Merge remote-tracking branch 'regulator/for-next'
[deliverable/linux.git] / drivers / net / ethernet / agere / et131x.c
1 /* Agere Systems Inc.
2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3 *
4 * Copyright © 2005 Agere Systems Inc.
5 * All rights reserved.
6 * http://www.agere.com
7 *
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9 *
10 *------------------------------------------------------------------------------
11 *
12 * SOFTWARE LICENSE
13 *
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
18 *
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
21 *
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
24 *
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
28 * distribution.
29 *
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
33 *
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
37 *
38 * Disclaimer
39 *
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51 * DAMAGE.
52 */
53
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
81
82 #include "et131x.h"
83
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
88
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS 1000
91 #define MAX_NUM_WRITE_RETRIES 2
92
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
96
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
100
101 /* ISR defines */
102 /* For interrupts, normal running is:
103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 * watchdog_interrupt & txdma_xfer_done
105 *
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
109 */
110 #define INT_MASK_DISABLE 0xffffffff
111
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE 0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
115 */
116 #define INT_MASK_ENABLE 0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
118
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE 60
122
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST 128
125
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
132
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT (1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD 0
136
137 /* MP_ADAPTER flags */
138 #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
139
140 /* MP_SHARED flags */
141 #define FMP_ADAPTER_LOWER_POWER 0x00200000
142
143 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
144 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
145
146 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
147
148 /* Some offsets in PCI config space that are actually used. */
149 #define ET1310_PCI_MAC_ADDRESS 0xA4
150 #define ET1310_PCI_EEPROM_STATUS 0xB2
151 #define ET1310_PCI_ACK_NACK 0xC0
152 #define ET1310_PCI_REPLAY 0xC2
153 #define ET1310_PCI_L0L1LATENCY 0xCF
154
155 /* PCI Product IDs */
156 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
157 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
158
159 /* Define order of magnitude converter */
160 #define NANO_IN_A_MICRO 1000
161
162 #define PARM_RX_NUM_BUFS_DEF 4
163 #define PARM_RX_TIME_INT_DEF 10
164 #define PARM_RX_MEM_END_DEF 0x2bc
165 #define PARM_TX_TIME_INT_DEF 40
166 #define PARM_TX_NUM_BUFS_DEF 4
167 #define PARM_DMA_CACHE_DEF 0
168
169 /* RX defines */
170 #define FBR_CHUNKS 32
171 #define MAX_DESC_PER_RING_RX 1024
172
173 /* number of RFDs - default and min */
174 #define RFD_LOW_WATER_MARK 40
175 #define NIC_DEFAULT_NUM_RFD 1024
176 #define NUM_FBRS 2
177
178 #define MAX_PACKETS_HANDLED 256
179
180 #define ALCATEL_MULTICAST_PKT 0x01000000
181 #define ALCATEL_BROADCAST_PKT 0x02000000
182
183 /* typedefs for Free Buffer Descriptors */
184 struct fbr_desc {
185 u32 addr_lo;
186 u32 addr_hi;
187 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
188 };
189
190 /* Packet Status Ring Descriptors
191 *
192 * Word 0:
193 *
194 * top 16 bits are from the Alcatel Status Word as enumerated in
195 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
196 *
197 * 0: hp hash pass
198 * 1: ipa IP checksum assist
199 * 2: ipp IP checksum pass
200 * 3: tcpa TCP checksum assist
201 * 4: tcpp TCP checksum pass
202 * 5: wol WOL Event
203 * 6: rxmac_error RXMAC Error Indicator
204 * 7: drop Drop packet
205 * 8: ft Frame Truncated
206 * 9: jp Jumbo Packet
207 * 10: vp VLAN Packet
208 * 11-15: unused
209 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
210 * 17: asw_RX_DV_event short receive event detected
211 * 18: asw_false_carrier_event bad carrier since last good packet
212 * 19: asw_code_err one or more nibbles signalled as errors
213 * 20: asw_CRC_err CRC error
214 * 21: asw_len_chk_err frame length field incorrect
215 * 22: asw_too_long frame length > 1518 bytes
216 * 23: asw_OK valid CRC + no code error
217 * 24: asw_multicast has a multicast address
218 * 25: asw_broadcast has a broadcast address
219 * 26: asw_dribble_nibble spurious bits after EOP
220 * 27: asw_control_frame is a control frame
221 * 28: asw_pause_frame is a pause frame
222 * 29: asw_unsupported_op unsupported OP code
223 * 30: asw_VLAN_tag VLAN tag detected
224 * 31: asw_long_evt Rx long event
225 *
226 * Word 1:
227 * 0-15: length length in bytes
228 * 16-25: bi Buffer Index
229 * 26-27: ri Ring Index
230 * 28-31: reserved
231 */
232 struct pkt_stat_desc {
233 u32 word0;
234 u32 word1;
235 };
236
237 /* Typedefs for the RX DMA status word */
238
239 /* rx status word 0 holds part of the status bits of the Rx DMA engine
240 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
241 * which contains the Free Buffer ring 0 and 1 available offset.
242 *
243 * bit 0-9 FBR1 offset
244 * bit 10 Wrap flag for FBR1
245 * bit 16-25 FBR0 offset
246 * bit 26 Wrap flag for FBR0
247 */
248
249 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
250 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
251 * which contains the Packet Status Ring available offset.
252 *
253 * bit 0-15 reserved
254 * bit 16-27 PSRoffset
255 * bit 28 PSRwrap
256 * bit 29-31 unused
257 */
258
259 /* struct rx_status_block is a structure representing the status of the Rx
260 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
261 */
262 struct rx_status_block {
263 u32 word0;
264 u32 word1;
265 };
266
267 /* Structure for look-up table holding free buffer ring pointers, addresses
268 * and state.
269 */
270 struct fbr_lookup {
271 void *virt[MAX_DESC_PER_RING_RX];
272 u32 bus_high[MAX_DESC_PER_RING_RX];
273 u32 bus_low[MAX_DESC_PER_RING_RX];
274 void *ring_virtaddr;
275 dma_addr_t ring_physaddr;
276 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
277 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
278 u32 local_full;
279 u32 num_entries;
280 dma_addr_t buffsize;
281 };
282
283 /* struct rx_ring is the structure representing the adaptor's local
284 * reference(s) to the rings
285 */
286 struct rx_ring {
287 struct fbr_lookup *fbr[NUM_FBRS];
288 void *ps_ring_virtaddr;
289 dma_addr_t ps_ring_physaddr;
290 u32 local_psr_full;
291 u32 psr_entries;
292
293 struct rx_status_block *rx_status_block;
294 dma_addr_t rx_status_bus;
295
296 struct list_head recv_list;
297 u32 num_ready_recv;
298
299 u32 num_rfd;
300
301 bool unfinished_receives;
302 };
303
304 /* TX defines */
305 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
306 *
307 * 0-15: length of packet
308 * 16-27: VLAN tag
309 * 28: VLAN CFI
310 * 29-31: VLAN priority
311 *
312 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
313 *
314 * 0: last packet in the sequence
315 * 1: first packet in the sequence
316 * 2: interrupt the processor when this pkt sent
317 * 3: Control word - no packet data
318 * 4: Issue half-duplex backpressure : XON/XOFF
319 * 5: send pause frame
320 * 6: Tx frame has error
321 * 7: append CRC
322 * 8: MAC override
323 * 9: pad packet
324 * 10: Packet is a Huge packet
325 * 11: append VLAN tag
326 * 12: IP checksum assist
327 * 13: TCP checksum assist
328 * 14: UDP checksum assist
329 */
330 #define TXDESC_FLAG_LASTPKT 0x0001
331 #define TXDESC_FLAG_FIRSTPKT 0x0002
332 #define TXDESC_FLAG_INTPROC 0x0004
333
334 /* struct tx_desc represents each descriptor on the ring */
335 struct tx_desc {
336 u32 addr_hi;
337 u32 addr_lo;
338 u32 len_vlan; /* control words how to xmit the */
339 u32 flags; /* data (detailed above) */
340 };
341
342 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
343 * by 0x101c / 0x1020. This is a DMA10 type
344 */
345
346 /* TCB (Transmit Control Block: Host Side) */
347 struct tcb {
348 struct tcb *next; /* Next entry in ring */
349 u32 count; /* Used to spot stuck/lost packets */
350 u32 stale; /* Used to spot stuck/lost packets */
351 struct sk_buff *skb; /* Network skb we are tied to */
352 u32 index; /* Ring indexes */
353 u32 index_start;
354 };
355
356 /* Structure representing our local reference(s) to the ring */
357 struct tx_ring {
358 /* TCB (Transmit Control Block) memory and lists */
359 struct tcb *tcb_ring;
360
361 /* List of TCBs that are ready to be used */
362 struct tcb *tcb_qhead;
363 struct tcb *tcb_qtail;
364
365 /* list of TCBs that are currently being sent. */
366 struct tcb *send_head;
367 struct tcb *send_tail;
368 int used;
369
370 /* The actual descriptor ring */
371 struct tx_desc *tx_desc_ring;
372 dma_addr_t tx_desc_ring_pa;
373
374 /* send_idx indicates where we last wrote to in the descriptor ring. */
375 u32 send_idx;
376
377 /* The location of the write-back status block */
378 u32 *tx_status;
379 dma_addr_t tx_status_pa;
380
381 /* Packets since the last IRQ: used for interrupt coalescing */
382 int since_irq;
383 };
384
385 /* Do not change these values: if changed, then change also in respective
386 * TXdma and Rxdma engines
387 */
388 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
389 #define NUM_TCB 64
390
391 /* These values are all superseded by registry entries to facilitate tuning.
392 * Once the desired performance has been achieved, the optimal registry values
393 * should be re-populated to these #defines:
394 */
395 #define TX_ERROR_PERIOD 1000
396
397 #define LO_MARK_PERCENT_FOR_PSR 15
398 #define LO_MARK_PERCENT_FOR_RX 15
399
400 /* RFD (Receive Frame Descriptor) */
401 struct rfd {
402 struct list_head list_node;
403 struct sk_buff *skb;
404 u32 len; /* total size of receive frame */
405 u16 bufferindex;
406 u8 ringindex;
407 };
408
409 /* Flow Control */
410 #define FLOW_BOTH 0
411 #define FLOW_TXONLY 1
412 #define FLOW_RXONLY 2
413 #define FLOW_NONE 3
414
415 /* Struct to define some device statistics */
416 struct ce_stats {
417 u32 multicast_pkts_rcvd;
418 u32 rcvd_pkts_dropped;
419
420 u32 tx_underflows;
421 u32 tx_collisions;
422 u32 tx_excessive_collisions;
423 u32 tx_first_collisions;
424 u32 tx_late_collisions;
425 u32 tx_max_pkt_errs;
426 u32 tx_deferred;
427
428 u32 rx_overflows;
429 u32 rx_length_errs;
430 u32 rx_align_errs;
431 u32 rx_crc_errs;
432 u32 rx_code_violations;
433 u32 rx_other_errs;
434
435 u32 interrupt_status;
436 };
437
438 /* The private adapter structure */
439 struct et131x_adapter {
440 struct net_device *netdev;
441 struct pci_dev *pdev;
442 struct mii_bus *mii_bus;
443 struct napi_struct napi;
444
445 /* Flags that indicate current state of the adapter */
446 u32 flags;
447
448 /* local link state, to determine if a state change has occurred */
449 int link;
450
451 /* Configuration */
452 u8 rom_addr[ETH_ALEN];
453 u8 addr[ETH_ALEN];
454 bool has_eeprom;
455 u8 eeprom_data[2];
456
457 spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
458 spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
459 spinlock_t rcv_lock; /* protects the rx_ring receive list */
460
461 /* Packet Filter and look ahead size */
462 u32 packet_filter;
463
464 /* multicast list */
465 u32 multicast_addr_count;
466 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
467
468 /* Pointer to the device's PCI register space */
469 struct address_map __iomem *regs;
470
471 /* Registry parameters */
472 u8 wanted_flow; /* Flow we want for 802.3x flow control */
473 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
474
475 /* Derived from the registry: */
476 u8 flow; /* flow control validated by the far-end */
477
478 /* Minimize init-time */
479 struct timer_list error_timer;
480
481 /* variable putting the phy into coma mode when boot up with no cable
482 * plugged in after 5 seconds
483 */
484 u8 boot_coma;
485
486 /* Tx Memory Variables */
487 struct tx_ring tx_ring;
488
489 /* Rx Memory Variables */
490 struct rx_ring rx_ring;
491
492 struct ce_stats stats;
493 };
494
495 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
496 {
497 u32 reg;
498 int i;
499
500 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
501 * bits 7,1:0 both equal to 1, at least once after reset.
502 * Subsequent operations need only to check that bits 1:0 are equal
503 * to 1 prior to starting a single byte read/write
504 */
505 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
506 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
507 return -EIO;
508
509 /* I2C idle and Phy Queue Avail both true */
510 if ((reg & 0x3000) == 0x3000) {
511 if (status)
512 *status = reg;
513 return reg & 0xFF;
514 }
515 }
516 return -ETIMEDOUT;
517 }
518
519 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
520 {
521 struct pci_dev *pdev = adapter->pdev;
522 int index = 0;
523 int retries;
524 int err = 0;
525 int writeok = 0;
526 u32 status;
527 u32 val = 0;
528
529 /* For an EEPROM, an I2C single byte write is defined as a START
530 * condition followed by the device address, EEPROM address, one byte
531 * of data and a STOP condition. The STOP condition will trigger the
532 * EEPROM's internally timed write cycle to the nonvolatile memory.
533 * All inputs are disabled during this write cycle and the EEPROM will
534 * not respond to any access until the internal write is complete.
535 */
536 err = eeprom_wait_ready(pdev, NULL);
537 if (err < 0)
538 return err;
539
540 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
541 * and bits 1:0 both =0. Bit 5 should be set according to the
542 * type of EEPROM being accessed (1=two byte addressing, 0=one
543 * byte addressing).
544 */
545 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
546 LBCIF_CONTROL_LBCIF_ENABLE |
547 LBCIF_CONTROL_I2C_WRITE))
548 return -EIO;
549
550 /* Prepare EEPROM address for Step 3 */
551 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
552 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
553 break;
554 /* Write the data to the LBCIF Data Register (the I2C write
555 * will begin).
556 */
557 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
558 break;
559 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
560 * 1:0 are both equal to 1, the I2C write has completed and the
561 * internal write cycle of the EEPROM is about to start.
562 * (bits 1:0 = 01 is a legal state while waiting from both
563 * equal to 1, but bits 1:0 = 10 is invalid and implies that
564 * something is broken).
565 */
566 err = eeprom_wait_ready(pdev, &status);
567 if (err < 0)
568 return 0;
569
570 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
571 * an error has occurred.Don't break here if we are revision
572 * 1, this is so we do a blind write for load bug.
573 */
574 if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
575 adapter->pdev->revision == 0)
576 break;
577
578 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
579 * ACK error has occurred on the address phase of the write.
580 * This could be due to an actual hardware failure or the
581 * EEPROM may still be in its internal write cycle from a
582 * previous write. This write operation was ignored and must be
583 *repeated later.
584 */
585 if (status & LBCIF_STATUS_ACK_ERROR) {
586 /* This could be due to an actual hardware failure
587 * or the EEPROM may still be in its internal write
588 * cycle from a previous write. This write operation
589 * was ignored and must be repeated later.
