lightnvm: NVM should depend on HAS_DMA
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h> /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION \
73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
76 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
80
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT (5*HZ)
83
84 static char version[] =
85 "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
86 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
87
88 MODULE_AUTHOR("Eliezer Tamir");
89 MODULE_DESCRIPTION("QLogic "
90 "BCM57710/57711/57711E/"
91 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
92 "57840/57840_MF Driver");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_MODULE_VERSION);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
97 MODULE_FIRMWARE(FW_FILE_NAME_E2);
98
99 int bnx2x_num_queues;
100 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
101 MODULE_PARM_DESC(num_queues,
102 " Set number of queues (default is as a number of CPUs)");
103
104 static int disable_tpa;
105 module_param(disable_tpa, int, S_IRUGO);
106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
107
108 static int int_mode;
109 module_param(int_mode, int, S_IRUGO);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111 "(1 INT#x; 2 MSI)");
112
113 static int dropless_fc;
114 module_param(dropless_fc, int, S_IRUGO);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116
117 static int mrrs = -1;
118 module_param(mrrs, int, S_IRUGO);
119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
120
121 static int debug;
122 module_param(debug, int, S_IRUGO);
123 MODULE_PARM_DESC(debug, " Default debug msglevel");
124
125 static struct workqueue_struct *bnx2x_wq;
126 struct workqueue_struct *bnx2x_iov_wq;
127
128 struct bnx2x_mac_vals {
129 u32 xmac_addr;
130 u32 xmac_val;
131 u32 emac_addr;
132 u32 emac_val;
133 u32 umac_addr[2];
134 u32 umac_val[2];
135 u32 bmac_addr;
136 u32 bmac_val[2];
137 };
138
139 enum bnx2x_board_type {
140 BCM57710 = 0,
141 BCM57711,
142 BCM57711E,
143 BCM57712,
144 BCM57712_MF,
145 BCM57712_VF,
146 BCM57800,
147 BCM57800_MF,
148 BCM57800_VF,
149 BCM57810,
150 BCM57810_MF,
151 BCM57810_VF,
152 BCM57840_4_10,
153 BCM57840_2_20,
154 BCM57840_MF,
155 BCM57840_VF,
156 BCM57811,
157 BCM57811_MF,
158 BCM57840_O,
159 BCM57840_MFO,
160 BCM57811_VF
161 };
162
163 /* indexed by board_type, above */
164 static struct {
165 char *name;
166 } board_info[] = {
167 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
168 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" },
169 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" },
170 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" },
171 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
172 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
173 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" },
174 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
175 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
176 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" },
177 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
178 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
179 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
180 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
181 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
183 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" },
184 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
185 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
186 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
187 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
188 };
189
190 #ifndef PCI_DEVICE_ID_NX2_57710
191 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57711
194 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57711E
197 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57712
200 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712_MF
203 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57712_VF
206 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57800
209 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800_MF
212 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57800_VF
215 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57810
218 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57810_MF
221 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57840_O
224 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57810_VF
227 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
230 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
233 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
236 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_MF
239 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57840_VF
242 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57811
245 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811_MF
248 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
249 #endif
250 #ifndef PCI_DEVICE_ID_NX2_57811_VF
251 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
252 #endif
253
254 static const struct pci_device_id bnx2x_pci_tbl[] = {
255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
268 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
273 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
275 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
278 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
279 { 0 }
280 };
281
282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
283
284 /* Global resources for unloading a previously loaded device */
285 #define BNX2X_PREV_WAIT_NEEDED 1
286 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
287 static LIST_HEAD(bnx2x_prev_list);
288
289 /* Forward declaration */
290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
293
294 /****************************************************************************
295 * General service functions
296 ****************************************************************************/
297
298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
299
300 static void __storm_memset_dma_mapping(struct bnx2x *bp,
301 u32 addr, dma_addr_t mapping)
302 {
303 REG_WR(bp, addr, U64_LO(mapping));
304 REG_WR(bp, addr + 4, U64_HI(mapping));
305 }
306
307 static void storm_memset_spq_addr(struct bnx2x *bp,
308 dma_addr_t mapping, u16 abs_fid)
309 {
310 u32 addr = XSEM_REG_FAST_MEMORY +
311 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
312
313 __storm_memset_dma_mapping(bp, addr, mapping);
314 }
315
316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
317 u16 pf_id)
318 {
319 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
320 pf_id);
321 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
322 pf_id);
323 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
324 pf_id);
325 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
326 pf_id);
327 }
328
329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
330 u8 enable)
331 {
332 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
333 enable);
334 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
335 enable);
336 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
337 enable);
338 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
339 enable);
340 }
341
342 static void storm_memset_eq_data(struct bnx2x *bp,
343 struct event_ring_data *eq_data,
344 u16 pfid)
345 {
346 size_t size = sizeof(struct event_ring_data);
347
348 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
349
350 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
351 }
352
353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
354 u16 pfid)
355 {
356 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
357 REG_WR16(bp, addr, eq_prod);
358 }
359
360 /* used only at init
361 * locking is done by mcp
362 */
363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
364 {
365 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
366 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
367 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
368 PCICFG_VENDOR_ID_OFFSET);
369 }
370
371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
372 {
373 u32 val;
374
375 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
376 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
377 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
378 PCICFG_VENDOR_ID_OFFSET);
379
380 return val;
381 }
382
383 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
384 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
385 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
386 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
387 #define DMAE_DP_DST_NONE "dst_addr [none]"
388
389 static void bnx2x_dp_dmae(struct bnx2x *bp,
390 struct dmae_command *dmae, int msglvl)
391 {
392 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
393 int i;
394
395 switch (dmae->opcode & DMAE_COMMAND_DST) {
396 case DMAE_CMD_DST_PCI:
397 if (src_type == DMAE_CMD_SRC_PCI)
398 DP(msglvl, "DMAE: opcode 0x%08x\n"
399 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
400 "comp_addr [%x:%08x], comp_val 0x%08x\n",
401 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
402 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403 dmae->comp_addr_hi, dmae->comp_addr_lo,
404 dmae->comp_val);
405 else
406 DP(msglvl, "DMAE: opcode 0x%08x\n"
407 "src [%08x], len [%d*4], dst [%x:%08x]\n"
408 "comp_addr [%x:%08x], comp_val 0x%08x\n",
409 dmae->opcode, dmae->src_addr_lo >> 2,
410 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
411 dmae->comp_addr_hi, dmae->comp_addr_lo,
412 dmae->comp_val);
413 break;
414 case DMAE_CMD_DST_GRC:
415 if (src_type == DMAE_CMD_SRC_PCI)
416 DP(msglvl, "DMAE: opcode 0x%08x\n"
417 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
418 "comp_addr [%x:%08x], comp_val 0x%08x\n",
419 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
420 dmae->len, dmae->dst_addr_lo >> 2,
421 dmae->comp_addr_hi, dmae->comp_addr_lo,
422 dmae->comp_val);
423 else
424 DP(msglvl, "DMAE: opcode 0x%08x\n"
425 "src [%08x], len [%d*4], dst [%08x]\n"
426 "comp_addr [%x:%08x], comp_val 0x%08x\n",
427 dmae->opcode, dmae->src_addr_lo >> 2,
428 dmae->len, dmae->dst_addr_lo >> 2,
429 dmae->comp_addr_hi, dmae->comp_addr_lo,
430 dmae->comp_val);
431 break;
432 default:
433 if (src_type == DMAE_CMD_SRC_PCI)
434 DP(msglvl, "DMAE: opcode 0x%08x\n"
435 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
436 "comp_addr [%x:%08x] comp_val 0x%08x\n",
437 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
438 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439 dmae->comp_val);
440 else
441 DP(msglvl, "DMAE: opcode 0x%08x\n"
442 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
443 "comp_addr [%x:%08x] comp_val 0x%08x\n",
444 dmae->opcode, dmae->src_addr_lo >> 2,
445 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
446 dmae->comp_val);
447 break;
448 }
449
450 for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
451 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
452 i, *(((u32 *)dmae) + i));
453 }
454
455 /* copy command into DMAE command memory and set DMAE command go */
456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
457 {
458 u32 cmd_offset;
459 int i;
460
461 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
462 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
463 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
464 }
465 REG_WR(bp, dmae_reg_go_c[idx], 1);
466 }
467
468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
469 {
470 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
471 DMAE_CMD_C_ENABLE);
472 }
473
474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
475 {
476 return opcode & ~DMAE_CMD_SRC_RESET;
477 }
478
479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
480 bool with_comp, u8 comp_type)
481 {
482 u32 opcode = 0;
483
484 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
485 (dst_type << DMAE_COMMAND_DST_SHIFT));
486
487 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
488
489 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
490 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
491 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
492 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
493
494 #ifdef __BIG_ENDIAN
495 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
496 #else
497 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
498 #endif
499 if (with_comp)
500 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
501 return opcode;
502 }
503
504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
505 struct dmae_command *dmae,
506 u8 src_type, u8 dst_type)
507 {
508 memset(dmae, 0, sizeof(struct dmae_command));
509
510 /* set the opcode */
511 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
512 true, DMAE_COMP_PCI);
513
514 /* fill in the completion parameters */
515 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
516 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
517 dmae->comp_val = DMAE_COMP_VAL;
518 }
519
520 /* issue a dmae command over the init-channel and wait for completion */
521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
522 u32 *comp)
523 {
524 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
525 int rc = 0;
526
527 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
528
529 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
530 * as long as this code is called both from syscall context and
531 * from ndo_set_rx_mode() flow that may be called from BH.
532 */
533
534 spin_lock_bh(&bp->dmae_lock);
535
536 /* reset completion */
537 *comp = 0;
538
539 /* post the command on the channel used for initializations */
540 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
541
542 /* wait for completion */
543 udelay(5);
544 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
545
546 if (!cnt ||
547 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
548 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
549 BNX2X_ERR("DMAE timeout!\n");
550 rc = DMAE_TIMEOUT;
551 goto unlock;
552 }
553 cnt--;
554 udelay(50);
555 }
556 if (*comp & DMAE_PCI_ERR_FLAG) {
557 BNX2X_ERR("DMAE PCI error!\n");
558 rc = DMAE_PCI_ERROR;
559 }
560
561 unlock:
562
563 spin_unlock_bh(&bp->dmae_lock);
564
565 return rc;
566 }
567
568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
569 u32 len32)
570 {
571 int rc;
572 struct dmae_command dmae;
573
574 if (!bp->dmae_ready) {
575 u32 *data = bnx2x_sp(bp, wb_data[0]);
576
577 if (CHIP_IS_E1(bp))
578 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
579 else
580 bnx2x_init_str_wr(bp, dst_addr, data, len32);
581 return;
582 }
583
584 /* set opcode and fixed command fields */
585 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
586
587 /* fill in addresses and len */
588 dmae.src_addr_lo = U64_LO(dma_addr);
589 dmae.src_addr_hi = U64_HI(dma_addr);
590 dmae.dst_addr_lo = dst_addr >> 2;
591 dmae.dst_addr_hi = 0;
592 dmae.len = len32;
593
594 /* issue the command and wait for completion */
595 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
596 if (rc) {
597 BNX2X_ERR("DMAE returned failure %d\n", rc);
598 #ifdef BNX2X_STOP_ON_ERROR
599 bnx2x_panic();
600 #endif
601 }
602 }
603
604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
605 {
606 int rc;
607 struct dmae_command dmae;
608
609 if (!bp->dmae_ready) {
610 u32 *data = bnx2x_sp(bp, wb_data[0]);
611 int i;
612
613 if (CHIP_IS_E1(bp))
614 for (i = 0; i < len32; i++)
615 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
616 else
617 for (i = 0; i < len32; i++)
618 data[i] = REG_RD(bp, src_addr + i*4);
619
620 return;
621 }
622
623 /* set opcode and fixed command fields */
624 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
625
626 /* fill in addresses and len */
627 dmae.src_addr_lo = src_addr >> 2;
628 dmae.src_addr_hi = 0;
629 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
630 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
631 dmae.len = len32;
632
633 /* issue the command and wait for completion */
634 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
635 if (rc) {
636 BNX2X_ERR("DMAE returned failure %d\n", rc);
637 #ifdef BNX2X_STOP_ON_ERROR
638 bnx2x_panic();
639 #endif
640 }
641 }
642
643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
644 u32 addr, u32 len)
645 {
646 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
647 int offset = 0;
648
649 while (len > dmae_wr_max) {
650 bnx2x_write_dmae(bp, phys_addr + offset,
651 addr + offset, dmae_wr_max);
652 offset += dmae_wr_max * 4;
653 len -= dmae_wr_max;
654 }
655
656 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
657 }
658
659 enum storms {
660 XSTORM,
661 TSTORM,
662 CSTORM,
663 USTORM,
664 MAX_STORMS
665 };
666
667 #define STORMS_NUM 4
668 #define REGS_IN_ENTRY 4
669
670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
671 enum storms storm,
672 int entry)
673 {
674 switch (storm) {
675 case XSTORM:
676 return XSTORM_ASSERT_LIST_OFFSET(entry);
677 case TSTORM:
678 return TSTORM_ASSERT_LIST_OFFSET(entry);
679 case CSTORM:
680 return CSTORM_ASSERT_LIST_OFFSET(entry);
681 case USTORM:
682 return USTORM_ASSERT_LIST_OFFSET(entry);
683 case MAX_STORMS:
684 default:
685 BNX2X_ERR("unknown storm\n");
686 }
687 return -EINVAL;
688 }
689
690 static int bnx2x_mc_assert(struct bnx2x *bp)
691 {
692 char last_idx;
693 int i, j, rc = 0;
694 enum storms storm;
695 u32 regs[REGS_IN_ENTRY];
696 u32 bar_storm_intmem[STORMS_NUM] = {
697 BAR_XSTRORM_INTMEM,
698 BAR_TSTRORM_INTMEM,
699 BAR_CSTRORM_INTMEM,
700 BAR_USTRORM_INTMEM
701 };
702 u32 storm_assert_list_index[STORMS_NUM] = {
703 XSTORM_ASSERT_LIST_INDEX_OFFSET,
704 TSTORM_ASSERT_LIST_INDEX_OFFSET,
705 CSTORM_ASSERT_LIST_INDEX_OFFSET,
706 USTORM_ASSERT_LIST_INDEX_OFFSET
707 };
708 char *storms_string[STORMS_NUM] = {
709 "XSTORM",
710 "TSTORM",
711 "CSTORM",
712 "USTORM"
713 };
714
715 for (storm = XSTORM; storm < MAX_STORMS; storm++) {
716 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
717 storm_assert_list_index[storm]);
718 if (last_idx)
719 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
720 storms_string[storm], last_idx);
721
722 /* print the asserts */
723 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
724 /* read a single assert entry */
725 for (j = 0; j < REGS_IN_ENTRY; j++)
726 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
727 bnx2x_get_assert_list_entry(bp,
728 storm,
729 i) +
730 sizeof(u32) * j);
731
732 /* log entry if it contains a valid assert */
733 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
734 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
735 storms_string[storm], i, regs[3],
736 regs[2], regs[1], regs[0]);
737 rc++;
738 } else {
739 break;
740 }
741 }
742 }
743
744 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
745 CHIP_IS_E1(bp) ? "everest1" :
746 CHIP_IS_E1H(bp) ? "everest1h" :
747 CHIP_IS_E2(bp) ? "everest2" : "everest3",
748 BCM_5710_FW_MAJOR_VERSION,
749 BCM_5710_FW_MINOR_VERSION,
750 BCM_5710_FW_REVISION_VERSION);
751
752 return rc;
753 }
754
755 #define MCPR_TRACE_BUFFER_SIZE (0x800)
756 #define SCRATCH_BUFFER_SIZE(bp) \
757 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
758
759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
760 {
761 u32 addr, val;
762 u32 mark, offset;
763 __be32 data[9];
764 int word;
765 u32 trace_shmem_base;
766 if (BP_NOMCP(bp)) {
767 BNX2X_ERR("NO MCP - can not dump\n");
768 return;
769 }
770 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
771 (bp->common.bc_ver & 0xff0000) >> 16,
772 (bp->common.bc_ver & 0xff00) >> 8,
773 (bp->common.bc_ver & 0xff));
774
775 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
776 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
777 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
778
779 if (BP_PATH(bp) == 0)
780 trace_shmem_base = bp->common.shmem_base;
781 else
782 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
783
784 /* sanity */
785 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
786 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
787 SCRATCH_BUFFER_SIZE(bp)) {
788 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
789 trace_shmem_base);
790 return;
791 }
792
793 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
794
795 /* validate TRCB signature */
796 mark = REG_RD(bp, addr);
797 if (mark != MFW_TRACE_SIGNATURE) {
798 BNX2X_ERR("Trace buffer signature is missing.");
799 return ;
800 }
801
802 /* read cyclic buffer pointer */
803 addr += 4;
804 mark = REG_RD(bp, addr);
805 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
806 if (mark >= trace_shmem_base || mark < addr + 4) {
807 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
808 return;
809 }
810 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
811
812 printk("%s", lvl);
813
814 /* dump buffer after the mark */
815 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
816 for (word = 0; word < 8; word++)
817 data[word] = htonl(REG_RD(bp, offset + 4*word));
818 data[8] = 0x0;
819 pr_cont("%s", (char *)data);
820 }
821
822 /* dump buffer before the mark */
823 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
824 for (word = 0; word < 8; word++)
825 data[word] = htonl(REG_RD(bp, offset + 4*word));
826 data[8] = 0x0;
827 pr_cont("%s", (char *)data);
828 }
829 printk("%s" "end of fw dump\n", lvl);
830 }
831
832 static void bnx2x_fw_dump(struct bnx2x *bp)
833 {
834 bnx2x_fw_dump_lvl(bp, KERN_ERR);
835 }
836
837 static void bnx2x_hc_int_disable(struct bnx2x *bp)
838 {
839 int port = BP_PORT(bp);
840 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
841 u32 val = REG_RD(bp, addr);
842
843 /* in E1 we must use only PCI configuration space to disable
844 * MSI/MSIX capability
845 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
846 */
847 if (CHIP_IS_E1(bp)) {
848 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
849 * Use mask register to prevent from HC sending interrupts
850 * after we exit the function
851 */
852 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
853
854 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
855 HC_CONFIG_0_REG_INT_LINE_EN_0 |
856 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
857 } else
858 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
859 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
860 HC_CONFIG_0_REG_INT_LINE_EN_0 |
861 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
862
863 DP(NETIF_MSG_IFDOWN,
864 "write %x to HC %d (addr 0x%x)\n",
865 val, port, addr);
866
867 /* flush all outstanding writes */
868 mmiowb();
869
870 REG_WR(bp, addr, val);
871 if (REG_RD(bp, addr) != val)
872 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
873 }
874
875 static void bnx2x_igu_int_disable(struct bnx2x *bp)
876 {
877 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
878
879 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
880 IGU_PF_CONF_INT_LINE_EN |
881 IGU_PF_CONF_ATTN_BIT_EN);
882
883 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
884
885 /* flush all outstanding writes */
886 mmiowb();
887
888 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
889 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
890 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
891 }
892
893 static void bnx2x_int_disable(struct bnx2x *bp)
894 {
895 if (bp->common.int_block == INT_BLOCK_HC)
896 bnx2x_hc_int_disable(bp);
897 else
898 bnx2x_igu_int_disable(bp);
899 }
900
901 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
902 {
903 int i;
904 u16 j;
905 struct hc_sp_status_block_data sp_sb_data;
906 int func = BP_FUNC(bp);
907 #ifdef BNX2X_STOP_ON_ERROR
908 u16 start = 0, end = 0;
909 u8 cos;
910 #endif
911 if (IS_PF(bp) && disable_int)
912 bnx2x_int_disable(bp);
913
914 bp->stats_state = STATS_STATE_DISABLED;
915 bp->eth_stats.unrecoverable_error++;
916 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
917
918 BNX2X_ERR("begin crash dump -----------------\n");
919
920 /* Indices */
921 /* Common */
922 if (IS_PF(bp)) {
923 struct host_sp_status_block *def_sb = bp->def_status_blk;
924 int data_size, cstorm_offset;
925
926 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
927 bp->def_idx, bp->def_att_idx, bp->attn_state,
928 bp->spq_prod_idx, bp->stats_counter);
929 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
930 def_sb->atten_status_block.attn_bits,
931 def_sb->atten_status_block.attn_bits_ack,
932 def_sb->atten_status_block.status_block_id,
933 def_sb->atten_status_block.attn_bits_index);
934 BNX2X_ERR(" def (");
935 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
936 pr_cont("0x%x%s",
937 def_sb->sp_sb.index_values[i],
938 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
939
940 data_size = sizeof(struct hc_sp_status_block_data) /
941 sizeof(u32);
942 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
943 for (i = 0; i < data_size; i++)
944 *((u32 *)&sp_sb_data + i) =
945 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
946 i * sizeof(u32));
947
948 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
949 sp_sb_data.igu_sb_id,
950 sp_sb_data.igu_seg_id,
951 sp_sb_data.p_func.pf_id,
952 sp_sb_data.p_func.vnic_id,
953 sp_sb_data.p_func.vf_id,
954 sp_sb_data.p_func.vf_valid,
955 sp_sb_data.state);
956 }
957
958 for_each_eth_queue(bp, i) {
959 struct bnx2x_fastpath *fp = &bp->fp[i];
960 int loop;
961 struct hc_status_block_data_e2 sb_data_e2;
962 struct hc_status_block_data_e1x sb_data_e1x;
963 struct hc_status_block_sm *hc_sm_p =
964 CHIP_IS_E1x(bp) ?
965 sb_data_e1x.common.state_machine :
966 sb_data_e2.common.state_machine;
967 struct hc_index_data *hc_index_p =
968 CHIP_IS_E1x(bp) ?
969 sb_data_e1x.index_data :
970 sb_data_e2.index_data;
971 u8 data_size, cos;
972 u32 *sb_data_p;
973 struct bnx2x_fp_txdata txdata;
974
975 if (!bp->fp)
976 break;
977
978 if (!fp->rx_cons_sb)
979 continue;
980
981 /* Rx */
982 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
983 i, fp->rx_bd_prod, fp->rx_bd_cons,
984 fp->rx_comp_prod,
985 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
986 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
987 fp->rx_sge_prod, fp->last_max_sge,
988 le16_to_cpu(fp->fp_hc_idx));
989
990 /* Tx */
991 for_each_cos_in_tx_queue(fp, cos)
992 {
993 if (!fp->txdata_ptr[cos])
994 break;
995
996 txdata = *fp->txdata_ptr[cos];
997
998 if (!txdata.tx_cons_sb)
999 continue;
1000
1001 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
1002 i, txdata.tx_pkt_prod,
1003 txdata.tx_pkt_cons, txdata.tx_bd_prod,
1004 txdata.tx_bd_cons,
1005 le16_to_cpu(*txdata.tx_cons_sb));
1006 }
1007
1008 loop = CHIP_IS_E1x(bp) ?
1009 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1010
1011 /* host sb data */
1012
1013 if (IS_FCOE_FP(fp))
1014 continue;
1015
1016 BNX2X_ERR(" run indexes (");
1017 for (j = 0; j < HC_SB_MAX_SM; j++)
1018 pr_cont("0x%x%s",
1019 fp->sb_running_index[j],
1020 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1021
1022 BNX2X_ERR(" indexes (");
1023 for (j = 0; j < loop; j++)
1024 pr_cont("0x%x%s",
1025 fp->sb_index_values[j],
1026 (j == loop - 1) ? ")" : " ");
1027
1028 /* VF cannot access FW refelection for status block */
1029 if (IS_VF(bp))
1030 continue;
1031
1032 /* fw sb data */
1033 data_size = CHIP_IS_E1x(bp) ?
1034 sizeof(struct hc_status_block_data_e1x) :
1035 sizeof(struct hc_status_block_data_e2);
1036 data_size /= sizeof(u32);
1037 sb_data_p = CHIP_IS_E1x(bp) ?
1038 (u32 *)&sb_data_e1x :
1039 (u32 *)&sb_data_e2;
1040 /* copy sb data in here */
1041 for (j = 0; j < data_size; j++)
1042 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1043 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1044 j * sizeof(u32));
1045
1046 if (!CHIP_IS_E1x(bp)) {
1047 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1048 sb_data_e2.common.p_func.pf_id,
1049 sb_data_e2.common.p_func.vf_id,
1050 sb_data_e2.common.p_func.vf_valid,
1051 sb_data_e2.common.p_func.vnic_id,
1052 sb_data_e2.common.same_igu_sb_1b,
1053 sb_data_e2.common.state);
1054 } else {
1055 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1056 sb_data_e1x.common.p_func.pf_id,
1057 sb_data_e1x.common.p_func.vf_id,
1058 sb_data_e1x.common.p_func.vf_valid,
1059 sb_data_e1x.common.p_func.vnic_id,
1060 sb_data_e1x.common.same_igu_sb_1b,
1061 sb_data_e1x.common.state);
1062 }
1063
1064 /* SB_SMs data */
1065 for (j = 0; j < HC_SB_MAX_SM; j++) {
1066 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1067 j, hc_sm_p[j].__flags,
1068 hc_sm_p[j].igu_sb_id,
1069 hc_sm_p[j].igu_seg_id,
1070 hc_sm_p[j].time_to_expire,
1071 hc_sm_p[j].timer_value);
1072 }
1073
1074 /* Indices data */
1075 for (j = 0; j < loop; j++) {
1076 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1077 hc_index_p[j].flags,
1078 hc_index_p[j].timeout);
1079 }
1080 }
1081
1082 #ifdef BNX2X_STOP_ON_ERROR
1083 if (IS_PF(bp)) {
1084 /* event queue */
1085 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1086 for (i = 0; i < NUM_EQ_DESC; i++) {
1087 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1088
1089 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1090 i, bp->eq_ring[i].message.opcode,
1091 bp->eq_ring[i].message.error);
1092 BNX2X_ERR("data: %x %x %x\n",
1093 data[0], data[1], data[2]);
1094 }
1095 }
1096
1097 /* Rings */
1098 /* Rx */
1099 for_each_valid_rx_queue(bp, i) {
1100 struct bnx2x_fastpath *fp = &bp->fp[i];
1101
1102 if (!bp->fp)
1103 break;
1104
1105 if (!fp->rx_cons_sb)
1106 continue;
1107
1108 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1109 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1110 for (j = start; j != end; j = RX_BD(j + 1)) {
1111 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1112 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1113
1114 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1115 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1116 }
1117
1118 start = RX_SGE(fp->rx_sge_prod);
1119 end = RX_SGE(fp->last_max_sge);
1120 for (j = start; j != end; j = RX_SGE(j + 1)) {
1121 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1122 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1123
1124 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1125 i, j, rx_sge[1], rx_sge[0], sw_page->page);
1126 }
1127
1128 start = RCQ_BD(fp->rx_comp_cons - 10);
1129 end = RCQ_BD(fp->rx_comp_cons + 503);
1130 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1131 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1132
1133 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1134 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1135 }
1136 }
1137
1138 /* Tx */
1139 for_each_valid_tx_queue(bp, i) {
1140 struct bnx2x_fastpath *fp = &bp->fp[i];
1141
1142 if (!bp->fp)
1143 break;
1144
1145 for_each_cos_in_tx_queue(fp, cos) {
1146 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1147
1148 if (!fp->txdata_ptr[cos])
1149 break;
1150
1151 if (!txdata->tx_cons_sb)
1152 continue;
1153
1154 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1155 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1156 for (j = start; j != end; j = TX_BD(j + 1)) {
1157 struct sw_tx_bd *sw_bd =
1158 &txdata->tx_buf_ring[j];
1159
1160 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1161 i, cos, j, sw_bd->skb,
1162 sw_bd->first_bd);
1163 }
1164
1165 start = TX_BD(txdata->tx_bd_cons - 10);
1166 end = TX_BD(txdata->tx_bd_cons + 254);
1167 for (j = start; j != end; j = TX_BD(j + 1)) {
1168 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1169
1170 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1171 i, cos, j, tx_bd[0], tx_bd[1],
1172 tx_bd[2], tx_bd[3]);
1173 }
1174 }
1175 }
1176 #endif
1177 if (IS_PF(bp)) {
1178 bnx2x_fw_dump(bp);
1179 bnx2x_mc_assert(bp);
1180 }
1181 BNX2X_ERR("end crash dump -----------------\n");
1182 }
1183
1184 /*
1185 * FLR Support for E2
1186 *
1187 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1188 * initialization.
1189 */
1190 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1191 #define FLR_WAIT_INTERVAL 50 /* usec */
1192 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1193
1194 struct pbf_pN_buf_regs {
1195 int pN;
1196 u32 init_crd;
1197 u32 crd;
1198 u32 crd_freed;
1199 };
1200
1201 struct pbf_pN_cmd_regs {
1202 int pN;
1203 u32 lines_occup;
1204 u32 lines_freed;
1205 };
1206
1207 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1208 struct pbf_pN_buf_regs *regs,
1209 u32 poll_count)
1210 {
1211 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1212 u32 cur_cnt = poll_count;
1213
1214 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1215 crd = crd_start = REG_RD(bp, regs->crd);
1216 init_crd = REG_RD(bp, regs->init_crd);
1217
1218 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1219 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1220 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1221
1222 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1223 (init_crd - crd_start))) {
1224 if (cur_cnt--) {
1225 udelay(FLR_WAIT_INTERVAL);
1226 crd = REG_RD(bp, regs->crd);
1227 crd_freed = REG_RD(bp, regs->crd_freed);
1228 } else {
1229 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1230 regs->pN);
1231 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1232 regs->pN, crd);
1233 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1234 regs->pN, crd_freed);
1235 break;
1236 }
1237 }
1238 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1239 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1240 }
1241
1242 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1243 struct pbf_pN_cmd_regs *regs,
1244 u32 poll_count)
1245 {
1246 u32 occup, to_free, freed, freed_start;
1247 u32 cur_cnt = poll_count;
1248
1249 occup = to_free = REG_RD(bp, regs->lines_occup);
1250 freed = freed_start = REG_RD(bp, regs->lines_freed);
1251
1252 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1253 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1254
1255 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1256 if (cur_cnt--) {
1257 udelay(FLR_WAIT_INTERVAL);
1258 occup = REG_RD(bp, regs->lines_occup);
1259 freed = REG_RD(bp, regs->lines_freed);
1260 } else {
1261 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1262 regs->pN);
1263 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1264 regs->pN, occup);
1265 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1266 regs->pN, freed);
1267 break;
1268 }
1269 }
1270 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1271 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1272 }
1273
1274 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1275 u32 expected, u32 poll_count)
1276 {
1277 u32 cur_cnt = poll_count;
1278 u32 val;
1279
1280 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1281 udelay(FLR_WAIT_INTERVAL);
1282
1283 return val;
1284 }
1285
1286 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1287 char *msg, u32 poll_cnt)
1288 {
1289 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1290 if (val != 0) {
1291 BNX2X_ERR("%s usage count=%d\n", msg, val);
1292 return 1;
1293 }
1294 return 0;
1295 }
1296
1297 /* Common routines with VF FLR cleanup */
1298 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1299 {
1300 /* adjust polling timeout */
1301 if (CHIP_REV_IS_EMUL(bp))
1302 return FLR_POLL_CNT * 2000;
1303
1304 if (CHIP_REV_IS_FPGA(bp))
1305 return FLR_POLL_CNT * 120;
1306
1307 return FLR_POLL_CNT;
1308 }
1309
1310 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1311 {
1312 struct pbf_pN_cmd_regs cmd_regs[] = {
1313 {0, (CHIP_IS_E3B0(bp)) ?
1314 PBF_REG_TQ_OCCUPANCY_Q0 :
1315 PBF_REG_P0_TQ_OCCUPANCY,
1316 (CHIP_IS_E3B0(bp)) ?
1317 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1318 PBF_REG_P0_TQ_LINES_FREED_CNT},
1319 {1, (CHIP_IS_E3B0(bp)) ?
1320 PBF_REG_TQ_OCCUPANCY_Q1 :
1321 PBF_REG_P1_TQ_OCCUPANCY,
1322 (CHIP_IS_E3B0(bp)) ?
1323 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1324 PBF_REG_P1_TQ_LINES_FREED_CNT},
1325 {4, (CHIP_IS_E3B0(bp)) ?
1326 PBF_REG_TQ_OCCUPANCY_LB_Q :
1327 PBF_REG_P4_TQ_OCCUPANCY,
1328 (CHIP_IS_E3B0(bp)) ?
1329 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1330 PBF_REG_P4_TQ_LINES_FREED_CNT}
1331 };
1332
1333 struct pbf_pN_buf_regs buf_regs[] = {
1334 {0, (CHIP_IS_E3B0(bp)) ?
1335 PBF_REG_INIT_CRD_Q0 :
1336 PBF_REG_P0_INIT_CRD ,
1337 (CHIP_IS_E3B0(bp)) ?
1338 PBF_REG_CREDIT_Q0 :
1339 PBF_REG_P0_CREDIT,
1340 (CHIP_IS_E3B0(bp)) ?
1341 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1342 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1343 {1, (CHIP_IS_E3B0(bp)) ?
1344 PBF_REG_INIT_CRD_Q1 :
1345 PBF_REG_P1_INIT_CRD,
1346 (CHIP_IS_E3B0(bp)) ?
1347 PBF_REG_CREDIT_Q1 :
1348 PBF_REG_P1_CREDIT,
1349 (CHIP_IS_E3B0(bp)) ?
1350 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1351 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1352 {4, (CHIP_IS_E3B0(bp)) ?
1353 PBF_REG_INIT_CRD_LB_Q :
1354 PBF_REG_P4_INIT_CRD,
1355 (CHIP_IS_E3B0(bp)) ?
1356 PBF_REG_CREDIT_LB_Q :
1357 PBF_REG_P4_CREDIT,
1358 (CHIP_IS_E3B0(bp)) ?
1359 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1360 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1361 };
1362
1363 int i;
1364
1365 /* Verify the command queues are flushed P0, P1, P4 */
1366 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1367 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1368
1369 /* Verify the transmission buffers are flushed P0, P1, P4 */
1370 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1371 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1372 }
1373
1374 #define OP_GEN_PARAM(param) \
1375 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1376
1377 #define OP_GEN_TYPE(type) \
1378 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1379
1380 #define OP_GEN_AGG_VECT(index) \
1381 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1382
1383 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1384 {
1385 u32 op_gen_command = 0;
1386 u32 comp_addr = BAR_CSTRORM_INTMEM +
1387 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1388 int ret = 0;
1389
1390 if (REG_RD(bp, comp_addr)) {
1391 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1392 return 1;
1393 }
1394
1395 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1396 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1397 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1398 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1399
1400 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1401 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1402
1403 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1404 BNX2X_ERR("FW final cleanup did not succeed\n");
1405 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1406 (REG_RD(bp, comp_addr)));
1407 bnx2x_panic();
1408 return 1;
1409 }
1410 /* Zero completion for next FLR */
1411 REG_WR(bp, comp_addr, 0);
1412
1413 return ret;
1414 }
1415
1416 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1417 {
1418 u16 status;
1419
1420 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1421 return status & PCI_EXP_DEVSTA_TRPND;
1422 }
1423
1424 /* PF FLR specific routines
1425 */
1426 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1427 {
1428 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1429 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1430 CFC_REG_NUM_LCIDS_INSIDE_PF,
1431 "CFC PF usage counter timed out",
1432 poll_cnt))
1433 return 1;
1434
1435 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1436 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1437 DORQ_REG_PF_USAGE_CNT,
1438 "DQ PF usage counter timed out",
1439 poll_cnt))
1440 return 1;
1441
1442 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1443 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1444 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1445 "QM PF usage counter timed out",
1446 poll_cnt))
1447 return 1;
1448
1449 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1450 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1451 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1452 "Timers VNIC usage counter timed out",
1453 poll_cnt))
1454 return 1;
1455 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1456 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1457 "Timers NUM_SCANS usage counter timed out",
1458 poll_cnt))
1459 return 1;
1460
1461 /* Wait DMAE PF usage counter to zero */
1462 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1463 dmae_reg_go_c[INIT_DMAE_C(bp)],
1464 "DMAE command register timed out",
1465 poll_cnt))
1466 return 1;
1467
1468 return 0;
1469 }
1470
1471 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1472 {
1473 u32 val;
1474
1475 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1476 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1477
1478 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1479 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1480
1481 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1482 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1483
1484 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1485 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1486
1487 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1488 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1489
1490 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1491 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1492
1493 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1494 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1495
1496 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1497 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1498 val);
1499 }
1500
1501 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1502 {
1503 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1504
1505 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1506
1507 /* Re-enable PF target read access */
1508 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1509
1510 /* Poll HW usage counters */
1511 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1512 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1513 return -EBUSY;
1514
1515 /* Zero the igu 'trailing edge' and 'leading edge' */
1516
1517 /* Send the FW cleanup command */
1518 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1519 return -EBUSY;
1520
1521 /* ATC cleanup */
1522
1523 /* Verify TX hw is flushed */
1524 bnx2x_tx_hw_flushed(bp, poll_cnt);
1525
1526 /* Wait 100ms (not adjusted according to platform) */
1527 msleep(100);
1528
1529 /* Verify no pending pci transactions */
1530 if (bnx2x_is_pcie_pending(bp->pdev))
1531 BNX2X_ERR("PCIE Transactions still pending\n");
1532
1533 /* Debug */
1534 bnx2x_hw_enable_status(bp);
1535
1536 /*
1537 * Master enable - Due to WB DMAE writes performed before this
1538 * register is re-initialized as part of the regular function init
1539 */
1540 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1541
1542 return 0;
1543 }
1544
1545 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1546 {
1547 int port = BP_PORT(bp);
1548 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1549 u32 val = REG_RD(bp, addr);
1550 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1551 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1552 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1553
1554 if (msix) {
1555 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1556 HC_CONFIG_0_REG_INT_LINE_EN_0);
1557 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1558 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1559 if (single_msix)
1560 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1561 } else if (msi) {
1562 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1563 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1564 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1565 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1566 } else {
1567 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1568 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1569 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1570 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1571
1572 if (!CHIP_IS_E1(bp)) {
1573 DP(NETIF_MSG_IFUP,
1574 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1575
1576 REG_WR(bp, addr, val);
1577
1578 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1579 }
1580 }
1581
1582 if (CHIP_IS_E1(bp))
1583 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1584
1585 DP(NETIF_MSG_IFUP,
1586 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1587 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1588
1589 REG_WR(bp, addr, val);
1590 /*
1591 * Ensure that HC_CONFIG is written before leading/trailing edge config
1592 */
1593 mmiowb();
1594 barrier();
1595
1596 if (!CHIP_IS_E1(bp)) {
1597 /* init leading/trailing edge */
1598 if (IS_MF(bp)) {
1599 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600 if (bp->port.pmf)
1601 /* enable nig and gpio3 attention */
1602 val |= 0x1100;
1603 } else
1604 val = 0xffff;
1605
1606 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1607 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1608 }
1609
1610 /* Make sure that interrupts are indeed enabled from here on */
1611 mmiowb();
1612 }
1613
1614 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1615 {
1616 u32 val;
1617 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1618 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1619 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1620
1621 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1622
1623 if (msix) {
1624 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1625 IGU_PF_CONF_SINGLE_ISR_EN);
1626 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1627 IGU_PF_CONF_ATTN_BIT_EN);
1628
1629 if (single_msix)
1630 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1631 } else if (msi) {
1632 val &= ~IGU_PF_CONF_INT_LINE_EN;
1633 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1634 IGU_PF_CONF_ATTN_BIT_EN |
1635 IGU_PF_CONF_SINGLE_ISR_EN);
1636 } else {
1637 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1638 val |= (IGU_PF_CONF_INT_LINE_EN |
1639 IGU_PF_CONF_ATTN_BIT_EN |
1640 IGU_PF_CONF_SINGLE_ISR_EN);
1641 }
1642
1643 /* Clean previous status - need to configure igu prior to ack*/
1644 if ((!msix) || single_msix) {
1645 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1646 bnx2x_ack_int(bp);
1647 }
1648
1649 val |= IGU_PF_CONF_FUNC_EN;
1650
1651 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1652 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1653
1654 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1655
1656 if (val & IGU_PF_CONF_INT_LINE_EN)
1657 pci_intx(bp->pdev, true);
1658
1659 barrier();
1660
1661 /* init leading/trailing edge */
1662 if (IS_MF(bp)) {
1663 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1664 if (bp->port.pmf)
1665 /* enable nig and gpio3 attention */
1666 val |= 0x1100;
1667 } else
1668 val = 0xffff;
1669
1670 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1671 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1672
1673 /* Make sure that interrupts are indeed enabled from here on */
1674 mmiowb();
1675 }
1676
1677 void bnx2x_int_enable(struct bnx2x *bp)
1678 {
1679 if (bp->common.int_block == INT_BLOCK_HC)
1680 bnx2x_hc_int_enable(bp);
1681 else
1682 bnx2x_igu_int_enable(bp);
1683 }
1684
1685 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1686 {
1687 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1688 int i, offset;
1689
1690 if (disable_hw)
1691 /* prevent the HW from sending interrupts */
1692 bnx2x_int_disable(bp);
1693
1694 /* make sure all ISRs are done */
1695 if (msix) {
1696 synchronize_irq(bp->msix_table[0].vector);
1697 offset = 1;
1698 if (CNIC_SUPPORT(bp))
1699 offset++;
1700 for_each_eth_queue(bp, i)
1701 synchronize_irq(bp->msix_table[offset++].vector);
1702 } else
1703 synchronize_irq(bp->pdev->irq);
1704
1705 /* make sure sp_task is not running */
1706 cancel_delayed_work(&bp->sp_task);
1707 cancel_delayed_work(&bp->period_task);
1708 flush_workqueue(bnx2x_wq);
1709 }
1710
1711 /* fast path */
1712
1713 /*
1714 * General service functions
1715 */
1716
1717 /* Return true if succeeded to acquire the lock */
1718 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1719 {
1720 u32 lock_status;
1721 u32 resource_bit = (1 << resource);
1722 int func = BP_FUNC(bp);
1723 u32 hw_lock_control_reg;
1724
1725 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1726 "Trying to take a lock on resource %d\n", resource);
1727
1728 /* Validating that the resource is within range */
1729 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1730 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1732 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1733 return false;
1734 }
1735
1736 if (func <= 5)
1737 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1738 else
1739 hw_lock_control_reg =
1740 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1741
1742 /* Try to acquire the lock */
1743 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1744 lock_status = REG_RD(bp, hw_lock_control_reg);
1745 if (lock_status & resource_bit)
1746 return true;
1747
1748 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1749 "Failed to get a lock on resource %d\n", resource);
1750 return false;
1751 }
1752
1753 /**
1754 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1755 *
1756 * @bp: driver handle
1757 *
1758 * Returns the recovery leader resource id according to the engine this function
1759 * belongs to. Currently only only 2 engines is supported.
