bnx2x: update MAINTAINERS for bnx2x and e-mail addresses
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_cmn.c
1 /* bnx2x_cmn.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/etherdevice.h>
21 #include <linux/if_vlan.h>
22 #include <linux/interrupt.h>
23 #include <linux/ip.h>
24 #include <net/tcp.h>
25 #include <net/ipv6.h>
26 #include <net/ip6_checksum.h>
27 #include <net/busy_poll.h>
28 #include <linux/prefetch.h>
29 #include "bnx2x_cmn.h"
30 #include "bnx2x_init.h"
31 #include "bnx2x_sp.h"
32
33 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
34 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
35 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
36 static int bnx2x_poll(struct napi_struct *napi, int budget);
37
38 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
39 {
40 int i;
41
42 /* Add NAPI objects */
43 for_each_rx_queue_cnic(bp, i) {
44 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
45 bnx2x_poll, NAPI_POLL_WEIGHT);
46 napi_hash_add(&bnx2x_fp(bp, i, napi));
47 }
48 }
49
50 static void bnx2x_add_all_napi(struct bnx2x *bp)
51 {
52 int i;
53
54 /* Add NAPI objects */
55 for_each_eth_queue(bp, i) {
56 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
57 bnx2x_poll, NAPI_POLL_WEIGHT);
58 napi_hash_add(&bnx2x_fp(bp, i, napi));
59 }
60 }
61
62 static int bnx2x_calc_num_queues(struct bnx2x *bp)
63 {
64 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
65
66 /* Reduce memory usage in kdump environment by using only one queue */
67 if (reset_devices)
68 nq = 1;
69
70 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
71 return nq;
72 }
73
74 /**
75 * bnx2x_move_fp - move content of the fastpath structure.
76 *
77 * @bp: driver handle
78 * @from: source FP index
79 * @to: destination FP index
80 *
81 * Makes sure the contents of the bp->fp[to].napi is kept
82 * intact. This is done by first copying the napi struct from
83 * the target to the source, and then mem copying the entire
84 * source onto the target. Update txdata pointers and related
85 * content.
86 */
87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
88 {
89 struct bnx2x_fastpath *from_fp = &bp->fp[from];
90 struct bnx2x_fastpath *to_fp = &bp->fp[to];
91 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
92 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
93 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
94 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
95 int old_max_eth_txqs, new_max_eth_txqs;
96 int old_txdata_index = 0, new_txdata_index = 0;
97 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
98
99 /* Copy the NAPI object as it has been already initialized */
100 from_fp->napi = to_fp->napi;
101
102 /* Move bnx2x_fastpath contents */
103 memcpy(to_fp, from_fp, sizeof(*to_fp));
104 to_fp->index = to;
105
106 /* Retain the tpa_info of the original `to' version as we don't want
107 * 2 FPs to contain the same tpa_info pointer.
108 */
109 to_fp->tpa_info = old_tpa_info;
110
111 /* move sp_objs contents as well, as their indices match fp ones */
112 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
113
114 /* move fp_stats contents as well, as their indices match fp ones */
115 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
116
117 /* Update txdata pointers in fp and move txdata content accordingly:
118 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 * decremented by max_cos x delta.
120 */
121
122 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
123 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
124 (bp)->max_cos;
125 if (from == FCOE_IDX(bp)) {
126 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 }
129
130 memcpy(&bp->bnx2x_txq[new_txdata_index],
131 &bp->bnx2x_txq[old_txdata_index],
132 sizeof(struct bnx2x_fp_txdata));
133 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
134 }
135
136 /**
137 * bnx2x_fill_fw_str - Fill buffer with FW version string.
138 *
139 * @bp: driver handle
140 * @buf: character buffer to fill with the fw name
141 * @buf_len: length of the above buffer
142 *
143 */
144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
145 {
146 if (IS_PF(bp)) {
147 u8 phy_fw_ver[PHY_FW_VER_LEN];
148
149 phy_fw_ver[0] = '\0';
150 bnx2x_get_ext_phy_fw_version(&bp->link_params,
151 phy_fw_ver, PHY_FW_VER_LEN);
152 strlcpy(buf, bp->fw_ver, buf_len);
153 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
154 "bc %d.%d.%d%s%s",
155 (bp->common.bc_ver & 0xff0000) >> 16,
156 (bp->common.bc_ver & 0xff00) >> 8,
157 (bp->common.bc_ver & 0xff),
158 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 } else {
160 bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 }
162 }
163
164 /**
165 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166 *
167 * @bp: driver handle
168 * @delta: number of eth queues which were not allocated
169 */
170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173
174 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 * backward along the array could cause memory to be overridden
176 */
177 for (cos = 1; cos < bp->max_cos; cos++) {
178 for (i = 0; i < old_eth_num - delta; i++) {
179 struct bnx2x_fastpath *fp = &bp->fp[i];
180 int new_idx = cos * (old_eth_num - delta) + i;
181
182 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 sizeof(struct bnx2x_fp_txdata));
184 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 }
186 }
187 }
188
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190
191 /* free skb in the packet ring at pos idx
192 * return idx of last bd freed
193 */
194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 u16 idx, unsigned int *pkts_compl,
196 unsigned int *bytes_compl)
197 {
198 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 struct eth_tx_start_bd *tx_start_bd;
200 struct eth_tx_bd *tx_data_bd;
201 struct sk_buff *skb = tx_buf->skb;
202 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 int nbd;
204 u16 split_bd_len = 0;
205
206 /* prefetch skb end pointer to speedup dev_kfree_skb() */
207 prefetch(&skb->end);
208
209 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
210 txdata->txq_index, idx, tx_buf, skb);
211
212 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213
214 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 BNX2X_ERR("BAD nbd!\n");
218 bnx2x_panic();
219 }
220 #endif
221 new_cons = nbd + tx_buf->first_bd;
222
223 /* Get the next bd */
224 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225
226 /* Skip a parse bd... */
227 --nbd;
228 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229
230 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
231 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
232 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
233 split_bd_len = BD_UNMAP_LEN(tx_data_bd);
234 --nbd;
235 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
236 }
237
238 /* unmap first bd */
239 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
240 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
241 DMA_TO_DEVICE);
242
243 /* now free frags */
244 while (nbd > 0) {
245
246 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
247 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
248 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
249 if (--nbd)
250 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
251 }
252
253 /* release skb */
254 WARN_ON(!skb);
255 if (likely(skb)) {
256 (*pkts_compl)++;
257 (*bytes_compl) += skb->len;
258 }
259
260 dev_kfree_skb_any(skb);
261 tx_buf->first_bd = 0;
262 tx_buf->skb = NULL;
263
264 return new_cons;
265 }
266
267 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
268 {
269 struct netdev_queue *txq;
270 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
271 unsigned int pkts_compl = 0, bytes_compl = 0;
272
273 #ifdef BNX2X_STOP_ON_ERROR
274 if (unlikely(bp->panic))
275 return -1;
276 #endif
277
278 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
279 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
280 sw_cons = txdata->tx_pkt_cons;
281
282 while (sw_cons != hw_cons) {
283 u16 pkt_cons;
284
285 pkt_cons = TX_BD(sw_cons);
286
287 DP(NETIF_MSG_TX_DONE,
288 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
289 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
290
291 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
292 &pkts_compl, &bytes_compl);
293
294 sw_cons++;
295 }
296
297 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
298
299 txdata->tx_pkt_cons = sw_cons;
300 txdata->tx_bd_cons = bd_cons;
301
302 /* Need to make the tx_bd_cons update visible to start_xmit()
303 * before checking for netif_tx_queue_stopped(). Without the
304 * memory barrier, there is a small possibility that
305 * start_xmit() will miss it and cause the queue to be stopped
306 * forever.
307 * On the other hand we need an rmb() here to ensure the proper
308 * ordering of bit testing in the following
309 * netif_tx_queue_stopped(txq) call.
310 */
311 smp_mb();
312
313 if (unlikely(netif_tx_queue_stopped(txq))) {
314 /* Taking tx_lock() is needed to prevent re-enabling the queue
315 * while it's empty. This could have happen if rx_action() gets
316 * suspended in bnx2x_tx_int() after the condition before
317 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
318 *
319 * stops the queue->sees fresh tx_bd_cons->releases the queue->
320 * sends some packets consuming the whole queue again->
321 * stops the queue
322 */
323
324 __netif_tx_lock(txq, smp_processor_id());
325
326 if ((netif_tx_queue_stopped(txq)) &&
327 (bp->state == BNX2X_STATE_OPEN) &&
328 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
329 netif_tx_wake_queue(txq);
330
331 __netif_tx_unlock(txq);
332 }
333 return 0;
334 }
335
336 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
337 u16 idx)
338 {
339 u16 last_max = fp->last_max_sge;
340
341 if (SUB_S16(idx, last_max) > 0)
342 fp->last_max_sge = idx;
343 }
344
345 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
346 u16 sge_len,
347 struct eth_end_agg_rx_cqe *cqe)
348 {
349 struct bnx2x *bp = fp->bp;
350 u16 last_max, last_elem, first_elem;
351 u16 delta = 0;
352 u16 i;
353
354 if (!sge_len)
355 return;
356
357 /* First mark all used pages */
358 for (i = 0; i < sge_len; i++)
359 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
360 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
361
362 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
363 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
364
365 /* Here we assume that the last SGE index is the biggest */
366 prefetch((void *)(fp->sge_mask));
367 bnx2x_update_last_max_sge(fp,
368 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
369
370 last_max = RX_SGE(fp->last_max_sge);
371 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
372 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
373
374 /* If ring is not full */
375 if (last_elem + 1 != first_elem)
376 last_elem++;
377
378 /* Now update the prod */
379 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
380 if (likely(fp->sge_mask[i]))
381 break;
382
383 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
384 delta += BIT_VEC64_ELEM_SZ;
385 }
386
387 if (delta > 0) {
388 fp->rx_sge_prod += delta;
389 /* clear page-end entries */
390 bnx2x_clear_sge_mask_next_elems(fp);
391 }
392
393 DP(NETIF_MSG_RX_STATUS,
394 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
395 fp->last_max_sge, fp->rx_sge_prod);
396 }
397
398 /* Get Toeplitz hash value in the skb using the value from the
399 * CQE (calculated by HW).
400 */
401 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
402 const struct eth_fast_path_rx_cqe *cqe,
403 enum pkt_hash_types *rxhash_type)
404 {
405 /* Get Toeplitz hash from CQE */
406 if ((bp->dev->features & NETIF_F_RXHASH) &&
407 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
408 enum eth_rss_hash_type htype;
409
410 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
411 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
412 (htype == TCP_IPV6_HASH_TYPE)) ?
413 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
414
415 return le32_to_cpu(cqe->rss_hash_result);
416 }
417 *rxhash_type = PKT_HASH_TYPE_NONE;
418 return 0;
419 }
420
421 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
422 u16 cons, u16 prod,
423 struct eth_fast_path_rx_cqe *cqe)
424 {
425 struct bnx2x *bp = fp->bp;
426 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
427 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
428 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
429 dma_addr_t mapping;
430 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
431 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
432
433 /* print error if current state != stop */
434 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
435 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
436
437 /* Try to map an empty data buffer from the aggregation info */
438 mapping = dma_map_single(&bp->pdev->dev,
439 first_buf->data + NET_SKB_PAD,
440 fp->rx_buf_size, DMA_FROM_DEVICE);
441 /*
442 * ...if it fails - move the skb from the consumer to the producer
443 * and set the current aggregation state as ERROR to drop it
444 * when TPA_STOP arrives.
445 */
446
447 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
448 /* Move the BD from the consumer to the producer */
449 bnx2x_reuse_rx_data(fp, cons, prod);
450 tpa_info->tpa_state = BNX2X_TPA_ERROR;
451 return;
452 }
453
454 /* move empty data from pool to prod */
455 prod_rx_buf->data = first_buf->data;
456 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
457 /* point prod_bd to new data */
458 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
459 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
460
461 /* move partial skb from cons to pool (don't unmap yet) */
462 *first_buf = *cons_rx_buf;
463
464 /* mark bin state as START */
465 tpa_info->parsing_flags =
466 le16_to_cpu(cqe->pars_flags.flags);
467 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
468 tpa_info->tpa_state = BNX2X_TPA_START;
469 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
470 tpa_info->placement_offset = cqe->placement_offset;
471 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
472 if (fp->mode == TPA_MODE_GRO) {
473 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
474 tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
475 tpa_info->gro_size = gro_size;
476 }
477
478 #ifdef BNX2X_STOP_ON_ERROR
479 fp->tpa_queue_used |= (1 << queue);
480 #ifdef _ASM_GENERIC_INT_L64_H
481 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%lx\n",
482 #else
483 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
484 #endif
485 fp->tpa_queue_used);
486 #endif
487 }
488
489 /* Timestamp option length allowed for TPA aggregation:
490 *
491 * nop nop kind length echo val
492 */
493 #define TPA_TSTAMP_OPT_LEN 12
494 /**
495 * bnx2x_set_gro_params - compute GRO values
496 *
497 * @skb: packet skb
498 * @parsing_flags: parsing flags from the START CQE
499 * @len_on_bd: total length of the first packet for the
500 * aggregation.
501 * @pkt_len: length of all segments
502 *
503 * Approximate value of the MSS for this aggregation calculated using
504 * the first packet of it.
505 * Compute number of aggregated segments, and gso_type.
506 */
507 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
508 u16 len_on_bd, unsigned int pkt_len,
509 u16 num_of_coalesced_segs)
510 {
511 /* TPA aggregation won't have either IP options or TCP options
512 * other than timestamp or IPv6 extension headers.
513 */
514 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
515
516 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
517 PRS_FLAG_OVERETH_IPV6) {
518 hdrs_len += sizeof(struct ipv6hdr);
519 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
520 } else {
521 hdrs_len += sizeof(struct iphdr);
522 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
523 }
524
525 /* Check if there was a TCP timestamp, if there is it's will
526 * always be 12 bytes length: nop nop kind length echo val.
527 *
528 * Otherwise FW would close the aggregation.
529 */
530 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
531 hdrs_len += TPA_TSTAMP_OPT_LEN;
532
533 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
534
535 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
536 * to skb_shinfo(skb)->gso_segs
537 */
538 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
539 }
540
541 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
542 u16 index, gfp_t gfp_mask)
543 {
544 struct page *page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
545 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
546 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
547 dma_addr_t mapping;
548
549 if (unlikely(page == NULL)) {
550 BNX2X_ERR("Can't alloc sge\n");
551 return -ENOMEM;
552 }
553
554 mapping = dma_map_page(&bp->pdev->dev, page, 0,
555 SGE_PAGES, DMA_FROM_DEVICE);
556 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
557 __free_pages(page, PAGES_PER_SGE_SHIFT);
558 BNX2X_ERR("Can't map sge\n");
559 return -ENOMEM;
560 }
561
562 sw_buf->page = page;
563 dma_unmap_addr_set(sw_buf, mapping, mapping);
564
565 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
566 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
567
568 return 0;
569 }
570
571 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
572 struct bnx2x_agg_info *tpa_info,
573 u16 pages,
574 struct sk_buff *skb,
575 struct eth_end_agg_rx_cqe *cqe,
576 u16 cqe_idx)
577 {
578 struct sw_rx_page *rx_pg, old_rx_pg;
579 u32 i, frag_len, frag_size;
580 int err, j, frag_id = 0;
581 u16 len_on_bd = tpa_info->len_on_bd;
582 u16 full_page = 0, gro_size = 0;
583
584 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
585
586 if (fp->mode == TPA_MODE_GRO) {
587 gro_size = tpa_info->gro_size;
588 full_page = tpa_info->full_page;
589 }
590
591 /* This is needed in order to enable forwarding support */
592 if (frag_size)
593 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
594 le16_to_cpu(cqe->pkt_len),
595 le16_to_cpu(cqe->num_of_coalesced_segs));
596
597 #ifdef BNX2X_STOP_ON_ERROR
598 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
599 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
600 pages, cqe_idx);
601 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
602 bnx2x_panic();
603 return -EINVAL;
604 }
605 #endif
606
607 /* Run through the SGL and compose the fragmented skb */
608 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
609 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
610
611 /* FW gives the indices of the SGE as if the ring is an array
612 (meaning that "next" element will consume 2 indices) */
613 if (fp->mode == TPA_MODE_GRO)
614 frag_len = min_t(u32, frag_size, (u32)full_page);
615 else /* LRO */
616 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
617
618 rx_pg = &fp->rx_page_ring[sge_idx];
619 old_rx_pg = *rx_pg;
620
621 /* If we fail to allocate a substitute page, we simply stop
622 where we are and drop the whole packet */
623 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
624 if (unlikely(err)) {
625 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
626 return err;
627 }
628
629 /* Unmap the page as we're going to pass it to the stack */
630 dma_unmap_page(&bp->pdev->dev,
631 dma_unmap_addr(&old_rx_pg, mapping),
632 SGE_PAGES, DMA_FROM_DEVICE);
633 /* Add one frag and update the appropriate fields in the skb */
634 if (fp->mode == TPA_MODE_LRO)
635 skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len);
636 else { /* GRO */
637 int rem;
638 int offset = 0;
639 for (rem = frag_len; rem > 0; rem -= gro_size) {
640 int len = rem > gro_size ? gro_size : rem;
641 skb_fill_page_desc(skb, frag_id++,
642 old_rx_pg.page, offset, len);
643 if (offset)
644 get_page(old_rx_pg.page);
645 offset += len;
646 }
647 }
648
649 skb->data_len += frag_len;
650 skb->truesize += SGE_PAGES;
651 skb->len += frag_len;
652
653 frag_size -= frag_len;
654 }
655
656 return 0;
657 }
658
659 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
660 {
661 if (fp->rx_frag_size)
662 put_page(virt_to_head_page(data));
663 else
664 kfree(data);
665 }
666
667 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
668 {
669 if (fp->rx_frag_size) {
670 /* GFP_KERNEL allocations are used only during initialization */
671 if (unlikely(gfp_mask & __GFP_WAIT))
672 return (void *)__get_free_page(gfp_mask);
673
674 return netdev_alloc_frag(fp->rx_frag_size);
675 }
676
677 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
678 }
679
680 #ifdef CONFIG_INET
681 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
682 {
683 const struct iphdr *iph = ip_hdr(skb);
684 struct tcphdr *th;
685
686 skb_set_transport_header(skb, sizeof(struct iphdr));
687 th = tcp_hdr(skb);
688
689 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
690 iph->saddr, iph->daddr, 0);
691 }
692
693 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
694 {
695 struct ipv6hdr *iph = ipv6_hdr(skb);
696 struct tcphdr *th;
697
698 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
699 th = tcp_hdr(skb);
700
701 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
702 &iph->saddr, &iph->daddr, 0);
703 }
704
705 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
706 void (*gro_func)(struct bnx2x*, struct sk_buff*))
707 {
708 skb_set_network_header(skb, 0);
709 gro_func(bp, skb);
710 tcp_gro_complete(skb);
711 }
712 #endif
713
714 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
715 struct sk_buff *skb)
716 {
717 #ifdef CONFIG_INET
718 if (skb_shinfo(skb)->gso_size) {
719 switch (be16_to_cpu(skb->protocol)) {
720 case ETH_P_IP:
721 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
722 break;
723 case ETH_P_IPV6:
724 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
725 break;
726 default:
727 BNX2X_ERR("Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
728 be16_to_cpu(skb->protocol));
729 }
730 }
731 #endif
732 skb_record_rx_queue(skb, fp->rx_queue);
733 napi_gro_receive(&fp->napi, skb);
734 }
735
736 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
737 struct bnx2x_agg_info *tpa_info,
738 u16 pages,
739 struct eth_end_agg_rx_cqe *cqe,
740 u16 cqe_idx)
741 {
742 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
743 u8 pad = tpa_info->placement_offset;
744 u16 len = tpa_info->len_on_bd;
745 struct sk_buff *skb = NULL;
746 u8 *new_data, *data = rx_buf->data;
747 u8 old_tpa_state = tpa_info->tpa_state;
748
749 tpa_info->tpa_state = BNX2X_TPA_STOP;
750
751 /* If we there was an error during the handling of the TPA_START -
752 * drop this aggregation.