590 */
591 udelay(10);
592 continue;
593 }
594
595 writeok = 1;
596 break;
597 }
598
599 udelay(10);
600
601 while (1) {
602 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
603 LBCIF_CONTROL_LBCIF_ENABLE))
604 writeok = 0;
605
606 /* Do read until internal ACK_ERROR goes away meaning write
607 * completed
608 */
609 do {
610 pci_write_config_dword(pdev,
611 LBCIF_ADDRESS_REGISTER,
612 addr);
613 do {
614 pci_read_config_dword(pdev,
615 LBCIF_DATA_REGISTER,
616 &val);
617 } while ((val & 0x00010000) == 0);
618 } while (val & 0x00040000);
619
620 if ((val & 0xFF00) != 0xC000 || index == 10000)
621 break;
622 index++;
623 }
624 return writeok ? 0 : -EIO;
625 }
626
627 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
628 {
629 struct pci_dev *pdev = adapter->pdev;
630 int err;
631 u32 status;
632
633 /* A single byte read is similar to the single byte write, with the
634 * exception of the data flow:
635 */
636 err = eeprom_wait_ready(pdev, NULL);
637 if (err < 0)
638 return err;
639 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
640 * and bits 1:0 both =0. Bit 5 should be set according to the type
641 * of EEPROM being accessed (1=two byte addressing, 0=one byte
642 * addressing).
643 */
644 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
645 LBCIF_CONTROL_LBCIF_ENABLE))
646 return -EIO;
647 /* Write the address to the LBCIF Address Register (I2C read will
648 * begin).
649 */
650 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
651 return -EIO;
652 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
653 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
654 * has occurred).
655 */
656 err = eeprom_wait_ready(pdev, &status);
657 if (err < 0)
658 return err;
659 /* Regardless of error status, read data byte from LBCIF Data
660 * Register.
661 */
662 *pdata = err;
663
664 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
665 }
666
667 static int et131x_init_eeprom(struct et131x_adapter *adapter)
668 {
669 struct pci_dev *pdev = adapter->pdev;
670 u8 eestatus;
671
672 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
673
674 /* THIS IS A WORKAROUND:
675 * I need to call this function twice to get my card in a
676 * LG M1 Express Dual running. I tried also a msleep before this
677 * function, because I thought there could be some time conditions
678 * but it didn't work. Call the whole function twice also work.
679 */
680 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
681 dev_err(&pdev->dev,
682 "Could not read PCI config space for EEPROM Status\n");
683 return -EIO;
684 }
685
686 /* Determine if the error(s) we care about are present. If they are
687 * present we need to fail.
688 */
689 if (eestatus & 0x4C) {
690 int write_failed = 0;
691
692 if (pdev->revision == 0x01) {
693 int i;
694 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
695
696 /* Re-write the first 4 bytes if we have an eeprom
697 * present and the revision id is 1, this fixes the
698 * corruption seen with 1310 B Silicon
699 */
700 for (i = 0; i < 3; i++)
701 if (eeprom_write(adapter, i, eedata[i]) < 0)
702 write_failed = 1;
703 }
704 if (pdev->revision != 0x01 || write_failed) {
705 dev_err(&pdev->dev,
706 "Fatal EEPROM Status Error - 0x%04x\n",
707 eestatus);
708
709 /* This error could mean that there was an error
710 * reading the eeprom or that the eeprom doesn't exist.
711 * We will treat each case the same and not try to
712 * gather additional information that normally would
713 * come from the eeprom, like MAC Address
714 */
715 adapter->has_eeprom = 0;
716 return -EIO;
717 }
718 }
719 adapter->has_eeprom = 1;
720
721 /* Read the EEPROM for information regarding LED behavior. Refer to
722 * et131x_xcvr_init() for its use.
723 */
724 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
725 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
726
727 if (adapter->eeprom_data[0] != 0xcd)
728 /* Disable all optional features */
729 adapter->eeprom_data[1] = 0x00;
730
731 return 0;
732 }
733
734 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
735 {
736 /* Setup the receive dma configuration register for normal operation */
737 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
738 struct rx_ring *rx_ring = &adapter->rx_ring;
739
740 if (rx_ring->fbr[1]->buffsize == 4096)
741 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
742 else if (rx_ring->fbr[1]->buffsize == 8192)
743 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
744 else if (rx_ring->fbr[1]->buffsize == 16384)
745 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
746
747 csr |= ET_RXDMA_CSR_FBR0_ENABLE;
748 if (rx_ring->fbr[0]->buffsize == 256)
749 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
750 else if (rx_ring->fbr[0]->buffsize == 512)
751 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
752 else if (rx_ring->fbr[0]->buffsize == 1024)
753 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
754 writel(csr, &adapter->regs->rxdma.csr);
755
756 csr = readl(&adapter->regs->rxdma.csr);
757 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
758 udelay(5);
759 csr = readl(&adapter->regs->rxdma.csr);
760 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
761 dev_err(&adapter->pdev->dev,
762 "RX Dma failed to exit halt state. CSR 0x%08x\n",
763 csr);
764 }
765 }
766 }
767
768 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
769 {
770 u32 csr;
771 /* Setup the receive dma configuration register */
772 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
773 &adapter->regs->rxdma.csr);
774 csr = readl(&adapter->regs->rxdma.csr);
775 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
776 udelay(5);
777 csr = readl(&adapter->regs->rxdma.csr);
778 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
779 dev_err(&adapter->pdev->dev,
780 "RX Dma failed to enter halt state. CSR 0x%08x\n",
781 csr);
782 }
783 }
784
785 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
786 {
787 /* Setup the transmit dma configuration register for normal
788 * operation
789 */
790 writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
791 &adapter->regs->txdma.csr);
792 }
793
794 static inline void add_10bit(u32 *v, int n)
795 {
796 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
797 }
798
799 static inline void add_12bit(u32 *v, int n)
800 {
801 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
802 }
803
804 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
805 {
806 struct mac_regs __iomem *macregs = &adapter->regs->mac;
807 u32 station1;
808 u32 station2;
809 u32 ipg;
810
811 /* First we need to reset everything. Write to MAC configuration
812 * register 1 to perform reset.
813 */
814 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
815 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
816 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
817 &macregs->cfg1);
818
819 /* Next lets configure the MAC Inter-packet gap register */
820 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
821 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
822 writel(ipg, &macregs->ipg);
823
824 /* Next lets configure the MAC Half Duplex register */
825 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
826 writel(0x00A1F037, &macregs->hfdp);
827
828 /* Next lets configure the MAC Interface Control register */
829 writel(0, &macregs->if_ctrl);
830
831 writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
832
833 /* Next lets configure the MAC Station Address register. These
834 * values are read from the EEPROM during initialization and stored
835 * in the adapter structure. We write what is stored in the adapter
836 * structure to the MAC Station Address registers high and low. This
837 * station address is used for generating and checking pause control
838 * packets.
839 */
840 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
841 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
842 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
843 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
844 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
845 adapter->addr[2];
846 writel(station1, &macregs->station_addr_1);
847 writel(station2, &macregs->station_addr_2);
848
849 /* Max ethernet packet in bytes that will be passed by the mac without
850 * being truncated. Allow the MAC to pass 4 more than our max packet
851 * size. This is 4 for the Ethernet CRC.
852 *
853 * Packets larger than (registry_jumbo_packet) that do not contain a
854 * VLAN ID will be dropped by the Rx function.
855 */
856 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
857
858 /* clear out MAC config reset */
859 writel(0, &macregs->cfg1);
860 }
861
862 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
863 {
864 int32_t delay = 0;
865 struct mac_regs __iomem *mac = &adapter->regs->mac;
866 struct phy_device *phydev = adapter->netdev->phydev;
867 u32 cfg1;
868 u32 cfg2;
869 u32 ifctrl;
870 u32 ctl;
871
872 ctl = readl(&adapter->regs->txmac.ctl);
873 cfg1 = readl(&mac->cfg1);
874 cfg2 = readl(&mac->cfg2);
875 ifctrl = readl(&mac->if_ctrl);
876
877 /* Set up the if mode bits */
878 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
879 if (phydev->speed == SPEED_1000) {
880 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
881 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
882 } else {
883 cfg2 |= ET_MAC_CFG2_IFMODE_100;
884 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
885 }
886
887 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
888 ET_MAC_CFG1_TX_FLOW;
889
890 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
891 if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
892 cfg1 |= ET_MAC_CFG1_RX_FLOW;
893 writel(cfg1, &mac->cfg1);
894
895 /* Now we need to initialize the MAC Configuration 2 register */
896 /* preamble 7, check length, huge frame off, pad crc, crc enable
897 * full duplex off
898 */
899 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
900 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
901 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
902 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
903 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
904 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
905
906 if (phydev->duplex == DUPLEX_FULL)
907 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
908
909 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
910 if (phydev->duplex == DUPLEX_HALF)
911 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
912
913 writel(ifctrl, &mac->if_ctrl);
914 writel(cfg2, &mac->cfg2);
915
916 do {
917 udelay(10);
918 delay++;
919 cfg1 = readl(&mac->cfg1);
920 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
921
922 if (delay == 100) {
923 dev_warn(&adapter->pdev->dev,
924 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
925 cfg1);
926 }
927
928 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
929 writel(ctl, &adapter->regs->txmac.ctl);
930
931 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
932 et131x_rx_dma_enable(adapter);
933 et131x_tx_dma_enable(adapter);
934 }
935 }
936
937 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
938 {
939 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
940
941 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
942 }
943
944 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
945 {
946 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
947 u32 hash1 = 0;
948 u32 hash2 = 0;
949 u32 hash3 = 0;
950 u32 hash4 = 0;
951 u32 pm_csr;
952
953 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
954 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
955 * specified) then we should pass NO multi-cast addresses to the
956 * driver.
957 */
958 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
959 int i;
960
961 /* Loop through our multicast array and set up the device */
962 for (i = 0; i < adapter->multicast_addr_count; i++) {
963 u32 result;
964
965 result = ether_crc(6, adapter->multicast_list[i]);
966
967 result = (result & 0x3F800000) >> 23;
968
969 if (result < 32) {
970 hash1 |= (1 << result);
971 } else if ((31 < result) && (result < 64)) {
972 result -= 32;
973 hash2 |= (1 << result);
974 } else if ((63 < result) && (result < 96)) {
975 result -= 64;
976 hash3 |= (1 << result);
977 } else {
978 result -= 96;
979 hash4 |= (1 << result);
980 }
981 }
982 }
983
984 /* Write out the new hash to the device */
985 pm_csr = readl(&adapter->regs->global.pm_csr);
986 if (!et1310_in_phy_coma(adapter)) {
987 writel(hash1, &rxmac->multi_hash1);
988 writel(hash2, &rxmac->multi_hash2);
989 writel(hash3, &rxmac->multi_hash3);
990 writel(hash4, &rxmac->multi_hash4);
991 }
992 }
993
994 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
995 {
996 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
997 u32 uni_pf1;
998 u32 uni_pf2;
999 u32 uni_pf3;
1000 u32 pm_csr;
1001
1002 /* Set up unicast packet filter reg 3 to be the first two octets of
1003 * the MAC address for both address
1004 *
1005 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1006 * MAC address for second address
1007 *
1008 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1009 * MAC address for first address
1010 */
1011 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1012 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1013 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1014 adapter->addr[1];
1015
1016 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1017 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1018 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1019 adapter->addr[5];
1020
1021 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1022 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1023 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1024 adapter->addr[5];
1025
1026 pm_csr = readl(&adapter->regs->global.pm_csr);
1027 if (!et1310_in_phy_coma(adapter)) {
1028 writel(uni_pf1, &rxmac->uni_pf_addr1);
1029 writel(uni_pf2, &rxmac->uni_pf_addr2);
1030 writel(uni_pf3, &rxmac->uni_pf_addr3);
1031 }
1032 }
1033
1034 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1035 {
1036 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1037 struct phy_device *phydev = adapter->netdev->phydev;
1038 u32 sa_lo;
1039 u32 sa_hi = 0;
1040 u32 pf_ctrl = 0;
1041 u32 __iomem *wolw;
1042
1043 /* Disable the MAC while it is being configured (also disable WOL) */
1044 writel(0x8, &rxmac->ctrl);
1045
1046 /* Initialize WOL to disabled. */
1047 writel(0, &rxmac->crc0);
1048 writel(0, &rxmac->crc12);
1049 writel(0, &rxmac->crc34);
1050
1051 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1052 * its default Values of 0x00000000 because there are not WOL masks
1053 * as of this time.
1054 */
1055 for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1056 writel(0, wolw);
1057
1058 /* Lets setup the WOL Source Address */
1059 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1060 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1061 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1062 adapter->addr[5];
1063 writel(sa_lo, &rxmac->sa_lo);
1064
1065 sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1066 adapter->addr[1];
1067 writel(sa_hi, &rxmac->sa_hi);
1068
1069 /* Disable all Packet Filtering */
1070 writel(0, &rxmac->pf_ctrl);
1071
1072 /* Let's initialize the Unicast Packet filtering address */
1073 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1074 et1310_setup_device_for_unicast(adapter);
1075 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1076 } else {
1077 writel(0, &rxmac->uni_pf_addr1);
1078 writel(0, &rxmac->uni_pf_addr2);
1079 writel(0, &rxmac->uni_pf_addr3);
1080 }
1081
1082 /* Let's initialize the Multicast hash */
1083 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1084 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1085 et1310_setup_device_for_multicast(adapter);
1086 }
1087
1088 /* Runt packet filtering. Didn't work in version A silicon. */
1089 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1090 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1091
1092 if (adapter->registry_jumbo_packet > 8192)
1093 /* In order to transmit jumbo packets greater than 8k, the
1094 * FIFO between RxMAC and RxDMA needs to be reduced in size
1095 * to (16k - Jumbo packet size). In order to implement this,
1096 * we must use "cut through" mode in the RxMAC, which chops
1097 * packets down into segments which are (max_size * 16). In
1098 * this case we selected 256 bytes, since this is the size of
1099 * the PCI-Express TLP's that the 1310 uses.
1100 *
1101 * seg_en on, fc_en off, size 0x10
1102 */
1103 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1104 else
1105 writel(0, &rxmac->mcif_ctrl_max_seg);
1106
1107 writel(0, &rxmac->mcif_water_mark);
1108 writel(0, &rxmac->mif_ctrl);
1109 writel(0, &rxmac->space_avail);
1110
1111 /* Initialize the the mif_ctrl register
1112 * bit 3: Receive code error. One or more nibbles were signaled as
1113 * errors during the reception of the packet. Clear this
1114 * bit in Gigabit, set it in 100Mbit. This was derived
1115 * experimentally at UNH.
1116 * bit 4: Receive CRC error. The packet's CRC did not match the
1117 * internally generated CRC.
1118 * bit 5: Receive length check error. Indicates that frame length
1119 * field value in the packet does not match the actual data
1120 * byte length and is not a type field.
1121 * bit 16: Receive frame truncated.
1122 * bit 17: Drop packet enable
1123 */
1124 if (phydev && phydev->speed == SPEED_100)
1125 writel(0x30038, &rxmac->mif_ctrl);
1126 else
1127 writel(0x30030, &rxmac->mif_ctrl);
1128
1129 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1130 * filter is always enabled since it is where the runt packets are
1131 * supposed to be dropped. For version A silicon, runt packet
1132 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1133 * but we still leave the packet filter on.
