (entry >> VA_UNTAG_S_65) & VA_UNTAG_MASK_65;
256 } else {
257 u32 entry = 0;
258
259 b53_write16(dev, B53_ARLIO_PAGE, dev->vta_regs[1], vid);
260 b53_do_vlan_op(dev, VTA_CMD_READ);
261 b53_read32(dev, B53_ARLIO_PAGE, dev->vta_regs[2], &entry);
262 vlan->members = entry & VTE_MEMBERS;
263 vlan->untag = (entry >> VTE_UNTAG_S) & VTE_MEMBERS;
264 vlan->valid = true;
265 }
266 }
267
268 static void b53_set_forwarding(struct b53_device *dev, int enable)
269 {
270 u8 mgmt;
271
272 b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
273
274 if (enable)
275 mgmt |= SM_SW_FWD_EN;
276 else
277 mgmt &= ~SM_SW_FWD_EN;
278
279 b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt);
280 }
281
282 static void b53_enable_vlan(struct b53_device *dev, bool enable)
283 {
284 u8 mgmt, vc0, vc1, vc4 = 0, vc5;
285
286 b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
287 b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL0, &vc0);
288 b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL1, &vc1);
289
290 if (is5325(dev) || is5365(dev)) {
291 b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_25, &vc4);
292 b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_25, &vc5);
293 } else if (is63xx(dev)) {
294 b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_63XX, &vc4);
295 b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_63XX, &vc5);
296 } else {
297 b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4, &vc4);
298 b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5, &vc5);
299 }
300
301 mgmt &= ~SM_SW_FWD_MODE;
302
303 if (enable) {
304 vc0 |= VC0_VLAN_EN | VC0_VID_CHK_EN | VC0_VID_HASH_VID;
305 vc1 |= VC1_RX_MCST_UNTAG_EN | VC1_RX_MCST_FWD_EN;
306 vc4 &= ~VC4_ING_VID_CHECK_MASK;
307 vc4 |= VC4_ING_VID_VIO_DROP << VC4_ING_VID_CHECK_S;
308 vc5 |= VC5_DROP_VTABLE_MISS;
309
310 if (is5325(dev))
311 vc0 &= ~VC0_RESERVED_1;
312
313 if (is5325(dev) || is5365(dev))
314 vc1 |= VC1_RX_MCST_TAG_EN;
315
316 } else {
317 vc0 &= ~(VC0_VLAN_EN | VC0_VID_CHK_EN | VC0_VID_HASH_VID);
318 vc1 &= ~(VC1_RX_MCST_UNTAG_EN | VC1_RX_MCST_FWD_EN);
319 vc4 &= ~VC4_ING_VID_CHECK_MASK;
320 vc5 &= ~VC5_DROP_VTABLE_MISS;
321
322 if (is5325(dev) || is5365(dev))
323 vc4 |= VC4_ING_VID_VIO_FWD << VC4_ING_VID_CHECK_S;
324 else
325 vc4 |= VC4_ING_VID_VIO_TO_IMP << VC4_ING_VID_CHECK_S;
326
327 if (is5325(dev) || is5365(dev))
328 vc1 &= ~VC1_RX_MCST_TAG_EN;
329 }
330
331 if (!is5325(dev) && !is5365(dev))
332 vc5 &= ~VC5_VID_FFF_EN;
333
334 b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL0, vc0);
335 b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL1, vc1);
336
337 if (is5325(dev) || is5365(dev)) {
338 /* enable the high 8 bit vid check on 5325 */
339 if (is5325(dev) && enable)
340 b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3,
341 VC3_HIGH_8BIT_EN);
342 else
343 b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3, 0);
344
345 b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_25, vc4);
346 b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_25, vc5);
347 } else if (is63xx(dev)) {
348 b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3_63XX, 0);
349 b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_63XX, vc4);
350 b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_63XX, vc5);
351 } else {
352 b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3, 0);
353 b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4, vc4);
354 b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5, vc5);
355 }
356
357 b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt);
358 }
359
360 static int b53_set_jumbo(struct b53_device *dev, bool enable, bool allow_10_100)
361 {
362 u32 port_mask = 0;
363 u16 max_size = JMS_MIN_SIZE;
364
365 if (is5325(dev) || is5365(dev))
366 return -EINVAL;
367
368 if (enable) {
369 port_mask = dev->enabled_ports;
370 max_size = JMS_MAX_SIZE;
371 if (allow_10_100)
372 port_mask |= JPM_10_100_JUMBO_EN;
373 }
374
375 b53_write32(dev, B53_JUMBO_PAGE, dev->jumbo_pm_reg, port_mask);
376 return b53_write16(dev, B53_JUMBO_PAGE, dev->jumbo_size_reg, max_size);
377 }
378
379 static int b53_flush_arl(struct b53_device *dev, u8 mask)
380 {
381 unsigned int i;
382
383 b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL,
384 FAST_AGE_DONE | FAST_AGE_DYNAMIC | mask);
385
386 for (i = 0; i < 10; i++) {
387 u8 fast_age_ctrl;
388
389 b53_read8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL,
390 &fast_age_ctrl);
391
392 if (!(fast_age_ctrl & FAST_AGE_DONE))
393 goto out;
394
395 msleep(1);
396 }
397
398 return -ETIMEDOUT;
399 out:
400 /* Only age dynamic entries (default behavior) */
401 b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL, FAST_AGE_DYNAMIC);
402 return 0;
403 }
404
405 static int b53_fast_age_port(struct b53_device *dev, int port)
406 {
407 b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_PORT_CTRL, port);
408
409 return b53_flush_arl(dev, FAST_AGE_PORT);
410 }
411
412 static int b53_fast_age_vlan(struct b53_device *dev, u16 vid)
413 {
414 b53_write16(dev, B53_CTRL_PAGE, B53_FAST_AGE_VID_CTRL, vid);
415
416 return b53_flush_arl(dev, FAST_AGE_VLAN);
417 }
418
419 static void b53_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
420 {
421 struct b53_device *dev = ds_to_priv(ds);
422 unsigned int i;
423 u16 pvlan;
424
425 /* Enable the IMP port to be in the same VLAN as the other ports
426 * on a per-port basis such that we only have Port i and IMP in
427 * the same VLAN.
428 */
429 b53_for_each_port(dev, i) {
430 b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), &pvlan);
431 pvlan |= BIT(cpu_port);
432 b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), pvlan);
433 }
434 }
435
436 static int b53_enable_port(struct dsa_switch *ds, int port,
437 struct phy_device *phy)
438 {
439 struct b53_device *dev = ds_to_priv(ds);
440 unsigned int cpu_port = dev->cpu_port;
441 u16 pvlan;
442
443 /* Clear the Rx and Tx disable bits and set to no spanning tree */
444 b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), 0);
445
446 /* Set this port, and only this one to be in the default VLAN,
447 * if member of a bridge, restore its membership prior to
448 * bringing down this port.