753 */
754 if (old_tpa_state == BNX2X_TPA_ERROR)
755 goto drop;
756
757 /* Try to allocate the new data */
758 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
759 /* Unmap skb in the pool anyway, as we are going to change
760 pool entry status to BNX2X_TPA_STOP even if new skb allocation
761 fails. */
762 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
763 fp->rx_buf_size, DMA_FROM_DEVICE);
764 if (likely(new_data))
765 skb = build_skb(data, fp->rx_frag_size);
766
767 if (likely(skb)) {
768 #ifdef BNX2X_STOP_ON_ERROR
769 if (pad + len > fp->rx_buf_size) {
770 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
771 pad, len, fp->rx_buf_size);
772 bnx2x_panic();
773 return;
774 }
775 #endif
776
777 skb_reserve(skb, pad + NET_SKB_PAD);
778 skb_put(skb, len);
779 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
780
781 skb->protocol = eth_type_trans(skb, bp->dev);
782 skb->ip_summed = CHECKSUM_UNNECESSARY;
783
784 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
785 skb, cqe, cqe_idx)) {
786 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
787 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
788 bnx2x_gro_receive(bp, fp, skb);
789 } else {
790 DP(NETIF_MSG_RX_STATUS,
791 "Failed to allocate new pages - dropping packet!\n");
792 dev_kfree_skb_any(skb);
793 }
794
795 /* put new data in bin */
796 rx_buf->data = new_data;
797
798 return;
799 }
800 bnx2x_frag_free(fp, new_data);
801 drop:
802 /* drop the packet and keep the buffer in the bin */
803 DP(NETIF_MSG_RX_STATUS,
804 "Failed to allocate or map a new skb - dropping packet!\n");
805 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
806 }
807
808 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
809 u16 index, gfp_t gfp_mask)
810 {
811 u8 *data;
812 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
813 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
814 dma_addr_t mapping;
815
816 data = bnx2x_frag_alloc(fp, gfp_mask);
817 if (unlikely(data == NULL))
818 return -ENOMEM;
819
820 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
821 fp->rx_buf_size,
822 DMA_FROM_DEVICE);
823 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
824 bnx2x_frag_free(fp, data);
825 BNX2X_ERR("Can't map rx data\n");
826 return -ENOMEM;
827 }
828
829 rx_buf->data = data;
830 dma_unmap_addr_set(rx_buf, mapping, mapping);
831
832 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
833 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
834
835 return 0;
836 }
837
838 static
839 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
840 struct bnx2x_fastpath *fp,
841 struct bnx2x_eth_q_stats *qstats)
842 {
843 /* Do nothing if no L4 csum validation was done.
844 * We do not check whether IP csum was validated. For IPv4 we assume
845 * that if the card got as far as validating the L4 csum, it also
846 * validated the IP csum. IPv6 has no IP csum.
847 */
848 if (cqe->fast_path_cqe.status_flags &
849 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
850 return;
851
852 /* If L4 validation was done, check if an error was found. */
853
854 if (cqe->fast_path_cqe.type_error_flags &
855 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
856 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
857 qstats->hw_csum_err++;
858 else
859 skb->ip_summed = CHECKSUM_UNNECESSARY;
860 }
861
862 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
863 {
864 struct bnx2x *bp = fp->bp;
865 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
866 u16 sw_comp_cons, sw_comp_prod;
867 int rx_pkt = 0;
868 union eth_rx_cqe *cqe;
869 struct eth_fast_path_rx_cqe *cqe_fp;
870
871 #ifdef BNX2X_STOP_ON_ERROR
872 if (unlikely(bp->panic))
873 return 0;
874 #endif
875 if (budget <= 0)
876 return rx_pkt;
877
878 bd_cons = fp->rx_bd_cons;
879 bd_prod = fp->rx_bd_prod;
880 bd_prod_fw = bd_prod;
881 sw_comp_cons = fp->rx_comp_cons;
882 sw_comp_prod = fp->rx_comp_prod;
883
884 comp_ring_cons = RCQ_BD(sw_comp_cons);
885 cqe = &fp->rx_comp_ring[comp_ring_cons];
886 cqe_fp = &cqe->fast_path_cqe;
887
888 DP(NETIF_MSG_RX_STATUS,
889 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
890
891 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
892 struct sw_rx_bd *rx_buf = NULL;
893 struct sk_buff *skb;
894 u8 cqe_fp_flags;
895 enum eth_rx_cqe_type cqe_fp_type;
896 u16 len, pad, queue;
897 u8 *data;
898 u32 rxhash;
899 enum pkt_hash_types rxhash_type;
900
901 #ifdef BNX2X_STOP_ON_ERROR
902 if (unlikely(bp->panic))
903 return 0;
904 #endif
905
906 bd_prod = RX_BD(bd_prod);
907 bd_cons = RX_BD(bd_cons);
908
909 cqe_fp_flags = cqe_fp->type_error_flags;
910 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
911
912 DP(NETIF_MSG_RX_STATUS,
913 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
914 CQE_TYPE(cqe_fp_flags),
915 cqe_fp_flags, cqe_fp->status_flags,
916 le32_to_cpu(cqe_fp->rss_hash_result),
917 le16_to_cpu(cqe_fp->vlan_tag),
918 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
919
920 /* is this a slowpath msg? */
921 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
922 bnx2x_sp_event(fp, cqe);
923 goto next_cqe;
924 }
925
926 rx_buf = &fp->rx_buf_ring[bd_cons];
927 data = rx_buf->data;
928
929 if (!CQE_TYPE_FAST(cqe_fp_type)) {
930 struct bnx2x_agg_info *tpa_info;
931 u16 frag_size, pages;
932 #ifdef BNX2X_STOP_ON_ERROR
933 /* sanity check */
934 if (fp->disable_tpa &&
935 (CQE_TYPE_START(cqe_fp_type) ||
936 CQE_TYPE_STOP(cqe_fp_type)))
937 BNX2X_ERR("START/STOP packet while disable_tpa type %x\n",
938 CQE_TYPE(cqe_fp_type));
939 #endif
940
941 if (CQE_TYPE_START(cqe_fp_type)) {
942 u16 queue = cqe_fp->queue_index;
943 DP(NETIF_MSG_RX_STATUS,
944 "calling tpa_start on queue %d\n",
945 queue);
946
947 bnx2x_tpa_start(fp, queue,
948 bd_cons, bd_prod,
949 cqe_fp);
950
951 goto next_rx;
952 }
953 queue = cqe->end_agg_cqe.queue_index;
954 tpa_info = &fp->tpa_info[queue];
955 DP(NETIF_MSG_RX_STATUS,
956 "calling tpa_stop on queue %d\n",
957 queue);
958
959 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
960 tpa_info->len_on_bd;
961
962 if (fp->mode == TPA_MODE_GRO)
963 pages = (frag_size + tpa_info->full_page - 1) /
964 tpa_info->full_page;
965 else
966 pages = SGE_PAGE_ALIGN(frag_size) >>
967 SGE_PAGE_SHIFT;
968
969 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
970 &cqe->end_agg_cqe, comp_ring_cons);
971 #ifdef BNX2X_STOP_ON_ERROR
972 if (bp->panic)
973 return 0;
974 #endif
975
976 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
977 goto next_cqe;
978 }
979 /* non TPA */
980 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
981 pad = cqe_fp->placement_offset;
982 dma_sync_single_for_cpu(&bp->pdev->dev,
983 dma_unmap_addr(rx_buf, mapping),
984 pad + RX_COPY_THRESH,
985 DMA_FROM_DEVICE);
986 pad += NET_SKB_PAD;
987 prefetch(data + pad); /* speedup eth_type_trans() */
988 /* is this an error packet? */
989 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
990 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
991 "ERROR flags %x rx packet %u\n",
992 cqe_fp_flags, sw_comp_cons);
993 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
994 goto reuse_rx;
995 }
996
997 /* Since we don't have a jumbo ring
998 * copy small packets if mtu > 1500
999 */
1000 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1001 (len <= RX_COPY_THRESH)) {
1002 skb = netdev_alloc_skb_ip_align(bp->dev, len);
1003 if (skb == NULL) {
1004 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1005 "ERROR packet dropped because of alloc failure\n");
1006 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1007 goto reuse_rx;
1008 }
1009 memcpy(skb->data, data + pad, len);
1010 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1011 } else {
1012 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1013 GFP_ATOMIC) == 0)) {
1014 dma_unmap_single(&bp->pdev->dev,
1015 dma_unmap_addr(rx_buf, mapping),
1016 fp->rx_buf_size,
1017 DMA_FROM_DEVICE);
1018 skb = build_skb(data, fp->rx_frag_size);
1019 if (unlikely(!skb)) {
1020 bnx2x_frag_free(fp, data);
1021 bnx2x_fp_qstats(bp, fp)->
1022 rx_skb_alloc_failed++;
1023 goto next_rx;
1024 }
1025 skb_reserve(skb, pad);
1026 } else {
1027 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1028 "ERROR packet dropped because of alloc failure\n");
1029 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1030 reuse_rx:
1031 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1032 goto next_rx;
1033 }
1034 }
1035
1036 skb_put(skb, len);
1037 skb->protocol = eth_type_trans(skb, bp->dev);
1038
1039 /* Set Toeplitz hash for a none-LRO skb */
1040 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1041 skb_set_hash(skb, rxhash, rxhash_type);
1042
1043 skb_checksum_none_assert(skb);
1044
1045 if (bp->dev->features & NETIF_F_RXCSUM)
1046 bnx2x_csum_validate(skb, cqe, fp,
1047 bnx2x_fp_qstats(bp, fp));
1048
1049 skb_record_rx_queue(skb, fp->rx_queue);
1050
1051 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1052 PARSING_FLAGS_VLAN)
1053 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1054 le16_to_cpu(cqe_fp->vlan_tag));
1055
1056 skb_mark_napi_id(skb, &fp->napi);
1057
1058 if (bnx2x_fp_ll_polling(fp))
1059 netif_receive_skb(skb);
1060 else
1061 napi_gro_receive(&fp->napi, skb);
1062 next_rx:
1063 rx_buf->data = NULL;
1064
1065 bd_cons = NEXT_RX_IDX(bd_cons);
1066 bd_prod = NEXT_RX_IDX(bd_prod);
1067 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1068 rx_pkt++;
1069 next_cqe:
1070 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1071 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1072
1073 /* mark CQE as free */
1074 BNX2X_SEED_CQE(cqe_fp);
1075
1076 if (rx_pkt == budget)
1077 break;
1078
1079 comp_ring_cons = RCQ_BD(sw_comp_cons);
1080 cqe = &fp->rx_comp_ring[comp_ring_cons];
1081 cqe_fp = &cqe->fast_path_cqe;
1082 } /* while */
1083
1084 fp->rx_bd_cons = bd_cons;
1085 fp->rx_bd_prod = bd_prod_fw;
1086 fp->rx_comp_cons = sw_comp_cons;
1087 fp->rx_comp_prod = sw_comp_prod;
1088
1089 /* Update producers */
1090 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1091 fp->rx_sge_prod);
1092
1093 fp->rx_pkt += rx_pkt;
1094 fp->rx_calls++;
1095
1096 return rx_pkt;
1097 }
1098
1099 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1100 {
1101 struct bnx2x_fastpath *fp = fp_cookie;
1102 struct bnx2x *bp = fp->bp;
1103 u8 cos;
1104
1105 DP(NETIF_MSG_INTR,
1106 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1107 fp->index, fp->fw_sb_id, fp->igu_sb_id);
1108
1109 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1110
1111 #ifdef BNX2X_STOP_ON_ERROR
1112 if (unlikely(bp->panic))
1113 return IRQ_HANDLED;
1114 #endif
1115
1116 /* Handle Rx and Tx according to MSI-X vector */
1117 for_each_cos_in_tx_queue(fp, cos)
1118 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1119
1120 prefetch(&fp->sb_running_index[SM_RX_ID]);
1121 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1122
1123 return IRQ_HANDLED;
1124 }
1125
1126 /* HW Lock for shared dual port PHYs */
1127 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1128 {
1129 mutex_lock(&bp->port.phy_mutex);
1130
1131 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1132 }
1133
1134 void bnx2x_release_phy_lock(struct bnx2x *bp)
1135 {
1136 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1137
1138 mutex_unlock(&bp->port.phy_mutex);
1139 }
1140
1141 /* calculates MF speed according to current linespeed and MF configuration */
1142 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1143 {
1144 u16 line_speed = bp->link_vars.line_speed;
1145 if (IS_MF(bp)) {
1146 u16 maxCfg = bnx2x_extract_max_cfg(bp,
1147 bp->mf_config[BP_VN(bp)]);
1148
1149 /* Calculate the current MAX line speed limit for the MF
1150 * devices
1151 */
1152 if (IS_MF_SI(bp))
1153 line_speed = (line_speed * maxCfg) / 100;
1154 else { /* SD mode */
1155 u16 vn_max_rate = maxCfg * 100;
1156
1157 if (vn_max_rate < line_speed)
1158 line_speed = vn_max_rate;
1159 }
1160 }
1161
1162 return line_speed;
1163 }
1164
1165 /**
1166 * bnx2x_fill_report_data - fill link report data to report
1167 *
1168 * @bp: driver handle
1169 * @data: link state to update
1170 *
1171 * It uses a none-atomic bit operations because is called under the mutex.
1172 */
1173 static void bnx2x_fill_report_data(struct bnx2x *bp,
1174 struct bnx2x_link_report_data *data)
1175 {
1176 u16 line_speed = bnx2x_get_mf_speed(bp);
1177
1178 memset(data, 0, sizeof(*data));
1179
1180 /* Fill the report data: effective line speed */
1181 data->line_speed = line_speed;
1182
1183 /* Link is down */
1184 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1185 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1186 &data->link_report_flags);
1187
1188 /* Full DUPLEX */
1189 if (bp->link_vars.duplex == DUPLEX_FULL)
1190 __set_bit(BNX2X_LINK_REPORT_FD, &data->link_report_flags);
1191
1192 /* Rx Flow Control is ON */
1193 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1194 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
1195
1196 /* Tx Flow Control is ON */
1197 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1198 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
1199 }
1200
1201 /**
1202 * bnx2x_link_report - report link status to OS.
1203 *
1204 * @bp: driver handle
1205 *
1206 * Calls the __bnx2x_link_report() under the same locking scheme
1207 * as a link/PHY state managing code to ensure a consistent link
1208 * reporting.
1209 */
1210
1211 void bnx2x_link_report(struct bnx2x *bp)
1212 {
1213 bnx2x_acquire_phy_lock(bp);
1214 __bnx2x_link_report(bp);
1215 bnx2x_release_phy_lock(bp);
1216 }
1217
1218 /**
1219 * __bnx2x_link_report - report link status to OS.
1220 *
1221 * @bp: driver handle
1222 *
1223 * None atomic implementation.
1224 * Should be called under the phy_lock.
1225 */
1226 void __bnx2x_link_report(struct bnx2x *bp)
1227 {
1228 struct bnx2x_link_report_data cur_data;
1229
1230 /* reread mf_cfg */
1231 if (IS_PF(bp) && !CHIP_IS_E1(bp))
1232 bnx2x_read_mf_cfg(bp);
1233
1234 /* Read the current link report info */
1235 bnx2x_fill_report_data(bp, &cur_data);
1236
1237 /* Don't report link down or exactly the same link status twice */
1238 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1239 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1240 &bp->last_reported_link.link_report_flags) &&
1241 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1242 &cur_data.link_report_flags)))
1243 return;
1244
1245 bp->link_cnt++;
1246
1247 /* We are going to report a new link parameters now -
1248 * remember the current data for the next time.
1249 */
1250 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1251
1252 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1253 &cur_data.link_report_flags)) {
1254 netif_carrier_off(bp->dev);
1255 netdev_err(bp->dev, "NIC Link is Down\n");
1256 return;
1257 } else {
1258 const char *duplex;
1259 const char *flow;
1260
1261 netif_carrier_on(bp->dev);
1262
1263 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1264 &cur_data.link_report_flags))
1265 duplex = "full";
1266 else
1267 duplex = "half";
1268
1269 /* Handle the FC at the end so that only these flags would be
1270 * possibly set. This way we may easily check if there is no FC
1271 * enabled.