1134 */
1135 writel(pf_ctrl, &rxmac->pf_ctrl);
1136 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1137 }
1138
1139 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1140 {
1141 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1142
1143 /* We need to update the Control Frame Parameters
1144 * cfpt - control frame pause timer set to 64 (0x40)
1145 * cfep - control frame extended pause timer set to 0x0
1146 */
1147 if (adapter->flow == FLOW_NONE)
1148 writel(0, &txmac->cf_param);
1149 else
1150 writel(0x40, &txmac->cf_param);
1151 }
1152
1153 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1154 {
1155 struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1156 u32 __iomem *reg;
1157
1158 /* initialize all the macstat registers to zero on the device */
1159 for (reg = &macstat->txrx_0_64_byte_frames;
1160 reg <= &macstat->carry_reg2; reg++)
1161 writel(0, reg);
1162
1163 /* Unmask any counters that we want to track the overflow of.
1164 * Initially this will be all counters. It may become clear later
1165 * that we do not need to track all counters.
1166 */
1167 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1168 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1169 }
1170
1171 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1172 u8 reg, u16 *value)
1173 {
1174 struct mac_regs __iomem *mac = &adapter->regs->mac;
1175 int status = 0;
1176 u32 delay = 0;
1177 u32 mii_addr;
1178 u32 mii_cmd;
1179 u32 mii_indicator;
1180
1181 /* Save a local copy of the registers we are dealing with so we can
1182 * set them back
1183 */
1184 mii_addr = readl(&mac->mii_mgmt_addr);
1185 mii_cmd = readl(&mac->mii_mgmt_cmd);
1186
1187 /* Stop the current operation */
1188 writel(0, &mac->mii_mgmt_cmd);
1189
1190 /* Set up the register we need to read from on the correct PHY */
1191 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1192
1193 writel(0x1, &mac->mii_mgmt_cmd);
1194
1195 do {
1196 udelay(50);
1197 delay++;
1198 mii_indicator = readl(&mac->mii_mgmt_indicator);
1199 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1200
1201 /* If we hit the max delay, we could not read the register */
1202 if (delay == 50) {
1203 dev_warn(&adapter->pdev->dev,
1204 "reg 0x%08x could not be read\n", reg);
1205 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1206 mii_indicator);
1207
1208 status = -EIO;
1209 goto out;
1210 }
1211
1212 /* If we hit here we were able to read the register and we need to
1213 * return the value to the caller
1214 */
1215 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1216
1217 out:
1218 /* Stop the read operation */
1219 writel(0, &mac->mii_mgmt_cmd);
1220
1221 /* set the registers we touched back to the state at which we entered
1222 * this function
1223 */
1224 writel(mii_addr, &mac->mii_mgmt_addr);
1225 writel(mii_cmd, &mac->mii_mgmt_cmd);
1226
1227 return status;
1228 }
1229
1230 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1231 {
1232 struct phy_device *phydev = adapter->netdev->phydev;
1233
1234 if (!phydev)
1235 return -EIO;
1236
1237 return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
1238 }
1239
1240 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1241 u16 value)
1242 {
1243 struct mac_regs __iomem *mac = &adapter->regs->mac;
1244 int status = 0;
1245 u32 delay = 0;
1246 u32 mii_addr;
1247 u32 mii_cmd;
1248 u32 mii_indicator;
1249
1250 /* Save a local copy of the registers we are dealing with so we can
1251 * set them back
1252 */
1253 mii_addr = readl(&mac->mii_mgmt_addr);
1254 mii_cmd = readl(&mac->mii_mgmt_cmd);
1255
1256 /* Stop the current operation */
1257 writel(0, &mac->mii_mgmt_cmd);
1258
1259 /* Set up the register we need to write to on the correct PHY */
1260 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1261
1262 /* Add the value to write to the registers to the mac */
1263 writel(value, &mac->mii_mgmt_ctrl);
1264
1265 do {
1266 udelay(50);
1267 delay++;
1268 mii_indicator = readl(&mac->mii_mgmt_indicator);
1269 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1270
1271 /* If we hit the max delay, we could not write the register */
1272 if (delay == 100) {
1273 u16 tmp;
1274
1275 dev_warn(&adapter->pdev->dev,
1276 "reg 0x%08x could not be written", reg);
1277 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1278 mii_indicator);
1279 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1280 readl(&mac->mii_mgmt_cmd));
1281
1282 et131x_mii_read(adapter, reg, &tmp);
1283
1284 status = -EIO;
1285 }
1286 /* Stop the write operation */
1287 writel(0, &mac->mii_mgmt_cmd);
1288
1289 /* set the registers we touched back to the state at which we entered
1290 * this function
1291 */
1292 writel(mii_addr, &mac->mii_mgmt_addr);
1293 writel(mii_cmd, &mac->mii_mgmt_cmd);
1294
1295 return status;
1296 }
1297
1298 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1299 u16 regnum,
1300 u16 bitnum,
1301 u8 *value)
1302 {
1303 u16 reg;
1304 u16 mask = 1 << bitnum;
1305
1306 et131x_mii_read(adapter, regnum, &reg);
1307
1308 *value = (reg & mask) >> bitnum;
1309 }
1310
1311 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1312 {
1313 struct phy_device *phydev = adapter->netdev->phydev;
1314
1315 if (phydev->duplex == DUPLEX_HALF) {
1316 adapter->flow = FLOW_NONE;
1317 } else {
1318 char remote_pause, remote_async_pause;
1319
1320 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1321 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1322
1323 if (remote_pause && remote_async_pause) {
1324 adapter->flow = adapter->wanted_flow;
1325 } else if (remote_pause && !remote_async_pause) {
1326 if (adapter->wanted_flow == FLOW_BOTH)
1327 adapter->flow = FLOW_BOTH;
1328 else
1329 adapter->flow = FLOW_NONE;
1330 } else if (!remote_pause && !remote_async_pause) {
1331 adapter->flow = FLOW_NONE;
1332 } else {
1333 if (adapter->wanted_flow == FLOW_BOTH)
1334 adapter->flow = FLOW_RXONLY;
1335 else
1336 adapter->flow = FLOW_NONE;
1337 }
1338 }
1339 }
1340
1341 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1342 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1343 {
1344 struct ce_stats *stats = &adapter->stats;
1345 struct macstat_regs __iomem *macstat =
1346 &adapter->regs->macstat;
1347
1348 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1349 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1350 stats->tx_deferred += readl(&macstat->tx_deferred);
1351 stats->tx_excessive_collisions +=
1352 readl(&macstat->tx_multiple_collisions);
1353 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1354 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1355 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1356
1357 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1358 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1359 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1360 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1361 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1362 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1363 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1364 }
1365
1366 /* et1310_handle_macstat_interrupt
1367 *
1368 * One of the MACSTAT counters has wrapped. Update the local copy of
1369 * the statistics held in the adapter structure, checking the "wrap"
1370 * bit for each counter.
1371 */
1372 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1373 {
1374 u32 carry_reg1;
1375 u32 carry_reg2;
1376
1377 /* Read the interrupt bits from the register(s). These are Clear On
1378 * Write.
1379 */
1380 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1381 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1382
1383 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1384 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1385
1386 /* We need to do update the host copy of all the MAC_STAT counters.
1387 * For each counter, check it's overflow bit. If the overflow bit is
1388 * set, then increment the host version of the count by one complete
1389 * revolution of the counter. This routine is called when the counter
1390 * block indicates that one of the counters has wrapped.
1391 */
1392 if (carry_reg1 & (1 << 14))
1393 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1394 if (carry_reg1 & (1 << 8))
1395 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1396 if (carry_reg1 & (1 << 7))
1397 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1398 if (carry_reg1 & (1 << 2))
1399 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1400 if (carry_reg1 & (1 << 6))
1401 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1402 if (carry_reg1 & (1 << 3))
1403 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1404 if (carry_reg1 & (1 << 0))
1405 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1406 if (carry_reg2 & (1 << 16))
1407 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1408 if (carry_reg2 & (1 << 15))
1409 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1410 if (carry_reg2 & (1 << 6))
1411 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1412 if (carry_reg2 & (1 << 8))
1413 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1414 if (carry_reg2 & (1 << 5))
1415 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1416 if (carry_reg2 & (1 << 4))
1417 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1418 if (carry_reg2 & (1 << 2))
1419 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1420 }
1421
1422 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1423 {
1424 struct net_device *netdev = bus->priv;
1425 struct et131x_adapter *adapter = netdev_priv(netdev);
1426 u16 value;
1427 int ret;
1428
1429 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1430
1431 if (ret < 0)
1432 return ret;
1433
1434 return value;
1435 }
1436
1437 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1438 int reg, u16 value)
1439 {
1440 struct net_device *netdev = bus->priv;
1441 struct et131x_adapter *adapter = netdev_priv(netdev);
1442
1443 return et131x_mii_write(adapter, phy_addr, reg, value);
1444 }
1445
1446 /* et1310_phy_power_switch - PHY power control
1447 * @adapter: device to control
1448 * @down: true for off/false for back on
1449 *
1450 * one hundred, ten, one thousand megs
1451 * How would you like to have your LAN accessed
1452 * Can't you see that this code processed
1453 * Phy power, phy power..
1454 */
1455 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1456 {
1457 u16 data;
1458 struct phy_device *phydev = adapter->netdev->phydev;
1459
1460 et131x_mii_read(adapter, MII_BMCR, &data);
1461 data &= ~BMCR_PDOWN;
1462 if (down)
1463 data |= BMCR_PDOWN;
1464 et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
1465 }
1466
1467 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1468 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1469 {
1470 u16 lcr2;
1471 struct phy_device *phydev = adapter->netdev->phydev;
1472
1473 /* Set the LED behavior such that LED 1 indicates speed (off =
1474 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1475 * link and activity (on for link, blink off for activity).
1476 *
1477 * NOTE: Some customizations have been added here for specific
1478 * vendors; The LED behavior is now determined by vendor data in the
1479 * EEPROM. However, the above description is the default.
1480 */
1481 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1482 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1483
1484 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1485 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1486
1487 if ((adapter->eeprom_data[1] & 0x8) == 0)
1488 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1489 else
1490 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1491
1492 et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
1493 }
1494 }
1495
1496 /* et131x_configure_global_regs - configure JAGCore global regs */
1497 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1498 {
1499 struct global_regs __iomem *regs = &adapter->regs->global;
1500
1501 writel(0, &regs->rxq_start_addr);
1502 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1503
1504 if (adapter->registry_jumbo_packet < 2048) {
1505 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1506 * block of RAM that the driver can split between Tx
1507 * and Rx as it desires. Our default is to split it
1508 * 50/50:
1509 */
1510 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1511 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1512 } else if (adapter->registry_jumbo_packet < 8192) {
1513 /* For jumbo packets > 2k but < 8k, split 50-50. */
1514 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1515 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1516 } else {
1517 /* 9216 is the only packet size greater than 8k that
1518 * is available. The Tx buffer has to be big enough
1519 * for one whole packet on the Tx side. We'll make
1520 * the Tx 9408, and give the rest to Rx
1521 */
1522 writel(0x01b3, &regs->rxq_end_addr);
1523 writel(0x01b4, &regs->txq_start_addr);
1524 }
1525
1526 /* Initialize the loopback register. Disable all loopbacks. */
1527 writel(0, &regs->loopback);
1528
1529 writel(0, &regs->msi_config);
1530
1531 /* By default, disable the watchdog timer. It will be enabled when
1532 * a packet is queued.
1533 */
1534 writel(0, &regs->watchdog_timer);
1535 }
1536
1537 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1538 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1539 {
1540 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1541 struct rx_ring *rx_local = &adapter->rx_ring;
1542 struct fbr_desc *fbr_entry;
1543 u32 entry;
1544 u32 psr_num_des;
1545 unsigned long flags;
1546 u8 id;
1547
1548 et131x_rx_dma_disable(adapter);
1549
1550 /* Load the completion writeback physical address */
1551 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1552 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1553
1554 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1555
1556 /* Set the address and parameters of the packet status ring */
1557 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1558 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1559 writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1560 writel(0, &rx_dma->psr_full_offset);
1561
1562 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1563 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1564 &rx_dma->psr_min_des);
1565
1566 spin_lock_irqsave(&adapter->rcv_lock, flags);
1567
1568 /* These local variables track the PSR in the adapter structure */
1569 rx_local->local_psr_full = 0;
1570
1571 for (id = 0; id < NUM_FBRS; id++) {
1572 u32 __iomem *num_des;
1573 u32 __iomem *full_offset;
1574 u32 __iomem *min_des;
1575 u32 __iomem *base_hi;
1576 u32 __iomem *base_lo;
1577 struct fbr_lookup *fbr = rx_local->fbr[id];
1578
1579 if (id == 0) {
1580 num_des = &rx_dma->fbr0_num_des;
1581 full_offset = &rx_dma->fbr0_full_offset;
1582 min_des = &rx_dma->fbr0_min_des;
1583 base_hi = &rx_dma->fbr0_base_hi;
1584 base_lo = &rx_dma->fbr0_base_lo;
1585 } else {
1586 num_des = &rx_dma->fbr1_num_des;
1587 full_offset = &rx_dma->fbr1_full_offset;
1588 min_des = &rx_dma->fbr1_min_des;
1589 base_hi = &rx_dma->fbr1_base_hi;
1590 base_lo = &rx_dma->fbr1_base_lo;
1591 }
1592
1593 /* Now's the best time to initialize FBR contents */
1594 fbr_entry = fbr->ring_virtaddr;
1595 for (entry = 0; entry < fbr->num_entries; entry++) {
1596 fbr_entry->addr_hi = fbr->bus_high[entry];
1597 fbr_entry->addr_lo = fbr->bus_low[entry];
1598 fbr_entry->word2 = entry;
1599 fbr_entry++;
1600 }
1601
1602 /* Set the address and parameters of Free buffer ring 1 and 0 */
1603 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1604 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1605 writel(fbr->num_entries - 1, num_des);
1606 writel(ET_DMA10_WRAP, full_offset);
1607
1608 /* This variable tracks the free buffer ring 1 full position,
1609 * so it has to match the above.
1610 */
1611 fbr->local_full = ET_DMA10_WRAP;
1612 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1613 min_des);
1614 }
1615
1616 /* Program the number of packets we will receive before generating an
1617 * interrupt.
1618 * For version B silicon, this value gets updated once autoneg is
1619 *complete.
1620 */
1621 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1622
1623 /* The "time_done" is not working correctly to coalesce interrupts
1624 * after a given time period, but rather is giving us an interrupt
1625 * regardless of whether we have received packets.
1626 * This value gets updated once autoneg is complete.
1627 */
1628 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1629
1630 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1631 }
1632
1633 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1634 *
1635 * Configure the transmit engine with the ring buffers we have created
1636 * and prepare it for use.
