Merge remote-tracking branch 'selinux/next'
[deliverable/linux.git] / drivers / net / ethernet / aeroflex / greth.c
1 /*
2 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
3 *
4 * 2005-2010 (c) Aeroflex Gaisler AB
5 *
6 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
7 * available in the GRLIB VHDL IP core library.
8 *
9 * Full documentation of both cores can be found here:
10 * http://www.gaisler.com/products/grlib/grip.pdf
11 *
12 * The Gigabit version supports scatter/gather DMA, any alignment of
13 * buffers and checksum offloading.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Contributors: Kristoffer Glembo
21 * Daniel Hellstrom
22 * Marko Isomaki
23 */
24
25 #include <linux/dma-mapping.h>
26 #include <linux/module.h>
27 #include <linux/uaccess.h>
28 #include <linux/interrupt.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/ethtool.h>
32 #include <linux/skbuff.h>
33 #include <linux/io.h>
34 #include <linux/crc32.h>
35 #include <linux/mii.h>
36 #include <linux/of_device.h>
37 #include <linux/of_platform.h>
38 #include <linux/slab.h>
39 #include <asm/cacheflush.h>
40 #include <asm/byteorder.h>
41
42 #ifdef CONFIG_SPARC
43 #include <asm/idprom.h>
44 #endif
45
46 #include "greth.h"
47
48 #define GRETH_DEF_MSG_ENABLE \
49 (NETIF_MSG_DRV | \
50 NETIF_MSG_PROBE | \
51 NETIF_MSG_LINK | \
52 NETIF_MSG_IFDOWN | \
53 NETIF_MSG_IFUP | \
54 NETIF_MSG_RX_ERR | \
55 NETIF_MSG_TX_ERR)
56
57 static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
58 module_param(greth_debug, int, 0);
59 MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
60
61 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
62 static int macaddr[6];
63 module_param_array(macaddr, int, NULL, 0);
64 MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
65
66 static int greth_edcl = 1;
67 module_param(greth_edcl, int, 0);
68 MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
69
70 static int greth_open(struct net_device *dev);
71 static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
72 struct net_device *dev);
73 static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
74 struct net_device *dev);
75 static int greth_rx(struct net_device *dev, int limit);
76 static int greth_rx_gbit(struct net_device *dev, int limit);
77 static void greth_clean_tx(struct net_device *dev);
78 static void greth_clean_tx_gbit(struct net_device *dev);
79 static irqreturn_t greth_interrupt(int irq, void *dev_id);
80 static int greth_close(struct net_device *dev);
81 static int greth_set_mac_add(struct net_device *dev, void *p);
82 static void greth_set_multicast_list(struct net_device *dev);
83
84 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
85 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
86 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
87 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
88
89 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
90 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
91 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
92
93 static void greth_print_rx_packet(void *addr, int len)
94 {
95 print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
96 addr, len, true);
97 }
98
99 static void greth_print_tx_packet(struct sk_buff *skb)
100 {
101 int i;
102 int length;
103
104 if (skb_shinfo(skb)->nr_frags == 0)
105 length = skb->len;
106 else
107 length = skb_headlen(skb);
108
109 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
110 skb->data, length, true);
111
112 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
113
114 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
115 skb_frag_address(&skb_shinfo(skb)->frags[i]),
116 skb_shinfo(skb)->frags[i].size, true);
117 }
118 }
119
120 static inline void greth_enable_tx(struct greth_private *greth)
121 {
122 wmb();
123 GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
124 }
125
126 static inline void greth_enable_tx_and_irq(struct greth_private *greth)
127 {
128 wmb(); /* BDs must been written to memory before enabling TX */
129 GRETH_REGORIN(greth->regs->control, GRETH_TXEN | GRETH_TXI);
130 }
131
132 static inline void greth_disable_tx(struct greth_private *greth)
133 {
134 GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
135 }
136
137 static inline void greth_enable_rx(struct greth_private *greth)
138 {
139 wmb();
140 GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
141 }
142
143 static inline void greth_disable_rx(struct greth_private *greth)
144 {
145 GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
146 }
147
148 static inline void greth_enable_irqs(struct greth_private *greth)
149 {
150 GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
151 }
152
153 static inline void greth_disable_irqs(struct greth_private *greth)
154 {
155 GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
156 }
157
158 static inline void greth_write_bd(u32 *bd, u32 val)
159 {
160 __raw_writel(cpu_to_be32(val), bd);
161 }
162
163 static inline u32 greth_read_bd(u32 *bd)
164 {
165 return be32_to_cpu(__raw_readl(bd));
166 }
167
168 static void greth_clean_rings(struct greth_private *greth)
169 {
170 int i;
171 struct greth_bd *rx_bdp = greth->rx_bd_base;
172 struct greth_bd *tx_bdp = greth->tx_bd_base;
173
174 if (greth->gbit_mac) {
175
176 /* Free and unmap RX buffers */
177 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
178 if (greth->rx_skbuff[i] != NULL) {
179 dev_kfree_skb(greth->rx_skbuff[i]);
180 dma_unmap_single(greth->dev,
181 greth_read_bd(&rx_bdp->addr),
182 MAX_FRAME_SIZE+NET_IP_ALIGN,
183 DMA_FROM_DEVICE);
184 }
185 }
186
187 /* TX buffers */
188 while (greth->tx_free < GRETH_TXBD_NUM) {