1272 */
1273 if (cur_data.link_report_flags) {
1274 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1275 &cur_data.link_report_flags)) {
1276 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1277 &cur_data.link_report_flags))
1278 flow = "ON - receive & transmit";
1279 else
1280 flow = "ON - receive";
1281 } else {
1282 flow = "ON - transmit";
1283 }
1284 } else {
1285 flow = "none";
1286 }
1287 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1288 cur_data.line_speed, duplex, flow);
1289 }
1290 }
1291
1292 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1293 {
1294 int i;
1295
1296 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1297 struct eth_rx_sge *sge;
1298
1299 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1300 sge->addr_hi =
1301 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1302 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1303
1304 sge->addr_lo =
1305 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1306 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1307 }
1308 }
1309
1310 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1311 struct bnx2x_fastpath *fp, int last)
1312 {
1313 int i;
1314
1315 for (i = 0; i < last; i++) {
1316 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1317 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1318 u8 *data = first_buf->data;
1319
1320 if (data == NULL) {
1321 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1322 continue;
1323 }
1324 if (tpa_info->tpa_state == BNX2X_TPA_START)
1325 dma_unmap_single(&bp->pdev->dev,
1326 dma_unmap_addr(first_buf, mapping),
1327 fp->rx_buf_size, DMA_FROM_DEVICE);
1328 bnx2x_frag_free(fp, data);
1329 first_buf->data = NULL;
1330 }
1331 }
1332
1333 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1334 {
1335 int j;
1336
1337 for_each_rx_queue_cnic(bp, j) {
1338 struct bnx2x_fastpath *fp = &bp->fp[j];
1339
1340 fp->rx_bd_cons = 0;
1341
1342 /* Activate BD ring */
1343 /* Warning!
1344 * this will generate an interrupt (to the TSTORM)
1345 * must only be done after chip is initialized
1346 */
1347 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1348 fp->rx_sge_prod);
1349 }
1350 }
1351
1352 void bnx2x_init_rx_rings(struct bnx2x *bp)
1353 {
1354 int func = BP_FUNC(bp);
1355 u16 ring_prod;
1356 int i, j;
1357
1358 /* Allocate TPA resources */
1359 for_each_eth_queue(bp, j) {
1360 struct bnx2x_fastpath *fp = &bp->fp[j];
1361
1362 DP(NETIF_MSG_IFUP,
1363 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1364
1365 if (!fp->disable_tpa) {
1366 /* Fill the per-aggregation pool */
1367 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1368 struct bnx2x_agg_info *tpa_info =
1369 &fp->tpa_info[i];
1370 struct sw_rx_bd *first_buf =
1371 &tpa_info->first_buf;
1372
1373 first_buf->data =
1374 bnx2x_frag_alloc(fp, GFP_KERNEL);
1375 if (!first_buf->data) {
1376 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1377 j);
1378 bnx2x_free_tpa_pool(bp, fp, i);
1379 fp->disable_tpa = 1;
1380 break;
1381 }
1382 dma_unmap_addr_set(first_buf, mapping, 0);
1383 tpa_info->tpa_state = BNX2X_TPA_STOP;
1384 }
1385
1386 /* "next page" elements initialization */
1387 bnx2x_set_next_page_sgl(fp);
1388
1389 /* set SGEs bit mask */
1390 bnx2x_init_sge_ring_bit_mask(fp);
1391
1392 /* Allocate SGEs and initialize the ring elements */
1393 for (i = 0, ring_prod = 0;
1394 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1395
1396 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1397 GFP_KERNEL) < 0) {
1398 BNX2X_ERR("was only able to allocate %d rx sges\n",
1399 i);
1400 BNX2X_ERR("disabling TPA for queue[%d]\n",
1401 j);
1402 /* Cleanup already allocated elements */
1403 bnx2x_free_rx_sge_range(bp, fp,
1404 ring_prod);
1405 bnx2x_free_tpa_pool(bp, fp,
1406 MAX_AGG_QS(bp));
1407 fp->disable_tpa = 1;
1408 ring_prod = 0;
1409 break;
1410 }
1411 ring_prod = NEXT_SGE_IDX(ring_prod);
1412 }
1413
1414 fp->rx_sge_prod = ring_prod;
1415 }
1416 }
1417
1418 for_each_eth_queue(bp, j) {
1419 struct bnx2x_fastpath *fp = &bp->fp[j];
1420
1421 fp->rx_bd_cons = 0;
1422
1423 /* Activate BD ring */
1424 /* Warning!
1425 * this will generate an interrupt (to the TSTORM)
1426 * must only be done after chip is initialized
1427 */
1428 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1429 fp->rx_sge_prod);
1430
1431 if (j != 0)
1432 continue;
1433
1434 if (CHIP_IS_E1(bp)) {
1435 REG_WR(bp, BAR_USTRORM_INTMEM +
1436 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1437 U64_LO(fp->rx_comp_mapping));
1438 REG_WR(bp, BAR_USTRORM_INTMEM +
1439 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1440 U64_HI(fp->rx_comp_mapping));
1441 }
1442 }
1443 }
1444
1445 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1446 {
1447 u8 cos;
1448 struct bnx2x *bp = fp->bp;
1449
1450 for_each_cos_in_tx_queue(fp, cos) {
1451 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1452 unsigned pkts_compl = 0, bytes_compl = 0;
1453
1454 u16 sw_prod = txdata->tx_pkt_prod;
1455 u16 sw_cons = txdata->tx_pkt_cons;
1456
1457 while (sw_cons != sw_prod) {
1458 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1459 &pkts_compl, &bytes_compl);
1460 sw_cons++;
1461 }
1462
1463 netdev_tx_reset_queue(
1464 netdev_get_tx_queue(bp->dev,
1465 txdata->txq_index));
1466 }
1467 }
1468
1469 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1470 {
1471 int i;
1472
1473 for_each_tx_queue_cnic(bp, i) {
1474 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1475 }
1476 }
1477
1478 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1479 {
1480 int i;
1481
1482 for_each_eth_queue(bp, i) {
1483 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1484 }
1485 }
1486
1487 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1488 {
1489 struct bnx2x *bp = fp->bp;
1490 int i;
1491
1492 /* ring wasn't allocated */
1493 if (fp->rx_buf_ring == NULL)
1494 return;
1495
1496 for (i = 0; i < NUM_RX_BD; i++) {
1497 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1498 u8 *data = rx_buf->data;
1499
1500 if (data == NULL)
1501 continue;
1502 dma_unmap_single(&bp->pdev->dev,
1503 dma_unmap_addr(rx_buf, mapping),
1504 fp->rx_buf_size, DMA_FROM_DEVICE);
1505
1506 rx_buf->data = NULL;
1507 bnx2x_frag_free(fp, data);
1508 }
1509 }
1510
1511 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1512 {
1513 int j;
1514
1515 for_each_rx_queue_cnic(bp, j) {
1516 bnx2x_free_rx_bds(&bp->fp[j]);
1517 }
1518 }
1519
1520 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1521 {
1522 int j;
1523
1524 for_each_eth_queue(bp, j) {
1525 struct bnx2x_fastpath *fp = &bp->fp[j];
1526
1527 bnx2x_free_rx_bds(fp);
1528
1529 if (!fp->disable_tpa)
1530 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1531 }
1532 }
1533
1534 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1535 {
1536 bnx2x_free_tx_skbs_cnic(bp);
1537 bnx2x_free_rx_skbs_cnic(bp);
1538 }
1539
1540 void bnx2x_free_skbs(struct bnx2x *bp)
1541 {
1542 bnx2x_free_tx_skbs(bp);
1543 bnx2x_free_rx_skbs(bp);
1544 }
1545
1546 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1547 {
1548 /* load old values */
1549 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1550
1551 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1552 /* leave all but MAX value */
1553 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1554
1555 /* set new MAX value */
1556 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1557 & FUNC_MF_CFG_MAX_BW_MASK;
1558
1559 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1560 }
1561 }
1562
1563 /**
1564 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1565 *
1566 * @bp: driver handle
1567 * @nvecs: number of vectors to be released
1568 */
1569 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1570 {
1571 int i, offset = 0;
1572
1573 if (nvecs == offset)
1574 return;
1575
1576 /* VFs don't have a default SB */
1577 if (IS_PF(bp)) {
1578 free_irq(bp->msix_table[offset].vector, bp->dev);
1579 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1580 bp->msix_table[offset].vector);
1581 offset++;
1582 }
1583
1584 if (CNIC_SUPPORT(bp)) {
1585 if (nvecs == offset)
1586 return;
1587 offset++;
1588 }
1589
1590 for_each_eth_queue(bp, i) {
1591 if (nvecs == offset)
1592 return;
1593 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1594 i, bp->msix_table[offset].vector);
1595
1596 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1597 }
1598 }
1599
1600 void bnx2x_free_irq(struct bnx2x *bp)
1601 {
1602 if (bp->flags & USING_MSIX_FLAG &&
1603 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1604 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1605
1606 /* vfs don't have a default status block */
1607 if (IS_PF(bp))
1608 nvecs++;
1609
1610 bnx2x_free_msix_irqs(bp, nvecs);
1611 } else {
1612 free_irq(bp->dev->irq, bp->dev);
1613 }
1614 }
1615
1616 int bnx2x_enable_msix(struct bnx2x *bp)
1617 {
1618 int msix_vec = 0, i, rc;
1619
1620 /* VFs don't have a default status block */
1621 if (IS_PF(bp)) {
1622 bp->msix_table[msix_vec].entry = msix_vec;
1623 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1624 bp->msix_table[0].entry);
1625 msix_vec++;
1626 }
1627
1628 /* Cnic requires an msix vector for itself */
1629 if (CNIC_SUPPORT(bp)) {
1630 bp->msix_table[msix_vec].entry = msix_vec;
1631 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1632 msix_vec, bp->msix_table[msix_vec].entry);
1633 msix_vec++;
1634 }
1635
1636 /* We need separate vectors for ETH queues only (not FCoE) */
1637 for_each_eth_queue(bp, i) {
1638 bp->msix_table[msix_vec].entry = msix_vec;
1639 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1640 msix_vec, msix_vec, i);
1641 msix_vec++;
1642 }
1643
1644 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1645 msix_vec);
1646
1647 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1648 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1649 /*
1650 * reconfigure number of tx/rx queues according to available
1651 * MSI-X vectors
1652 */
1653 if (rc == -ENOSPC) {
1654 /* Get by with single vector */
1655 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1656 if (rc < 0) {
1657 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1658 rc);
1659 goto no_msix;
1660 }
1661
1662 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1663 bp->flags |= USING_SINGLE_MSIX_FLAG;
1664
1665 BNX2X_DEV_INFO("set number of queues to 1\n");
1666 bp->num_ethernet_queues = 1;
1667 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1668 } else if (rc < 0) {
1669 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1670 goto no_msix;
1671 } else if (rc < msix_vec) {
1672 /* how less vectors we will have? */
1673 int diff = msix_vec - rc;
1674
1675 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1676
1677 /*
1678 * decrease number of queues by number of unallocated entries
1679 */
1680 bp->num_ethernet_queues -= diff;
1681 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1682
1683 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1684 bp->num_queues);
1685 }
1686
1687 bp->flags |= USING_MSIX_FLAG;
1688
1689 return 0;
1690
1691 no_msix:
1692 /* fall to INTx if not enough memory */
1693 if (rc == -ENOMEM)
1694 bp->flags |= DISABLE_MSI_FLAG;
1695
1696 return rc;
1697 }
1698
1699 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1700 {
1701 int i, rc, offset = 0;
1702
1703 /* no default status block for vf */
1704 if (IS_PF(bp)) {
1705 rc = request_irq(bp->msix_table[offset++].vector,
1706 bnx2x_msix_sp_int, 0,
1707 bp->dev->name, bp->dev);
1708 if (rc) {
1709 BNX2X_ERR("request sp irq failed\n");
1710 return -EBUSY;
1711 }
1712 }
1713
1714 if (CNIC_SUPPORT(bp))
1715 offset++;
1716
1717 for_each_eth_queue(bp, i) {
1718 struct bnx2x_fastpath *fp = &bp->fp[i];
1719 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1720 bp->dev->name, i);
1721
1722 rc = request_irq(bp->msix_table[offset].vector,
1723 bnx2x_msix_fp_int, 0, fp->name, fp);
1724 if (rc) {
1725 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1726 bp->msix_table[offset].vector, rc);
1727 bnx2x_free_msix_irqs(bp, offset);
1728 return -EBUSY;
1729 }
1730
1731 offset++;
1732 }
1733
1734 i = BNX2X_NUM_ETH_QUEUES(bp);
1735 if (IS_PF(bp)) {
1736 offset = 1 + CNIC_SUPPORT(bp);
1737 netdev_info(bp->dev,
1738 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1739 bp->msix_table[0].vector,
1740 0, bp->msix_table[offset].vector,
1741 i - 1, bp->msix_table[offset + i - 1].vector);
1742 } else {
1743 offset = CNIC_SUPPORT(bp);
1744 netdev_info(bp->dev,
1745 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1746 0, bp->msix_table[offset].vector,
1747 i - 1, bp->msix_table[offset + i - 1].vector);
1748 }
1749 return 0;
1750 }
1751
1752 int bnx2x_enable_msi(struct bnx2x *bp)
1753 {
1754 int rc;
1755
1756 rc = pci_enable_msi(bp->pdev);
1757 if (rc) {
1758 BNX2X_DEV_INFO("MSI is not attainable\n");
1759 return -1;
1760 }
1761 bp->flags |= USING_MSI_FLAG;
1762
1763 return 0;
1764 }
1765
1766 static int bnx2x_req_irq(struct bnx2x *bp)
1767 {
1768 unsigned long flags;
1769 unsigned int irq;
1770
1771 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1772 flags = 0;
1773 else
1774 flags = IRQF_SHARED;
1775
1776 if (bp->flags & USING_MSIX_FLAG)
1777 irq = bp->msix_table[0].vector;
1778 else
1779 irq = bp->pdev->irq;
1780
1781 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1782 }
1783
1784 static int bnx2x_setup_irqs(struct bnx2x *bp)
1785 {
1786 int rc = 0;
1787 if (bp->flags & USING_MSIX_FLAG &&
1788 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1789 rc = bnx2x_req_msix_irqs(bp);
1790 if (rc)
1791 return rc;
1792 } else {
1793 rc = bnx2x_req_irq(bp);
1794 if (rc) {
1795 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1796 return rc;
1797 }
1798 if (bp->flags & USING_MSI_FLAG) {
1799 bp->dev->irq = bp->pdev->irq;
1800 netdev_info(bp->dev, "using MSI IRQ %d\n",
1801 bp->dev->irq);
1802 }
1803 if (bp->flags & USING_MSIX_FLAG) {
1804 bp->dev->irq = bp->msix_table[0].vector;
1805 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1806 bp->dev->irq);
1807 }
1808 }
1809
1810 return 0;
1811 }
1812
1813 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1814 {
1815 int i;
1816
1817 for_each_rx_queue_cnic(bp, i) {
1818 bnx2x_fp_init_lock(&bp->fp[i]);
1819 napi_enable(&bnx2x_fp(bp, i, napi));
1820 }
1821 }
1822
1823 static void bnx2x_napi_enable(struct bnx2x *bp)
1824 {
1825 int i;
1826
1827 for_each_eth_queue(bp, i) {
1828 bnx2x_fp_init_lock(&bp->fp[i]);
1829 napi_enable(&bnx2x_fp(bp, i, napi));
1830 }
1831 }
1832
1833 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1834 {
1835 int i;
1836
1837 for_each_rx_queue_cnic(bp, i) {
1838 napi_disable(&bnx2x_fp(bp, i, napi));
1839 while (!bnx2x_fp_ll_disable(&bp->fp[i]))
1840 usleep_range(1000, 2000);
1841 }
1842 }
1843
1844 static void bnx2x_napi_disable(struct bnx2x *bp)
1845 {
1846 int i;
1847
1848 for_each_eth_queue(bp, i) {
1849 napi_disable(&bnx2x_fp(bp, i, napi));
1850 while (!bnx2x_fp_ll_disable(&bp->fp[i]))
1851 usleep_range(1000, 2000);
1852 }
1853 }
1854
1855 void bnx2x_netif_start(struct bnx2x *bp)
1856 {
1857 if (netif_running(bp->dev)) {
1858 bnx2x_napi_enable(bp);
1859 if (CNIC_LOADED(bp))
1860 bnx2x_napi_enable_cnic(bp);
1861 bnx2x_int_enable(bp);
1862 if (bp->state == BNX2X_STATE_OPEN)
1863 netif_tx_wake_all_queues(bp->dev);
1864 }
1865 }
1866
1867 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1868 {
1869 bnx2x_int_disable_sync(bp, disable_hw);
1870 bnx2x_napi_disable(bp);
1871 if (CNIC_LOADED(bp))
1872 bnx2x_napi_disable_cnic(bp);
1873 }
1874
1875 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1876 void *accel_priv, select_queue_fallback_t fallback)
1877 {
1878 struct bnx2x *bp = netdev_priv(dev);
1879
1880 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1881 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1882 u16 ether_type = ntohs(hdr->h_proto);
1883
1884 /* Skip VLAN tag if present */
1885 if (ether_type == ETH_P_8021Q) {
1886 struct vlan_ethhdr *vhdr =
1887 (struct vlan_ethhdr *)skb->data;
1888
1889 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1890 }
1891
1892 /* If ethertype is FCoE or FIP - use FCoE ring */
1893 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1894 return bnx2x_fcoe_tx(bp, txq_index);
1895 }
1896
1897 /* select a non-FCoE queue */
1898 return fallback(dev, skb) % BNX2X_NUM_ETH_QUEUES(bp);
1899 }
1900
1901 void bnx2x_set_num_queues(struct bnx2x *bp)
1902 {
1903 /* RSS queues */
1904 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1905
1906 /* override in STORAGE SD modes */
1907 if (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))
1908 bp->num_ethernet_queues = 1;
1909
1910 /* Add special queues */
1911 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1912 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1913
1914 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1915 }
1916
1917 /**
1918 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1919 *
1920 * @bp: Driver handle
1921 *
1922 * We currently support for at most 16 Tx queues for each CoS thus we will
1923 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1924 * bp->max_cos.
1925 *
1926 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1927 * index after all ETH L2 indices.