1637 */
1638 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1639 {
1640 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1641 struct tx_ring *tx_ring = &adapter->tx_ring;
1642
1643 /* Load the hardware with the start of the transmit descriptor ring. */
1644 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1645 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1646
1647 /* Initialise the transmit DMA engine */
1648 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1649
1650 /* Load the completion writeback physical address */
1651 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1652 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1653
1654 *tx_ring->tx_status = 0;
1655
1656 writel(0, &txdma->service_request);
1657 tx_ring->send_idx = 0;
1658 }
1659
1660 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1661 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1662 {
1663 et131x_configure_global_regs(adapter);
1664 et1310_config_mac_regs1(adapter);
1665
1666 /* Configure the MMC registers */
1667 /* All we need to do is initialize the Memory Control Register */
1668 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1669
1670 et1310_config_rxmac_regs(adapter);
1671 et1310_config_txmac_regs(adapter);
1672
1673 et131x_config_rx_dma_regs(adapter);
1674 et131x_config_tx_dma_regs(adapter);
1675
1676 et1310_config_macstat_regs(adapter);
1677
1678 et1310_phy_power_switch(adapter, 0);
1679 et131x_xcvr_init(adapter);
1680 }
1681
1682 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1683 static void et131x_soft_reset(struct et131x_adapter *adapter)
1684 {
1685 u32 reg;
1686
1687 /* Disable MAC Core */
1688 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1689 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1690 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1691 writel(reg, &adapter->regs->mac.cfg1);
1692
1693 reg = ET_RESET_ALL;
1694 writel(reg, &adapter->regs->global.sw_reset);
1695
1696 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1697 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1698 writel(reg, &adapter->regs->mac.cfg1);
1699 writel(0, &adapter->regs->mac.cfg1);
1700 }
1701
1702 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1703 {
1704 u32 mask;
1705
1706 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1707 mask = INT_MASK_ENABLE;
1708 else
1709 mask = INT_MASK_ENABLE_NO_FLOW;
1710
1711 writel(mask, &adapter->regs->global.int_mask);
1712 }
1713
1714 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1715 {
1716 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1717 }
1718
1719 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1720 {
1721 /* Setup the transmit dma configuration register */
1722 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1723 &adapter->regs->txdma.csr);
1724 }
1725
1726 static void et131x_enable_txrx(struct net_device *netdev)
1727 {
1728 struct et131x_adapter *adapter = netdev_priv(netdev);
1729
1730 et131x_rx_dma_enable(adapter);
1731 et131x_tx_dma_enable(adapter);
1732
1733 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1734 et131x_enable_interrupts(adapter);
1735
1736 netif_start_queue(netdev);
1737 }
1738
1739 static void et131x_disable_txrx(struct net_device *netdev)
1740 {
1741 struct et131x_adapter *adapter = netdev_priv(netdev);
1742
1743 netif_stop_queue(netdev);
1744
1745 et131x_rx_dma_disable(adapter);
1746 et131x_tx_dma_disable(adapter);
1747
1748 et131x_disable_interrupts(adapter);
1749 }
1750
1751 static void et131x_init_send(struct et131x_adapter *adapter)
1752 {
1753 int i;
1754 struct tx_ring *tx_ring = &adapter->tx_ring;
1755 struct tcb *tcb = tx_ring->tcb_ring;
1756
1757 tx_ring->tcb_qhead = tcb;
1758
1759 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1760
1761 for (i = 0; i < NUM_TCB; i++) {
1762 tcb->next = tcb + 1;
1763 tcb++;
1764 }
1765
1766 tcb--;
1767 tx_ring->tcb_qtail = tcb;
1768 tcb->next = NULL;
1769 /* Curr send queue should now be empty */
1770 tx_ring->send_head = NULL;
1771 tx_ring->send_tail = NULL;
1772 }
1773
1774 /* et1310_enable_phy_coma
1775 *
1776 * driver receive an phy status change interrupt while in D0 and check that
1777 * phy_status is down.
1778 *
1779 * -- gate off JAGCore;
1780 * -- set gigE PHY in Coma mode
1781 * -- wake on phy_interrupt; Perform software reset JAGCore,
1782 * re-initialize jagcore and gigE PHY
1783 */
1784 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1785 {
1786 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1787
1788 /* Stop sending packets. */
1789 adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1790
1791 /* Wait for outstanding Receive packets */
1792 et131x_disable_txrx(adapter->netdev);
1793
1794 /* Gate off JAGCore 3 clock domains */
1795 pmcsr &= ~ET_PMCSR_INIT;
1796 writel(pmcsr, &adapter->regs->global.pm_csr);
1797
1798 /* Program gigE PHY in to Coma mode */
1799 pmcsr |= ET_PM_PHY_SW_COMA;
1800 writel(pmcsr, &adapter->regs->global.pm_csr);
1801 }
1802
1803 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1804 {
1805 u32 pmcsr;
1806
1807 pmcsr = readl(&adapter->regs->global.pm_csr);
1808
1809 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1810 pmcsr |= ET_PMCSR_INIT;
1811 pmcsr &= ~ET_PM_PHY_SW_COMA;
1812 writel(pmcsr, &adapter->regs->global.pm_csr);
1813
1814 /* Restore the GbE PHY speed and duplex modes;
1815 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1816 */
1817
1818 /* Re-initialize the send structures */
1819 et131x_init_send(adapter);
1820
1821 /* Bring the device back to the state it was during init prior to
1822 * autonegotiation being complete. This way, when we get the auto-neg
1823 * complete interrupt, we can complete init by calling ConfigMacREGS2.
1824 */
1825 et131x_soft_reset(adapter);
1826
1827 et131x_adapter_setup(adapter);
1828
1829 /* Allow Tx to restart */
1830 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1831
1832 et131x_enable_txrx(adapter->netdev);
1833 }
1834
1835 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1836 {
1837 u32 tmp_free_buff_ring = *free_buff_ring;
1838
1839 tmp_free_buff_ring++;
1840 /* This works for all cases where limit < 1024. The 1023 case
1841 * works because 1023++ is 1024 which means the if condition is not
1842 * taken but the carry of the bit into the wrap bit toggles the wrap
1843 * value correctly
1844 */
1845 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1846 tmp_free_buff_ring &= ~ET_DMA10_MASK;
1847 tmp_free_buff_ring ^= ET_DMA10_WRAP;
1848 }
1849 /* For the 1023 case */
1850 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1851 *free_buff_ring = tmp_free_buff_ring;
1852 return tmp_free_buff_ring;
1853 }
1854
1855 /* et131x_rx_dma_memory_alloc
1856 *
1857 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1858 * and the Packet Status Ring.
1859 */
1860 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1861 {
1862 u8 id;
1863 u32 i, j;
1864 u32 bufsize;
1865 u32 psr_size;
1866 u32 fbr_chunksize;
1867 struct rx_ring *rx_ring = &adapter->rx_ring;
1868 struct fbr_lookup *fbr;
1869
1870 /* Alloc memory for the lookup table */
1871 rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1872 if (rx_ring->fbr[0] == NULL)
1873 return -ENOMEM;
1874 rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1875 if (rx_ring->fbr[1] == NULL)
1876 return -ENOMEM;
1877
1878 /* The first thing we will do is configure the sizes of the buffer
1879 * rings. These will change based on jumbo packet support. Larger
1880 * jumbo packets increases the size of each entry in FBR0, and the
1881 * number of entries in FBR0, while at the same time decreasing the
1882 * number of entries in FBR1.
1883 *
1884 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
1885 * entries are huge in order to accommodate a "jumbo" frame, then it
1886 * will have less entries. Conversely, FBR1 will now be relied upon
1887 * to carry more "normal" frames, thus it's entry size also increases
1888 * and the number of entries goes up too (since it now carries
1889 * "small" + "regular" packets.
1890 *
1891 * In this scheme, we try to maintain 512 entries between the two
1892 * rings. Also, FBR1 remains a constant size - when it's size doubles
1893 * the number of entries halves. FBR0 increases in size, however.
1894 */
1895 if (adapter->registry_jumbo_packet < 2048) {
1896 rx_ring->fbr[0]->buffsize = 256;
1897 rx_ring->fbr[0]->num_entries = 512;
1898 rx_ring->fbr[1]->buffsize = 2048;
1899 rx_ring->fbr[1]->num_entries = 512;
1900 } else if (adapter->registry_jumbo_packet < 4096) {
1901 rx_ring->fbr[0]->buffsize = 512;
1902 rx_ring->fbr[0]->num_entries = 1024;
1903 rx_ring->fbr[1]->buffsize = 4096;
1904 rx_ring->fbr[1]->num_entries = 512;
1905 } else {
1906 rx_ring->fbr[0]->buffsize = 1024;
1907 rx_ring->fbr[0]->num_entries = 768;
1908 rx_ring->fbr[1]->buffsize = 16384;
1909 rx_ring->fbr[1]->num_entries = 128;
1910 }
1911
1912 rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1913 rx_ring->fbr[1]->num_entries;
1914
1915 for (id = 0; id < NUM_FBRS; id++) {
1916 fbr = rx_ring->fbr[id];
1917 /* Allocate an area of memory for Free Buffer Ring */
1918 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1919 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1920 bufsize,
1921 &fbr->ring_physaddr,
1922 GFP_KERNEL);
1923 if (!fbr->ring_virtaddr) {
1924 dev_err(&adapter->pdev->dev,
1925 "Cannot alloc memory for Free Buffer Ring %d\n",
1926 id);
1927 return -ENOMEM;
1928 }
1929 }
1930
1931 for (id = 0; id < NUM_FBRS; id++) {
1932 fbr = rx_ring->fbr[id];
1933 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1934
1935 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1936 dma_addr_t fbr_physaddr;
1937
1938 fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1939 &adapter->pdev->dev, fbr_chunksize,
1940 &fbr->mem_physaddrs[i],
1941 GFP_KERNEL);
1942
1943 if (!fbr->mem_virtaddrs[i]) {
1944 dev_err(&adapter->pdev->dev,
1945 "Could not alloc memory\n");
1946 return -ENOMEM;
1947 }
1948
1949 /* See NOTE in "Save Physical Address" comment above */
1950 fbr_physaddr = fbr->mem_physaddrs[i];
1951
1952 for (j = 0; j < FBR_CHUNKS; j++) {
1953 u32 k = (i * FBR_CHUNKS) + j;
1954
1955 /* Save the Virtual address of this index for
1956 * quick access later
1957 */
1958 fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1959 (j * fbr->buffsize);
1960
1961 /* now store the physical address in the
1962 * descriptor so the device can access it
1963 */
1964 fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1965 fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1966 fbr_physaddr += fbr->buffsize;
1967 }
1968 }
1969 }
1970
1971 /* Allocate an area of memory for FIFO of Packet Status ring entries */
1972 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1973
1974 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1975 psr_size,
1976 &rx_ring->ps_ring_physaddr,
1977 GFP_KERNEL);
1978
1979 if (!rx_ring->ps_ring_virtaddr) {
1980 dev_err(&adapter->pdev->dev,
1981 "Cannot alloc memory for Packet Status Ring\n");
1982 return -ENOMEM;
1983 }
1984
1985 /* Allocate an area of memory for writeback of status information */
1986 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1987 sizeof(struct rx_status_block),
1988 &rx_ring->rx_status_bus,
1989 GFP_KERNEL);
1990 if (!rx_ring->rx_status_block) {
1991 dev_err(&adapter->pdev->dev,
1992 "Cannot alloc memory for Status Block\n");
1993 return -ENOMEM;
1994 }
1995 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1996
1997 /* The RFDs are going to be put on lists later on, so initialize the
1998 * lists now.
1999 */
2000 INIT_LIST_HEAD(&rx_ring->recv_list);
2001 return 0;
2002 }
2003
2004 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2005 {
2006 u8 id;
2007 u32 ii;
2008 u32 bufsize;
2009 u32 psr_size;
2010 struct rfd *rfd;
2011 struct rx_ring *rx_ring = &adapter->rx_ring;
2012 struct fbr_lookup *fbr;
2013
2014 /* Free RFDs and associated packet descriptors */
2015 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2016
2017 while (!list_empty(&rx_ring->recv_list)) {
2018 rfd = list_entry(rx_ring->recv_list.next,
2019 struct rfd, list_node);
2020
2021 list_del(&rfd->list_node);
2022 rfd->skb = NULL;
2023 kfree(rfd);
2024 }
2025
2026 /* Free Free Buffer Rings */
2027 for (id = 0; id < NUM_FBRS; id++) {
2028 fbr = rx_ring->fbr[id];
2029
2030 if (!fbr || !fbr->ring_virtaddr)
2031 continue;
2032
2033 /* First the packet memory */
2034 for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2035 if (fbr->mem_virtaddrs[ii]) {
2036 bufsize = fbr->buffsize * FBR_CHUNKS;
2037
2038 dma_free_coherent(&adapter->pdev->dev,
2039 bufsize,
2040 fbr->mem_virtaddrs[ii],
2041 fbr->mem_physaddrs[ii]);
2042
2043 fbr->mem_virtaddrs[ii] = NULL;
2044 }
2045 }
2046
2047 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2048
2049 dma_free_coherent(&adapter->pdev->dev,
2050 bufsize,
2051 fbr->ring_virtaddr,
2052 fbr->ring_physaddr);
2053
2054 fbr->ring_virtaddr = NULL;
2055 }
2056
2057 /* Free Packet Status Ring */
2058 if (rx_ring->ps_ring_virtaddr) {
2059 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2060
2061 dma_free_coherent(&adapter->pdev->dev, psr_size,
2062 rx_ring->ps_ring_virtaddr,
2063 rx_ring->ps_ring_physaddr);
2064
2065 rx_ring->ps_ring_virtaddr = NULL;
2066 }
2067
2068 /* Free area of memory for the writeback of status information */
2069 if (rx_ring->rx_status_block) {
2070 dma_free_coherent(&adapter->pdev->dev,
2071 sizeof(struct rx_status_block),
2072 rx_ring->rx_status_block,
2073 rx_ring->rx_status_bus);
2074 rx_ring->rx_status_block = NULL;
2075 }
2076
2077 /* Free the FBR Lookup Table */
2078 kfree(rx_ring->fbr[0]);
2079 kfree(rx_ring->fbr[1]);
2080
2081 /* Reset Counters */
2082 rx_ring->num_ready_recv = 0;
2083 }
2084
2085 /* et131x_init_recv - Initialize receive data structures */
2086 static int et131x_init_recv(struct et131x_adapter *adapter)
2087 {
2088 struct rfd *rfd;
2089 u32 rfdct;
2090 struct rx_ring *rx_ring = &adapter->rx_ring;
2091
2092 /* Setup each RFD */
2093 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2094 rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2095 if (!rfd)
2096 return -ENOMEM;
2097
2098 rfd->skb = NULL;
2099
2100 /* Add this RFD to the recv_list */
2101 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2102
2103 /* Increment the available RFD's */
2104 rx_ring->num_ready_recv++;
2105 }
2106
2107 return 0;
2108 }
2109
2110 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2111 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2112 {
2113 struct phy_device *phydev = adapter->netdev->phydev;
2114
2115 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2116 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2117 */
2118 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2119 writel(0, &adapter->regs->rxdma.max_pkt_time);
2120 writel(1, &adapter->regs->rxdma.num_pkt_done);
2121 }
2122 }
2123
2124 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2125 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2126 {
2127 struct rx_ring *rx_local = &adapter->rx_ring;
2128 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2129 u16 buff_index = rfd->bufferindex;
2130 u8 ring_index = rfd->ringindex;
2131 unsigned long flags;
2132 struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2133
2134 /* We don't use any of the OOB data besides status. Otherwise, we
2135 * need to clean up OOB data
2136 */
2137 if (buff_index < fbr->num_entries) {
2138 u32 free_buff_ring;
2139 u32 __iomem *offset;
2140 struct fbr_desc *next;
2141
2142 if (ring_index == 0)
2143 offset = &rx_dma->fbr0_full_offset;
2144 else
2145 offset = &rx_dma->fbr1_full_offset;
2146
2147 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2148 INDEX10(fbr->local_full);
2149
2150 /* Handle the Free Buffer Ring advancement here. Write
2151 * the PA / Buffer Index for the returned buffer into
2152 * the oldest (next to be freed)FBR entry
2153 */
2154 next->addr_hi = fbr->bus_high[buff_index];
2155 next->addr_lo = fbr->bus_low[buff_index];
2156 next->word2 = buff_index;
2157
2158 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2159 fbr->num_entries - 1);
2160 writel(free_buff_ring, offset);
2161 } else {
2162 dev_err(&adapter->pdev->dev,
2163 "%s illegal Buffer Index returned\n", __func__);
2164 }
2165
2166 /* The processing on this RFD is done, so put it back on the tail of
2167 * our list
2168 */
2169 spin_lock_irqsave(&adapter->rcv_lock, flags);
2170 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2171 rx_local->num_ready_recv++;
2172 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2173
2174 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2175 }
2176
2177 /* nic_rx_pkts - Checks the hardware for available packets
2178 *
2179 * Checks the hardware for available packets, using completion ring
2180 * If packets are available, it gets an RFD from the recv_list, attaches
2181 * the packet to it, puts the RFD in the RecvPendList, and also returns
2182 * the pointer to the RFD.