449 */
450 b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan);
451 pvlan &= ~0x1ff;
452 pvlan |= BIT(port);
453 pvlan |= dev->ports[port].vlan_ctl_mask;
454 b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan);
455
456 b53_imp_vlan_setup(ds, cpu_port);
457
458 return 0;
459 }
460
461 static void b53_disable_port(struct dsa_switch *ds, int port,
462 struct phy_device *phy)
463 {
464 struct b53_device *dev = ds_to_priv(ds);
465 u8 reg;
466
467 /* Disable Tx/Rx for the port */
468 b53_read8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), &reg);
469 reg |= PORT_CTRL_RX_DISABLE | PORT_CTRL_TX_DISABLE;
470 b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), reg);
471 }
472
473 static void b53_enable_cpu_port(struct b53_device *dev)
474 {
475 unsigned int cpu_port = dev->cpu_port;
476 u8 port_ctrl;
477
478 /* BCM5325 CPU port is at 8 */
479 if ((is5325(dev) || is5365(dev)) && cpu_port == B53_CPU_PORT_25)
480 cpu_port = B53_CPU_PORT;
481
482 port_ctrl = PORT_CTRL_RX_BCST_EN |
483 PORT_CTRL_RX_MCST_EN |
484 PORT_CTRL_RX_UCST_EN;
485 b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(cpu_port), port_ctrl);
486 }
487
488 static void b53_enable_mib(struct b53_device *dev)
489 {
490 u8 gc;
491
492 b53_read8(dev, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, &gc);
493 gc &= ~(GC_RESET_MIB | GC_MIB_AC_EN);
494 b53_write8(dev, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, gc);
495 }
496
497 static int b53_configure_vlan(struct b53_device *dev)
498 {
499 struct b53_vlan vl = { 0 };
500 int i;
501
502 /* clear all vlan entries */
503 if (is5325(dev) || is5365(dev)) {
504 for (i = 1; i < dev->num_vlans; i++)
505 b53_set_vlan_entry(dev, i, &vl);
506 } else {
507 b53_do_vlan_op(dev, VTA_CMD_CLEAR);
508 }
509
510 b53_enable_vlan(dev, false);
511
512 b53_for_each_port(dev, i)
513 b53_write16(dev, B53_VLAN_PAGE,
514 B53_VLAN_PORT_DEF_TAG(i), 1);
515
516 if (!is5325(dev) && !is5365(dev))
517 b53_set_jumbo(dev, dev->enable_jumbo, false);
518
519 return 0;
520 }
521
522 static void b53_switch_reset_gpio(struct b53_device *dev)
523 {
524 int gpio = dev->reset_gpio;
525
526 if (gpio < 0)
527 return;
528
529 /* Reset sequence: RESET low(50ms)->high(20ms)
530 */
531 gpio_set_value(gpio, 0);
532 mdelay(50);
533
534 gpio_set_value(gpio, 1);
535 mdelay(20);
536
537 dev->current_page = 0xff;
538 }
539
540 static int b53_switch_reset(struct b53_device *dev)
541 {
542 u8 mgmt;
543
544 b53_switch_reset_gpio(dev);
545
546 if (is539x(dev)) {
547 b53_write8(dev, B53_CTRL_PAGE, B53_SOFTRESET, 0x83);
548 b53_write8(dev, B53_CTRL_PAGE, B53_SOFTRESET, 0x00);
549 }
550
551 b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
552
553 if (!(mgmt & SM_SW_FWD_EN)) {
554 mgmt &= ~SM_SW_FWD_MODE;
555 mgmt |= SM_SW_FWD_EN;
556
557 b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt);
558 b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
559
560 if (!(mgmt & SM_SW_FWD_EN)) {
561 dev_err(dev->dev, "Failed to enable switch!\n");
562 return -EINVAL;
563 }
564 }
565
566 b53_enable_mib(dev);
567
568 return b53_flush_arl(dev, FAST_AGE_STATIC);
569 }
570
571 static int b53_phy_read16(struct dsa_switch *ds, int addr, int reg)
572 {
573 struct b53_device *priv = ds_to_priv(ds);
574 u16 value = 0;
575 int ret;
576
577 if (priv->ops->phy_read16)
578 ret = priv->ops->phy_read16(priv, addr, reg, &value);
579 else
580 ret = b53_read16(priv, B53_PORT_MII_PAGE(addr),
581 reg * 2, &value);
582
583 return ret ? ret : value;
584 }
585
586 static int b53_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
587 {
588 struct b53_device *priv = ds_to_priv(ds);
589
590 if (priv->ops->phy_write16)
591 return priv->ops->phy_write16(priv, addr, reg, val);
592
593 return b53_write16(priv, B53_PORT_MII_PAGE(addr), reg * 2, val);
594 }
595
596 static int b53_reset_switch(struct b53_device *priv)
597 {
598 /* reset vlans */
599 priv->enable_jumbo = false;
600
601 memset(priv->vlans, 0, sizeof(*priv->vlans) * priv->num_vlans);
602 memset(priv->ports, 0, sizeof(*priv->ports) * priv->num_ports);
603
604 return b53_switch_reset(priv);
605 }
606
607 static int b53_apply_config(struct b53_device *priv)
608 {
609 /* disable switching */
610 b53_set_forwarding(priv, 0);
611
612 b53_configure_vlan(priv);
613
614 /* enable switching */
615 b53_set_forwarding(priv, 1);
616
617 return 0;
618 }
619
620 static void b53_reset_mib(struct b53_device *priv)
621 {
622 u8 gc;
623
624 b53_read8(priv, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, &gc);
625
626 b53_write8(priv, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, gc | GC_RESET_MIB);
627 msleep(1);