1928 *
1929 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1930 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1931 * 16..31,...) with indices that are not coupled with any real Tx queue.
1932 *
1933 * The proper configuration of skb->queue_mapping is handled by
1934 * bnx2x_select_queue() and __skb_tx_hash().
1935 *
1936 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1937 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1938 */
1939 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1940 {
1941 int rc, tx, rx;
1942
1943 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1944 rx = BNX2X_NUM_ETH_QUEUES(bp);
1945
1946 /* account for fcoe queue */
1947 if (include_cnic && !NO_FCOE(bp)) {
1948 rx++;
1949 tx++;
1950 }
1951
1952 rc = netif_set_real_num_tx_queues(bp->dev, tx);
1953 if (rc) {
1954 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1955 return rc;
1956 }
1957 rc = netif_set_real_num_rx_queues(bp->dev, rx);
1958 if (rc) {
1959 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1960 return rc;
1961 }
1962
1963 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
1964 tx, rx);
1965
1966 return rc;
1967 }
1968
1969 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
1970 {
1971 int i;
1972
1973 for_each_queue(bp, i) {
1974 struct bnx2x_fastpath *fp = &bp->fp[i];
1975 u32 mtu;
1976
1977 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
1978 if (IS_FCOE_IDX(i))
1979 /*
1980 * Although there are no IP frames expected to arrive to
1981 * this ring we still want to add an
1982 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
1983 * overrun attack.
1984 */
1985 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
1986 else
1987 mtu = bp->dev->mtu;
1988 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
1989 IP_HEADER_ALIGNMENT_PADDING +
1990 ETH_OVREHEAD +
1991 mtu +
1992 BNX2X_FW_RX_ALIGN_END;
1993 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
1994 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
1995 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
1996 else
1997 fp->rx_frag_size = 0;
1998 }
1999 }
2000
2001 static int bnx2x_init_rss(struct bnx2x *bp)
2002 {
2003 int i;
2004 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2005
2006 /* Prepare the initial contents for the indirection table if RSS is
2007 * enabled
2008 */
2009 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2010 bp->rss_conf_obj.ind_table[i] =
2011 bp->fp->cl_id +
2012 ethtool_rxfh_indir_default(i, num_eth_queues);
2013
2014 /*
2015 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2016 * per-port, so if explicit configuration is needed , do it only
2017 * for a PMF.
2018 *
2019 * For 57712 and newer on the other hand it's a per-function
2020 * configuration.
2021 */
2022 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2023 }
2024
2025 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2026 bool config_hash, bool enable)
2027 {
2028 struct bnx2x_config_rss_params params = {NULL};
2029
2030 /* Although RSS is meaningless when there is a single HW queue we
2031 * still need it enabled in order to have HW Rx hash generated.
2032 *
2033 * if (!is_eth_multi(bp))
2034 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2035 */
2036
2037 params.rss_obj = rss_obj;
2038
2039 __set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2040
2041 if (enable) {
2042 __set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2043
2044 /* RSS configuration */
2045 __set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2046 __set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2047 __set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2048 __set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2049 if (rss_obj->udp_rss_v4)
2050 __set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2051 if (rss_obj->udp_rss_v6)
2052 __set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2053 } else {
2054 __set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2055 }
2056
2057 /* Hash bits */
2058 params.rss_result_mask = MULTI_MASK;
2059
2060 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2061
2062 if (config_hash) {
2063 /* RSS keys */
2064 prandom_bytes(params.rss_key, T_ETH_RSS_KEY * 4);
2065 __set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2066 }
2067
2068 if (IS_PF(bp))
2069 return bnx2x_config_rss(bp, &params);
2070 else
2071 return bnx2x_vfpf_config_rss(bp, &params);
2072 }
2073
2074 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2075 {
2076 struct bnx2x_func_state_params func_params = {NULL};
2077
2078 /* Prepare parameters for function state transitions */
2079 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2080
2081 func_params.f_obj = &bp->func_obj;
2082 func_params.cmd = BNX2X_F_CMD_HW_INIT;
2083
2084 func_params.params.hw_init.load_phase = load_code;
2085
2086 return bnx2x_func_state_change(bp, &func_params);
2087 }
2088
2089 /*
2090 * Cleans the object that have internal lists without sending
2091 * ramrods. Should be run when interrupts are disabled.
2092 */
2093 void bnx2x_squeeze_objects(struct bnx2x *bp)
2094 {
2095 int rc;
2096 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2097 struct bnx2x_mcast_ramrod_params rparam = {NULL};
2098 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2099
2100 /***************** Cleanup MACs' object first *************************/
2101
2102 /* Wait for completion of requested */
2103 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2104 /* Perform a dry cleanup */
2105 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2106
2107 /* Clean ETH primary MAC */
2108 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2109 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2110 &ramrod_flags);
2111 if (rc != 0)
2112 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2113
2114 /* Cleanup UC list */
2115 vlan_mac_flags = 0;
2116 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2117 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2118 &ramrod_flags);
2119 if (rc != 0)
2120 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2121
2122 /***************** Now clean mcast object *****************************/
2123 rparam.mcast_obj = &bp->mcast_obj;
2124 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2125
2126 /* Add a DEL command... - Since we're doing a driver cleanup only,
2127 * we take a lock surrounding both the initial send and the CONTs,
2128 * as we don't want a true completion to disrupt us in the middle.
2129 */
2130 netif_addr_lock_bh(bp->dev);
2131 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2132 if (rc < 0)
2133 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2134 rc);
2135
2136 /* ...and wait until all pending commands are cleared */
2137 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2138 while (rc != 0) {
2139 if (rc < 0) {
2140 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2141 rc);
2142 netif_addr_unlock_bh(bp->dev);
2143 return;
2144 }
2145
2146 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2147 }
2148 netif_addr_unlock_bh(bp->dev);
2149 }
2150
2151 #ifndef BNX2X_STOP_ON_ERROR
2152 #define LOAD_ERROR_EXIT(bp, label) \
2153 do { \
2154 (bp)->state = BNX2X_STATE_ERROR; \
2155 goto label; \
2156 } while (0)
2157
2158 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2159 do { \
2160 bp->cnic_loaded = false; \
2161 goto label; \
2162 } while (0)
2163 #else /*BNX2X_STOP_ON_ERROR*/
2164 #define LOAD_ERROR_EXIT(bp, label) \
2165 do { \
2166 (bp)->state = BNX2X_STATE_ERROR; \
2167 (bp)->panic = 1; \
2168 return -EBUSY; \
2169 } while (0)
2170 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2171 do { \
2172 bp->cnic_loaded = false; \
2173 (bp)->panic = 1; \
2174 return -EBUSY; \
2175 } while (0)
2176 #endif /*BNX2X_STOP_ON_ERROR*/
2177
2178 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2179 {
2180 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2181 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2182 return;
2183 }
2184
2185 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2186 {
2187 int num_groups, vf_headroom = 0;
2188 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2189
2190 /* number of queues for statistics is number of eth queues + FCoE */
2191 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2192
2193 /* Total number of FW statistics requests =
2194 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2195 * and fcoe l2 queue) stats + num of queues (which includes another 1
2196 * for fcoe l2 queue if applicable)
2197 */
2198 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2199
2200 /* vf stats appear in the request list, but their data is allocated by
2201 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2202 * it is used to determine where to place the vf stats queries in the
2203 * request struct
2204 */
2205 if (IS_SRIOV(bp))
2206 vf_headroom = bnx2x_vf_headroom(bp);
2207
2208 /* Request is built from stats_query_header and an array of
2209 * stats_query_cmd_group each of which contains
2210 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2211 * configured in the stats_query_header.
2212 */
2213 num_groups =
2214 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2215 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2216 1 : 0));
2217
2218 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2219 bp->fw_stats_num, vf_headroom, num_groups);
2220 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2221 num_groups * sizeof(struct stats_query_cmd_group);
2222
2223 /* Data for statistics requests + stats_counter
2224 * stats_counter holds per-STORM counters that are incremented
2225 * when STORM has finished with the current request.
2226 * memory for FCoE offloaded statistics are counted anyway,
2227 * even if they will not be sent.
2228 * VF stats are not accounted for here as the data of VF stats is stored
2229 * in memory allocated by the VF, not here.
2230 */
2231 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2232 sizeof(struct per_pf_stats) +
2233 sizeof(struct fcoe_statistics_params) +
2234 sizeof(struct per_queue_stats) * num_queue_stats +
2235 sizeof(struct stats_counter);
2236
2237 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2238 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2239 if (!bp->fw_stats)
2240 goto alloc_mem_err;
2241
2242 /* Set shortcuts */
2243 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2244 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2245 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2246 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2247 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2248 bp->fw_stats_req_sz;
2249
2250 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2251 U64_HI(bp->fw_stats_req_mapping),
2252 U64_LO(bp->fw_stats_req_mapping));
2253 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2254 U64_HI(bp->fw_stats_data_mapping),
2255 U64_LO(bp->fw_stats_data_mapping));
2256 return 0;
2257
2258 alloc_mem_err:
2259 bnx2x_free_fw_stats_mem(bp);
2260 BNX2X_ERR("Can't allocate FW stats memory\n");
2261 return -ENOMEM;
2262 }
2263
2264 /* send load request to mcp and analyze response */
2265 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2266 {
2267 u32 param;
2268
2269 /* init fw_seq */
2270 bp->fw_seq =
2271 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2272 DRV_MSG_SEQ_NUMBER_MASK);
2273 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2274
2275 /* Get current FW pulse sequence */
2276 bp->fw_drv_pulse_wr_seq =
2277 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2278 DRV_PULSE_SEQ_MASK);
2279 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2280
2281 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2282
2283 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2284 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2285
2286 /* load request */
2287 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2288
2289 /* if mcp fails to respond we must abort */
2290 if (!(*load_code)) {
2291 BNX2X_ERR("MCP response failure, aborting\n");
2292 return -EBUSY;
2293 }
2294
2295 /* If mcp refused (e.g. other port is in diagnostic mode) we
2296 * must abort
2297 */
2298 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2299 BNX2X_ERR("MCP refused load request, aborting\n");
2300 return -EBUSY;
2301 }
2302 return 0;
2303 }
2304
2305 /* check whether another PF has already loaded FW to chip. In
2306 * virtualized environments a pf from another VM may have already
2307 * initialized the device including loading FW
2308 */
2309 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2310 {
2311 /* is another pf loaded on this engine? */
2312 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2313 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2314 /* build my FW version dword */
2315 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2316 (BCM_5710_FW_MINOR_VERSION << 8) +
2317 (BCM_5710_FW_REVISION_VERSION << 16) +
2318 (BCM_5710_FW_ENGINEERING_VERSION << 24);
2319
2320 /* read loaded FW from chip */
2321 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2322
2323 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2324 loaded_fw, my_fw);
2325
2326 /* abort nic load if version mismatch */
2327 if (my_fw != loaded_fw) {
2328 if (print_err)
2329 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2330 loaded_fw, my_fw);
2331 else
2332 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2333 loaded_fw, my_fw);
2334 return -EBUSY;
2335 }
2336 }
2337 return 0;
2338 }
2339
2340 /* returns the "mcp load_code" according to global load_count array */
2341 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2342 {
2343 int path = BP_PATH(bp);
2344
2345 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2346 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2347 bnx2x_load_count[path][2]);
2348 bnx2x_load_count[path][0]++;
2349 bnx2x_load_count[path][1 + port]++;
2350 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2351 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2352 bnx2x_load_count[path][2]);
2353 if (bnx2x_load_count[path][0] == 1)
2354 return FW_MSG_CODE_DRV_LOAD_COMMON;
2355 else if (bnx2x_load_count[path][1 + port] == 1)
2356 return FW_MSG_CODE_DRV_LOAD_PORT;
2357 else
2358 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2359 }
2360
2361 /* mark PMF if applicable */
2362 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2363 {
2364 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2365 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2366 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2367 bp->port.pmf = 1;
2368 /* We need the barrier to ensure the ordering between the
2369 * writing to bp->port.pmf here and reading it from the
2370 * bnx2x_periodic_task().
2371 */
2372 smp_mb();
2373 } else {
2374 bp->port.pmf = 0;
2375 }
2376
2377 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2378 }
2379
2380 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2381 {
2382 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2383 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2384 (bp->common.shmem2_base)) {
2385 if (SHMEM2_HAS(bp, dcc_support))
2386 SHMEM2_WR(bp, dcc_support,
2387 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2388 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2389 if (SHMEM2_HAS(bp, afex_driver_support))
2390 SHMEM2_WR(bp, afex_driver_support,
2391 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2392 }
2393
2394 /* Set AFEX default VLAN tag to an invalid value */
2395 bp->afex_def_vlan_tag = -1;
2396 }
2397
2398 /**
2399 * bnx2x_bz_fp - zero content of the fastpath structure.
2400 *
2401 * @bp: driver handle
2402 * @index: fastpath index to be zeroed
2403 *
2404 * Makes sure the contents of the bp->fp[index].napi is kept
2405 * intact.
2406 */
2407 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2408 {
2409 struct bnx2x_fastpath *fp = &bp->fp[index];
2410 int cos;
2411 struct napi_struct orig_napi = fp->napi;
2412 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2413
2414 /* bzero bnx2x_fastpath contents */
2415 if (fp->tpa_info)
2416 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2417 sizeof(struct bnx2x_agg_info));
2418 memset(fp, 0, sizeof(*fp));
2419
2420 /* Restore the NAPI object as it has been already initialized */
2421 fp->napi = orig_napi;
2422 fp->tpa_info = orig_tpa_info;
2423 fp->bp = bp;
2424 fp->index = index;
2425 if (IS_ETH_FP(fp))
2426 fp->max_cos = bp->max_cos;
2427 else
2428 /* Special queues support only one CoS */
2429 fp->max_cos = 1;
2430
2431 /* Init txdata pointers */
2432 if (IS_FCOE_FP(fp))
2433 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2434 if (IS_ETH_FP(fp))
2435 for_each_cos_in_tx_queue(fp, cos)
2436 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2437 BNX2X_NUM_ETH_QUEUES(bp) + index];
2438
2439 /* set the tpa flag for each queue. The tpa flag determines the queue
2440 * minimal size so it must be set prior to queue memory allocation
2441 */
2442 fp->disable_tpa = !(bp->flags & TPA_ENABLE_FLAG ||
2443 (bp->flags & GRO_ENABLE_FLAG &&
2444 bnx2x_mtu_allows_gro(bp->dev->mtu)));
2445 if (bp->flags & TPA_ENABLE_FLAG)
2446 fp->mode = TPA_MODE_LRO;
2447 else if (bp->flags & GRO_ENABLE_FLAG)
2448 fp->mode = TPA_MODE_GRO;
2449
2450 /* We don't want TPA on an FCoE L2 ring */
2451 if (IS_FCOE_FP(fp))
2452 fp->disable_tpa = 1;
2453 }
2454
2455 int bnx2x_load_cnic(struct bnx2x *bp)
2456 {
2457 int i, rc, port = BP_PORT(bp);
2458
2459 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2460
2461 mutex_init(&bp->cnic_mutex);
2462
2463 if (IS_PF(bp)) {
2464 rc = bnx2x_alloc_mem_cnic(bp);
2465 if (rc) {
2466 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2467 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2468 }
2469 }
2470
2471 rc = bnx2x_alloc_fp_mem_cnic(bp);
2472 if (rc) {
2473 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2474 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2475 }
2476
2477 /* Update the number of queues with the cnic queues */
2478 rc = bnx2x_set_real_num_queues(bp, 1);
2479 if (rc) {
2480 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2481 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2482 }
2483
2484 /* Add all CNIC NAPI objects */
2485 bnx2x_add_all_napi_cnic(bp);
2486 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2487 bnx2x_napi_enable_cnic(bp);
2488
2489 rc = bnx2x_init_hw_func_cnic(bp);
2490 if (rc)
2491 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2492
2493 bnx2x_nic_init_cnic(bp);
2494
2495 if (IS_PF(bp)) {
2496 /* Enable Timer scan */
2497 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2498
2499 /* setup cnic queues */
2500 for_each_cnic_queue(bp, i) {
2501 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2502 if (rc) {
2503 BNX2X_ERR("Queue setup failed\n");
2504 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2505 }
2506 }
2507 }
2508
2509 /* Initialize Rx filter. */
2510 bnx2x_set_rx_mode_inner(bp);
2511
2512 /* re-read iscsi info */
2513 bnx2x_get_iscsi_info(bp);
2514 bnx2x_setup_cnic_irq_info(bp);
2515 bnx2x_setup_cnic_info(bp);
2516 bp->cnic_loaded = true;
2517 if (bp->state == BNX2X_STATE_OPEN)
2518 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2519
2520 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2521
2522 return 0;
2523
2524 #ifndef BNX2X_STOP_ON_ERROR
2525 load_error_cnic2:
2526 /* Disable Timer scan */
2527 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2528
2529 load_error_cnic1:
2530 bnx2x_napi_disable_cnic(bp);
2531 /* Update the number of queues without the cnic queues */
2532 if (bnx2x_set_real_num_queues(bp, 0))
2533 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2534 load_error_cnic0:
2535 BNX2X_ERR("CNIC-related load failed\n");
2536 bnx2x_free_fp_mem_cnic(bp);
2537 bnx2x_free_mem_cnic(bp);
2538 return rc;
2539 #endif /* ! BNX2X_STOP_ON_ERROR */
2540 }
2541
2542 /* must be called with rtnl_lock */
2543 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2544 {
2545 int port = BP_PORT(bp);
2546 int i, rc = 0, load_code = 0;
2547
2548 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2549 DP(NETIF_MSG_IFUP,
2550 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2551
2552 #ifdef BNX2X_STOP_ON_ERROR
2553 if (unlikely(bp->panic)) {
2554 BNX2X_ERR("Can't load NIC when there is panic\n");
2555 return -EPERM;
2556 }
2557 #endif
2558
2559 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2560
2561 /* zero the structure w/o any lock, before SP handler is initialized */
2562 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2563 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2564 &bp->last_reported_link.link_report_flags);
2565
2566 if (IS_PF(bp))
2567 /* must be called before memory allocation and HW init */
2568 bnx2x_ilt_set_info(bp);
2569
2570 /*
2571 * Zero fastpath structures preserving invariants like napi, which are
2572 * allocated only once, fp index, max_cos, bp pointer.