1760 */
1761 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1762 {
1763 if (BP_PATH(bp))
1764 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1765 else
1766 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1767 }
1768
1769 /**
1770 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1771 *
1772 * @bp: driver handle
1773 *
1774 * Tries to acquire a leader lock for current engine.
1775 */
1776 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1777 {
1778 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1779 }
1780
1781 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1782
1783 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1784 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1785 {
1786 /* Set the interrupt occurred bit for the sp-task to recognize it
1787 * must ack the interrupt and transition according to the IGU
1788 * state machine.
1789 */
1790 atomic_set(&bp->interrupt_occurred, 1);
1791
1792 /* The sp_task must execute only after this bit
1793 * is set, otherwise we will get out of sync and miss all
1794 * further interrupts. Hence, the barrier.
1795 */
1796 smp_wmb();
1797
1798 /* schedule sp_task to workqueue */
1799 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1800 }
1801
1802 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1803 {
1804 struct bnx2x *bp = fp->bp;
1805 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1806 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1807 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1808 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1809
1810 DP(BNX2X_MSG_SP,
1811 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1812 fp->index, cid, command, bp->state,
1813 rr_cqe->ramrod_cqe.ramrod_type);
1814
1815 /* If cid is within VF range, replace the slowpath object with the
1816 * one corresponding to this VF
1817 */
1818 if (cid >= BNX2X_FIRST_VF_CID &&
1819 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1820 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1821
1822 switch (command) {
1823 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1824 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1825 drv_cmd = BNX2X_Q_CMD_UPDATE;
1826 break;
1827
1828 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1829 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1830 drv_cmd = BNX2X_Q_CMD_SETUP;
1831 break;
1832
1833 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1834 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1835 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1836 break;
1837
1838 case (RAMROD_CMD_ID_ETH_HALT):
1839 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1840 drv_cmd = BNX2X_Q_CMD_HALT;
1841 break;
1842
1843 case (RAMROD_CMD_ID_ETH_TERMINATE):
1844 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1845 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1846 break;
1847
1848 case (RAMROD_CMD_ID_ETH_EMPTY):
1849 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1850 drv_cmd = BNX2X_Q_CMD_EMPTY;
1851 break;
1852
1853 case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1854 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1855 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1856 break;
1857
1858 default:
1859 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1860 command, fp->index);
1861 return;
1862 }
1863
1864 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1865 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1866 /* q_obj->complete_cmd() failure means that this was
1867 * an unexpected completion.
1868 *
1869 * In this case we don't want to increase the bp->spq_left
1870 * because apparently we haven't sent this command the first
1871 * place.
1872 */
1873 #ifdef BNX2X_STOP_ON_ERROR
1874 bnx2x_panic();
1875 #else
1876 return;
1877 #endif
1878
1879 smp_mb__before_atomic();
1880 atomic_inc(&bp->cq_spq_left);
1881 /* push the change in bp->spq_left and towards the memory */
1882 smp_mb__after_atomic();
1883
1884 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1885
1886 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1887 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1888 /* if Q update ramrod is completed for last Q in AFEX vif set
1889 * flow, then ACK MCP at the end
1890 *
1891 * mark pending ACK to MCP bit.
1892 * prevent case that both bits are cleared.
1893 * At the end of load/unload driver checks that
1894 * sp_state is cleared, and this order prevents
1895 * races
1896 */
1897 smp_mb__before_atomic();
1898 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1899 wmb();
1900 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1901 smp_mb__after_atomic();
1902
1903 /* schedule the sp task as mcp ack is required */
1904 bnx2x_schedule_sp_task(bp);
1905 }
1906
1907 return;
1908 }
1909
1910 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1911 {
1912 struct bnx2x *bp = netdev_priv(dev_instance);
1913 u16 status = bnx2x_ack_int(bp);
1914 u16 mask;
1915 int i;
1916 u8 cos;
1917
1918 /* Return here if interrupt is shared and it's not for us */
1919 if (unlikely(status == 0)) {
1920 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1921 return IRQ_NONE;
1922 }
1923 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1924
1925 #ifdef BNX2X_STOP_ON_ERROR
1926 if (unlikely(bp->panic))
1927 return IRQ_HANDLED;
1928 #endif
1929
1930 for_each_eth_queue(bp, i) {
1931 struct bnx2x_fastpath *fp = &bp->fp[i];
1932
1933 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1934 if (status & mask) {
1935 /* Handle Rx or Tx according to SB id */
1936 for_each_cos_in_tx_queue(fp, cos)
1937 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1938 prefetch(&fp->sb_running_index[SM_RX_ID]);
1939 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1940 status &= ~mask;
1941 }
1942 }
1943
1944 if (CNIC_SUPPORT(bp)) {
1945 mask = 0x2;
1946 if (status & (mask | 0x1)) {
1947 struct cnic_ops *c_ops = NULL;
1948
1949 rcu_read_lock();
1950 c_ops = rcu_dereference(bp->cnic_ops);
1951 if (c_ops && (bp->cnic_eth_dev.drv_state &
1952 CNIC_DRV_STATE_HANDLES_IRQ))
1953 c_ops->cnic_handler(bp->cnic_data, NULL);
1954 rcu_read_unlock();
1955
1956 status &= ~mask;
1957 }
1958 }
1959
1960 if (unlikely(status & 0x1)) {
1961
1962 /* schedule sp task to perform default status block work, ack
1963 * attentions and enable interrupts.
1964 */
1965 bnx2x_schedule_sp_task(bp);
1966
1967 status &= ~0x1;
1968 if (!status)
1969 return IRQ_HANDLED;
1970 }
1971
1972 if (unlikely(status))
1973 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1974 status);
1975
1976 return IRQ_HANDLED;
1977 }
1978
1979 /* Link */
1980
1981 /*
1982 * General service functions
1983 */
1984
1985 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1986 {
1987 u32 lock_status;
1988 u32 resource_bit = (1 << resource);
1989 int func = BP_FUNC(bp);
1990 u32 hw_lock_control_reg;
1991 int cnt;
1992
1993 /* Validating that the resource is within range */
1994 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1995 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1996 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1997 return -EINVAL;
1998 }
1999
2000 if (func <= 5) {
2001 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2002 } else {
2003 hw_lock_control_reg =
2004 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2005 }
2006
2007 /* Validating that the resource is not already taken */
2008 lock_status = REG_RD(bp, hw_lock_control_reg);
2009 if (lock_status & resource_bit) {
2010 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
2011 lock_status, resource_bit);
2012 return -EEXIST;
2013 }
2014
2015 /* Try for 5 second every 5ms */
2016 for (cnt = 0; cnt < 1000; cnt++) {
2017 /* Try to acquire the lock */
2018 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2019 lock_status = REG_RD(bp, hw_lock_control_reg);
2020 if (lock_status & resource_bit)
2021 return 0;
2022
2023 usleep_range(5000, 10000);
2024 }
2025 BNX2X_ERR("Timeout\n");
2026 return -EAGAIN;
2027 }
2028
2029 int bnx2x_release_leader_lock(struct bnx2x *bp)
2030 {
2031 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2032 }
2033
2034 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2035 {
2036 u32 lock_status;
2037 u32 resource_bit = (1 << resource);
2038 int func = BP_FUNC(bp);
2039 u32 hw_lock_control_reg;
2040
2041 /* Validating that the resource is within range */
2042 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2043 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2044 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2045 return -EINVAL;
2046 }
2047
2048 if (func <= 5) {
2049 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2050 } else {
2051 hw_lock_control_reg =
2052 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2053 }
2054
2055 /* Validating that the resource is currently taken */
2056 lock_status = REG_RD(bp, hw_lock_control_reg);
2057 if (!(lock_status & resource_bit)) {
2058 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2059 lock_status, resource_bit);
2060 return -EFAULT;
2061 }
2062
2063 REG_WR(bp, hw_lock_control_reg, resource_bit);
2064 return 0;
2065 }
2066
2067 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2068 {
2069 /* The GPIO should be swapped if swap register is set and active */
2070 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2071 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2072 int gpio_shift = gpio_num +
2073 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2074 u32 gpio_mask = (1 << gpio_shift);
2075 u32 gpio_reg;
2076 int value;
2077
2078 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2079 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2080 return -EINVAL;
2081 }
2082
2083 /* read GPIO value */
2084 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2085
2086 /* get the requested pin value */
2087 if ((gpio_reg & gpio_mask) == gpio_mask)
2088 value = 1;
2089 else
2090 value = 0;
2091
2092 return value;
2093 }
2094
2095 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2096 {
2097 /* The GPIO should be swapped if swap register is set and active */
2098 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2099 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2100 int gpio_shift = gpio_num +
2101 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2102 u32 gpio_mask = (1 << gpio_shift);
2103 u32 gpio_reg;
2104
2105 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2106 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2107 return -EINVAL;
2108 }
2109
2110 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2111 /* read GPIO and mask except the float bits */
2112 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2113
2114 switch (mode) {
2115 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2116 DP(NETIF_MSG_LINK,
2117 "Set GPIO %d (shift %d) -> output low\n",
2118 gpio_num, gpio_shift);
2119 /* clear FLOAT and set CLR */
2120 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2121 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2122 break;
2123
2124 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2125 DP(NETIF_MSG_LINK,
2126 "Set GPIO %d (shift %d) -> output high\n",
2127 gpio_num, gpio_shift);
2128 /* clear FLOAT and set SET */
2129 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2130 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2131 break;
2132
2133 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2134 DP(NETIF_MSG_LINK,
2135 "Set GPIO %d (shift %d) -> input\n",
2136 gpio_num, gpio_shift);
2137 /* set FLOAT */
2138 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2139 break;
2140
2141 default:
2142 break;
2143 }
2144
2145 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2146 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2147
2148 return 0;
2149 }
2150
2151 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2152 {
2153 u32 gpio_reg = 0;
2154 int rc = 0;
2155
2156 /* Any port swapping should be handled by caller. */
2157
2158 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2159 /* read GPIO and mask except the float bits */
2160 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2161 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2162 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2163 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2164
2165 switch (mode) {
2166 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2167 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2168 /* set CLR */
2169 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2170 break;
2171
2172 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2173 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2174 /* set SET */
2175 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2176 break;
2177
2178 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2179 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2180 /* set FLOAT */
2181 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2182 break;
2183
2184 default:
2185 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2186 rc = -EINVAL;
2187 break;
2188 }
2189
2190 if (rc == 0)
2191 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2192
2193 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2194
2195 return rc;
2196 }
2197
2198 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2199 {
2200 /* The GPIO should be swapped if swap register is set and active */
2201 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2202 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2203 int gpio_shift = gpio_num +
2204 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2205 u32 gpio_mask = (1 << gpio_shift);
2206 u32 gpio_reg;
2207
2208 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2209 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2210 return -EINVAL;
2211 }
2212
2213 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2214 /* read GPIO int */
2215 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2216
2217 switch (mode) {
2218 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2219 DP(NETIF_MSG_LINK,
2220 "Clear GPIO INT %d (shift %d) -> output low\n",
2221 gpio_num, gpio_shift);
2222 /* clear SET and set CLR */
2223 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2224 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2225 break;
2226
2227 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2228 DP(NETIF_MSG_LINK,
2229 "Set GPIO INT %d (shift %d) -> output high\n",
2230 gpio_num, gpio_shift);
2231 /* clear CLR and set SET */
2232 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2233 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2234 break;
2235
2236 default:
2237 break;
2238 }
2239
2240 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2241 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2242
2243 return 0;
2244 }
2245
2246 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2247 {
2248 u32 spio_reg;
2249
2250 /* Only 2 SPIOs are configurable */
2251 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2252 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2253 return -EINVAL;
2254 }
2255
2256 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2257 /* read SPIO and mask except the float bits */
2258 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2259
2260 switch (mode) {
2261 case MISC_SPIO_OUTPUT_LOW:
2262 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2263 /* clear FLOAT and set CLR */
2264 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2265 spio_reg |= (spio << MISC_SPIO_CLR_POS);
2266 break;
2267
2268 case MISC_SPIO_OUTPUT_HIGH:
2269 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2270 /* clear FLOAT and set SET */
2271 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2272 spio_reg |= (spio << MISC_SPIO_SET_POS);
2273 break;
2274
2275 case MISC_SPIO_INPUT_HI_Z:
2276 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2277 /* set FLOAT */
2278 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2279 break;
2280
2281 default:
2282 break;
2283 }
2284
2285 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2286 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2287
2288 return 0;
2289 }
2290
2291 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2292 {
2293 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2294
2295 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2296 ADVERTISED_Pause);
2297 switch (bp->link_vars.ieee_fc &
2298 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2299 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2300 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2301 ADVERTISED_Pause);
2302 break;
2303
2304 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2305 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2306 break;
2307
2308 default:
2309 break;
2310 }
2311 }
2312
2313 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2314 {
2315 /* Initialize link parameters structure variables
2316 * It is recommended to turn off RX FC for jumbo frames
2317 * for better performance
2318 */
2319 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2320 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2321 else
2322 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2323 }
2324
2325 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2326 {
2327 u32 pause_enabled = 0;
2328
2329 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2330 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2331 pause_enabled = 1;
2332
2333 REG_WR(bp, BAR_USTRORM_INTMEM +
2334 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2335 pause_enabled);
2336 }
2337
2338 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2339 pause_enabled ? "enabled" : "disabled");
2340 }
2341
2342 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2343 {
2344 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2345 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2346
2347 if (!BP_NOMCP(bp)) {
2348 bnx2x_set_requested_fc(bp);
2349 bnx2x_acquire_phy_lock(bp);
2350
2351 if (load_mode == LOAD_DIAG) {
2352 struct link_params *lp = &bp->link_params;
2353 lp->loopback_mode = LOOPBACK_XGXS;
2354 /* Prefer doing PHY loopback at highest speed */
2355 if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2356 if (lp->speed_cap_mask[cfx_idx] &
2357 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2358 lp->req_line_speed[cfx_idx] =
2359 SPEED_20000;
2360 else if (lp->speed_cap_mask[cfx_idx] &
2361 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2362 lp->req_line_speed[cfx_idx] =
2363 SPEED_10000;
2364 else
2365 lp->req_line_speed[cfx_idx] =
2366 SPEED_1000;
2367 }
2368 }
2369
2370 if (load_mode == LOAD_LOOPBACK_EXT) {
2371 struct link_params *lp = &bp->link_params;
2372 lp->loopback_mode = LOOPBACK_EXT;
2373 }
2374
2375 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2376
2377 bnx2x_release_phy_lock(bp);
2378
2379 bnx2x_init_dropless_fc(bp);
2380
2381 bnx2x_calc_fc_adv(bp);
2382
2383 if (bp->link_vars.link_up) {
2384 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2385 bnx2x_link_report(bp);
2386 }
2387 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2388 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2389 return rc;
2390 }
2391 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2392 return -EINVAL;
2393 }
2394
2395 void bnx2x_link_set(struct bnx2x *bp)
2396 {
2397 if (!BP_NOMCP(bp)) {
2398 bnx2x_acquire_phy_lock(bp);
2399 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2400 bnx2x_release_phy_lock(bp);
2401
2402 bnx2x_init_dropless_fc(bp);
2403
2404 bnx2x_calc_fc_adv(bp);
2405 } else
2406 BNX2X_ERR("Bootcode is missing - can not set link\n");
2407 }
2408
2409 static void bnx2x__link_reset(struct bnx2x *bp)
2410 {
2411 if (!BP_NOMCP(bp)) {
2412 bnx2x_acquire_phy_lock(bp);
2413 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2414 bnx2x_release_phy_lock(bp);
2415 } else
2416 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2417 }
2418
2419 void bnx2x_force_link_reset(struct bnx2x *bp)
2420 {
2421 bnx2x_acquire_phy_lock(bp);
2422 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2423 bnx2x_release_phy_lock(bp);
2424 }
2425
2426 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2427 {
2428 u8 rc = 0;
2429
2430 if (!BP_NOMCP(bp)) {
2431 bnx2x_acquire_phy_lock(bp);
2432 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2433 is_serdes);
2434 bnx2x_release_phy_lock(bp);
2435 } else
2436 BNX2X_ERR("Bootcode is missing - can not test link\n");
2437
2438 return rc;
2439 }
2440
2441 /* Calculates the sum of vn_min_rates.
2442 It's needed for further normalizing of the min_rates.
2443 Returns:
2444 sum of vn_min_rates.
2445 or
2446 0 - if all the min_rates are 0.
2447 In the later case fairness algorithm should be deactivated.
2448 If not all min_rates are zero then those that are zeroes will be set to 1.
2449 */
2450 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2451 struct cmng_init_input *input)
2452 {
2453 int all_zero = 1;
2454 int vn;
2455
2456 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2457 u32 vn_cfg = bp->mf_config[vn];
2458 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2459 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2460
2461 /* Skip hidden vns */
2462 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2463 vn_min_rate = 0;
2464 /* If min rate is zero - set it to 1 */
2465 else if (!vn_min_rate)
2466 vn_min_rate = DEF_MIN_RATE;
2467 else
2468 all_zero = 0;
2469
2470 input->vnic_min_rate[vn] = vn_min_rate;
2471 }
2472
2473 /* if ETS or all min rates are zeros - disable fairness */
2474 if (BNX2X_IS_ETS_ENABLED(bp)) {
2475 input->flags.cmng_enables &=
2476 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2477 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2478 } else if (all_zero) {
2479 input->flags.cmng_enables &=
2480 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2481 DP(NETIF_MSG_IFUP,
2482 "All MIN values are zeroes fairness will be disabled\n");
2483 } else
2484 input->flags.cmng_enables |=
2485 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2486 }
2487
2488 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2489 struct cmng_init_input *input)
2490 {
2491 u16 vn_max_rate;
2492 u32 vn_cfg = bp->mf_config[vn];
2493
2494 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2495 vn_max_rate = 0;
2496 else {
2497 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2498
2499 if (IS_MF_PERCENT_BW(bp)) {
2500 /* maxCfg in percents of linkspeed */
2501 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2502 } else /* SD modes */
2503 /* maxCfg is absolute in 100Mb units */
2504 vn_max_rate = maxCfg * 100;
2505 }
2506
2507 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2508
2509 input->vnic_max_rate[vn] = vn_max_rate;
2510 }
2511
2512 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2513 {
2514 if (CHIP_REV_IS_SLOW(bp))
2515 return CMNG_FNS_NONE;
2516 if (IS_MF(bp))
2517 return CMNG_FNS_MINMAX;
2518
2519 return CMNG_FNS_NONE;
2520 }
2521
2522 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2523 {
2524 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2525
2526 if (BP_NOMCP(bp))
2527 return; /* what should be the default value in this case */
2528
2529 /* For 2 port configuration the absolute function number formula
2530 * is:
2531 * abs_func = 2 * vn + BP_PORT + BP_PATH
2532 *
2533 * and there are 4 functions per port
2534 *
2535 * For 4 port configuration it is
2536 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2537 *
2538 * and there are 2 functions per port
2539 */
2540 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2541 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2542
2543 if (func >= E1H_FUNC_MAX)
2544 break;
2545
2546 bp->mf_config[vn] =
2547 MF_CFG_RD(bp, func_mf_config[func].config);
2548 }
2549 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2550 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2551 bp->flags |= MF_FUNC_DIS;
2552 } else {
2553 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2554 bp->flags &= ~MF_FUNC_DIS;
2555 }
2556 }
2557
2558 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2559 {
2560 struct cmng_init_input input;
2561 memset(&input, 0, sizeof(struct cmng_init_input));
2562
2563 input.port_rate = bp->link_vars.line_speed;
2564
2565 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2566 int vn;
2567
2568 /* read mf conf from shmem */
2569 if (read_cfg)
2570 bnx2x_read_mf_cfg(bp);
2571
2572 /* vn_weight_sum and enable fairness if not 0 */
2573 bnx2x_calc_vn_min(bp, &input);
2574
2575 /* calculate and set min-max rate for each vn */
2576 if (bp->port.pmf)
2577 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2578 bnx2x_calc_vn_max(bp, vn, &input);
2579
2580 /* always enable rate shaping and fairness */
2581 input.flags.cmng_enables |=
2582 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2583
2584 bnx2x_init_cmng(&input, &bp->cmng);
2585 return;
2586 }
2587
2588 /* rate shaping and fairness are disabled */
2589 DP(NETIF_MSG_IFUP,
2590 "rate shaping and fairness are disabled\n");
2591 }
2592
2593 static void storm_memset_cmng(struct bnx2x *bp,
2594 struct cmng_init *cmng,
2595 u8 port)
2596 {
2597 int vn;
2598 size_t size = sizeof(struct cmng_struct_per_port);
2599
2600 u32 addr = BAR_XSTRORM_INTMEM +
2601 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2602
2603 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2604
2605 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2606 int func = func_by_vn(bp, vn);
2607
2608 addr = BAR_XSTRORM_INTMEM +
2609 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2610 size = sizeof(struct rate_shaping_vars_per_vn);
2611 __storm_memset_struct(bp, addr, size,
2612 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2613
2614 addr = BAR_XSTRORM_INTMEM +
2615 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2616 size = sizeof(struct fairness_vars_per_vn);
2617 __storm_memset_struct(bp, addr, size,
2618 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2619 }
2620 }
2621
2622 /* init cmng mode in HW according to local configuration */
2623 void bnx2x_set_local_cmng(struct bnx2x *bp)
2624 {
2625 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2626
2627 if (cmng_fns != CMNG_FNS_NONE) {
2628 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2629 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2630 } else {
2631 /* rate shaping and fairness are disabled */
2632 DP(NETIF_MSG_IFUP,
2633 "single function mode without fairness\n");
2634 }
2635 }
2636
2637 /* This function is called upon link interrupt */
2638 static void bnx2x_link_attn(struct bnx2x *bp)
2639 {
2640 /* Make sure that we are synced with the current statistics */
2641 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2642
2643 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2644
2645 bnx2x_init_dropless_fc(bp);
2646
2647 if (bp->link_vars.link_up) {
2648
2649 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2650 struct host_port_stats *pstats;
2651
2652 pstats = bnx2x_sp(bp, port_stats);
2653 /* reset old mac stats */
2654 memset(&(pstats->mac_stx[0]), 0,
2655 sizeof(struct mac_stx));
2656 }
2657 if (bp->state == BNX2X_STATE_OPEN)
2658 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2659 }
2660
2661 if (bp->link_vars.link_up && bp->link_vars.line_speed)
2662 bnx2x_set_local_cmng(bp);
2663
2664 __bnx2x_link_report(bp);
2665
2666 if (IS_MF(bp))
2667 bnx2x_link_sync_notify(bp);
2668 }
2669
2670 void bnx2x__link_status_update(struct bnx2x *bp)
2671 {
2672 if (bp->state != BNX2X_STATE_OPEN)
2673 return;
2674
2675 /* read updated dcb configuration */
2676 if (IS_PF(bp)) {
2677 bnx2x_dcbx_pmf_update(bp);
2678 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2679 if (bp->link_vars.link_up)
2680 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2681 else
2682 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2683 /* indicate link status */
2684 bnx2x_link_report(bp);
2685
2686 } else { /* VF */
2687 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2688 SUPPORTED_10baseT_Full |
2689 SUPPORTED_100baseT_Half |
2690 SUPPORTED_100baseT_Full |
2691 SUPPORTED_1000baseT_Full |
2692 SUPPORTED_2500baseX_Full |
2693 SUPPORTED_10000baseT_Full |
2694 SUPPORTED_TP |
2695 SUPPORTED_FIBRE |
2696 SUPPORTED_Autoneg |
2697 SUPPORTED_Pause |
2698 SUPPORTED_Asym_Pause);
2699 bp->port.advertising[0] = bp->port.supported[0];
2700
2701 bp->link_params.bp = bp;
2702 bp->link_params.port = BP_PORT(bp);
2703 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2704 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2705 bp->link_params.req_line_speed[0] = SPEED_10000;
2706 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2707 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2708 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2709 bp->link_vars.line_speed = SPEED_10000;
2710 bp->link_vars.link_status =
2711 (LINK_STATUS_LINK_UP |
2712 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2713 bp->link_vars.link_up = 1;
2714 bp->link_vars.duplex = DUPLEX_FULL;
2715 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2716 __bnx2x_link_report(bp);
2717
2718 bnx2x_sample_bulletin(bp);
2719
2720 /* if bulletin board did not have an update for link status
2721 * __bnx2x_link_report will report current status
2722 * but it will NOT duplicate report in case of already reported
2723 * during sampling bulletin board.
2724 */
2725 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2726 }
2727 }
2728
2729 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2730 u16 vlan_val, u8 allowed_prio)
2731 {
2732 struct bnx2x_func_state_params func_params = {NULL};
2733 struct bnx2x_func_afex_update_params *f_update_params =
2734 &func_params.params.afex_update;
2735
2736 func_params.f_obj = &bp->func_obj;
2737 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2738
2739 /* no need to wait for RAMROD completion, so don't
2740 * set RAMROD_COMP_WAIT flag
2741 */
2742
2743 f_update_params->vif_id = vifid;
2744 f_update_params->afex_default_vlan = vlan_val;
2745 f_update_params->allowed_priorities = allowed_prio;
2746
2747 /* if ramrod can not be sent, response to MCP immediately */
2748 if (bnx2x_func_state_change(bp, &func_params) < 0)
2749 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2750
2751 return 0;
2752 }
2753
2754 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2755 u16 vif_index, u8 func_bit_map)
2756 {
2757 struct bnx2x_func_state_params func_params = {NULL};
2758 struct bnx2x_func_afex_viflists_params *update_params =
2759 &func_params.params.afex_viflists;
2760 int rc;
2761 u32 drv_msg_code;
2762
2763 /* validate only LIST_SET and LIST_GET are received from switch */
2764 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2765 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2766 cmd_type);
2767
2768 func_params.f_obj = &bp->func_obj;
2769 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2770
2771 /* set parameters according to cmd_type */
2772 update_params->afex_vif_list_command = cmd_type;
2773 update_params->vif_list_index = vif_index;
2774 update_params->func_bit_map =
2775 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2776 update_params->func_to_clear = 0;
2777 drv_msg_code =
2778 (cmd_type == VIF_LIST_RULE_GET) ?
2779 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2780 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2781
2782 /* if ramrod can not be sent, respond to MCP immediately for
2783 * SET and GET requests (other are not triggered from MCP)
2784 */
2785 rc = bnx2x_func_state_change(bp, &func_params);
2786 if (rc < 0)
2787 bnx2x_fw_command(bp, drv_msg_code, 0);
2788
2789 return 0;
2790 }
2791
2792 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2793 {
2794 struct afex_stats afex_stats;
2795 u32 func = BP_ABS_FUNC(bp);
2796 u32 mf_config;
2797 u16 vlan_val;
2798 u32 vlan_prio;
2799 u16 vif_id;
2800 u8 allowed_prio;
2801 u8 vlan_mode;
2802 u32 addr_to_write, vifid, addrs, stats_type, i;
2803
2804 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2805 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2806 DP(BNX2X_MSG_MCP,
2807 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2808 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2809 }
2810
2811 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2812 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2813 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2814 DP(BNX2X_MSG_MCP,
2815 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2816 vifid, addrs);
2817 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2818 addrs);
2819 }
2820
2821 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2822 addr_to_write = SHMEM2_RD(bp,
2823 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2824 stats_type = SHMEM2_RD(bp,
2825 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2826
2827 DP(BNX2X_MSG_MCP,
2828 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2829 addr_to_write);
2830
2831 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2832
2833 /* write response to scratchpad, for MCP */
2834 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2835 REG_WR(bp, addr_to_write + i*sizeof(u32),
2836 *(((u32 *)(&afex_stats))+i));
2837
2838 /* send ack message to MCP */
2839 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2840 }
2841
2842 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2843 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2844 bp->mf_config[BP_VN(bp)] = mf_config;
2845 DP(BNX2X_MSG_MCP,
2846 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2847 mf_config);
2848
2849 /* if VIF_SET is "enabled" */
2850 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2851 /* set rate limit directly to internal RAM */
2852 struct cmng_init_input cmng_input;
2853 struct rate_shaping_vars_per_vn m_rs_vn;
2854 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2855 u32 addr = BAR_XSTRORM_INTMEM +
2856 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2857
2858 bp->mf_config[BP_VN(bp)] = mf_config;
2859
2860 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2861 m_rs_vn.vn_counter.rate =
2862 cmng_input.vnic_max_rate[BP_VN(bp)];
2863 m_rs_vn.vn_counter.quota =
2864 (m_rs_vn.vn_counter.rate *
2865 RS_PERIODIC_TIMEOUT_USEC) / 8;
2866
2867 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2868
2869 /* read relevant values from mf_cfg struct in shmem */
2870 vif_id =
2871 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2872 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2873 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2874 vlan_val =
2875 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2876 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2877 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2878 vlan_prio = (mf_config &
2879 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2880 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2881 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2882 vlan_mode =
2883 (MF_CFG_RD(bp,
2884 func_mf_config[func].afex_config) &
2885 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2886 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2887 allowed_prio =
2888 (MF_CFG_RD(bp,
2889 func_mf_config[func].afex_config) &
2890 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2891 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2892
2893 /* send ramrod to FW, return in case of failure */
2894 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2895 allowed_prio))
2896 return;
2897
2898 bp->afex_def_vlan_tag = vlan_val;
2899 bp->afex_vlan_mode = vlan_mode;
2900 } else {
2901 /* notify link down because BP->flags is disabled */
2902 bnx2x_link_report(bp);
2903
2904 /* send INVALID VIF ramrod to FW */
2905 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2906
2907 /* Reset the default afex VLAN */
2908 bp->afex_def_vlan_tag = -1;
2909 }
2910 }
2911 }
2912
2913 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2914 {
2915 struct bnx2x_func_switch_update_params *switch_update_params;
2916 struct bnx2x_func_state_params func_params;
2917
2918 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2919 switch_update_params = &func_params.params.switch_update;
2920 func_params.f_obj = &bp->func_obj;
2921 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2922
2923 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2924 int func = BP_ABS_FUNC(bp);
2925 u32 val;
2926
2927 /* Re-learn the S-tag from shmem */
2928 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2929 FUNC_MF_CFG_E1HOV_TAG_MASK;
2930 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2931 bp->mf_ov = val;
2932 } else {
2933 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2934 goto fail;
2935 }
2936
2937 /* Configure new S-tag in LLH */
2938 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2939 bp->mf_ov);
2940
2941 /* Send Ramrod to update FW of change */
2942 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2943 &switch_update_params->changes);
2944 switch_update_params->vlan = bp->mf_ov;
2945
2946 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2947 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2948 bp->mf_ov);
2949 goto fail;
2950 } else {
2951 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2952 bp->mf_ov);
2953 }
2954 } else {
2955 goto fail;
2956 }
2957
2958 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2959 return;
2960 fail:
2961 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2962 }
2963
2964 static void bnx2x_pmf_update(struct bnx2x *bp)
2965 {
2966 int port = BP_PORT(bp);
2967 u32 val;
2968
2969 bp->port.pmf = 1;
2970 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2971
2972 /*
2973 * We need the mb() to ensure the ordering between the writing to
2974 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2975 */
2976 smp_mb();
2977
2978 /* queue a periodic task */
2979 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2980
2981 bnx2x_dcbx_pmf_update(bp);
2982
2983 /* enable nig attention */
2984 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2985 if (bp->common.int_block == INT_BLOCK_HC) {
2986 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2987 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2988 } else if (!CHIP_IS_E1x(bp)) {
2989 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2990 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2991 }
2992
2993 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2994 }
2995
2996 /* end of Link */
2997
2998 /* slow path */
2999
3000 /*
3001 * General service functions
3002 */
3003
3004 /* send the MCP a request, block until there is a reply */
3005 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3006 {
3007 int mb_idx = BP_FW_MB_IDX(bp);
3008 u32 seq;
3009 u32 rc = 0;
3010 u32 cnt = 1;
3011 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3012
3013 mutex_lock(&bp->fw_mb_mutex);
3014 seq = ++bp->fw_seq;
3015 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3016 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3017
3018 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3019 (command | seq), param);
3020
3021 do {
3022 /* let the FW do it's magic ... */
3023 msleep(delay);
3024
3025 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3026
3027 /* Give the FW up to 5 second (500*10ms) */
3028 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3029
3030 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3031 cnt*delay, rc, seq);
3032
3033 /* is this a reply to our command? */
3034 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3035 rc &= FW_MSG_CODE_MASK;
3036 else {
3037 /* FW BUG! */
3038 BNX2X_ERR("FW failed to respond!\n");
3039 bnx2x_fw_dump(bp);
3040 rc = 0;
3041 }
3042 mutex_unlock(&bp->fw_mb_mutex);
3043
3044 return rc;
3045 }
3046
3047 static void storm_memset_func_cfg(struct bnx2x *bp,
3048 struct tstorm_eth_function_common_config *tcfg,
3049 u16 abs_fid)
3050 {
3051 size_t size = sizeof(struct tstorm_eth_function_common_config);
3052
3053 u32 addr = BAR_TSTRORM_INTMEM +
3054 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3055
3056 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3057 }
3058
3059 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3060 {
3061 if (CHIP_IS_E1x(bp)) {
3062 struct tstorm_eth_function_common_config tcfg = {0};
3063
3064 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3065 }
3066
3067 /* Enable the function in the FW */
3068 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3069 storm_memset_func_en(bp, p->func_id, 1);
3070
3071 /* spq */
3072 if (p->spq_active) {
3073 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3074 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3075 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3076 }
3077 }
3078
3079 /**
3080 * bnx2x_get_common_flags - Return common flags
3081 *
3082 * @bp device handle
3083 * @fp queue handle
3084 * @zero_stats TRUE if statistics zeroing is needed
3085 *
3086 * Return the flags that are common for the Tx-only and not normal connections.
3087 */
3088 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3089 struct bnx2x_fastpath *fp,
3090 bool zero_stats)
3091 {
3092 unsigned long flags = 0;
3093
3094 /* PF driver will always initialize the Queue to an ACTIVE state */
3095 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3096
3097 /* tx only connections collect statistics (on the same index as the
3098 * parent connection). The statistics are zeroed when the parent
3099 * connection is initialized.
3100 */
3101
3102 __set_bit(BNX2X_Q_FLG_STATS, &flags);
3103 if (zero_stats)
3104 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3105
3106 if (bp->flags & TX_SWITCHING)
3107 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3108
3109 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3110 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3111
3112 #ifdef BNX2X_STOP_ON_ERROR
3113 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3114 #endif
3115
3116 return flags;
3117 }
3118
3119 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3120 struct bnx2x_fastpath *fp,
3121 bool leading)
3122 {
3123 unsigned long flags = 0;
3124
3125 /* calculate other queue flags */
3126 if (IS_MF_SD(bp))
3127 __set_bit(BNX2X_Q_FLG_OV, &flags);
3128
3129 if (IS_FCOE_FP(fp)) {
3130 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3131 /* For FCoE - force usage of default priority (for afex) */
3132 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3133 }
3134
3135 if (fp->mode != TPA_MODE_DISABLED) {
3136 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3137 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3138 if (fp->mode == TPA_MODE_GRO)
3139 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3140 }
3141
3142 if (leading) {
3143 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3144 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3145 }
3146
3147 /* Always set HW VLAN stripping */
3148 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3149
3150 /* configure silent vlan removal */
3151 if (IS_MF_AFEX(bp))
3152 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3153
3154 return flags | bnx2x_get_common_flags(bp, fp, true);
3155 }
3156
3157 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3158 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3159 u8 cos)
3160 {
3161 gen_init->stat_id = bnx2x_stats_id(fp);
3162 gen_init->spcl_id = fp->cl_id;
3163
3164 /* Always use mini-jumbo MTU for FCoE L2 ring */
3165 if (IS_FCOE_FP(fp))
3166 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3167 else
3168 gen_init->mtu = bp->dev->mtu;
3169
3170 gen_init->cos = cos;
3171
3172 gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3173 }
3174
3175 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3176 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3177 struct bnx2x_rxq_setup_params *rxq_init)
3178 {
3179 u8 max_sge = 0;
3180 u16 sge_sz = 0;
3181 u16 tpa_agg_size = 0;
3182
3183 if (fp->mode != TPA_MODE_DISABLED) {
3184 pause->sge_th_lo = SGE_TH_LO(bp);
3185 pause->sge_th_hi = SGE_TH_HI(bp);
3186
3187 /* validate SGE ring has enough to cross high threshold */
3188 WARN_ON(bp->dropless_fc &&
3189 pause->sge_th_hi + FW_PREFETCH_CNT >
3190 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3191
3192 tpa_agg_size = TPA_AGG_SIZE;
3193 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3194 SGE_PAGE_SHIFT;
3195 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3196 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3197 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3198 }
3199
3200 /* pause - not for e1 */
3201 if (!CHIP_IS_E1(bp)) {
3202 pause->bd_th_lo = BD_TH_LO(bp);
3203 pause->bd_th_hi = BD_TH_HI(bp);
3204
3205 pause->rcq_th_lo = RCQ_TH_LO(bp);
3206 pause->rcq_th_hi = RCQ_TH_HI(bp);
3207 /*
3208 * validate that rings have enough entries to cross
3209 * high thresholds
3210 */
3211 WARN_ON(bp->dropless_fc &&
3212 pause->bd_th_hi + FW_PREFETCH_CNT >
3213 bp->rx_ring_size);
3214 WARN_ON(bp->dropless_fc &&
3215 pause->rcq_th_hi + FW_PREFETCH_CNT >
3216 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3217
3218 pause->pri_map = 1;
3219 }
3220
3221 /* rxq setup */
3222 rxq_init->dscr_map = fp->rx_desc_mapping;
3223 rxq_init->sge_map = fp->rx_sge_mapping;
3224 rxq_init->rcq_map = fp->rx_comp_mapping;
3225 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3226
3227 /* This should be a maximum number of data bytes that may be
3228 * placed on the BD (not including paddings).
3229 */
3230 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3231 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3232
3233 rxq_init->cl_qzone_id = fp->cl_qzone_id;
3234 rxq_init->tpa_agg_sz = tpa_agg_size;
3235 rxq_init->sge_buf_sz = sge_sz;
3236 rxq_init->max_sges_pkt = max_sge;
3237 rxq_init->rss_engine_id = BP_FUNC(bp);
3238 rxq_init->mcast_engine_id = BP_FUNC(bp);
3239
3240 /* Maximum number or simultaneous TPA aggregation for this Queue.
3241 *
3242 * For PF Clients it should be the maximum available number.
3243 * VF driver(s) may want to define it to a smaller value.
3244 */
3245 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3246
3247 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3248 rxq_init->fw_sb_id = fp->fw_sb_id;
3249
3250 if (IS_FCOE_FP(fp))
3251 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3252 else
3253 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3254 /* configure silent vlan removal
3255 * if multi function mode is afex, then mask default vlan
3256 */
3257 if (IS_MF_AFEX(bp)) {
3258 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3259 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3260 }
3261 }
3262
3263 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3264 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3265 u8 cos)
3266 {
3267 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3268 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3269 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3270 txq_init->fw_sb_id = fp->fw_sb_id;
3271
3272 /*
3273 * set the tss leading client id for TX classification ==
3274 * leading RSS client id
3275 */
3276 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3277
3278 if (IS_FCOE_FP(fp)) {
3279 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3280 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3281 }
3282 }
3283
3284 static void bnx2x_pf_init(struct bnx2x *bp)
3285 {
3286 struct bnx2x_func_init_params func_init = {0};
3287 struct event_ring_data eq_data = { {0} };
3288
3289 if (!CHIP_IS_E1x(bp)) {
3290 /* reset IGU PF statistics: MSIX + ATTN */
3291 /* PF */
3292 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3293 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3294 (CHIP_MODE_IS_4_PORT(bp) ?
3295 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3296 /* ATTN */
3297 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3298 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3299 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3300 (CHIP_MODE_IS_4_PORT(bp) ?
3301 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3302 }
3303
3304 func_init.spq_active = true;
3305 func_init.pf_id = BP_FUNC(bp);
3306 func_init.func_id = BP_FUNC(bp);
3307 func_init.spq_map = bp->spq_mapping;
3308 func_init.spq_prod = bp->spq_prod_idx;
3309
3310 bnx2x_func_init(bp, &func_init);
3311
3312 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3313
3314 /*
3315 * Congestion management values depend on the link rate
3316 * There is no active link so initial link rate is set to 10 Gbps.
3317 * When the link comes up The congestion management values are
3318 * re-calculated according to the actual link rate.
3319 */
3320 bp->link_vars.line_speed = SPEED_10000;
3321 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3322
3323 /* Only the PMF sets the HW */
3324 if (bp->port.pmf)
3325 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3326
3327 /* init Event Queue - PCI bus guarantees correct endianity*/
3328 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3329 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3330 eq_data.producer = bp->eq_prod;
3331 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3332 eq_data.sb_id = DEF_SB_ID;
3333 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3334 }
3335
3336 static void bnx2x_e1h_disable(struct bnx2x *bp)
3337 {
3338 int port = BP_PORT(bp);
3339
3340 bnx2x_tx_disable(bp);
3341
3342 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3343 }
3344
3345 static void bnx2x_e1h_enable(struct bnx2x *bp)
3346 {
3347 int port = BP_PORT(bp);
3348
3349 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3350 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3351
3352 /* Tx queue should be only re-enabled */
3353 netif_tx_wake_all_queues(bp->dev);
3354
3355 /*
3356 * Should not call netif_carrier_on since it will be called if the link
3357 * is up when checking for link state
3358 */
3359 }
3360
3361 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3362
3363 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3364 {
3365 struct eth_stats_info *ether_stat =
3366 &bp->slowpath->drv_info_to_mcp.ether_stat;
3367 struct bnx2x_vlan_mac_obj *mac_obj =
3368 &bp->sp_objs->mac_obj;
3369 int i;
3370
3371 strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3372 ETH_STAT_INFO_VERSION_LEN);
3373
3374 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3375 * mac_local field in ether_stat struct. The base address is offset by 2
3376 * bytes to account for the field being 8 bytes but a mac address is
3377 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3378 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3379 * allocated by the ether_stat struct, so the macs will land in their
3380 * proper positions.