189
190 struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
191 int nr_frags = skb_shinfo(skb)->nr_frags;
192 tx_bdp = greth->tx_bd_base + greth->tx_last;
193 greth->tx_last = NEXT_TX(greth->tx_last);
194
195 dma_unmap_single(greth->dev,
196 greth_read_bd(&tx_bdp->addr),
197 skb_headlen(skb),
198 DMA_TO_DEVICE);
199
200 for (i = 0; i < nr_frags; i++) {
201 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
202 tx_bdp = greth->tx_bd_base + greth->tx_last;
203
204 dma_unmap_page(greth->dev,
205 greth_read_bd(&tx_bdp->addr),
206 skb_frag_size(frag),
207 DMA_TO_DEVICE);
208
209 greth->tx_last = NEXT_TX(greth->tx_last);
210 }
211 greth->tx_free += nr_frags+1;
212 dev_kfree_skb(skb);
213 }
214
215
216 } else { /* 10/100 Mbps MAC */
217
218 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
219 kfree(greth->rx_bufs[i]);
220 dma_unmap_single(greth->dev,
221 greth_read_bd(&rx_bdp->addr),
222 MAX_FRAME_SIZE,
223 DMA_FROM_DEVICE);
224 }
225 for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
226 kfree(greth->tx_bufs[i]);
227 dma_unmap_single(greth->dev,
228 greth_read_bd(&tx_bdp->addr),
229 MAX_FRAME_SIZE,
230 DMA_TO_DEVICE);
231 }
232 }
233 }
234
235 static int greth_init_rings(struct greth_private *greth)
236 {
237 struct sk_buff *skb;
238 struct greth_bd *rx_bd, *tx_bd;
239 u32 dma_addr;
240 int i;
241
242 rx_bd = greth->rx_bd_base;
243 tx_bd = greth->tx_bd_base;
244
245 /* Initialize descriptor rings and buffers */
246 if (greth->gbit_mac) {
247
248 for (i = 0; i < GRETH_RXBD_NUM; i++) {
249 skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
250 if (skb == NULL) {
251 if (netif_msg_ifup(greth))
252 dev_err(greth->dev, "Error allocating DMA ring.\n");
253 goto cleanup;
254 }
255 skb_reserve(skb, NET_IP_ALIGN);
256 dma_addr = dma_map_single(greth->dev,
257 skb->data,
258 MAX_FRAME_SIZE+NET_IP_ALIGN,
259 DMA_FROM_DEVICE);
260
261 if (dma_mapping_error(greth->dev, dma_addr)) {
262 if (netif_msg_ifup(greth))
263 dev_err(greth->dev, "Could not create initial DMA mapping\n");
264 goto cleanup;
265 }
266 greth->rx_skbuff[i] = skb;
267 greth_write_bd(&rx_bd[i].addr, dma_addr);
268 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
269 }
270
271 } else {
272
273 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
274 for (i = 0; i < GRETH_RXBD_NUM; i++) {
275
276 greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
277
278 if (greth->rx_bufs[i] == NULL) {
279 if (netif_msg_ifup(greth))
280 dev_err(greth->dev, "Error allocating DMA ring.\n");
281 goto cleanup;
282 }
283
284 dma_addr = dma_map_single(greth->dev,
285 greth->rx_bufs[i],
286 MAX_FRAME_SIZE,
287 DMA_FROM_DEVICE);
288
289 if (dma_mapping_error(greth->dev, dma_addr)) {
290 if (netif_msg_ifup(greth))
291 dev_err(greth->dev, "Could not create initial DMA mapping\n");
292 goto cleanup;
293 }
294 greth_write_bd(&rx_bd[i].addr, dma_addr);
295 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
296 }
297 for (i = 0; i < GRETH_TXBD_NUM; i++) {
298
299 greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
300
301 if (greth->tx_bufs[i] == NULL) {
302 if (netif_msg_ifup(greth))
303 dev_err(greth->dev, "Error allocating DMA ring.\n");
304 goto cleanup;
305 }
306
307 dma_addr = dma_map_single(greth->dev,
308 greth->tx_bufs[i],
309 MAX_FRAME_SIZE,
310 DMA_TO_DEVICE);
311
312 if (dma_mapping_error(greth->dev, dma_addr)) {
313 if (netif_msg_ifup(greth))
314 dev_err(greth->dev, "Could not create initial DMA mapping\n");
315 goto cleanup;
316 }
317 greth_write_bd(&tx_bd[i].addr, dma_addr);
318 greth_write_bd(&tx_bd[i].stat, 0);
319 }
320 }
321 greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
322 greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
323
324 /* Initialize pointers. */
325 greth->rx_cur = 0;
326 greth->tx_next = 0;
327 greth->tx_last = 0;
328 greth->tx_free = GRETH_TXBD_NUM;
329
330 /* Initialize descriptor base address */
331 GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
332 GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
333
334 return 0;
335
336 cleanup:
337 greth_clean_rings(greth);
338 return -ENOMEM;
339 }
340
341 static int greth_open(struct net_device *dev)
342 {
343 struct greth_private *greth = netdev_priv(dev);
344 int err;
345
346 err = greth_init_rings(greth);
347 if (err) {
348 if (netif_msg_ifup(greth))
349 dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
350 return err;
351 }
352
353 err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
354 if (err) {
355 if (netif_msg_ifup(greth))
356 dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
357 greth_clean_rings(greth);
358 return err;
359 }
360
361 if (netif_msg_ifup(greth))
362 dev_dbg(&dev->dev, " starting queue\n");
363 netif_start_queue(dev);
364
365 GRETH_REGSAVE(greth->regs->status, 0xFF);
366
367 napi_enable(&greth->napi);
368
369 greth_enable_irqs(greth);
370 greth_enable_tx(greth);
371 greth_enable_rx(greth);
372 return 0;
373
374 }
375
376 static int greth_close(struct net_device *dev)
377 {
378 struct greth_private *greth = netdev_priv(dev);
379
380 napi_disable(&greth->napi);
381
382 greth_disable_irqs(greth);
383 greth_disable_tx(greth);
384 greth_disable_rx(greth);
385
386 netif_stop_queue(dev);
387
388 free_irq(greth->irq, (void *) dev);
389
390 greth_clean_rings(greth);
391
392 return 0;
393 }
394
395 static netdev_tx_t
396 greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
397 {
398 struct greth_private *greth = netdev_priv(dev);
399 struct greth_bd *bdp;
400 int err = NETDEV_TX_OK;
401 u32 status, dma_addr, ctrl;
402 unsigned long flags;
403
404 /* Clean TX Ring */
405 greth_clean_tx(greth->netdev);