628 b53_write8(priv, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, gc & ~GC_RESET_MIB);
629 msleep(1);
630 }
631
632 static const struct b53_mib_desc *b53_get_mib(struct b53_device *dev)
633 {
634 if (is5365(dev))
635 return b53_mibs_65;
636 else if (is63xx(dev))
637 return b53_mibs_63xx;
638 else
639 return b53_mibs;
640 }
641
642 static unsigned int b53_get_mib_size(struct b53_device *dev)
643 {
644 if (is5365(dev))
645 return B53_MIBS_65_SIZE;
646 else if (is63xx(dev))
647 return B53_MIBS_63XX_SIZE;
648 else
649 return B53_MIBS_SIZE;
650 }
651
652 static void b53_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
653 {
654 struct b53_device *dev = ds_to_priv(ds);
655 const struct b53_mib_desc *mibs = b53_get_mib(dev);
656 unsigned int mib_size = b53_get_mib_size(dev);
657 unsigned int i;
658
659 for (i = 0; i < mib_size; i++)
660 memcpy(data + i * ETH_GSTRING_LEN,
661 mibs[i].name, ETH_GSTRING_LEN);
662 }
663
664 static void b53_get_ethtool_stats(struct dsa_switch *ds, int port,
665 uint64_t *data)
666 {
667 struct b53_device *dev = ds_to_priv(ds);
668 const struct b53_mib_desc *mibs = b53_get_mib(dev);
669 unsigned int mib_size = b53_get_mib_size(dev);
670 const struct b53_mib_desc *s;
671 unsigned int i;
672 u64 val = 0;
673
674 if (is5365(dev) && port == 5)
675 port = 8;
676
677 mutex_lock(&dev->stats_mutex);
678
679 for (i = 0; i < mib_size; i++) {
680 s = &mibs[i];
681
682 if (s->size == 8) {
683 b53_read64(dev, B53_MIB_PAGE(port), s->offset, &val);
684 } else {
685 u32 val32;
686
687 b53_read32(dev, B53_MIB_PAGE(port), s->offset,
688 &val32);
689 val = val32;
690 }
691 data[i] = (u64)val;
692 }
693
694 mutex_unlock(&dev->stats_mutex);
695 }
696
697 static int b53_get_sset_count(struct dsa_switch *ds)
698 {
699 struct b53_device *dev = ds_to_priv(ds);
700
701 return b53_get_mib_size(dev);
702 }
703
704 static int b53_set_addr(struct dsa_switch *ds, u8 *addr)
705 {
706 return 0;
707 }
708
709 static int b53_setup(struct dsa_switch *ds)
710 {
711 struct b53_device *dev = ds_to_priv(ds);
712 unsigned int port;
713 int ret;
714
715 ret = b53_reset_switch(dev);
716 if (ret) {
717 dev_err(ds->dev, "failed to reset switch\n");
718 return ret;
719 }
720
721 b53_reset_mib(dev);
722
723 ret = b53_apply_config(dev);
724 if (ret)
725 dev_err(ds->dev, "failed to apply configuration\n");
726
727 for (port = 0; port < dev->num_ports; port++) {
728 if (BIT(port) & ds->enabled_port_mask)
729 b53_enable_port(ds, port, NULL);
730 else if (dsa_is_cpu_port(ds, port))
731 b53_enable_cpu_port(dev);
732 else
733 b53_disable_port(ds, port, NULL);
734 }
735
736 return ret;
737 }
738
739 static void b53_adjust_link(struct dsa_switch *ds, int port,
740 struct phy_device *phydev)
741 {
742 struct b53_device *dev = ds_to_priv(ds);
743 u8 rgmii_ctrl = 0, reg = 0, off;
744
745 if (!phy_is_pseudo_fixed_link(phydev))
746 return;
747
748 /* Override the port settings */
749 if (port == dev->cpu_port) {
750 off = B53_PORT_OVERRIDE_CTRL;
751 reg = PORT_OVERRIDE_EN;
752 } else {
753 off = B53_GMII_PORT_OVERRIDE_CTRL(port);
754 reg = GMII_PO_EN;
755 }
756
757 /* Set the link UP */
758 if (phydev->link)
759 reg |= PORT_OVERRIDE_LINK;
760
761 if (phydev->duplex == DUPLEX_FULL)
762 reg |= PORT_OVERRIDE_FULL_DUPLEX;
763
764 switch (phydev->speed) {
765 case 2000:
766 reg |= PORT_OVERRIDE_SPEED_2000M;
767 /* fallthrough */
768 case SPEED_1000:
769 reg |= PORT_OVERRIDE_SPEED_1000M;
770 break;
771 case SPEED_100:
772 reg |= PORT_OVERRIDE_SPEED_100M;
773 break;
774 case SPEED_10:
775 reg |= PORT_OVERRIDE_SPEED_10M;
776 break;
777 default:
778 dev_err(ds->dev, "unknown speed: %d\n", phydev->speed);
779 return;
780 }
781
782 /* Enable flow control on BCM5301x's CPU port */
783 if (is5301x(dev) && port == dev->cpu_port)
784 reg |= PORT_OVERRIDE_RX_FLOW | PORT_OVERRIDE_TX_FLOW;
785
786 if (phydev->pause) {
787 if (phydev->asym_pause)
788 reg |= PORT_OVERRIDE_TX_FLOW;
789 reg |= PORT_OVERRIDE_RX_FLOW;
790 }
791
792 b53_write8(dev, B53_CTRL_PAGE, off, reg);
793
794 if (is531x5(dev) && phy_interface_is_rgmii(phydev)) {
795 if (port == 8)
796 off = B53_RGMII_CTRL_IMP;
797 else
798 off = B53_RGMII_CTRL_P(port);
799
800 /* Configure the port RGMII clock delay by DLL disabled and
801 * tx_clk aligned timing (restoring to reset defaults)
802 */
803 b53_read8(dev, B53_CTRL_PAGE, off, &rgmii_ctrl);
804 rgmii_ctrl &= ~(RGMII_CTRL_DLL_RXC | RGMII_CTRL_DLL_TXC |
805 RGMII_CTRL_TIMING_SEL);
806
807 /* PHY_INTERFACE_MODE_RGMII_TXID means TX internal delay, make
808 * sure that we enable the port TX clock internal delay to
809 * account for this internal delay that is inserted, otherwise
810 * the switch won't be able to receive correctly.