3381 */
3382 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3383 memset(ether_stat->mac_local + i, 0,
3384 sizeof(ether_stat->mac_local[0]));
3385 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3386 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3387 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3388 ETH_ALEN);
3389 ether_stat->mtu_size = bp->dev->mtu;
3390 if (bp->dev->features & NETIF_F_RXCSUM)
3391 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3392 if (bp->dev->features & NETIF_F_TSO)
3393 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3394 ether_stat->feature_flags |= bp->common.boot_mode;
3395
3396 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3397
3398 ether_stat->txq_size = bp->tx_ring_size;
3399 ether_stat->rxq_size = bp->rx_ring_size;
3400
3401 #ifdef CONFIG_BNX2X_SRIOV
3402 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3403 #endif
3404 }
3405
3406 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3407 {
3408 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3409 struct fcoe_stats_info *fcoe_stat =
3410 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3411
3412 if (!CNIC_LOADED(bp))
3413 return;
3414
3415 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3416
3417 fcoe_stat->qos_priority =
3418 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3419
3420 /* insert FCoE stats from ramrod response */
3421 if (!NO_FCOE(bp)) {
3422 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3423 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3424 tstorm_queue_statistics;
3425
3426 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3427 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3428 xstorm_queue_statistics;
3429
3430 struct fcoe_statistics_params *fw_fcoe_stat =
3431 &bp->fw_stats_data->fcoe;
3432
3433 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3434 fcoe_stat->rx_bytes_lo,
3435 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3436
3437 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3438 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3439 fcoe_stat->rx_bytes_lo,
3440 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3441
3442 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3443 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3444 fcoe_stat->rx_bytes_lo,
3445 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3446
3447 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3448 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3449 fcoe_stat->rx_bytes_lo,
3450 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3451
3452 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3453 fcoe_stat->rx_frames_lo,
3454 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3455
3456 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3457 fcoe_stat->rx_frames_lo,
3458 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3459
3460 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3461 fcoe_stat->rx_frames_lo,
3462 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3463
3464 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3465 fcoe_stat->rx_frames_lo,
3466 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3467
3468 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3469 fcoe_stat->tx_bytes_lo,
3470 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3471
3472 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3473 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3474 fcoe_stat->tx_bytes_lo,
3475 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3476
3477 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3478 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3479 fcoe_stat->tx_bytes_lo,
3480 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3481
3482 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3483 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3484 fcoe_stat->tx_bytes_lo,
3485 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3486
3487 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3488 fcoe_stat->tx_frames_lo,
3489 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3490
3491 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3492 fcoe_stat->tx_frames_lo,
3493 fcoe_q_xstorm_stats->ucast_pkts_sent);
3494
3495 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3496 fcoe_stat->tx_frames_lo,
3497 fcoe_q_xstorm_stats->bcast_pkts_sent);
3498
3499 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3500 fcoe_stat->tx_frames_lo,
3501 fcoe_q_xstorm_stats->mcast_pkts_sent);
3502 }
3503
3504 /* ask L5 driver to add data to the struct */
3505 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3506 }
3507
3508 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3509 {
3510 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3511 struct iscsi_stats_info *iscsi_stat =
3512 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3513
3514 if (!CNIC_LOADED(bp))
3515 return;
3516
3517 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3518 ETH_ALEN);
3519
3520 iscsi_stat->qos_priority =
3521 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3522
3523 /* ask L5 driver to add data to the struct */
3524 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3525 }
3526
3527 /* called due to MCP event (on pmf):
3528 * reread new bandwidth configuration
3529 * configure FW
3530 * notify others function about the change
3531 */
3532 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3533 {
3534 if (bp->link_vars.link_up) {
3535 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3536 bnx2x_link_sync_notify(bp);
3537 }
3538 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3539 }
3540
3541 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3542 {
3543 bnx2x_config_mf_bw(bp);
3544 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3545 }
3546
3547 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3548 {
3549 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3550 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3551 }
3552
3553 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20)
3554 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25)
3555
3556 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3557 {
3558 enum drv_info_opcode op_code;
3559 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3560 bool release = false;
3561 int wait;
3562
3563 /* if drv_info version supported by MFW doesn't match - send NACK */
3564 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3565 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3566 return;
3567 }
3568
3569 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3570 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3571
3572 /* Must prevent other flows from accessing drv_info_to_mcp */
3573 mutex_lock(&bp->drv_info_mutex);
3574
3575 memset(&bp->slowpath->drv_info_to_mcp, 0,
3576 sizeof(union drv_info_to_mcp));
3577
3578 switch (op_code) {
3579 case ETH_STATS_OPCODE:
3580 bnx2x_drv_info_ether_stat(bp);
3581 break;
3582 case FCOE_STATS_OPCODE:
3583 bnx2x_drv_info_fcoe_stat(bp);
3584 break;
3585 case ISCSI_STATS_OPCODE:
3586 bnx2x_drv_info_iscsi_stat(bp);
3587 break;
3588 default:
3589 /* if op code isn't supported - send NACK */
3590 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3591 goto out;
3592 }
3593
3594 /* if we got drv_info attn from MFW then these fields are defined in
3595 * shmem2 for sure
3596 */
3597 SHMEM2_WR(bp, drv_info_host_addr_lo,
3598 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3599 SHMEM2_WR(bp, drv_info_host_addr_hi,
3600 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3601
3602 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3603
3604 /* Since possible management wants both this and get_driver_version
3605 * need to wait until management notifies us it finished utilizing
3606 * the buffer.
3607 */
3608 if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3609 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3610 } else if (!bp->drv_info_mng_owner) {
3611 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3612
3613 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3614 u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3615
3616 /* Management is done; need to clear indication */
3617 if (indication & bit) {
3618 SHMEM2_WR(bp, mfw_drv_indication,
3619 indication & ~bit);
3620 release = true;
3621 break;
3622 }
3623
3624 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3625 }
3626 }
3627 if (!release) {
3628 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3629 bp->drv_info_mng_owner = true;
3630 }
3631
3632 out:
3633 mutex_unlock(&bp->drv_info_mutex);
3634 }
3635
3636 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3637 {
3638 u8 vals[4];
3639 int i = 0;
3640
3641 if (bnx2x_format) {
3642 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3643 &vals[0], &vals[1], &vals[2], &vals[3]);
3644 if (i > 0)
3645 vals[0] -= '0';
3646 } else {
3647 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3648 &vals[0], &vals[1], &vals[2], &vals[3]);
3649 }
3650
3651 while (i < 4)
3652 vals[i++] = 0;
3653
3654 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3655 }
3656
3657 void bnx2x_update_mng_version(struct bnx2x *bp)
3658 {
3659 u32 iscsiver = DRV_VER_NOT_LOADED;
3660 u32 fcoever = DRV_VER_NOT_LOADED;
3661 u32 ethver = DRV_VER_NOT_LOADED;
3662 int idx = BP_FW_MB_IDX(bp);
3663 u8 *version;
3664
3665 if (!SHMEM2_HAS(bp, func_os_drv_ver))
3666 return;
3667
3668 mutex_lock(&bp->drv_info_mutex);
3669 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3670 if (bp->drv_info_mng_owner)
3671 goto out;
3672
3673 if (bp->state != BNX2X_STATE_OPEN)
3674 goto out;
3675
3676 /* Parse ethernet driver version */
3677 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3678 if (!CNIC_LOADED(bp))
3679 goto out;
3680
3681 /* Try getting storage driver version via cnic */
3682 memset(&bp->slowpath->drv_info_to_mcp, 0,
3683 sizeof(union drv_info_to_mcp));
3684 bnx2x_drv_info_iscsi_stat(bp);
3685 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3686 iscsiver = bnx2x_update_mng_version_utility(version, false);
3687
3688 memset(&bp->slowpath->drv_info_to_mcp, 0,
3689 sizeof(union drv_info_to_mcp));
3690 bnx2x_drv_info_fcoe_stat(bp);
3691 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3692 fcoever = bnx2x_update_mng_version_utility(version, false);
3693
3694 out:
3695 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3696 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3697 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3698
3699 mutex_unlock(&bp->drv_info_mutex);
3700
3701 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3702 ethver, iscsiver, fcoever);
3703 }
3704
3705 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3706 {
3707 u32 drv_ver;
3708 u32 valid_dump;
3709
3710 if (!SHMEM2_HAS(bp, drv_info))
3711 return;
3712
3713 /* Update Driver load time, possibly broken in y2038 */
3714 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3715
3716 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3717 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3718
3719 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3720
3721 /* Check & notify On-Chip dump. */
3722 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3723
3724 if (valid_dump & FIRST_DUMP_VALID)
3725 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3726
3727 if (valid_dump & SECOND_DUMP_VALID)
3728 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3729 }
3730
3731 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3732 {
3733 u32 cmd_ok, cmd_fail;
3734
3735 /* sanity */
3736 if (event & DRV_STATUS_DCC_EVENT_MASK &&
3737 event & DRV_STATUS_OEM_EVENT_MASK) {
3738 BNX2X_ERR("Received simultaneous events %08x\n", event);
3739 return;
3740 }
3741
3742 if (event & DRV_STATUS_DCC_EVENT_MASK) {
3743 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3744 cmd_ok = DRV_MSG_CODE_DCC_OK;
3745 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3746 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3747 cmd_ok = DRV_MSG_CODE_OEM_OK;
3748 }
3749
3750 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3751
3752 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3753 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3754 /* This is the only place besides the function initialization
3755 * where the bp->flags can change so it is done without any
3756 * locks
3757 */
3758 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3759 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3760 bp->flags |= MF_FUNC_DIS;
3761
3762 bnx2x_e1h_disable(bp);
3763 } else {
3764 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3765 bp->flags &= ~MF_FUNC_DIS;
3766
3767 bnx2x_e1h_enable(bp);
3768 }
3769 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3770 DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3771 }
3772
3773 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3774 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3775 bnx2x_config_mf_bw(bp);
3776 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3777 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3778 }
3779
3780 /* Report results to MCP */
3781 if (event)
3782 bnx2x_fw_command(bp, cmd_fail, 0);
3783 else
3784 bnx2x_fw_command(bp, cmd_ok, 0);
3785 }
3786
3787 /* must be called under the spq lock */
3788 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3789 {
3790 struct eth_spe *next_spe = bp->spq_prod_bd;
3791
3792 if (bp->spq_prod_bd == bp->spq_last_bd) {
3793 bp->spq_prod_bd = bp->spq;
3794 bp->spq_prod_idx = 0;
3795 DP(BNX2X_MSG_SP, "end of spq\n");
3796 } else {
3797 bp->spq_prod_bd++;
3798 bp->spq_prod_idx++;
3799 }
3800 return next_spe;
3801 }
3802
3803 /* must be called under the spq lock */
3804 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3805 {
3806 int func = BP_FUNC(bp);
3807
3808 /*
3809 * Make sure that BD data is updated before writing the producer:
3810 * BD data is written to the memory, the producer is read from the
3811 * memory, thus we need a full memory barrier to ensure the ordering.
3812 */
3813 mb();
3814
3815 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3816 bp->spq_prod_idx);
3817 mmiowb();
3818 }
3819
3820 /**
3821 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3822 *
3823 * @cmd: command to check
3824 * @cmd_type: command type
3825 */
3826 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3827 {
3828 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3829 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3830 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3831 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3832 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3833 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3834 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3835 return true;
3836 else
3837 return false;
3838 }
3839
3840 /**
3841 * bnx2x_sp_post - place a single command on an SP ring
3842 *
3843 * @bp: driver handle
3844 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3845 * @cid: SW CID the command is related to
3846 * @data_hi: command private data address (high 32 bits)
3847 * @data_lo: command private data address (low 32 bits)
3848 * @cmd_type: command type (e.g. NONE, ETH)
3849 *
3850 * SP data is handled as if it's always an address pair, thus data fields are
3851 * not swapped to little endian in upper functions. Instead this function swaps
3852 * data as if it's two u32 fields.
3853 */
3854 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3855 u32 data_hi, u32 data_lo, int cmd_type)
3856 {
3857 struct eth_spe *spe;
3858 u16 type;
3859 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3860
3861 #ifdef BNX2X_STOP_ON_ERROR
3862 if (unlikely(bp->panic)) {
3863 BNX2X_ERR("Can't post SP when there is panic\n");
3864 return -EIO;
3865 }
3866 #endif
3867
3868 spin_lock_bh(&bp->spq_lock);
3869
3870 if (common) {
3871 if (!atomic_read(&bp->eq_spq_left)) {
3872 BNX2X_ERR("BUG! EQ ring full!\n");
3873 spin_unlock_bh(&bp->spq_lock);
3874 bnx2x_panic();
3875 return -EBUSY;
3876 }
3877 } else if (!atomic_read(&bp->cq_spq_left)) {
3878 BNX2X_ERR("BUG! SPQ ring full!\n");
3879 spin_unlock_bh(&bp->spq_lock);
3880 bnx2x_panic();
3881 return -EBUSY;
3882 }
3883
3884 spe = bnx2x_sp_get_next(bp);
3885
3886 /* CID needs port number to be encoded int it */
3887 spe->hdr.conn_and_cmd_data =
3888 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3889 HW_CID(bp, cid));
3890
3891 /* In some cases, type may already contain the func-id
3892 * mainly in SRIOV related use cases, so we add it here only
3893 * if it's not already set.
3894 */
3895 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3896 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3897 SPE_HDR_CONN_TYPE;
3898 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3899 SPE_HDR_FUNCTION_ID);
3900 } else {
3901 type = cmd_type;
3902 }
3903
3904 spe->hdr.type = cpu_to_le16(type);
3905
3906 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3907 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3908
3909 /*
3910 * It's ok if the actual decrement is issued towards the memory
3911 * somewhere between the spin_lock and spin_unlock. Thus no
3912 * more explicit memory barrier is needed.
3913 */
3914 if (common)
3915 atomic_dec(&bp->eq_spq_left);
3916 else
3917 atomic_dec(&bp->cq_spq_left);
3918
3919 DP(BNX2X_MSG_SP,
3920 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3921 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3922 (u32)(U64_LO(bp->spq_mapping) +
3923 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3924 HW_CID(bp, cid), data_hi, data_lo, type,
3925 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3926
3927 bnx2x_sp_prod_update(bp);
3928 spin_unlock_bh(&bp->spq_lock);
3929 return 0;
3930 }
3931
3932 /* acquire split MCP access lock register */
3933 static int bnx2x_acquire_alr(struct bnx2x *bp)
3934 {
3935 u32 j, val;
3936 int rc = 0;
3937
3938 might_sleep();
3939 for (j = 0; j < 1000; j++) {
3940 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3941 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3942 if (val & MCPR_ACCESS_LOCK_LOCK)
3943 break;
3944
3945 usleep_range(5000, 10000);
3946 }
3947 if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3948 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3949 rc = -EBUSY;
3950 }
3951
3952 return rc;
3953 }
3954
3955 /* release split MCP access lock register */
3956 static void bnx2x_release_alr(struct bnx2x *bp)
3957 {
3958 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3959 }
3960
3961 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3962 #define BNX2X_DEF_SB_IDX 0x0002
3963
3964 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3965 {
3966 struct host_sp_status_block *def_sb = bp->def_status_blk;
3967 u16 rc = 0;
3968
3969 barrier(); /* status block is written to by the chip */
3970 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3971 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3972 rc |= BNX2X_DEF_SB_ATT_IDX;
3973 }
3974
3975 if (bp->def_idx != def_sb->sp_sb.running_index) {
3976 bp->def_idx = def_sb->sp_sb.running_index;
3977 rc |= BNX2X_DEF_SB_IDX;
3978 }
3979
3980 /* Do not reorder: indices reading should complete before handling */
3981 barrier();
3982 return rc;
3983 }
3984
3985 /*
3986 * slow path service functions
3987 */
3988
3989 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3990 {
3991 int port = BP_PORT(bp);
3992 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3993 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3994 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3995 NIG_REG_MASK_INTERRUPT_PORT0;
3996 u32 aeu_mask;
3997 u32 nig_mask = 0;
3998 u32 reg_addr;
3999
4000 if (bp->attn_state & asserted)
4001 BNX2X_ERR("IGU ERROR\n");
4002
4003 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4004 aeu_mask = REG_RD(bp, aeu_addr);
4005
4006 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
4007 aeu_mask, asserted);
4008 aeu_mask &= ~(asserted & 0x3ff);
4009 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4010
4011 REG_WR(bp, aeu_addr, aeu_mask);
4012 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4013
4014 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4015 bp->attn_state |= asserted;
4016 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4017
4018 if (asserted & ATTN_HARD_WIRED_MASK) {
4019 if (asserted & ATTN_NIG_FOR_FUNC) {
4020
4021 bnx2x_acquire_phy_lock(bp);
4022
4023 /* save nig interrupt mask */
4024 nig_mask = REG_RD(bp, nig_int_mask_addr);
4025
4026 /* If nig_mask is not set, no need to call the update
4027 * function.
4028 */
4029 if (nig_mask) {
4030 REG_WR(bp, nig_int_mask_addr, 0);
4031
4032 bnx2x_link_attn(bp);
4033 }
4034
4035 /* handle unicore attn? */
4036 }
4037 if (asserted & ATTN_SW_TIMER_4_FUNC)
4038 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4039
4040 if (asserted & GPIO_2_FUNC)
4041 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4042
4043 if (asserted & GPIO_3_FUNC)
4044 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4045
4046 if (asserted & GPIO_4_FUNC)
4047 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4048
4049 if (port == 0) {
4050 if (asserted & ATTN_GENERAL_ATTN_1) {
4051 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4052 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4053 }
4054 if (asserted & ATTN_GENERAL_ATTN_2) {
4055 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4056 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4057 }
4058 if (asserted & ATTN_GENERAL_ATTN_3) {
4059 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4060 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4061 }
4062 } else {
4063 if (asserted & ATTN_GENERAL_ATTN_4) {
4064 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4065 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4066 }
4067 if (asserted & ATTN_GENERAL_ATTN_5) {
4068 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4069 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4070 }
4071 if (asserted & ATTN_GENERAL_ATTN_6) {
4072 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4073 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4074 }
4075 }
4076
4077 } /* if hardwired */
4078
4079 if (bp->common.int_block == INT_BLOCK_HC)
4080 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4081 COMMAND_REG_ATTN_BITS_SET);
4082 else
4083 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4084
4085 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4086 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4087 REG_WR(bp, reg_addr, asserted);
4088
4089 /* now set back the mask */
4090 if (asserted & ATTN_NIG_FOR_FUNC) {
4091 /* Verify that IGU ack through BAR was written before restoring
4092 * NIG mask. This loop should exit after 2-3 iterations max.
4093 */
4094 if (bp->common.int_block != INT_BLOCK_HC) {
4095 u32 cnt = 0, igu_acked;
4096 do {
4097 igu_acked = REG_RD(bp,
4098 IGU_REG_ATTENTION_ACK_BITS);
4099 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4100 (++cnt < MAX_IGU_ATTN_ACK_TO));
4101 if (!igu_acked)
4102 DP(NETIF_MSG_HW,
4103 "Failed to verify IGU ack on time\n");
4104 barrier();
4105 }
4106 REG_WR(bp, nig_int_mask_addr, nig_mask);
4107 bnx2x_release_phy_lock(bp);
4108 }
4109 }
4110
4111 static void bnx2x_fan_failure(struct bnx2x *bp)
4112 {
4113 int port = BP_PORT(bp);
4114 u32 ext_phy_config;
4115 /* mark the failure */
4116 ext_phy_config =
4117 SHMEM_RD(bp,
4118 dev_info.port_hw_config[port].external_phy_config);
4119
4120 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4121 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4122 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4123 ext_phy_config);
4124
4125 /* log the failure */
4126 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4127 "Please contact OEM Support for assistance\n");
4128
4129 /* Schedule device reset (unload)
4130 * This is due to some boards consuming sufficient power when driver is
4131 * up to overheat if fan fails.
4132 */
4133 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4134 }
4135
4136 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4137 {
4138 int port = BP_PORT(bp);
4139 int reg_offset;
4140 u32 val;
4141
4142 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4143 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4144
4145 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4146
4147 val = REG_RD(bp, reg_offset);
4148 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4149 REG_WR(bp, reg_offset, val);
4150
4151 BNX2X_ERR("SPIO5 hw attention\n");
4152
4153 /* Fan failure attention */
4154 bnx2x_hw_reset_phy(&bp->link_params);
4155 bnx2x_fan_failure(bp);
4156 }
4157
4158 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4159 bnx2x_acquire_phy_lock(bp);
4160 bnx2x_handle_module_detect_int(&bp->link_params);
4161 bnx2x_release_phy_lock(bp);
4162 }
4163
4164 if (attn & HW_INTERRUT_ASSERT_SET_0) {
4165
4166 val = REG_RD(bp, reg_offset);
4167 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4168 REG_WR(bp, reg_offset, val);
4169
4170 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4171 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4172 bnx2x_panic();
4173 }
4174 }
4175
4176 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4177 {
4178 u32 val;
4179
4180 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4181
4182 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4183 BNX2X_ERR("DB hw attention 0x%x\n", val);
4184 /* DORQ discard attention */
4185 if (val & 0x2)
4186 BNX2X_ERR("FATAL error from DORQ\n");
4187 }
4188
4189 if (attn & HW_INTERRUT_ASSERT_SET_1) {
4190
4191 int port = BP_PORT(bp);
4192 int reg_offset;
4193
4194 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4195 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4196
4197 val = REG_RD(bp, reg_offset);
4198 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4199 REG_WR(bp, reg_offset, val);
4200
4201 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4202 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4203 bnx2x_panic();
4204 }
4205 }
4206
4207 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4208 {
4209 u32 val;
4210
4211 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4212
4213 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4214 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4215 /* CFC error attention */
4216 if (val & 0x2)
4217 BNX2X_ERR("FATAL error from CFC\n");
4218 }
4219
4220 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4221 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4222 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4223 /* RQ_USDMDP_FIFO_OVERFLOW */
4224 if (val & 0x18000)
4225 BNX2X_ERR("FATAL error from PXP\n");
4226
4227 if (!CHIP_IS_E1x(bp)) {
4228 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4229 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4230 }
4231 }
4232
4233 if (attn & HW_INTERRUT_ASSERT_SET_2) {
4234
4235 int port = BP_PORT(bp);
4236 int reg_offset;
4237
4238 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4239 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4240
4241 val = REG_RD(bp, reg_offset);
4242 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4243 REG_WR(bp, reg_offset, val);
4244
4245 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4246 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4247 bnx2x_panic();
4248 }
4249 }
4250
4251 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4252 {
4253 u32 val;
4254
4255 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4256
4257 if (attn & BNX2X_PMF_LINK_ASSERT) {
4258 int func = BP_FUNC(bp);
4259
4260 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4261 bnx2x_read_mf_cfg(bp);
4262 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4263 func_mf_config[BP_ABS_FUNC(bp)].config);
4264 val = SHMEM_RD(bp,
4265 func_mb[BP_FW_MB_IDX(bp)].drv_status);
4266
4267 if (val & (DRV_STATUS_DCC_EVENT_MASK |
4268 DRV_STATUS_OEM_EVENT_MASK))
4269 bnx2x_oem_event(bp,
4270 (val & (DRV_STATUS_DCC_EVENT_MASK |
4271 DRV_STATUS_OEM_EVENT_MASK)));
4272
4273 if (val & DRV_STATUS_SET_MF_BW)
4274 bnx2x_set_mf_bw(bp);
4275
4276 if (val & DRV_STATUS_DRV_INFO_REQ)
4277 bnx2x_handle_drv_info_req(bp);
4278
4279 if (val & DRV_STATUS_VF_DISABLED)
4280 bnx2x_schedule_iov_task(bp,
4281 BNX2X_IOV_HANDLE_FLR);
4282
4283 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4284 bnx2x_pmf_update(bp);
4285
4286 if (bp->port.pmf &&
4287 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4288 bp->dcbx_enabled > 0)
4289 /* start dcbx state machine */
4290 bnx2x_dcbx_set_params(bp,
4291 BNX2X_DCBX_STATE_NEG_RECEIVED);
4292 if (val & DRV_STATUS_AFEX_EVENT_MASK)
4293 bnx2x_handle_afex_cmd(bp,
4294 val & DRV_STATUS_AFEX_EVENT_MASK);
4295 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4296 bnx2x_handle_eee_event(bp);
4297
4298 if (val & DRV_STATUS_OEM_UPDATE_SVID)
4299 bnx2x_handle_update_svid_cmd(bp);
4300
4301 if (bp->link_vars.periodic_flags &
4302 PERIODIC_FLAGS_LINK_EVENT) {
4303 /* sync with link */
4304 bnx2x_acquire_phy_lock(bp);
4305 bp->link_vars.periodic_flags &=
4306 ~PERIODIC_FLAGS_LINK_EVENT;
4307 bnx2x_release_phy_lock(bp);
4308 if (IS_MF(bp))
4309 bnx2x_link_sync_notify(bp);
4310 bnx2x_link_report(bp);
4311 }
4312 /* Always call it here: bnx2x_link_report() will
4313 * prevent the link indication duplication.
4314 */
4315 bnx2x__link_status_update(bp);
4316 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4317
4318 BNX2X_ERR("MC assert!\n");
4319 bnx2x_mc_assert(bp);
4320 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4321 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4322 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4323 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4324 bnx2x_panic();
4325
4326 } else if (attn & BNX2X_MCP_ASSERT) {
4327
4328 BNX2X_ERR("MCP assert!\n");
4329 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4330 bnx2x_fw_dump(bp);
4331
4332 } else
4333 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4334 }
4335
4336 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4337 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4338 if (attn & BNX2X_GRC_TIMEOUT) {
4339 val = CHIP_IS_E1(bp) ? 0 :
4340 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4341 BNX2X_ERR("GRC time-out 0x%08x\n", val);
4342 }
4343 if (attn & BNX2X_GRC_RSV) {
4344 val = CHIP_IS_E1(bp) ? 0 :
4345 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4346 BNX2X_ERR("GRC reserved 0x%08x\n", val);
4347 }
4348 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4349 }
4350 }
4351
4352 /*
4353 * Bits map:
4354 * 0-7 - Engine0 load counter.
4355 * 8-15 - Engine1 load counter.
4356 * 16 - Engine0 RESET_IN_PROGRESS bit.
4357 * 17 - Engine1 RESET_IN_PROGRESS bit.
4358 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4359 * on the engine
4360 * 19 - Engine1 ONE_IS_LOADED.
4361 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4362 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4363 * just the one belonging to its engine).
4364 *
4365 */
4366 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4367
4368 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4369 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4370 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4371 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4372 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4373 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4374 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4375
4376 /*
4377 * Set the GLOBAL_RESET bit.
4378 *
4379 * Should be run under rtnl lock
4380 */
4381 void bnx2x_set_reset_global(struct bnx2x *bp)
4382 {
4383 u32 val;
4384 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4385 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4386 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4387 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4388 }
4389
4390 /*
4391 * Clear the GLOBAL_RESET bit.
4392 *
4393 * Should be run under rtnl lock
4394 */
4395 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4396 {
4397 u32 val;
4398 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4399 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4400 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4401 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4402 }
4403
4404 /*
4405 * Checks the GLOBAL_RESET bit.
4406 *
4407 * should be run under rtnl lock
4408 */
4409 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4410 {
4411 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4412
4413 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4414 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4415 }
4416
4417 /*
4418 * Clear RESET_IN_PROGRESS bit for the current engine.
4419 *
4420 * Should be run under rtnl lock
4421 */
4422 static void bnx2x_set_reset_done(struct bnx2x *bp)
4423 {
4424 u32 val;
4425 u32 bit = BP_PATH(bp) ?
4426 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4427 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4428 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4429
4430 /* Clear the bit */
4431 val &= ~bit;
4432 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4433
4434 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4435 }
4436
4437 /*
4438 * Set RESET_IN_PROGRESS for the current engine.
4439 *
4440 * should be run under rtnl lock
4441 */
4442 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4443 {
4444 u32 val;
4445 u32 bit = BP_PATH(bp) ?
4446 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4447 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4448 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4449
4450 /* Set the bit */
4451 val |= bit;
4452 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4453 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4454 }
4455
4456 /*
4457 * Checks the RESET_IN_PROGRESS bit for the given engine.
4458 * should be run under rtnl lock
4459 */
4460 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4461 {
4462 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4463 u32 bit = engine ?
4464 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4465
4466 /* return false if bit is set */
4467 return (val & bit) ? false : true;
4468 }
4469
4470 /*
4471 * set pf load for the current pf.
4472 *
4473 * should be run under rtnl lock
4474 */
4475 void bnx2x_set_pf_load(struct bnx2x *bp)
4476 {
4477 u32 val1, val;
4478 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4479 BNX2X_PATH0_LOAD_CNT_MASK;
4480 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4481 BNX2X_PATH0_LOAD_CNT_SHIFT;
4482
4483 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4484 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4485
4486 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4487
4488 /* get the current counter value */
4489 val1 = (val & mask) >> shift;
4490
4491 /* set bit of that PF */
4492 val1 |= (1 << bp->pf_num);
4493
4494 /* clear the old value */
4495 val &= ~mask;
4496
4497 /* set the new one */
4498 val |= ((val1 << shift) & mask);
4499
4500 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4501 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4502 }
4503
4504 /**
4505 * bnx2x_clear_pf_load - clear pf load mark
4506 *
4507 * @bp: driver handle
4508 *
4509 * Should be run under rtnl lock.
4510 * Decrements the load counter for the current engine. Returns
4511 * whether other functions are still loaded
4512 */
4513 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4514 {
4515 u32 val1, val;
4516 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4517 BNX2X_PATH0_LOAD_CNT_MASK;
4518 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4519 BNX2X_PATH0_LOAD_CNT_SHIFT;
4520
4521 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4522 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4523 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4524
4525 /* get the current counter value */
4526 val1 = (val & mask) >> shift;
4527
4528 /* clear bit of that PF */
4529 val1 &= ~(1 << bp->pf_num);
4530
4531 /* clear the old value */
4532 val &= ~mask;
4533
4534 /* set the new one */
4535 val |= ((val1 << shift) & mask);
4536
4537 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4538 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4539 return val1 != 0;
4540 }
4541
4542 /*
4543 * Read the load status for the current engine.
4544 *
4545 * should be run under rtnl lock
4546 */
4547 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4548 {
4549 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4550 BNX2X_PATH0_LOAD_CNT_MASK);
4551 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4552 BNX2X_PATH0_LOAD_CNT_SHIFT);
4553 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4554
4555 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4556
4557 val = (val & mask) >> shift;
4558
4559 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4560 engine, val);
4561
4562 return val != 0;
4563 }
4564
4565 static void _print_parity(struct bnx2x *bp, u32 reg)
4566 {
4567 pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4568 }
4569
4570 static void _print_next_block(int idx, const char *blk)
4571 {
4572 pr_cont("%s%s", idx ? ", " : "", blk);
4573 }
4574
4575 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4576 int *par_num, bool print)
4577 {
4578 u32 cur_bit;
4579 bool res;
4580 int i;
4581
4582 res = false;
4583
4584 for (i = 0; sig; i++) {
4585 cur_bit = (0x1UL << i);
4586 if (sig & cur_bit) {
4587 res |= true; /* Each bit is real error! */
4588
4589 if (print) {
4590 switch (cur_bit) {
4591 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4592 _print_next_block((*par_num)++, "BRB");
4593 _print_parity(bp,
4594 BRB1_REG_BRB1_PRTY_STS);
4595 break;
4596 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4597 _print_next_block((*par_num)++,
4598 "PARSER");
4599 _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4600 break;
4601 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4602 _print_next_block((*par_num)++, "TSDM");
4603 _print_parity(bp,
4604 TSDM_REG_TSDM_PRTY_STS);
4605 break;
4606 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4607 _print_next_block((*par_num)++,
4608 "SEARCHER");
4609 _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4610 break;
4611 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4612 _print_next_block((*par_num)++, "TCM");
4613 _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4614 break;
4615 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4616 _print_next_block((*par_num)++,
4617 "TSEMI");
4618 _print_parity(bp,
4619 TSEM_REG_TSEM_PRTY_STS_0);
4620 _print_parity(bp,
4621 TSEM_REG_TSEM_PRTY_STS_1);
4622 break;
4623 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4624 _print_next_block((*par_num)++, "XPB");
4625 _print_parity(bp, GRCBASE_XPB +
4626 PB_REG_PB_PRTY_STS);
4627 break;
4628 }
4629 }
4630
4631 /* Clear the bit */
4632 sig &= ~cur_bit;
4633 }
4634 }
4635
4636 return res;
4637 }
4638
4639 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4640 int *par_num, bool *global,
4641 bool print)
4642 {
4643 u32 cur_bit;
4644 bool res;
4645 int i;
4646
4647 res = false;
4648
4649 for (i = 0; sig; i++) {
4650 cur_bit = (0x1UL << i);
4651 if (sig & cur_bit) {
4652 res |= true; /* Each bit is real error! */
4653 switch (cur_bit) {
4654 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4655 if (print) {
4656 _print_next_block((*par_num)++, "PBF");
4657 _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4658 }
4659 break;
4660 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4661 if (print) {
4662 _print_next_block((*par_num)++, "QM");
4663 _print_parity(bp, QM_REG_QM_PRTY_STS);
4664 }
4665 break;
4666 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4667 if (print) {
4668 _print_next_block((*par_num)++, "TM");
4669 _print_parity(bp, TM_REG_TM_PRTY_STS);
4670 }
4671 break;
4672 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4673 if (print) {
4674 _print_next_block((*par_num)++, "XSDM");
4675 _print_parity(bp,
4676 XSDM_REG_XSDM_PRTY_STS);
4677 }
4678 break;
4679 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4680 if (print) {
4681 _print_next_block((*par_num)++, "XCM");
4682 _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4683 }
4684 break;
4685 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4686 if (print) {
4687 _print_next_block((*par_num)++,
4688 "XSEMI");
4689 _print_parity(bp,
4690 XSEM_REG_XSEM_PRTY_STS_0);
4691 _print_parity(bp,
4692 XSEM_REG_XSEM_PRTY_STS_1);
4693 }
4694 break;
4695 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4696 if (print) {
4697 _print_next_block((*par_num)++,
4698 "DOORBELLQ");
4699 _print_parity(bp,
4700 DORQ_REG_DORQ_PRTY_STS);
4701 }
4702 break;
4703 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4704 if (print) {
4705 _print_next_block((*par_num)++, "NIG");
4706 if (CHIP_IS_E1x(bp)) {
4707 _print_parity(bp,
4708 NIG_REG_NIG_PRTY_STS);
4709 } else {
4710 _print_parity(bp,
4711 NIG_REG_NIG_PRTY_STS_0);
4712 _print_parity(bp,
4713 NIG_REG_NIG_PRTY_STS_1);
4714 }
4715 }
4716 break;
4717 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4718 if (print)
4719 _print_next_block((*par_num)++,
4720 "VAUX PCI CORE");
4721 *global = true;
4722 break;
4723 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4724 if (print) {
4725 _print_next_block((*par_num)++,
4726 "DEBUG");
4727 _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4728 }
4729 break;
4730 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4731 if (print) {
4732 _print_next_block((*par_num)++, "USDM");
4733 _print_parity(bp,
4734 USDM_REG_USDM_PRTY_STS);
4735 }
4736 break;
4737 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4738 if (print) {
4739 _print_next_block((*par_num)++, "UCM");
4740 _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4741 }
4742 break;
4743 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4744 if (print) {
4745 _print_next_block((*par_num)++,
4746 "USEMI");
4747 _print_parity(bp,
4748 USEM_REG_USEM_PRTY_STS_0);
4749 _print_parity(bp,
4750 USEM_REG_USEM_PRTY_STS_1);
4751 }
4752 break;
4753 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4754 if (print) {
4755 _print_next_block((*par_num)++, "UPB");
4756 _print_parity(bp, GRCBASE_UPB +
4757 PB_REG_PB_PRTY_STS);
4758 }
4759 break;
4760 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4761 if (print) {
4762 _print_next_block((*par_num)++, "CSDM");
4763 _print_parity(bp,
4764 CSDM_REG_CSDM_PRTY_STS);
4765 }
4766 break;
4767 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4768 if (print) {
4769 _print_next_block((*par_num)++, "CCM");
4770 _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4771 }
4772 break;
4773 }
4774
4775 /* Clear the bit */
4776 sig &= ~cur_bit;
4777 }
4778 }
4779
4780 return res;
4781 }
4782
4783 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4784 int *par_num, bool print)
4785 {
4786 u32 cur_bit;
4787 bool res;
4788 int i;
4789
4790 res = false;
4791
4792 for (i = 0; sig; i++) {
4793 cur_bit = (0x1UL << i);
4794 if (sig & cur_bit) {
4795 res = true; /* Each bit is real error! */
4796 if (print) {
4797 switch (cur_bit) {
4798 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4799 _print_next_block((*par_num)++,
4800 "CSEMI");
4801 _print_parity(bp,
4802 CSEM_REG_CSEM_PRTY_STS_0);
4803 _print_parity(bp,
4804 CSEM_REG_CSEM_PRTY_STS_1);
4805 break;
4806 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4807 _print_next_block((*par_num)++, "PXP");
4808 _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4809 _print_parity(bp,
4810 PXP2_REG_PXP2_PRTY_STS_0);
4811 _print_parity(bp,
4812 PXP2_REG_PXP2_PRTY_STS_1);
4813 break;
4814 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4815 _print_next_block((*par_num)++,
4816 "PXPPCICLOCKCLIENT");
4817 break;
4818 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4819 _print_next_block((*par_num)++, "CFC");
4820 _print_parity(bp,
4821 CFC_REG_CFC_PRTY_STS);
4822 break;
4823 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4824 _print_next_block((*par_num)++, "CDU");
4825 _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4826 break;
4827 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4828 _print_next_block((*par_num)++, "DMAE");
4829 _print_parity(bp,
4830 DMAE_REG_DMAE_PRTY_STS);
4831 break;
4832 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4833 _print_next_block((*par_num)++, "IGU");
4834 if (CHIP_IS_E1x(bp))
4835 _print_parity(bp,
4836 HC_REG_HC_PRTY_STS);
4837 else
4838 _print_parity(bp,
4839 IGU_REG_IGU_PRTY_STS);
4840 break;
4841 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4842 _print_next_block((*par_num)++, "MISC");
4843 _print_parity(bp,
4844 MISC_REG_MISC_PRTY_STS);
4845 break;
4846 }
4847 }
4848
4849 /* Clear the bit */
4850 sig &= ~cur_bit;
4851 }
4852 }
4853
4854 return res;
4855 }
4856
4857 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4858 int *par_num, bool *global,
4859 bool print)
4860 {
4861 bool res = false;
4862 u32 cur_bit;
4863 int i;
4864
4865 for (i = 0; sig; i++) {
4866 cur_bit = (0x1UL << i);
4867 if (sig & cur_bit) {
4868 switch (cur_bit) {
4869 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4870 if (print)
4871 _print_next_block((*par_num)++,
4872 "MCP ROM");
4873 *global = true;
4874 res = true;
4875 break;
4876 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4877 if (print)
4878 _print_next_block((*par_num)++,
4879 "MCP UMP RX");
4880 *global = true;
4881 res = true;
4882 break;
4883 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4884 if (print)
4885 _print_next_block((*par_num)++,
4886 "MCP UMP TX");
4887 *global = true;
4888 res = true;
4889 break;
4890 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4891 (*par_num)++;
4892 /* clear latched SCPAD PATIRY from MCP */
4893 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4894 1UL << 10);
4895 break;
4896 }
4897
4898 /* Clear the bit */
4899 sig &= ~cur_bit;
4900 }
4901 }
4902
4903 return res;
4904 }
4905
4906 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4907 int *par_num, bool print)
4908 {
4909 u32 cur_bit;
4910 bool res;
4911 int i;
4912
4913 res = false;
4914
4915 for (i = 0; sig; i++) {
4916 cur_bit = (0x1UL << i);
4917 if (sig & cur_bit) {
4918 res = true; /* Each bit is real error! */
4919 if (print) {
4920 switch (cur_bit) {
4921 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4922 _print_next_block((*par_num)++,
4923 "PGLUE_B");
4924 _print_parity(bp,
4925 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4926 break;
4927 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4928 _print_next_block((*par_num)++, "ATC");
4929 _print_parity(bp,
4930 ATC_REG_ATC_PRTY_STS);
4931 break;
4932 }
4933 }
4934 /* Clear the bit */
4935 sig &= ~cur_bit;
4936 }
4937 }
4938
4939 return res;
4940 }
4941
4942 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4943 u32 *sig)
4944 {
4945 bool res = false;
4946
4947 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4948 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4949 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4950 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4951 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4952 int par_num = 0;
4953
4954 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4955 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4956 sig[0] & HW_PRTY_ASSERT_SET_0,
4957 sig[1] & HW_PRTY_ASSERT_SET_1,
4958 sig[2] & HW_PRTY_ASSERT_SET_2,
4959 sig[3] & HW_PRTY_ASSERT_SET_3,
4960 sig[4] & HW_PRTY_ASSERT_SET_4);
4961 if (print) {
4962 if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4963 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4964 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4965 (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4966 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4967 netdev_err(bp->dev,
4968 "Parity errors detected in blocks: ");
4969 } else {
4970 print = false;
4971 }
4972 }
4973 res |= bnx2x_check_blocks_with_parity0(bp,
4974 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4975 res |= bnx2x_check_blocks_with_parity1(bp,
4976 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4977 res |= bnx2x_check_blocks_with_parity2(bp,
4978 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4979 res |= bnx2x_check_blocks_with_parity3(bp,
4980 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4981 res |= bnx2x_check_blocks_with_parity4(bp,
4982 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4983
4984 if (print)
4985 pr_cont("\n");
4986 }
4987
4988 return res;
4989 }
4990
4991 /**
4992 * bnx2x_chk_parity_attn - checks for parity attentions.