406
407 if (unlikely(greth->tx_free <= 0)) {
408 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/
409 ctrl = GRETH_REGLOAD(greth->regs->control);
410 /* Enable TX IRQ only if not already in poll() routine */
411 if (ctrl & GRETH_RXI)
412 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI);
413 netif_stop_queue(dev);
414 spin_unlock_irqrestore(&greth->devlock, flags);
415 return NETDEV_TX_BUSY;
416 }
417
418 if (netif_msg_pktdata(greth))
419 greth_print_tx_packet(skb);
420
421
422 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
423 dev->stats.tx_errors++;
424 goto out;
425 }
426
427 bdp = greth->tx_bd_base + greth->tx_next;
428 dma_addr = greth_read_bd(&bdp->addr);
429
430 memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
431
432 dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
433
434 status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN);
435 greth->tx_bufs_length[greth->tx_next] = skb->len & GRETH_BD_LEN;
436
437 /* Wrap around descriptor ring */
438 if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
439 status |= GRETH_BD_WR;
440 }
441
442 greth->tx_next = NEXT_TX(greth->tx_next);
443 greth->tx_free--;
444
445 /* Write descriptor control word and enable transmission */
446 greth_write_bd(&bdp->stat, status);
447 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
448 greth_enable_tx(greth);
449 spin_unlock_irqrestore(&greth->devlock, flags);
450
451 out:
452 dev_kfree_skb(skb);
453 return err;
454 }
455
456 static inline u16 greth_num_free_bds(u16 tx_last, u16 tx_next)
457 {
458 if (tx_next < tx_last)
459 return (tx_last - tx_next) - 1;
460 else
461 return GRETH_TXBD_NUM - (tx_next - tx_last) - 1;
462 }
463
464 static netdev_tx_t
465 greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
466 {
467 struct greth_private *greth = netdev_priv(dev);
468 struct greth_bd *bdp;
469 u32 status, dma_addr;
470 int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
471 unsigned long flags;
472 u16 tx_last;
473
474 nr_frags = skb_shinfo(skb)->nr_frags;
475 tx_last = greth->tx_last;
476 rmb(); /* tx_last is updated by the poll task */
477
478 if (greth_num_free_bds(tx_last, greth->tx_next) < nr_frags + 1) {
479 netif_stop_queue(dev);
480 err = NETDEV_TX_BUSY;
481 goto out;
482 }
483
484 if (netif_msg_pktdata(greth))
485 greth_print_tx_packet(skb);
486
487 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
488 dev->stats.tx_errors++;
489 goto out;
490 }
491
492 /* Save skb pointer. */
493 greth->tx_skbuff[greth->tx_next] = skb;
494
495 /* Linear buf */
496 if (nr_frags != 0)
497 status = GRETH_TXBD_MORE;
498 else
499 status = GRETH_BD_IE;
500
501 if (skb->ip_summed == CHECKSUM_PARTIAL)
502 status |= GRETH_TXBD_CSALL;
503 status |= skb_headlen(skb) & GRETH_BD_LEN;
504 if (greth->tx_next == GRETH_TXBD_NUM_MASK)
505 status |= GRETH_BD_WR;
506
507
508 bdp = greth->tx_bd_base + greth->tx_next;
509 greth_write_bd(&bdp->stat, status);
510 dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
511
512 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
513 goto map_error;
514
515 greth_write_bd(&bdp->addr, dma_addr);
516
517 curr_tx = NEXT_TX(greth->tx_next);
518
519 /* Frags */
520 for (i = 0; i < nr_frags; i++) {
521 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
522 greth->tx_skbuff[curr_tx] = NULL;
523 bdp = greth->tx_bd_base + curr_tx;
524
525 status = GRETH_BD_EN;
526 if (skb->ip_summed == CHECKSUM_PARTIAL)
527 status |= GRETH_TXBD_CSALL;
528 status |= skb_frag_size(frag) & GRETH_BD_LEN;
529
530 /* Wrap around descriptor ring */
531 if (curr_tx == GRETH_TXBD_NUM_MASK)
532 status |= GRETH_BD_WR;
533
534 /* More fragments left */
535 if (i < nr_frags - 1)
536 status |= GRETH_TXBD_MORE;
537 else
538 status |= GRETH_BD_IE; /* enable IRQ on last fragment */
539
540 greth_write_bd(&bdp->stat, status);
541
542 dma_addr = skb_frag_dma_map(greth->dev, frag, 0, skb_frag_size(frag),
543 DMA_TO_DEVICE);
544
545 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
546 goto frag_map_error;
547
548 greth_write_bd(&bdp->addr, dma_addr);
549
550 curr_tx = NEXT_TX(curr_tx);
551 }
552
553 wmb();
554
555 /* Enable the descriptor chain by enabling the first descriptor */
556 bdp = greth->tx_bd_base + greth->tx_next;
557 greth_write_bd(&bdp->stat,
558 greth_read_bd(&bdp->stat) | GRETH_BD_EN);
559
560 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
561 greth->tx_next = curr_tx;
562 greth_enable_tx_and_irq(greth);
563 spin_unlock_irqrestore(&greth->devlock, flags);
564
565 return NETDEV_TX_OK;
566
567 frag_map_error:
568 /* Unmap SKB mappings that succeeded and disable descriptor */
569 for (i = 0; greth->tx_next + i != curr_tx; i++) {
570 bdp = greth->tx_bd_base + greth->tx_next + i;
571 dma_unmap_single(greth->dev,
572 greth_read_bd(&bdp->addr),
573 greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
574 DMA_TO_DEVICE);
575 greth_write_bd(&bdp->stat, 0);
576 }
577 map_error:
578 if (net_ratelimit())
579 dev_warn(greth->dev, "Could not create TX DMA mapping\n");
580 dev_kfree_skb(skb);
581 out:
582 return err;
583 }
584
585 static irqreturn_t greth_interrupt(int irq, void *dev_id)
586 {
587 struct net_device *dev = dev_id;
588 struct greth_private *greth;
589 u32 status, ctrl;
590 irqreturn_t retval = IRQ_NONE;
591
592 greth = netdev_priv(dev);
593
594 spin_lock(&greth->devlock);
595
596 /* Get the interrupt events that caused us to be here. */
597 status = GRETH_REGLOAD(greth->regs->status);
598
599 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be
600 * set regardless of whether IRQ is enabled or not. Especially
601 * important when shared IRQ.