811 *
812 * PHY_INTERFACE_MODE_RGMII means that we are not introducing
813 * any delay neither on transmission nor reception, so the
814 * BCM53125 must also be configured accordingly to account for
815 * the lack of delay and introduce
816 *
817 * The BCM53125 switch has its RX clock and TX clock control
818 * swapped, hence the reason why we modify the TX clock path in
819 * the "RGMII" case
820 */
821 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
822 rgmii_ctrl |= RGMII_CTRL_DLL_TXC;
823 if (phydev->interface == PHY_INTERFACE_MODE_RGMII)
824 rgmii_ctrl |= RGMII_CTRL_DLL_TXC | RGMII_CTRL_DLL_RXC;
825 rgmii_ctrl |= RGMII_CTRL_TIMING_SEL;
826 b53_write8(dev, B53_CTRL_PAGE, off, rgmii_ctrl);
827
828 dev_info(ds->dev, "Configured port %d for %s\n", port,
829 phy_modes(phydev->interface));
830 }
831
832 /* configure MII port if necessary */
833 if (is5325(dev)) {
834 b53_read8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL,
835 &reg);
836
837 /* reverse mii needs to be enabled */
838 if (!(reg & PORT_OVERRIDE_RV_MII_25)) {
839 b53_write8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL,
840 reg | PORT_OVERRIDE_RV_MII_25);
841 b53_read8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL,
842 &reg);
843
844 if (!(reg & PORT_OVERRIDE_RV_MII_25)) {
845 dev_err(ds->dev,
846 "Failed to enable reverse MII mode\n");
847 return;
848 }
849 }
850 } else if (is5301x(dev)) {
851 if (port != dev->cpu_port) {
852 u8 po_reg = B53_GMII_PORT_OVERRIDE_CTRL(dev->cpu_port);
853 u8 gmii_po;
854
855 b53_read8(dev, B53_CTRL_PAGE, po_reg, &gmii_po);
856 gmii_po |= GMII_PO_LINK |
857 GMII_PO_RX_FLOW |
858 GMII_PO_TX_FLOW |
859 GMII_PO_EN |
860 GMII_PO_SPEED_2000M;
861 b53_write8(dev, B53_CTRL_PAGE, po_reg, gmii_po);
862 }
863 }
864 }
865
866 static int b53_vlan_filtering(struct dsa_switch *ds, int port,
867 bool vlan_filtering)
868 {
869 return 0;
870 }
871
872 static int b53_vlan_prepare(struct dsa_switch *ds, int port,
873 const struct switchdev_obj_port_vlan *vlan,
874 struct switchdev_trans *trans)
875 {
876 struct b53_device *dev = ds_to_priv(ds);
877
878 if ((is5325(dev) || is5365(dev)) && vlan->vid_begin == 0)
879 return -EOPNOTSUPP;
880
881 if (vlan->vid_end > dev->num_vlans)
882 return -ERANGE;
883
884 b53_enable_vlan(dev, true);
885
886 return 0;
887 }
888
889 static void b53_vlan_add(struct dsa_switch *ds, int port,
890 const struct switchdev_obj_port_vlan *vlan,
891 struct switchdev_trans *trans)
892 {
893 struct b53_device *dev = ds_to_priv(ds);
894 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
895 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
896 unsigned int cpu_port = dev->cpu_port;
897 struct b53_vlan *vl;
898 u16 vid;
899
900 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
901 vl = &dev->vlans[vid];
902
903 b53_get_vlan_entry(dev, vid, vl);
904
905 vl->members |= BIT(port) | BIT(cpu_port);
906 if (untagged)
907 vl->untag |= BIT(port) | BIT(cpu_port);
908 else
909 vl->untag &= ~(BIT(port) | BIT(cpu_port));
910
911 b53_set_vlan_entry(dev, vid, vl);
912 b53_fast_age_vlan(dev, vid);
913 }
914
915 if (pvid) {
916 b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port),
917 vlan->vid_end);
918 b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(cpu_port),
919 vlan->vid_end);
920 b53_fast_age_vlan(dev, vid);
921 }
922 }
923
924 static int b53_vlan_del(struct dsa_switch *ds, int port,
925 const struct switchdev_obj_port_vlan *vlan)
926 {
927 struct b53_device *dev = ds_to_priv(ds);
928 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
929 unsigned int cpu_port = dev->cpu_port;
930 struct b53_vlan *vl;
931 u16 vid;
932 u16 pvid;
933
934 b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port), &pvid);
935
936 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
937 vl = &dev->vlans[vid];
938
939 b53_get_vlan_entry(dev, vid, vl);
940
941 vl->members &= ~BIT(port);
942 if ((vl->members & BIT(cpu_port)) == BIT(cpu_port))
943 vl->members = 0;
944
945 if (pvid == vid) {
946 if (is5325(dev) || is5365(dev))
947 pvid = 1;
948 else
949 pvid = 0;
950 }
951
952 if (untagged) {
953 vl->untag &= ~(BIT(port));
954 if ((vl->untag & BIT(cpu_port)) == BIT(cpu_port))
955 vl->untag = 0;
956 }
957
958 b53_set_vlan_entry(dev, vid, vl);
959 b53_fast_age_vlan(dev, vid);
960 }
961
962 b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port), pvid);
963 b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(cpu_port), pvid);
964 b53_fast_age_vlan(dev, pvid);
965
966 return 0;
967 }
968
969 static int b53_vlan_dump(struct dsa_switch *ds, int port,
970 struct switchdev_obj_port_vlan *vlan,
971 int (*cb)(struct switchdev_obj *obj))
972 {
973 struct b53_device *dev = ds_to_priv(ds);
974 u16 vid, vid_start = 0, pvid;
975 struct b53_vlan *vl;
976 int err = 0;
977
978 if (is5325(dev) || is5365(dev))
979 vid_start = 1;
980
981 b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port), &pvid);
982
983 /* Use our software cache for dumps, since we do not have any HW
984 * operation returning only the used/valid VLANs
985 */
986 for (vid = vid_start; vid < dev->num_vlans; vid++) {
987 vl = &dev->vlans[vid];
988
989 if (!vl->valid)
990 continue;
991
992 if (!(vl->members & BIT(port)))
993 continue;
994
995 vlan->vid_begin = vlan->vid_end = vid;
996 vlan->flags = 0;
997
998 if (vl->untag & BIT(port))
999 vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
1000 if (pvid == vid)
1001 vlan->flags |= BRIDGE_VLAN_INFO_PVID;
1002
1003 err = cb(&vlan->obj);
1004 if (err)
1005 break;
1006 }
1007
1008 return err;
1009 }
1010
1011 /* Address Resolution Logic routines */