4993 *
4994 * @bp: driver handle
4995 * @global: true if there was a global attention
4996 * @print: show parity attention in syslog
4997 */
4998 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4999 {
5000 struct attn_route attn = { {0} };
5001 int port = BP_PORT(bp);
5002
5003 attn.sig[0] = REG_RD(bp,
5004 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5005 port*4);
5006 attn.sig[1] = REG_RD(bp,
5007 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5008 port*4);
5009 attn.sig[2] = REG_RD(bp,
5010 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5011 port*4);
5012 attn.sig[3] = REG_RD(bp,
5013 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5014 port*4);
5015 /* Since MCP attentions can't be disabled inside the block, we need to
5016 * read AEU registers to see whether they're currently disabled
5017 */
5018 attn.sig[3] &= ((REG_RD(bp,
5019 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5020 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5021 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5022 ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5023
5024 if (!CHIP_IS_E1x(bp))
5025 attn.sig[4] = REG_RD(bp,
5026 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5027 port*4);
5028
5029 return bnx2x_parity_attn(bp, global, print, attn.sig);
5030 }
5031
5032 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5033 {
5034 u32 val;
5035 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5036
5037 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5038 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5039 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5040 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5041 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5042 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5043 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5044 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5045 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5046 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5047 if (val &
5048 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5049 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5050 if (val &
5051 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5052 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5053 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5054 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5055 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5056 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5057 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5058 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5059 }
5060 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5061 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5062 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5063 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5064 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5065 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5066 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5067 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5068 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5069 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5070 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5071 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5072 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5073 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5074 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5075 }
5076
5077 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5078 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5079 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5080 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5081 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5082 }
5083 }
5084
5085 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5086 {
5087 struct attn_route attn, *group_mask;
5088 int port = BP_PORT(bp);
5089 int index;
5090 u32 reg_addr;
5091 u32 val;
5092 u32 aeu_mask;
5093 bool global = false;
5094
5095 /* need to take HW lock because MCP or other port might also
5096 try to handle this event */
5097 bnx2x_acquire_alr(bp);
5098
5099 if (bnx2x_chk_parity_attn(bp, &global, true)) {
5100 #ifndef BNX2X_STOP_ON_ERROR
5101 bp->recovery_state = BNX2X_RECOVERY_INIT;
5102 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5103 /* Disable HW interrupts */
5104 bnx2x_int_disable(bp);
5105 /* In case of parity errors don't handle attentions so that
5106 * other function would "see" parity errors.
5107 */
5108 #else
5109 bnx2x_panic();
5110 #endif
5111 bnx2x_release_alr(bp);
5112 return;
5113 }
5114
5115 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5116 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5117 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5118 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5119 if (!CHIP_IS_E1x(bp))
5120 attn.sig[4] =
5121 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5122 else
5123 attn.sig[4] = 0;
5124
5125 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5126 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5127
5128 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5129 if (deasserted & (1 << index)) {
5130 group_mask = &bp->attn_group[index];
5131
5132 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5133 index,
5134 group_mask->sig[0], group_mask->sig[1],
5135 group_mask->sig[2], group_mask->sig[3],
5136 group_mask->sig[4]);
5137
5138 bnx2x_attn_int_deasserted4(bp,
5139 attn.sig[4] & group_mask->sig[4]);
5140 bnx2x_attn_int_deasserted3(bp,
5141 attn.sig[3] & group_mask->sig[3]);
5142 bnx2x_attn_int_deasserted1(bp,
5143 attn.sig[1] & group_mask->sig[1]);
5144 bnx2x_attn_int_deasserted2(bp,
5145 attn.sig[2] & group_mask->sig[2]);
5146 bnx2x_attn_int_deasserted0(bp,
5147 attn.sig[0] & group_mask->sig[0]);
5148 }
5149 }
5150
5151 bnx2x_release_alr(bp);
5152
5153 if (bp->common.int_block == INT_BLOCK_HC)
5154 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5155 COMMAND_REG_ATTN_BITS_CLR);
5156 else
5157 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5158
5159 val = ~deasserted;
5160 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5161 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5162 REG_WR(bp, reg_addr, val);
5163
5164 if (~bp->attn_state & deasserted)
5165 BNX2X_ERR("IGU ERROR\n");
5166
5167 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5168 MISC_REG_AEU_MASK_ATTN_FUNC_0;
5169
5170 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5171 aeu_mask = REG_RD(bp, reg_addr);
5172
5173 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
5174 aeu_mask, deasserted);
5175 aeu_mask |= (deasserted & 0x3ff);
5176 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5177
5178 REG_WR(bp, reg_addr, aeu_mask);
5179 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5180
5181 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5182 bp->attn_state &= ~deasserted;
5183 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5184 }
5185
5186 static void bnx2x_attn_int(struct bnx2x *bp)
5187 {
5188 /* read local copy of bits */
5189 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5190 attn_bits);
5191 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5192 attn_bits_ack);
5193 u32 attn_state = bp->attn_state;
5194
5195 /* look for changed bits */
5196 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
5197 u32 deasserted = ~attn_bits & attn_ack & attn_state;
5198
5199 DP(NETIF_MSG_HW,
5200 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
5201 attn_bits, attn_ack, asserted, deasserted);
5202
5203 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5204 BNX2X_ERR("BAD attention state\n");
5205
5206 /* handle bits that were raised */
5207 if (asserted)
5208 bnx2x_attn_int_asserted(bp, asserted);
5209
5210 if (deasserted)
5211 bnx2x_attn_int_deasserted(bp, deasserted);
5212 }
5213
5214 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5215 u16 index, u8 op, u8 update)
5216 {
5217 u32 igu_addr = bp->igu_base_addr;
5218 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5219 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5220 igu_addr);
5221 }
5222
5223 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5224 {
5225 /* No memory barriers */
5226 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5227 mmiowb(); /* keep prod updates ordered */
5228 }
5229
5230 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5231 union event_ring_elem *elem)
5232 {
5233 u8 err = elem->message.error;
5234
5235 if (!bp->cnic_eth_dev.starting_cid ||
5236 (cid < bp->cnic_eth_dev.starting_cid &&
5237 cid != bp->cnic_eth_dev.iscsi_l2_cid))
5238 return 1;
5239
5240 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5241
5242 if (unlikely(err)) {
5243
5244 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5245 cid);
5246 bnx2x_panic_dump(bp, false);
5247 }
5248 bnx2x_cnic_cfc_comp(bp, cid, err);
5249 return 0;
5250 }
5251
5252 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5253 {
5254 struct bnx2x_mcast_ramrod_params rparam;
5255 int rc;
5256
5257 memset(&rparam, 0, sizeof(rparam));
5258
5259 rparam.mcast_obj = &bp->mcast_obj;
5260
5261 netif_addr_lock_bh(bp->dev);
5262
5263 /* Clear pending state for the last command */
5264 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5265
5266 /* If there are pending mcast commands - send them */
5267 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5268 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5269 if (rc < 0)
5270 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5271 rc);
5272 }
5273
5274 netif_addr_unlock_bh(bp->dev);
5275 }
5276
5277 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5278 union event_ring_elem *elem)
5279 {
5280 unsigned long ramrod_flags = 0;
5281 int rc = 0;
5282 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5283 u32 cid = echo & BNX2X_SWCID_MASK;
5284 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5285
5286 /* Always push next commands out, don't wait here */
5287 __set_bit(RAMROD_CONT, &ramrod_flags);
5288
5289 switch (echo >> BNX2X_SWCID_SHIFT) {
5290 case BNX2X_FILTER_MAC_PENDING:
5291 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5292 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5293 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5294 else
5295 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5296
5297 break;
5298 case BNX2X_FILTER_VLAN_PENDING:
5299 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5300 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5301 break;
5302 case BNX2X_FILTER_MCAST_PENDING:
5303 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5304 /* This is only relevant for 57710 where multicast MACs are
5305 * configured as unicast MACs using the same ramrod.
5306 */
5307 bnx2x_handle_mcast_eqe(bp);
5308 return;
5309 default:
5310 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5311 return;
5312 }
5313
5314 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5315
5316 if (rc < 0)
5317 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5318 else if (rc > 0)
5319 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5320 }
5321
5322 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5323
5324 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5325 {
5326 netif_addr_lock_bh(bp->dev);
5327
5328 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5329
5330 /* Send rx_mode command again if was requested */
5331 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5332 bnx2x_set_storm_rx_mode(bp);
5333 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5334 &bp->sp_state))
5335 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5336 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5337 &bp->sp_state))
5338 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5339
5340 netif_addr_unlock_bh(bp->dev);
5341 }
5342
5343 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5344 union event_ring_elem *elem)
5345 {
5346 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5347 DP(BNX2X_MSG_SP,
5348 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5349 elem->message.data.vif_list_event.func_bit_map);
5350 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5351 elem->message.data.vif_list_event.func_bit_map);
5352 } else if (elem->message.data.vif_list_event.echo ==
5353 VIF_LIST_RULE_SET) {
5354 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5355 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5356 }
5357 }
5358
5359 /* called with rtnl_lock */
5360 static void bnx2x_after_function_update(struct bnx2x *bp)
5361 {
5362 int q, rc;
5363 struct bnx2x_fastpath *fp;
5364 struct bnx2x_queue_state_params queue_params = {NULL};
5365 struct bnx2x_queue_update_params *q_update_params =
5366 &queue_params.params.update;
5367
5368 /* Send Q update command with afex vlan removal values for all Qs */
5369 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5370
5371 /* set silent vlan removal values according to vlan mode */
5372 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5373 &q_update_params->update_flags);
5374 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5375 &q_update_params->update_flags);
5376 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5377
5378 /* in access mode mark mask and value are 0 to strip all vlans */
5379 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5380 q_update_params->silent_removal_value = 0;
5381 q_update_params->silent_removal_mask = 0;
5382 } else {
5383 q_update_params->silent_removal_value =
5384 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5385 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5386 }
5387
5388 for_each_eth_queue(bp, q) {
5389 /* Set the appropriate Queue object */
5390 fp = &bp->fp[q];
5391 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5392
5393 /* send the ramrod */
5394 rc = bnx2x_queue_state_change(bp, &queue_params);
5395 if (rc < 0)
5396 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5397 q);
5398 }
5399
5400 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5401 fp = &bp->fp[FCOE_IDX(bp)];
5402 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5403
5404 /* clear pending completion bit */
5405 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5406
5407 /* mark latest Q bit */
5408 smp_mb__before_atomic();
5409 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5410 smp_mb__after_atomic();
5411
5412 /* send Q update ramrod for FCoE Q */
5413 rc = bnx2x_queue_state_change(bp, &queue_params);
5414 if (rc < 0)
5415 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5416 q);
5417 } else {
5418 /* If no FCoE ring - ACK MCP now */
5419 bnx2x_link_report(bp);
5420 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5421 }
5422 }
5423
5424 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5425 struct bnx2x *bp, u32 cid)
5426 {
5427 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5428
5429 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5430 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5431 else
5432 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5433 }
5434
5435 static void bnx2x_eq_int(struct bnx2x *bp)
5436 {
5437 u16 hw_cons, sw_cons, sw_prod;
5438 union event_ring_elem *elem;
5439 u8 echo;
5440 u32 cid;
5441 u8 opcode;
5442 int rc, spqe_cnt = 0;
5443 struct bnx2x_queue_sp_obj *q_obj;
5444 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5445 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5446
5447 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5448
5449 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5450 * when we get the next-page we need to adjust so the loop
5451 * condition below will be met. The next element is the size of a
5452 * regular element and hence incrementing by 1
5453 */
5454 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5455 hw_cons++;
5456
5457 /* This function may never run in parallel with itself for a
5458 * specific bp, thus there is no need in "paired" read memory
5459 * barrier here.
5460 */
5461 sw_cons = bp->eq_cons;
5462 sw_prod = bp->eq_prod;
5463
5464 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5465 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5466
5467 for (; sw_cons != hw_cons;
5468 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5469
5470 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5471
5472 rc = bnx2x_iov_eq_sp_event(bp, elem);
5473 if (!rc) {
5474 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5475 rc);
5476 goto next_spqe;
5477 }
5478
5479 opcode = elem->message.opcode;
5480
5481 /* handle eq element */
5482 switch (opcode) {
5483 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5484 bnx2x_vf_mbx_schedule(bp,
5485 &elem->message.data.vf_pf_event);
5486 continue;
5487
5488 case EVENT_RING_OPCODE_STAT_QUERY:
5489 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5490 "got statistics comp event %d\n",
5491 bp->stats_comp++);
5492 /* nothing to do with stats comp */
5493 goto next_spqe;
5494
5495 case EVENT_RING_OPCODE_CFC_DEL:
5496 /* handle according to cid range */
5497 /*
5498 * we may want to verify here that the bp state is
5499 * HALTING
5500 */
5501
5502 /* elem CID originates from FW; actually LE */
5503 cid = SW_CID(elem->message.data.cfc_del_event.cid);
5504
5505 DP(BNX2X_MSG_SP,
5506 "got delete ramrod for MULTI[%d]\n", cid);
5507
5508 if (CNIC_LOADED(bp) &&
5509 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5510 goto next_spqe;
5511
5512 q_obj = bnx2x_cid_to_q_obj(bp, cid);
5513
5514 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5515 break;
5516
5517 goto next_spqe;
5518
5519 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5520 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5521 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5522 if (f_obj->complete_cmd(bp, f_obj,
5523 BNX2X_F_CMD_TX_STOP))
5524 break;
5525 goto next_spqe;
5526
5527 case EVENT_RING_OPCODE_START_TRAFFIC:
5528 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5529 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5530 if (f_obj->complete_cmd(bp, f_obj,
5531 BNX2X_F_CMD_TX_START))
5532 break;
5533 goto next_spqe;
5534
5535 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5536 echo = elem->message.data.function_update_event.echo;
5537 if (echo == SWITCH_UPDATE) {
5538 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5539 "got FUNC_SWITCH_UPDATE ramrod\n");
5540 if (f_obj->complete_cmd(
5541 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5542 break;
5543
5544 } else {
5545 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5546
5547 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5548 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5549 f_obj->complete_cmd(bp, f_obj,
5550 BNX2X_F_CMD_AFEX_UPDATE);
5551
5552 /* We will perform the Queues update from
5553 * sp_rtnl task as all Queue SP operations
5554 * should run under rtnl_lock.
5555 */
5556 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5557 }
5558
5559 goto next_spqe;
5560
5561 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5562 f_obj->complete_cmd(bp, f_obj,
5563 BNX2X_F_CMD_AFEX_VIFLISTS);
5564 bnx2x_after_afex_vif_lists(bp, elem);
5565 goto next_spqe;
5566 case EVENT_RING_OPCODE_FUNCTION_START:
5567 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5568 "got FUNC_START ramrod\n");
5569 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5570 break;
5571
5572 goto next_spqe;
5573
5574 case EVENT_RING_OPCODE_FUNCTION_STOP:
5575 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5576 "got FUNC_STOP ramrod\n");
5577 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5578 break;
5579
5580 goto next_spqe;
5581
5582 case EVENT_RING_OPCODE_SET_TIMESYNC:
5583 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5584 "got set_timesync ramrod completion\n");
5585 if (f_obj->complete_cmd(bp, f_obj,
5586 BNX2X_F_CMD_SET_TIMESYNC))
5587 break;
5588 goto next_spqe;
5589 }
5590
5591 switch (opcode | bp->state) {
5592 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5593 BNX2X_STATE_OPEN):
5594 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5595 BNX2X_STATE_OPENING_WAIT4_PORT):
5596 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5597 BNX2X_STATE_CLOSING_WAIT4_HALT):
5598 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5599 SW_CID(elem->message.data.eth_event.echo));
5600 rss_raw->clear_pending(rss_raw);
5601 break;
5602
5603 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5604 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5605 case (EVENT_RING_OPCODE_SET_MAC |
5606 BNX2X_STATE_CLOSING_WAIT4_HALT):
5607 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5608 BNX2X_STATE_OPEN):
5609 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5610 BNX2X_STATE_DIAG):
5611 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5612 BNX2X_STATE_CLOSING_WAIT4_HALT):
5613 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5614 bnx2x_handle_classification_eqe(bp, elem);
5615 break;
5616
5617 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5618 BNX2X_STATE_OPEN):
5619 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5620 BNX2X_STATE_DIAG):
5621 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5622 BNX2X_STATE_CLOSING_WAIT4_HALT):
5623 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5624 bnx2x_handle_mcast_eqe(bp);
5625 break;
5626
5627 case (EVENT_RING_OPCODE_FILTERS_RULES |
5628 BNX2X_STATE_OPEN):
5629 case (EVENT_RING_OPCODE_FILTERS_RULES |
5630 BNX2X_STATE_DIAG):
5631 case (EVENT_RING_OPCODE_FILTERS_RULES |
5632 BNX2X_STATE_CLOSING_WAIT4_HALT):
5633 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5634 bnx2x_handle_rx_mode_eqe(bp);
5635 break;
5636 default:
5637 /* unknown event log error and continue */
5638 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5639 elem->message.opcode, bp->state);
5640 }
5641 next_spqe:
5642 spqe_cnt++;
5643 } /* for */
5644
5645 smp_mb__before_atomic();
5646 atomic_add(spqe_cnt, &bp->eq_spq_left);
5647
5648 bp->eq_cons = sw_cons;
5649 bp->eq_prod = sw_prod;
5650 /* Make sure that above mem writes were issued towards the memory */
5651 smp_wmb();
5652
5653 /* update producer */
5654 bnx2x_update_eq_prod(bp, bp->eq_prod);
5655 }
5656
5657 static void bnx2x_sp_task(struct work_struct *work)
5658 {
5659 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5660
5661 DP(BNX2X_MSG_SP, "sp task invoked\n");
5662
5663 /* make sure the atomic interrupt_occurred has been written */
5664 smp_rmb();
5665 if (atomic_read(&bp->interrupt_occurred)) {
5666
5667 /* what work needs to be performed? */
5668 u16 status = bnx2x_update_dsb_idx(bp);
5669
5670 DP(BNX2X_MSG_SP, "status %x\n", status);
5671 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5672 atomic_set(&bp->interrupt_occurred, 0);
5673
5674 /* HW attentions */
5675 if (status & BNX2X_DEF_SB_ATT_IDX) {
5676 bnx2x_attn_int(bp);
5677 status &= ~BNX2X_DEF_SB_ATT_IDX;
5678 }
5679
5680 /* SP events: STAT_QUERY and others */
5681 if (status & BNX2X_DEF_SB_IDX) {
5682 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5683
5684 if (FCOE_INIT(bp) &&
5685 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5686 /* Prevent local bottom-halves from running as
5687 * we are going to change the local NAPI list.
5688 */
5689 local_bh_disable();
5690 napi_schedule(&bnx2x_fcoe(bp, napi));
5691 local_bh_enable();
5692 }
5693
5694 /* Handle EQ completions */
5695 bnx2x_eq_int(bp);
5696 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5697 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5698
5699 status &= ~BNX2X_DEF_SB_IDX;
5700 }
5701
5702 /* if status is non zero then perhaps something went wrong */
5703 if (unlikely(status))
5704 DP(BNX2X_MSG_SP,
5705 "got an unknown interrupt! (status 0x%x)\n", status);
5706
5707 /* ack status block only if something was actually handled */
5708 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5709 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5710 }
5711
5712 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5713 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5714 &bp->sp_state)) {
5715 bnx2x_link_report(bp);
5716 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5717 }
5718 }
5719
5720 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5721 {
5722 struct net_device *dev = dev_instance;
5723 struct bnx2x *bp = netdev_priv(dev);
5724
5725 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5726 IGU_INT_DISABLE, 0);
5727
5728 #ifdef BNX2X_STOP_ON_ERROR
5729 if (unlikely(bp->panic))
5730 return IRQ_HANDLED;
5731 #endif
5732
5733 if (CNIC_LOADED(bp)) {
5734 struct cnic_ops *c_ops;
5735
5736 rcu_read_lock();
5737 c_ops = rcu_dereference(bp->cnic_ops);
5738 if (c_ops)
5739 c_ops->cnic_handler(bp->cnic_data, NULL);
5740 rcu_read_unlock();
5741 }
5742
5743 /* schedule sp task to perform default status block work, ack
5744 * attentions and enable interrupts.
5745 */
5746 bnx2x_schedule_sp_task(bp);
5747
5748 return IRQ_HANDLED;
5749 }
5750
5751 /* end of slow path */
5752
5753 void bnx2x_drv_pulse(struct bnx2x *bp)
5754 {
5755 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5756 bp->fw_drv_pulse_wr_seq);
5757 }
5758
5759 static void bnx2x_timer(unsigned long data)
5760 {
5761 struct bnx2x *bp = (struct bnx2x *) data;
5762
5763 if (!netif_running(bp->dev))
5764 return;
5765
5766 if (IS_PF(bp) &&
5767 !BP_NOMCP(bp)) {
5768 int mb_idx = BP_FW_MB_IDX(bp);
5769 u16 drv_pulse;
5770 u16 mcp_pulse;
5771
5772 ++bp->fw_drv_pulse_wr_seq;
5773 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5774 drv_pulse = bp->fw_drv_pulse_wr_seq;
5775 bnx2x_drv_pulse(bp);
5776
5777 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5778 MCP_PULSE_SEQ_MASK);
5779 /* The delta between driver pulse and mcp response
5780 * should not get too big. If the MFW is more than 5 pulses
5781 * behind, we should worry about it enough to generate an error
5782 * log.
5783 */
5784 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5785 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5786 drv_pulse, mcp_pulse);
5787 }
5788
5789 if (bp->state == BNX2X_STATE_OPEN)
5790 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5791
5792 /* sample pf vf bulletin board for new posts from pf */
5793 if (IS_VF(bp))
5794 bnx2x_timer_sriov(bp);
5795
5796 mod_timer(&bp->timer, jiffies + bp->current_interval);
5797 }
5798
5799 /* end of Statistics */
5800
5801 /* nic init */
5802
5803 /*
5804 * nic init service functions
5805 */
5806
5807 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5808 {
5809 u32 i;
5810 if (!(len%4) && !(addr%4))
5811 for (i = 0; i < len; i += 4)
5812 REG_WR(bp, addr + i, fill);
5813 else
5814 for (i = 0; i < len; i++)
5815 REG_WR8(bp, addr + i, fill);
5816 }
5817
5818 /* helper: writes FP SP data to FW - data_size in dwords */
5819 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5820 int fw_sb_id,
5821 u32 *sb_data_p,
5822 u32 data_size)
5823 {
5824 int index;
5825 for (index = 0; index < data_size; index++)
5826 REG_WR(bp, BAR_CSTRORM_INTMEM +
5827 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5828 sizeof(u32)*index,
5829 *(sb_data_p + index));
5830 }
5831
5832 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5833 {
5834 u32 *sb_data_p;
5835 u32 data_size = 0;
5836 struct hc_status_block_data_e2 sb_data_e2;
5837 struct hc_status_block_data_e1x sb_data_e1x;
5838
5839 /* disable the function first */
5840 if (!CHIP_IS_E1x(bp)) {
5841 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5842 sb_data_e2.common.state = SB_DISABLED;
5843 sb_data_e2.common.p_func.vf_valid = false;
5844 sb_data_p = (u32 *)&sb_data_e2;
5845 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5846 } else {
5847 memset(&sb_data_e1x, 0,
5848 sizeof(struct hc_status_block_data_e1x));
5849 sb_data_e1x.common.state = SB_DISABLED;
5850 sb_data_e1x.common.p_func.vf_valid = false;
5851 sb_data_p = (u32 *)&sb_data_e1x;
5852 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5853 }
5854 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5855
5856 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5857 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5858 CSTORM_STATUS_BLOCK_SIZE);
5859 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5860 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5861 CSTORM_SYNC_BLOCK_SIZE);
5862 }
5863
5864 /* helper: writes SP SB data to FW */
5865 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5866 struct hc_sp_status_block_data *sp_sb_data)
5867 {
5868 int func = BP_FUNC(bp);
5869 int i;
5870 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5871 REG_WR(bp, BAR_CSTRORM_INTMEM +
5872 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5873 i*sizeof(u32),
5874 *((u32 *)sp_sb_data + i));
5875 }
5876
5877 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5878 {
5879 int func = BP_FUNC(bp);
5880 struct hc_sp_status_block_data sp_sb_data;
5881 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5882
5883 sp_sb_data.state = SB_DISABLED;
5884 sp_sb_data.p_func.vf_valid = false;
5885
5886 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5887
5888 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5889 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5890 CSTORM_SP_STATUS_BLOCK_SIZE);
5891 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5892 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5893 CSTORM_SP_SYNC_BLOCK_SIZE);
5894 }
5895
5896 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5897 int igu_sb_id, int igu_seg_id)
5898 {
5899 hc_sm->igu_sb_id = igu_sb_id;
5900 hc_sm->igu_seg_id = igu_seg_id;
5901 hc_sm->timer_value = 0xFF;
5902 hc_sm->time_to_expire = 0xFFFFFFFF;
5903 }
5904
5905 /* allocates state machine ids. */
5906 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5907 {
5908 /* zero out state machine indices */
5909 /* rx indices */
5910 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5911
5912 /* tx indices */
5913 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5914 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5915 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5916 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5917
5918 /* map indices */
5919 /* rx indices */
5920 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5921 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5922
5923 /* tx indices */
5924 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5925 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5926 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5927 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5928 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5929 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5930 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5931 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5932 }
5933
5934 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5935 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5936 {
5937 int igu_seg_id;
5938
5939 struct hc_status_block_data_e2 sb_data_e2;
5940 struct hc_status_block_data_e1x sb_data_e1x;
5941 struct hc_status_block_sm *hc_sm_p;
5942 int data_size;
5943 u32 *sb_data_p;
5944
5945 if (CHIP_INT_MODE_IS_BC(bp))
5946 igu_seg_id = HC_SEG_ACCESS_NORM;
5947 else
5948 igu_seg_id = IGU_SEG_ACCESS_NORM;
5949
5950 bnx2x_zero_fp_sb(bp, fw_sb_id);
5951
5952 if (!CHIP_IS_E1x(bp)) {
5953 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5954 sb_data_e2.common.state = SB_ENABLED;
5955 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5956 sb_data_e2.common.p_func.vf_id = vfid;
5957 sb_data_e2.common.p_func.vf_valid = vf_valid;
5958 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5959 sb_data_e2.common.same_igu_sb_1b = true;
5960 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5961 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5962 hc_sm_p = sb_data_e2.common.state_machine;
5963 sb_data_p = (u32 *)&sb_data_e2;
5964 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5965 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5966 } else {
5967 memset(&sb_data_e1x, 0,
5968 sizeof(struct hc_status_block_data_e1x));
5969 sb_data_e1x.common.state = SB_ENABLED;
5970 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5971 sb_data_e1x.common.p_func.vf_id = 0xff;
5972 sb_data_e1x.common.p_func.vf_valid = false;
5973 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5974 sb_data_e1x.common.same_igu_sb_1b = true;
5975 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5976 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5977 hc_sm_p = sb_data_e1x.common.state_machine;
5978 sb_data_p = (u32 *)&sb_data_e1x;
5979 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5980 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5981 }
5982
5983 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5984 igu_sb_id, igu_seg_id);
5985 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5986 igu_sb_id, igu_seg_id);
5987
5988 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5989
5990 /* write indices to HW - PCI guarantees endianity of regpairs */
5991 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5992 }
5993
5994 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5995 u16 tx_usec, u16 rx_usec)
5996 {
5997 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5998 false, rx_usec);
5999 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6000 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6001 tx_usec);
6002 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6003 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6004 tx_usec);
6005 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6006 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6007 tx_usec);
6008 }
6009
6010 static void bnx2x_init_def_sb(struct bnx2x *bp)
6011 {
6012 struct host_sp_status_block *def_sb = bp->def_status_blk;
6013 dma_addr_t mapping = bp->def_status_blk_mapping;
6014 int igu_sp_sb_index;
6015 int igu_seg_id;
6016 int port = BP_PORT(bp);
6017 int func = BP_FUNC(bp);
6018 int reg_offset, reg_offset_en5;
6019 u64 section;
6020 int index;
6021 struct hc_sp_status_block_data sp_sb_data;
6022 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6023
6024 if (CHIP_INT_MODE_IS_BC(bp)) {
6025 igu_sp_sb_index = DEF_SB_IGU_ID;
6026 igu_seg_id = HC_SEG_ACCESS_DEF;
6027 } else {
6028 igu_sp_sb_index = bp->igu_dsb_id;
6029 igu_seg_id = IGU_SEG_ACCESS_DEF;
6030 }
6031
6032 /* ATTN */
6033 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6034 atten_status_block);
6035 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6036
6037 bp->attn_state = 0;
6038
6039 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6040 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6041 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6042 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6043 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6044 int sindex;
6045 /* take care of sig[0]..sig[4] */
6046 for (sindex = 0; sindex < 4; sindex++)
6047 bp->attn_group[index].sig[sindex] =
6048 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6049
6050 if (!CHIP_IS_E1x(bp))
6051 /*
6052 * enable5 is separate from the rest of the registers,
6053 * and therefore the address skip is 4
6054 * and not 16 between the different groups
6055 */
6056 bp->attn_group[index].sig[4] = REG_RD(bp,
6057 reg_offset_en5 + 0x4*index);
6058 else
6059 bp->attn_group[index].sig[4] = 0;
6060 }
6061
6062 if (bp->common.int_block == INT_BLOCK_HC) {
6063 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6064 HC_REG_ATTN_MSG0_ADDR_L);
6065
6066 REG_WR(bp, reg_offset, U64_LO(section));
6067 REG_WR(bp, reg_offset + 4, U64_HI(section));
6068 } else if (!CHIP_IS_E1x(bp)) {
6069 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6070 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6071 }
6072
6073 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6074 sp_sb);
6075
6076 bnx2x_zero_sp_sb(bp);
6077
6078 /* PCI guarantees endianity of regpairs */
6079 sp_sb_data.state = SB_ENABLED;
6080 sp_sb_data.host_sb_addr.lo = U64_LO(section);
6081 sp_sb_data.host_sb_addr.hi = U64_HI(section);
6082 sp_sb_data.igu_sb_id = igu_sp_sb_index;
6083 sp_sb_data.igu_seg_id = igu_seg_id;
6084 sp_sb_data.p_func.pf_id = func;
6085 sp_sb_data.p_func.vnic_id = BP_VN(bp);
6086 sp_sb_data.p_func.vf_id = 0xff;
6087
6088 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6089
6090 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6091 }
6092
6093 void bnx2x_update_coalesce(struct bnx2x *bp)
6094 {
6095 int i;
6096
6097 for_each_eth_queue(bp, i)
6098 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6099 bp->tx_ticks, bp->rx_ticks);
6100 }
6101
6102 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6103 {
6104 spin_lock_init(&bp->spq_lock);
6105 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6106
6107 bp->spq_prod_idx = 0;
6108 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6109 bp->spq_prod_bd = bp->spq;
6110 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6111 }
6112
6113 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6114 {
6115 int i;
6116 for (i = 1; i <= NUM_EQ_PAGES; i++) {
6117 union event_ring_elem *elem =
6118 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6119
6120 elem->next_page.addr.hi =
6121 cpu_to_le32(U64_HI(bp->eq_mapping +
6122 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6123 elem->next_page.addr.lo =
6124 cpu_to_le32(U64_LO(bp->eq_mapping +
6125 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6126 }
6127 bp->eq_cons = 0;
6128 bp->eq_prod = NUM_EQ_DESC;
6129 bp->eq_cons_sb = BNX2X_EQ_INDEX;
6130 /* we want a warning message before it gets wrought... */
6131 atomic_set(&bp->eq_spq_left,
6132 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6133 }
6134
6135 /* called with netif_addr_lock_bh() */
6136 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6137 unsigned long rx_mode_flags,
6138 unsigned long rx_accept_flags,
6139 unsigned long tx_accept_flags,
6140 unsigned long ramrod_flags)
6141 {
6142 struct bnx2x_rx_mode_ramrod_params ramrod_param;
6143 int rc;
6144
6145 memset(&ramrod_param, 0, sizeof(ramrod_param));
6146
6147 /* Prepare ramrod parameters */
6148 ramrod_param.cid = 0;
6149 ramrod_param.cl_id = cl_id;
6150 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6151 ramrod_param.func_id = BP_FUNC(bp);
6152
6153 ramrod_param.pstate = &bp->sp_state;
6154 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6155
6156 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6157 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6158
6159 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6160
6161 ramrod_param.ramrod_flags = ramrod_flags;
6162 ramrod_param.rx_mode_flags = rx_mode_flags;
6163
6164 ramrod_param.rx_accept_flags = rx_accept_flags;
6165 ramrod_param.tx_accept_flags = tx_accept_flags;
6166
6167 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6168 if (rc < 0) {
6169 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6170 return rc;
6171 }
6172
6173 return 0;
6174 }
6175
6176 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6177 unsigned long *rx_accept_flags,
6178 unsigned long *tx_accept_flags)
6179 {
6180 /* Clear the flags first */
6181 *rx_accept_flags = 0;
6182 *tx_accept_flags = 0;
6183
6184 switch (rx_mode) {
6185 case BNX2X_RX_MODE_NONE:
6186 /*
6187 * 'drop all' supersedes any accept flags that may have been
6188 * passed to the function.
6189 */
6190 break;
6191 case BNX2X_RX_MODE_NORMAL:
6192 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6193 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6194 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6195
6196 /* internal switching mode */
6197 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6198 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6199 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6200
6201 if (bp->accept_any_vlan) {
6202 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6203 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6204 }
6205
6206 break;
6207 case BNX2X_RX_MODE_ALLMULTI:
6208 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6209 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6210 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6211
6212 /* internal switching mode */
6213 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6214 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6215 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6216
6217 if (bp->accept_any_vlan) {
6218 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6219 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6220 }
6221
6222 break;
6223 case BNX2X_RX_MODE_PROMISC:
6224 /* According to definition of SI mode, iface in promisc mode
6225 * should receive matched and unmatched (in resolution of port)
6226 * unicast packets.
6227 */
6228 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6229 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6230 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6231 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6232
6233 /* internal switching mode */
6234 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6235 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6236
6237 if (IS_MF_SI(bp))
6238 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6239 else
6240 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6241
6242 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6243 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6244
6245 break;
6246 default:
6247 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6248 return -EINVAL;
6249 }
6250
6251 return 0;
6252 }
6253
6254 /* called with netif_addr_lock_bh() */
6255 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6256 {
6257 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6258 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6259 int rc;
6260
6261 if (!NO_FCOE(bp))
6262 /* Configure rx_mode of FCoE Queue */
6263 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6264
6265 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6266 &tx_accept_flags);
6267 if (rc)
6268 return rc;
6269
6270 __set_bit(RAMROD_RX, &ramrod_flags);
6271 __set_bit(RAMROD_TX, &ramrod_flags);
6272
6273 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6274 rx_accept_flags, tx_accept_flags,
6275 ramrod_flags);
6276 }
6277
6278 static void bnx2x_init_internal_common(struct bnx2x *bp)
6279 {
6280 int i;
6281
6282 /* Zero this manually as its initialization is
6283 currently missing in the initTool */
6284 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6285 REG_WR(bp, BAR_USTRORM_INTMEM +
6286 USTORM_AGG_DATA_OFFSET + i * 4, 0);
6287 if (!CHIP_IS_E1x(bp)) {
6288 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6289 CHIP_INT_MODE_IS_BC(bp) ?