2183 */
2184 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2185 {
2186 struct rx_ring *rx_local = &adapter->rx_ring;
2187 struct rx_status_block *status;
2188 struct pkt_stat_desc *psr;
2189 struct rfd *rfd;
2190 unsigned long flags;
2191 struct list_head *element;
2192 u8 ring_index;
2193 u16 buff_index;
2194 u32 len;
2195 u32 word0;
2196 u32 word1;
2197 struct sk_buff *skb;
2198 struct fbr_lookup *fbr;
2199
2200 /* RX Status block is written by the DMA engine prior to every
2201 * interrupt. It contains the next to be used entry in the Packet
2202 * Status Ring, and also the two Free Buffer rings.
2203 */
2204 status = rx_local->rx_status_block;
2205 word1 = status->word1 >> 16;
2206
2207 /* Check the PSR and wrap bits do not match */
2208 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2209 return NULL; /* Looks like this ring is not updated yet */
2210
2211 /* The packet status ring indicates that data is available. */
2212 psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2213 (rx_local->local_psr_full & 0xFFF);
2214
2215 /* Grab any information that is required once the PSR is advanced,
2216 * since we can no longer rely on the memory being accurate
2217 */
2218 len = psr->word1 & 0xFFFF;
2219 ring_index = (psr->word1 >> 26) & 0x03;
2220 fbr = rx_local->fbr[ring_index];
2221 buff_index = (psr->word1 >> 16) & 0x3FF;
2222 word0 = psr->word0;
2223
2224 /* Indicate that we have used this PSR entry. */
2225 /* FIXME wrap 12 */
2226 add_12bit(&rx_local->local_psr_full, 1);
2227 if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2228 /* Clear psr full and toggle the wrap bit */
2229 rx_local->local_psr_full &= ~0xFFF;
2230 rx_local->local_psr_full ^= 0x1000;
2231 }
2232
2233 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2234
2235 if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2236 /* Illegal buffer or ring index cannot be used by S/W*/
2237 dev_err(&adapter->pdev->dev,
2238 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2239 rx_local->local_psr_full & 0xFFF, len, buff_index);
2240 return NULL;
2241 }
2242
2243 /* Get and fill the RFD. */
2244 spin_lock_irqsave(&adapter->rcv_lock, flags);
2245
2246 element = rx_local->recv_list.next;
2247 rfd = list_entry(element, struct rfd, list_node);
2248
2249 if (!rfd) {
2250 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2251 return NULL;
2252 }
2253
2254 list_del(&rfd->list_node);
2255 rx_local->num_ready_recv--;
2256
2257 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2258
2259 rfd->bufferindex = buff_index;
2260 rfd->ringindex = ring_index;
2261
2262 /* In V1 silicon, there is a bug which screws up filtering of runt
2263 * packets. Therefore runt packet filtering is disabled in the MAC and
2264 * the packets are dropped here. They are also counted here.
2265 */
2266 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2267 adapter->stats.rx_other_errs++;
2268 rfd->len = 0;
2269 goto out;
2270 }
2271
2272 if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2273 adapter->stats.multicast_pkts_rcvd++;
2274
2275 rfd->len = len;
2276
2277 skb = dev_alloc_skb(rfd->len + 2);
2278 if (!skb)
2279 return NULL;
2280
2281 adapter->netdev->stats.rx_bytes += rfd->len;
2282
2283 memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
2284
2285 skb->protocol = eth_type_trans(skb, adapter->netdev);
2286 skb->ip_summed = CHECKSUM_NONE;
2287 netif_receive_skb(skb);
2288
2289 out:
2290 nic_return_rfd(adapter, rfd);
2291 return rfd;
2292 }
2293
2294 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2295 {
2296 struct rfd *rfd = NULL;
2297 int count = 0;
2298 int limit = budget;
2299 bool done = true;
2300 struct rx_ring *rx_ring = &adapter->rx_ring;
2301
2302 if (budget > MAX_PACKETS_HANDLED)
2303 limit = MAX_PACKETS_HANDLED;
2304
2305 /* Process up to available RFD's */
2306 while (count < limit) {
2307 if (list_empty(&rx_ring->recv_list)) {
2308 WARN_ON(rx_ring->num_ready_recv != 0);
2309 done = false;
2310 break;
2311 }
2312
2313 rfd = nic_rx_pkts(adapter);
2314
2315 if (rfd == NULL)
2316 break;
2317
2318 /* Do not receive any packets until a filter has been set.
2319 * Do not receive any packets until we have link.
2320 * If length is zero, return the RFD in order to advance the
2321 * Free buffer ring.
2322 */
2323 if (!adapter->packet_filter ||
2324 !netif_carrier_ok(adapter->netdev) ||
2325 rfd->len == 0)
2326 continue;
2327
2328 adapter->netdev->stats.rx_packets++;
2329
2330 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2331 dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2332
2333 count++;
2334 }
2335
2336 if (count == limit || !done) {
2337 rx_ring->unfinished_receives = true;
2338 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2339 &adapter->regs->global.watchdog_timer);
2340 } else {
2341 /* Watchdog timer will disable itself if appropriate. */
2342 rx_ring->unfinished_receives = false;
2343 }
2344
2345 return count;
2346 }
2347
2348 /* et131x_tx_dma_memory_alloc
2349 *
2350 * Allocates memory that will be visible both to the device and to the CPU.
2351 * The OS will pass us packets, pointers to which we will insert in the Tx
2352 * Descriptor queue. The device will read this queue to find the packets in
2353 * memory. The device will update the "status" in memory each time it xmits a
2354 * packet.
2355 */
2356 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2357 {
2358 int desc_size = 0;
2359 struct tx_ring *tx_ring = &adapter->tx_ring;
2360
2361 /* Allocate memory for the TCB's (Transmit Control Block) */
2362 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2363 GFP_ATOMIC | GFP_DMA);
2364 if (!tx_ring->tcb_ring)
2365 return -ENOMEM;
2366
2367 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2368 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2369 desc_size,
2370 &tx_ring->tx_desc_ring_pa,
2371 GFP_KERNEL);
2372 if (!tx_ring->tx_desc_ring) {
2373 dev_err(&adapter->pdev->dev,
2374 "Cannot alloc memory for Tx Ring\n");
2375 return -ENOMEM;
2376 }
2377
2378 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2379 sizeof(u32),
2380 &tx_ring->tx_status_pa,
2381 GFP_KERNEL);
2382 if (!tx_ring->tx_status) {
2383 dev_err(&adapter->pdev->dev,
2384 "Cannot alloc memory for Tx status block\n");
2385 return -ENOMEM;
2386 }
2387 return 0;
2388 }
2389
2390 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2391 {
2392 int desc_size = 0;
2393 struct tx_ring *tx_ring = &adapter->tx_ring;
2394
2395 if (tx_ring->tx_desc_ring) {
2396 /* Free memory relating to Tx rings here */
2397 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2398 dma_free_coherent(&adapter->pdev->dev,
2399 desc_size,
2400 tx_ring->tx_desc_ring,
2401 tx_ring->tx_desc_ring_pa);
2402 tx_ring->tx_desc_ring = NULL;
2403 }
2404
2405 /* Free memory for the Tx status block */
2406 if (tx_ring->tx_status) {
2407 dma_free_coherent(&adapter->pdev->dev,
2408 sizeof(u32),
2409 tx_ring->tx_status,
2410 tx_ring->tx_status_pa);
2411
2412 tx_ring->tx_status = NULL;
2413 }
2414 /* Free the memory for the tcb structures */
2415 kfree(tx_ring->tcb_ring);
2416 }
2417
2418 /* nic_send_packet - NIC specific send handler for version B silicon. */
2419 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2420 {
2421 u32 i;
2422 struct tx_desc desc[24];
2423 u32 frag = 0;
2424 u32 thiscopy, remainder;
2425 struct sk_buff *skb = tcb->skb;
2426 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2427 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2428 struct phy_device *phydev = adapter->netdev->phydev;
2429 dma_addr_t dma_addr;
2430 struct tx_ring *tx_ring = &adapter->tx_ring;
2431
2432 /* Part of the optimizations of this send routine restrict us to
2433 * sending 24 fragments at a pass. In practice we should never see
2434 * more than 5 fragments.
2435 */
2436
2437 /* nr_frags should be no more than 18. */
2438 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2439
2440 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2441
2442 for (i = 0; i < nr_frags; i++) {
2443 /* If there is something in this element, lets get a
2444 * descriptor from the ring and get the necessary data
2445 */
2446 if (i == 0) {
2447 /* If the fragments are smaller than a standard MTU,
2448 * then map them to a single descriptor in the Tx
2449 * Desc ring. However, if they're larger, as is
2450 * possible with support for jumbo packets, then
2451 * split them each across 2 descriptors.
2452 *
2453 * This will work until we determine why the hardware
2454 * doesn't seem to like large fragments.
2455 */
2456 if (skb_headlen(skb) <= 1514) {
2457 /* Low 16bits are length, high is vlan and
2458 * unused currently so zero
2459 */
2460 desc[frag].len_vlan = skb_headlen(skb);
2461 dma_addr = dma_map_single(&adapter->pdev->dev,
2462 skb->data,
2463 skb_headlen(skb),
2464 DMA_TO_DEVICE);
2465 desc[frag].addr_lo = lower_32_bits(dma_addr);
2466 desc[frag].addr_hi = upper_32_bits(dma_addr);
2467 frag++;
2468 } else {
2469 desc[frag].len_vlan = skb_headlen(skb) / 2;
2470 dma_addr = dma_map_single(&adapter->pdev->dev,
2471 skb->data,
2472 skb_headlen(skb) / 2,
2473 DMA_TO_DEVICE);
2474 desc[frag].addr_lo = lower_32_bits(dma_addr);
2475 desc[frag].addr_hi = upper_32_bits(dma_addr);
2476 frag++;
2477
2478 desc[frag].len_vlan = skb_headlen(skb) / 2;
2479 dma_addr = dma_map_single(&adapter->pdev->dev,
2480 skb->data +
2481 skb_headlen(skb) / 2,
2482 skb_headlen(skb) / 2,
2483 DMA_TO_DEVICE);
2484 desc[frag].addr_lo = lower_32_bits(dma_addr);
2485 desc[frag].addr_hi = upper_32_bits(dma_addr);
2486 frag++;
2487 }
2488 } else {
2489 desc[frag].len_vlan = frags[i - 1].size;
2490 dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2491 &frags[i - 1],
2492 0,
2493 frags[i - 1].size,
2494 DMA_TO_DEVICE);
2495 desc[frag].addr_lo = lower_32_bits(dma_addr);
2496 desc[frag].addr_hi = upper_32_bits(dma_addr);
2497 frag++;
2498 }
2499 }
2500
2501 if (phydev && phydev->speed == SPEED_1000) {
2502 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2503 /* Last element & Interrupt flag */
2504 desc[frag - 1].flags =
2505 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2506 tx_ring->since_irq = 0;
2507 } else { /* Last element */
2508 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2509 }
2510 } else {
2511 desc[frag - 1].flags =
2512 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2513 }
2514
2515 desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2516
2517 tcb->index_start = tx_ring->send_idx;
2518 tcb->stale = 0;
2519
2520 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2521
2522 if (thiscopy >= frag) {
2523 remainder = 0;
2524 thiscopy = frag;
2525 } else {
2526 remainder = frag - thiscopy;
2527 }
2528
2529 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2530 desc,
2531 sizeof(struct tx_desc) * thiscopy);
2532
2533 add_10bit(&tx_ring->send_idx, thiscopy);
2534
2535 if (INDEX10(tx_ring->send_idx) == 0 ||
2536 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2537 tx_ring->send_idx &= ~ET_DMA10_MASK;
2538 tx_ring->send_idx ^= ET_DMA10_WRAP;
2539 }
2540
2541 if (remainder) {
2542 memcpy(tx_ring->tx_desc_ring,
2543 desc + thiscopy,
2544 sizeof(struct tx_desc) * remainder);
2545
2546 add_10bit(&tx_ring->send_idx, remainder);
2547 }
2548
2549 if (INDEX10(tx_ring->send_idx) == 0) {
2550 if (tx_ring->send_idx)
2551 tcb->index = NUM_DESC_PER_RING_TX - 1;
2552 else
2553 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2554 } else {
2555 tcb->index = tx_ring->send_idx - 1;
2556 }
2557
2558 spin_lock(&adapter->tcb_send_qlock);
2559
2560 if (tx_ring->send_tail)
2561 tx_ring->send_tail->next = tcb;
2562 else
2563 tx_ring->send_head = tcb;
2564
2565 tx_ring->send_tail = tcb;
2566
2567 WARN_ON(tcb->next != NULL);
2568
2569 tx_ring->used++;
2570
2571 spin_unlock(&adapter->tcb_send_qlock);
2572
2573 /* Write the new write pointer back to the device. */
2574 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2575
2576 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
2577 * timer to wake us up if this packet isn't followed by N more.