1012 static int b53_arl_op_wait(struct b53_device *dev)
1013 {
1014 unsigned int timeout = 10;
1015 u8 reg;
1016
1017 do {
1018 b53_read8(dev, B53_ARLIO_PAGE, B53_ARLTBL_RW_CTRL, &reg);
1019 if (!(reg & ARLTBL_START_DONE))
1020 return 0;
1021
1022 usleep_range(1000, 2000);
1023 } while (timeout--);
1024
1025 dev_warn(dev->dev, "timeout waiting for ARL to finish: 0x%02x\n", reg);
1026
1027 return -ETIMEDOUT;
1028 }
1029
1030 static int b53_arl_rw_op(struct b53_device *dev, unsigned int op)
1031 {
1032 u8 reg;
1033
1034 if (op > ARLTBL_RW)
1035 return -EINVAL;
1036
1037 b53_read8(dev, B53_ARLIO_PAGE, B53_ARLTBL_RW_CTRL, &reg);
1038 reg |= ARLTBL_START_DONE;
1039 if (op)
1040 reg |= ARLTBL_RW;
1041 else
1042 reg &= ~ARLTBL_RW;
1043 b53_write8(dev, B53_ARLIO_PAGE, B53_ARLTBL_RW_CTRL, reg);
1044
1045 return b53_arl_op_wait(dev);
1046 }
1047
1048 static int b53_arl_read(struct b53_device *dev, u64 mac,
1049 u16 vid, struct b53_arl_entry *ent, u8 *idx,
1050 bool is_valid)
1051 {
1052 unsigned int i;
1053 int ret;
1054
1055 ret = b53_arl_op_wait(dev);
1056 if (ret)
1057 return ret;
1058
1059 /* Read the bins */
1060 for (i = 0; i < dev->num_arl_entries; i++) {
1061 u64 mac_vid;
1062 u32 fwd_entry;
1063
1064 b53_read64(dev, B53_ARLIO_PAGE,
1065 B53_ARLTBL_MAC_VID_ENTRY(i), &mac_vid);
1066 b53_read32(dev, B53_ARLIO_PAGE,
1067 B53_ARLTBL_DATA_ENTRY(i), &fwd_entry);
1068 b53_arl_to_entry(ent, mac_vid, fwd_entry);
1069
1070 if (!(fwd_entry & ARLTBL_VALID))
1071 continue;
1072 if ((mac_vid & ARLTBL_MAC_MASK) != mac)
1073 continue;
1074 *idx = i;
1075 }
1076
1077 return -ENOENT;
1078 }
1079
1080 static int b53_arl_op(struct b53_device *dev, int op, int port,
1081 const unsigned char *addr, u16 vid, bool is_valid)
1082 {
1083 struct b53_arl_entry ent;
1084 u32 fwd_entry;
1085 u64 mac, mac_vid = 0;
1086 u8 idx = 0;
1087 int ret;
1088
1089 /* Convert the array into a 64-bit MAC */
1090 mac = b53_mac_to_u64(addr);
1091
1092 /* Perform a read for the given MAC and VID */
1093 b53_write48(dev, B53_ARLIO_PAGE, B53_MAC_ADDR_IDX, mac);
1094 b53_write16(dev, B53_ARLIO_PAGE, B53_VLAN_ID_IDX, vid);
1095
1096 /* Issue a read operation for this MAC */
1097 ret = b53_arl_rw_op(dev, 1);
1098 if (ret)
1099 return ret;
1100
1101 ret = b53_arl_read(dev, mac, vid, &ent, &idx, is_valid);
1102 /* If this is a read, just finish now */
1103 if (op)
1104 return ret;
1105
1106 /* We could not find a matching MAC, so reset to a new entry */
1107 if (ret) {
1108 fwd_entry = 0;
1109 idx = 1;
1110 }
1111
1112 memset(&ent, 0, sizeof(ent));
1113 ent.port = port;
1114 ent.is_valid = is_valid;
1115 ent.vid = vid;
1116 ent.is_static = true;
1117 memcpy(ent.mac, addr, ETH_ALEN);
1118 b53_arl_from_entry(&mac_vid, &fwd_entry, &ent);
1119
1120 b53_write64(dev, B53_ARLIO_PAGE,
1121 B53_ARLTBL_MAC_VID_ENTRY(idx), mac_vid);
1122 b53_write32(dev, B53_ARLIO_PAGE,
1123 B53_ARLTBL_DATA_ENTRY(idx), fwd_entry);
1124
1125 return b53_arl_rw_op(dev, 0);
1126 }
1127
1128 static int b53_fdb_prepare(struct dsa_switch *ds, int port,
1129 const struct switchdev_obj_port_fdb *fdb,
1130 struct switchdev_trans *trans)
1131 {
1132 struct b53_device *priv = ds_to_priv(ds);
1133
1134 /* 5325 and 5365 require some more massaging, but could
1135 * be supported eventually
1136 */
1137 if (is5325(priv) || is5365(priv))
1138 return -EOPNOTSUPP;
1139
1140 return 0;
1141 }
1142
1143 static void b53_fdb_add(struct dsa_switch *ds, int port,
1144 const struct switchdev_obj_port_fdb *fdb,
1145 struct switchdev_trans *trans)
1146 {
1147 struct b53_device *priv = ds_to_priv(ds);
1148
1149 if (b53_arl_op(priv, 0, port, fdb->addr, fdb->vid, true))
1150 pr_err("%s: failed to add MAC address\n", __func__);
1151 }
1152
1153 static int b53_fdb_del(struct dsa_switch *ds, int port,
1154 const struct switchdev_obj_port_fdb *fdb)
1155 {
1156 struct b53_device *priv = ds_to_priv(ds);
1157
1158 return b53_arl_op(priv, 0, port, fdb->addr, fdb->vid, false);
1159 }
1160
1161 static int b53_arl_search_wait(struct b53_device *dev)
1162 {
1163 unsigned int timeout = 1000;
1164 u8 reg;
1165
1166 do {
1167 b53_read8(dev, B53_ARLIO_PAGE, B53_ARL_SRCH_CTL, &reg);
1168 if (!(reg & ARL_SRCH_STDN))
1169 return 0;
1170
1171 if (reg & ARL_SRCH_VLID)
1172 return 0;
1173
1174 usleep_range(1000, 2000);
1175 } while (timeout--);
1176
1177 return -ETIMEDOUT;
1178 }
1179
1180 static void b53_arl_search_rd(struct b53_device *dev, u8 idx,
1181 struct b53_arl_entry *ent)
1182 {
1183 u64 mac_vid;
1184 u32 fwd_entry;
1185
1186 b53_read64(dev, B53_ARLIO_PAGE,
1187 B53_ARL_SRCH_RSTL_MACVID(idx), &mac_vid);
1188 b53_read32(dev, B53_ARLIO_PAGE,
1189 B53_ARL_SRCH_RSTL(idx), &fwd_entry);
1190 b53_arl_to_entry(ent, mac_vid, fwd_entry);
1191 }
1192
1193 static int b53_fdb_copy(struct net_device *dev, int port,
1194 const struct b53_arl_entry *ent,
1195 struct switchdev_obj_port_fdb *fdb,
1196 int (*cb)(struct switchdev_obj *obj))
1197 {
1198 if (!ent->is_valid)
1199 return 0;
1200
1201 if (port != ent->port)
1202 return 0;
1203
1204 ether_addr_copy(fdb->addr, ent->mac);
1205 fdb->vid = ent->vid;
1206 fdb->ndm_state = ent->is_static ? NUD_NOARP : NUD_REACHABLE;
1207
1208 return cb(&fdb->obj);
1209 }
1210
1211 static int b53_fdb_dump(struct dsa_switch *ds, int port,
1212 struct switchdev_obj_port_fdb *fdb,
1213 int (*cb)(struct switchdev_obj *obj))
1214 {
1215 struct b53_device *priv = ds_to_priv(ds);
1216 struct net_device *dev = ds->ports[port].netdev;
1217 struct b53_arl_entry results[2];
1218 unsigned int count = 0;
1219 int ret;
1220 u8 reg;
1221
1222 /* Start search operation */
1223 reg = ARL_SRCH_STDN;