6290 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6291 }
6292 }
6293
6294 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6295 {
6296 switch (load_code) {
6297 case FW_MSG_CODE_DRV_LOAD_COMMON:
6298 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6299 bnx2x_init_internal_common(bp);
6300 /* no break */
6301
6302 case FW_MSG_CODE_DRV_LOAD_PORT:
6303 /* nothing to do */
6304 /* no break */
6305
6306 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6307 /* internal memory per function is
6308 initialized inside bnx2x_pf_init */
6309 break;
6310
6311 default:
6312 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6313 break;
6314 }
6315 }
6316
6317 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6318 {
6319 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6320 }
6321
6322 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6323 {
6324 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6325 }
6326
6327 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6328 {
6329 if (CHIP_IS_E1x(fp->bp))
6330 return BP_L_ID(fp->bp) + fp->index;
6331 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6332 return bnx2x_fp_igu_sb_id(fp);
6333 }
6334
6335 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6336 {
6337 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6338 u8 cos;
6339 unsigned long q_type = 0;
6340 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6341 fp->rx_queue = fp_idx;
6342 fp->cid = fp_idx;
6343 fp->cl_id = bnx2x_fp_cl_id(fp);
6344 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6345 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6346 /* qZone id equals to FW (per path) client id */
6347 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
6348
6349 /* init shortcut */
6350 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6351
6352 /* Setup SB indices */
6353 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6354
6355 /* Configure Queue State object */
6356 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6357 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6358
6359 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6360
6361 /* init tx data */
6362 for_each_cos_in_tx_queue(fp, cos) {
6363 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6364 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6365 FP_COS_TO_TXQ(fp, cos, bp),
6366 BNX2X_TX_SB_INDEX_BASE + cos, fp);
6367 cids[cos] = fp->txdata_ptr[cos]->cid;
6368 }
6369
6370 /* nothing more for vf to do here */
6371 if (IS_VF(bp))
6372 return;
6373
6374 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6375 fp->fw_sb_id, fp->igu_sb_id);
6376 bnx2x_update_fpsb_idx(fp);
6377 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6378 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6379 bnx2x_sp_mapping(bp, q_rdata), q_type);
6380
6381 /**
6382 * Configure classification DBs: Always enable Tx switching
6383 */
6384 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6385
6386 DP(NETIF_MSG_IFUP,
6387 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6388 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6389 fp->igu_sb_id);
6390 }
6391
6392 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6393 {
6394 int i;
6395
6396 for (i = 1; i <= NUM_TX_RINGS; i++) {
6397 struct eth_tx_next_bd *tx_next_bd =
6398 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6399
6400 tx_next_bd->addr_hi =
6401 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6402 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6403 tx_next_bd->addr_lo =
6404 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6405 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6406 }
6407
6408 *txdata->tx_cons_sb = cpu_to_le16(0);
6409
6410 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6411 txdata->tx_db.data.zero_fill1 = 0;
6412 txdata->tx_db.data.prod = 0;
6413
6414 txdata->tx_pkt_prod = 0;
6415 txdata->tx_pkt_cons = 0;
6416 txdata->tx_bd_prod = 0;
6417 txdata->tx_bd_cons = 0;
6418 txdata->tx_pkt = 0;
6419 }
6420
6421 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6422 {
6423 int i;
6424
6425 for_each_tx_queue_cnic(bp, i)
6426 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6427 }
6428
6429 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6430 {
6431 int i;
6432 u8 cos;
6433
6434 for_each_eth_queue(bp, i)
6435 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6436 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6437 }
6438
6439 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6440 {
6441 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6442 unsigned long q_type = 0;
6443
6444 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6445 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6446 BNX2X_FCOE_ETH_CL_ID_IDX);
6447 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6448 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6449 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6450 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6451 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6452 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6453 fp);
6454
6455 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6456
6457 /* qZone id equals to FW (per path) client id */
6458 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6459 /* init shortcut */
6460 bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6461 bnx2x_rx_ustorm_prods_offset(fp);
6462
6463 /* Configure Queue State object */
6464 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6465 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6466
6467 /* No multi-CoS for FCoE L2 client */
6468 BUG_ON(fp->max_cos != 1);
6469
6470 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6471 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6472 bnx2x_sp_mapping(bp, q_rdata), q_type);
6473
6474 DP(NETIF_MSG_IFUP,
6475 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6476 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6477 fp->igu_sb_id);
6478 }
6479
6480 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6481 {
6482 if (!NO_FCOE(bp))
6483 bnx2x_init_fcoe_fp(bp);
6484
6485 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6486 BNX2X_VF_ID_INVALID, false,
6487 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6488
6489 /* ensure status block indices were read */
6490 rmb();
6491 bnx2x_init_rx_rings_cnic(bp);
6492 bnx2x_init_tx_rings_cnic(bp);
6493
6494 /* flush all */
6495 mb();
6496 mmiowb();
6497 }
6498
6499 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6500 {
6501 int i;
6502
6503 /* Setup NIC internals and enable interrupts */
6504 for_each_eth_queue(bp, i)
6505 bnx2x_init_eth_fp(bp, i);
6506
6507 /* ensure status block indices were read */
6508 rmb();
6509 bnx2x_init_rx_rings(bp);
6510 bnx2x_init_tx_rings(bp);
6511
6512 if (IS_PF(bp)) {
6513 /* Initialize MOD_ABS interrupts */
6514 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6515 bp->common.shmem_base,
6516 bp->common.shmem2_base, BP_PORT(bp));
6517
6518 /* initialize the default status block and sp ring */
6519 bnx2x_init_def_sb(bp);
6520 bnx2x_update_dsb_idx(bp);
6521 bnx2x_init_sp_ring(bp);
6522 } else {
6523 bnx2x_memset_stats(bp);
6524 }
6525 }
6526
6527 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6528 {
6529 bnx2x_init_eq_ring(bp);
6530 bnx2x_init_internal(bp, load_code);
6531 bnx2x_pf_init(bp);
6532 bnx2x_stats_init(bp);
6533
6534 /* flush all before enabling interrupts */
6535 mb();
6536 mmiowb();
6537
6538 bnx2x_int_enable(bp);
6539
6540 /* Check for SPIO5 */
6541 bnx2x_attn_int_deasserted0(bp,
6542 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6543 AEU_INPUTS_ATTN_BITS_SPIO5);
6544 }
6545
6546 /* gzip service functions */
6547 static int bnx2x_gunzip_init(struct bnx2x *bp)
6548 {
6549 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6550 &bp->gunzip_mapping, GFP_KERNEL);
6551 if (bp->gunzip_buf == NULL)
6552 goto gunzip_nomem1;
6553
6554 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6555 if (bp->strm == NULL)
6556 goto gunzip_nomem2;
6557
6558 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6559 if (bp->strm->workspace == NULL)
6560 goto gunzip_nomem3;
6561
6562 return 0;
6563
6564 gunzip_nomem3:
6565 kfree(bp->strm);
6566 bp->strm = NULL;
6567
6568 gunzip_nomem2:
6569 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6570 bp->gunzip_mapping);
6571 bp->gunzip_buf = NULL;
6572
6573 gunzip_nomem1:
6574 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6575 return -ENOMEM;
6576 }
6577
6578 static void bnx2x_gunzip_end(struct bnx2x *bp)
6579 {
6580 if (bp->strm) {
6581 vfree(bp->strm->workspace);
6582 kfree(bp->strm);
6583 bp->strm = NULL;
6584 }
6585
6586 if (bp->gunzip_buf) {
6587 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6588 bp->gunzip_mapping);
6589 bp->gunzip_buf = NULL;
6590 }
6591 }
6592
6593 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6594 {
6595 int n, rc;
6596
6597 /* check gzip header */
6598 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6599 BNX2X_ERR("Bad gzip header\n");
6600 return -EINVAL;
6601 }
6602
6603 n = 10;
6604
6605 #define FNAME 0x8
6606
6607 if (zbuf[3] & FNAME)
6608 while ((zbuf[n++] != 0) && (n < len));
6609
6610 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6611 bp->strm->avail_in = len - n;
6612 bp->strm->next_out = bp->gunzip_buf;
6613 bp->strm->avail_out = FW_BUF_SIZE;
6614
6615 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6616 if (rc != Z_OK)
6617 return rc;
6618
6619 rc = zlib_inflate(bp->strm, Z_FINISH);
6620 if ((rc != Z_OK) && (rc != Z_STREAM_END))
6621 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6622 bp->strm->msg);
6623
6624 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6625 if (bp->gunzip_outlen & 0x3)
6626 netdev_err(bp->dev,
6627 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6628 bp->gunzip_outlen);
6629 bp->gunzip_outlen >>= 2;
6630
6631 zlib_inflateEnd(bp->strm);
6632
6633 if (rc == Z_STREAM_END)
6634 return 0;
6635
6636 return rc;
6637 }
6638
6639 /* nic load/unload */
6640
6641 /*
6642 * General service functions
6643 */
6644
6645 /* send a NIG loopback debug packet */
6646 static void bnx2x_lb_pckt(struct bnx2x *bp)
6647 {
6648 u32 wb_write[3];
6649
6650 /* Ethernet source and destination addresses */
6651 wb_write[0] = 0x55555555;
6652 wb_write[1] = 0x55555555;
6653 wb_write[2] = 0x20; /* SOP */
6654 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6655
6656 /* NON-IP protocol */
6657 wb_write[0] = 0x09000000;
6658 wb_write[1] = 0x55555555;
6659 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
6660 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6661 }
6662
6663 /* some of the internal memories
6664 * are not directly readable from the driver
6665 * to test them we send debug packets
6666 */
6667 static int bnx2x_int_mem_test(struct bnx2x *bp)
6668 {
6669 int factor;
6670 int count, i;
6671 u32 val = 0;
6672
6673 if (CHIP_REV_IS_FPGA(bp))
6674 factor = 120;
6675 else if (CHIP_REV_IS_EMUL(bp))
6676 factor = 200;
6677 else
6678 factor = 1;
6679
6680 /* Disable inputs of parser neighbor blocks */
6681 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6682 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6683 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6684 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6685
6686 /* Write 0 to parser credits for CFC search request */
6687 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6688
6689 /* send Ethernet packet */
6690 bnx2x_lb_pckt(bp);
6691
6692 /* TODO do i reset NIG statistic? */
6693 /* Wait until NIG register shows 1 packet of size 0x10 */
6694 count = 1000 * factor;
6695 while (count) {
6696
6697 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6698 val = *bnx2x_sp(bp, wb_data[0]);
6699 if (val == 0x10)
6700 break;
6701
6702 usleep_range(10000, 20000);
6703 count--;
6704 }
6705 if (val != 0x10) {
6706 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6707 return -1;
6708 }
6709
6710 /* Wait until PRS register shows 1 packet */
6711 count = 1000 * factor;
6712 while (count) {
6713 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6714 if (val == 1)
6715 break;
6716
6717 usleep_range(10000, 20000);
6718 count--;
6719 }
6720 if (val != 0x1) {
6721 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6722 return -2;
6723 }
6724
6725 /* Reset and init BRB, PRS */
6726 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6727 msleep(50);
6728 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6729 msleep(50);
6730 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6731 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6732
6733 DP(NETIF_MSG_HW, "part2\n");
6734
6735 /* Disable inputs of parser neighbor blocks */
6736 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6737 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6738 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6739 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6740
6741 /* Write 0 to parser credits for CFC search request */
6742 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6743
6744 /* send 10 Ethernet packets */
6745 for (i = 0; i < 10; i++)
6746 bnx2x_lb_pckt(bp);
6747
6748 /* Wait until NIG register shows 10 + 1
6749 packets of size 11*0x10 = 0xb0 */
6750 count = 1000 * factor;
6751 while (count) {
6752
6753 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6754 val = *bnx2x_sp(bp, wb_data[0]);
6755 if (val == 0xb0)
6756 break;
6757
6758 usleep_range(10000, 20000);
6759 count--;
6760 }
6761 if (val != 0xb0) {
6762 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6763 return -3;
6764 }
6765
6766 /* Wait until PRS register shows 2 packets */
6767 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6768 if (val != 2)
6769 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6770
6771 /* Write 1 to parser credits for CFC search request */
6772 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6773
6774 /* Wait until PRS register shows 3 packets */
6775 msleep(10 * factor);
6776 /* Wait until NIG register shows 1 packet of size 0x10 */
6777 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6778 if (val != 3)
6779 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6780
6781 /* clear NIG EOP FIFO */
6782 for (i = 0; i < 11; i++)
6783 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6784 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6785 if (val != 1) {
6786 BNX2X_ERR("clear of NIG failed\n");
6787 return -4;
6788 }
6789
6790 /* Reset and init BRB, PRS, NIG */
6791 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6792 msleep(50);
6793 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6794 msleep(50);
6795 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6796 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6797 if (!CNIC_SUPPORT(bp))
6798 /* set NIC mode */
6799 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6800
6801 /* Enable inputs of parser neighbor blocks */
6802 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6803 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6804 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6805 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6806
6807 DP(NETIF_MSG_HW, "done\n");
6808
6809 return 0; /* OK */
6810 }
6811
6812 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6813 {
6814 u32 val;
6815
6816 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6817 if (!CHIP_IS_E1x(bp))
6818 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6819 else
6820 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6821 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6822 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6823 /*
6824 * mask read length error interrupts in brb for parser
6825 * (parsing unit and 'checksum and crc' unit)
6826 * these errors are legal (PU reads fixed length and CAC can cause
6827 * read length error on truncated packets)
6828 */
6829 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6830 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6831 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6832 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6833 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6834 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6835 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6836 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6837 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6838 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6839 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6840 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6841 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6842 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6843 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6844 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6845 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6846 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6847 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6848
6849 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
6850 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6851 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6852 if (!CHIP_IS_E1x(bp))
6853 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6854 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6855 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6856
6857 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6858 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6859 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6860 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6861
6862 if (!CHIP_IS_E1x(bp))
6863 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6864 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6865
6866 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6867 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6868 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6869 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6870 }
6871
6872 static void bnx2x_reset_common(struct bnx2x *bp)
6873 {
6874 u32 val = 0x1400;
6875
6876 /* reset_common */
6877 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6878 0xd3ffff7f);
6879
6880 if (CHIP_IS_E3(bp)) {
6881 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6882 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6883 }
6884
6885 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6886 }
6887
6888 static void bnx2x_setup_dmae(struct bnx2x *bp)
6889 {
6890 bp->dmae_ready = 0;
6891 spin_lock_init(&bp->dmae_lock);
6892 }
6893
6894 static void bnx2x_init_pxp(struct bnx2x *bp)
6895 {
6896 u16 devctl;
6897 int r_order, w_order;
6898
6899 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6900 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6901 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6902 if (bp->mrrs == -1)
6903 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6904 else {
6905 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6906 r_order = bp->mrrs;
6907 }
6908
6909 bnx2x_init_pxp_arb(bp, r_order, w_order);
6910 }
6911
6912 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6913 {
6914 int is_required;
6915 u32 val;
6916 int port;
6917
6918 if (BP_NOMCP(bp))
6919 return;
6920
6921 is_required = 0;
6922 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6923 SHARED_HW_CFG_FAN_FAILURE_MASK;
6924
6925 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6926 is_required = 1;
6927
6928 /*
6929 * The fan failure mechanism is usually related to the PHY type since
6930 * the power consumption of the board is affected by the PHY. Currently,
6931 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6932 */
6933 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6934 for (port = PORT_0; port < PORT_MAX; port++) {
6935 is_required |=
6936 bnx2x_fan_failure_det_req(
6937 bp,
6938 bp->common.shmem_base,
6939 bp->common.shmem2_base,
6940 port);
6941 }
6942
6943 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6944
6945 if (is_required == 0)
6946 return;
6947
6948 /* Fan failure is indicated by SPIO 5 */
6949 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6950
6951 /* set to active low mode */
6952 val = REG_RD(bp, MISC_REG_SPIO_INT);
6953 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6954 REG_WR(bp, MISC_REG_SPIO_INT, val);
6955
6956 /* enable interrupt to signal the IGU */
6957 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6958 val |= MISC_SPIO_SPIO5;
6959 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6960 }
6961
6962 void bnx2x_pf_disable(struct bnx2x *bp)
6963 {
6964 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6965 val &= ~IGU_PF_CONF_FUNC_EN;
6966
6967 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6968 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6969 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6970 }
6971
6972 static void bnx2x__common_init_phy(struct bnx2x *bp)
6973 {
6974 u32 shmem_base[2], shmem2_base[2];
6975 /* Avoid common init in case MFW supports LFA */
6976 if (SHMEM2_RD(bp, size) >
6977 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6978 return;
6979 shmem_base[0] = bp->common.shmem_base;
6980 shmem2_base[0] = bp->common.shmem2_base;
6981 if (!CHIP_IS_E1x(bp)) {
6982 shmem_base[1] =
6983 SHMEM2_RD(bp, other_shmem_base_addr);
6984 shmem2_base[1] =
6985 SHMEM2_RD(bp, other_shmem2_base_addr);
6986 }
6987 bnx2x_acquire_phy_lock(bp);
6988 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6989 bp->common.chip_id);
6990 bnx2x_release_phy_lock(bp);
6991 }
6992
6993 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6994 {
6995 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6996 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
6997 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
6998 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
6999 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7000
7001 /* make sure this value is 0 */
7002 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7003
7004 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7005 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7006 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7007 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7008 }
7009
7010 static void bnx2x_set_endianity(struct bnx2x *bp)
7011 {
7012 #ifdef __BIG_ENDIAN
7013 bnx2x_config_endianity(bp, 1);
7014 #else
7015 bnx2x_config_endianity(bp, 0);
7016 #endif
7017 }
7018
7019 static void bnx2x_reset_endianity(struct bnx2x *bp)
7020 {
7021 bnx2x_config_endianity(bp, 0);
7022 }
7023
7024 /**
7025 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7026 *
7027 * @bp: driver handle
7028 */
7029 static int bnx2x_init_hw_common(struct bnx2x *bp)
7030 {
7031 u32 val;
7032
7033 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
7034
7035 /*
7036 * take the RESET lock to protect undi_unload flow from accessing
7037 * registers while we're resetting the chip
7038 */
7039 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7040
7041 bnx2x_reset_common(bp);
7042 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7043
7044 val = 0xfffc;
7045 if (CHIP_IS_E3(bp)) {
7046 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7047 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7048 }
7049 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7050
7051 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7052
7053 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7054
7055 if (!CHIP_IS_E1x(bp)) {
7056 u8 abs_func_id;
7057
7058 /**
7059 * 4-port mode or 2-port mode we need to turn of master-enable
7060 * for everyone, after that, turn it back on for self.
7061 * so, we disregard multi-function or not, and always disable
7062 * for all functions on the given path, this means 0,2,4,6 for
7063 * path 0 and 1,3,5,7 for path 1
7064 */
7065 for (abs_func_id = BP_PATH(bp);
7066 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7067 if (abs_func_id == BP_ABS_FUNC(bp)) {
7068 REG_WR(bp,
7069 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7070 1);
7071 continue;
7072 }
7073
7074 bnx2x_pretend_func(bp, abs_func_id);
7075 /* clear pf enable */
7076 bnx2x_pf_disable(bp);
7077 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7078 }
7079 }
7080
7081 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7082 if (CHIP_IS_E1(bp)) {
7083 /* enable HW interrupt from PXP on USDM overflow
7084 bit 16 on INT_MASK_0 */
7085 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7086 }
7087
7088 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7089 bnx2x_init_pxp(bp);
7090 bnx2x_set_endianity(bp);
7091 bnx2x_ilt_init_page_size(bp, INITOP_SET);
7092
7093 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7094 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7095
7096 /* let the HW do it's magic ... */
7097 msleep(100);
7098 /* finish PXP init */
7099 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7100 if (val != 1) {
7101 BNX2X_ERR("PXP2 CFG failed\n");
7102 return -EBUSY;
7103 }
7104 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7105 if (val != 1) {
7106 BNX2X_ERR("PXP2 RD_INIT failed\n");
7107 return -EBUSY;
7108 }
7109
7110 /* Timers bug workaround E2 only. We need to set the entire ILT to
7111 * have entries with value "0" and valid bit on.
7112 * This needs to be done by the first PF that is loaded in a path
7113 * (i.e. common phase)
7114 */
7115 if (!CHIP_IS_E1x(bp)) {
7116 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7117 * (i.e. vnic3) to start even if it is marked as "scan-off".
7118 * This occurs when a different function (func2,3) is being marked
7119 * as "scan-off". Real-life scenario for example: if a driver is being
7120 * load-unloaded while func6,7 are down. This will cause the timer to access
7121 * the ilt, translate to a logical address and send a request to read/write.
7122 * Since the ilt for the function that is down is not valid, this will cause
7123 * a translation error which is unrecoverable.
7124 * The Workaround is intended to make sure that when this happens nothing fatal
7125 * will occur. The workaround:
7126 * 1. First PF driver which loads on a path will:
7127 * a. After taking the chip out of reset, by using pretend,
7128 * it will write "0" to the following registers of
7129 * the other vnics.
7130 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7131 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7132 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7133 * And for itself it will write '1' to
7134 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7135 * dmae-operations (writing to pram for example.)
7136 * note: can be done for only function 6,7 but cleaner this
7137 * way.
7138 * b. Write zero+valid to the entire ILT.
7139 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
7140 * VNIC3 (of that port). The range allocated will be the
7141 * entire ILT. This is needed to prevent ILT range error.
7142 * 2. Any PF driver load flow:
7143 * a. ILT update with the physical addresses of the allocated
7144 * logical pages.
7145 * b. Wait 20msec. - note that this timeout is needed to make
7146 * sure there are no requests in one of the PXP internal
7147 * queues with "old" ILT addresses.
7148 * c. PF enable in the PGLC.
7149 * d. Clear the was_error of the PF in the PGLC. (could have
7150 * occurred while driver was down)
7151 * e. PF enable in the CFC (WEAK + STRONG)
7152 * f. Timers scan enable
7153 * 3. PF driver unload flow:
7154 * a. Clear the Timers scan_en.
7155 * b. Polling for scan_on=0 for that PF.
7156 * c. Clear the PF enable bit in the PXP.
7157 * d. Clear the PF enable in the CFC (WEAK + STRONG)
7158 * e. Write zero+valid to all ILT entries (The valid bit must
7159 * stay set)
7160 * f. If this is VNIC 3 of a port then also init
7161 * first_timers_ilt_entry to zero and last_timers_ilt_entry
7162 * to the last entry in the ILT.
7163 *
7164 * Notes:
7165 * Currently the PF error in the PGLC is non recoverable.
7166 * In the future the there will be a recovery routine for this error.
7167 * Currently attention is masked.
7168 * Having an MCP lock on the load/unload process does not guarantee that
7169 * there is no Timer disable during Func6/7 enable. This is because the
7170 * Timers scan is currently being cleared by the MCP on FLR.
7171 * Step 2.d can be done only for PF6/7 and the driver can also check if
7172 * there is error before clearing it. But the flow above is simpler and
7173 * more general.
7174 * All ILT entries are written by zero+valid and not just PF6/7
7175 * ILT entries since in the future the ILT entries allocation for
7176 * PF-s might be dynamic.
7177 */
7178 struct ilt_client_info ilt_cli;
7179 struct bnx2x_ilt ilt;
7180 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7181 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7182
7183 /* initialize dummy TM client */
7184 ilt_cli.start = 0;
7185 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7186 ilt_cli.client_num = ILT_CLIENT_TM;
7187
7188 /* Step 1: set zeroes to all ilt page entries with valid bit on
7189 * Step 2: set the timers first/last ilt entry to point
7190 * to the entire range to prevent ILT range error for 3rd/4th
7191 * vnic (this code assumes existence of the vnic)
7192 *
7193 * both steps performed by call to bnx2x_ilt_client_init_op()
7194 * with dummy TM client
7195 *
7196 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7197 * and his brother are split registers
7198 */
7199 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7200 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7201 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7202
7203 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7204 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7205 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7206 }
7207
7208 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7209 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7210
7211 if (!CHIP_IS_E1x(bp)) {
7212 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7213 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7214 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7215
7216 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7217
7218 /* let the HW do it's magic ... */
7219 do {
7220 msleep(200);
7221 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7222 } while (factor-- && (val != 1));
7223
7224 if (val != 1) {
7225 BNX2X_ERR("ATC_INIT failed\n");
7226 return -EBUSY;
7227 }
7228 }
7229
7230 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7231
7232 bnx2x_iov_init_dmae(bp);
7233
7234 /* clean the DMAE memory */
7235 bp->dmae_ready = 1;
7236 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7237
7238 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7239
7240 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7241
7242 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7243
7244 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7245
7246 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7247 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7248 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7249 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7250
7251 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7252
7253 /* QM queues pointers table */
7254 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7255
7256 /* soft reset pulse */
7257 REG_WR(bp, QM_REG_SOFT_RESET, 1);
7258 REG_WR(bp, QM_REG_SOFT_RESET, 0);
7259
7260 if (CNIC_SUPPORT(bp))
7261 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7262
7263 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7264
7265 if (!CHIP_REV_IS_SLOW(bp))
7266 /* enable hw interrupt from doorbell Q */
7267 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7268
7269 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7270
7271 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7272 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7273
7274 if (!CHIP_IS_E1(bp))
7275 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7276
7277 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7278 if (IS_MF_AFEX(bp)) {
7279 /* configure that VNTag and VLAN headers must be
7280 * received in afex mode
7281 */
7282 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7283 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7284 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7285 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7286 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7287 } else {
7288 /* Bit-map indicating which L2 hdrs may appear
7289 * after the basic Ethernet header
7290 */
7291 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7292 bp->path_has_ovlan ? 7 : 6);
7293 }
7294 }
7295
7296 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7297 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7298 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7299 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7300
7301 if (!CHIP_IS_E1x(bp)) {
7302 /* reset VFC memories */
7303 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7304 VFC_MEMORIES_RST_REG_CAM_RST |
7305 VFC_MEMORIES_RST_REG_RAM_RST);
7306 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7307 VFC_MEMORIES_RST_REG_CAM_RST |
7308 VFC_MEMORIES_RST_REG_RAM_RST);
7309
7310 msleep(20);
7311 }
7312
7313 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7314 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7315 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7316 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7317
7318 /* sync semi rtc */
7319 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7320 0x80000000);
7321 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7322 0x80000000);
7323
7324 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7325 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7326 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7327
7328 if (!CHIP_IS_E1x(bp)) {
7329 if (IS_MF_AFEX(bp)) {
7330 /* configure that VNTag and VLAN headers must be
7331 * sent in afex mode
7332 */
7333 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7334 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7335 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7336 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7337 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7338 } else {
7339 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7340 bp->path_has_ovlan ? 7 : 6);
7341 }
7342 }
7343
7344 REG_WR(bp, SRC_REG_SOFT_RST, 1);
7345
7346 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7347
7348 if (CNIC_SUPPORT(bp)) {
7349 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7350 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7351 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7352 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7353 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7354 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7355 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7356 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7357 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7358 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7359 }
7360 REG_WR(bp, SRC_REG_SOFT_RST, 0);
7361
7362 if (sizeof(union cdu_context) != 1024)
7363 /* we currently assume that a context is 1024 bytes */
7364 dev_alert(&bp->pdev->dev,
7365 "please adjust the size of cdu_context(%ld)\n",
7366 (long)sizeof(union cdu_context));
7367
7368 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7369 val = (4 << 24) + (0 << 12) + 1024;
7370 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7371
7372 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7373 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7374 /* enable context validation interrupt from CFC */
7375 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7376
7377 /* set the thresholds to prevent CFC/CDU race */
7378 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7379
7380 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7381
7382 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7383 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7384
7385 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7386 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7387
7388 /* Reset PCIE errors for debug */
7389 REG_WR(bp, 0x2814, 0xffffffff);
7390 REG_WR(bp, 0x3820, 0xffffffff);
7391
7392 if (!CHIP_IS_E1x(bp)) {
7393 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7394 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7395 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7396 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7397 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7398 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7399 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7400 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7401 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7402 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7403 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7404 }
7405
7406 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7407 if (!CHIP_IS_E1(bp)) {
7408 /* in E3 this done in per-port section */
7409 if (!CHIP_IS_E3(bp))
7410 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7411 }
7412 if (CHIP_IS_E1H(bp))
7413 /* not applicable for E2 (and above ...) */
7414 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7415
7416 if (CHIP_REV_IS_SLOW(bp))
7417 msleep(200);
7418
7419 /* finish CFC init */
7420 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7421 if (val != 1) {
7422 BNX2X_ERR("CFC LL_INIT failed\n");
7423 return -EBUSY;
7424 }
7425 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7426 if (val != 1) {
7427 BNX2X_ERR("CFC AC_INIT failed\n");
7428 return -EBUSY;
7429 }
7430 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7431 if (val != 1) {
7432 BNX2X_ERR("CFC CAM_INIT failed\n");
7433 return -EBUSY;
7434 }
7435 REG_WR(bp, CFC_REG_DEBUG0, 0);
7436
7437 if (CHIP_IS_E1(bp)) {
7438 /* read NIG statistic
7439 to see if this is our first up since powerup */
7440 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7441 val = *bnx2x_sp(bp, wb_data[0]);
7442
7443 /* do internal memory self test */
7444 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7445 BNX2X_ERR("internal mem self test failed\n");
7446 return -EBUSY;
7447 }
7448 }
7449
7450 bnx2x_setup_fan_failure_detection(bp);
7451
7452 /* clear PXP2 attentions */
7453 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7454
7455 bnx2x_enable_blocks_attention(bp);
7456 bnx2x_enable_blocks_parity(bp);
7457
7458 if (!BP_NOMCP(bp)) {
7459 if (CHIP_IS_E1x(bp))
7460 bnx2x__common_init_phy(bp);
7461 } else
7462 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7463
7464 if (SHMEM2_HAS(bp, netproc_fw_ver))
7465 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7466
7467 return 0;
7468 }
7469
7470 /**
7471 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7472 *
7473 * @bp: driver handle
7474 */
7475 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7476 {
7477 int rc = bnx2x_init_hw_common(bp);
7478
7479 if (rc)
7480 return rc;
7481
7482 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7483 if (!BP_NOMCP(bp))
7484 bnx2x__common_init_phy(bp);
7485
7486 return 0;
7487 }
7488
7489 static int bnx2x_init_hw_port(struct bnx2x *bp)
7490 {
7491 int port = BP_PORT(bp);
7492 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7493 u32 low, high;
7494 u32 val, reg;
7495
7496 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
7497
7498 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7499
7500 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7501 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7502 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7503
7504 /* Timers bug workaround: disables the pf_master bit in pglue at
7505 * common phase, we need to enable it here before any dmae access are
7506 * attempted. Therefore we manually added the enable-master to the
7507 * port phase (it also happens in the function phase)
7508 */
7509 if (!CHIP_IS_E1x(bp))
7510 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7511
7512 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7513 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7514 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7515 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7516
7517 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7518 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7519 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7520 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7521
7522 /* QM cid (connection) count */
7523 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7524
7525 if (CNIC_SUPPORT(bp)) {
7526 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7527 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7528 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7529 }
7530
7531 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7532
7533 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7534
7535 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7536
7537 if (IS_MF(bp))
7538 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7539 else if (bp->dev->mtu > 4096) {
7540 if (bp->flags & ONE_PORT_FLAG)
7541 low = 160;
7542 else {
7543 val = bp->dev->mtu;
7544 /* (24*1024 + val*4)/256 */
7545 low = 96 + (val/64) +
7546 ((val % 64) ? 1 : 0);
7547 }
7548 } else
7549 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7550 high = low + 56; /* 14*1024/256 */
7551 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7552 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7553 }
7554
7555 if (CHIP_MODE_IS_4_PORT(bp))
7556 REG_WR(bp, (BP_PORT(bp) ?
7557 BRB1_REG_MAC_GUARANTIED_1 :
7558 BRB1_REG_MAC_GUARANTIED_0), 40);
7559
7560 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7561 if (CHIP_IS_E3B0(bp)) {
7562 if (IS_MF_AFEX(bp)) {
7563 /* configure headers for AFEX mode */
7564 REG_WR(bp, BP_PORT(bp) ?
7565 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7566 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7567 REG_WR(bp, BP_PORT(bp) ?
7568 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7569 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7570 REG_WR(bp, BP_PORT(bp) ?
7571 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7572 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7573 } else {
7574 /* Ovlan exists only if we are in multi-function +
7575 * switch-dependent mode, in switch-independent there
7576 * is no ovlan headers
7577 */
7578 REG_WR(bp, BP_PORT(bp) ?
7579 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7580 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7581 (bp->path_has_ovlan ? 7 : 6));
7582 }
7583 }
7584
7585 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7586 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7587 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7588 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7589
7590 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7591 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7592 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7593 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7594
7595 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7596 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7597
7598 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7599
7600 if (CHIP_IS_E1x(bp)) {
7601 /* configure PBF to work without PAUSE mtu 9000 */
7602 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7603
7604 /* update threshold */
7605 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7606 /* update init credit */
7607 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7608
7609 /* probe changes */
7610 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7611 udelay(50);
7612 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7613 }
7614
7615 if (CNIC_SUPPORT(bp))
7616 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7617
7618 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7619 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7620
7621 if (CHIP_IS_E1(bp)) {
7622 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7623 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7624 }
7625 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7626
7627 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7628
7629 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7630 /* init aeu_mask_attn_func_0/1:
7631 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7632 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7633 * bits 4-7 are used for "per vn group attention" */
7634 val = IS_MF(bp) ? 0xF7 : 0x7;
7635 /* Enable DCBX attention for all but E1 */
7636 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7637 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7638
7639 /* SCPAD_PARITY should NOT trigger close the gates */
7640 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7641 REG_WR(bp, reg,
7642 REG_RD(bp, reg) &
7643 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7644
7645 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7646 REG_WR(bp, reg,
7647 REG_RD(bp, reg) &
7648 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7649
7650 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7651
7652 if (!CHIP_IS_E1x(bp)) {
7653 /* Bit-map indicating which L2 hdrs may appear after the
7654 * basic Ethernet header
7655 */
7656 if (IS_MF_AFEX(bp))
7657 REG_WR(bp, BP_PORT(bp) ?
7658 NIG_REG_P1_HDRS_AFTER_BASIC :
7659 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7660 else
7661 REG_WR(bp, BP_PORT(bp) ?
7662 NIG_REG_P1_HDRS_AFTER_BASIC :
7663 NIG_REG_P0_HDRS_AFTER_BASIC,
7664 IS_MF_SD(bp) ? 7 : 6);
7665
7666 if (CHIP_IS_E3(bp))
7667 REG_WR(bp, BP_PORT(bp) ?
7668 NIG_REG_LLH1_MF_MODE :
7669 NIG_REG_LLH_MF_MODE, IS_MF(bp));
7670 }
7671 if (!CHIP_IS_E3(bp))
7672 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7673
7674 if (!CHIP_IS_E1(bp)) {
7675 /* 0x2 disable mf_ov, 0x1 enable */
7676 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7677 (IS_MF_SD(bp) ? 0x1 : 0x2));
7678
7679 if (!CHIP_IS_E1x(bp)) {
7680 val = 0;
7681 switch (bp->mf_mode) {
7682 case MULTI_FUNCTION_SD:
7683 val = 1;
7684 break;
7685 case MULTI_FUNCTION_SI:
7686 case MULTI_FUNCTION_AFEX:
7687 val = 2;
7688 break;
7689 }
7690
7691 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7692 NIG_REG_LLH0_CLS_TYPE), val);
7693 }
7694 {
7695 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7696 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7697 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7698 }
7699 }
7700
7701 /* If SPIO5 is set to generate interrupts, enable it for this port */
7702 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7703 if (val & MISC_SPIO_SPIO5) {
7704 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7705 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7706 val = REG_RD(bp, reg_addr);
7707 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7708 REG_WR(bp, reg_addr, val);
7709 }
7710
7711 return 0;
7712 }
7713
7714 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7715 {
7716 int reg;
7717 u32 wb_write[2];
7718
7719 if (CHIP_IS_E1(bp))
7720 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7721 else
7722 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7723
7724 wb_write[0] = ONCHIP_ADDR1(addr);
7725 wb_write[1] = ONCHIP_ADDR2(addr);
7726 REG_WR_DMAE(bp, reg, wb_write, 2);
7727 }
7728
7729 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7730 {
7731 u32 data, ctl, cnt = 100;
7732 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7733 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7734 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7735 u32 sb_bit = 1 << (idu_sb_id%32);
7736 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7737 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7738
7739 /* Not supported in BC mode */
7740 if (CHIP_INT_MODE_IS_BC(bp))
7741 return;
7742
7743 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7744 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7745 IGU_REGULAR_CLEANUP_SET |
7746 IGU_REGULAR_BCLEANUP;
7747
7748 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7749 func_encode << IGU_CTRL_REG_FID_SHIFT |
7750 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7751
7752 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7753 data, igu_addr_data);
7754 REG_WR(bp, igu_addr_data, data);
7755 mmiowb();
7756 barrier();
7757 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7758 ctl, igu_addr_ctl);
7759 REG_WR(bp, igu_addr_ctl, ctl);
7760 mmiowb();
7761 barrier();
7762
7763 /* wait for clean up to finish */
7764 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7765 msleep(20);
7766
7767 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7768 DP(NETIF_MSG_HW,
7769 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7770 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7771 }
7772 }
7773
7774 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7775 {
7776 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7777 }
7778
7779 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7780 {
7781 u32 i, base = FUNC_ILT_BASE(func);
7782 for (i = base; i < base + ILT_PER_FUNC; i++)
7783 bnx2x_ilt_wr(bp, i, 0);
7784 }
7785
7786 static void bnx2x_init_searcher(struct bnx2x *bp)
7787 {
7788 int port = BP_PORT(bp);
7789 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7790 /* T1 hash bits value determines the T1 number of entries */
7791 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7792 }
7793
7794 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7795 {
7796 int rc;
7797 struct bnx2x_func_state_params func_params = {NULL};
7798 struct bnx2x_func_switch_update_params *switch_update_params =
7799 &func_params.params.switch_update;
7800
7801 /* Prepare parameters for function state transitions */
7802 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7803 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7804
7805 func_params.f_obj = &bp->func_obj;
7806 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7807
7808 /* Function parameters */
7809 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7810 &switch_update_params->changes);
7811 if (suspend)
7812 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7813 &switch_update_params->changes);
7814
7815 rc = bnx2x_func_state_change(bp, &func_params);
7816
7817 return rc;
7818 }
7819
7820 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7821 {
7822 int rc, i, port = BP_PORT(bp);
7823 int vlan_en = 0, mac_en[NUM_MACS];
7824
7825 /* Close input from network */
7826 if (bp->mf_mode == SINGLE_FUNCTION) {
7827 bnx2x_set_rx_filter(&bp->link_params, 0);
7828 } else {
7829 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7830 NIG_REG_LLH0_FUNC_EN);
7831 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7832 NIG_REG_LLH0_FUNC_EN, 0);
7833 for (i = 0; i < NUM_MACS; i++) {
7834 mac_en[i] = REG_RD(bp, port ?
7835 (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7836 4 * i) :
7837 (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7838 4 * i));
7839 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7840 4 * i) :
7841 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7842 }
7843 }
7844
7845 /* Close BMC to host */
7846 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7847 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7848
7849 /* Suspend Tx switching to the PF. Completion of this ramrod
7850 * further guarantees that all the packets of that PF / child
7851 * VFs in BRB were processed by the Parser, so it is safe to
7852 * change the NIC_MODE register.
7853 */
7854 rc = bnx2x_func_switch_update(bp, 1);
7855 if (rc) {
7856 BNX2X_ERR("Can't suspend tx-switching!\n");
7857 return rc;
7858 }
7859
7860 /* Change NIC_MODE register */
7861 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7862
7863 /* Open input from network */
7864 if (bp->mf_mode == SINGLE_FUNCTION) {
7865 bnx2x_set_rx_filter(&bp->link_params, 1);
7866 } else {
7867 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7868 NIG_REG_LLH0_FUNC_EN, vlan_en);
7869 for (i = 0; i < NUM_MACS; i++) {
7870 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7871 4 * i) :
7872 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7873 mac_en[i]);
7874 }
7875 }
7876
7877 /* Enable BMC to host */
7878 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7879 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7880
7881 /* Resume Tx switching to the PF */
7882 rc = bnx2x_func_switch_update(bp, 0);
7883 if (rc) {
7884 BNX2X_ERR("Can't resume tx-switching!\n");
7885 return rc;
7886 }
7887
7888 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7889 return 0;
7890 }
7891
7892 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7893 {
7894 int rc;
7895
7896 bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7897
7898 if (CONFIGURE_NIC_MODE(bp)) {
7899 /* Configure searcher as part of function hw init */
7900 bnx2x_init_searcher(bp);
7901
7902 /* Reset NIC mode */
7903 rc = bnx2x_reset_nic_mode(bp);
7904 if (rc)
7905 BNX2X_ERR("Can't change NIC mode!\n");
7906 return rc;
7907 }
7908
7909 return 0;
7910 }
7911
7912 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7913 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7914 * the addresses of the transaction, resulting in was-error bit set in the pci
7915 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7916 * to clear the interrupt which detected this from the pglueb and the was done
7917 * bit
7918 */
7919 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7920 {
7921 if (!CHIP_IS_E1x(bp))
7922 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7923 1 << BP_ABS_FUNC(bp));
7924 }
7925
7926 static int bnx2x_init_hw_func(struct bnx2x *bp)
7927 {
7928 int port = BP_PORT(bp);
7929 int func = BP_FUNC(bp);
7930 int init_phase = PHASE_PF0 + func;
7931 struct bnx2x_ilt *ilt = BP_ILT(bp);
7932 u16 cdu_ilt_start;
7933 u32 addr, val;
7934 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7935 int i, main_mem_width, rc;
7936
7937 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7938
7939 /* FLR cleanup - hmmm */
7940 if (!CHIP_IS_E1x(bp)) {
7941 rc = bnx2x_pf_flr_clnup(bp);
7942 if (rc) {
7943 bnx2x_fw_dump(bp);
7944 return rc;
7945 }
7946 }
7947
7948 /* set MSI reconfigure capability */
7949 if (bp->common.int_block == INT_BLOCK_HC) {
7950 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7951 val = REG_RD(bp, addr);
7952 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7953 REG_WR(bp, addr, val);
7954 }
7955
7956 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7957 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7958
7959 ilt = BP_ILT(bp);
7960 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7961
7962 if (IS_SRIOV(bp))
7963 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7964 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7965
7966 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7967 * those of the VFs, so start line should be reset
7968 */
7969 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7970 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7971 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7972 ilt->lines[cdu_ilt_start + i].page_mapping =
7973 bp->context[i].cxt_mapping;
7974 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7975 }
7976
7977 bnx2x_ilt_init_op(bp, INITOP_SET);
7978
7979 if (!CONFIGURE_NIC_MODE(bp)) {
7980 bnx2x_init_searcher(bp);
7981 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7982 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7983 } else {
7984 /* Set NIC mode */
7985 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7986 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7987 }
7988
7989 if (!CHIP_IS_E1x(bp)) {
7990 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7991
7992 /* Turn on a single ISR mode in IGU if driver is going to use
7993 * INT#x or MSI
7994 */
7995 if (!(bp->flags & USING_MSIX_FLAG))
7996 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7997 /*
7998 * Timers workaround bug: function init part.
7999 * Need to wait 20msec after initializing ILT,
8000 * needed to make sure there are no requests in
8001 * one of the PXP internal queues with "old" ILT addresses
8002 */
8003 msleep(20);
8004 /*
8005 * Master enable - Due to WB DMAE writes performed before this
8006 * register is re-initialized as part of the regular function
8007 * init
8008 */
8009 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8010 /* Enable the function in IGU */
8011 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8012 }
8013
8014 bp->dmae_ready = 1;
8015
8016 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8017
8018 bnx2x_clean_pglue_errors(bp);
8019
8020 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8021 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8022 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8023 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8024 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8025 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8026 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8027 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8028 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8029 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8030 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8031 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8032 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8033
8034 if (!CHIP_IS_E1x(bp))
8035 REG_WR(bp, QM_REG_PF_EN, 1);
8036
8037 if (!CHIP_IS_E1x(bp)) {
8038 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8039 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8040 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8041 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8042 }
8043 bnx2x_init_block(bp, BLOCK_QM, init_phase);
8044
8045 bnx2x_init_block(bp, BLOCK_TM, init_phase);
8046 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8047 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8048
8049 bnx2x_iov_init_dq(bp);
8050
8051 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8052 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8053 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8054 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8055 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8056 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8057 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8058 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8059 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8060 if (!CHIP_IS_E1x(bp))
8061 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8062
8063 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8064
8065 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8066
8067 if (!CHIP_IS_E1x(bp))
8068 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8069
8070 if (IS_MF(bp)) {
8071 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8072 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8073 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8074 bp->mf_ov);
8075 }
8076 }
8077
8078 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8079
8080 /* HC init per function */
8081 if (bp->common.int_block == INT_BLOCK_HC) {
8082 if (CHIP_IS_E1H(bp)) {
8083 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8084
8085 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8086 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8087 }
8088 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8089
8090 } else {
8091 int num_segs, sb_idx, prod_offset;
8092
8093 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8094
8095 if (!CHIP_IS_E1x(bp)) {
8096 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8097 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8098 }
8099
8100 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8101
8102 if (!CHIP_IS_E1x(bp)) {
8103 int dsb_idx = 0;
8104 /**
8105 * Producer memory:
8106 * E2 mode: address 0-135 match to the mapping memory;
8107 * 136 - PF0 default prod; 137 - PF1 default prod;
8108 * 138 - PF2 default prod; 139 - PF3 default prod;
8109 * 140 - PF0 attn prod; 141 - PF1 attn prod;
8110 * 142 - PF2 attn prod; 143 - PF3 attn prod;
8111 * 144-147 reserved.
8112 *
8113 * E1.5 mode - In backward compatible mode;
8114 * for non default SB; each even line in the memory
8115 * holds the U producer and each odd line hold
8116 * the C producer. The first 128 producers are for
8117 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8118 * producers are for the DSB for each PF.