602 */
603 ctrl = GRETH_REGLOAD(greth->regs->control);
604
605 /* Handle rx and tx interrupts through poll */
606 if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) ||
607 ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) {
608 retval = IRQ_HANDLED;
609
610 /* Disable interrupts and schedule poll() */
611 greth_disable_irqs(greth);
612 napi_schedule(&greth->napi);
613 }
614
615 mmiowb();
616 spin_unlock(&greth->devlock);
617
618 return retval;
619 }
620
621 static void greth_clean_tx(struct net_device *dev)
622 {
623 struct greth_private *greth;
624 struct greth_bd *bdp;
625 u32 stat;
626
627 greth = netdev_priv(dev);
628
629 while (1) {
630 bdp = greth->tx_bd_base + greth->tx_last;
631 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
632 mb();
633 stat = greth_read_bd(&bdp->stat);
634
635 if (unlikely(stat & GRETH_BD_EN))
636 break;
637
638 if (greth->tx_free == GRETH_TXBD_NUM)
639 break;
640
641 /* Check status for errors */
642 if (unlikely(stat & GRETH_TXBD_STATUS)) {
643 dev->stats.tx_errors++;
644 if (stat & GRETH_TXBD_ERR_AL)
645 dev->stats.tx_aborted_errors++;
646 if (stat & GRETH_TXBD_ERR_UE)
647 dev->stats.tx_fifo_errors++;
648 }
649 dev->stats.tx_packets++;
650 dev->stats.tx_bytes += greth->tx_bufs_length[greth->tx_last];
651 greth->tx_last = NEXT_TX(greth->tx_last);
652 greth->tx_free++;
653 }
654
655 if (greth->tx_free > 0) {
656 netif_wake_queue(dev);
657 }
658 }
659
660 static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
661 {
662 /* Check status for errors */
663 if (unlikely(stat & GRETH_TXBD_STATUS)) {
664 dev->stats.tx_errors++;
665 if (stat & GRETH_TXBD_ERR_AL)
666 dev->stats.tx_aborted_errors++;
667 if (stat & GRETH_TXBD_ERR_UE)
668 dev->stats.tx_fifo_errors++;
669 if (stat & GRETH_TXBD_ERR_LC)
670 dev->stats.tx_aborted_errors++;
671 }
672 dev->stats.tx_packets++;
673 }
674
675 static void greth_clean_tx_gbit(struct net_device *dev)
676 {
677 struct greth_private *greth;
678 struct greth_bd *bdp, *bdp_last_frag;
679 struct sk_buff *skb = NULL;
680 u32 stat;
681 int nr_frags, i;
682 u16 tx_last;
683
684 greth = netdev_priv(dev);
685 tx_last = greth->tx_last;
686
687 while (tx_last != greth->tx_next) {
688
689 skb = greth->tx_skbuff[tx_last];
690
691 nr_frags = skb_shinfo(skb)->nr_frags;
692
693 /* We only clean fully completed SKBs */
694 bdp_last_frag = greth->tx_bd_base + SKIP_TX(tx_last, nr_frags);
695
696 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
697 mb();
698 stat = greth_read_bd(&bdp_last_frag->stat);
699
700 if (stat & GRETH_BD_EN)
701 break;
702
703 greth->tx_skbuff[tx_last] = NULL;
704
705 greth_update_tx_stats(dev, stat);
706 dev->stats.tx_bytes += skb->len;
707
708 bdp = greth->tx_bd_base + tx_last;
709
710 tx_last = NEXT_TX(tx_last);
711
712 dma_unmap_single(greth->dev,
713 greth_read_bd(&bdp->addr),
714 skb_headlen(skb),
715 DMA_TO_DEVICE);
716
717 for (i = 0; i < nr_frags; i++) {
718 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
719 bdp = greth->tx_bd_base + tx_last;
720
721 dma_unmap_page(greth->dev,
722 greth_read_bd(&bdp->addr),
723 skb_frag_size(frag),
724 DMA_TO_DEVICE);
725
726 tx_last = NEXT_TX(tx_last);
727 }
728 dev_kfree_skb(skb);
729 }
730 if (skb) { /* skb is set only if the above while loop was entered */
731 wmb();
732 greth->tx_last = tx_last;
733
734 if (netif_queue_stopped(dev) &&
735 (greth_num_free_bds(tx_last, greth->tx_next) >
736 (MAX_SKB_FRAGS+1)))
737 netif_wake_queue(dev);
738 }
739 }
740
741 static int greth_rx(struct net_device *dev, int limit)
742 {
743 struct greth_private *greth;
744 struct greth_bd *bdp;
745 struct sk_buff *skb;
746 int pkt_len;
747 int bad, count;
748 u32 status, dma_addr;
749 unsigned long flags;
750
751 greth = netdev_priv(dev);
752
753 for (count = 0; count < limit; ++count) {
754
755 bdp = greth->rx_bd_base + greth->rx_cur;
756 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
757 mb();
758 status = greth_read_bd(&bdp->stat);
759
760 if (unlikely(status & GRETH_BD_EN)) {
761 break;
762 }
763
764 dma_addr = greth_read_bd(&bdp->addr);
765 bad = 0;
766
767 /* Check status for errors. */
768 if (unlikely(status & GRETH_RXBD_STATUS)) {
769 if (status & GRETH_RXBD_ERR_FT) {
770 dev->stats.rx_length_errors++;
771 bad = 1;
772 }
773 if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
774 dev->stats.rx_frame_errors++;
775 bad = 1;
776 }
777 if (status & GRETH_RXBD_ERR_CRC) {
778 dev->stats.rx_crc_errors++;
779 bad = 1;
780 }
781 }
782 if (unlikely(bad)) {
783 dev->stats.rx_errors++;
784
785 } else {
786
787 pkt_len = status & GRETH_BD_LEN;
788
789 skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
790
791 if (unlikely(skb == NULL)) {
792
793 if (net_ratelimit())
794 dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
795
796 dev->stats.rx_dropped++;
797
798 } else {
799 skb_reserve(skb, NET_IP_ALIGN);
800
801 dma_sync_single_for_cpu(greth->dev,
802 dma_addr,
803 pkt_len,
804 DMA_FROM_DEVICE);
805
806 if (netif_msg_pktdata(greth))
807 greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
808
809 memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len);
810
811 skb->protocol = eth_type_trans(skb, dev);
812 dev->stats.rx_bytes += pkt_len;
813 dev->stats.rx_packets++;
814 netif_receive_skb(skb);
815 }
816 }
817