1224 b53_write8(priv, B53_ARLIO_PAGE, B53_ARL_SRCH_CTL, reg);
1225
1226 do {
1227 ret = b53_arl_search_wait(priv);
1228 if (ret)
1229 return ret;
1230
1231 b53_arl_search_rd(priv, 0, &results[0]);
1232 ret = b53_fdb_copy(dev, port, &results[0], fdb, cb);
1233 if (ret)
1234 return ret;
1235
1236 if (priv->num_arl_entries > 2) {
1237 b53_arl_search_rd(priv, 1, &results[1]);
1238 ret = b53_fdb_copy(dev, port, &results[1], fdb, cb);
1239 if (ret)
1240 return ret;
1241
1242 if (!results[0].is_valid && !results[1].is_valid)
1243 break;
1244 }
1245
1246 } while (count++ < 1024);
1247
1248 return 0;
1249 }
1250
1251 static int b53_br_join(struct dsa_switch *ds, int port,
1252 struct net_device *bridge)
1253 {
1254 struct b53_device *dev = ds_to_priv(ds);
1255 u16 pvlan, reg;
1256 unsigned int i;
1257
1258 dev->ports[port].bridge_dev = bridge;
1259 b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan);
1260
1261 b53_for_each_port(dev, i) {
1262 if (dev->ports[i].bridge_dev != bridge)
1263 continue;
1264
1265 /* Add this local port to the remote port VLAN control
1266 * membership and update the remote port bitmask
1267 */
1268 b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), &reg);
1269 reg |= BIT(port);
1270 b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), reg);
1271 dev->ports[i].vlan_ctl_mask = reg;
1272
1273 pvlan |= BIT(i);
1274 }
1275
1276 /* Configure the local port VLAN control membership to include
1277 * remote ports and update the local port bitmask
1278 */
1279 b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan);
1280 dev->ports[port].vlan_ctl_mask = pvlan;
1281
1282 return 0;
1283 }
1284
1285 static void b53_br_leave(struct dsa_switch *ds, int port)
1286 {
1287 struct b53_device *dev = ds_to_priv(ds);
1288 struct net_device *bridge = dev->ports[port].bridge_dev;
1289 struct b53_vlan *vl = &dev->vlans[0];
1290 unsigned int i;
1291 u16 pvlan, reg, pvid;
1292
1293 b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan);
1294
1295 b53_for_each_port(dev, i) {
1296 /* Don't touch the remaining ports */
1297 if (dev->ports[i].bridge_dev != bridge)
1298 continue;
1299
1300 b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), &reg);
1301 reg &= ~BIT(port);
1302 b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), reg);
1303 dev->ports[port].vlan_ctl_mask = reg;
1304
1305 /* Prevent self removal to preserve isolation */
1306 if (port != i)
1307 pvlan &= ~BIT(i);
1308 }
1309
1310 b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan);
1311 dev->ports[port].vlan_ctl_mask = pvlan;
1312 dev->ports[port].bridge_dev = NULL;
1313
1314 if (is5325(dev) || is5365(dev))
1315 pvid = 1;
1316 else
1317 pvid = 0;
1318
1319 b53_get_vlan_entry(dev, pvid, vl);
1320 vl->members |= BIT(port) | BIT(dev->cpu_port);
1321 vl->untag |= BIT(port) | BIT(dev->cpu_port);
1322 b53_set_vlan_entry(dev, pvid, vl);
1323 }
1324
1325 static void b53_br_set_stp_state(struct dsa_switch *ds, int port,
1326 u8 state)
1327 {
1328 struct b53_device *dev = ds_to_priv(ds);
1329 u8 hw_state, cur_hw_state;
1330 u8 reg;
1331
1332 b53_read8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), &reg);
1333 cur_hw_state = reg & PORT_CTRL_STP_STATE_MASK;
1334
1335 switch (state) {
1336 case BR_STATE_DISABLED:
1337 hw_state = PORT_CTRL_DIS_STATE;
1338 break;
1339 case BR_STATE_LISTENING:
1340 hw_state = PORT_CTRL_LISTEN_STATE;
1341 break;
1342 case BR_STATE_LEARNING:
1343 hw_state = PORT_CTRL_LEARN_STATE;
1344 break;
1345 case BR_STATE_FORWARDING:
1346 hw_state = PORT_CTRL_FWD_STATE;
1347 break;
1348 case BR_STATE_BLOCKING:
1349 hw_state = PORT_CTRL_BLOCK_STATE;
1350 break;
1351 default:
1352 dev_err(ds->dev, "invalid STP state: %d\n", state);
1353 return;
1354 }
1355
1356 /* Fast-age ARL entries if we are moving a port from Learning or
1357 * Forwarding (cur_hw_state) state to Disabled, Blocking or Listening
1358 * state (hw_state)
1359 */
1360 if (cur_hw_state != hw_state) {
1361 if (cur_hw_state >= PORT_CTRL_LEARN_STATE &&
1362 hw_state <= PORT_CTRL_LISTEN_STATE) {
1363 if (b53_fast_age_port(dev, port)) {
1364 dev_err(ds->dev, "fast ageing failed\n");
1365 return;
1366 }
1367 }
1368 }
1369
1370 b53_read8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), &reg);
1371 reg &= ~PORT_CTRL_STP_STATE_MASK;
1372 reg |= hw_state;
1373 b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), reg);
1374 }
1375
1376 static struct dsa_switch_driver b53_switch_ops = {
1377 .tag_protocol = DSA_TAG_PROTO_NONE,
1378 .setup = b53_setup,
1379 .set_addr = b53_set_addr,
1380 .get_strings = b53_get_strings,
1381 .get_ethtool_stats = b53_get_ethtool_stats,
1382 .get_sset_count = b53_get_sset_count,
1383 .phy_read = b53_phy_read16,
1384 .phy_write = b53_phy_write16,
1385 .adjust_link = b53_adjust_link,
1386 .port_enable = b53_enable_port,
1387 .port_disable = b53_disable_port,
1388 .port_bridge_join = b53_br_join,
1389 .port_bridge_leave = b53_br_leave,
1390 .port_stp_state_set = b53_br_set_stp_state,
1391 .port_vlan_filtering = b53_vlan_filtering,
1392 .port_vlan_prepare = b53_vlan_prepare,
1393 .port_vlan_add = b53_vlan_add,
1394 .port_vlan_del = b53_vlan_del,
1395 .port_vlan_dump = b53_vlan_dump,
1396 .port_fdb_prepare = b53_fdb_prepare,
1397 .port_fdb_dump = b53_fdb_dump,
1398 .port_fdb_add = b53_fdb_add,
1399 .port_fdb_del = b53_fdb_del,
1400 };
1401
1402 struct b53_chip_data {
1403 u32 chip_id;
1404 const char *dev_name;
1405 u16 vlans;
1406 u16 enabled_ports;
1407 u8 cpu_port;
1408 u8 vta_regs[3];
1409 u8 arl_entries;
1410 u8 duplex_reg;
1411 u8 jumbo_pm_reg;
1412 u8 jumbo_size_reg;
1413 };
1414
1415 #define B53_VTA_REGS \