2573 * Also set fp->disable_tpa and txdata_ptr.
2574 */
2575 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2576 for_each_queue(bp, i)
2577 bnx2x_bz_fp(bp, i);
2578 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2579 bp->num_cnic_queues) *
2580 sizeof(struct bnx2x_fp_txdata));
2581
2582 bp->fcoe_init = false;
2583
2584 /* Set the receive queues buffer size */
2585 bnx2x_set_rx_buf_size(bp);
2586
2587 if (IS_PF(bp)) {
2588 rc = bnx2x_alloc_mem(bp);
2589 if (rc) {
2590 BNX2X_ERR("Unable to allocate bp memory\n");
2591 return rc;
2592 }
2593 }
2594
2595 /* need to be done after alloc mem, since it's self adjusting to amount
2596 * of memory available for RSS queues
2597 */
2598 rc = bnx2x_alloc_fp_mem(bp);
2599 if (rc) {
2600 BNX2X_ERR("Unable to allocate memory for fps\n");
2601 LOAD_ERROR_EXIT(bp, load_error0);
2602 }
2603
2604 /* Allocated memory for FW statistics */
2605 if (bnx2x_alloc_fw_stats_mem(bp))
2606 LOAD_ERROR_EXIT(bp, load_error0);
2607
2608 /* request pf to initialize status blocks */
2609 if (IS_VF(bp)) {
2610 rc = bnx2x_vfpf_init(bp);
2611 if (rc)
2612 LOAD_ERROR_EXIT(bp, load_error0);
2613 }
2614
2615 /* As long as bnx2x_alloc_mem() may possibly update
2616 * bp->num_queues, bnx2x_set_real_num_queues() should always
2617 * come after it. At this stage cnic queues are not counted.
2618 */
2619 rc = bnx2x_set_real_num_queues(bp, 0);
2620 if (rc) {
2621 BNX2X_ERR("Unable to set real_num_queues\n");
2622 LOAD_ERROR_EXIT(bp, load_error0);
2623 }
2624
2625 /* configure multi cos mappings in kernel.
2626 * this configuration may be overridden by a multi class queue
2627 * discipline or by a dcbx negotiation result.
2628 */
2629 bnx2x_setup_tc(bp->dev, bp->max_cos);
2630
2631 /* Add all NAPI objects */
2632 bnx2x_add_all_napi(bp);
2633 DP(NETIF_MSG_IFUP, "napi added\n");
2634 bnx2x_napi_enable(bp);
2635
2636 if (IS_PF(bp)) {
2637 /* set pf load just before approaching the MCP */
2638 bnx2x_set_pf_load(bp);
2639
2640 /* if mcp exists send load request and analyze response */
2641 if (!BP_NOMCP(bp)) {
2642 /* attempt to load pf */
2643 rc = bnx2x_nic_load_request(bp, &load_code);
2644 if (rc)
2645 LOAD_ERROR_EXIT(bp, load_error1);
2646
2647 /* what did mcp say? */
2648 rc = bnx2x_compare_fw_ver(bp, load_code, true);
2649 if (rc) {
2650 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2651 LOAD_ERROR_EXIT(bp, load_error2);
2652 }
2653 } else {
2654 load_code = bnx2x_nic_load_no_mcp(bp, port);
2655 }
2656
2657 /* mark pmf if applicable */
2658 bnx2x_nic_load_pmf(bp, load_code);
2659
2660 /* Init Function state controlling object */
2661 bnx2x__init_func_obj(bp);
2662
2663 /* Initialize HW */
2664 rc = bnx2x_init_hw(bp, load_code);
2665 if (rc) {
2666 BNX2X_ERR("HW init failed, aborting\n");
2667 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2668 LOAD_ERROR_EXIT(bp, load_error2);
2669 }
2670 }
2671
2672 bnx2x_pre_irq_nic_init(bp);
2673
2674 /* Connect to IRQs */
2675 rc = bnx2x_setup_irqs(bp);
2676 if (rc) {
2677 BNX2X_ERR("setup irqs failed\n");
2678 if (IS_PF(bp))
2679 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2680 LOAD_ERROR_EXIT(bp, load_error2);
2681 }
2682
2683 /* Init per-function objects */
2684 if (IS_PF(bp)) {
2685 /* Setup NIC internals and enable interrupts */
2686 bnx2x_post_irq_nic_init(bp, load_code);
2687
2688 bnx2x_init_bp_objs(bp);
2689 bnx2x_iov_nic_init(bp);
2690
2691 /* Set AFEX default VLAN tag to an invalid value */
2692 bp->afex_def_vlan_tag = -1;
2693 bnx2x_nic_load_afex_dcc(bp, load_code);
2694 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2695 rc = bnx2x_func_start(bp);
2696 if (rc) {
2697 BNX2X_ERR("Function start failed!\n");
2698 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2699
2700 LOAD_ERROR_EXIT(bp, load_error3);
2701 }
2702
2703 /* Send LOAD_DONE command to MCP */
2704 if (!BP_NOMCP(bp)) {
2705 load_code = bnx2x_fw_command(bp,
2706 DRV_MSG_CODE_LOAD_DONE, 0);
2707 if (!load_code) {
2708 BNX2X_ERR("MCP response failure, aborting\n");
2709 rc = -EBUSY;
2710 LOAD_ERROR_EXIT(bp, load_error3);
2711 }
2712 }
2713
2714 /* initialize FW coalescing state machines in RAM */
2715 bnx2x_update_coalesce(bp);
2716 }
2717
2718 /* setup the leading queue */
2719 rc = bnx2x_setup_leading(bp);
2720 if (rc) {
2721 BNX2X_ERR("Setup leading failed!\n");
2722 LOAD_ERROR_EXIT(bp, load_error3);
2723 }
2724
2725 /* set up the rest of the queues */
2726 for_each_nondefault_eth_queue(bp, i) {
2727 if (IS_PF(bp))
2728 rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2729 else /* VF */
2730 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2731 if (rc) {
2732 BNX2X_ERR("Queue %d setup failed\n", i);
2733 LOAD_ERROR_EXIT(bp, load_error3);
2734 }
2735 }
2736
2737 /* setup rss */
2738 rc = bnx2x_init_rss(bp);
2739 if (rc) {
2740 BNX2X_ERR("PF RSS init failed\n");
2741 LOAD_ERROR_EXIT(bp, load_error3);
2742 }
2743
2744 /* Now when Clients are configured we are ready to work */
2745 bp->state = BNX2X_STATE_OPEN;
2746
2747 /* Configure a ucast MAC */
2748 if (IS_PF(bp))
2749 rc = bnx2x_set_eth_mac(bp, true);
2750 else /* vf */
2751 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2752 true);
2753 if (rc) {
2754 BNX2X_ERR("Setting Ethernet MAC failed\n");
2755 LOAD_ERROR_EXIT(bp, load_error3);
2756 }
2757
2758 if (IS_PF(bp) && bp->pending_max) {
2759 bnx2x_update_max_mf_config(bp, bp->pending_max);
2760 bp->pending_max = 0;
2761 }
2762
2763 if (bp->port.pmf) {
2764 rc = bnx2x_initial_phy_init(bp, load_mode);
2765 if (rc)
2766 LOAD_ERROR_EXIT(bp, load_error3);
2767 }
2768 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2769
2770 /* Start fast path */
2771
2772 /* Initialize Rx filter. */
2773 bnx2x_set_rx_mode_inner(bp);
2774
2775 /* Start the Tx */
2776 switch (load_mode) {
2777 case LOAD_NORMAL:
2778 /* Tx queue should be only re-enabled */
2779 netif_tx_wake_all_queues(bp->dev);
2780 break;
2781
2782 case LOAD_OPEN:
2783 netif_tx_start_all_queues(bp->dev);
2784 smp_mb__after_clear_bit();
2785 break;
2786
2787 case LOAD_DIAG:
2788 case LOAD_LOOPBACK_EXT:
2789 bp->state = BNX2X_STATE_DIAG;
2790 break;
2791
2792 default:
2793 break;
2794 }
2795
2796 if (bp->port.pmf)
2797 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2798 else
2799 bnx2x__link_status_update(bp);
2800
2801 /* start the timer */
2802 mod_timer(&bp->timer, jiffies + bp->current_interval);
2803
2804 if (CNIC_ENABLED(bp))
2805 bnx2x_load_cnic(bp);
2806
2807 if (IS_PF(bp))
2808 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2809
2810 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2811 /* mark driver is loaded in shmem2 */
2812 u32 val;
2813 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2814 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2815 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2816 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2817 }
2818
2819 /* Wait for all pending SP commands to complete */
2820 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2821 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2822 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2823 return -EBUSY;
2824 }
2825
2826 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2827 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2828 bnx2x_dcbx_init(bp, false);
2829
2830 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2831
2832 return 0;
2833
2834 #ifndef BNX2X_STOP_ON_ERROR
2835 load_error3:
2836 if (IS_PF(bp)) {
2837 bnx2x_int_disable_sync(bp, 1);
2838
2839 /* Clean queueable objects */
2840 bnx2x_squeeze_objects(bp);
2841 }
2842
2843 /* Free SKBs, SGEs, TPA pool and driver internals */
2844 bnx2x_free_skbs(bp);
2845 for_each_rx_queue(bp, i)
2846 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2847
2848 /* Release IRQs */
2849 bnx2x_free_irq(bp);
2850 load_error2:
2851 if (IS_PF(bp) && !BP_NOMCP(bp)) {
2852 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2853 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2854 }
2855
2856 bp->port.pmf = 0;
2857 load_error1:
2858 bnx2x_napi_disable(bp);
2859 bnx2x_del_all_napi(bp);
2860
2861 /* clear pf_load status, as it was already set */
2862 if (IS_PF(bp))
2863 bnx2x_clear_pf_load(bp);
2864 load_error0:
2865 bnx2x_free_fw_stats_mem(bp);
2866 bnx2x_free_fp_mem(bp);
2867 bnx2x_free_mem(bp);
2868
2869 return rc;
2870 #endif /* ! BNX2X_STOP_ON_ERROR */
2871 }
2872
2873 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2874 {
2875 u8 rc = 0, cos, i;
2876
2877 /* Wait until tx fastpath tasks complete */
2878 for_each_tx_queue(bp, i) {
2879 struct bnx2x_fastpath *fp = &bp->fp[i];
2880
2881 for_each_cos_in_tx_queue(fp, cos)
2882 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2883 if (rc)
2884 return rc;
2885 }
2886 return 0;
2887 }
2888
2889 /* must be called with rtnl_lock */
2890 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2891 {
2892 int i;
2893 bool global = false;
2894
2895 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2896
2897 /* mark driver is unloaded in shmem2 */
2898 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2899 u32 val;
2900 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2901 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2902 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2903 }
2904
2905 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2906 (bp->state == BNX2X_STATE_CLOSED ||
2907 bp->state == BNX2X_STATE_ERROR)) {
2908 /* We can get here if the driver has been unloaded
2909 * during parity error recovery and is either waiting for a
2910 * leader to complete or for other functions to unload and
2911 * then ifdown has been issued. In this case we want to
2912 * unload and let other functions to complete a recovery
2913 * process.
2914 */
2915 bp->recovery_state = BNX2X_RECOVERY_DONE;
2916 bp->is_leader = 0;
2917 bnx2x_release_leader_lock(bp);
2918 smp_mb();
2919
2920 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
2921 BNX2X_ERR("Can't unload in closed or error state\n");
2922 return -EINVAL;
2923 }
2924
2925 /* Nothing to do during unload if previous bnx2x_nic_load()
2926 * have not completed successfully - all resources are released.
2927 *
2928 * we can get here only after unsuccessful ndo_* callback, during which
2929 * dev->IFF_UP flag is still on.
2930 */
2931 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
2932 return 0;
2933
2934 /* It's important to set the bp->state to the value different from
2935 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
2936 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
2937 */
2938 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
2939 smp_mb();
2940
2941 /* indicate to VFs that the PF is going down */
2942 bnx2x_iov_channel_down(bp);
2943
2944 if (CNIC_LOADED(bp))
2945 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
2946
2947 /* Stop Tx */
2948 bnx2x_tx_disable(bp);
2949 netdev_reset_tc(bp->dev);
2950
2951 bp->rx_mode = BNX2X_RX_MODE_NONE;
2952
2953 del_timer_sync(&bp->timer);
2954
2955 if (IS_PF(bp)) {
2956 /* Set ALWAYS_ALIVE bit in shmem */
2957 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2958 bnx2x_drv_pulse(bp);
2959 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2960 bnx2x_save_statistics(bp);
2961 }
2962
2963 /* wait till consumers catch up with producers in all queues */
2964 bnx2x_drain_tx_queues(bp);
2965
2966 /* if VF indicate to PF this function is going down (PF will delete sp
2967 * elements and clear initializations
2968 */
2969 if (IS_VF(bp))
2970 bnx2x_vfpf_close_vf(bp);
2971 else if (unload_mode != UNLOAD_RECOVERY)
2972 /* if this is a normal/close unload need to clean up chip*/
2973 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
2974 else {
2975 /* Send the UNLOAD_REQUEST to the MCP */
2976 bnx2x_send_unload_req(bp, unload_mode);
2977
2978 /* Prevent transactions to host from the functions on the
2979 * engine that doesn't reset global blocks in case of global
2980 * attention once global blocks are reset and gates are opened
2981 * (the engine which leader will perform the recovery
2982 * last).
2983 */
2984 if (!CHIP_IS_E1x(bp))
2985 bnx2x_pf_disable(bp);
2986
2987 /* Disable HW interrupts, NAPI */
2988 bnx2x_netif_stop(bp, 1);
2989 /* Delete all NAPI objects */
2990 bnx2x_del_all_napi(bp);
2991 if (CNIC_LOADED(bp))
2992 bnx2x_del_all_napi_cnic(bp);
2993 /* Release IRQs */
2994 bnx2x_free_irq(bp);
2995
2996 /* Report UNLOAD_DONE to MCP */
2997 bnx2x_send_unload_done(bp, false);
2998 }
2999
3000 /*
3001 * At this stage no more interrupts will arrive so we may safely clean
3002 * the queueable objects here in case they failed to get cleaned so far.
3003 */
3004 if (IS_PF(bp))
3005 bnx2x_squeeze_objects(bp);
3006
3007 /* There should be no more pending SP commands at this stage */
3008 bp->sp_state = 0;
3009
3010 bp->port.pmf = 0;
3011
3012 /* clear pending work in rtnl task */
3013 bp->sp_rtnl_state = 0;
3014 smp_mb();
3015
3016 /* Free SKBs, SGEs, TPA pool and driver internals */
3017 bnx2x_free_skbs(bp);
3018 if (CNIC_LOADED(bp))
3019 bnx2x_free_skbs_cnic(bp);
3020 for_each_rx_queue(bp, i)
3021 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3022
3023 bnx2x_free_fp_mem(bp);
3024 if (CNIC_LOADED(bp))
3025 bnx2x_free_fp_mem_cnic(bp);
3026
3027 if (IS_PF(bp)) {
3028 if (CNIC_LOADED(bp))
3029 bnx2x_free_mem_cnic(bp);
3030 }
3031 bnx2x_free_mem(bp);
3032
3033 bp->state = BNX2X_STATE_CLOSED;
3034 bp->cnic_loaded = false;
3035
3036 /* Clear driver version indication in shmem */
3037 if (IS_PF(bp))
3038 bnx2x_update_mng_version(bp);
3039
3040 /* Check if there are pending parity attentions. If there are - set
3041 * RECOVERY_IN_PROGRESS.
3042 */
3043 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3044 bnx2x_set_reset_in_progress(bp);
3045
3046 /* Set RESET_IS_GLOBAL if needed */
3047 if (global)
3048 bnx2x_set_reset_global(bp);
3049 }
3050
3051 /* The last driver must disable a "close the gate" if there is no
3052 * parity attention or "process kill" pending.
3053 */
3054 if (IS_PF(bp) &&
3055 !bnx2x_clear_pf_load(bp) &&
3056 bnx2x_reset_is_done(bp, BP_PATH(bp)))
3057 bnx2x_disable_close_the_gate(bp);
3058
3059 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3060
3061 return 0;
3062 }
3063
3064 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3065 {
3066 u16 pmcsr;
3067
3068 /* If there is no power capability, silently succeed */
3069 if (!bp->pdev->pm_cap) {
3070 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3071 return 0;
3072 }
3073
3074 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3075
3076 switch (state) {
3077 case PCI_D0:
3078 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3079 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3080 PCI_PM_CTRL_PME_STATUS));
3081
3082 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3083 /* delay required during transition out of D3hot */
3084 msleep(20);
3085 break;
3086
3087 case PCI_D3hot:
3088 /* If there are other clients above don't
3089 shut down the power */
3090 if (atomic_read(&bp->pdev->enable_cnt) != 1)
3091 return 0;
3092 /* Don't shut down the power for emulation and FPGA */
3093 if (CHIP_REV_IS_SLOW(bp))
3094 return 0;
3095
3096 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3097 pmcsr |= 3;
3098
3099 if (bp->wol)
3100 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3101
3102 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3103 pmcsr);
3104
3105 /* No more memory access after this point until
3106 * device is brought back to D0.
3107 */
3108 break;
3109
3110 default:
3111 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3112 return -EINVAL;
3113 }
3114 return 0;
3115 }
3116
3117 /*
3118 * net_device service functions
3119 */
3120 static int bnx2x_poll(struct napi_struct *napi, int budget)
3121 {
3122 int work_done = 0;
3123 u8 cos;
3124 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3125 napi);
3126 struct bnx2x *bp = fp->bp;
3127
3128 while (1) {
3129 #ifdef BNX2X_STOP_ON_ERROR
3130 if (unlikely(bp->panic)) {
3131 napi_complete(napi);
3132 return 0;
3133 }
3134 #endif
3135 if (!bnx2x_fp_lock_napi(fp))
3136 return work_done;
3137
3138 for_each_cos_in_tx_queue(fp, cos)
3139 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3140 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3141
3142 if (bnx2x_has_rx_work(fp)) {
3143 work_done += bnx2x_rx_int(fp, budget - work_done);
3144
3145 /* must not complete if we consumed full budget */
3146 if (work_done >= budget) {
3147 bnx2x_fp_unlock_napi(fp);
3148 break;
3149 }
3150 }
3151
3152 /* Fall out from the NAPI loop if needed */
3153 if (!bnx2x_fp_unlock_napi(fp) &&
3154 !(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3155
3156 /* No need to update SB for FCoE L2 ring as long as
3157 * it's connected to the default SB and the SB
3158 * has been updated when NAPI was scheduled.