818 status = GRETH_BD_EN | GRETH_BD_IE;
819 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
820 status |= GRETH_BD_WR;
821 }
822
823 wmb();
824 greth_write_bd(&bdp->stat, status);
825
826 dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
827
828 spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */
829 greth_enable_rx(greth);
830 spin_unlock_irqrestore(&greth->devlock, flags);
831
832 greth->rx_cur = NEXT_RX(greth->rx_cur);
833 }
834
835 return count;
836 }
837
838 static inline int hw_checksummed(u32 status)
839 {
840
841 if (status & GRETH_RXBD_IP_FRAG)
842 return 0;
843
844 if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
845 return 0;
846
847 if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
848 return 0;
849
850 if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
851 return 0;
852
853 return 1;
854 }
855
856 static int greth_rx_gbit(struct net_device *dev, int limit)
857 {
858 struct greth_private *greth;
859 struct greth_bd *bdp;
860 struct sk_buff *skb, *newskb;
861 int pkt_len;
862 int bad, count = 0;
863 u32 status, dma_addr;
864 unsigned long flags;
865
866 greth = netdev_priv(dev);
867
868 for (count = 0; count < limit; ++count) {
869
870 bdp = greth->rx_bd_base + greth->rx_cur;
871 skb = greth->rx_skbuff[greth->rx_cur];
872 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
873 mb();
874 status = greth_read_bd(&bdp->stat);
875 bad = 0;
876
877 if (status & GRETH_BD_EN)
878 break;
879
880 /* Check status for errors. */
881 if (unlikely(status & GRETH_RXBD_STATUS)) {
882
883 if (status & GRETH_RXBD_ERR_FT) {
884 dev->stats.rx_length_errors++;
885 bad = 1;
886 } else if (status &
887 (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
888 dev->stats.rx_frame_errors++;
889 bad = 1;
890 } else if (status & GRETH_RXBD_ERR_CRC) {
891 dev->stats.rx_crc_errors++;
892 bad = 1;
893 }
894 }
895
896 /* Allocate new skb to replace current, not needed if the
897 * current skb can be reused */
898 if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) {
899 skb_reserve(newskb, NET_IP_ALIGN);
900
901 dma_addr = dma_map_single(greth->dev,
902 newskb->data,
903 MAX_FRAME_SIZE + NET_IP_ALIGN,
904 DMA_FROM_DEVICE);
905
906 if (!dma_mapping_error(greth->dev, dma_addr)) {
907 /* Process the incoming frame. */
908 pkt_len = status & GRETH_BD_LEN;
909
910 dma_unmap_single(greth->dev,
911 greth_read_bd(&bdp->addr),
912 MAX_FRAME_SIZE + NET_IP_ALIGN,
913 DMA_FROM_DEVICE);
914
915 if (netif_msg_pktdata(greth))
916 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
917
918 skb_put(skb, pkt_len);
919
920 if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status))
921 skb->ip_summed = CHECKSUM_UNNECESSARY;
922 else
923 skb_checksum_none_assert(skb);
924
925 skb->protocol = eth_type_trans(skb, dev);
926 dev->stats.rx_packets++;
927 dev->stats.rx_bytes += pkt_len;
928 netif_receive_skb(skb);
929
930 greth->rx_skbuff[greth->rx_cur] = newskb;
931 greth_write_bd(&bdp->addr, dma_addr);
932 } else {
933 if (net_ratelimit())
934 dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
935 dev_kfree_skb(newskb);
936 /* reusing current skb, so it is a drop */
937 dev->stats.rx_dropped++;
938 }
939 } else if (bad) {
940 /* Bad Frame transfer, the skb is reused */
941 dev->stats.rx_dropped++;
942 } else {
943 /* Failed Allocating a new skb. This is rather stupid
944 * but the current "filled" skb is reused, as if
945 * transfer failure. One could argue that RX descriptor
946 * table handling should be divided into cleaning and
947 * filling as the TX part of the driver
948 */
949 if (net_ratelimit())
950 dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
951 /* reusing current skb, so it is a drop */
952 dev->stats.rx_dropped++;
953 }
954
955 status = GRETH_BD_EN | GRETH_BD_IE;
956 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
957 status |= GRETH_BD_WR;
958 }
959
960 wmb();
961 greth_write_bd(&bdp->stat, status);
962 spin_lock_irqsave(&greth->devlock, flags);
963 greth_enable_rx(greth);
964 spin_unlock_irqrestore(&greth->devlock, flags);
965 greth->rx_cur = NEXT_RX(greth->rx_cur);
966 }
967
968 return count;
969
970 }
971
972 static int greth_poll(struct napi_struct *napi, int budget)
973 {
974 struct greth_private *greth;
975 int work_done = 0;
976 unsigned long flags;
977 u32 mask, ctrl;
978 greth = container_of(napi, struct greth_private, napi);
979
980 restart_txrx_poll:
981 if (greth->gbit_mac) {
982 greth_clean_tx_gbit(greth->netdev);
983 work_done += greth_rx_gbit(greth->netdev, budget - work_done);
984 } else {
985 if (netif_queue_stopped(greth->netdev))
986 greth_clean_tx(greth->netdev);
987 work_done += greth_rx(greth->netdev, budget - work_done);
988 }
989
990 if (work_done < budget) {
991
992 spin_lock_irqsave(&greth->devlock, flags);
993
994 ctrl = GRETH_REGLOAD(greth->regs->control);
995 if ((greth->gbit_mac && (greth->tx_last != greth->tx_next)) ||
996 (!greth->gbit_mac && netif_queue_stopped(greth->netdev))) {
997 GRETH_REGSAVE(greth->regs->control,
998 ctrl | GRETH_TXI | GRETH_RXI);
999 mask = GRETH_INT_RX | GRETH_INT_RE |
1000 GRETH_INT_TX | GRETH_INT_TE;
1001 } else {
1002 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI);
1003 mask = GRETH_INT_RX | GRETH_INT_RE;
1004 }
1005
1006 if (GRETH_REGLOAD(greth->regs->status) & mask) {