1416 { B53_VT_ACCESS, B53_VT_INDEX, B53_VT_ENTRY }
1417 #define B53_VTA_REGS_9798 \
1418 { B53_VT_ACCESS_9798, B53_VT_INDEX_9798, B53_VT_ENTRY_9798 }
1419 #define B53_VTA_REGS_63XX \
1420 { B53_VT_ACCESS_63XX, B53_VT_INDEX_63XX, B53_VT_ENTRY_63XX }
1421
1422 static const struct b53_chip_data b53_switch_chips[] = {
1423 {
1424 .chip_id = BCM5325_DEVICE_ID,
1425 .dev_name = "BCM5325",
1426 .vlans = 16,
1427 .enabled_ports = 0x1f,
1428 .arl_entries = 2,
1429 .cpu_port = B53_CPU_PORT_25,
1430 .duplex_reg = B53_DUPLEX_STAT_FE,
1431 },
1432 {
1433 .chip_id = BCM5365_DEVICE_ID,
1434 .dev_name = "BCM5365",
1435 .vlans = 256,
1436 .enabled_ports = 0x1f,
1437 .arl_entries = 2,
1438 .cpu_port = B53_CPU_PORT_25,
1439 .duplex_reg = B53_DUPLEX_STAT_FE,
1440 },
1441 {
1442 .chip_id = BCM5395_DEVICE_ID,
1443 .dev_name = "BCM5395",
1444 .vlans = 4096,
1445 .enabled_ports = 0x1f,
1446 .arl_entries = 4,
1447 .cpu_port = B53_CPU_PORT,
1448 .vta_regs = B53_VTA_REGS,
1449 .duplex_reg = B53_DUPLEX_STAT_GE,
1450 .jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1451 .jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1452 },
1453 {
1454 .chip_id = BCM5397_DEVICE_ID,
1455 .dev_name = "BCM5397",
1456 .vlans = 4096,
1457 .enabled_ports = 0x1f,
1458 .arl_entries = 4,
1459 .cpu_port = B53_CPU_PORT,
1460 .vta_regs = B53_VTA_REGS_9798,
1461 .duplex_reg = B53_DUPLEX_STAT_GE,
1462 .jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1463 .jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1464 },
1465 {
1466 .chip_id = BCM5398_DEVICE_ID,
1467 .dev_name = "BCM5398",
1468 .vlans = 4096,
1469 .enabled_ports = 0x7f,
1470 .arl_entries = 4,
1471 .cpu_port = B53_CPU_PORT,
1472 .vta_regs = B53_VTA_REGS_9798,
1473 .duplex_reg = B53_DUPLEX_STAT_GE,
1474 .jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1475 .jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1476 },
1477 {
1478 .chip_id = BCM53115_DEVICE_ID,
1479 .dev_name = "BCM53115",
1480 .vlans = 4096,
1481 .enabled_ports = 0x1f,
1482 .arl_entries = 4,
1483 .vta_regs = B53_VTA_REGS,
1484 .cpu_port = B53_CPU_PORT,
1485 .duplex_reg = B53_DUPLEX_STAT_GE,
1486 .jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1487 .jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1488 },
1489 {
1490 .chip_id = BCM53125_DEVICE_ID,
1491 .dev_name = "BCM53125",
1492 .vlans = 4096,
1493 .enabled_ports = 0xff,
1494 .cpu_port = B53_CPU_PORT,
1495 .vta_regs = B53_VTA_REGS,
1496 .duplex_reg = B53_DUPLEX_STAT_GE,
1497 .jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1498 .jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1499 },
1500 {
1501 .chip_id = BCM53128_DEVICE_ID,
1502 .dev_name = "BCM53128",
1503 .vlans = 4096,
1504 .enabled_ports = 0x1ff,
1505 .arl_entries = 4,
1506 .cpu_port = B53_CPU_PORT,
1507 .vta_regs = B53_VTA_REGS,
1508 .duplex_reg = B53_DUPLEX_STAT_GE,
1509 .jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1510 .jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1511 },
1512 {
1513 .chip_id = BCM63XX_DEVICE_ID,
1514 .dev_name = "BCM63xx",
1515 .vlans = 4096,
1516 .enabled_ports = 0, /* pdata must provide them */
1517 .arl_entries = 4,
1518 .cpu_port = B53_CPU_PORT,
1519 .vta_regs = B53_VTA_REGS_63XX,
1520 .duplex_reg = B53_DUPLEX_STAT_63XX,
1521 .jumbo_pm_reg = B53_JUMBO_PORT_MASK_63XX,
1522 .jumbo_size_reg = B53_JUMBO_MAX_SIZE_63XX,
1523 },
1524 {
1525 .chip_id = BCM53010_DEVICE_ID,
1526 .dev_name = "BCM53010",
1527 .vlans = 4096,
1528 .enabled_ports = 0x1f,
1529 .arl_entries = 4,
1530 .cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */
1531 .vta_regs = B53_VTA_REGS,
1532 .duplex_reg = B53_DUPLEX_STAT_GE,
1533 .jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1534 .jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1535 },
1536 {
1537 .chip_id = BCM53011_DEVICE_ID,
1538 .dev_name = "BCM53011",
1539 .vlans = 4096,
1540 .enabled_ports = 0x1bf,
1541 .arl_entries = 4,
1542 .cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */
1543 .vta_regs = B53_VTA_REGS,
1544 .duplex_reg = B53_DUPLEX_STAT_GE,
1545 .jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1546 .jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1547 },
1548 {
1549 .chip_id = BCM53012_DEVICE_ID,
1550 .dev_name = "BCM53012",
1551 .vlans = 4096,
1552 .enabled_ports = 0x1bf,
1553 .arl_entries = 4,
1554 .cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */
1555 .vta_regs = B53_VTA_REGS,
1556 .duplex_reg = B53_DUPLEX_STAT_GE,
1557 .jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1558 .jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1559 },
1560 {
1561 .chip_id = BCM53018_DEVICE_ID,
1562 .dev_name = "BCM53018",
1563 .vlans = 4096,
1564 .enabled_ports = 0x1f,
1565 .arl_entries = 4,
1566 .cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */
1567 .vta_regs = B53_VTA_REGS,
1568 .duplex_reg = B53_DUPLEX_STAT_GE,
1569 .jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1570 .jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1571 },
1572 {
1573 .chip_id = BCM53019_DEVICE_ID,
1574 .dev_name = "BCM53019",
1575 .vlans = 4096,
1576 .enabled_ports = 0x1f,
1577 .arl_entries = 4,
1578 .cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */
1579 .vta_regs = B53_VTA_REGS,
1580 .duplex_reg = B53_DUPLEX_STAT_GE,
1581 .jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1582 .jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1583 },
1584 {
1585 .chip_id = BCM58XX_DEVICE_ID,
1586 .dev_name = "BCM585xx/586xx/88312",
1587 .vlans = 4096,
1588 .enabled_ports = 0x1ff,
1589 .arl_entries = 4,
1590 .cpu_port = B53_CPU_PORT_25,
1591 .vta_regs = B53_VTA_REGS,