2578 */
2579 if (phydev && phydev->speed == SPEED_1000) {
2580 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2581 &adapter->regs->global.watchdog_timer);
2582 }
2583 return 0;
2584 }
2585
2586 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2587 {
2588 int status;
2589 struct tcb *tcb;
2590 unsigned long flags;
2591 struct tx_ring *tx_ring = &adapter->tx_ring;
2592
2593 /* All packets must have at least a MAC address and a protocol type */
2594 if (skb->len < ETH_HLEN)
2595 return -EIO;
2596
2597 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2598
2599 tcb = tx_ring->tcb_qhead;
2600
2601 if (tcb == NULL) {
2602 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2603 return -ENOMEM;
2604 }
2605
2606 tx_ring->tcb_qhead = tcb->next;
2607
2608 if (tx_ring->tcb_qhead == NULL)
2609 tx_ring->tcb_qtail = NULL;
2610
2611 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2612
2613 tcb->skb = skb;
2614 tcb->next = NULL;
2615
2616 status = nic_send_packet(adapter, tcb);
2617
2618 if (status != 0) {
2619 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2620
2621 if (tx_ring->tcb_qtail)
2622 tx_ring->tcb_qtail->next = tcb;
2623 else
2624 /* Apparently ready Q is empty. */
2625 tx_ring->tcb_qhead = tcb;
2626
2627 tx_ring->tcb_qtail = tcb;
2628 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2629 return status;
2630 }
2631 WARN_ON(tx_ring->used > NUM_TCB);
2632 return 0;
2633 }
2634
2635 /* free_send_packet - Recycle a struct tcb */
2636 static inline void free_send_packet(struct et131x_adapter *adapter,
2637 struct tcb *tcb)
2638 {
2639 unsigned long flags;
2640 struct tx_desc *desc = NULL;
2641 struct net_device_stats *stats = &adapter->netdev->stats;
2642 struct tx_ring *tx_ring = &adapter->tx_ring;
2643 u64 dma_addr;
2644
2645 if (tcb->skb) {
2646 stats->tx_bytes += tcb->skb->len;
2647
2648 /* Iterate through the TX descriptors on the ring
2649 * corresponding to this packet and umap the fragments
2650 * they point to
2651 */
2652 do {
2653 desc = tx_ring->tx_desc_ring +
2654 INDEX10(tcb->index_start);
2655
2656 dma_addr = desc->addr_lo;
2657 dma_addr |= (u64)desc->addr_hi << 32;
2658
2659 dma_unmap_single(&adapter->pdev->dev,
2660 dma_addr,
2661 desc->len_vlan, DMA_TO_DEVICE);
2662
2663 add_10bit(&tcb->index_start, 1);
2664 if (INDEX10(tcb->index_start) >=
2665 NUM_DESC_PER_RING_TX) {
2666 tcb->index_start &= ~ET_DMA10_MASK;
2667 tcb->index_start ^= ET_DMA10_WRAP;
2668 }
2669 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2670
2671 dev_kfree_skb_any(tcb->skb);
2672 }
2673
2674 memset(tcb, 0, sizeof(struct tcb));
2675
2676 /* Add the TCB to the Ready Q */
2677 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2678
2679 stats->tx_packets++;
2680
2681 if (tx_ring->tcb_qtail)
2682 tx_ring->tcb_qtail->next = tcb;
2683 else /* Apparently ready Q is empty. */
2684 tx_ring->tcb_qhead = tcb;
2685
2686 tx_ring->tcb_qtail = tcb;
2687
2688 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2689 WARN_ON(tx_ring->used < 0);
2690 }
2691
2692 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2693 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2694 {
2695 struct tcb *tcb;
2696 unsigned long flags;
2697 u32 freed = 0;
2698 struct tx_ring *tx_ring = &adapter->tx_ring;
2699
2700 /* Any packets being sent? Check the first TCB on the send list */
2701 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2702
2703 tcb = tx_ring->send_head;
2704
2705 while (tcb != NULL && freed < NUM_TCB) {
2706 struct tcb *next = tcb->next;
2707
2708 tx_ring->send_head = next;
2709
2710 if (next == NULL)
2711 tx_ring->send_tail = NULL;
2712
2713 tx_ring->used--;
2714
2715 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2716
2717 freed++;
2718 free_send_packet(adapter, tcb);
2719
2720 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2721
2722 tcb = tx_ring->send_head;
2723 }
2724
2725 WARN_ON(freed == NUM_TCB);
2726
2727 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2728
2729 tx_ring->used = 0;
2730 }
2731
2732 /* et131x_handle_send_pkts
2733 *
2734 * Re-claim the send resources, complete sends and get more to send from
2735 * the send wait queue.
2736 */
2737 static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2738 {
2739 unsigned long flags;
2740 u32 serviced;
2741 struct tcb *tcb;
2742 u32 index;
2743 struct tx_ring *tx_ring = &adapter->tx_ring;
2744
2745 serviced = readl(&adapter->regs->txdma.new_service_complete);
2746 index = INDEX10(serviced);
2747
2748 /* Has the ring wrapped? Process any descriptors that do not have
2749 * the same "wrap" indicator as the current completion indicator
2750 */
2751 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2752
2753 tcb = tx_ring->send_head;
2754
2755 while (tcb &&
2756 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2757 index < INDEX10(tcb->index)) {
2758 tx_ring->used--;
2759 tx_ring->send_head = tcb->next;
2760 if (tcb->next == NULL)
2761 tx_ring->send_tail = NULL;
2762
2763 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2764 free_send_packet(adapter, tcb);
2765 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2766
2767 /* Goto the next packet */
2768 tcb = tx_ring->send_head;
2769 }
2770 while (tcb &&
2771 !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2772 index > (tcb->index & ET_DMA10_MASK)) {
2773 tx_ring->used--;
2774 tx_ring->send_head = tcb->next;
2775 if (tcb->next == NULL)
2776 tx_ring->send_tail = NULL;
2777
2778 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2779 free_send_packet(adapter, tcb);
2780 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2781
2782 /* Goto the next packet */
2783 tcb = tx_ring->send_head;
2784 }
2785
2786 /* Wake up the queue when we hit a low-water mark */
2787 if (tx_ring->used <= NUM_TCB / 3)
2788 netif_wake_queue(adapter->netdev);
2789
2790 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2791 }
2792
2793 static int et131x_get_regs_len(struct net_device *netdev)
2794 {
2795 #define ET131X_REGS_LEN 256
2796 return ET131X_REGS_LEN * sizeof(u32);
2797 }
2798
2799 static void et131x_get_regs(struct net_device *netdev,
2800 struct ethtool_regs *regs, void *regs_data)
2801 {
2802 struct et131x_adapter *adapter = netdev_priv(netdev);
2803 struct address_map __iomem *aregs = adapter->regs;
2804 u32 *regs_buff = regs_data;
2805 u32 num = 0;
2806 u16 tmp;
2807
2808 memset(regs_data, 0, et131x_get_regs_len(netdev));
2809
2810 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2811 adapter->pdev->device;
2812
2813 /* PHY regs */
2814 et131x_mii_read(adapter, MII_BMCR, &tmp);
2815 regs_buff[num++] = tmp;
2816 et131x_mii_read(adapter, MII_BMSR, &tmp);
2817 regs_buff[num++] = tmp;
2818 et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2819 regs_buff[num++] = tmp;
2820 et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2821 regs_buff[num++] = tmp;
2822 et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2823 regs_buff[num++] = tmp;
2824 et131x_mii_read(adapter, MII_LPA, &tmp);
2825 regs_buff[num++] = tmp;
2826 et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2827 regs_buff[num++] = tmp;
2828 /* Autoneg next page transmit reg */
2829 et131x_mii_read(adapter, 0x07, &tmp);
2830 regs_buff[num++] = tmp;
2831 /* Link partner next page reg */
2832 et131x_mii_read(adapter, 0x08, &tmp);
2833 regs_buff[num++] = tmp;
2834 et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2835 regs_buff[num++] = tmp;
2836 et131x_mii_read(adapter, MII_STAT1000, &tmp);
2837 regs_buff[num++] = tmp;
2838 et131x_mii_read(adapter, 0x0b, &tmp);
2839 regs_buff[num++] = tmp;
2840 et131x_mii_read(adapter, 0x0c, &tmp);
2841 regs_buff[num++] = tmp;
2842 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2843 regs_buff[num++] = tmp;
2844 et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2845 regs_buff[num++] = tmp;
2846 et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2847 regs_buff[num++] = tmp;
2848
2849 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2850 regs_buff[num++] = tmp;
2851 et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2852 regs_buff[num++] = tmp;
2853 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2854 regs_buff[num++] = tmp;
2855 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2856 regs_buff[num++] = tmp;
2857 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2858 regs_buff[num++] = tmp;
2859
2860 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2861 regs_buff[num++] = tmp;
2862 et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2863 regs_buff[num++] = tmp;
2864 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2865 regs_buff[num++] = tmp;
2866 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2867 regs_buff[num++] = tmp;
2868 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2869 regs_buff[num++] = tmp;
2870 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2871 regs_buff[num++] = tmp;
2872 et131x_mii_read(adapter, PHY_LED_1, &tmp);
2873 regs_buff[num++] = tmp;
2874 et131x_mii_read(adapter, PHY_LED_2, &tmp);
2875 regs_buff[num++] = tmp;
2876
2877 /* Global regs */
2878 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2879 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2880 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2881 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2882 regs_buff[num++] = readl(&aregs->global.pm_csr);
2883 regs_buff[num++] = adapter->stats.interrupt_status;
2884 regs_buff[num++] = readl(&aregs->global.int_mask);
2885 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2886 regs_buff[num++] = readl(&aregs->global.int_status_alias);
2887 regs_buff[num++] = readl(&aregs->global.sw_reset);
2888 regs_buff[num++] = readl(&aregs->global.slv_timer);
2889 regs_buff[num++] = readl(&aregs->global.msi_config);
2890 regs_buff[num++] = readl(&aregs->global.loopback);
2891 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2892
2893 /* TXDMA regs */
2894 regs_buff[num++] = readl(&aregs->txdma.csr);
2895 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2896 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2897 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2898 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2899 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2900 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2901 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2902 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2903 regs_buff[num++] = readl(&aregs->txdma.service_request);
2904 regs_buff[num++] = readl(&aregs->txdma.service_complete);
2905 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2906 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2907 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2908 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2909 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2910 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2911 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2912 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2913 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2914 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2915 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2916 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2917 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2918 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2919 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2920
2921 /* RXDMA regs */
2922 regs_buff[num++] = readl(&aregs->rxdma.csr);
2923 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2924 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2925 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2926 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2927 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2928 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2929 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2930 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2931 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2932 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2933 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2934 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2935 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2936 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2937 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2938 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2939 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2940 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2941 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2942 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2943 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2944 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2945 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2946 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2947 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2948 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2949 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2950 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2951 }
2952
2953 static void et131x_get_drvinfo(struct net_device *netdev,
2954 struct ethtool_drvinfo *info)
2955 {
2956 struct et131x_adapter *adapter = netdev_priv(netdev);
2957
2958 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2959 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
2960 strlcpy(info->bus_info, pci_name(adapter->pdev),
2961 sizeof(info->bus_info));
2962 }
2963
2964 static const struct ethtool_ops et131x_ethtool_ops = {
2965 .get_drvinfo = et131x_get_drvinfo,
2966 .get_regs_len = et131x_get_regs_len,
2967 .get_regs = et131x_get_regs,
2968 .get_link = ethtool_op_get_link,
2969 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2970 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2971 };
2972
2973 /* et131x_hwaddr_init - set up the MAC Address */
2974 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2975 {
2976 /* If have our default mac from init and no mac address from
2977 * EEPROM then we need to generate the last octet and set it on the
2978 * device
2979 */
2980 if (is_zero_ether_addr(adapter->rom_addr)) {
2981 /* We need to randomly generate the last octet so we
2982 * decrease our chances of setting the mac address to
2983 * same as another one of our cards in the system
2984 */
2985 get_random_bytes(&adapter->addr[5], 1);
2986 /* We have the default value in the register we are
2987 * working with so we need to copy the current
2988 * address into the permanent address
2989 */
2990 ether_addr_copy(adapter->rom_addr, adapter->addr);
2991 } else {
2992 /* We do not have an override address, so set the
2993 * current address to the permanent address and add
2994 * it to the device
2995 */
2996 ether_addr_copy(adapter->addr, adapter->rom_addr);
2997 }
2998 }
2999
3000 static int et131x_pci_init(struct et131x_adapter *adapter,
3001 struct pci_dev *pdev)
3002 {
3003 u16 max_payload;
3004 int i, rc;
3005
3006 rc = et131x_init_eeprom(adapter);
3007 if (rc < 0)
3008 goto out;
3009
3010 if (!pci_is_pcie(pdev)) {
3011 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3012 goto err_out;
3013 }
3014
3015 /* Program the Ack/Nak latency and replay timers */
3016 max_payload = pdev->pcie_mpss;
3017
3018 if (max_payload < 2) {
3019 static const u16 acknak[2] = { 0x76, 0xD0 };
3020 static const u16 replay[2] = { 0x1E0, 0x2ED };
3021
3022 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3023 acknak[max_payload])) {
3024 dev_err(&pdev->dev,
3025 "Could not write PCI config space for ACK/NAK\n");
3026 goto err_out;
3027 }
3028 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3029 replay[max_payload])) {
3030 dev_err(&pdev->dev,
3031 "Could not write PCI config space for Replay Timer\n");
3032 goto err_out;
3033 }
3034 }
3035
3036 /* l0s and l1 latency timers. We are using default values.
3037 * Representing 001 for L0s and 010 for L1
3038 */
3039 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3040 dev_err(&pdev->dev,
3041 "Could not write PCI config space for Latency Timers\n");
3042 goto err_out;
3043 }
3044
3045 /* Change the max read size to 2k */
3046 if (pcie_set_readrq(pdev, 2048)) {
3047 dev_err(&pdev->dev,
3048 "Couldn't change PCI config space for Max read size\n");
3049 goto err_out;
3050 }
3051
3052 /* Get MAC address from config space if an eeprom exists, otherwise
3053 * the MAC address there will not be valid
3054 */
3055 if (!adapter->has_eeprom) {
3056 et131x_hwaddr_init(adapter);
3057 return 0;
3058 }
3059
3060 for (i = 0; i < ETH_ALEN; i++) {
3061 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3062 adapter->rom_addr + i)) {
3063 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3064 goto err_out;
3065 }
3066 }
3067 ether_addr_copy(adapter->addr, adapter->rom_addr);
3068 out:
3069 return rc;
3070 err_out:
3071 rc = -EIO;
3072 goto out;
3073 }
3074
3075 /* et131x_error_timer_handler
3076 * @data: timer-specific variable; here a pointer to our adapter structure
3077 *
3078 * The routine called when the error timer expires, to track the number of
3079 * recurring errors.
3080 */
3081 static void et131x_error_timer_handler(unsigned long data)
3082 {
3083 struct et131x_adapter *adapter = (struct et131x_adapter *)data;
3084 struct phy_device *phydev = adapter->netdev->phydev;
3085
3086 if (et1310_in_phy_coma(adapter)) {
3087 /* Bring the device immediately out of coma, to
3088 * prevent it from sleeping indefinitely, this
3089 * mechanism could be improved!
3090 */
3091 et1310_disable_phy_coma(adapter);
3092 adapter->boot_coma = 20;
3093 } else {
3094 et1310_update_macstat_host_counters(adapter);
3095 }
3096
3097 if (!phydev->link && adapter->boot_coma < 11)
3098 adapter->boot_coma++;
3099
3100 if (adapter->boot_coma == 10) {
3101 if (!phydev->link) {
3102 if (!et1310_in_phy_coma(adapter)) {
3103 /* NOTE - This was originally a 'sync with
3104 * interrupt'. How to do that under Linux?
3105 */
3106 et131x_enable_interrupts(adapter);
3107 et1310_enable_phy_coma(adapter);
3108 }
3109 }
3110 }
3111
3112 /* This is a periodic timer, so reschedule */
3113 mod_timer(&adapter->error_timer, jiffies +
3114 msecs_to_jiffies(TX_ERROR_PERIOD));
3115 }
3116
3117 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3118 {
3119 et131x_tx_dma_memory_free(adapter);
3120 et131x_rx_dma_memory_free(adapter);
3121 }
3122
3123 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3124 {
3125 int status;
3126
3127 status = et131x_tx_dma_memory_alloc(adapter);
3128 if (status) {
3129 dev_err(&adapter->pdev->dev,
3130 "et131x_tx_dma_memory_alloc FAILED\n");
3131 et131x_tx_dma_memory_free(adapter);
3132 return status;
3133 }
3134
3135 status = et131x_rx_dma_memory_alloc(adapter);
3136 if (status) {
3137 dev_err(&adapter->pdev->dev,
3138 "et131x_rx_dma_memory_alloc FAILED\n");
3139 et131x_adapter_memory_free(adapter);
3140 return status;
3141 }
3142
3143 status = et131x_init_recv(adapter);
3144 if (status) {
3145 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3146 et131x_adapter_memory_free(adapter);
3147 }
3148 return status;
3149 }
3150
3151 static void et131x_adjust_link(struct net_device *netdev)
3152 {
3153 struct et131x_adapter *adapter = netdev_priv(netdev);
3154 struct phy_device *phydev = netdev->phydev;
3155
3156 if (!phydev)
3157 return;
3158 if (phydev->link == adapter->link)
3159 return;
3160
3161 /* Check to see if we are in coma mode and if
3162 * so, disable it because we will not be able
3163 * to read PHY values until we are out.