1007 GRETH_REGSAVE(greth->regs->control, ctrl);
1008 spin_unlock_irqrestore(&greth->devlock, flags);
1009 goto restart_txrx_poll;
1010 } else {
1011 __napi_complete(napi);
1012 spin_unlock_irqrestore(&greth->devlock, flags);
1013 }
1014 }
1015
1016 return work_done;
1017 }
1018
1019 static int greth_set_mac_add(struct net_device *dev, void *p)
1020 {
1021 struct sockaddr *addr = p;
1022 struct greth_private *greth;
1023 struct greth_regs *regs;
1024
1025 greth = netdev_priv(dev);
1026 regs = greth->regs;
1027
1028 if (!is_valid_ether_addr(addr->sa_data))
1029 return -EADDRNOTAVAIL;
1030
1031 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1032 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
1033 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
1034 dev->dev_addr[4] << 8 | dev->dev_addr[5]);
1035
1036 return 0;
1037 }
1038
1039 static u32 greth_hash_get_index(__u8 *addr)
1040 {
1041 return (ether_crc(6, addr)) & 0x3F;
1042 }
1043
1044 static void greth_set_hash_filter(struct net_device *dev)
1045 {
1046 struct netdev_hw_addr *ha;
1047 struct greth_private *greth = netdev_priv(dev);
1048 struct greth_regs *regs = greth->regs;
1049 u32 mc_filter[2];
1050 unsigned int bitnr;
1051
1052 mc_filter[0] = mc_filter[1] = 0;
1053
1054 netdev_for_each_mc_addr(ha, dev) {
1055 bitnr = greth_hash_get_index(ha->addr);
1056 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
1057 }
1058
1059 GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
1060 GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
1061 }
1062
1063 static void greth_set_multicast_list(struct net_device *dev)
1064 {
1065 int cfg;
1066 struct greth_private *greth = netdev_priv(dev);
1067 struct greth_regs *regs = greth->regs;
1068
1069 cfg = GRETH_REGLOAD(regs->control);
1070 if (dev->flags & IFF_PROMISC)
1071 cfg |= GRETH_CTRL_PR;
1072 else
1073 cfg &= ~GRETH_CTRL_PR;
1074
1075 if (greth->multicast) {
1076 if (dev->flags & IFF_ALLMULTI) {
1077 GRETH_REGSAVE(regs->hash_msb, -1);
1078 GRETH_REGSAVE(regs->hash_lsb, -1);
1079 cfg |= GRETH_CTRL_MCEN;
1080 GRETH_REGSAVE(regs->control, cfg);
1081 return;
1082 }
1083
1084 if (netdev_mc_empty(dev)) {
1085 cfg &= ~GRETH_CTRL_MCEN;
1086 GRETH_REGSAVE(regs->control, cfg);
1087 return;
1088 }
1089
1090 /* Setup multicast filter */
1091 greth_set_hash_filter(dev);
1092 cfg |= GRETH_CTRL_MCEN;
1093 }
1094 GRETH_REGSAVE(regs->control, cfg);
1095 }
1096
1097 static u32 greth_get_msglevel(struct net_device *dev)
1098 {
1099 struct greth_private *greth = netdev_priv(dev);
1100 return greth->msg_enable;
1101 }
1102
1103 static void greth_set_msglevel(struct net_device *dev, u32 value)
1104 {
1105 struct greth_private *greth = netdev_priv(dev);
1106 greth->msg_enable = value;
1107 }
1108
1109 static int greth_get_regs_len(struct net_device *dev)
1110 {
1111 return sizeof(struct greth_regs);
1112 }
1113
1114 static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1115 {
1116 struct greth_private *greth = netdev_priv(dev);
1117
1118 strlcpy(info->driver, dev_driver_string(greth->dev),
1119 sizeof(info->driver));
1120 strlcpy(info->version, "revision: 1.0", sizeof(info->version));
1121 strlcpy(info->bus_info, greth->dev->bus->name, sizeof(info->bus_info));
1122 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1123 }
1124
1125 static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
1126 {
1127 int i;
1128 struct greth_private *greth = netdev_priv(dev);
1129 u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
1130 u32 *buff = p;
1131
1132 for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
1133 buff[i] = greth_read_bd(&greth_regs[i]);
1134 }
1135
1136 static const struct ethtool_ops greth_ethtool_ops = {
1137 .get_msglevel = greth_get_msglevel,
1138 .set_msglevel = greth_set_msglevel,
1139 .get_drvinfo = greth_get_drvinfo,
1140 .get_regs_len = greth_get_regs_len,
1141 .get_regs = greth_get_regs,
1142 .get_link = ethtool_op_get_link,
1143 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1144 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1145 };
1146
1147 static struct net_device_ops greth_netdev_ops = {
1148 .ndo_open = greth_open,
1149 .ndo_stop = greth_close,
1150 .ndo_start_xmit = greth_start_xmit,
1151 .ndo_set_mac_address = greth_set_mac_add,
1152 .ndo_validate_addr = eth_validate_addr,
1153 };
1154
1155 static inline int wait_for_mdio(struct greth_private *greth)
1156 {
1157 unsigned long timeout = jiffies + 4*HZ/100;
1158 while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
1159 if (time_after(jiffies, timeout))
1160 return 0;
1161 }
1162 return 1;
1163 }
1164
1165 static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
1166 {
1167 struct greth_private *greth = bus->priv;
1168 int data;
1169
1170 if (!wait_for_mdio(greth))
1171 return -EBUSY;
1172
1173 GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
1174
1175 if (!wait_for_mdio(greth))
1176 return -EBUSY;
1177
1178 if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
1179 data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
1180 return data;
1181
1182 } else {
1183 return -1;
1184 }
1185 }
1186
1187 static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
1188 {
1189 struct greth_private *greth = bus->priv;
1190