3159 */
3160 if (IS_FCOE_FP(fp)) {
3161 napi_complete(napi);
3162 break;
3163 }
3164 bnx2x_update_fpsb_idx(fp);
3165 /* bnx2x_has_rx_work() reads the status block,
3166 * thus we need to ensure that status block indices
3167 * have been actually read (bnx2x_update_fpsb_idx)
3168 * prior to this check (bnx2x_has_rx_work) so that
3169 * we won't write the "newer" value of the status block
3170 * to IGU (if there was a DMA right after
3171 * bnx2x_has_rx_work and if there is no rmb, the memory
3172 * reading (bnx2x_update_fpsb_idx) may be postponed
3173 * to right before bnx2x_ack_sb). In this case there
3174 * will never be another interrupt until there is
3175 * another update of the status block, while there
3176 * is still unhandled work.
3177 */
3178 rmb();
3179
3180 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3181 napi_complete(napi);
3182 /* Re-enable interrupts */
3183 DP(NETIF_MSG_RX_STATUS,
3184 "Update index to %d\n", fp->fp_hc_idx);
3185 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3186 le16_to_cpu(fp->fp_hc_idx),
3187 IGU_INT_ENABLE, 1);
3188 break;
3189 }
3190 }
3191 }
3192
3193 return work_done;
3194 }
3195
3196 #ifdef CONFIG_NET_RX_BUSY_POLL
3197 /* must be called with local_bh_disable()d */
3198 int bnx2x_low_latency_recv(struct napi_struct *napi)
3199 {
3200 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3201 napi);
3202 struct bnx2x *bp = fp->bp;
3203 int found = 0;
3204
3205 if ((bp->state == BNX2X_STATE_CLOSED) ||
3206 (bp->state == BNX2X_STATE_ERROR) ||
3207 (bp->flags & (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG)))
3208 return LL_FLUSH_FAILED;
3209
3210 if (!bnx2x_fp_lock_poll(fp))
3211 return LL_FLUSH_BUSY;
3212
3213 if (bnx2x_has_rx_work(fp))
3214 found = bnx2x_rx_int(fp, 4);
3215
3216 bnx2x_fp_unlock_poll(fp);
3217
3218 return found;
3219 }
3220 #endif
3221
3222 /* we split the first BD into headers and data BDs
3223 * to ease the pain of our fellow microcode engineers
3224 * we use one mapping for both BDs
3225 */
3226 static u16 bnx2x_tx_split(struct bnx2x *bp,
3227 struct bnx2x_fp_txdata *txdata,
3228 struct sw_tx_bd *tx_buf,
3229 struct eth_tx_start_bd **tx_bd, u16 hlen,
3230 u16 bd_prod)
3231 {
3232 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3233 struct eth_tx_bd *d_tx_bd;
3234 dma_addr_t mapping;
3235 int old_len = le16_to_cpu(h_tx_bd->nbytes);
3236
3237 /* first fix first BD */
3238 h_tx_bd->nbytes = cpu_to_le16(hlen);
3239
3240 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n",
3241 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3242
3243 /* now get a new data BD
3244 * (after the pbd) and fill it */
3245 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3246 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3247
3248 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3249 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3250
3251 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3252 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3253 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3254
3255 /* this marks the BD as one that has no individual mapping */
3256 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3257
3258 DP(NETIF_MSG_TX_QUEUED,
3259 "TSO split data size is %d (%x:%x)\n",
3260 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3261
3262 /* update tx_bd */
3263 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3264
3265 return bd_prod;
3266 }
3267
3268 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3269 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3270 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3271 {
3272 __sum16 tsum = (__force __sum16) csum;
3273
3274 if (fix > 0)
3275 tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3276 csum_partial(t_header - fix, fix, 0)));
3277
3278 else if (fix < 0)
3279 tsum = ~csum_fold(csum_add((__force __wsum) csum,
3280 csum_partial(t_header, -fix, 0)));
3281
3282 return bswab16(tsum);
3283 }
3284
3285 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3286 {
3287 u32 rc;
3288 __u8 prot = 0;
3289 __be16 protocol;
3290
3291 if (skb->ip_summed != CHECKSUM_PARTIAL)
3292 return XMIT_PLAIN;
3293
3294 protocol = vlan_get_protocol(skb);
3295 if (protocol == htons(ETH_P_IPV6)) {
3296 rc = XMIT_CSUM_V6;
3297 prot = ipv6_hdr(skb)->nexthdr;
3298 } else {
3299 rc = XMIT_CSUM_V4;
3300 prot = ip_hdr(skb)->protocol;
3301 }
3302
3303 if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3304 if (inner_ip_hdr(skb)->version == 6) {
3305 rc |= XMIT_CSUM_ENC_V6;
3306 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3307 rc |= XMIT_CSUM_TCP;
3308 } else {
3309 rc |= XMIT_CSUM_ENC_V4;
3310 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3311 rc |= XMIT_CSUM_TCP;
3312 }
3313 }
3314 if (prot == IPPROTO_TCP)
3315 rc |= XMIT_CSUM_TCP;
3316
3317 if (skb_is_gso(skb)) {
3318 if (skb_is_gso_v6(skb)) {
3319 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3320 if (rc & XMIT_CSUM_ENC)
3321 rc |= XMIT_GSO_ENC_V6;
3322 } else {
3323 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3324 if (rc & XMIT_CSUM_ENC)
3325 rc |= XMIT_GSO_ENC_V4;
3326 }
3327 }
3328
3329 return rc;
3330 }
3331
3332 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3)
3333 /* check if packet requires linearization (packet is too fragmented)
3334 no need to check fragmentation if page size > 8K (there will be no
3335 violation to FW restrictions) */
3336 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3337 u32 xmit_type)
3338 {
3339 int to_copy = 0;
3340 int hlen = 0;
3341 int first_bd_sz = 0;
3342
3343 /* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3344 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) {
3345
3346 if (xmit_type & XMIT_GSO) {
3347 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3348 /* Check if LSO packet needs to be copied:
3349 3 = 1 (for headers BD) + 2 (for PBD and last BD) */
3350 int wnd_size = MAX_FETCH_BD - 3;
3351 /* Number of windows to check */
3352 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3353 int wnd_idx = 0;
3354 int frag_idx = 0;
3355 u32 wnd_sum = 0;
3356
3357 /* Headers length */
3358 hlen = (int)(skb_transport_header(skb) - skb->data) +
3359 tcp_hdrlen(skb);
3360
3361 /* Amount of data (w/o headers) on linear part of SKB*/
3362 first_bd_sz = skb_headlen(skb) - hlen;
3363
3364 wnd_sum = first_bd_sz;
3365
3366 /* Calculate the first sum - it's special */
3367 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3368 wnd_sum +=
3369 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3370
3371 /* If there was data on linear skb data - check it */
3372 if (first_bd_sz > 0) {
3373 if (unlikely(wnd_sum < lso_mss)) {
3374 to_copy = 1;
3375 goto exit_lbl;
3376 }
3377
3378 wnd_sum -= first_bd_sz;
3379 }
3380
3381 /* Others are easier: run through the frag list and
3382 check all windows */
3383 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3384 wnd_sum +=
3385 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3386
3387 if (unlikely(wnd_sum < lso_mss)) {
3388 to_copy = 1;
3389 break;
3390 }
3391 wnd_sum -=
3392 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3393 }
3394 } else {
3395 /* in non-LSO too fragmented packet should always
3396 be linearized */
3397 to_copy = 1;
3398 }
3399 }
3400
3401 exit_lbl:
3402 if (unlikely(to_copy))
3403 DP(NETIF_MSG_TX_QUEUED,
3404 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3405 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3406 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3407
3408 return to_copy;
3409 }
3410 #endif
3411
3412 static void bnx2x_set_pbd_gso_e2(struct sk_buff *skb, u32 *parsing_data,
3413 u32 xmit_type)
3414 {
3415 struct ipv6hdr *ipv6;
3416
3417 *parsing_data |= (skb_shinfo(skb)->gso_size <<
3418 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
3419 ETH_TX_PARSE_BD_E2_LSO_MSS;
3420
3421 if (xmit_type & XMIT_GSO_ENC_V6)
3422 ipv6 = inner_ipv6_hdr(skb);
3423 else if (xmit_type & XMIT_GSO_V6)
3424 ipv6 = ipv6_hdr(skb);
3425 else
3426 ipv6 = NULL;
3427
3428 if (ipv6 && ipv6->nexthdr == NEXTHDR_IPV6)
3429 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3430 }
3431
3432 /**
3433 * bnx2x_set_pbd_gso - update PBD in GSO case.
3434 *
3435 * @skb: packet skb
3436 * @pbd: parse BD
3437 * @xmit_type: xmit flags
3438 */
3439 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3440 struct eth_tx_parse_bd_e1x *pbd,
3441 struct eth_tx_start_bd *tx_start_bd,
3442 u32 xmit_type)
3443 {
3444 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3445 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3446 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3447
3448 if (xmit_type & XMIT_GSO_V4) {
3449 pbd->ip_id = bswab16(ip_hdr(skb)->id);
3450 pbd->tcp_pseudo_csum =
3451 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3452 ip_hdr(skb)->daddr,
3453 0, IPPROTO_TCP, 0));
3454
3455 /* GSO on 57710/57711 needs FW to calculate IP checksum */
3456 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
3457 } else {
3458 pbd->tcp_pseudo_csum =
3459 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3460 &ipv6_hdr(skb)->daddr,
3461 0, IPPROTO_TCP, 0));
3462 }
3463
3464 pbd->global_data |=
3465 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3466 }
3467
3468 /**
3469 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3470 *
3471 * @bp: driver handle
3472 * @skb: packet skb
3473 * @parsing_data: data to be updated
3474 * @xmit_type: xmit flags
3475 *
3476 * 57712/578xx related, when skb has encapsulation
3477 */
3478 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3479 u32 *parsing_data, u32 xmit_type)
3480 {
3481 *parsing_data |=
3482 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3483 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3484 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3485
3486 if (xmit_type & XMIT_CSUM_TCP) {
3487 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3488 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3489 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3490
3491 return skb_inner_transport_header(skb) +
3492 inner_tcp_hdrlen(skb) - skb->data;
3493 }
3494
3495 /* We support checksum offload for TCP and UDP only.
3496 * No need to pass the UDP header length - it's a constant.
3497 */
3498 return skb_inner_transport_header(skb) +
3499 sizeof(struct udphdr) - skb->data;
3500 }
3501
3502 /**
3503 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3504 *
3505 * @bp: driver handle
3506 * @skb: packet skb
3507 * @parsing_data: data to be updated
3508 * @xmit_type: xmit flags
3509 *
3510 * 57712/578xx related
3511 */
3512 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3513 u32 *parsing_data, u32 xmit_type)
3514 {
3515 *parsing_data |=
3516 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3517 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3518 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3519
3520 if (xmit_type & XMIT_CSUM_TCP) {
3521 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3522 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3523 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3524
3525 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3526 }
3527 /* We support checksum offload for TCP and UDP only.
3528 * No need to pass the UDP header length - it's a constant.
3529 */
3530 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3531 }
3532
3533 /* set FW indication according to inner or outer protocols if tunneled */
3534 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3535 struct eth_tx_start_bd *tx_start_bd,
3536 u32 xmit_type)
3537 {
3538 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3539
3540 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3541 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3542
3543 if (!(xmit_type & XMIT_CSUM_TCP))
3544 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3545 }
3546
3547 /**
3548 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3549 *
3550 * @bp: driver handle
3551 * @skb: packet skb
3552 * @pbd: parse BD to be updated
3553 * @xmit_type: xmit flags
3554 */
3555 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3556 struct eth_tx_parse_bd_e1x *pbd,
3557 u32 xmit_type)
3558 {
3559 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3560
3561 /* for now NS flag is not used in Linux */
3562 pbd->global_data =
3563 cpu_to_le16(hlen |
3564 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3565 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3566
3567 pbd->ip_hlen_w = (skb_transport_header(skb) -
3568 skb_network_header(skb)) >> 1;
3569
3570 hlen += pbd->ip_hlen_w;
3571
3572 /* We support checksum offload for TCP and UDP only */
3573 if (xmit_type & XMIT_CSUM_TCP)
3574 hlen += tcp_hdrlen(skb) / 2;
3575 else
3576 hlen += sizeof(struct udphdr) / 2;
3577
3578 pbd->total_hlen_w = cpu_to_le16(hlen);
3579 hlen = hlen*2;
3580
3581 if (xmit_type & XMIT_CSUM_TCP) {
3582 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3583
3584 } else {
3585 s8 fix = SKB_CS_OFF(skb); /* signed! */
3586
3587 DP(NETIF_MSG_TX_QUEUED,
3588 "hlen %d fix %d csum before fix %x\n",
3589 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3590
3591 /* HW bug: fixup the CSUM */
3592 pbd->tcp_pseudo_csum =
3593 bnx2x_csum_fix(skb_transport_header(skb),
3594 SKB_CS(skb), fix);
3595
3596 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3597 pbd->tcp_pseudo_csum);
3598 }
3599
3600 return hlen;
3601 }
3602
3603 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3604 struct eth_tx_parse_bd_e2 *pbd_e2,
3605 struct eth_tx_parse_2nd_bd *pbd2,
3606 u16 *global_data,
3607 u32 xmit_type)
3608 {
3609 u16 hlen_w = 0;
3610 u8 outerip_off, outerip_len = 0;
3611
3612 /* from outer IP to transport */
3613 hlen_w = (skb_inner_transport_header(skb) -
3614 skb_network_header(skb)) >> 1;
3615
3616 /* transport len */
3617 hlen_w += inner_tcp_hdrlen(skb) >> 1;
3618
3619 pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3620
3621 /* outer IP header info */
3622 if (xmit_type & XMIT_CSUM_V4) {
3623 struct iphdr *iph = ip_hdr(skb);
3624 u32 csum = (__force u32)(~iph->check) -
3625 (__force u32)iph->tot_len -
3626 (__force u32)iph->frag_off;
3627
3628 pbd2->fw_ip_csum_wo_len_flags_frag =
3629 bswab16(csum_fold((__force __wsum)csum));
3630 } else {
3631 pbd2->fw_ip_hdr_to_payload_w =
3632 hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3633 }
3634
3635 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3636
3637 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3638
3639 if (xmit_type & XMIT_GSO_V4) {
3640 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3641
3642 pbd_e2->data.tunnel_data.pseudo_csum =
3643 bswab16(~csum_tcpudp_magic(
3644 inner_ip_hdr(skb)->saddr,
3645 inner_ip_hdr(skb)->daddr,
3646 0, IPPROTO_TCP, 0));
3647
3648 outerip_len = ip_hdr(skb)->ihl << 1;
3649 } else {
3650 pbd_e2->data.tunnel_data.pseudo_csum =
3651 bswab16(~csum_ipv6_magic(
3652 &inner_ipv6_hdr(skb)->saddr,
3653 &inner_ipv6_hdr(skb)->daddr,
3654 0, IPPROTO_TCP, 0));
3655 }
3656
3657 outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3658
3659 *global_data |=
3660 outerip_off |
3661 (!!(xmit_type & XMIT_CSUM_V6) <<
3662 ETH_TX_PARSE_2ND_BD_IP_HDR_TYPE_OUTER_SHIFT) |
3663 (outerip_len <<
3664 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3665 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3666 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3667
3668 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3669 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3670 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3671 }
3672 }
3673
3674 /* called with netif_tx_lock
3675 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3676 * netif_wake_queue()
3677 */
3678 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3679 {
3680 struct bnx2x *bp = netdev_priv(dev);
3681
3682 struct netdev_queue *txq;
3683 struct bnx2x_fp_txdata *txdata;
3684 struct sw_tx_bd *tx_buf;
3685 struct eth_tx_start_bd *tx_start_bd, *first_bd;
3686 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3687 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3688 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3689 struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3690 u32 pbd_e2_parsing_data = 0;
3691 u16 pkt_prod, bd_prod;
3692 int nbd, txq_index;
3693 dma_addr_t mapping;
3694 u32 xmit_type = bnx2x_xmit_type(bp, skb);
3695 int i;
3696 u8 hlen = 0;
3697 __le16 pkt_size = 0;
3698 struct ethhdr *eth;
3699 u8 mac_type = UNICAST_ADDRESS;
3700
3701 #ifdef BNX2X_STOP_ON_ERROR
3702 if (unlikely(bp->panic))
3703 return NETDEV_TX_BUSY;
3704 #endif
3705
3706 txq_index = skb_get_queue_mapping(skb);
3707 txq = netdev_get_tx_queue(dev, txq_index);
3708
3709 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3710
3711 txdata = &bp->bnx2x_txq[txq_index];
3712
3713 /* enable this debug print to view the transmission queue being used
3714 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3715 txq_index, fp_index, txdata_index); */
3716
3717 /* enable this debug print to view the transmission details
3718 DP(NETIF_MSG_TX_QUEUED,
3719 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3720 txdata->cid, fp_index, txdata_index, txdata, fp); */
3721
3722 if (unlikely(bnx2x_tx_avail(bp, txdata) <
3723 skb_shinfo(skb)->nr_frags +
3724 BDS_PER_TX_PKT +
3725 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3726 /* Handle special storage cases separately */
3727 if (txdata->tx_ring_size == 0) {
3728 struct bnx2x_eth_q_stats *q_stats =
3729 bnx2x_fp_qstats(bp, txdata->parent_fp);
3730 q_stats->driver_filtered_tx_pkt++;
3731 dev_kfree_skb(skb);
3732 return NETDEV_TX_OK;
3733 }
3734 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3735 netif_tx_stop_queue(txq);
3736 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3737
3738 return NETDEV_TX_BUSY;
3739 }
3740
3741 DP(NETIF_MSG_TX_QUEUED,
3742 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3743 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3744 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3745 skb->len);
3746
3747 eth = (struct ethhdr *)skb->data;
3748
3749 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3750 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3751 if (is_broadcast_ether_addr(eth->h_dest))
3752 mac_type = BROADCAST_ADDRESS;
3753 else
3754 mac_type = MULTICAST_ADDRESS;
3755 }
3756
3757 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3758 /* First, check if we need to linearize the skb (due to FW
3759 restrictions). No need to check fragmentation if page size > 8K
3760 (there will be no violation to FW restrictions) */
3761 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3762 /* Statistics of linearization */
3763 bp->lin_cnt++;
3764 if (skb_linearize(skb) != 0) {
3765 DP(NETIF_MSG_TX_QUEUED,
3766 "SKB linearization failed - silently dropping this SKB\n");
3767 dev_kfree_skb_any(skb);
3768 return NETDEV_TX_OK;
3769 }
3770 }
3771 #endif
3772 /* Map skb linear data for DMA */
3773 mapping = dma_map_single(&bp->pdev->dev, skb->data,
3774 skb_headlen(skb), DMA_TO_DEVICE);
3775 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3776 DP(NETIF_MSG_TX_QUEUED,
3777 "SKB mapping failed - silently dropping this SKB\n");
3778 dev_kfree_skb_any(skb);
3779 return NETDEV_TX_OK;
3780 }
3781 /*
3782 Please read carefully. First we use one BD which we mark as start,
3783 then we have a parsing info BD (used for TSO or xsum),
3784 and only then we have the rest of the TSO BDs.