3164 */
3165 if (et1310_in_phy_coma(adapter))
3166 et1310_disable_phy_coma(adapter);
3167
3168 adapter->link = phydev->link;
3169 phy_print_status(phydev);
3170
3171 if (phydev->link) {
3172 adapter->boot_coma = 20;
3173 if (phydev->speed == SPEED_10) {
3174 u16 register18;
3175
3176 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3177 &register18);
3178 et131x_mii_write(adapter, phydev->mdio.addr,
3179 PHY_MPHY_CONTROL_REG,
3180 register18 | 0x4);
3181 et131x_mii_write(adapter, phydev->mdio.addr,
3182 PHY_INDEX_REG, register18 | 0x8402);
3183 et131x_mii_write(adapter, phydev->mdio.addr,
3184 PHY_DATA_REG, register18 | 511);
3185 et131x_mii_write(adapter, phydev->mdio.addr,
3186 PHY_MPHY_CONTROL_REG, register18);
3187 }
3188
3189 et1310_config_flow_control(adapter);
3190
3191 if (phydev->speed == SPEED_1000 &&
3192 adapter->registry_jumbo_packet > 2048) {
3193 u16 reg;
3194
3195 et131x_mii_read(adapter, PHY_CONFIG, &reg);
3196 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3197 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3198 et131x_mii_write(adapter, phydev->mdio.addr,
3199 PHY_CONFIG, reg);
3200 }
3201
3202 et131x_set_rx_dma_timer(adapter);
3203 et1310_config_mac_regs2(adapter);
3204 } else {
3205 adapter->boot_coma = 0;
3206
3207 if (phydev->speed == SPEED_10) {
3208 u16 register18;
3209
3210 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3211 &register18);
3212 et131x_mii_write(adapter, phydev->mdio.addr,
3213 PHY_MPHY_CONTROL_REG,
3214 register18 | 0x4);
3215 et131x_mii_write(adapter, phydev->mdio.addr,
3216 PHY_INDEX_REG, register18 | 0x8402);
3217 et131x_mii_write(adapter, phydev->mdio.addr,
3218 PHY_DATA_REG, register18 | 511);
3219 et131x_mii_write(adapter, phydev->mdio.addr,
3220 PHY_MPHY_CONTROL_REG, register18);
3221 }
3222
3223 et131x_free_busy_send_packets(adapter);
3224 et131x_init_send(adapter);
3225
3226 /* Bring the device back to the state it was during
3227 * init prior to autonegotiation being complete. This
3228 * way, when we get the auto-neg complete interrupt,
3229 * we can complete init by calling config_mac_regs2.
3230 */
3231 et131x_soft_reset(adapter);
3232
3233 et131x_adapter_setup(adapter);
3234
3235 et131x_disable_txrx(netdev);
3236 et131x_enable_txrx(netdev);
3237 }
3238 }
3239
3240 static int et131x_mii_probe(struct net_device *netdev)
3241 {
3242 struct et131x_adapter *adapter = netdev_priv(netdev);
3243 struct phy_device *phydev = NULL;
3244
3245 phydev = phy_find_first(adapter->mii_bus);
3246 if (!phydev) {
3247 dev_err(&adapter->pdev->dev, "no PHY found\n");
3248 return -ENODEV;
3249 }
3250
3251 phydev = phy_connect(netdev, phydev_name(phydev),
3252 &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3253
3254 if (IS_ERR(phydev)) {
3255 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3256 return PTR_ERR(phydev);
3257 }
3258
3259 phydev->supported &= (SUPPORTED_10baseT_Half |
3260 SUPPORTED_10baseT_Full |
3261 SUPPORTED_100baseT_Half |
3262 SUPPORTED_100baseT_Full |
3263 SUPPORTED_Autoneg |
3264 SUPPORTED_MII |
3265 SUPPORTED_TP);
3266
3267 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3268 phydev->supported |= SUPPORTED_1000baseT_Half |
3269 SUPPORTED_1000baseT_Full;
3270
3271 phydev->advertising = phydev->supported;
3272 phydev->autoneg = AUTONEG_ENABLE;
3273
3274 phy_attached_info(phydev);
3275
3276 return 0;
3277 }
3278
3279 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3280 struct pci_dev *pdev)
3281 {
3282 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3283
3284 struct et131x_adapter *adapter;
3285
3286 adapter = netdev_priv(netdev);
3287 adapter->pdev = pci_dev_get(pdev);
3288 adapter->netdev = netdev;
3289
3290 spin_lock_init(&adapter->tcb_send_qlock);
3291 spin_lock_init(&adapter->tcb_ready_qlock);
3292 spin_lock_init(&adapter->rcv_lock);
3293
3294 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
3295
3296 ether_addr_copy(adapter->addr, default_mac);
3297
3298 return adapter;
3299 }
3300
3301 static void et131x_pci_remove(struct pci_dev *pdev)
3302 {
3303 struct net_device *netdev = pci_get_drvdata(pdev);
3304 struct et131x_adapter *adapter = netdev_priv(netdev);
3305
3306 unregister_netdev(netdev);
3307 netif_napi_del(&adapter->napi);
3308 phy_disconnect(netdev->phydev);
3309 mdiobus_unregister(adapter->mii_bus);
3310 mdiobus_free(adapter->mii_bus);
3311
3312 et131x_adapter_memory_free(adapter);
3313 iounmap(adapter->regs);
3314 pci_dev_put(pdev);
3315
3316 free_netdev(netdev);
3317 pci_release_regions(pdev);
3318 pci_disable_device(pdev);
3319 }
3320
3321 static void et131x_up(struct net_device *netdev)
3322 {
3323 et131x_enable_txrx(netdev);
3324 phy_start(netdev->phydev);
3325 }
3326
3327 static void et131x_down(struct net_device *netdev)
3328 {
3329 /* Save the timestamp for the TX watchdog, prevent a timeout */
3330 netif_trans_update(netdev);
3331
3332 phy_stop(netdev->phydev);
3333 et131x_disable_txrx(netdev);
3334 }
3335
3336 #ifdef CONFIG_PM_SLEEP
3337 static int et131x_suspend(struct device *dev)
3338 {
3339 struct pci_dev *pdev = to_pci_dev(dev);
3340 struct net_device *netdev = pci_get_drvdata(pdev);
3341
3342 if (netif_running(netdev)) {
3343 netif_device_detach(netdev);
3344 et131x_down(netdev);
3345 pci_save_state(pdev);
3346 }
3347
3348 return 0;
3349 }
3350
3351 static int et131x_resume(struct device *dev)
3352 {
3353 struct pci_dev *pdev = to_pci_dev(dev);
3354 struct net_device *netdev = pci_get_drvdata(pdev);
3355
3356 if (netif_running(netdev)) {
3357 pci_restore_state(pdev);
3358 et131x_up(netdev);
3359 netif_device_attach(netdev);
3360 }
3361
3362 return 0;
3363 }
3364 #endif
3365
3366 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3367
3368 static irqreturn_t et131x_isr(int irq, void *dev_id)
3369 {
3370 bool handled = true;
3371 bool enable_interrupts = true;
3372 struct net_device *netdev = dev_id;
3373 struct et131x_adapter *adapter = netdev_priv(netdev);
3374 struct address_map __iomem *iomem = adapter->regs;
3375 struct rx_ring *rx_ring = &adapter->rx_ring;
3376 struct tx_ring *tx_ring = &adapter->tx_ring;
3377 u32 status;
3378
3379 if (!netif_device_present(netdev)) {
3380 handled = false;
3381 enable_interrupts = false;
3382 goto out;
3383 }
3384
3385 et131x_disable_interrupts(adapter);
3386
3387 status = readl(&adapter->regs->global.int_status);
3388
3389 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3390 status &= ~INT_MASK_ENABLE;
3391 else
3392 status &= ~INT_MASK_ENABLE_NO_FLOW;
3393
3394 /* Make sure this is our interrupt */
3395 if (!status) {
3396 handled = false;
3397 et131x_enable_interrupts(adapter);
3398 goto out;
3399 }
3400
3401 /* This is our interrupt, so process accordingly */
3402 if (status & ET_INTR_WATCHDOG) {
3403 struct tcb *tcb = tx_ring->send_head;
3404
3405 if (tcb)
3406 if (++tcb->stale > 1)
3407 status |= ET_INTR_TXDMA_ISR;
3408
3409 if (rx_ring->unfinished_receives)
3410 status |= ET_INTR_RXDMA_XFR_DONE;
3411 else if (tcb == NULL)
3412 writel(0, &adapter->regs->global.watchdog_timer);
3413
3414 status &= ~ET_INTR_WATCHDOG;
3415 }
3416
3417 if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3418 enable_interrupts = false;
3419 napi_schedule(&adapter->napi);
3420 }
3421
3422 status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3423
3424 if (!status)
3425 goto out;
3426
3427 if (status & ET_INTR_TXDMA_ERR) {
3428 /* Following read also clears the register (COR) */
3429 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3430
3431 dev_warn(&adapter->pdev->dev,
3432 "TXDMA_ERR interrupt, error = %d\n",
3433 txdma_err);
3434 }
3435
3436 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3437 /* This indicates the number of unused buffers in RXDMA free
3438 * buffer ring 0 is <= the limit you programmed. Free buffer
3439 * resources need to be returned. Free buffers are consumed as
3440 * packets are passed from the network to the host. The host
3441 * becomes aware of the packets from the contents of the packet
3442 * status ring. This ring is queried when the packet done
3443 * interrupt occurs. Packets are then passed to the OS. When
3444 * the OS is done with the packets the resources can be
3445 * returned to the ET1310 for re-use. This interrupt is one
3446 * method of returning resources.
3447 */
3448
3449 /* If the user has flow control on, then we will
3450 * send a pause packet, otherwise just exit
3451 */
3452 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3453 u32 pm_csr;
3454
3455 /* Tell the device to send a pause packet via the back
3456 * pressure register (bp req and bp xon/xoff)
3457 */
3458 pm_csr = readl(&iomem->global.pm_csr);
3459 if (!et1310_in_phy_coma(adapter))
3460 writel(3, &iomem->txmac.bp_ctrl);
3461 }
3462 }
3463
3464 /* Handle Packet Status Ring Low Interrupt */
3465 if (status & ET_INTR_RXDMA_STAT_LOW) {
3466 /* Same idea as with the two Free Buffer Rings. Packets going
3467 * from the network to the host each consume a free buffer
3468 * resource and a packet status resource. These resources are
3469 * passed to the OS. When the OS is done with the resources,
3470 * they need to be returned to the ET1310. This is one method
3471 * of returning the resources.
3472 */
3473 }
3474
3475 if (status & ET_INTR_RXDMA_ERR) {
3476 /* The rxdma_error interrupt is sent when a time-out on a
3477 * request issued by the JAGCore has occurred or a completion is
3478 * returned with an un-successful status. In both cases the
3479 * request is considered complete. The JAGCore will
3480 * automatically re-try the request in question. Normally
3481 * information on events like these are sent to the host using
3482 * the "Advanced Error Reporting" capability. This interrupt is
3483 * another way of getting similar information. The only thing
3484 * required is to clear the interrupt by reading the ISR in the
3485 * global resources. The JAGCore will do a re-try on the
3486 * request. Normally you should never see this interrupt. If
3487 * you start to see this interrupt occurring frequently then
3488 * something bad has occurred. A reset might be the thing to do.
3489 */
3490 /* TRAP();*/
3491
3492 dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3493 readl(&iomem->txmac.tx_test));
3494 }
3495
3496 /* Handle the Wake on LAN Event */
3497 if (status & ET_INTR_WOL) {
3498 /* This is a secondary interrupt for wake on LAN. The driver
3499 * should never see this, if it does, something serious is
3500 * wrong.
3501 */
3502 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3503 }
3504
3505 if (status & ET_INTR_TXMAC) {
3506 u32 err = readl(&iomem->txmac.err);
3507
3508 /* When any of the errors occur and TXMAC generates an
3509 * interrupt to report these errors, it usually means that
3510 * TXMAC has detected an error in the data stream retrieved
3511 * from the on-chip Tx Q. All of these errors are catastrophic
3512 * and TXMAC won't be able to recover data when these errors
3513 * occur. In a nutshell, the whole Tx path will have to be reset
3514 * and re-configured afterwards.
3515 */
3516 dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3517 err);
3518
3519 /* If we are debugging, we want to see this error, otherwise we
3520 * just want the device to be reset and continue
3521 */
3522 }
3523
3524 if (status & ET_INTR_RXMAC) {
3525 /* These interrupts are catastrophic to the device, what we need
3526 * to do is disable the interrupts and set the flag to cause us
3527 * to reset so we can solve this issue.
3528 */
3529 dev_warn(&adapter->pdev->dev,
3530 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
3531 readl(&iomem->rxmac.err_reg));
3532
3533 dev_warn(&adapter->pdev->dev,
3534 "Enable 0x%08x, Diag 0x%08x\n",
3535 readl(&iomem->rxmac.ctrl),
3536 readl(&iomem->rxmac.rxq_diag));
3537
3538 /* If we are debugging, we want to see this error, otherwise we
3539 * just want the device to be reset and continue
3540 */
3541 }
3542
3543 if (status & ET_INTR_MAC_STAT) {
3544 /* This means at least one of the un-masked counters in the
3545 * MAC_STAT block has rolled over. Use this to maintain the top,
3546 * software managed bits of the counter(s).
3547 */
3548 et1310_handle_macstat_interrupt(adapter);
3549 }
3550
3551 if (status & ET_INTR_SLV_TIMEOUT) {
3552 /* This means a timeout has occurred on a read or write request
3553 * to one of the JAGCore registers. The Global Resources block
3554 * has terminated the request and on a read request, returned a
3555 * "fake" value. The most likely reasons are: Bad Address or the
3556 * addressed module is in a power-down state and can't respond.