1191 if (!wait_for_mdio(greth))
1192 return -EBUSY;
1193
1194 GRETH_REGSAVE(greth->regs->mdio,
1195 ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
1196
1197 if (!wait_for_mdio(greth))
1198 return -EBUSY;
1199
1200 return 0;
1201 }
1202
1203 static void greth_link_change(struct net_device *dev)
1204 {
1205 struct greth_private *greth = netdev_priv(dev);
1206 struct phy_device *phydev = dev->phydev;
1207 unsigned long flags;
1208 int status_change = 0;
1209 u32 ctrl;
1210
1211 spin_lock_irqsave(&greth->devlock, flags);
1212
1213 if (phydev->link) {
1214
1215 if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
1216 ctrl = GRETH_REGLOAD(greth->regs->control) &
1217 ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB);
1218
1219 if (phydev->duplex)
1220 ctrl |= GRETH_CTRL_FD;
1221
1222 if (phydev->speed == SPEED_100)
1223 ctrl |= GRETH_CTRL_SP;
1224 else if (phydev->speed == SPEED_1000)
1225 ctrl |= GRETH_CTRL_GB;
1226
1227 GRETH_REGSAVE(greth->regs->control, ctrl);
1228 greth->speed = phydev->speed;
1229 greth->duplex = phydev->duplex;
1230 status_change = 1;
1231 }
1232 }
1233
1234 if (phydev->link != greth->link) {
1235 if (!phydev->link) {
1236 greth->speed = 0;
1237 greth->duplex = -1;
1238 }
1239 greth->link = phydev->link;
1240
1241 status_change = 1;
1242 }
1243
1244 spin_unlock_irqrestore(&greth->devlock, flags);
1245
1246 if (status_change) {
1247 if (phydev->link)
1248 pr_debug("%s: link up (%d/%s)\n",
1249 dev->name, phydev->speed,
1250 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
1251 else
1252 pr_debug("%s: link down\n", dev->name);
1253 }
1254 }
1255
1256 static int greth_mdio_probe(struct net_device *dev)
1257 {
1258 struct greth_private *greth = netdev_priv(dev);
1259 struct phy_device *phy = NULL;
1260 int ret;
1261
1262 /* Find the first PHY */
1263 phy = phy_find_first(greth->mdio);
1264
1265 if (!phy) {
1266 if (netif_msg_probe(greth))
1267 dev_err(&dev->dev, "no PHY found\n");
1268 return -ENXIO;
1269 }
1270
1271 ret = phy_connect_direct(dev, phy, &greth_link_change,
1272 greth->gbit_mac ? PHY_INTERFACE_MODE_GMII : PHY_INTERFACE_MODE_MII);
1273 if (ret) {
1274 if (netif_msg_ifup(greth))
1275 dev_err(&dev->dev, "could not attach to PHY\n");
1276 return ret;
1277 }
1278
1279 if (greth->gbit_mac)
1280 phy->supported &= PHY_GBIT_FEATURES;
1281 else
1282 phy->supported &= PHY_BASIC_FEATURES;
1283
1284 phy->advertising = phy->supported;
1285
1286 greth->link = 0;
1287 greth->speed = 0;
1288 greth->duplex = -1;
1289
1290 return 0;
1291 }
1292
1293 static inline int phy_aneg_done(struct phy_device *phydev)
1294 {
1295 int retval;
1296
1297 retval = phy_read(phydev, MII_BMSR);
1298
1299 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
1300 }
1301
1302 static int greth_mdio_init(struct greth_private *greth)
1303 {
1304 int ret;
1305 unsigned long timeout;
1306 struct net_device *ndev = greth->netdev;
1307
1308 greth->mdio = mdiobus_alloc();
1309 if (!greth->mdio) {
1310 return -ENOMEM;
1311 }
1312
1313 greth->mdio->name = "greth-mdio";
1314 snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
1315 greth->mdio->read = greth_mdio_read;
1316 greth->mdio->write = greth_mdio_write;
1317 greth->mdio->priv = greth;
1318
1319 ret = mdiobus_register(greth->mdio);
1320 if (ret) {
1321 goto error;
1322 }
1323
1324 ret = greth_mdio_probe(greth->netdev);
1325 if (ret) {
1326 if (netif_msg_probe(greth))
1327 dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
1328 goto unreg_mdio;
1329 }
1330
1331 phy_start(ndev->phydev);
1332
1333 /* If Ethernet debug link is used make autoneg happen right away */
1334 if (greth->edcl && greth_edcl == 1) {
1335 phy_start_aneg(ndev->phydev);
1336 timeout = jiffies + 6*HZ;
1337 while (!phy_aneg_done(ndev->phydev) &&
1338 time_before(jiffies, timeout)) {
1339 }
1340 phy_read_status(ndev->phydev);
1341 greth_link_change(greth->netdev);
1342 }
1343
1344 return 0;
1345
1346 unreg_mdio:
1347 mdiobus_unregister(greth->mdio);
1348 error:
1349 mdiobus_free(greth->mdio);
1350 return ret;
1351 }
1352
1353 /* Initialize the GRETH MAC */
1354 static int greth_of_probe(struct platform_device *ofdev)
1355 {
1356 struct net_device *dev;
1357 struct greth_private *greth;
1358 struct greth_regs *regs;
1359
1360 int i;
1361 int err;
1362 int tmp;
1363 unsigned long timeout;
1364
1365 dev = alloc_etherdev(sizeof(struct greth_private));
1366
1367 if (dev == NULL)
1368 return -ENOMEM;
1369
1370 greth = netdev_priv(dev);
1371 greth->netdev = dev;
1372 greth->dev = &ofdev->dev;
1373
1374 if (greth_debug > 0)
1375 greth->msg_enable = greth_debug;
1376 else
1377 greth->msg_enable = GRETH_DEF_MSG_ENABLE;
1378
1379 spin_lock_init(&greth->devlock);
1380
1381 greth->regs = of_ioremap(&ofdev->resource[0], 0,
1382 resource_size(&ofdev->resource[0]),
1383 "grlib-greth regs");
1384
1385 if (greth->regs == NULL) {
1386 if (netif_msg_probe(greth))
1387 dev_err(greth->dev, "ioremap failure.\n");
1388 err = -EIO;
1389 goto error1;
1390 }
1391
1392 regs = greth->regs;
1393 greth->irq = ofdev->archdata.irqs[0];
1394
1395 dev_set_drvdata(greth->dev, dev);
1396 SET_NETDEV_DEV(dev, greth->dev);
1397
1398 if (netif_msg_probe(greth))
1399 dev_dbg(greth->dev, "resetting controller.\n");
1400
1401 /* Reset the controller. */