3785 (don't forget to mark the last one as last,
3786 and to unmap only AFTER you write to the BD ...)
3787 And above all, all pdb sizes are in words - NOT DWORDS!
3788 */
3789
3790 /* get current pkt produced now - advance it just before sending packet
3791 * since mapping of pages may fail and cause packet to be dropped
3792 */
3793 pkt_prod = txdata->tx_pkt_prod;
3794 bd_prod = TX_BD(txdata->tx_bd_prod);
3795
3796 /* get a tx_buf and first BD
3797 * tx_start_bd may be changed during SPLIT,
3798 * but first_bd will always stay first
3799 */
3800 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3801 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3802 first_bd = tx_start_bd;
3803
3804 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3805
3806 /* header nbd: indirectly zero other flags! */
3807 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3808
3809 /* remember the first BD of the packet */
3810 tx_buf->first_bd = txdata->tx_bd_prod;
3811 tx_buf->skb = skb;
3812 tx_buf->flags = 0;
3813
3814 DP(NETIF_MSG_TX_QUEUED,
3815 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3816 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3817
3818 if (vlan_tx_tag_present(skb)) {
3819 tx_start_bd->vlan_or_ethertype =
3820 cpu_to_le16(vlan_tx_tag_get(skb));
3821 tx_start_bd->bd_flags.as_bitfield |=
3822 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3823 } else {
3824 /* when transmitting in a vf, start bd must hold the ethertype
3825 * for fw to enforce it
3826 */
3827 if (IS_VF(bp))
3828 tx_start_bd->vlan_or_ethertype =
3829 cpu_to_le16(ntohs(eth->h_proto));
3830 else
3831 /* used by FW for packet accounting */
3832 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3833 }
3834
3835 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3836
3837 /* turn on parsing and get a BD */
3838 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3839
3840 if (xmit_type & XMIT_CSUM)
3841 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3842
3843 if (!CHIP_IS_E1x(bp)) {
3844 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3845 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3846
3847 if (xmit_type & XMIT_CSUM_ENC) {
3848 u16 global_data = 0;
3849
3850 /* Set PBD in enc checksum offload case */
3851 hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3852 &pbd_e2_parsing_data,
3853 xmit_type);
3854
3855 /* turn on 2nd parsing and get a BD */
3856 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3857
3858 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3859
3860 memset(pbd2, 0, sizeof(*pbd2));
3861
3862 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3863 (skb_inner_network_header(skb) -
3864 skb->data) >> 1;
3865
3866 if (xmit_type & XMIT_GSO_ENC)
3867 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3868 &global_data,
3869 xmit_type);
3870
3871 pbd2->global_data = cpu_to_le16(global_data);
3872
3873 /* add addition parse BD indication to start BD */
3874 SET_FLAG(tx_start_bd->general_data,
3875 ETH_TX_START_BD_PARSE_NBDS, 1);
3876 /* set encapsulation flag in start BD */
3877 SET_FLAG(tx_start_bd->general_data,
3878 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3879 nbd++;
3880 } else if (xmit_type & XMIT_CSUM) {
3881 /* Set PBD in checksum offload case w/o encapsulation */
3882 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3883 &pbd_e2_parsing_data,
3884 xmit_type);
3885 }
3886
3887 /* Add the macs to the parsing BD if this is a vf or if
3888 * Tx Switching is enabled.
3889 */
3890 if (IS_VF(bp)) {
3891 /* override GRE parameters in BD */
3892 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3893 &pbd_e2->data.mac_addr.src_mid,
3894 &pbd_e2->data.mac_addr.src_lo,
3895 eth->h_source);
3896
3897 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3898 &pbd_e2->data.mac_addr.dst_mid,
3899 &pbd_e2->data.mac_addr.dst_lo,
3900 eth->h_dest);
3901 } else if (bp->flags & TX_SWITCHING) {
3902 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3903 &pbd_e2->data.mac_addr.dst_mid,
3904 &pbd_e2->data.mac_addr.dst_lo,
3905 eth->h_dest);
3906 }
3907
3908 SET_FLAG(pbd_e2_parsing_data,
3909 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
3910 } else {
3911 u16 global_data = 0;
3912 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
3913 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
3914 /* Set PBD in checksum offload case */
3915 if (xmit_type & XMIT_CSUM)
3916 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
3917
3918 SET_FLAG(global_data,
3919 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
3920 pbd_e1x->global_data |= cpu_to_le16(global_data);
3921 }
3922
3923 /* Setup the data pointer of the first BD of the packet */
3924 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3925 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3926 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
3927 pkt_size = tx_start_bd->nbytes;
3928
3929 DP(NETIF_MSG_TX_QUEUED,
3930 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
3931 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
3932 le16_to_cpu(tx_start_bd->nbytes),
3933 tx_start_bd->bd_flags.as_bitfield,
3934 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
3935
3936 if (xmit_type & XMIT_GSO) {
3937
3938 DP(NETIF_MSG_TX_QUEUED,
3939 "TSO packet len %d hlen %d total len %d tso size %d\n",
3940 skb->len, hlen, skb_headlen(skb),
3941 skb_shinfo(skb)->gso_size);
3942
3943 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
3944
3945 if (unlikely(skb_headlen(skb) > hlen)) {
3946 nbd++;
3947 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
3948 &tx_start_bd, hlen,
3949 bd_prod);
3950 }
3951 if (!CHIP_IS_E1x(bp))
3952 bnx2x_set_pbd_gso_e2(skb, &pbd_e2_parsing_data,
3953 xmit_type);
3954 else
3955 bnx2x_set_pbd_gso(skb, pbd_e1x, first_bd, xmit_type);
3956 }
3957
3958 /* Set the PBD's parsing_data field if not zero
3959 * (for the chips newer than 57711).
3960 */
3961 if (pbd_e2_parsing_data)
3962 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
3963
3964 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
3965
3966 /* Handle fragmented skb */
3967 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3968 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3969
3970 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
3971 skb_frag_size(frag), DMA_TO_DEVICE);
3972 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3973 unsigned int pkts_compl = 0, bytes_compl = 0;
3974
3975 DP(NETIF_MSG_TX_QUEUED,
3976 "Unable to map page - dropping packet...\n");
3977
3978 /* we need unmap all buffers already mapped
3979 * for this SKB;
3980 * first_bd->nbd need to be properly updated
3981 * before call to bnx2x_free_tx_pkt
3982 */
3983 first_bd->nbd = cpu_to_le16(nbd);
3984 bnx2x_free_tx_pkt(bp, txdata,
3985 TX_BD(txdata->tx_pkt_prod),
3986 &pkts_compl, &bytes_compl);
3987 return NETDEV_TX_OK;
3988 }
3989
3990 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3991 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3992 if (total_pkt_bd == NULL)
3993 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3994
3995 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3996 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3997 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
3998 le16_add_cpu(&pkt_size, skb_frag_size(frag));
3999 nbd++;
4000
4001 DP(NETIF_MSG_TX_QUEUED,
4002 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4003 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4004 le16_to_cpu(tx_data_bd->nbytes));
4005 }
4006
4007 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4008
4009 /* update with actual num BDs */
4010 first_bd->nbd = cpu_to_le16(nbd);
4011
4012 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4013
4014 /* now send a tx doorbell, counting the next BD
4015 * if the packet contains or ends with it
4016 */
4017 if (TX_BD_POFF(bd_prod) < nbd)
4018 nbd++;
4019
4020 /* total_pkt_bytes should be set on the first data BD if
4021 * it's not an LSO packet and there is more than one
4022 * data BD. In this case pkt_size is limited by an MTU value.
4023 * However we prefer to set it for an LSO packet (while we don't
4024 * have to) in order to save some CPU cycles in a none-LSO
4025 * case, when we much more care about them.
4026 */
4027 if (total_pkt_bd != NULL)
4028 total_pkt_bd->total_pkt_bytes = pkt_size;
4029
4030 if (pbd_e1x)
4031 DP(NETIF_MSG_TX_QUEUED,
4032 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4033 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4034 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4035 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4036 le16_to_cpu(pbd_e1x->total_hlen_w));
4037 if (pbd_e2)
4038 DP(NETIF_MSG_TX_QUEUED,
4039 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4040 pbd_e2,
4041 pbd_e2->data.mac_addr.dst_hi,
4042 pbd_e2->data.mac_addr.dst_mid,
4043 pbd_e2->data.mac_addr.dst_lo,
4044 pbd_e2->data.mac_addr.src_hi,
4045 pbd_e2->data.mac_addr.src_mid,
4046 pbd_e2->data.mac_addr.src_lo,
4047 pbd_e2->parsing_data);
4048 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
4049
4050 netdev_tx_sent_queue(txq, skb->len);
4051
4052 skb_tx_timestamp(skb);
4053
4054 txdata->tx_pkt_prod++;
4055 /*
4056 * Make sure that the BD data is updated before updating the producer
4057 * since FW might read the BD right after the producer is updated.
4058 * This is only applicable for weak-ordered memory model archs such
4059 * as IA-64. The following barrier is also mandatory since FW will
4060 * assumes packets must have BDs.
4061 */
4062 wmb();
4063
4064 txdata->tx_db.data.prod += nbd;
4065 barrier();
4066
4067 DOORBELL(bp, txdata->cid, txdata->tx_db.raw);
4068
4069 mmiowb();
4070
4071 txdata->tx_bd_prod += nbd;
4072
4073 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4074 netif_tx_stop_queue(txq);
4075
4076 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4077 * ordering of set_bit() in netif_tx_stop_queue() and read of
4078 * fp->bd_tx_cons */
4079 smp_mb();
4080
4081 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4082 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4083 netif_tx_wake_queue(txq);
4084 }
4085 txdata->tx_pkt++;
4086
4087 return NETDEV_TX_OK;
4088 }
4089
4090 /**
4091 * bnx2x_setup_tc - routine to configure net_device for multi tc
4092 *
4093 * @netdev: net device to configure
4094 * @tc: number of traffic classes to enable
4095 *
4096 * callback connected to the ndo_setup_tc function pointer
4097 */
4098 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4099 {
4100 int cos, prio, count, offset;
4101 struct bnx2x *bp = netdev_priv(dev);
4102
4103 /* setup tc must be called under rtnl lock */
4104 ASSERT_RTNL();
4105
4106 /* no traffic classes requested. Aborting */
4107 if (!num_tc) {
4108 netdev_reset_tc(dev);
4109 return 0;
4110 }
4111
4112 /* requested to support too many traffic classes */
4113 if (num_tc > bp->max_cos) {
4114 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4115 num_tc, bp->max_cos);
4116 return -EINVAL;
4117 }
4118
4119 /* declare amount of supported traffic classes */
4120 if (netdev_set_num_tc(dev, num_tc)) {
4121 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4122 return -EINVAL;
4123 }
4124
4125 /* configure priority to traffic class mapping */
4126 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4127 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[prio]);
4128 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4129 "mapping priority %d to tc %d\n",
4130 prio, bp->prio_to_cos[prio]);
4131 }
4132
4133 /* Use this configuration to differentiate tc0 from other COSes
4134 This can be used for ets or pfc, and save the effort of setting
4135 up a multio class queue disc or negotiating DCBX with a switch
4136 netdev_set_prio_tc_map(dev, 0, 0);
4137 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4138 for (prio = 1; prio < 16; prio++) {
4139 netdev_set_prio_tc_map(dev, prio, 1);
4140 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4141 } */
4142
4143 /* configure traffic class to transmission queue mapping */
4144 for (cos = 0; cos < bp->max_cos; cos++) {
4145 count = BNX2X_NUM_ETH_QUEUES(bp);
4146 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4147 netdev_set_tc_queue(dev, cos, count, offset);
4148 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4149 "mapping tc %d to offset %d count %d\n",
4150 cos, offset, count);
4151 }
4152
4153 return 0;
4154 }
4155
4156 /* called with rtnl_lock */
4157 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4158 {
4159 struct sockaddr *addr = p;
4160 struct bnx2x *bp = netdev_priv(dev);
4161 int rc = 0;
4162
4163 if (!bnx2x_is_valid_ether_addr(bp, addr->sa_data)) {
4164 BNX2X_ERR("Requested MAC address is not valid\n");
4165 return -EINVAL;
4166 }
4167
4168 if ((IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp)) &&
4169 !is_zero_ether_addr(addr->sa_data)) {
4170 BNX2X_ERR("Can't configure non-zero address on iSCSI or FCoE functions in MF-SD mode\n");
4171 return -EINVAL;
4172 }
4173
4174 if (netif_running(dev)) {
4175 rc = bnx2x_set_eth_mac(bp, false);
4176 if (rc)
4177 return rc;
4178 }
4179
4180 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4181
4182 if (netif_running(dev))
4183 rc = bnx2x_set_eth_mac(bp, true);
4184
4185 return rc;
4186 }
4187
4188 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4189 {
4190 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4191 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4192 u8 cos;
4193
4194 /* Common */
4195
4196 if (IS_FCOE_IDX(fp_index)) {
4197 memset(sb, 0, sizeof(union host_hc_status_block));
4198 fp->status_blk_mapping = 0;
4199 } else {
4200 /* status blocks */
4201 if (!CHIP_IS_E1x(bp))
4202 BNX2X_PCI_FREE(sb->e2_sb,
4203 bnx2x_fp(bp, fp_index,
4204 status_blk_mapping),
4205 sizeof(struct host_hc_status_block_e2));
4206 else
4207 BNX2X_PCI_FREE(sb->e1x_sb,
4208 bnx2x_fp(bp, fp_index,
4209 status_blk_mapping),
4210 sizeof(struct host_hc_status_block_e1x));
4211 }
4212
4213 /* Rx */
4214 if (!skip_rx_queue(bp, fp_index)) {
4215 bnx2x_free_rx_bds(fp);
4216
4217 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4218 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4219 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4220 bnx2x_fp(bp, fp_index, rx_desc_mapping),
4221 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4222
4223 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4224 bnx2x_fp(bp, fp_index, rx_comp_mapping),
4225 sizeof(struct eth_fast_path_rx_cqe) *
4226 NUM_RCQ_BD);
4227
4228 /* SGE ring */
4229 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4230 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4231 bnx2x_fp(bp, fp_index, rx_sge_mapping),
4232 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4233 }
4234
4235 /* Tx */
4236 if (!skip_tx_queue(bp, fp_index)) {
4237 /* fastpath tx rings: tx_buf tx_desc */
4238 for_each_cos_in_tx_queue(fp, cos) {
4239 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4240
4241 DP(NETIF_MSG_IFDOWN,
4242 "freeing tx memory of fp %d cos %d cid %d\n",
4243 fp_index, cos, txdata->cid);
4244
4245 BNX2X_FREE(txdata->tx_buf_ring);
4246 BNX2X_PCI_FREE(txdata->tx_desc_ring,
4247 txdata->tx_desc_mapping,
4248 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4249 }
4250 }
4251 /* end of fastpath */
4252 }
4253
4254 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4255 {
4256 int i;
4257 for_each_cnic_queue(bp, i)
4258 bnx2x_free_fp_mem_at(bp, i);
4259 }
4260
4261 void bnx2x_free_fp_mem(struct bnx2x *bp)
4262 {
4263 int i;
4264 for_each_eth_queue(bp, i)
4265 bnx2x_free_fp_mem_at(bp, i);
4266 }
4267
4268 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4269 {
4270 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4271 if (!CHIP_IS_E1x(bp)) {
4272 bnx2x_fp(bp, index, sb_index_values) =
4273 (__le16 *)status_blk.e2_sb->sb.index_values;
4274 bnx2x_fp(bp, index, sb_running_index) =
4275 (__le16 *)status_blk.e2_sb->sb.running_index;
4276 } else {
4277 bnx2x_fp(bp, index, sb_index_values) =
4278 (__le16 *)status_blk.e1x_sb->sb.index_values;
4279 bnx2x_fp(bp, index, sb_running_index) =
4280 (__le16 *)status_blk.e1x_sb->sb.running_index;
4281 }
4282 }
4283
4284 /* Returns the number of actually allocated BDs */
4285 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4286 int rx_ring_size)
4287 {
4288 struct bnx2x *bp = fp->bp;
4289 u16 ring_prod, cqe_ring_prod;
4290 int i, failure_cnt = 0;
4291
4292 fp->rx_comp_cons = 0;
4293 cqe_ring_prod = ring_prod = 0;
4294
4295 /* This routine is called only during fo init so
4296 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4297 */
4298 for (i = 0; i < rx_ring_size; i++) {
4299 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4300 failure_cnt++;
4301 continue;
4302 }
4303 ring_prod = NEXT_RX_IDX(ring_prod);
4304 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4305 WARN_ON(ring_prod <= (i - failure_cnt));
4306 }
4307
4308 if (failure_cnt)
4309 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4310 i - failure_cnt, fp->index);
4311
4312 fp->rx_bd_prod = ring_prod;
4313 /* Limit the CQE producer by the CQE ring size */
4314 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4315 cqe_ring_prod);
4316 fp->rx_pkt = fp->rx_calls = 0;
4317
4318 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4319
4320 return i - failure_cnt;
4321 }
4322
4323 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4324 {
4325 int i;
4326
4327 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4328 struct eth_rx_cqe_next_page *nextpg;
4329
4330 nextpg = (struct eth_rx_cqe_next_page *)
4331 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4332 nextpg->addr_hi =
4333 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4334 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4335 nextpg->addr_lo =
4336 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4337 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4338 }
4339 }
4340
4341 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4342 {
4343 union host_hc_status_block *sb;
4344 struct bnx2x_fastpath *fp = &bp->fp[index];
4345 int ring_size = 0;
4346 u8 cos;
4347 int rx_ring_size = 0;
4348
4349 if (!bp->rx_ring_size &&
4350 (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
4351 rx_ring_size = MIN_RX_SIZE_NONTPA;
4352 bp->rx_ring_size = rx_ring_size;
4353 } else if (!bp->rx_ring_size) {
4354 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4355
4356 if (CHIP_IS_E3(bp)) {
4357 u32 cfg = SHMEM_RD(bp,
4358 dev_info.port_hw_config[BP_PORT(bp)].