1592 .duplex_reg = B53_DUPLEX_STAT_GE,
1593 .jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1594 .jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1595 },
1596 };
1597
1598 static int b53_switch_init(struct b53_device *dev)
1599 {
1600 struct dsa_switch *ds = dev->ds;
1601 unsigned int i;
1602 int ret;
1603
1604 for (i = 0; i < ARRAY_SIZE(b53_switch_chips); i++) {
1605 const struct b53_chip_data *chip = &b53_switch_chips[i];
1606
1607 if (chip->chip_id == dev->chip_id) {
1608 if (!dev->enabled_ports)
1609 dev->enabled_ports = chip->enabled_ports;
1610 dev->name = chip->dev_name;
1611 dev->duplex_reg = chip->duplex_reg;
1612 dev->vta_regs[0] = chip->vta_regs[0];
1613 dev->vta_regs[1] = chip->vta_regs[1];
1614 dev->vta_regs[2] = chip->vta_regs[2];
1615 dev->jumbo_pm_reg = chip->jumbo_pm_reg;
1616 ds->drv = &b53_switch_ops;
1617 dev->cpu_port = chip->cpu_port;
1618 dev->num_vlans = chip->vlans;
1619 dev->num_arl_entries = chip->arl_entries;
1620 break;
1621 }
1622 }
1623
1624 /* check which BCM5325x version we have */
1625 if (is5325(dev)) {
1626 u8 vc4;
1627
1628 b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_25, &vc4);
1629
1630 /* check reserved bits */
1631 switch (vc4 & 3) {
1632 case 1:
1633 /* BCM5325E */
1634 break;
1635 case 3:
1636 /* BCM5325F - do not use port 4 */
1637 dev->enabled_ports &= ~BIT(4);
1638 break;
1639 default:
1640 /* On the BCM47XX SoCs this is the supported internal switch.*/
1641 #ifndef CONFIG_BCM47XX
1642 /* BCM5325M */
1643 return -EINVAL;
1644 #else
1645 break;
1646 #endif
1647 }
1648 } else if (dev->chip_id == BCM53115_DEVICE_ID) {
1649 u64 strap_value;
1650
1651 b53_read48(dev, B53_STAT_PAGE, B53_STRAP_VALUE, &strap_value);
1652 /* use second IMP port if GMII is enabled */
1653 if (strap_value & SV_GMII_CTRL_115)
1654 dev->cpu_port = 5;
1655 }
1656
1657 /* cpu port is always last */
1658 dev->num_ports = dev->cpu_port + 1;
1659 dev->enabled_ports |= BIT(dev->cpu_port);
1660
1661 dev->ports = devm_kzalloc(dev->dev,
1662 sizeof(struct b53_port) * dev->num_ports,
1663 GFP_KERNEL);
1664 if (!dev->ports)
1665 return -ENOMEM;
1666
1667 dev->vlans = devm_kzalloc(dev->dev,
1668 sizeof(struct b53_vlan) * dev->num_vlans,
1669 GFP_KERNEL);
1670 if (!dev->vlans)
1671 return -ENOMEM;
1672
1673 dev->reset_gpio = b53_switch_get_reset_gpio(dev);
1674 if (dev->reset_gpio >= 0) {
1675 ret = devm_gpio_request_one(dev->dev, dev->reset_gpio,
1676 GPIOF_OUT_INIT_HIGH, "robo_reset");
1677 if (ret)
1678 return ret;
1679 }
1680
1681 return 0;
1682 }
1683
1684 struct b53_device *b53_switch_alloc(struct device *base, struct b53_io_ops *ops,
1685 void *priv)
1686 {
1687 struct dsa_switch *ds;
1688 struct b53_device *dev;
1689
1690 ds = devm_kzalloc(base, sizeof(*ds) + sizeof(*dev), GFP_KERNEL);
1691 if (!ds)
1692 return NULL;
1693
1694 dev = (struct b53_device *)(ds + 1);
1695
1696 ds->priv = dev;
1697 ds->dev = base;
1698 dev->dev = base;
1699
1700 dev->ds = ds;
1701 dev->priv = priv;
1702 dev->ops = ops;
1703 mutex_init(&dev->reg_mutex);
1704 mutex_init(&dev->stats_mutex);
1705
1706 return dev;
1707 }
1708 EXPORT_SYMBOL(b53_switch_alloc);
1709
1710 int b53_switch_detect(struct b53_device *dev)
1711 {
1712 u32 id32;
1713 u16 tmp;
1714 u8 id8;
1715 int ret;
1716
1717 ret = b53_read8(dev, B53_MGMT_PAGE, B53_DEVICE_ID, &id8);
1718 if (ret)
1719 return ret;
1720
1721 switch (id8) {
1722 case 0:
1723 /* BCM5325 and BCM5365 do not have this register so reads
1724 * return 0. But the read operation did succeed, so assume this
1725 * is one of them.
1726 *
1727 * Next check if we can write to the 5325's VTA register; for
1728 * 5365 it is read only.
1729 */
1730 b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, 0xf);
1731 b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, &tmp);
1732
1733 if (tmp == 0xf)
1734 dev->chip_id = BCM5325_DEVICE_ID;
1735 else
1736 dev->chip_id = BCM5365_DEVICE_ID;
1737 break;
1738 case BCM5395_DEVICE_ID:
1739 case BCM5397_DEVICE_ID:
1740 case BCM5398_DEVICE_ID:
1741 dev->chip_id = id8;
1742 break;
1743 default:
1744 ret = b53_read32(dev, B53_MGMT_PAGE, B53_DEVICE_ID, &id32);
1745 if (ret)
1746 return ret;
1747
1748 switch (id32) {
1749 case BCM53115_DEVICE_ID:
1750 case BCM53125_DEVICE_ID:
1751 case BCM53128_DEVICE_ID:
1752 case BCM53010_DEVICE_ID:
1753 case BCM53011_DEVICE_ID:
1754 case BCM53012_DEVICE_ID:
1755 case BCM53018_DEVICE_ID:
1756 case BCM53019_DEVICE_ID:
1757 dev->chip_id = id32;
1758 break;
1759 default:
1760 pr_err("unsupported switch detected (BCM53%02x/BCM%x)\n",
1761 id8, id32);
1762 return -ENODEV;
1763 }
1764 }
1765
1766 if (dev->chip_id == BCM5325_DEVICE_ID)
1767 return b53_read8(dev, B53_STAT_PAGE, B53_REV_ID_25,
1768 &dev->core_rev);
1769 else
1770 return b53_read8(dev, B53_MGMT_PAGE, B53_REV_ID,
1771 &dev->core_rev);
1772 }
1773 EXPORT_SYMBOL(b53_switch_detect);
1774
1775 int b53_switch_register(struct b53_device *dev)
1776 {
1777 int ret;
1778
1779 if (dev->pdata) {
1780 dev->chip_id = dev->pdata->chip_id;
1781 dev->enabled_ports = dev->pdata->enabled_ports;
1782 }
1783
1784 if (!dev->chip_id && b53_switch_detect(dev))
1785 return -EINVAL;
1786
1787 ret = b53_switch_init(dev);
1788 if (ret)
1789 return ret;
1790
1791 pr_info("found switch: %s, rev %i\n", dev->name, dev->core_rev);
1792
1793 return dsa_register_switch(dev->ds, dev->ds->dev->of_node);
1794 }
1795 EXPORT_SYMBOL(b53_switch_register);
1796
1797 MODULE_AUTHOR("Jonas Gorski <jogo@openwrt.org>");
1798 MODULE_DESCRIPTION("B53 switch library");
1799 MODULE_LICENSE("Dual BSD/GPL");
This page took 0.074142 seconds and 5 git commands to generate.