8119 * Each PF has five segments: (the order inside each
8120 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8121 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8122 * 144-147 attn prods;
8123 */
8124 /* non-default-status-blocks */
8125 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8126 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8127 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8128 prod_offset = (bp->igu_base_sb + sb_idx) *
8129 num_segs;
8130
8131 for (i = 0; i < num_segs; i++) {
8132 addr = IGU_REG_PROD_CONS_MEMORY +
8133 (prod_offset + i) * 4;
8134 REG_WR(bp, addr, 0);
8135 }
8136 /* send consumer update with value 0 */
8137 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8138 USTORM_ID, 0, IGU_INT_NOP, 1);
8139 bnx2x_igu_clear_sb(bp,
8140 bp->igu_base_sb + sb_idx);
8141 }
8142
8143 /* default-status-blocks */
8144 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8145 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8146
8147 if (CHIP_MODE_IS_4_PORT(bp))
8148 dsb_idx = BP_FUNC(bp);
8149 else
8150 dsb_idx = BP_VN(bp);
8151
8152 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8153 IGU_BC_BASE_DSB_PROD + dsb_idx :
8154 IGU_NORM_BASE_DSB_PROD + dsb_idx);
8155
8156 /*
8157 * igu prods come in chunks of E1HVN_MAX (4) -
8158 * does not matters what is the current chip mode
8159 */
8160 for (i = 0; i < (num_segs * E1HVN_MAX);
8161 i += E1HVN_MAX) {
8162 addr = IGU_REG_PROD_CONS_MEMORY +
8163 (prod_offset + i)*4;
8164 REG_WR(bp, addr, 0);
8165 }
8166 /* send consumer update with 0 */
8167 if (CHIP_INT_MODE_IS_BC(bp)) {
8168 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8169 USTORM_ID, 0, IGU_INT_NOP, 1);
8170 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8171 CSTORM_ID, 0, IGU_INT_NOP, 1);
8172 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8173 XSTORM_ID, 0, IGU_INT_NOP, 1);
8174 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8175 TSTORM_ID, 0, IGU_INT_NOP, 1);
8176 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8177 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8178 } else {
8179 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8180 USTORM_ID, 0, IGU_INT_NOP, 1);
8181 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8182 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8183 }
8184 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8185
8186 /* !!! These should become driver const once
8187 rf-tool supports split-68 const */
8188 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8189 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8190 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8191 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8192 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8193 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8194 }
8195 }
8196
8197 /* Reset PCIE errors for debug */
8198 REG_WR(bp, 0x2114, 0xffffffff);
8199 REG_WR(bp, 0x2120, 0xffffffff);
8200
8201 if (CHIP_IS_E1x(bp)) {
8202 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8203 main_mem_base = HC_REG_MAIN_MEMORY +
8204 BP_PORT(bp) * (main_mem_size * 4);
8205 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8206 main_mem_width = 8;
8207
8208 val = REG_RD(bp, main_mem_prty_clr);
8209 if (val)
8210 DP(NETIF_MSG_HW,
8211 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8212 val);
8213
8214 /* Clear "false" parity errors in MSI-X table */
8215 for (i = main_mem_base;
8216 i < main_mem_base + main_mem_size * 4;
8217 i += main_mem_width) {
8218 bnx2x_read_dmae(bp, i, main_mem_width / 4);
8219 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8220 i, main_mem_width / 4);
8221 }
8222 /* Clear HC parity attention */
8223 REG_RD(bp, main_mem_prty_clr);
8224 }
8225
8226 #ifdef BNX2X_STOP_ON_ERROR
8227 /* Enable STORMs SP logging */
8228 REG_WR8(bp, BAR_USTRORM_INTMEM +
8229 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8230 REG_WR8(bp, BAR_TSTRORM_INTMEM +
8231 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8232 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8233 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8234 REG_WR8(bp, BAR_XSTRORM_INTMEM +
8235 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8236 #endif
8237
8238 bnx2x_phy_probe(&bp->link_params);
8239
8240 return 0;
8241 }
8242
8243 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8244 {
8245 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8246
8247 if (!CHIP_IS_E1x(bp))
8248 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8249 sizeof(struct host_hc_status_block_e2));
8250 else
8251 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8252 sizeof(struct host_hc_status_block_e1x));
8253
8254 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8255 }
8256
8257 void bnx2x_free_mem(struct bnx2x *bp)
8258 {
8259 int i;
8260
8261 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8262 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8263
8264 if (IS_VF(bp))
8265 return;
8266
8267 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8268 sizeof(struct host_sp_status_block));
8269
8270 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8271 sizeof(struct bnx2x_slowpath));
8272
8273 for (i = 0; i < L2_ILT_LINES(bp); i++)
8274 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8275 bp->context[i].size);
8276 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8277
8278 BNX2X_FREE(bp->ilt->lines);
8279
8280 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8281
8282 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8283 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8284
8285 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8286
8287 bnx2x_iov_free_mem(bp);
8288 }
8289
8290 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8291 {
8292 if (!CHIP_IS_E1x(bp)) {
8293 /* size = the status block + ramrod buffers */
8294 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8295 sizeof(struct host_hc_status_block_e2));
8296 if (!bp->cnic_sb.e2_sb)
8297 goto alloc_mem_err;
8298 } else {
8299 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8300 sizeof(struct host_hc_status_block_e1x));
8301 if (!bp->cnic_sb.e1x_sb)
8302 goto alloc_mem_err;
8303 }
8304
8305 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8306 /* allocate searcher T2 table, as it wasn't allocated before */
8307 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8308 if (!bp->t2)
8309 goto alloc_mem_err;
8310 }
8311
8312 /* write address to which L5 should insert its values */
8313 bp->cnic_eth_dev.addr_drv_info_to_mcp =
8314 &bp->slowpath->drv_info_to_mcp;
8315
8316 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8317 goto alloc_mem_err;
8318
8319 return 0;
8320
8321 alloc_mem_err:
8322 bnx2x_free_mem_cnic(bp);
8323 BNX2X_ERR("Can't allocate memory\n");
8324 return -ENOMEM;
8325 }
8326
8327 int bnx2x_alloc_mem(struct bnx2x *bp)
8328 {
8329 int i, allocated, context_size;
8330
8331 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8332 /* allocate searcher T2 table */
8333 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8334 if (!bp->t2)
8335 goto alloc_mem_err;
8336 }
8337
8338 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8339 sizeof(struct host_sp_status_block));
8340 if (!bp->def_status_blk)
8341 goto alloc_mem_err;
8342
8343 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8344 sizeof(struct bnx2x_slowpath));
8345 if (!bp->slowpath)
8346 goto alloc_mem_err;
8347
8348 /* Allocate memory for CDU context:
8349 * This memory is allocated separately and not in the generic ILT
8350 * functions because CDU differs in few aspects:
8351 * 1. There are multiple entities allocating memory for context -
8352 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8353 * its own ILT lines.
8354 * 2. Since CDU page-size is not a single 4KB page (which is the case
8355 * for the other ILT clients), to be efficient we want to support
8356 * allocation of sub-page-size in the last entry.
8357 * 3. Context pointers are used by the driver to pass to FW / update
8358 * the context (for the other ILT clients the pointers are used just to
8359 * free the memory during unload).
8360 */
8361 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8362
8363 for (i = 0, allocated = 0; allocated < context_size; i++) {
8364 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8365 (context_size - allocated));
8366 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8367 bp->context[i].size);
8368 if (!bp->context[i].vcxt)
8369 goto alloc_mem_err;
8370 allocated += bp->context[i].size;
8371 }
8372 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8373 GFP_KERNEL);
8374 if (!bp->ilt->lines)
8375 goto alloc_mem_err;
8376
8377 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8378 goto alloc_mem_err;
8379
8380 if (bnx2x_iov_alloc_mem(bp))
8381 goto alloc_mem_err;
8382
8383 /* Slow path ring */
8384 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8385 if (!bp->spq)
8386 goto alloc_mem_err;
8387
8388 /* EQ */
8389 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8390 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8391 if (!bp->eq_ring)
8392 goto alloc_mem_err;
8393
8394 return 0;
8395
8396 alloc_mem_err:
8397 bnx2x_free_mem(bp);
8398 BNX2X_ERR("Can't allocate memory\n");
8399 return -ENOMEM;
8400 }
8401
8402 /*
8403 * Init service functions
8404 */
8405
8406 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8407 struct bnx2x_vlan_mac_obj *obj, bool set,
8408 int mac_type, unsigned long *ramrod_flags)
8409 {
8410 int rc;
8411 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8412
8413 memset(&ramrod_param, 0, sizeof(ramrod_param));
8414
8415 /* Fill general parameters */
8416 ramrod_param.vlan_mac_obj = obj;
8417 ramrod_param.ramrod_flags = *ramrod_flags;
8418
8419 /* Fill a user request section if needed */
8420 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8421 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8422
8423 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8424
8425 /* Set the command: ADD or DEL */
8426 if (set)
8427 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8428 else
8429 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8430 }
8431
8432 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8433
8434 if (rc == -EEXIST) {
8435 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8436 /* do not treat adding same MAC as error */
8437 rc = 0;
8438 } else if (rc < 0)
8439 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8440
8441 return rc;
8442 }
8443
8444 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8445 struct bnx2x_vlan_mac_obj *obj, bool set,
8446 unsigned long *ramrod_flags)
8447 {
8448 int rc;
8449 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8450
8451 memset(&ramrod_param, 0, sizeof(ramrod_param));
8452
8453 /* Fill general parameters */
8454 ramrod_param.vlan_mac_obj = obj;
8455 ramrod_param.ramrod_flags = *ramrod_flags;
8456
8457 /* Fill a user request section if needed */
8458 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8459 ramrod_param.user_req.u.vlan.vlan = vlan;
8460 /* Set the command: ADD or DEL */
8461 if (set)
8462 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8463 else
8464 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8465 }
8466
8467 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8468
8469 if (rc == -EEXIST) {
8470 /* Do not treat adding same vlan as error. */
8471 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8472 rc = 0;
8473 } else if (rc < 0) {
8474 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8475 }
8476
8477 return rc;
8478 }
8479
8480 int bnx2x_del_all_macs(struct bnx2x *bp,
8481 struct bnx2x_vlan_mac_obj *mac_obj,
8482 int mac_type, bool wait_for_comp)
8483 {
8484 int rc;
8485 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8486
8487 /* Wait for completion of requested */
8488 if (wait_for_comp)
8489 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8490
8491 /* Set the mac type of addresses we want to clear */
8492 __set_bit(mac_type, &vlan_mac_flags);
8493
8494 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8495 if (rc < 0)
8496 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8497
8498 return rc;
8499 }
8500
8501 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8502 {
8503 if (IS_PF(bp)) {
8504 unsigned long ramrod_flags = 0;
8505
8506 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8507 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8508 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8509 &bp->sp_objs->mac_obj, set,
8510 BNX2X_ETH_MAC, &ramrod_flags);
8511 } else { /* vf */
8512 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8513 bp->fp->index, set);
8514 }
8515 }
8516
8517 int bnx2x_setup_leading(struct bnx2x *bp)
8518 {
8519 if (IS_PF(bp))
8520 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8521 else /* VF */
8522 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8523 }
8524
8525 /**
8526 * bnx2x_set_int_mode - configure interrupt mode
8527 *
8528 * @bp: driver handle
8529 *
8530 * In case of MSI-X it will also try to enable MSI-X.
8531 */
8532 int bnx2x_set_int_mode(struct bnx2x *bp)
8533 {
8534 int rc = 0;
8535
8536 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8537 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8538 return -EINVAL;
8539 }
8540
8541 switch (int_mode) {
8542 case BNX2X_INT_MODE_MSIX:
8543 /* attempt to enable msix */
8544 rc = bnx2x_enable_msix(bp);
8545
8546 /* msix attained */
8547 if (!rc)
8548 return 0;
8549
8550 /* vfs use only msix */
8551 if (rc && IS_VF(bp))
8552 return rc;
8553
8554 /* failed to enable multiple MSI-X */
8555 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8556 bp->num_queues,
8557 1 + bp->num_cnic_queues);
8558
8559 /* falling through... */
8560 case BNX2X_INT_MODE_MSI:
8561 bnx2x_enable_msi(bp);
8562
8563 /* falling through... */
8564 case BNX2X_INT_MODE_INTX:
8565 bp->num_ethernet_queues = 1;
8566 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8567 BNX2X_DEV_INFO("set number of queues to 1\n");
8568 break;
8569 default:
8570 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8571 return -EINVAL;
8572 }
8573 return 0;
8574 }
8575
8576 /* must be called prior to any HW initializations */
8577 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8578 {
8579 if (IS_SRIOV(bp))
8580 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8581 return L2_ILT_LINES(bp);
8582 }
8583
8584 void bnx2x_ilt_set_info(struct bnx2x *bp)
8585 {
8586 struct ilt_client_info *ilt_client;
8587 struct bnx2x_ilt *ilt = BP_ILT(bp);
8588 u16 line = 0;
8589
8590 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8591 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8592
8593 /* CDU */
8594 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8595 ilt_client->client_num = ILT_CLIENT_CDU;
8596 ilt_client->page_size = CDU_ILT_PAGE_SZ;
8597 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8598 ilt_client->start = line;
8599 line += bnx2x_cid_ilt_lines(bp);
8600
8601 if (CNIC_SUPPORT(bp))
8602 line += CNIC_ILT_LINES;
8603 ilt_client->end = line - 1;
8604
8605 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8606 ilt_client->start,
8607 ilt_client->end,
8608 ilt_client->page_size,
8609 ilt_client->flags,
8610 ilog2(ilt_client->page_size >> 12));
8611
8612 /* QM */
8613 if (QM_INIT(bp->qm_cid_count)) {
8614 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8615 ilt_client->client_num = ILT_CLIENT_QM;
8616 ilt_client->page_size = QM_ILT_PAGE_SZ;
8617 ilt_client->flags = 0;
8618 ilt_client->start = line;
8619
8620 /* 4 bytes for each cid */
8621 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8622 QM_ILT_PAGE_SZ);
8623
8624 ilt_client->end = line - 1;
8625
8626 DP(NETIF_MSG_IFUP,
8627 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8628 ilt_client->start,
8629 ilt_client->end,
8630 ilt_client->page_size,
8631 ilt_client->flags,
8632 ilog2(ilt_client->page_size >> 12));
8633 }
8634
8635 if (CNIC_SUPPORT(bp)) {
8636 /* SRC */
8637 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8638 ilt_client->client_num = ILT_CLIENT_SRC;
8639 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8640 ilt_client->flags = 0;
8641 ilt_client->start = line;
8642 line += SRC_ILT_LINES;
8643 ilt_client->end = line - 1;
8644
8645 DP(NETIF_MSG_IFUP,
8646 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8647 ilt_client->start,
8648 ilt_client->end,
8649 ilt_client->page_size,
8650 ilt_client->flags,
8651 ilog2(ilt_client->page_size >> 12));
8652
8653 /* TM */
8654 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8655 ilt_client->client_num = ILT_CLIENT_TM;
8656 ilt_client->page_size = TM_ILT_PAGE_SZ;
8657 ilt_client->flags = 0;
8658 ilt_client->start = line;
8659 line += TM_ILT_LINES;
8660 ilt_client->end = line - 1;
8661
8662 DP(NETIF_MSG_IFUP,
8663 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8664 ilt_client->start,
8665 ilt_client->end,
8666 ilt_client->page_size,
8667 ilt_client->flags,
8668 ilog2(ilt_client->page_size >> 12));
8669 }
8670
8671 BUG_ON(line > ILT_MAX_LINES);
8672 }
8673
8674 /**
8675 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8676 *
8677 * @bp: driver handle
8678 * @fp: pointer to fastpath
8679 * @init_params: pointer to parameters structure
8680 *
8681 * parameters configured:
8682 * - HC configuration
8683 * - Queue's CDU context
8684 */
8685 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8686 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8687 {
8688 u8 cos;
8689 int cxt_index, cxt_offset;
8690
8691 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8692 if (!IS_FCOE_FP(fp)) {
8693 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8694 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8695
8696 /* If HC is supported, enable host coalescing in the transition
8697 * to INIT state.
8698 */
8699 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8700 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8701
8702 /* HC rate */
8703 init_params->rx.hc_rate = bp->rx_ticks ?
8704 (1000000 / bp->rx_ticks) : 0;
8705 init_params->tx.hc_rate = bp->tx_ticks ?
8706 (1000000 / bp->tx_ticks) : 0;
8707
8708 /* FW SB ID */
8709 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8710 fp->fw_sb_id;
8711
8712 /*
8713 * CQ index among the SB indices: FCoE clients uses the default
8714 * SB, therefore it's different.
8715 */
8716 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8717 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8718 }
8719
8720 /* set maximum number of COSs supported by this queue */
8721 init_params->max_cos = fp->max_cos;
8722
8723 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8724 fp->index, init_params->max_cos);
8725
8726 /* set the context pointers queue object */
8727 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8728 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8729 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8730 ILT_PAGE_CIDS);
8731 init_params->cxts[cos] =
8732 &bp->context[cxt_index].vcxt[cxt_offset].eth;
8733 }
8734 }
8735
8736 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8737 struct bnx2x_queue_state_params *q_params,
8738 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8739 int tx_index, bool leading)
8740 {
8741 memset(tx_only_params, 0, sizeof(*tx_only_params));
8742
8743 /* Set the command */
8744 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8745
8746 /* Set tx-only QUEUE flags: don't zero statistics */
8747 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8748
8749 /* choose the index of the cid to send the slow path on */
8750 tx_only_params->cid_index = tx_index;
8751
8752 /* Set general TX_ONLY_SETUP parameters */
8753 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8754
8755 /* Set Tx TX_ONLY_SETUP parameters */
8756 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8757
8758 DP(NETIF_MSG_IFUP,
8759 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8760 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8761 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8762 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8763
8764 /* send the ramrod */
8765 return bnx2x_queue_state_change(bp, q_params);
8766 }
8767
8768 /**
8769 * bnx2x_setup_queue - setup queue
8770 *
8771 * @bp: driver handle
8772 * @fp: pointer to fastpath
8773 * @leading: is leading
8774 *
8775 * This function performs 2 steps in a Queue state machine
8776 * actually: 1) RESET->INIT 2) INIT->SETUP
8777 */
8778
8779 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8780 bool leading)
8781 {
8782 struct bnx2x_queue_state_params q_params = {NULL};
8783 struct bnx2x_queue_setup_params *setup_params =
8784 &q_params.params.setup;
8785 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8786 &q_params.params.tx_only;
8787 int rc;
8788 u8 tx_index;
8789
8790 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8791
8792 /* reset IGU state skip FCoE L2 queue */
8793 if (!IS_FCOE_FP(fp))
8794 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8795 IGU_INT_ENABLE, 0);
8796
8797 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8798 /* We want to wait for completion in this context */
8799 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8800
8801 /* Prepare the INIT parameters */
8802 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8803
8804 /* Set the command */
8805 q_params.cmd = BNX2X_Q_CMD_INIT;
8806
8807 /* Change the state to INIT */
8808 rc = bnx2x_queue_state_change(bp, &q_params);
8809 if (rc) {
8810 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8811 return rc;
8812 }
8813
8814 DP(NETIF_MSG_IFUP, "init complete\n");
8815
8816 /* Now move the Queue to the SETUP state... */
8817 memset(setup_params, 0, sizeof(*setup_params));
8818
8819 /* Set QUEUE flags */
8820 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8821
8822 /* Set general SETUP parameters */
8823 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8824 FIRST_TX_COS_INDEX);
8825
8826 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8827 &setup_params->rxq_params);
8828
8829 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8830 FIRST_TX_COS_INDEX);
8831
8832 /* Set the command */
8833 q_params.cmd = BNX2X_Q_CMD_SETUP;
8834
8835 if (IS_FCOE_FP(fp))
8836 bp->fcoe_init = true;
8837
8838 /* Change the state to SETUP */
8839 rc = bnx2x_queue_state_change(bp, &q_params);
8840 if (rc) {
8841 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8842 return rc;
8843 }
8844
8845 /* loop through the relevant tx-only indices */
8846 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8847 tx_index < fp->max_cos;
8848 tx_index++) {
8849
8850 /* prepare and send tx-only ramrod*/
8851 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8852 tx_only_params, tx_index, leading);
8853 if (rc) {
8854 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8855 fp->index, tx_index);
8856 return rc;
8857 }
8858 }
8859
8860 return rc;
8861 }
8862
8863 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8864 {
8865 struct bnx2x_fastpath *fp = &bp->fp[index];
8866 struct bnx2x_fp_txdata *txdata;
8867 struct bnx2x_queue_state_params q_params = {NULL};
8868 int rc, tx_index;
8869
8870 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8871
8872 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8873 /* We want to wait for completion in this context */
8874 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8875
8876 /* close tx-only connections */
8877 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8878 tx_index < fp->max_cos;
8879 tx_index++){
8880
8881 /* ascertain this is a normal queue*/
8882 txdata = fp->txdata_ptr[tx_index];
8883
8884 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8885 txdata->txq_index);
8886
8887 /* send halt terminate on tx-only connection */
8888 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8889 memset(&q_params.params.terminate, 0,
8890 sizeof(q_params.params.terminate));
8891 q_params.params.terminate.cid_index = tx_index;
8892
8893 rc = bnx2x_queue_state_change(bp, &q_params);
8894 if (rc)
8895 return rc;
8896
8897 /* send halt terminate on tx-only connection */
8898 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8899 memset(&q_params.params.cfc_del, 0,
8900 sizeof(q_params.params.cfc_del));
8901 q_params.params.cfc_del.cid_index = tx_index;
8902 rc = bnx2x_queue_state_change(bp, &q_params);
8903 if (rc)
8904 return rc;
8905 }
8906 /* Stop the primary connection: */
8907 /* ...halt the connection */
8908 q_params.cmd = BNX2X_Q_CMD_HALT;
8909 rc = bnx2x_queue_state_change(bp, &q_params);
8910 if (rc)
8911 return rc;
8912
8913 /* ...terminate the connection */
8914 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8915 memset(&q_params.params.terminate, 0,
8916 sizeof(q_params.params.terminate));
8917 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8918 rc = bnx2x_queue_state_change(bp, &q_params);
8919 if (rc)
8920 return rc;
8921 /* ...delete cfc entry */
8922 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8923 memset(&q_params.params.cfc_del, 0,
8924 sizeof(q_params.params.cfc_del));
8925 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8926 return bnx2x_queue_state_change(bp, &q_params);
8927 }
8928
8929 static void bnx2x_reset_func(struct bnx2x *bp)
8930 {
8931 int port = BP_PORT(bp);
8932 int func = BP_FUNC(bp);
8933 int i;
8934
8935 /* Disable the function in the FW */
8936 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8937 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8938 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8939 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8940
8941 /* FP SBs */
8942 for_each_eth_queue(bp, i) {
8943 struct bnx2x_fastpath *fp = &bp->fp[i];
8944 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8945 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8946 SB_DISABLED);
8947 }
8948
8949 if (CNIC_LOADED(bp))
8950 /* CNIC SB */
8951 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8952 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8953 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8954
8955 /* SP SB */
8956 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8957 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8958 SB_DISABLED);
8959
8960 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8961 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8962 0);
8963
8964 /* Configure IGU */
8965 if (bp->common.int_block == INT_BLOCK_HC) {
8966 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8967 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8968 } else {
8969 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8970 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8971 }
8972
8973 if (CNIC_LOADED(bp)) {
8974 /* Disable Timer scan */
8975 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8976 /*
8977 * Wait for at least 10ms and up to 2 second for the timers
8978 * scan to complete
8979 */
8980 for (i = 0; i < 200; i++) {
8981 usleep_range(10000, 20000);
8982 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8983 break;
8984 }
8985 }
8986 /* Clear ILT */
8987 bnx2x_clear_func_ilt(bp, func);
8988
8989 /* Timers workaround bug for E2: if this is vnic-3,
8990 * we need to set the entire ilt range for this timers.
8991 */
8992 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8993 struct ilt_client_info ilt_cli;
8994 /* use dummy TM client */
8995 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8996 ilt_cli.start = 0;
8997 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8998 ilt_cli.client_num = ILT_CLIENT_TM;
8999
9000 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9001 }
9002
9003 /* this assumes that reset_port() called before reset_func()*/
9004 if (!CHIP_IS_E1x(bp))
9005 bnx2x_pf_disable(bp);
9006
9007 bp->dmae_ready = 0;
9008 }
9009
9010 static void bnx2x_reset_port(struct bnx2x *bp)
9011 {
9012 int port = BP_PORT(bp);
9013 u32 val;
9014
9015 /* Reset physical Link */
9016 bnx2x__link_reset(bp);
9017
9018 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9019
9020 /* Do not rcv packets to BRB */
9021 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9022 /* Do not direct rcv packets that are not for MCP to the BRB */
9023 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9024 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9025
9026 /* Configure AEU */
9027 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9028
9029 msleep(100);
9030 /* Check for BRB port occupancy */
9031 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9032 if (val)
9033 DP(NETIF_MSG_IFDOWN,
9034 "BRB1 is not empty %d blocks are occupied\n", val);
9035
9036 /* TODO: Close Doorbell port? */
9037 }
9038
9039 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9040 {
9041 struct bnx2x_func_state_params func_params = {NULL};
9042
9043 /* Prepare parameters for function state transitions */
9044 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9045
9046 func_params.f_obj = &bp->func_obj;
9047 func_params.cmd = BNX2X_F_CMD_HW_RESET;
9048
9049 func_params.params.hw_init.load_phase = load_code;
9050
9051 return bnx2x_func_state_change(bp, &func_params);
9052 }
9053
9054 static int bnx2x_func_stop(struct bnx2x *bp)
9055 {
9056 struct bnx2x_func_state_params func_params = {NULL};
9057 int rc;
9058
9059 /* Prepare parameters for function state transitions */
9060 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9061 func_params.f_obj = &bp->func_obj;
9062 func_params.cmd = BNX2X_F_CMD_STOP;
9063
9064 /*
9065 * Try to stop the function the 'good way'. If fails (in case
9066 * of a parity error during bnx2x_chip_cleanup()) and we are
9067 * not in a debug mode, perform a state transaction in order to
9068 * enable further HW_RESET transaction.
9069 */
9070 rc = bnx2x_func_state_change(bp, &func_params);
9071 if (rc) {
9072 #ifdef BNX2X_STOP_ON_ERROR
9073 return rc;
9074 #else
9075 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9076 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9077 return bnx2x_func_state_change(bp, &func_params);
9078 #endif
9079 }
9080
9081 return 0;
9082 }
9083
9084 /**
9085 * bnx2x_send_unload_req - request unload mode from the MCP.
9086 *
9087 * @bp: driver handle
9088 * @unload_mode: requested function's unload mode
9089 *
9090 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9091 */
9092 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9093 {
9094 u32 reset_code = 0;
9095 int port = BP_PORT(bp);
9096
9097 /* Select the UNLOAD request mode */
9098 if (unload_mode == UNLOAD_NORMAL)
9099 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9100
9101 else if (bp->flags & NO_WOL_FLAG)
9102 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9103
9104 else if (bp->wol) {
9105 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9106 u8 *mac_addr = bp->dev->dev_addr;
9107 struct pci_dev *pdev = bp->pdev;
9108 u32 val;
9109 u16 pmc;
9110
9111 /* The mac address is written to entries 1-4 to
9112 * preserve entry 0 which is used by the PMF
9113 */
9114 u8 entry = (BP_VN(bp) + 1)*8;
9115
9116 val = (mac_addr[0] << 8) | mac_addr[1];
9117 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9118
9119 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9120 (mac_addr[4] << 8) | mac_addr[5];
9121 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9122
9123 /* Enable the PME and clear the status */
9124 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9125 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9126 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9127
9128 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9129
9130 } else
9131 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9132
9133 /* Send the request to the MCP */
9134 if (!BP_NOMCP(bp))
9135 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9136 else {
9137 int path = BP_PATH(bp);
9138
9139 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
9140 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9141 bnx2x_load_count[path][2]);
9142 bnx2x_load_count[path][0]--;
9143 bnx2x_load_count[path][1 + port]--;
9144 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
9145 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9146 bnx2x_load_count[path][2]);
9147 if (bnx2x_load_count[path][0] == 0)
9148 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9149 else if (bnx2x_load_count[path][1 + port] == 0)
9150 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9151 else
9152 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9153 }
9154
9155 return reset_code;
9156 }
9157
9158 /**
9159 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9160 *
9161 * @bp: driver handle
9162 * @keep_link: true iff link should be kept up
9163 */
9164 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9165 {
9166 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9167
9168 /* Report UNLOAD_DONE to MCP */
9169 if (!BP_NOMCP(bp))
9170 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9171 }
9172
9173 static int bnx2x_func_wait_started(struct bnx2x *bp)
9174 {
9175 int tout = 50;
9176 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9177
9178 if (!bp->port.pmf)
9179 return 0;
9180
9181 /*
9182 * (assumption: No Attention from MCP at this stage)
9183 * PMF probably in the middle of TX disable/enable transaction
9184 * 1. Sync IRS for default SB
9185 * 2. Sync SP queue - this guarantees us that attention handling started
9186 * 3. Wait, that TX disable/enable transaction completes
9187 *
9188 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9189 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9190 * received completion for the transaction the state is TX_STOPPED.
9191 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9192 * transaction.
9193 */
9194
9195 /* make sure default SB ISR is done */
9196 if (msix)
9197 synchronize_irq(bp->msix_table[0].vector);
9198 else
9199 synchronize_irq(bp->pdev->irq);
9200
9201 flush_workqueue(bnx2x_wq);
9202 flush_workqueue(bnx2x_iov_wq);
9203
9204 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9205 BNX2X_F_STATE_STARTED && tout--)
9206 msleep(20);
9207
9208 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9209 BNX2X_F_STATE_STARTED) {
9210 #ifdef BNX2X_STOP_ON_ERROR
9211 BNX2X_ERR("Wrong function state\n");
9212 return -EBUSY;
9213 #else
9214 /*
9215 * Failed to complete the transaction in a "good way"
9216 * Force both transactions with CLR bit
9217 */
9218 struct bnx2x_func_state_params func_params = {NULL};
9219
9220 DP(NETIF_MSG_IFDOWN,
9221 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9222
9223 func_params.f_obj = &bp->func_obj;
9224 __set_bit(RAMROD_DRV_CLR_ONLY,
9225 &func_params.ramrod_flags);
9226
9227 /* STARTED-->TX_ST0PPED */
9228 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9229 bnx2x_func_state_change(bp, &func_params);
9230
9231 /* TX_ST0PPED-->STARTED */
9232 func_params.cmd = BNX2X_F_CMD_TX_START;
9233 return bnx2x_func_state_change(bp, &func_params);
9234 #endif
9235 }
9236
9237 return 0;
9238 }
9239
9240 static void bnx2x_disable_ptp(struct bnx2x *bp)
9241 {
9242 int port = BP_PORT(bp);
9243
9244 /* Disable sending PTP packets to host */
9245 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9246 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9247
9248 /* Reset PTP event detection rules */
9249 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9250 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9251 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9252 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9253 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9254 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9255 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9256 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9257
9258 /* Disable the PTP feature */
9259 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9260 NIG_REG_P0_PTP_EN, 0x0);
9261 }
9262
9263 /* Called during unload, to stop PTP-related stuff */
9264 static void bnx2x_stop_ptp(struct bnx2x *bp)
9265 {
9266 /* Cancel PTP work queue. Should be done after the Tx queues are
9267 * drained to prevent additional scheduling.
9268 */
9269 cancel_work_sync(&bp->ptp_task);
9270
9271 if (bp->ptp_tx_skb) {
9272 dev_kfree_skb_any(bp->ptp_tx_skb);
9273 bp->ptp_tx_skb = NULL;
9274 }
9275
9276 /* Disable PTP in HW */
9277 bnx2x_disable_ptp(bp);
9278
9279 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9280 }
9281
9282 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9283 {
9284 int port = BP_PORT(bp);
9285 int i, rc = 0;
9286 u8 cos;
9287 struct bnx2x_mcast_ramrod_params rparam = {NULL};
9288 u32 reset_code;
9289
9290 /* Wait until tx fastpath tasks complete */
9291 for_each_tx_queue(bp, i) {
9292 struct bnx2x_fastpath *fp = &bp->fp[i];
9293
9294 for_each_cos_in_tx_queue(fp, cos)
9295 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9296 #ifdef BNX2X_STOP_ON_ERROR
9297 if (rc)
9298 return;
9299 #endif
9300 }
9301
9302 /* Give HW time to discard old tx messages */
9303 usleep_range(1000, 2000);
9304
9305 /* Clean all ETH MACs */
9306 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9307 false);
9308 if (rc < 0)
9309 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9310
9311 /* Clean up UC list */
9312 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9313 true);
9314 if (rc < 0)
9315 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9316 rc);
9317
9318 /* Disable LLH */
9319 if (!CHIP_IS_E1(bp))
9320 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9321
9322 /* Set "drop all" (stop Rx).
9323 * We need to take a netif_addr_lock() here in order to prevent
9324 * a race between the completion code and this code.
9325 */
9326 netif_addr_lock_bh(bp->dev);
9327 /* Schedule the rx_mode command */
9328 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9329 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9330 else
9331 bnx2x_set_storm_rx_mode(bp);
9332
9333 /* Cleanup multicast configuration */
9334 rparam.mcast_obj = &bp->mcast_obj;
9335 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9336 if (rc < 0)
9337 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9338
9339 netif_addr_unlock_bh(bp->dev);
9340
9341 bnx2x_iov_chip_cleanup(bp);
9342
9343 /*
9344 * Send the UNLOAD_REQUEST to the MCP. This will return if
9345 * this function should perform FUNC, PORT or COMMON HW
9346 * reset.
9347 */
9348 reset_code = bnx2x_send_unload_req(bp, unload_mode);
9349
9350 /*
9351 * (assumption: No Attention from MCP at this stage)
9352 * PMF probably in the middle of TX disable/enable transaction
9353 */
9354 rc = bnx2x_func_wait_started(bp);
9355 if (rc) {
9356 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9357 #ifdef BNX2X_STOP_ON_ERROR
9358 return;
9359 #endif
9360 }
9361
9362 /* Close multi and leading connections
9363 * Completions for ramrods are collected in a synchronous way
9364 */
9365 for_each_eth_queue(bp, i)
9366 if (bnx2x_stop_queue(bp, i))
9367 #ifdef BNX2X_STOP_ON_ERROR
9368 return;
9369 #else
9370 goto unload_error;
9371 #endif
9372
9373 if (CNIC_LOADED(bp)) {
9374 for_each_cnic_queue(bp, i)
9375 if (bnx2x_stop_queue(bp, i))
9376 #ifdef BNX2X_STOP_ON_ERROR
9377 return;
9378 #else
9379 goto unload_error;
9380 #endif
9381 }
9382
9383 /* If SP settings didn't get completed so far - something
9384 * very wrong has happen.
9385 */
9386 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9387 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9388
9389 #ifndef BNX2X_STOP_ON_ERROR
9390 unload_error:
9391 #endif
9392 rc = bnx2x_func_stop(bp);
9393 if (rc) {
9394 BNX2X_ERR("Function stop failed!\n");
9395 #ifdef BNX2X_STOP_ON_ERROR
9396 return;
9397 #endif
9398 }
9399
9400 /* stop_ptp should be after the Tx queues are drained to prevent
9401 * scheduling to the cancelled PTP work queue. It should also be after
9402 * function stop ramrod is sent, since as part of this ramrod FW access
9403 * PTP registers.
9404 */
9405 if (bp->flags & PTP_SUPPORTED)
9406 bnx2x_stop_ptp(bp);
9407
9408 /* Disable HW interrupts, NAPI */
9409 bnx2x_netif_stop(bp, 1);
9410 /* Delete all NAPI objects */
9411 bnx2x_del_all_napi(bp);
9412 if (CNIC_LOADED(bp))
9413 bnx2x_del_all_napi_cnic(bp);
9414
9415 /* Release IRQs */
9416 bnx2x_free_irq(bp);
9417
9418 /* Reset the chip */
9419 rc = bnx2x_reset_hw(bp, reset_code);
9420 if (rc)
9421 BNX2X_ERR("HW_RESET failed\n");
9422
9423 /* Report UNLOAD_DONE to MCP */
9424 bnx2x_send_unload_done(bp, keep_link);
9425 }
9426
9427 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9428 {
9429 u32 val;
9430
9431 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9432
9433 if (CHIP_IS_E1(bp)) {
9434 int port = BP_PORT(bp);
9435 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9436 MISC_REG_AEU_MASK_ATTN_FUNC_0;
9437
9438 val = REG_RD(bp, addr);
9439 val &= ~(0x300);
9440 REG_WR(bp, addr, val);
9441 } else {
9442 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9443 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9444 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9445 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9446 }
9447 }
9448
9449 /* Close gates #2, #3 and #4: */
9450 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9451 {
9452 u32 val;
9453
9454 /* Gates #2 and #4a are closed/opened for "not E1" only */
9455 if (!CHIP_IS_E1(bp)) {
9456 /* #4 */
9457 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9458 /* #2 */
9459 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9460 }
9461
9462 /* #3 */
9463 if (CHIP_IS_E1x(bp)) {
9464 /* Prevent interrupts from HC on both ports */
9465 val = REG_RD(bp, HC_REG_CONFIG_1);
9466 REG_WR(bp, HC_REG_CONFIG_1,
9467 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9468 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9469
9470 val = REG_RD(bp, HC_REG_CONFIG_0);
9471 REG_WR(bp, HC_REG_CONFIG_0,
9472 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9473 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9474 } else {
9475 /* Prevent incoming interrupts in IGU */
9476 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9477
9478 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9479 (!close) ?
9480 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9481 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9482 }
9483
9484 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9485 close ? "closing" : "opening");
9486 mmiowb();
9487 }
9488
9489 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
9490
9491 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9492 {
9493 /* Do some magic... */
9494 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9495 *magic_val = val & SHARED_MF_CLP_MAGIC;
9496 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9497 }
9498
9499 /**
9500 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9501 *
9502 * @bp: driver handle
9503 * @magic_val: old value of the `magic' bit.
9504 */
9505 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9506 {
9507 /* Restore the `magic' bit value... */
9508 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9509 MF_CFG_WR(bp, shared_mf_config.clp_mb,
9510 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9511 }
9512
9513 /**
9514 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9515 *
9516 * @bp: driver handle
9517 * @magic_val: old value of 'magic' bit.
9518 *
9519 * Takes care of CLP configurations.
9520 */
9521 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9522 {
9523 u32 shmem;
9524 u32 validity_offset;
9525
9526 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9527
9528 /* Set `magic' bit in order to save MF config */
9529 if (!CHIP_IS_E1(bp))
9530 bnx2x_clp_reset_prep(bp, magic_val);
9531
9532 /* Get shmem offset */
9533 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9534 validity_offset =
9535 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9536
9537 /* Clear validity map flags */
9538 if (shmem > 0)
9539 REG_WR(bp, shmem + validity_offset, 0);
9540 }
9541
9542 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9543 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9544
9545 /**
9546 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9547 *
9548 * @bp: driver handle
9549 */
9550 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9551 {
9552 /* special handling for emulation and FPGA,
9553 wait 10 times longer */
9554 if (CHIP_REV_IS_SLOW(bp))
9555 msleep(MCP_ONE_TIMEOUT*10);
9556 else
9557 msleep(MCP_ONE_TIMEOUT);
9558 }
9559
9560 /*
9561 * initializes bp->common.shmem_base and waits for validity signature to appear
9562 */
9563 static int bnx2x_init_shmem(struct bnx2x *bp)
9564 {
9565 int cnt = 0;
9566 u32 val = 0;
9567
9568 do {
9569 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9570 if (bp->common.shmem_base) {
9571 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9572 if (val & SHR_MEM_VALIDITY_MB)
9573 return 0;
9574 }
9575
9576 bnx2x_mcp_wait_one(bp);
9577
9578 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9579
9580 BNX2X_ERR("BAD MCP validity signature\n");
9581
9582 return -ENODEV;
9583 }
9584
9585 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9586 {
9587 int rc = bnx2x_init_shmem(bp);
9588
9589 /* Restore the `magic' bit value */
9590 if (!CHIP_IS_E1(bp))
9591 bnx2x_clp_reset_done(bp, magic_val);
9592
9593 return rc;
9594 }
9595
9596 static void bnx2x_pxp_prep(struct bnx2x *bp)
9597 {
9598 if (!CHIP_IS_E1(bp)) {
9599 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9600 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9601 mmiowb();
9602 }
9603 }
9604
9605 /*
9606 * Reset the whole chip except for:
9607 * - PCIE core
9608 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9609 * one reset bit)
9610 * - IGU
9611 * - MISC (including AEU)
9612 * - GRC
9613 * - RBCN, RBCP
9614 */
9615 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9616 {
9617 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9618 u32 global_bits2, stay_reset2;
9619
9620 /*
9621 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9622 * (per chip) blocks.
9623 */
9624 global_bits2 =
9625 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9626 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9627
9628 /* Don't reset the following blocks.
9629 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9630 * reset, as in 4 port device they might still be owned
9631 * by the MCP (there is only one leader per path).
9632 */
9633 not_reset_mask1 =
9634 MISC_REGISTERS_RESET_REG_1_RST_HC |
9635 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9636 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9637
9638 not_reset_mask2 =
9639 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9640 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9641 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9642 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9643 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9644 MISC_REGISTERS_RESET_REG_2_RST_GRC |
9645 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9646 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9647 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9648 MISC_REGISTERS_RESET_REG_2_PGLC |
9649 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9650 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9651 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9652 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9653 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9654 MISC_REGISTERS_RESET_REG_2_UMAC1;
9655
9656 /*
9657 * Keep the following blocks in reset:
9658 * - all xxMACs are handled by the bnx2x_link code.
9659 */
9660 stay_reset2 =
9661 MISC_REGISTERS_RESET_REG_2_XMAC |
9662 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9663
9664 /* Full reset masks according to the chip */
9665 reset_mask1 = 0xffffffff;
9666
9667 if (CHIP_IS_E1(bp))
9668 reset_mask2 = 0xffff;
9669 else if (CHIP_IS_E1H(bp))
9670 reset_mask2 = 0x1ffff;
9671 else if (CHIP_IS_E2(bp))
9672 reset_mask2 = 0xfffff;
9673 else /* CHIP_IS_E3 */
9674 reset_mask2 = 0x3ffffff;
9675
9676 /* Don't reset global blocks unless we need to */
9677 if (!global)
9678 reset_mask2 &= ~global_bits2;
9679
9680 /*
9681 * In case of attention in the QM, we need to reset PXP
9682 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9683 * because otherwise QM reset would release 'close the gates' shortly
9684 * before resetting the PXP, then the PSWRQ would send a write
9685 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9686 * read the payload data from PSWWR, but PSWWR would not
9687 * respond. The write queue in PGLUE would stuck, dmae commands
9688 * would not return. Therefore it's important to reset the second
9689 * reset register (containing the
9690 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9691 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9692 * bit).
9693 */
9694 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9695 reset_mask2 & (~not_reset_mask2));
9696
9697 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9698 reset_mask1 & (~not_reset_mask1));
9699
9700 barrier();
9701 mmiowb();
9702
9703 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9704 reset_mask2 & (~stay_reset2));
9705
9706 barrier();
9707 mmiowb();
9708
9709 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9710 mmiowb();
9711 }
9712
9713 /**
9714 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9715 * It should get cleared in no more than 1s.
9716 *
9717 * @bp: driver handle
9718 *
9719 * It should get cleared in no more than 1s. Returns 0 if
9720 * pending writes bit gets cleared.
9721 */
9722 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9723 {
9724 u32 cnt = 1000;
9725 u32 pend_bits = 0;
9726
9727 do {
9728 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9729
9730 if (pend_bits == 0)
9731 break;
9732
9733 usleep_range(1000, 2000);
9734 } while (cnt-- > 0);
9735
9736 if (cnt <= 0) {
9737 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9738 pend_bits);
9739 return -EBUSY;
9740 }
9741
9742 return 0;
9743 }
9744
9745 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9746 {
9747 int cnt = 1000;
9748 u32 val = 0;
9749 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9750 u32 tags_63_32 = 0;
9751
9752 /* Empty the Tetris buffer, wait for 1s */
9753 do {
9754 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9755 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9756 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9757 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9758 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9759 if (CHIP_IS_E3(bp))
9760 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9761
9762 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9763 ((port_is_idle_0 & 0x1) == 0x1) &&
9764 ((port_is_idle_1 & 0x1) == 0x1) &&
9765 (pgl_exp_rom2 == 0xffffffff) &&
9766 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9767 break;
9768 usleep_range(1000, 2000);
9769 } while (cnt-- > 0);
9770
9771 if (cnt <= 0) {
9772 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9773 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9774 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9775 pgl_exp_rom2);
9776 return -EAGAIN;
9777 }
9778
9779 barrier();
9780
9781 /* Close gates #2, #3 and #4 */
9782 bnx2x_set_234_gates(bp, true);
9783
9784 /* Poll for IGU VQs for 57712 and newer chips */
9785 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9786 return -EAGAIN;
9787
9788 /* TBD: Indicate that "process kill" is in progress to MCP */
9789
9790 /* Clear "unprepared" bit */
9791 REG_WR(bp, MISC_REG_UNPREPARED, 0);
9792 barrier();
9793
9794 /* Make sure all is written to the chip before the reset */
9795 mmiowb();
9796
9797 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9798 * PSWHST, GRC and PSWRD Tetris buffer.