4359 default_cfg);
4360
4361 /* Decrease ring size for 1G functions */
4362 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4363 PORT_HW_CFG_NET_SERDES_IF_SGMII)
4364 rx_ring_size /= 10;
4365 }
4366
4367 /* allocate at least number of buffers required by FW */
4368 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4369 MIN_RX_SIZE_TPA, rx_ring_size);
4370
4371 bp->rx_ring_size = rx_ring_size;
4372 } else /* if rx_ring_size specified - use it */
4373 rx_ring_size = bp->rx_ring_size;
4374
4375 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4376
4377 /* Common */
4378 sb = &bnx2x_fp(bp, index, status_blk);
4379
4380 if (!IS_FCOE_IDX(index)) {
4381 /* status blocks */
4382 if (!CHIP_IS_E1x(bp)) {
4383 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4384 sizeof(struct host_hc_status_block_e2));
4385 if (!sb->e2_sb)
4386 goto alloc_mem_err;
4387 } else {
4388 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4389 sizeof(struct host_hc_status_block_e1x));
4390 if (!sb->e1x_sb)
4391 goto alloc_mem_err;
4392 }
4393 }
4394
4395 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4396 * set shortcuts for it.
4397 */
4398 if (!IS_FCOE_IDX(index))
4399 set_sb_shortcuts(bp, index);
4400
4401 /* Tx */
4402 if (!skip_tx_queue(bp, index)) {
4403 /* fastpath tx rings: tx_buf tx_desc */
4404 for_each_cos_in_tx_queue(fp, cos) {
4405 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4406
4407 DP(NETIF_MSG_IFUP,
4408 "allocating tx memory of fp %d cos %d\n",
4409 index, cos);
4410
4411 txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4412 sizeof(struct sw_tx_bd),
4413 GFP_KERNEL);
4414 if (!txdata->tx_buf_ring)
4415 goto alloc_mem_err;
4416 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4417 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4418 if (!txdata->tx_desc_ring)
4419 goto alloc_mem_err;
4420 }
4421 }
4422
4423 /* Rx */
4424 if (!skip_rx_queue(bp, index)) {
4425 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4426 bnx2x_fp(bp, index, rx_buf_ring) =
4427 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4428 if (!bnx2x_fp(bp, index, rx_buf_ring))
4429 goto alloc_mem_err;
4430 bnx2x_fp(bp, index, rx_desc_ring) =
4431 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4432 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4433 if (!bnx2x_fp(bp, index, rx_desc_ring))
4434 goto alloc_mem_err;
4435
4436 /* Seed all CQEs by 1s */
4437 bnx2x_fp(bp, index, rx_comp_ring) =
4438 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4439 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4440 if (!bnx2x_fp(bp, index, rx_comp_ring))
4441 goto alloc_mem_err;
4442
4443 /* SGE ring */
4444 bnx2x_fp(bp, index, rx_page_ring) =
4445 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4446 GFP_KERNEL);
4447 if (!bnx2x_fp(bp, index, rx_page_ring))
4448 goto alloc_mem_err;
4449 bnx2x_fp(bp, index, rx_sge_ring) =
4450 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4451 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4452 if (!bnx2x_fp(bp, index, rx_sge_ring))
4453 goto alloc_mem_err;
4454 /* RX BD ring */
4455 bnx2x_set_next_page_rx_bd(fp);
4456
4457 /* CQ ring */
4458 bnx2x_set_next_page_rx_cq(fp);
4459
4460 /* BDs */
4461 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4462 if (ring_size < rx_ring_size)
4463 goto alloc_mem_err;
4464 }
4465
4466 return 0;
4467
4468 /* handles low memory cases */
4469 alloc_mem_err:
4470 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4471 index, ring_size);
4472 /* FW will drop all packets if queue is not big enough,
4473 * In these cases we disable the queue
4474 * Min size is different for OOO, TPA and non-TPA queues
4475 */
4476 if (ring_size < (fp->disable_tpa ?
4477 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4478 /* release memory allocated for this queue */
4479 bnx2x_free_fp_mem_at(bp, index);
4480 return -ENOMEM;
4481 }
4482 return 0;
4483 }
4484
4485 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4486 {
4487 if (!NO_FCOE(bp))
4488 /* FCoE */
4489 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4490 /* we will fail load process instead of mark
4491 * NO_FCOE_FLAG
4492 */
4493 return -ENOMEM;
4494
4495 return 0;
4496 }
4497
4498 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4499 {
4500 int i;
4501
4502 /* 1. Allocate FP for leading - fatal if error
4503 * 2. Allocate RSS - fix number of queues if error
4504 */
4505
4506 /* leading */
4507 if (bnx2x_alloc_fp_mem_at(bp, 0))
4508 return -ENOMEM;
4509
4510 /* RSS */
4511 for_each_nondefault_eth_queue(bp, i)
4512 if (bnx2x_alloc_fp_mem_at(bp, i))
4513 break;
4514
4515 /* handle memory failures */
4516 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4517 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4518
4519 WARN_ON(delta < 0);
4520 bnx2x_shrink_eth_fp(bp, delta);
4521 if (CNIC_SUPPORT(bp))
4522 /* move non eth FPs next to last eth FP
4523 * must be done in that order
4524 * FCOE_IDX < FWD_IDX < OOO_IDX
4525 */
4526
4527 /* move FCoE fp even NO_FCOE_FLAG is on */
4528 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4529 bp->num_ethernet_queues -= delta;
4530 bp->num_queues = bp->num_ethernet_queues +
4531 bp->num_cnic_queues;
4532 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4533 bp->num_queues + delta, bp->num_queues);
4534 }
4535
4536 return 0;
4537 }
4538
4539 void bnx2x_free_mem_bp(struct bnx2x *bp)
4540 {
4541 int i;
4542
4543 for (i = 0; i < bp->fp_array_size; i++)
4544 kfree(bp->fp[i].tpa_info);
4545 kfree(bp->fp);
4546 kfree(bp->sp_objs);
4547 kfree(bp->fp_stats);
4548 kfree(bp->bnx2x_txq);
4549 kfree(bp->msix_table);
4550 kfree(bp->ilt);
4551 }
4552
4553 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4554 {
4555 struct bnx2x_fastpath *fp;
4556 struct msix_entry *tbl;
4557 struct bnx2x_ilt *ilt;
4558 int msix_table_size = 0;
4559 int fp_array_size, txq_array_size;
4560 int i;
4561
4562 /*
4563 * The biggest MSI-X table we might need is as a maximum number of fast
4564 * path IGU SBs plus default SB (for PF only).
4565 */
4566 msix_table_size = bp->igu_sb_cnt;
4567 if (IS_PF(bp))
4568 msix_table_size++;
4569 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4570
4571 /* fp array: RSS plus CNIC related L2 queues */
4572 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4573 bp->fp_array_size = fp_array_size;
4574 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4575
4576 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4577 if (!fp)
4578 goto alloc_err;
4579 for (i = 0; i < bp->fp_array_size; i++) {
4580 fp[i].tpa_info =
4581 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4582 sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4583 if (!(fp[i].tpa_info))
4584 goto alloc_err;
4585 }
4586
4587 bp->fp = fp;
4588
4589 /* allocate sp objs */
4590 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4591 GFP_KERNEL);
4592 if (!bp->sp_objs)
4593 goto alloc_err;
4594
4595 /* allocate fp_stats */
4596 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4597 GFP_KERNEL);
4598 if (!bp->fp_stats)
4599 goto alloc_err;
4600
4601 /* Allocate memory for the transmission queues array */
4602 txq_array_size =
4603 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4604 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4605
4606 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4607 GFP_KERNEL);
4608 if (!bp->bnx2x_txq)
4609 goto alloc_err;
4610
4611 /* msix table */
4612 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4613 if (!tbl)
4614 goto alloc_err;
4615 bp->msix_table = tbl;
4616
4617 /* ilt */
4618 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4619 if (!ilt)
4620 goto alloc_err;
4621 bp->ilt = ilt;
4622
4623 return 0;
4624 alloc_err:
4625 bnx2x_free_mem_bp(bp);
4626 return -ENOMEM;
4627 }
4628
4629 int bnx2x_reload_if_running(struct net_device *dev)
4630 {
4631 struct bnx2x *bp = netdev_priv(dev);
4632
4633 if (unlikely(!netif_running(dev)))
4634 return 0;
4635
4636 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4637 return bnx2x_nic_load(bp, LOAD_NORMAL);
4638 }
4639
4640 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4641 {
4642 u32 sel_phy_idx = 0;
4643 if (bp->link_params.num_phys <= 1)
4644 return INT_PHY;
4645
4646 if (bp->link_vars.link_up) {
4647 sel_phy_idx = EXT_PHY1;
4648 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4649 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4650 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4651 sel_phy_idx = EXT_PHY2;
4652 } else {
4653
4654 switch (bnx2x_phy_selection(&bp->link_params)) {
4655 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4656 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4657 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4658 sel_phy_idx = EXT_PHY1;
4659 break;
4660 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4661 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4662 sel_phy_idx = EXT_PHY2;
4663 break;
4664 }
4665 }
4666
4667 return sel_phy_idx;
4668 }
4669 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4670 {
4671 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4672 /*
4673 * The selected activated PHY is always after swapping (in case PHY
4674 * swapping is enabled). So when swapping is enabled, we need to reverse
4675 * the configuration
4676 */
4677
4678 if (bp->link_params.multi_phy_config &
4679 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4680 if (sel_phy_idx == EXT_PHY1)
4681 sel_phy_idx = EXT_PHY2;
4682 else if (sel_phy_idx == EXT_PHY2)
4683 sel_phy_idx = EXT_PHY1;
4684 }
4685 return LINK_CONFIG_IDX(sel_phy_idx);
4686 }
4687
4688 #ifdef NETDEV_FCOE_WWNN
4689 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4690 {
4691 struct bnx2x *bp = netdev_priv(dev);
4692 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4693
4694 switch (type) {
4695 case NETDEV_FCOE_WWNN:
4696 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4697 cp->fcoe_wwn_node_name_lo);
4698 break;
4699 case NETDEV_FCOE_WWPN:
4700 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4701 cp->fcoe_wwn_port_name_lo);
4702 break;
4703 default:
4704 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4705 return -EINVAL;
4706 }
4707
4708 return 0;
4709 }
4710 #endif
4711
4712 /* called with rtnl_lock */
4713 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4714 {
4715 struct bnx2x *bp = netdev_priv(dev);
4716
4717 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4718 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4719 return -EAGAIN;
4720 }
4721
4722 if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) ||
4723 ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) {
4724 BNX2X_ERR("Can't support requested MTU size\n");
4725 return -EINVAL;
4726 }
4727
4728 /* This does not race with packet allocation
4729 * because the actual alloc size is
4730 * only updated as part of load
4731 */
4732 dev->mtu = new_mtu;
4733
4734 return bnx2x_reload_if_running(dev);
4735 }
4736
4737 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4738 netdev_features_t features)
4739 {
4740 struct bnx2x *bp = netdev_priv(dev);
4741
4742 /* TPA requires Rx CSUM offloading */
4743 if (!(features & NETIF_F_RXCSUM) || bp->disable_tpa) {
4744 features &= ~NETIF_F_LRO;
4745 features &= ~NETIF_F_GRO;
4746 }
4747
4748 return features;
4749 }
4750
4751 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4752 {
4753 struct bnx2x *bp = netdev_priv(dev);
4754 u32 flags = bp->flags;
4755 u32 changes;
4756 bool bnx2x_reload = false;
4757
4758 if (features & NETIF_F_LRO)
4759 flags |= TPA_ENABLE_FLAG;
4760 else
4761 flags &= ~TPA_ENABLE_FLAG;
4762
4763 if (features & NETIF_F_GRO)
4764 flags |= GRO_ENABLE_FLAG;
4765 else
4766 flags &= ~GRO_ENABLE_FLAG;
4767
4768 if (features & NETIF_F_LOOPBACK) {
4769 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4770 bp->link_params.loopback_mode = LOOPBACK_BMAC;
4771 bnx2x_reload = true;
4772 }
4773 } else {
4774 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4775 bp->link_params.loopback_mode = LOOPBACK_NONE;
4776 bnx2x_reload = true;
4777 }
4778 }
4779
4780 changes = flags ^ bp->flags;
4781
4782 /* if GRO is changed while LRO is enabled, don't force a reload */
4783 if ((changes & GRO_ENABLE_FLAG) && (flags & TPA_ENABLE_FLAG))
4784 changes &= ~GRO_ENABLE_FLAG;
4785
4786 if (changes)
4787 bnx2x_reload = true;
4788
4789 bp->flags = flags;
4790
4791 if (bnx2x_reload) {
4792 if (bp->recovery_state == BNX2X_RECOVERY_DONE)
4793 return bnx2x_reload_if_running(dev);
4794 /* else: bnx2x_nic_load() will be called at end of recovery */
4795 }
4796
4797 return 0;
4798 }
4799
4800 void bnx2x_tx_timeout(struct net_device *dev)
4801 {
4802 struct bnx2x *bp = netdev_priv(dev);
4803
4804 #ifdef BNX2X_STOP_ON_ERROR
4805 if (!bp->panic)
4806 bnx2x_panic();
4807 #endif
4808
4809 /* This allows the netif to be shutdown gracefully before resetting */
4810 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4811 }
4812
4813 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4814 {
4815 struct net_device *dev = pci_get_drvdata(pdev);
4816 struct bnx2x *bp;
4817
4818 if (!dev) {
4819 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4820 return -ENODEV;
4821 }
4822 bp = netdev_priv(dev);
4823
4824 rtnl_lock();
4825
4826 pci_save_state(pdev);
4827
4828 if (!netif_running(dev)) {
4829 rtnl_unlock();
4830 return 0;
4831 }
4832
4833 netif_device_detach(dev);
4834
4835 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
4836
4837 bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
4838
4839 rtnl_unlock();
4840
4841 return 0;
4842 }
4843
4844 int bnx2x_resume(struct pci_dev *pdev)
4845 {
4846 struct net_device *dev = pci_get_drvdata(pdev);
4847 struct bnx2x *bp;
4848 int rc;
4849
4850 if (!dev) {
4851 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4852 return -ENODEV;
4853 }
4854 bp = netdev_priv(dev);
4855
4856 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4857 BNX2X_ERR("Handling parity error recovery. Try again later\n");
4858 return -EAGAIN;
4859 }
4860
4861 rtnl_lock();
4862
4863 pci_restore_state(pdev);
4864
4865 if (!netif_running(dev)) {
4866 rtnl_unlock();
4867 return 0;
4868 }
4869
4870 bnx2x_set_power_state(bp, PCI_D0);
4871 netif_device_attach(dev);
4872
4873 rc = bnx2x_nic_load(bp, LOAD_OPEN);
4874
4875 rtnl_unlock();
4876
4877 return rc;
4878 }
4879
4880 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
4881 u32 cid)
4882 {
4883 if (!cxt) {
4884 BNX2X_ERR("bad context pointer %p\n", cxt);
4885 return;
4886 }
4887
4888 /* ustorm cxt validation */
4889 cxt->ustorm_ag_context.cdu_usage =
4890 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
4891 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
4892 /* xcontext validation */
4893 cxt->xstorm_ag_context.cdu_reserved =
4894 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
4895 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
4896 }
4897
4898 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
4899 u8 fw_sb_id, u8 sb_index,
4900 u8 ticks)
4901 {
4902 u32 addr = BAR_CSTRORM_INTMEM +
4903 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
4904 REG_WR8(bp, addr, ticks);
4905 DP(NETIF_MSG_IFUP,
4906 "port %x fw_sb_id %d sb_index %d ticks %d\n",
4907 port, fw_sb_id, sb_index, ticks);
4908 }
4909
4910 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
4911 u16 fw_sb_id, u8 sb_index,
4912 u8 disable)
4913 {
4914 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
4915 u32 addr = BAR_CSTRORM_INTMEM +
4916 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
4917 u8 flags = REG_RD8(bp, addr);
4918 /* clear and set */
4919 flags &= ~HC_INDEX_DATA_HC_ENABLED;
4920 flags |= enable_flag;
4921 REG_WR8(bp, addr, flags);
4922 DP(NETIF_MSG_IFUP,
4923 "port %x fw_sb_id %d sb_index %d disable %d\n",
4924 port, fw_sb_id, sb_index, disable);
4925 }
4926
4927 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
4928 u8 sb_index, u8 disable, u16 usec)
4929 {
4930 int port = BP_PORT(bp);
4931 u8 ticks = usec / BNX2X_BTR;
4932
4933 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
4934
4935 disable = disable ? 1 : (usec ? 0 : 1);
4936 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
4937 }
4938
4939 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
4940 u32 verbose)
4941 {
4942 smp_mb__before_clear_bit();
4943 set_bit(flag, &bp->sp_rtnl_state);
4944 smp_mb__after_clear_bit();
4945 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
4946 flag);
4947 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4948 }
4949 EXPORT_SYMBOL(bnx2x_schedule_sp_rtnl);
This page took 0.154816 seconds and 5 git commands to generate.