1402 GRETH_REGSAVE(regs->control, GRETH_RESET);
1403
1404 /* Wait for MAC to reset itself */
1405 timeout = jiffies + HZ/100;
1406 while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
1407 if (time_after(jiffies, timeout)) {
1408 err = -EIO;
1409 if (netif_msg_probe(greth))
1410 dev_err(greth->dev, "timeout when waiting for reset.\n");
1411 goto error2;
1412 }
1413 }
1414
1415 /* Get default PHY address */
1416 greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
1417
1418 /* Check if we have GBIT capable MAC */
1419 tmp = GRETH_REGLOAD(regs->control);
1420 greth->gbit_mac = (tmp >> 27) & 1;
1421
1422 /* Check for multicast capability */
1423 greth->multicast = (tmp >> 25) & 1;
1424
1425 greth->edcl = (tmp >> 31) & 1;
1426
1427 /* If we have EDCL we disable the EDCL speed-duplex FSM so
1428 * it doesn't interfere with the software */
1429 if (greth->edcl != 0)
1430 GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
1431
1432 /* Check if MAC can handle MDIO interrupts */
1433 greth->mdio_int_en = (tmp >> 26) & 1;
1434
1435 err = greth_mdio_init(greth);
1436 if (err) {
1437 if (netif_msg_probe(greth))
1438 dev_err(greth->dev, "failed to register MDIO bus\n");
1439 goto error2;
1440 }
1441
1442 /* Allocate TX descriptor ring in coherent memory */
1443 greth->tx_bd_base = dma_zalloc_coherent(greth->dev, 1024,
1444 &greth->tx_bd_base_phys,
1445 GFP_KERNEL);
1446 if (!greth->tx_bd_base) {
1447 err = -ENOMEM;
1448 goto error3;
1449 }
1450
1451 /* Allocate RX descriptor ring in coherent memory */
1452 greth->rx_bd_base = dma_zalloc_coherent(greth->dev, 1024,
1453 &greth->rx_bd_base_phys,
1454 GFP_KERNEL);
1455 if (!greth->rx_bd_base) {
1456 err = -ENOMEM;
1457 goto error4;
1458 }
1459
1460 /* Get MAC address from: module param, OF property or ID prom */
1461 for (i = 0; i < 6; i++) {
1462 if (macaddr[i] != 0)
1463 break;
1464 }
1465 if (i == 6) {
1466 const unsigned char *addr;
1467 int len;
1468 addr = of_get_property(ofdev->dev.of_node, "local-mac-address",
1469 &len);
1470 if (addr != NULL && len == 6) {
1471 for (i = 0; i < 6; i++)
1472 macaddr[i] = (unsigned int) addr[i];
1473 } else {
1474 #ifdef CONFIG_SPARC
1475 for (i = 0; i < 6; i++)
1476 macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
1477 #endif
1478 }
1479 }
1480
1481 for (i = 0; i < 6; i++)
1482 dev->dev_addr[i] = macaddr[i];
1483
1484 macaddr[5]++;
1485
1486 if (!is_valid_ether_addr(&dev->dev_addr[0])) {
1487 if (netif_msg_probe(greth))
1488 dev_err(greth->dev, "no valid ethernet address, aborting.\n");
1489 err = -EINVAL;
1490 goto error5;
1491 }
1492
1493 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
1494 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
1495 dev->dev_addr[4] << 8 | dev->dev_addr[5]);
1496
1497 /* Clear all pending interrupts except PHY irq */
1498 GRETH_REGSAVE(regs->status, 0xFF);
1499
1500 if (greth->gbit_mac) {
1501 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
1502 NETIF_F_RXCSUM;
1503 dev->features = dev->hw_features | NETIF_F_HIGHDMA;
1504 greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
1505 }
1506
1507 if (greth->multicast) {
1508 greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list;
1509 dev->flags |= IFF_MULTICAST;
1510 } else {
1511 dev->flags &= ~IFF_MULTICAST;
1512 }
1513
1514 dev->netdev_ops = &greth_netdev_ops;
1515 dev->ethtool_ops = &greth_ethtool_ops;
1516
1517 err = register_netdev(dev);
1518 if (err) {
1519 if (netif_msg_probe(greth))
1520 dev_err(greth->dev, "netdevice registration failed.\n");
1521 goto error5;
1522 }
1523
1524 /* setup NAPI */
1525 netif_napi_add(dev, &greth->napi, greth_poll, 64);
1526
1527 return 0;
1528
1529 error5:
1530 dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
1531 error4:
1532 dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
1533 error3:
1534 mdiobus_unregister(greth->mdio);
1535 error2:
1536 of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
1537 error1:
1538 free_netdev(dev);
1539 return err;
1540 }
1541
1542 static int greth_of_remove(struct platform_device *of_dev)
1543 {
1544 struct net_device *ndev = platform_get_drvdata(of_dev);
1545 struct greth_private *greth = netdev_priv(ndev);
1546
1547 /* Free descriptor areas */
1548 dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
1549
1550 dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
1551
1552 if (ndev->phydev)
1553 phy_stop(ndev->phydev);
1554 mdiobus_unregister(greth->mdio);
1555
1556 unregister_netdev(ndev);
1557 free_netdev(ndev);
1558
1559 of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
1560
1561 return 0;
1562 }
1563
1564 static const struct of_device_id greth_of_match[] = {
1565 {
1566 .name = "GAISLER_ETHMAC",
1567 },
1568 {
1569 .name = "01_01d",
1570 },
1571 {},
1572 };
1573
1574 MODULE_DEVICE_TABLE(of, greth_of_match);
1575
1576 static struct platform_driver greth_of_driver = {
1577 .driver = {
1578 .name = "grlib-greth",
1579 .of_match_table = greth_of_match,
1580 },
1581 .probe = greth_of_probe,
1582 .remove = greth_of_remove,
1583 };
1584
1585 module_platform_driver(greth_of_driver);
1586
1587 MODULE_AUTHOR("Aeroflex Gaisler AB.");
1588 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
1589 MODULE_LICENSE("GPL");
This page took 0.091881 seconds and 5 git commands to generate.