9799 */
9800 usleep_range(1000, 2000);
9801
9802 /* Prepare to chip reset: */
9803 /* MCP */
9804 if (global)
9805 bnx2x_reset_mcp_prep(bp, &val);
9806
9807 /* PXP */
9808 bnx2x_pxp_prep(bp);
9809 barrier();
9810
9811 /* reset the chip */
9812 bnx2x_process_kill_chip_reset(bp, global);
9813 barrier();
9814
9815 /* clear errors in PGB */
9816 if (!CHIP_IS_E1x(bp))
9817 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9818
9819 /* Recover after reset: */
9820 /* MCP */
9821 if (global && bnx2x_reset_mcp_comp(bp, val))
9822 return -EAGAIN;
9823
9824 /* TBD: Add resetting the NO_MCP mode DB here */
9825
9826 /* Open the gates #2, #3 and #4 */
9827 bnx2x_set_234_gates(bp, false);
9828
9829 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9830 * reset state, re-enable attentions. */
9831
9832 return 0;
9833 }
9834
9835 static int bnx2x_leader_reset(struct bnx2x *bp)
9836 {
9837 int rc = 0;
9838 bool global = bnx2x_reset_is_global(bp);
9839 u32 load_code;
9840
9841 /* if not going to reset MCP - load "fake" driver to reset HW while
9842 * driver is owner of the HW
9843 */
9844 if (!global && !BP_NOMCP(bp)) {
9845 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9846 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9847 if (!load_code) {
9848 BNX2X_ERR("MCP response failure, aborting\n");
9849 rc = -EAGAIN;
9850 goto exit_leader_reset;
9851 }
9852 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9853 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9854 BNX2X_ERR("MCP unexpected resp, aborting\n");
9855 rc = -EAGAIN;
9856 goto exit_leader_reset2;
9857 }
9858 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9859 if (!load_code) {
9860 BNX2X_ERR("MCP response failure, aborting\n");
9861 rc = -EAGAIN;
9862 goto exit_leader_reset2;
9863 }
9864 }
9865
9866 /* Try to recover after the failure */
9867 if (bnx2x_process_kill(bp, global)) {
9868 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9869 BP_PATH(bp));
9870 rc = -EAGAIN;
9871 goto exit_leader_reset2;
9872 }
9873
9874 /*
9875 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9876 * state.
9877 */
9878 bnx2x_set_reset_done(bp);
9879 if (global)
9880 bnx2x_clear_reset_global(bp);
9881
9882 exit_leader_reset2:
9883 /* unload "fake driver" if it was loaded */
9884 if (!global && !BP_NOMCP(bp)) {
9885 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9886 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9887 }
9888 exit_leader_reset:
9889 bp->is_leader = 0;
9890 bnx2x_release_leader_lock(bp);
9891 smp_mb();
9892 return rc;
9893 }
9894
9895 static void bnx2x_recovery_failed(struct bnx2x *bp)
9896 {
9897 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9898
9899 /* Disconnect this device */
9900 netif_device_detach(bp->dev);
9901
9902 /*
9903 * Block ifup for all function on this engine until "process kill"
9904 * or power cycle.
9905 */
9906 bnx2x_set_reset_in_progress(bp);
9907
9908 /* Shut down the power */
9909 bnx2x_set_power_state(bp, PCI_D3hot);
9910
9911 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9912
9913 smp_mb();
9914 }
9915
9916 /*
9917 * Assumption: runs under rtnl lock. This together with the fact
9918 * that it's called only from bnx2x_sp_rtnl() ensure that it
9919 * will never be called when netif_running(bp->dev) is false.
9920 */
9921 static void bnx2x_parity_recover(struct bnx2x *bp)
9922 {
9923 bool global = false;
9924 u32 error_recovered, error_unrecovered;
9925 bool is_parity;
9926
9927 DP(NETIF_MSG_HW, "Handling parity\n");
9928 while (1) {
9929 switch (bp->recovery_state) {
9930 case BNX2X_RECOVERY_INIT:
9931 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9932 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9933 WARN_ON(!is_parity);
9934
9935 /* Try to get a LEADER_LOCK HW lock */
9936 if (bnx2x_trylock_leader_lock(bp)) {
9937 bnx2x_set_reset_in_progress(bp);
9938 /*
9939 * Check if there is a global attention and if
9940 * there was a global attention, set the global
9941 * reset bit.
9942 */
9943
9944 if (global)
9945 bnx2x_set_reset_global(bp);
9946
9947 bp->is_leader = 1;
9948 }
9949
9950 /* Stop the driver */
9951 /* If interface has been removed - break */
9952 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9953 return;
9954
9955 bp->recovery_state = BNX2X_RECOVERY_WAIT;
9956
9957 /* Ensure "is_leader", MCP command sequence and
9958 * "recovery_state" update values are seen on other
9959 * CPUs.
9960 */
9961 smp_mb();
9962 break;
9963
9964 case BNX2X_RECOVERY_WAIT:
9965 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9966 if (bp->is_leader) {
9967 int other_engine = BP_PATH(bp) ? 0 : 1;
9968 bool other_load_status =
9969 bnx2x_get_load_status(bp, other_engine);
9970 bool load_status =
9971 bnx2x_get_load_status(bp, BP_PATH(bp));
9972 global = bnx2x_reset_is_global(bp);
9973
9974 /*
9975 * In case of a parity in a global block, let
9976 * the first leader that performs a
9977 * leader_reset() reset the global blocks in
9978 * order to clear global attentions. Otherwise
9979 * the gates will remain closed for that
9980 * engine.
9981 */
9982 if (load_status ||
9983 (global && other_load_status)) {
9984 /* Wait until all other functions get
9985 * down.
9986 */
9987 schedule_delayed_work(&bp->sp_rtnl_task,
9988 HZ/10);
9989 return;
9990 } else {
9991 /* If all other functions got down -
9992 * try to bring the chip back to
9993 * normal. In any case it's an exit
9994 * point for a leader.
9995 */
9996 if (bnx2x_leader_reset(bp)) {
9997 bnx2x_recovery_failed(bp);
9998 return;
9999 }
10000
10001 /* If we are here, means that the
10002 * leader has succeeded and doesn't
10003 * want to be a leader any more. Try
10004 * to continue as a none-leader.
10005 */
10006 break;
10007 }
10008 } else { /* non-leader */
10009 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10010 /* Try to get a LEADER_LOCK HW lock as
10011 * long as a former leader may have
10012 * been unloaded by the user or
10013 * released a leadership by another
10014 * reason.
10015 */
10016 if (bnx2x_trylock_leader_lock(bp)) {
10017 /* I'm a leader now! Restart a
10018 * switch case.
10019 */
10020 bp->is_leader = 1;
10021 break;
10022 }
10023
10024 schedule_delayed_work(&bp->sp_rtnl_task,
10025 HZ/10);
10026 return;
10027
10028 } else {
10029 /*
10030 * If there was a global attention, wait
10031 * for it to be cleared.
10032 */
10033 if (bnx2x_reset_is_global(bp)) {
10034 schedule_delayed_work(
10035 &bp->sp_rtnl_task,
10036 HZ/10);
10037 return;
10038 }
10039
10040 error_recovered =
10041 bp->eth_stats.recoverable_error;
10042 error_unrecovered =
10043 bp->eth_stats.unrecoverable_error;
10044 bp->recovery_state =
10045 BNX2X_RECOVERY_NIC_LOADING;
10046 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10047 error_unrecovered++;
10048 netdev_err(bp->dev,
10049 "Recovery failed. Power cycle needed\n");
10050 /* Disconnect this device */
10051 netif_device_detach(bp->dev);
10052 /* Shut down the power */
10053 bnx2x_set_power_state(
10054 bp, PCI_D3hot);
10055 smp_mb();
10056 } else {
10057 bp->recovery_state =
10058 BNX2X_RECOVERY_DONE;
10059 error_recovered++;
10060 smp_mb();
10061 }
10062 bp->eth_stats.recoverable_error =
10063 error_recovered;
10064 bp->eth_stats.unrecoverable_error =
10065 error_unrecovered;
10066
10067 return;
10068 }
10069 }
10070 default:
10071 return;
10072 }
10073 }
10074 }
10075
10076 static int bnx2x_udp_port_update(struct bnx2x *bp)
10077 {
10078 struct bnx2x_func_switch_update_params *switch_update_params;
10079 struct bnx2x_func_state_params func_params = {NULL};
10080 struct bnx2x_udp_tunnel *udp_tunnel;
10081 u16 vxlan_port = 0, geneve_port = 0;
10082 int rc;
10083
10084 switch_update_params = &func_params.params.switch_update;
10085
10086 /* Prepare parameters for function state transitions */
10087 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10088 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10089
10090 func_params.f_obj = &bp->func_obj;
10091 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10092
10093 /* Function parameters */
10094 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10095 &switch_update_params->changes);
10096
10097 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
10098 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10099 geneve_port = udp_tunnel->dst_port;
10100 switch_update_params->geneve_dst_port = geneve_port;
10101 }
10102
10103 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
10104 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10105 vxlan_port = udp_tunnel->dst_port;
10106 switch_update_params->vxlan_dst_port = vxlan_port;
10107 }
10108
10109 /* Re-enable inner-rss for the offloaded UDP tunnels */
10110 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10111 &switch_update_params->changes);
10112
10113 rc = bnx2x_func_state_change(bp, &func_params);
10114 if (rc)
10115 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10116 vxlan_port, geneve_port, rc);
10117 else
10118 DP(BNX2X_MSG_SP,
10119 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10120 vxlan_port, geneve_port);
10121
10122 return rc;
10123 }
10124
10125 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
10126 enum bnx2x_udp_port_type type)
10127 {
10128 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10129
10130 if (!netif_running(bp->dev) || !IS_PF(bp))
10131 return;
10132
10133 if (udp_port->count && udp_port->dst_port == port) {
10134 udp_port->count++;
10135 return;
10136 }
10137
10138 if (udp_port->count) {
10139 DP(BNX2X_MSG_SP,
10140 "UDP tunnel [%d] - destination port limit reached\n",
10141 type);
10142 return;
10143 }
10144
10145 udp_port->dst_port = port;
10146 udp_port->count = 1;
10147 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10148 }
10149
10150 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
10151 enum bnx2x_udp_port_type type)
10152 {
10153 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10154
10155 if (!IS_PF(bp))
10156 return;
10157
10158 if (!udp_port->count || udp_port->dst_port != port) {
10159 DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
10160 type);
10161 return;
10162 }
10163
10164 /* Remove reference, and make certain it's no longer in use */
10165 udp_port->count--;
10166 if (udp_port->count)
10167 return;
10168 udp_port->dst_port = 0;
10169
10170 if (netif_running(bp->dev))
10171 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10172 else
10173 DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
10174 type, port);
10175 }
10176
10177 static void bnx2x_udp_tunnel_add(struct net_device *netdev,
10178 struct udp_tunnel_info *ti)
10179 {
10180 struct bnx2x *bp = netdev_priv(netdev);
10181 u16 t_port = ntohs(ti->port);
10182
10183 switch (ti->type) {
10184 case UDP_TUNNEL_TYPE_VXLAN:
10185 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10186 break;
10187 case UDP_TUNNEL_TYPE_GENEVE:
10188 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10189 break;
10190 default:
10191 break;
10192 }
10193 }
10194
10195 static void bnx2x_udp_tunnel_del(struct net_device *netdev,
10196 struct udp_tunnel_info *ti)
10197 {
10198 struct bnx2x *bp = netdev_priv(netdev);
10199 u16 t_port = ntohs(ti->port);
10200
10201 switch (ti->type) {
10202 case UDP_TUNNEL_TYPE_VXLAN:
10203 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10204 break;
10205 case UDP_TUNNEL_TYPE_GENEVE:
10206 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10207 break;
10208 default:
10209 break;
10210 }
10211 }
10212
10213 static int bnx2x_close(struct net_device *dev);
10214
10215 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10216 * scheduled on a general queue in order to prevent a dead lock.
10217 */
10218 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10219 {
10220 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10221
10222 rtnl_lock();
10223
10224 if (!netif_running(bp->dev)) {
10225 rtnl_unlock();
10226 return;
10227 }
10228
10229 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10230 #ifdef BNX2X_STOP_ON_ERROR
10231 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10232 "you will need to reboot when done\n");
10233 goto sp_rtnl_not_reset;
10234 #endif
10235 /*
10236 * Clear all pending SP commands as we are going to reset the
10237 * function anyway.
10238 */
10239 bp->sp_rtnl_state = 0;
10240 smp_mb();
10241
10242 bnx2x_parity_recover(bp);
10243
10244 rtnl_unlock();
10245 return;
10246 }
10247
10248 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10249 #ifdef BNX2X_STOP_ON_ERROR
10250 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10251 "you will need to reboot when done\n");
10252 goto sp_rtnl_not_reset;
10253 #endif
10254
10255 /*
10256 * Clear all pending SP commands as we are going to reset the
10257 * function anyway.
10258 */
10259 bp->sp_rtnl_state = 0;
10260 smp_mb();
10261
10262 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10263 bnx2x_nic_load(bp, LOAD_NORMAL);
10264
10265 rtnl_unlock();
10266 return;
10267 }
10268 #ifdef BNX2X_STOP_ON_ERROR
10269 sp_rtnl_not_reset:
10270 #endif
10271 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10272 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10273 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10274 bnx2x_after_function_update(bp);
10275 /*
10276 * in case of fan failure we need to reset id if the "stop on error"
10277 * debug flag is set, since we trying to prevent permanent overheating
10278 * damage
10279 */
10280 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10281 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10282 netif_device_detach(bp->dev);
10283 bnx2x_close(bp->dev);
10284 rtnl_unlock();
10285 return;
10286 }
10287
10288 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10289 DP(BNX2X_MSG_SP,
10290 "sending set mcast vf pf channel message from rtnl sp-task\n");
10291 bnx2x_vfpf_set_mcast(bp->dev);
10292 }
10293 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10294 &bp->sp_rtnl_state)){
10295 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10296 bnx2x_tx_disable(bp);
10297 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10298 }
10299 }
10300
10301 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10302 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10303 bnx2x_set_rx_mode_inner(bp);
10304 }
10305
10306 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10307 &bp->sp_rtnl_state))
10308 bnx2x_pf_set_vfs_vlan(bp);
10309
10310 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10311 bnx2x_dcbx_stop_hw_tx(bp);
10312 bnx2x_dcbx_resume_hw_tx(bp);
10313 }
10314
10315 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10316 &bp->sp_rtnl_state))
10317 bnx2x_update_mng_version(bp);
10318
10319 if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
10320 &bp->sp_rtnl_state)) {
10321 if (bnx2x_udp_port_update(bp)) {
10322 /* On error, forget configuration */
10323 memset(bp->udp_tunnel_ports, 0,
10324 sizeof(struct bnx2x_udp_tunnel) *
10325 BNX2X_UDP_PORT_MAX);
10326 } else {
10327 /* Since we don't store additional port information,
10328 * if no ports are configured for any feature ask for
10329 * information about currently configured ports.
10330 */
10331 if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count &&
10332 !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
10333 udp_tunnel_get_rx_info(bp->dev);
10334 }
10335 }
10336
10337 /* work which needs rtnl lock not-taken (as it takes the lock itself and
10338 * can be called from other contexts as well)
10339 */
10340 rtnl_unlock();
10341
10342 /* enable SR-IOV if applicable */
10343 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10344 &bp->sp_rtnl_state)) {
10345 bnx2x_disable_sriov(bp);
10346 bnx2x_enable_sriov(bp);
10347 }
10348 }
10349
10350 static void bnx2x_period_task(struct work_struct *work)
10351 {
10352 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10353
10354 if (!netif_running(bp->dev))
10355 goto period_task_exit;
10356
10357 if (CHIP_REV_IS_SLOW(bp)) {
10358 BNX2X_ERR("period task called on emulation, ignoring\n");
10359 goto period_task_exit;
10360 }
10361
10362 bnx2x_acquire_phy_lock(bp);
10363 /*
10364 * The barrier is needed to ensure the ordering between the writing to
10365 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10366 * the reading here.
10367 */
10368 smp_mb();
10369 if (bp->port.pmf) {
10370 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10371
10372 /* Re-queue task in 1 sec */
10373 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10374 }
10375
10376 bnx2x_release_phy_lock(bp);
10377 period_task_exit:
10378 return;
10379 }
10380
10381 /*
10382 * Init service functions
10383 */
10384
10385 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10386 {
10387 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10388 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10389 return base + (BP_ABS_FUNC(bp)) * stride;
10390 }
10391
10392 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10393 u8 port, u32 reset_reg,
10394 struct bnx2x_mac_vals *vals)
10395 {
10396 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10397 u32 base_addr;
10398
10399 if (!(mask & reset_reg))
10400 return false;
10401
10402 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10403 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10404 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10405 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10406 REG_WR(bp, vals->umac_addr[port], 0);
10407
10408 return true;
10409 }
10410
10411 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10412 struct bnx2x_mac_vals *vals)
10413 {
10414 u32 val, base_addr, offset, mask, reset_reg;
10415 bool mac_stopped = false;
10416 u8 port = BP_PORT(bp);
10417
10418 /* reset addresses as they also mark which values were changed */
10419 memset(vals, 0, sizeof(*vals));
10420
10421 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10422
10423 if (!CHIP_IS_E3(bp)) {
10424 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10425 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10426 if ((mask & reset_reg) && val) {
10427 u32 wb_data[2];
10428 BNX2X_DEV_INFO("Disable bmac Rx\n");
10429 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10430 : NIG_REG_INGRESS_BMAC0_MEM;
10431 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10432 : BIGMAC_REGISTER_BMAC_CONTROL;
10433
10434 /*
10435 * use rd/wr since we cannot use dmae. This is safe
10436 * since MCP won't access the bus due to the request
10437 * to unload, and no function on the path can be
10438 * loaded at this time.
10439 */
10440 wb_data[0] = REG_RD(bp, base_addr + offset);
10441 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10442 vals->bmac_addr = base_addr + offset;
10443 vals->bmac_val[0] = wb_data[0];
10444 vals->bmac_val[1] = wb_data[1];
10445 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10446 REG_WR(bp, vals->bmac_addr, wb_data[0]);
10447 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10448 }
10449 BNX2X_DEV_INFO("Disable emac Rx\n");
10450 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10451 vals->emac_val = REG_RD(bp, vals->emac_addr);
10452 REG_WR(bp, vals->emac_addr, 0);
10453 mac_stopped = true;
10454 } else {
10455 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10456 BNX2X_DEV_INFO("Disable xmac Rx\n");
10457 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10458 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10459 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10460 val & ~(1 << 1));
10461 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10462 val | (1 << 1));
10463 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10464 vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10465 REG_WR(bp, vals->xmac_addr, 0);
10466 mac_stopped = true;
10467 }
10468
10469 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10470 reset_reg, vals);
10471 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10472 reset_reg, vals);
10473 }
10474
10475 if (mac_stopped)
10476 msleep(20);
10477 }
10478
10479 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10480 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10481 0x1848 + ((f) << 4))
10482 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
10483 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
10484 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
10485
10486 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07)
10487 #define BCM_5710_UNDI_FW_MF_MINOR (0x08)
10488 #define BCM_5710_UNDI_FW_MF_VERS (0x05)
10489
10490 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10491 {
10492 /* UNDI marks its presence in DORQ -
10493 * it initializes CID offset for normal bell to 0x7
10494 */
10495 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10496 MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10497 return false;
10498
10499 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10500 BNX2X_DEV_INFO("UNDI previously loaded\n");
10501 return true;
10502 }
10503
10504 return false;
10505 }
10506
10507 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10508 {
10509 u16 rcq, bd;
10510 u32 addr, tmp_reg;
10511
10512 if (BP_FUNC(bp) < 2)
10513 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10514 else
10515 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10516
10517 tmp_reg = REG_RD(bp, addr);
10518 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10519 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10520
10521 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10522 REG_WR(bp, addr, tmp_reg);
10523
10524 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10525 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10526 }
10527
10528 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10529 {
10530 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10531 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10532 if (!rc) {
10533 BNX2X_ERR("MCP response failure, aborting\n");
10534 return -EBUSY;
10535 }
10536
10537 return 0;
10538 }
10539
10540 static struct bnx2x_prev_path_list *
10541 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10542 {
10543 struct bnx2x_prev_path_list *tmp_list;
10544
10545 list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10546 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10547 bp->pdev->bus->number == tmp_list->bus &&
10548 BP_PATH(bp) == tmp_list->path)
10549 return tmp_list;
10550
10551 return NULL;
10552 }
10553
10554 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10555 {
10556 struct bnx2x_prev_path_list *tmp_list;
10557 int rc;
10558
10559 rc = down_interruptible(&bnx2x_prev_sem);
10560 if (rc) {
10561 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10562 return rc;
10563 }
10564
10565 tmp_list = bnx2x_prev_path_get_entry(bp);
10566 if (tmp_list) {
10567 tmp_list->aer = 1;
10568 rc = 0;
10569 } else {
10570 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10571 BP_PATH(bp));
10572 }
10573
10574 up(&bnx2x_prev_sem);
10575
10576 return rc;
10577 }
10578
10579 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10580 {
10581 struct bnx2x_prev_path_list *tmp_list;
10582 bool rc = false;
10583
10584 if (down_trylock(&bnx2x_prev_sem))
10585 return false;
10586
10587 tmp_list = bnx2x_prev_path_get_entry(bp);
10588 if (tmp_list) {
10589 if (tmp_list->aer) {
10590 DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10591 BP_PATH(bp));
10592 } else {
10593 rc = true;
10594 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10595 BP_PATH(bp));
10596 }
10597 }
10598
10599 up(&bnx2x_prev_sem);
10600
10601 return rc;
10602 }
10603
10604 bool bnx2x_port_after_undi(struct bnx2x *bp)
10605 {
10606 struct bnx2x_prev_path_list *entry;
10607 bool val;
10608
10609 down(&bnx2x_prev_sem);
10610
10611 entry = bnx2x_prev_path_get_entry(bp);
10612 val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10613
10614 up(&bnx2x_prev_sem);
10615
10616 return val;
10617 }
10618
10619 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10620 {
10621 struct bnx2x_prev_path_list *tmp_list;
10622 int rc;
10623
10624 rc = down_interruptible(&bnx2x_prev_sem);
10625 if (rc) {
10626 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10627 return rc;
10628 }
10629
10630 /* Check whether the entry for this path already exists */
10631 tmp_list = bnx2x_prev_path_get_entry(bp);
10632 if (tmp_list) {
10633 if (!tmp_list->aer) {
10634 BNX2X_ERR("Re-Marking the path.\n");
10635 } else {
10636 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10637 BP_PATH(bp));
10638 tmp_list->aer = 0;
10639 }
10640 up(&bnx2x_prev_sem);
10641 return 0;
10642 }
10643 up(&bnx2x_prev_sem);
10644
10645 /* Create an entry for this path and add it */
10646 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10647 if (!tmp_list) {
10648 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10649 return -ENOMEM;
10650 }
10651
10652 tmp_list->bus = bp->pdev->bus->number;
10653 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10654 tmp_list->path = BP_PATH(bp);
10655 tmp_list->aer = 0;
10656 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10657
10658 rc = down_interruptible(&bnx2x_prev_sem);
10659 if (rc) {
10660 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10661 kfree(tmp_list);
10662 } else {
10663 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10664 BP_PATH(bp));
10665 list_add(&tmp_list->list, &bnx2x_prev_list);
10666 up(&bnx2x_prev_sem);
10667 }
10668
10669 return rc;
10670 }
10671
10672 static int bnx2x_do_flr(struct bnx2x *bp)
10673 {
10674 struct pci_dev *dev = bp->pdev;
10675
10676 if (CHIP_IS_E1x(bp)) {
10677 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10678 return -EINVAL;
10679 }
10680
10681 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10682 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10683 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10684 bp->common.bc_ver);
10685 return -EINVAL;
10686 }
10687
10688 if (!pci_wait_for_pending_transaction(dev))
10689 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10690
10691 BNX2X_DEV_INFO("Initiating FLR\n");
10692 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10693
10694 return 0;
10695 }
10696
10697 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10698 {
10699 int rc;
10700
10701 BNX2X_DEV_INFO("Uncommon unload Flow\n");
10702
10703 /* Test if previous unload process was already finished for this path */
10704 if (bnx2x_prev_is_path_marked(bp))
10705 return bnx2x_prev_mcp_done(bp);
10706
10707 BNX2X_DEV_INFO("Path is unmarked\n");
10708
10709 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10710 if (bnx2x_prev_is_after_undi(bp))
10711 goto out;
10712
10713 /* If function has FLR capabilities, and existing FW version matches
10714 * the one required, then FLR will be sufficient to clean any residue
10715 * left by previous driver
10716 */
10717 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10718
10719 if (!rc) {
10720 /* fw version is good */
10721 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10722 rc = bnx2x_do_flr(bp);
10723 }
10724
10725 if (!rc) {
10726 /* FLR was performed */
10727 BNX2X_DEV_INFO("FLR successful\n");
10728 return 0;
10729 }
10730
10731 BNX2X_DEV_INFO("Could not FLR\n");
10732
10733 out:
10734 /* Close the MCP request, return failure*/
10735 rc = bnx2x_prev_mcp_done(bp);
10736 if (!rc)
10737 rc = BNX2X_PREV_WAIT_NEEDED;
10738
10739 return rc;
10740 }
10741
10742 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10743 {
10744 u32 reset_reg, tmp_reg = 0, rc;
10745 bool prev_undi = false;
10746 struct bnx2x_mac_vals mac_vals;
10747
10748 /* It is possible a previous function received 'common' answer,
10749 * but hasn't loaded yet, therefore creating a scenario of
10750 * multiple functions receiving 'common' on the same path.
10751 */
10752 BNX2X_DEV_INFO("Common unload Flow\n");
10753
10754 memset(&mac_vals, 0, sizeof(mac_vals));
10755
10756 if (bnx2x_prev_is_path_marked(bp))
10757 return bnx2x_prev_mcp_done(bp);
10758
10759 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10760
10761 /* Reset should be performed after BRB is emptied */
10762 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10763 u32 timer_count = 1000;
10764
10765 /* Close the MAC Rx to prevent BRB from filling up */
10766 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10767
10768 /* close LLH filters for both ports towards the BRB */
10769 bnx2x_set_rx_filter(&bp->link_params, 0);
10770 bp->link_params.port ^= 1;
10771 bnx2x_set_rx_filter(&bp->link_params, 0);
10772 bp->link_params.port ^= 1;
10773
10774 /* Check if the UNDI driver was previously loaded */
10775 if (bnx2x_prev_is_after_undi(bp)) {
10776 prev_undi = true;
10777 /* clear the UNDI indication */
10778 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10779 /* clear possible idle check errors */
10780 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10781 }
10782 if (!CHIP_IS_E1x(bp))
10783 /* block FW from writing to host */
10784 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10785
10786 /* wait until BRB is empty */
10787 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10788 while (timer_count) {
10789 u32 prev_brb = tmp_reg;
10790
10791 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10792 if (!tmp_reg)
10793 break;
10794
10795 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10796
10797 /* reset timer as long as BRB actually gets emptied */
10798 if (prev_brb > tmp_reg)
10799 timer_count = 1000;
10800 else
10801 timer_count--;
10802
10803 /* If UNDI resides in memory, manually increment it */
10804 if (prev_undi)
10805 bnx2x_prev_unload_undi_inc(bp, 1);
10806
10807 udelay(10);
10808 }
10809
10810 if (!timer_count)
10811 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10812 }
10813
10814 /* No packets are in the pipeline, path is ready for reset */
10815 bnx2x_reset_common(bp);
10816
10817 if (mac_vals.xmac_addr)
10818 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10819 if (mac_vals.umac_addr[0])
10820 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10821 if (mac_vals.umac_addr[1])
10822 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10823 if (mac_vals.emac_addr)
10824 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10825 if (mac_vals.bmac_addr) {
10826 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10827 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10828 }
10829
10830 rc = bnx2x_prev_mark_path(bp, prev_undi);
10831 if (rc) {
10832 bnx2x_prev_mcp_done(bp);
10833 return rc;
10834 }
10835
10836 return bnx2x_prev_mcp_done(bp);
10837 }
10838
10839 static int bnx2x_prev_unload(struct bnx2x *bp)
10840 {
10841 int time_counter = 10;
10842 u32 rc, fw, hw_lock_reg, hw_lock_val;
10843 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10844
10845 /* clear hw from errors which may have resulted from an interrupted
10846 * dmae transaction.
10847 */
10848 bnx2x_clean_pglue_errors(bp);
10849
10850 /* Release previously held locks */
10851 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10852 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10853 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10854
10855 hw_lock_val = REG_RD(bp, hw_lock_reg);
10856 if (hw_lock_val) {
10857 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10858 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10859 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10860 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10861 }
10862
10863 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10864 REG_WR(bp, hw_lock_reg, 0xffffffff);
10865 } else
10866 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10867
10868 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10869 BNX2X_DEV_INFO("Release previously held alr\n");
10870 bnx2x_release_alr(bp);
10871 }
10872
10873 do {
10874 int aer = 0;
10875 /* Lock MCP using an unload request */
10876 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10877 if (!fw) {
10878 BNX2X_ERR("MCP response failure, aborting\n");
10879 rc = -EBUSY;
10880 break;
10881 }
10882
10883 rc = down_interruptible(&bnx2x_prev_sem);
10884 if (rc) {
10885 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10886 rc);
10887 } else {
10888 /* If Path is marked by EEH, ignore unload status */
10889 aer = !!(bnx2x_prev_path_get_entry(bp) &&
10890 bnx2x_prev_path_get_entry(bp)->aer);
10891 up(&bnx2x_prev_sem);
10892 }
10893
10894 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10895 rc = bnx2x_prev_unload_common(bp);
10896 break;
10897 }
10898
10899 /* non-common reply from MCP might require looping */
10900 rc = bnx2x_prev_unload_uncommon(bp);
10901 if (rc != BNX2X_PREV_WAIT_NEEDED)
10902 break;
10903
10904 msleep(20);
10905 } while (--time_counter);
10906
10907 if (!time_counter || rc) {
10908 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10909 rc = -EPROBE_DEFER;
10910 }
10911
10912 /* Mark function if its port was used to boot from SAN */
10913 if (bnx2x_port_after_undi(bp))
10914 bp->link_params.feature_config_flags |=
10915 FEATURE_CONFIG_BOOT_FROM_SAN;
10916
10917 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10918
10919 return rc;
10920 }
10921
10922 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10923 {
10924 u32 val, val2, val3, val4, id, boot_mode;
10925 u16 pmc;
10926
10927 /* Get the chip revision id and number. */
10928 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10929 val = REG_RD(bp, MISC_REG_CHIP_NUM);
10930 id = ((val & 0xffff) << 16);
10931 val = REG_RD(bp, MISC_REG_CHIP_REV);
10932 id |= ((val & 0xf) << 12);
10933
10934 /* Metal is read from PCI regs, but we can't access >=0x400 from
10935 * the configuration space (so we need to reg_rd)
10936 */
10937 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10938 id |= (((val >> 24) & 0xf) << 4);
10939 val = REG_RD(bp, MISC_REG_BOND_ID);
10940 id |= (val & 0xf);
10941 bp->common.chip_id = id;
10942
10943 /* force 57811 according to MISC register */
10944 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10945 if (CHIP_IS_57810(bp))
10946 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10947 (bp->common.chip_id & 0x0000FFFF);
10948 else if (CHIP_IS_57810_MF(bp))
10949 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10950 (bp->common.chip_id & 0x0000FFFF);
10951 bp->common.chip_id |= 0x1;
10952 }
10953
10954 /* Set doorbell size */
10955 bp->db_size = (1 << BNX2X_DB_SHIFT);
10956
10957 if (!CHIP_IS_E1x(bp)) {
10958 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10959 if ((val & 1) == 0)
10960 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10961 else
10962 val = (val >> 1) & 1;
10963 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10964 "2_PORT_MODE");
10965 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10966 CHIP_2_PORT_MODE;
10967
10968 if (CHIP_MODE_IS_4_PORT(bp))
10969 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
10970 else
10971 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
10972 } else {
10973 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10974 bp->pfid = bp->pf_num; /* 0..7 */
10975 }
10976
10977 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10978
10979 bp->link_params.chip_id = bp->common.chip_id;
10980 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10981
10982 val = (REG_RD(bp, 0x2874) & 0x55);
10983 if ((bp->common.chip_id & 0x1) ||
10984 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10985 bp->flags |= ONE_PORT_FLAG;
10986 BNX2X_DEV_INFO("single port device\n");
10987 }
10988
10989 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10990 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10991 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10992 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10993 bp->common.flash_size, bp->common.flash_size);
10994
10995 bnx2x_init_shmem(bp);
10996
10997 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10998 MISC_REG_GENERIC_CR_1 :
10999 MISC_REG_GENERIC_CR_0));
11000
11001 bp->link_params.shmem_base = bp->common.shmem_base;
11002 bp->link_params.shmem2_base = bp->common.shmem2_base;
11003 if (SHMEM2_RD(bp, size) >
11004 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11005 bp->link_params.lfa_base =
11006 REG_RD(bp, bp->common.shmem2_base +
11007 (u32)offsetof(struct shmem2_region,
11008 lfa_host_addr[BP_PORT(bp)]));
11009 else
11010 bp->link_params.lfa_base = 0;
11011 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
11012 bp->common.shmem_base, bp->common.shmem2_base);
11013
11014 if (!bp->common.shmem_base) {
11015 BNX2X_DEV_INFO("MCP not active\n");
11016 bp->flags |= NO_MCP_FLAG;
11017 return;
11018 }
11019
11020 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11021 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11022
11023 bp->link_params.hw_led_mode = ((bp->common.hw_config &
11024 SHARED_HW_CFG_LED_MODE_MASK) >>
11025 SHARED_HW_CFG_LED_MODE_SHIFT);
11026
11027 bp->link_params.feature_config_flags = 0;
11028 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11029 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11030 bp->link_params.feature_config_flags |=
11031 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11032 else
11033 bp->link_params.feature_config_flags &=
11034 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11035
11036 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11037 bp->common.bc_ver = val;
11038 BNX2X_DEV_INFO("bc_ver %X\n", val);
11039 if (val < BNX2X_BC_VER) {
11040 /* for now only warn
11041 * later we might need to enforce this */
11042 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11043 BNX2X_BC_VER, val);
11044 }
11045 bp->link_params.feature_config_flags |=
11046 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11047 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11048
11049 bp->link_params.feature_config_flags |=
11050 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11051 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11052 bp->link_params.feature_config_flags |=
11053 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11054 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11055 bp->link_params.feature_config_flags |=
11056 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11057 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11058
11059 bp->link_params.feature_config_flags |=
11060 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11061 FEATURE_CONFIG_MT_SUPPORT : 0;
11062
11063 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11064 BC_SUPPORTS_PFC_STATS : 0;
11065
11066 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11067 BC_SUPPORTS_FCOE_FEATURES : 0;
11068
11069 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11070 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11071
11072 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11073 BC_SUPPORTS_RMMOD_CMD : 0;
11074
11075 boot_mode = SHMEM_RD(bp,
11076 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11077 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11078 switch (boot_mode) {
11079 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11080 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11081 break;
11082 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11083 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11084 break;
11085 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11086 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11087 break;
11088 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11089 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11090 break;
11091 }
11092
11093 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11094 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11095
11096 BNX2X_DEV_INFO("%sWoL capable\n",
11097 (bp->flags & NO_WOL_FLAG) ? "not " : "");
11098
11099 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11100 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11101 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11102 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11103
11104 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11105 val, val2, val3, val4);
11106 }
11107
11108 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11109 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11110
11111 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11112 {
11113 int pfid = BP_FUNC(bp);
11114 int igu_sb_id;
11115 u32 val;
11116 u8 fid, igu_sb_cnt = 0;
11117
11118 bp->igu_base_sb = 0xff;
11119 if (CHIP_INT_MODE_IS_BC(bp)) {
11120 int vn = BP_VN(bp);
11121 igu_sb_cnt = bp->igu_sb_cnt;
11122 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11123 FP_SB_MAX_E1x;
11124
11125 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
11126 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11127
11128 return 0;
11129 }
11130
11131 /* IGU in normal mode - read CAM */
11132 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11133 igu_sb_id++) {
11134 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11135 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11136 continue;
11137 fid = IGU_FID(val);
11138 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11139 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11140 continue;
11141 if (IGU_VEC(val) == 0)
11142 /* default status block */
11143 bp->igu_dsb_id = igu_sb_id;
11144 else {
11145 if (bp->igu_base_sb == 0xff)
11146 bp->igu_base_sb = igu_sb_id;
11147 igu_sb_cnt++;
11148 }
11149 }
11150 }
11151
11152 #ifdef CONFIG_PCI_MSI
11153 /* Due to new PF resource allocation by MFW T7.4 and above, it's
11154 * optional that number of CAM entries will not be equal to the value
11155 * advertised in PCI.