3557 */
3558 }
3559
3560 out:
3561 if (enable_interrupts)
3562 et131x_enable_interrupts(adapter);
3563
3564 return IRQ_RETVAL(handled);
3565 }
3566
3567 static int et131x_poll(struct napi_struct *napi, int budget)
3568 {
3569 struct et131x_adapter *adapter =
3570 container_of(napi, struct et131x_adapter, napi);
3571 int work_done = et131x_handle_recv_pkts(adapter, budget);
3572
3573 et131x_handle_send_pkts(adapter);
3574
3575 if (work_done < budget) {
3576 napi_complete(&adapter->napi);
3577 et131x_enable_interrupts(adapter);
3578 }
3579
3580 return work_done;
3581 }
3582
3583 /* et131x_stats - Return the current device statistics */
3584 static struct net_device_stats *et131x_stats(struct net_device *netdev)
3585 {
3586 struct et131x_adapter *adapter = netdev_priv(netdev);
3587 struct net_device_stats *stats = &adapter->netdev->stats;
3588 struct ce_stats *devstat = &adapter->stats;
3589
3590 stats->rx_errors = devstat->rx_length_errs +
3591 devstat->rx_align_errs +
3592 devstat->rx_crc_errs +
3593 devstat->rx_code_violations +
3594 devstat->rx_other_errs;
3595 stats->tx_errors = devstat->tx_max_pkt_errs;
3596 stats->multicast = devstat->multicast_pkts_rcvd;
3597 stats->collisions = devstat->tx_collisions;
3598
3599 stats->rx_length_errors = devstat->rx_length_errs;
3600 stats->rx_over_errors = devstat->rx_overflows;
3601 stats->rx_crc_errors = devstat->rx_crc_errs;
3602 stats->rx_dropped = devstat->rcvd_pkts_dropped;
3603
3604 /* NOTE: Not used, can't find analogous statistics */
3605 /* stats->rx_frame_errors = devstat->; */
3606 /* stats->rx_fifo_errors = devstat->; */
3607 /* stats->rx_missed_errors = devstat->; */
3608
3609 /* stats->tx_aborted_errors = devstat->; */
3610 /* stats->tx_carrier_errors = devstat->; */
3611 /* stats->tx_fifo_errors = devstat->; */
3612 /* stats->tx_heartbeat_errors = devstat->; */
3613 /* stats->tx_window_errors = devstat->; */
3614 return stats;
3615 }
3616
3617 static int et131x_open(struct net_device *netdev)
3618 {
3619 struct et131x_adapter *adapter = netdev_priv(netdev);
3620 struct pci_dev *pdev = adapter->pdev;
3621 unsigned int irq = pdev->irq;
3622 int result;
3623
3624 /* Start the timer to track NIC errors */
3625 init_timer(&adapter->error_timer);
3626 adapter->error_timer.expires = jiffies +
3627 msecs_to_jiffies(TX_ERROR_PERIOD);
3628 adapter->error_timer.function = et131x_error_timer_handler;
3629 adapter->error_timer.data = (unsigned long)adapter;
3630 add_timer(&adapter->error_timer);
3631
3632 result = request_irq(irq, et131x_isr,
3633 IRQF_SHARED, netdev->name, netdev);
3634 if (result) {
3635 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3636 return result;
3637 }
3638
3639 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3640
3641 napi_enable(&adapter->napi);
3642
3643 et131x_up(netdev);
3644
3645 return result;
3646 }
3647
3648 static int et131x_close(struct net_device *netdev)
3649 {
3650 struct et131x_adapter *adapter = netdev_priv(netdev);
3651
3652 et131x_down(netdev);
3653 napi_disable(&adapter->napi);
3654
3655 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3656 free_irq(adapter->pdev->irq, netdev);
3657
3658 /* Stop the error timer */
3659 return del_timer_sync(&adapter->error_timer);
3660 }
3661
3662 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
3663 int cmd)
3664 {
3665 if (!netdev->phydev)
3666 return -EINVAL;
3667
3668 return phy_mii_ioctl(netdev->phydev, reqbuf, cmd);
3669 }
3670
3671 /* et131x_set_packet_filter - Configures the Rx Packet filtering */
3672 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3673 {
3674 int filter = adapter->packet_filter;
3675 u32 ctrl;
3676 u32 pf_ctrl;
3677
3678 ctrl = readl(&adapter->regs->rxmac.ctrl);
3679 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3680
3681 /* Default to disabled packet filtering */
3682 ctrl |= 0x04;
3683
3684 /* Set us to be in promiscuous mode so we receive everything, this
3685 * is also true when we get a packet filter of 0
3686 */
3687 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3688 pf_ctrl &= ~7; /* Clear filter bits */
3689 else {
3690 /* Set us up with Multicast packet filtering. Three cases are
3691 * possible - (1) we have a multi-cast list, (2) we receive ALL
3692 * multicast entries or (3) we receive none.
3693 */
3694 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3695 pf_ctrl &= ~2; /* Multicast filter bit */
3696 else {
3697 et1310_setup_device_for_multicast(adapter);
3698 pf_ctrl |= 2;
3699 ctrl &= ~0x04;
3700 }
3701
3702 /* Set us up with Unicast packet filtering */
3703 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3704 et1310_setup_device_for_unicast(adapter);
3705 pf_ctrl |= 4;
3706 ctrl &= ~0x04;
3707 }
3708
3709 /* Set us up with Broadcast packet filtering */
3710 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3711 pf_ctrl |= 1; /* Broadcast filter bit */
3712 ctrl &= ~0x04;
3713 } else {
3714 pf_ctrl &= ~1;
3715 }
3716
3717 /* Setup the receive mac configuration registers - Packet
3718 * Filter control + the enable / disable for packet filter
3719 * in the control reg.
3720 */
3721 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3722 writel(ctrl, &adapter->regs->rxmac.ctrl);
3723 }
3724 return 0;
3725 }
3726
3727 static void et131x_multicast(struct net_device *netdev)
3728 {
3729 struct et131x_adapter *adapter = netdev_priv(netdev);
3730 int packet_filter;
3731 struct netdev_hw_addr *ha;
3732 int i;
3733
3734 /* Before we modify the platform-independent filter flags, store them
3735 * locally. This allows us to determine if anything's changed and if
3736 * we even need to bother the hardware
3737 */
3738 packet_filter = adapter->packet_filter;
3739
3740 /* Clear the 'multicast' flag locally; because we only have a single
3741 * flag to check multicast, and multiple multicast addresses can be
3742 * set, this is the easiest way to determine if more than one
3743 * multicast address is being set.
3744 */
3745 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3746
3747 /* Check the net_device flags and set the device independent flags
3748 * accordingly
3749 */
3750 if (netdev->flags & IFF_PROMISC)
3751 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3752 else
3753 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3754
3755 if ((netdev->flags & IFF_ALLMULTI) ||
3756 (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3757 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3758
3759 if (netdev_mc_count(netdev) < 1) {
3760 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3761 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3762 } else {
3763 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3764 }
3765
3766 /* Set values in the private adapter struct */
3767 i = 0;
3768 netdev_for_each_mc_addr(ha, netdev) {
3769 if (i == NIC_MAX_MCAST_LIST)
3770 break;
3771 ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3772 }
3773 adapter->multicast_addr_count = i;
3774
3775 /* Are the new flags different from the previous ones? If not, then no
3776 * action is required
3777 *
3778 * NOTE - This block will always update the multicast_list with the
3779 * hardware, even if the addresses aren't the same.
3780 */
3781 if (packet_filter != adapter->packet_filter)
3782 et131x_set_packet_filter(adapter);
3783 }
3784
3785 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3786 {
3787 struct et131x_adapter *adapter = netdev_priv(netdev);
3788 struct tx_ring *tx_ring = &adapter->tx_ring;
3789
3790 /* stop the queue if it's getting full */
3791 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3792 netif_stop_queue(netdev);
3793
3794 /* Save the timestamp for the TX timeout watchdog */
3795 netif_trans_update(netdev);
3796
3797 /* TCB is not available */
3798 if (tx_ring->used >= NUM_TCB)
3799 goto drop_err;
3800
3801 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3802 !netif_carrier_ok(netdev))
3803 goto drop_err;
3804
3805 if (send_packet(skb, adapter))
3806 goto drop_err;
3807
3808 return NETDEV_TX_OK;
3809
3810 drop_err:
3811 dev_kfree_skb_any(skb);
3812 adapter->netdev->stats.tx_dropped++;
3813 return NETDEV_TX_OK;
3814 }
3815
3816 /* et131x_tx_timeout - Timeout handler
3817 *
3818 * The handler called when a Tx request times out. The timeout period is
3819 * specified by the 'tx_timeo" element in the net_device structure (see
3820 * et131x_alloc_device() to see how this value is set).
3821 */
3822 static void et131x_tx_timeout(struct net_device *netdev)
3823 {
3824 struct et131x_adapter *adapter = netdev_priv(netdev);
3825 struct tx_ring *tx_ring = &adapter->tx_ring;
3826 struct tcb *tcb;
3827 unsigned long flags;
3828
3829 /* If the device is closed, ignore the timeout */
3830 if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3831 return;
3832
3833 /* Any nonrecoverable hardware error?
3834 * Checks adapter->flags for any failure in phy reading
3835 */
3836 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3837 return;
3838
3839 /* Hardware failure? */
3840 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3841 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3842 return;
3843 }
3844
3845 /* Is send stuck? */
3846 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3847 tcb = tx_ring->send_head;
3848 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3849
3850 if (tcb) {
3851 tcb->count++;
3852
3853 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3854 dev_warn(&adapter->pdev->dev,
3855 "Send stuck - reset. tcb->WrIndex %x\n",
3856 tcb->index);
3857
3858 adapter->netdev->stats.tx_errors++;
3859
3860 /* perform reset of tx/rx */
3861 et131x_disable_txrx(netdev);
3862 et131x_enable_txrx(netdev);
3863 }
3864 }
3865 }
3866
3867 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3868 {
3869 int result = 0;
3870 struct et131x_adapter *adapter = netdev_priv(netdev);
3871
3872 if (new_mtu < 64 || new_mtu > 9216)
3873 return -EINVAL;
3874
3875 et131x_disable_txrx(netdev);
3876
3877 netdev->mtu = new_mtu;
3878
3879 et131x_adapter_memory_free(adapter);
3880
3881 /* Set the config parameter for Jumbo Packet support */
3882 adapter->registry_jumbo_packet = new_mtu + 14;
3883 et131x_soft_reset(adapter);
3884
3885 result = et131x_adapter_memory_alloc(adapter);
3886 if (result != 0) {
3887 dev_warn(&adapter->pdev->dev,
3888 "Change MTU failed; couldn't re-alloc DMA memory\n");
3889 return result;
3890 }
3891
3892 et131x_init_send(adapter);
3893 et131x_hwaddr_init(adapter);
3894 ether_addr_copy(netdev->dev_addr, adapter->addr);
3895
3896 /* Init the device with the new settings */
3897 et131x_adapter_setup(adapter);
3898 et131x_enable_txrx(netdev);
3899
3900 return result;
3901 }
3902
3903 static const struct net_device_ops et131x_netdev_ops = {
3904 .ndo_open = et131x_open,
3905 .ndo_stop = et131x_close,
3906 .ndo_start_xmit = et131x_tx,
3907 .ndo_set_rx_mode = et131x_multicast,
3908 .ndo_tx_timeout = et131x_tx_timeout,
3909 .ndo_change_mtu = et131x_change_mtu,
3910 .ndo_set_mac_address = eth_mac_addr,
3911 .ndo_validate_addr = eth_validate_addr,
3912 .ndo_get_stats = et131x_stats,
3913 .ndo_do_ioctl = et131x_ioctl,
3914 };
3915
3916 static int et131x_pci_setup(struct pci_dev *pdev,
3917 const struct pci_device_id *ent)
3918 {
3919 struct net_device *netdev;
3920 struct et131x_adapter *adapter;
3921 int rc;
3922
3923 rc = pci_enable_device(pdev);
3924 if (rc < 0) {
3925 dev_err(&pdev->dev, "pci_enable_device() failed\n");
3926 goto out;
3927 }
3928
3929 /* Perform some basic PCI checks */
3930 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3931 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3932 rc = -ENODEV;
3933 goto err_disable;
3934 }
3935
3936 rc = pci_request_regions(pdev, DRIVER_NAME);
3937 if (rc < 0) {
3938 dev_err(&pdev->dev, "Can't get PCI resources\n");
3939 goto err_disable;
3940 }
3941
3942 pci_set_master(pdev);
3943
3944 /* Check the DMA addressing support of this device */
3945 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
3946 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
3947 dev_err(&pdev->dev, "No usable DMA addressing method\n");
3948 rc = -EIO;
3949 goto err_release_res;
3950 }
3951
3952 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3953 if (!netdev) {
3954 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3955 rc = -ENOMEM;
3956 goto err_release_res;
3957 }
3958
3959 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3960 netdev->netdev_ops = &et131x_netdev_ops;
3961
3962 SET_NETDEV_DEV(netdev, &pdev->dev);
3963 netdev->ethtool_ops = &et131x_ethtool_ops;
3964
3965 adapter = et131x_adapter_init(netdev, pdev);
3966
3967 rc = et131x_pci_init(adapter, pdev);
3968 if (rc < 0)
3969 goto err_free_dev;
3970
3971 /* Map the bus-relative registers to system virtual memory */
3972 adapter->regs = pci_ioremap_bar(pdev, 0);
3973 if (!adapter->regs) {
3974 dev_err(&pdev->dev, "Cannot map device registers\n");
3975 rc = -ENOMEM;
3976 goto err_free_dev;
3977 }
3978
3979 /* If Phy COMA mode was enabled when we went down, disable it here. */
3980 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
3981
3982 et131x_soft_reset(adapter);
3983 et131x_disable_interrupts(adapter);
3984
3985 rc = et131x_adapter_memory_alloc(adapter);
3986 if (rc < 0) {
3987 dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
3988 goto err_iounmap;
3989 }
3990
3991 et131x_init_send(adapter);
3992
3993 netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
3994
3995 ether_addr_copy(netdev->dev_addr, adapter->addr);
3996
3997 rc = -ENOMEM;
3998
3999 adapter->mii_bus = mdiobus_alloc();
4000 if (!adapter->mii_bus) {
4001 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4002 goto err_mem_free;
4003 }
4004
4005 adapter->mii_bus->name = "et131x_eth_mii";
4006 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4007 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4008 adapter->mii_bus->priv = netdev;
4009 adapter->mii_bus->read = et131x_mdio_read;
4010 adapter->mii_bus->write = et131x_mdio_write;
4011
4012 rc = mdiobus_register(adapter->mii_bus);
4013 if (rc < 0) {
4014 dev_err(&pdev->dev, "failed to register MII bus\n");
4015 goto err_mdio_free;
4016 }
4017
4018 rc = et131x_mii_probe(netdev);
4019 if (rc < 0) {
4020 dev_err(&pdev->dev, "failed to probe MII bus\n");
4021 goto err_mdio_unregister;
4022 }
4023
4024 et131x_adapter_setup(adapter);
4025
4026 /* Init variable for counting how long we do not have link status */
4027 adapter->boot_coma = 0;
4028 et1310_disable_phy_coma(adapter);
4029
4030 /* We can enable interrupts now
4031 *
4032 * NOTE - Because registration of interrupt handler is done in the
4033 * device's open(), defer enabling device interrupts to that
4034 * point
4035 */
4036
4037 rc = register_netdev(netdev);
4038 if (rc < 0) {
4039 dev_err(&pdev->dev, "register_netdev() failed\n");
4040 goto err_phy_disconnect;
4041 }
4042
4043 /* Register the net_device struct with the PCI subsystem. Save a copy
4044 * of the PCI config space for this device now that the device has
4045 * been initialized, just in case it needs to be quickly restored.
4046 */
4047 pci_set_drvdata(pdev, netdev);
4048 out:
4049 return rc;
4050
4051 err_phy_disconnect:
4052 phy_disconnect(netdev->phydev);
4053 err_mdio_unregister:
4054 mdiobus_unregister(adapter->mii_bus);
4055 err_mdio_free:
4056 mdiobus_free(adapter->mii_bus);
4057 err_mem_free:
4058 et131x_adapter_memory_free(adapter);
4059 err_iounmap:
4060 iounmap(adapter->regs);
4061 err_free_dev:
4062 pci_dev_put(pdev);
4063 free_netdev(netdev);
4064 err_release_res:
4065 pci_release_regions(pdev);
4066 err_disable:
4067 pci_disable_device(pdev);
4068 goto out;
4069 }
4070
4071 static const struct pci_device_id et131x_pci_table[] = {
4072 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4073 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4074 { 0,}
4075 };
4076 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4077
4078 static struct pci_driver et131x_driver = {
4079 .name = DRIVER_NAME,
4080 .id_table = et131x_pci_table,
4081 .probe = et131x_pci_setup,
4082 .remove = et131x_pci_remove,
4083 .driver.pm = &et131x_pm_ops,
4084 };
4085
4086 module_pci_driver(et131x_driver);
This page took 0.119222 seconds and 5 git commands to generate.