11156 * Driver should use the minimal value of both as the actual status
11157 * block count
11158 */
11159 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11160 #endif
11161
11162 if (igu_sb_cnt == 0) {
11163 BNX2X_ERR("CAM configuration error\n");
11164 return -EINVAL;
11165 }
11166
11167 return 0;
11168 }
11169
11170 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11171 {
11172 int cfg_size = 0, idx, port = BP_PORT(bp);
11173
11174 /* Aggregation of supported attributes of all external phys */
11175 bp->port.supported[0] = 0;
11176 bp->port.supported[1] = 0;
11177 switch (bp->link_params.num_phys) {
11178 case 1:
11179 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11180 cfg_size = 1;
11181 break;
11182 case 2:
11183 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11184 cfg_size = 1;
11185 break;
11186 case 3:
11187 if (bp->link_params.multi_phy_config &
11188 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11189 bp->port.supported[1] =
11190 bp->link_params.phy[EXT_PHY1].supported;
11191 bp->port.supported[0] =
11192 bp->link_params.phy[EXT_PHY2].supported;
11193 } else {
11194 bp->port.supported[0] =
11195 bp->link_params.phy[EXT_PHY1].supported;
11196 bp->port.supported[1] =
11197 bp->link_params.phy[EXT_PHY2].supported;
11198 }
11199 cfg_size = 2;
11200 break;
11201 }
11202
11203 if (!(bp->port.supported[0] || bp->port.supported[1])) {
11204 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11205 SHMEM_RD(bp,
11206 dev_info.port_hw_config[port].external_phy_config),
11207 SHMEM_RD(bp,
11208 dev_info.port_hw_config[port].external_phy_config2));
11209 return;
11210 }
11211
11212 if (CHIP_IS_E3(bp))
11213 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11214 else {
11215 switch (switch_cfg) {
11216 case SWITCH_CFG_1G:
11217 bp->port.phy_addr = REG_RD(
11218 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11219 break;
11220 case SWITCH_CFG_10G:
11221 bp->port.phy_addr = REG_RD(
11222 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11223 break;
11224 default:
11225 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11226 bp->port.link_config[0]);
11227 return;
11228 }
11229 }
11230 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11231 /* mask what we support according to speed_cap_mask per configuration */
11232 for (idx = 0; idx < cfg_size; idx++) {
11233 if (!(bp->link_params.speed_cap_mask[idx] &
11234 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11235 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11236
11237 if (!(bp->link_params.speed_cap_mask[idx] &
11238 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11239 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11240
11241 if (!(bp->link_params.speed_cap_mask[idx] &
11242 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11243 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11244
11245 if (!(bp->link_params.speed_cap_mask[idx] &
11246 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11247 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11248
11249 if (!(bp->link_params.speed_cap_mask[idx] &
11250 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11251 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11252 SUPPORTED_1000baseT_Full);
11253
11254 if (!(bp->link_params.speed_cap_mask[idx] &
11255 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11256 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11257
11258 if (!(bp->link_params.speed_cap_mask[idx] &
11259 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11260 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11261
11262 if (!(bp->link_params.speed_cap_mask[idx] &
11263 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11264 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11265 }
11266
11267 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11268 bp->port.supported[1]);
11269 }
11270
11271 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11272 {
11273 u32 link_config, idx, cfg_size = 0;
11274 bp->port.advertising[0] = 0;
11275 bp->port.advertising[1] = 0;
11276 switch (bp->link_params.num_phys) {
11277 case 1:
11278 case 2:
11279 cfg_size = 1;
11280 break;
11281 case 3:
11282 cfg_size = 2;
11283 break;
11284 }
11285 for (idx = 0; idx < cfg_size; idx++) {
11286 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11287 link_config = bp->port.link_config[idx];
11288 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11289 case PORT_FEATURE_LINK_SPEED_AUTO:
11290 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11291 bp->link_params.req_line_speed[idx] =
11292 SPEED_AUTO_NEG;
11293 bp->port.advertising[idx] |=
11294 bp->port.supported[idx];
11295 if (bp->link_params.phy[EXT_PHY1].type ==
11296 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11297 bp->port.advertising[idx] |=
11298 (SUPPORTED_100baseT_Half |
11299 SUPPORTED_100baseT_Full);
11300 } else {
11301 /* force 10G, no AN */
11302 bp->link_params.req_line_speed[idx] =
11303 SPEED_10000;
11304 bp->port.advertising[idx] |=
11305 (ADVERTISED_10000baseT_Full |
11306 ADVERTISED_FIBRE);
11307 continue;
11308 }
11309 break;
11310
11311 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11312 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11313 bp->link_params.req_line_speed[idx] =
11314 SPEED_10;
11315 bp->port.advertising[idx] |=
11316 (ADVERTISED_10baseT_Full |
11317 ADVERTISED_TP);
11318 } else {
11319 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11320 link_config,
11321 bp->link_params.speed_cap_mask[idx]);
11322 return;
11323 }
11324 break;
11325
11326 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11327 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11328 bp->link_params.req_line_speed[idx] =
11329 SPEED_10;
11330 bp->link_params.req_duplex[idx] =
11331 DUPLEX_HALF;
11332 bp->port.advertising[idx] |=
11333 (ADVERTISED_10baseT_Half |
11334 ADVERTISED_TP);
11335 } else {
11336 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11337 link_config,
11338 bp->link_params.speed_cap_mask[idx]);
11339 return;
11340 }
11341 break;
11342
11343 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11344 if (bp->port.supported[idx] &
11345 SUPPORTED_100baseT_Full) {
11346 bp->link_params.req_line_speed[idx] =
11347 SPEED_100;
11348 bp->port.advertising[idx] |=
11349 (ADVERTISED_100baseT_Full |
11350 ADVERTISED_TP);
11351 } else {
11352 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11353 link_config,
11354 bp->link_params.speed_cap_mask[idx]);
11355 return;
11356 }
11357 break;
11358
11359 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11360 if (bp->port.supported[idx] &
11361 SUPPORTED_100baseT_Half) {
11362 bp->link_params.req_line_speed[idx] =
11363 SPEED_100;
11364 bp->link_params.req_duplex[idx] =
11365 DUPLEX_HALF;
11366 bp->port.advertising[idx] |=
11367 (ADVERTISED_100baseT_Half |
11368 ADVERTISED_TP);
11369 } else {
11370 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11371 link_config,
11372 bp->link_params.speed_cap_mask[idx]);
11373 return;
11374 }
11375 break;
11376
11377 case PORT_FEATURE_LINK_SPEED_1G:
11378 if (bp->port.supported[idx] &
11379 SUPPORTED_1000baseT_Full) {
11380 bp->link_params.req_line_speed[idx] =
11381 SPEED_1000;
11382 bp->port.advertising[idx] |=
11383 (ADVERTISED_1000baseT_Full |
11384 ADVERTISED_TP);
11385 } else if (bp->port.supported[idx] &
11386 SUPPORTED_1000baseKX_Full) {
11387 bp->link_params.req_line_speed[idx] =
11388 SPEED_1000;
11389 bp->port.advertising[idx] |=
11390 ADVERTISED_1000baseKX_Full;
11391 } else {
11392 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11393 link_config,
11394 bp->link_params.speed_cap_mask[idx]);
11395 return;
11396 }
11397 break;
11398
11399 case PORT_FEATURE_LINK_SPEED_2_5G:
11400 if (bp->port.supported[idx] &
11401 SUPPORTED_2500baseX_Full) {
11402 bp->link_params.req_line_speed[idx] =
11403 SPEED_2500;
11404 bp->port.advertising[idx] |=
11405 (ADVERTISED_2500baseX_Full |
11406 ADVERTISED_TP);
11407 } else {
11408 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11409 link_config,
11410 bp->link_params.speed_cap_mask[idx]);
11411 return;
11412 }
11413 break;
11414
11415 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11416 if (bp->port.supported[idx] &
11417 SUPPORTED_10000baseT_Full) {
11418 bp->link_params.req_line_speed[idx] =
11419 SPEED_10000;
11420 bp->port.advertising[idx] |=
11421 (ADVERTISED_10000baseT_Full |
11422 ADVERTISED_FIBRE);
11423 } else if (bp->port.supported[idx] &
11424 SUPPORTED_10000baseKR_Full) {
11425 bp->link_params.req_line_speed[idx] =
11426 SPEED_10000;
11427 bp->port.advertising[idx] |=
11428 (ADVERTISED_10000baseKR_Full |
11429 ADVERTISED_FIBRE);
11430 } else {
11431 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11432 link_config,
11433 bp->link_params.speed_cap_mask[idx]);
11434 return;
11435 }
11436 break;
11437 case PORT_FEATURE_LINK_SPEED_20G:
11438 bp->link_params.req_line_speed[idx] = SPEED_20000;
11439
11440 break;
11441 default:
11442 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11443 link_config);
11444 bp->link_params.req_line_speed[idx] =
11445 SPEED_AUTO_NEG;
11446 bp->port.advertising[idx] =
11447 bp->port.supported[idx];
11448 break;
11449 }
11450
11451 bp->link_params.req_flow_ctrl[idx] = (link_config &
11452 PORT_FEATURE_FLOW_CONTROL_MASK);
11453 if (bp->link_params.req_flow_ctrl[idx] ==
11454 BNX2X_FLOW_CTRL_AUTO) {
11455 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11456 bp->link_params.req_flow_ctrl[idx] =
11457 BNX2X_FLOW_CTRL_NONE;
11458 else
11459 bnx2x_set_requested_fc(bp);
11460 }
11461
11462 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11463 bp->link_params.req_line_speed[idx],
11464 bp->link_params.req_duplex[idx],
11465 bp->link_params.req_flow_ctrl[idx],
11466 bp->port.advertising[idx]);
11467 }
11468 }
11469
11470 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11471 {
11472 __be16 mac_hi_be = cpu_to_be16(mac_hi);
11473 __be32 mac_lo_be = cpu_to_be32(mac_lo);
11474 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11475 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11476 }
11477
11478 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11479 {
11480 int port = BP_PORT(bp);
11481 u32 config;
11482 u32 ext_phy_type, ext_phy_config, eee_mode;
11483
11484 bp->link_params.bp = bp;
11485 bp->link_params.port = port;
11486
11487 bp->link_params.lane_config =
11488 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11489
11490 bp->link_params.speed_cap_mask[0] =
11491 SHMEM_RD(bp,
11492 dev_info.port_hw_config[port].speed_capability_mask) &
11493 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11494 bp->link_params.speed_cap_mask[1] =
11495 SHMEM_RD(bp,
11496 dev_info.port_hw_config[port].speed_capability_mask2) &
11497 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11498 bp->port.link_config[0] =
11499 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11500
11501 bp->port.link_config[1] =
11502 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11503
11504 bp->link_params.multi_phy_config =
11505 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11506 /* If the device is capable of WoL, set the default state according
11507 * to the HW
11508 */
11509 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11510 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11511 (config & PORT_FEATURE_WOL_ENABLED));
11512
11513 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11514 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11515 bp->flags |= NO_ISCSI_FLAG;
11516 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11517 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11518 bp->flags |= NO_FCOE_FLAG;
11519
11520 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
11521 bp->link_params.lane_config,
11522 bp->link_params.speed_cap_mask[0],
11523 bp->port.link_config[0]);
11524
11525 bp->link_params.switch_cfg = (bp->port.link_config[0] &
11526 PORT_FEATURE_CONNECTED_SWITCH_MASK);
11527 bnx2x_phy_probe(&bp->link_params);
11528 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11529
11530 bnx2x_link_settings_requested(bp);
11531
11532 /*
11533 * If connected directly, work with the internal PHY, otherwise, work
11534 * with the external PHY
11535 */
11536 ext_phy_config =
11537 SHMEM_RD(bp,
11538 dev_info.port_hw_config[port].external_phy_config);
11539 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11540 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11541 bp->mdio.prtad = bp->port.phy_addr;
11542
11543 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11544 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11545 bp->mdio.prtad =
11546 XGXS_EXT_PHY_ADDR(ext_phy_config);
11547
11548 /* Configure link feature according to nvram value */
11549 eee_mode = (((SHMEM_RD(bp, dev_info.
11550 port_feature_config[port].eee_power_mode)) &
11551 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11552 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11553 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11554 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11555 EEE_MODE_ENABLE_LPI |
11556 EEE_MODE_OUTPUT_TIME;
11557 } else {
11558 bp->link_params.eee_mode = 0;
11559 }
11560 }
11561
11562 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11563 {
11564 u32 no_flags = NO_ISCSI_FLAG;
11565 int port = BP_PORT(bp);
11566 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11567 drv_lic_key[port].max_iscsi_conn);
11568
11569 if (!CNIC_SUPPORT(bp)) {
11570 bp->flags |= no_flags;
11571 return;
11572 }
11573
11574 /* Get the number of maximum allowed iSCSI connections */
11575 bp->cnic_eth_dev.max_iscsi_conn =
11576 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11577 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11578
11579 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11580 bp->cnic_eth_dev.max_iscsi_conn);
11581
11582 /*
11583 * If maximum allowed number of connections is zero -
11584 * disable the feature.
11585 */
11586 if (!bp->cnic_eth_dev.max_iscsi_conn)
11587 bp->flags |= no_flags;
11588 }
11589
11590 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11591 {
11592 /* Port info */
11593 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11594 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11595 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11596 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11597
11598 /* Node info */
11599 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11600 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11601 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11602 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11603 }
11604
11605 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11606 {
11607 u8 count = 0;
11608
11609 if (IS_MF(bp)) {
11610 u8 fid;
11611
11612 /* iterate over absolute function ids for this path: */
11613 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11614 if (IS_MF_SD(bp)) {
11615 u32 cfg = MF_CFG_RD(bp,
11616 func_mf_config[fid].config);
11617
11618 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11619 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11620 FUNC_MF_CFG_PROTOCOL_FCOE))
11621 count++;
11622 } else {
11623 u32 cfg = MF_CFG_RD(bp,
11624 func_ext_config[fid].
11625 func_cfg);
11626
11627 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11628 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11629 count++;
11630 }
11631 }
11632 } else { /* SF */
11633 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11634
11635 for (port = 0; port < port_cnt; port++) {
11636 u32 lic = SHMEM_RD(bp,
11637 drv_lic_key[port].max_fcoe_conn) ^
11638 FW_ENCODE_32BIT_PATTERN;
11639 if (lic)
11640 count++;
11641 }
11642 }
11643
11644 return count;
11645 }
11646
11647 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11648 {
11649 int port = BP_PORT(bp);
11650 int func = BP_ABS_FUNC(bp);
11651 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11652 drv_lic_key[port].max_fcoe_conn);
11653 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11654
11655 if (!CNIC_SUPPORT(bp)) {
11656 bp->flags |= NO_FCOE_FLAG;
11657 return;
11658 }
11659
11660 /* Get the number of maximum allowed FCoE connections */
11661 bp->cnic_eth_dev.max_fcoe_conn =
11662 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11663 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11664
11665 /* Calculate the number of maximum allowed FCoE tasks */
11666 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11667
11668 /* check if FCoE resources must be shared between different functions */
11669 if (num_fcoe_func)
11670 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11671
11672 /* Read the WWN: */
11673 if (!IS_MF(bp)) {
11674 /* Port info */
11675 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11676 SHMEM_RD(bp,
11677 dev_info.port_hw_config[port].
11678 fcoe_wwn_port_name_upper);
11679 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11680 SHMEM_RD(bp,
11681 dev_info.port_hw_config[port].
11682 fcoe_wwn_port_name_lower);
11683
11684 /* Node info */
11685 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11686 SHMEM_RD(bp,
11687 dev_info.port_hw_config[port].
11688 fcoe_wwn_node_name_upper);
11689 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11690 SHMEM_RD(bp,
11691 dev_info.port_hw_config[port].
11692 fcoe_wwn_node_name_lower);
11693 } else if (!IS_MF_SD(bp)) {
11694 /* Read the WWN info only if the FCoE feature is enabled for
11695 * this function.
11696 */
11697 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11698 bnx2x_get_ext_wwn_info(bp, func);
11699 } else {
11700 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11701 bnx2x_get_ext_wwn_info(bp, func);
11702 }
11703
11704 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11705
11706 /*
11707 * If maximum allowed number of connections is zero -
11708 * disable the feature.
11709 */
11710 if (!bp->cnic_eth_dev.max_fcoe_conn)
11711 bp->flags |= NO_FCOE_FLAG;
11712 }
11713
11714 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11715 {
11716 /*
11717 * iSCSI may be dynamically disabled but reading
11718 * info here we will decrease memory usage by driver
11719 * if the feature is disabled for good
11720 */
11721 bnx2x_get_iscsi_info(bp);
11722 bnx2x_get_fcoe_info(bp);
11723 }
11724
11725 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11726 {
11727 u32 val, val2;
11728 int func = BP_ABS_FUNC(bp);
11729 int port = BP_PORT(bp);
11730 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11731 u8 *fip_mac = bp->fip_mac;
11732
11733 if (IS_MF(bp)) {
11734 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11735 * FCoE MAC then the appropriate feature should be disabled.
11736 * In non SD mode features configuration comes from struct
11737 * func_ext_config.
11738 */
11739 if (!IS_MF_SD(bp)) {
11740 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11741 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11742 val2 = MF_CFG_RD(bp, func_ext_config[func].
11743 iscsi_mac_addr_upper);
11744 val = MF_CFG_RD(bp, func_ext_config[func].
11745 iscsi_mac_addr_lower);
11746 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11747 BNX2X_DEV_INFO
11748 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11749 } else {
11750 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11751 }
11752
11753 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11754 val2 = MF_CFG_RD(bp, func_ext_config[func].
11755 fcoe_mac_addr_upper);
11756 val = MF_CFG_RD(bp, func_ext_config[func].
11757 fcoe_mac_addr_lower);
11758 bnx2x_set_mac_buf(fip_mac, val, val2);
11759 BNX2X_DEV_INFO
11760 ("Read FCoE L2 MAC: %pM\n", fip_mac);
11761 } else {
11762 bp->flags |= NO_FCOE_FLAG;
11763 }
11764
11765 bp->mf_ext_config = cfg;
11766
11767 } else { /* SD MODE */
11768 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11769 /* use primary mac as iscsi mac */
11770 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11771
11772 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11773 BNX2X_DEV_INFO
11774 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11775 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11776 /* use primary mac as fip mac */
11777 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11778 BNX2X_DEV_INFO("SD FCoE MODE\n");
11779 BNX2X_DEV_INFO
11780 ("Read FIP MAC: %pM\n", fip_mac);
11781 }
11782 }
11783
11784 /* If this is a storage-only interface, use SAN mac as
11785 * primary MAC. Notice that for SD this is already the case,
11786 * as the SAN mac was copied from the primary MAC.
11787 */
11788 if (IS_MF_FCOE_AFEX(bp))
11789 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11790 } else {
11791 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11792 iscsi_mac_upper);
11793 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11794 iscsi_mac_lower);
11795 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11796
11797 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11798 fcoe_fip_mac_upper);
11799 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11800 fcoe_fip_mac_lower);
11801 bnx2x_set_mac_buf(fip_mac, val, val2);
11802 }
11803
11804 /* Disable iSCSI OOO if MAC configuration is invalid. */
11805 if (!is_valid_ether_addr(iscsi_mac)) {
11806 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11807 eth_zero_addr(iscsi_mac);
11808 }
11809
11810 /* Disable FCoE if MAC configuration is invalid. */
11811 if (!is_valid_ether_addr(fip_mac)) {
11812 bp->flags |= NO_FCOE_FLAG;
11813 eth_zero_addr(bp->fip_mac);
11814 }
11815 }
11816
11817 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11818 {
11819 u32 val, val2;
11820 int func = BP_ABS_FUNC(bp);
11821 int port = BP_PORT(bp);
11822
11823 /* Zero primary MAC configuration */
11824 eth_zero_addr(bp->dev->dev_addr);
11825
11826 if (BP_NOMCP(bp)) {
11827 BNX2X_ERROR("warning: random MAC workaround active\n");
11828 eth_hw_addr_random(bp->dev);
11829 } else if (IS_MF(bp)) {
11830 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11831 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11832 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11833 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11834 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11835
11836 if (CNIC_SUPPORT(bp))
11837 bnx2x_get_cnic_mac_hwinfo(bp);
11838 } else {
11839 /* in SF read MACs from port configuration */
11840 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11841 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11842 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11843
11844 if (CNIC_SUPPORT(bp))
11845 bnx2x_get_cnic_mac_hwinfo(bp);
11846 }
11847
11848 if (!BP_NOMCP(bp)) {
11849 /* Read physical port identifier from shmem */
11850 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11851 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11852 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11853 bp->flags |= HAS_PHYS_PORT_ID;
11854 }
11855
11856 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11857
11858 if (!is_valid_ether_addr(bp->dev->dev_addr))
11859 dev_err(&bp->pdev->dev,
11860 "bad Ethernet MAC address configuration: %pM\n"
11861 "change it manually before bringing up the appropriate network interface\n",
11862 bp->dev->dev_addr);
11863 }
11864
11865 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11866 {
11867 int tmp;
11868 u32 cfg;
11869
11870 if (IS_VF(bp))
11871 return false;
11872
11873 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11874 /* Take function: tmp = func */
11875 tmp = BP_ABS_FUNC(bp);
11876 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11877 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11878 } else {
11879 /* Take port: tmp = port */
11880 tmp = BP_PORT(bp);
11881 cfg = SHMEM_RD(bp,
11882 dev_info.port_hw_config[tmp].generic_features);
11883 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11884 }
11885 return cfg;
11886 }
11887
11888 static void validate_set_si_mode(struct bnx2x *bp)
11889 {
11890 u8 func = BP_ABS_FUNC(bp);
11891 u32 val;
11892
11893 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11894
11895 /* check for legal mac (upper bytes) */
11896 if (val != 0xffff) {
11897 bp->mf_mode = MULTI_FUNCTION_SI;
11898 bp->mf_config[BP_VN(bp)] =
11899 MF_CFG_RD(bp, func_mf_config[func].config);
11900 } else
11901 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11902 }
11903
11904 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11905 {
11906 int /*abs*/func = BP_ABS_FUNC(bp);
11907 int vn, mfw_vn;
11908 u32 val = 0, val2 = 0;
11909 int rc = 0;
11910
11911 /* Validate that chip access is feasible */
11912 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11913 dev_err(&bp->pdev->dev,
11914 "Chip read returns all Fs. Preventing probe from continuing\n");
11915 return -EINVAL;
11916 }
11917
11918 bnx2x_get_common_hwinfo(bp);
11919
11920 /*
11921 * initialize IGU parameters
11922 */
11923 if (CHIP_IS_E1x(bp)) {
11924 bp->common.int_block = INT_BLOCK_HC;
11925
11926 bp->igu_dsb_id = DEF_SB_IGU_ID;
11927 bp->igu_base_sb = 0;
11928 } else {
11929 bp->common.int_block = INT_BLOCK_IGU;
11930
11931 /* do not allow device reset during IGU info processing */
11932 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11933
11934 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11935
11936 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11937 int tout = 5000;
11938
11939 BNX2X_DEV_INFO("FORCING Normal Mode\n");
11940
11941 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11942 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11943 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11944
11945 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11946 tout--;
11947 usleep_range(1000, 2000);
11948 }
11949
11950 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11951 dev_err(&bp->pdev->dev,
11952 "FORCING Normal Mode failed!!!\n");
11953 bnx2x_release_hw_lock(bp,
11954 HW_LOCK_RESOURCE_RESET);
11955 return -EPERM;
11956 }
11957 }
11958
11959 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11960 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11961 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11962 } else
11963 BNX2X_DEV_INFO("IGU Normal Mode\n");
11964
11965 rc = bnx2x_get_igu_cam_info(bp);
11966 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11967 if (rc)
11968 return rc;
11969 }
11970
11971 /*
11972 * set base FW non-default (fast path) status block id, this value is
11973 * used to initialize the fw_sb_id saved on the fp/queue structure to
11974 * determine the id used by the FW.
11975 */
11976 if (CHIP_IS_E1x(bp))
11977 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11978 else /*
11979 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11980 * the same queue are indicated on the same IGU SB). So we prefer
11981 * FW and IGU SBs to be the same value.
11982 */
11983 bp->base_fw_ndsb = bp->igu_base_sb;
11984
11985 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
11986 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11987 bp->igu_sb_cnt, bp->base_fw_ndsb);
11988
11989 /*
11990 * Initialize MF configuration
11991 */
11992
11993 bp->mf_ov = 0;
11994 bp->mf_mode = 0;
11995 bp->mf_sub_mode = 0;
11996 vn = BP_VN(bp);
11997 mfw_vn = BP_FW_MB_IDX(bp);
11998
11999 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12000 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12001 bp->common.shmem2_base, SHMEM2_RD(bp, size),
12002 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12003
12004 if (SHMEM2_HAS(bp, mf_cfg_addr))
12005 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12006 else
12007 bp->common.mf_cfg_base = bp->common.shmem_base +
12008 offsetof(struct shmem_region, func_mb) +
12009 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12010 /*
12011 * get mf configuration:
12012 * 1. Existence of MF configuration
12013 * 2. MAC address must be legal (check only upper bytes)
12014 * for Switch-Independent mode;
12015 * OVLAN must be legal for Switch-Dependent mode
12016 * 3. SF_MODE configures specific MF mode
12017 */
12018 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12019 /* get mf configuration */
12020 val = SHMEM_RD(bp,
12021 dev_info.shared_feature_config.config);
12022 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12023
12024 switch (val) {
12025 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12026 validate_set_si_mode(bp);
12027 break;
12028 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12029 if ((!CHIP_IS_E1x(bp)) &&
12030 (MF_CFG_RD(bp, func_mf_config[func].
12031 mac_upper) != 0xffff) &&
12032 (SHMEM2_HAS(bp,
12033 afex_driver_support))) {
12034 bp->mf_mode = MULTI_FUNCTION_AFEX;
12035 bp->mf_config[vn] = MF_CFG_RD(bp,
12036 func_mf_config[func].config);
12037 } else {
12038 BNX2X_DEV_INFO("can not configure afex mode\n");
12039 }
12040 break;
12041 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12042 /* get OV configuration */
12043 val = MF_CFG_RD(bp,
12044 func_mf_config[FUNC_0].e1hov_tag);
12045 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12046
12047 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12048 bp->mf_mode = MULTI_FUNCTION_SD;
12049 bp->mf_config[vn] = MF_CFG_RD(bp,
12050 func_mf_config[func].config);
12051 } else
12052 BNX2X_DEV_INFO("illegal OV for SD\n");
12053 break;
12054 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12055 bp->mf_mode = MULTI_FUNCTION_SD;
12056 bp->mf_sub_mode = SUB_MF_MODE_BD;
12057 bp->mf_config[vn] =
12058 MF_CFG_RD(bp,
12059 func_mf_config[func].config);
12060
12061 if (SHMEM2_HAS(bp, mtu_size)) {
12062 int mtu_idx = BP_FW_MB_IDX(bp);
12063 u16 mtu_size;
12064 u32 mtu;
12065
12066 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12067 mtu_size = (u16)mtu;
12068 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12069 mtu_size, mtu);
12070
12071 /* if valid: update device mtu */
12072 if (((mtu_size + ETH_HLEN) >=
12073 ETH_MIN_PACKET_SIZE) &&
12074 (mtu_size <=
12075 ETH_MAX_JUMBO_PACKET_SIZE))
12076 bp->dev->mtu = mtu_size;
12077 }
12078 break;
12079 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12080 bp->mf_mode = MULTI_FUNCTION_SD;
12081 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12082 bp->mf_config[vn] =
12083 MF_CFG_RD(bp,
12084 func_mf_config[func].config);
12085 break;
12086 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12087 bp->mf_config[vn] = 0;
12088 break;
12089 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12090 val2 = SHMEM_RD(bp,
12091 dev_info.shared_hw_config.config_3);
12092 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12093 switch (val2) {
12094 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12095 validate_set_si_mode(bp);
12096 bp->mf_sub_mode =
12097 SUB_MF_MODE_NPAR1_DOT_5;
12098 break;
12099 default:
12100 /* Unknown configuration */
12101 bp->mf_config[vn] = 0;
12102 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12103 val);
12104 }
12105 break;
12106 default:
12107 /* Unknown configuration: reset mf_config */
12108 bp->mf_config[vn] = 0;
12109 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12110 }
12111 }
12112
12113 BNX2X_DEV_INFO("%s function mode\n",
12114 IS_MF(bp) ? "multi" : "single");
12115
12116 switch (bp->mf_mode) {
12117 case MULTI_FUNCTION_SD:
12118 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12119 FUNC_MF_CFG_E1HOV_TAG_MASK;
12120 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12121 bp->mf_ov = val;
12122 bp->path_has_ovlan = true;
12123
12124 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12125 func, bp->mf_ov, bp->mf_ov);
12126 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12127 (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12128 dev_err(&bp->pdev->dev,
12129 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12130 func);
12131 bp->path_has_ovlan = true;
12132 } else {
12133 dev_err(&bp->pdev->dev,
12134 "No valid MF OV for func %d, aborting\n",
12135 func);
12136 return -EPERM;
12137 }
12138 break;
12139 case MULTI_FUNCTION_AFEX:
12140 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12141 break;
12142 case MULTI_FUNCTION_SI:
12143 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12144 func);
12145 break;
12146 default:
12147 if (vn) {
12148 dev_err(&bp->pdev->dev,
12149 "VN %d is in a single function mode, aborting\n",
12150 vn);
12151 return -EPERM;
12152 }
12153 break;
12154 }
12155
12156 /* check if other port on the path needs ovlan:
12157 * Since MF configuration is shared between ports
12158 * Possible mixed modes are only
12159 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12160 */
12161 if (CHIP_MODE_IS_4_PORT(bp) &&
12162 !bp->path_has_ovlan &&
12163 !IS_MF(bp) &&
12164 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12165 u8 other_port = !BP_PORT(bp);
12166 u8 other_func = BP_PATH(bp) + 2*other_port;
12167 val = MF_CFG_RD(bp,
12168 func_mf_config[other_func].e1hov_tag);
12169 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12170 bp->path_has_ovlan = true;
12171 }
12172 }
12173
12174 /* adjust igu_sb_cnt to MF for E1H */
12175 if (CHIP_IS_E1H(bp) && IS_MF(bp))
12176 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12177
12178 /* port info */
12179 bnx2x_get_port_hwinfo(bp);
12180
12181 /* Get MAC addresses */
12182 bnx2x_get_mac_hwinfo(bp);
12183
12184 bnx2x_get_cnic_info(bp);
12185
12186 return rc;
12187 }
12188
12189 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12190 {
12191 int cnt, i, block_end, rodi;
12192 char vpd_start[BNX2X_VPD_LEN+1];
12193 char str_id_reg[VENDOR_ID_LEN+1];
12194 char str_id_cap[VENDOR_ID_LEN+1];
12195 char *vpd_data;
12196 char *vpd_extended_data = NULL;
12197 u8 len;
12198
12199 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12200 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12201
12202 if (cnt < BNX2X_VPD_LEN)
12203 goto out_not_found;
12204
12205 /* VPD RO tag should be first tag after identifier string, hence
12206 * we should be able to find it in first BNX2X_VPD_LEN chars
12207 */
12208 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12209 PCI_VPD_LRDT_RO_DATA);
12210 if (i < 0)
12211 goto out_not_found;
12212
12213 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12214 pci_vpd_lrdt_size(&vpd_start[i]);
12215
12216 i += PCI_VPD_LRDT_TAG_SIZE;
12217
12218 if (block_end > BNX2X_VPD_LEN) {
12219 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12220 if (vpd_extended_data == NULL)
12221 goto out_not_found;
12222
12223 /* read rest of vpd image into vpd_extended_data */
12224 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12225 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12226 block_end - BNX2X_VPD_LEN,
12227 vpd_extended_data + BNX2X_VPD_LEN);
12228 if (cnt < (block_end - BNX2X_VPD_LEN))
12229 goto out_not_found;
12230 vpd_data = vpd_extended_data;
12231 } else
12232 vpd_data = vpd_start;
12233
12234 /* now vpd_data holds full vpd content in both cases */
12235
12236 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12237 PCI_VPD_RO_KEYWORD_MFR_ID);
12238 if (rodi < 0)
12239 goto out_not_found;
12240
12241 len = pci_vpd_info_field_size(&vpd_data[rodi]);
12242
12243 if (len != VENDOR_ID_LEN)
12244 goto out_not_found;
12245
12246 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12247
12248 /* vendor specific info */
12249 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12250 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12251 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12252 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12253
12254 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12255 PCI_VPD_RO_KEYWORD_VENDOR0);
12256 if (rodi >= 0) {
12257 len = pci_vpd_info_field_size(&vpd_data[rodi]);
12258
12259 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12260
12261 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12262 memcpy(bp->fw_ver, &vpd_data[rodi], len);
12263 bp->fw_ver[len] = ' ';
12264 }
12265 }
12266 kfree(vpd_extended_data);
12267 return;
12268 }
12269 out_not_found:
12270 kfree(vpd_extended_data);
12271 return;
12272 }
12273
12274 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12275 {
12276 u32 flags = 0;
12277
12278 if (CHIP_REV_IS_FPGA(bp))
12279 SET_FLAGS(flags, MODE_FPGA);
12280 else if (CHIP_REV_IS_EMUL(bp))
12281 SET_FLAGS(flags, MODE_EMUL);
12282 else
12283 SET_FLAGS(flags, MODE_ASIC);
12284
12285 if (CHIP_MODE_IS_4_PORT(bp))
12286 SET_FLAGS(flags, MODE_PORT4);
12287 else
12288 SET_FLAGS(flags, MODE_PORT2);
12289
12290 if (CHIP_IS_E2(bp))
12291 SET_FLAGS(flags, MODE_E2);
12292 else if (CHIP_IS_E3(bp)) {
12293 SET_FLAGS(flags, MODE_E3);
12294 if (CHIP_REV(bp) == CHIP_REV_Ax)
12295 SET_FLAGS(flags, MODE_E3_A0);
12296 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12297 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12298 }
12299
12300 if (IS_MF(bp)) {
12301 SET_FLAGS(flags, MODE_MF);
12302 switch (bp->mf_mode) {
12303 case MULTI_FUNCTION_SD:
12304 SET_FLAGS(flags, MODE_MF_SD);
12305 break;
12306 case MULTI_FUNCTION_SI:
12307 SET_FLAGS(flags, MODE_MF_SI);
12308 break;
12309 case MULTI_FUNCTION_AFEX:
12310 SET_FLAGS(flags, MODE_MF_AFEX);
12311 break;
12312 }
12313 } else
12314 SET_FLAGS(flags, MODE_SF);
12315
12316 #if defined(__LITTLE_ENDIAN)
12317 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12318 #else /*(__BIG_ENDIAN)*/
12319 SET_FLAGS(flags, MODE_BIG_ENDIAN);
12320 #endif
12321 INIT_MODE_FLAGS(bp) = flags;
12322 }
12323
12324 static int bnx2x_init_bp(struct bnx2x *bp)
12325 {
12326 int func;
12327 int rc;
12328
12329 mutex_init(&bp->port.phy_mutex);
12330 mutex_init(&bp->fw_mb_mutex);
12331 mutex_init(&bp->drv_info_mutex);
12332 sema_init(&bp->stats_lock, 1);
12333 bp->drv_info_mng_owner = false;
12334 INIT_LIST_HEAD(&bp->vlan_reg);
12335
12336 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12337 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12338 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12339 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12340 if (IS_PF(bp)) {
12341 rc = bnx2x_get_hwinfo(bp);
12342 if (rc)
12343 return rc;
12344 } else {
12345 eth_zero_addr(bp->dev->dev_addr);
12346 }
12347
12348 bnx2x_set_modes_bitmap(bp);
12349
12350 rc = bnx2x_alloc_mem_bp(bp);
12351 if (rc)
12352 return rc;
12353
12354 bnx2x_read_fwinfo(bp);
12355
12356 func = BP_FUNC(bp);
12357
12358 /* need to reset chip if undi was active */
12359 if (IS_PF(bp) && !BP_NOMCP(bp)) {
12360 /* init fw_seq */
12361 bp->fw_seq =
12362 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12363 DRV_MSG_SEQ_NUMBER_MASK;
12364 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12365
12366 rc = bnx2x_prev_unload(bp);
12367 if (rc) {
12368 bnx2x_free_mem_bp(bp);
12369 return rc;
12370 }
12371 }
12372
12373 if (CHIP_REV_IS_FPGA(bp))
12374 dev_err(&bp->pdev->dev, "FPGA detected\n");
12375
12376 if (BP_NOMCP(bp) && (func == 0))
12377 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12378
12379 bp->disable_tpa = disable_tpa;
12380 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12381 /* Reduce memory usage in kdump environment by disabling TPA */
12382 bp->disable_tpa |= is_kdump_kernel();
12383
12384 /* Set TPA flags */
12385 if (bp->disable_tpa) {
12386 bp->dev->hw_features &= ~NETIF_F_LRO;
12387 bp->dev->features &= ~NETIF_F_LRO;
12388 }
12389
12390 if (CHIP_IS_E1(bp))
12391 bp->dropless_fc = 0;
12392 else
12393 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12394
12395 bp->mrrs = mrrs;
12396
12397 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12398 if (IS_VF(bp))
12399 bp->rx_ring_size = MAX_RX_AVAIL;
12400
12401 /* make sure that the numbers are in the right granularity */
12402 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12403 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12404
12405 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12406
12407 init_timer(&bp->timer);
12408 bp->timer.expires = jiffies + bp->current_interval;
12409 bp->timer.data = (unsigned long) bp;
12410 bp->timer.function = bnx2x_timer;
12411
12412 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12413 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12414 SHMEM2_HAS(bp, dcbx_en) &&
12415 SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12416 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12417 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12418 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12419 bnx2x_dcbx_init_params(bp);
12420 } else {
12421 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12422 }
12423
12424 if (CHIP_IS_E1x(bp))
12425 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12426 else
12427 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12428
12429 /* multiple tx priority */
12430 if (IS_VF(bp))
12431 bp->max_cos = 1;
12432 else if (CHIP_IS_E1x(bp))
12433 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12434 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12435 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12436 else if (CHIP_IS_E3B0(bp))
12437 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12438 else
12439 BNX2X_ERR("unknown chip %x revision %x\n",
12440 CHIP_NUM(bp), CHIP_REV(bp));
12441 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12442
12443 /* We need at least one default status block for slow-path events,
12444 * second status block for the L2 queue, and a third status block for
12445 * CNIC if supported.
12446 */
12447 if (IS_VF(bp))
12448 bp->min_msix_vec_cnt = 1;
12449 else if (CNIC_SUPPORT(bp))
12450 bp->min_msix_vec_cnt = 3;
12451 else /* PF w/o cnic */
12452 bp->min_msix_vec_cnt = 2;
12453 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12454
12455 bp->dump_preset_idx = 1;
12456
12457 if (CHIP_IS_E3B0(bp))
12458 bp->flags |= PTP_SUPPORTED;
12459
12460 return rc;
12461 }
12462
12463 /****************************************************************************
12464 * General service functions
12465 ****************************************************************************/
12466
12467 /*
12468 * net_device service functions
12469 */
12470
12471 /* called with rtnl_lock */
12472 static int bnx2x_open(struct net_device *dev)
12473 {
12474 struct bnx2x *bp = netdev_priv(dev);
12475 int rc;
12476
12477 bp->stats_init = true;
12478
12479 netif_carrier_off(dev);
12480
12481 bnx2x_set_power_state(bp, PCI_D0);
12482
12483 /* If parity had happen during the unload, then attentions
12484 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12485 * want the first function loaded on the current engine to
12486 * complete the recovery.
12487 * Parity recovery is only relevant for PF driver.
12488 */
12489 if (IS_PF(bp)) {
12490 int other_engine = BP_PATH(bp) ? 0 : 1;
12491 bool other_load_status, load_status;
12492 bool global = false;
12493
12494 other_load_status = bnx2x_get_load_status(bp, other_engine);
12495 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12496 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12497 bnx2x_chk_parity_attn(bp, &global, true)) {
12498 do {
12499 /* If there are attentions and they are in a
12500 * global blocks, set the GLOBAL_RESET bit
12501 * regardless whether it will be this function
12502 * that will complete the recovery or not.
12503 */
12504 if (global)
12505 bnx2x_set_reset_global(bp);
12506
12507 /* Only the first function on the current
12508 * engine should try to recover in open. In case
12509 * of attentions in global blocks only the first
12510 * in the chip should try to recover.
12511 */
12512 if ((!load_status &&
12513 (!global || !other_load_status)) &&
12514 bnx2x_trylock_leader_lock(bp) &&
12515 !bnx2x_leader_reset(bp)) {
12516 netdev_info(bp->dev,
12517 "Recovered in open\n");
12518 break;
12519 }
12520
12521 /* recovery has failed... */
12522 bnx2x_set_power_state(bp, PCI_D3hot);
12523 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12524
12525 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12526 "If you still see this message after a few retries then power cycle is required.\n");
12527
12528 return -EAGAIN;
12529 } while (0);
12530 }
12531 }
12532
12533 bp->recovery_state = BNX2X_RECOVERY_DONE;
12534 rc = bnx2x_nic_load(bp, LOAD_OPEN);
12535 if (rc)
12536 return rc;
12537
12538 if (IS_PF(bp))
12539 udp_tunnel_get_rx_info(dev);
12540
12541 return 0;
12542 }
12543
12544 /* called with rtnl_lock */
12545 static int bnx2x_close(struct net_device *dev)
12546 {
12547 struct bnx2x *bp = netdev_priv(dev);
12548
12549 /* Unload the driver, release IRQs */
12550 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12551
12552 return 0;
12553 }
12554
12555 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12556 struct bnx2x_mcast_ramrod_params *p)
12557 {
12558 int mc_count = netdev_mc_count(bp->dev);
12559 struct bnx2x_mcast_list_elem *mc_mac =
12560 kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12561 struct netdev_hw_addr *ha;
12562
12563 if (!mc_mac)
12564 return -ENOMEM;
12565
12566 INIT_LIST_HEAD(&p->mcast_list);
12567
12568 netdev_for_each_mc_addr(ha, bp->dev) {
12569 mc_mac->mac = bnx2x_mc_addr(ha);
12570 list_add_tail(&mc_mac->link, &p->mcast_list);
12571 mc_mac++;
12572 }
12573
12574 p->mcast_list_len = mc_count;
12575
12576 return 0;
12577 }
12578
12579 static void bnx2x_free_mcast_macs_list(
12580 struct bnx2x_mcast_ramrod_params *p)
12581 {
12582 struct bnx2x_mcast_list_elem *mc_mac =
12583 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12584 link);
12585
12586 WARN_ON(!mc_mac);
12587 kfree(mc_mac);
12588 }
12589
12590 /**
12591 * bnx2x_set_uc_list - configure a new unicast MACs list.
12592 *
12593 * @bp: driver handle
12594 *
12595 * We will use zero (0) as a MAC type for these MACs.
12596 */
12597 static int bnx2x_set_uc_list(struct bnx2x *bp)
12598 {
12599 int rc;
12600 struct net_device *dev = bp->dev;
12601 struct netdev_hw_addr *ha;
12602 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12603 unsigned long ramrod_flags = 0;
12604
12605 /* First schedule a cleanup up of old configuration */
12606 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12607 if (rc < 0) {
12608 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12609 return rc;
12610 }
12611
12612 netdev_for_each_uc_addr(ha, dev) {
12613 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12614 BNX2X_UC_LIST_MAC, &ramrod_flags);
12615 if (rc == -EEXIST) {
12616 DP(BNX2X_MSG_SP,
12617 "Failed to schedule ADD operations: %d\n", rc);
12618 /* do not treat adding same MAC as error */
12619 rc = 0;
12620
12621 } else if (rc < 0) {
12622
12623 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12624 rc);
12625 return rc;
12626 }
12627 }
12628
12629 /* Execute the pending commands */
12630 __set_bit(RAMROD_CONT, &ramrod_flags);
12631 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12632 BNX2X_UC_LIST_MAC, &ramrod_flags);
12633 }
12634
12635 static int bnx2x_set_mc_list(struct bnx2x *bp)
12636 {
12637 struct net_device *dev = bp->dev;
12638 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12639 int rc = 0;
12640
12641 rparam.mcast_obj = &bp->mcast_obj;
12642
12643 /* first, clear all configured multicast MACs */
12644 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12645 if (rc < 0) {
12646 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12647 return rc;
12648 }
12649
12650 /* then, configure a new MACs list */
12651 if (netdev_mc_count(dev)) {
12652 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12653 if (rc) {
12654 BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12655 rc);
12656 return rc;
12657 }
12658
12659 /* Now add the new MACs */
12660 rc = bnx2x_config_mcast(bp, &rparam,
12661 BNX2X_MCAST_CMD_ADD);
12662 if (rc < 0)
12663 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12664 rc);
12665
12666 bnx2x_free_mcast_macs_list(&rparam);
12667 }
12668
12669 return rc;
12670 }
12671
12672 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12673 static void bnx2x_set_rx_mode(struct net_device *dev)
12674 {
12675 struct bnx2x *bp = netdev_priv(dev);
12676
12677 if (bp->state != BNX2X_STATE_OPEN) {
12678 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12679 return;
12680 } else {
12681 /* Schedule an SP task to handle rest of change */
12682 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12683 NETIF_MSG_IFUP);
12684 }
12685 }
12686
12687 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12688 {
12689 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12690
12691 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12692
12693 netif_addr_lock_bh(bp->dev);
12694
12695 if (bp->dev->flags & IFF_PROMISC) {
12696 rx_mode = BNX2X_RX_MODE_PROMISC;
12697 } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12698 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12699 CHIP_IS_E1(bp))) {
12700 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12701 } else {
12702 if (IS_PF(bp)) {
12703 /* some multicasts */
12704 if (bnx2x_set_mc_list(bp) < 0)
12705 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12706
12707 /* release bh lock, as bnx2x_set_uc_list might sleep */
12708 netif_addr_unlock_bh(bp->dev);
12709 if (bnx2x_set_uc_list(bp) < 0)
12710 rx_mode = BNX2X_RX_MODE_PROMISC;
12711 netif_addr_lock_bh(bp->dev);
12712 } else {
12713 /* configuring mcast to a vf involves sleeping (when we
12714 * wait for the pf's response).
12715 */
12716 bnx2x_schedule_sp_rtnl(bp,
12717 BNX2X_SP_RTNL_VFPF_MCAST, 0);
12718 }
12719 }
12720
12721 bp->rx_mode = rx_mode;
12722 /* handle ISCSI SD mode */
12723 if (IS_MF_ISCSI_ONLY(bp))
12724 bp->rx_mode = BNX2X_RX_MODE_NONE;
12725
12726 /* Schedule the rx_mode command */
12727 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12728 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12729 netif_addr_unlock_bh(bp->dev);
12730 return;
12731 }
12732
12733 if (IS_PF(bp)) {
12734 bnx2x_set_storm_rx_mode(bp);
12735 netif_addr_unlock_bh(bp->dev);
12736 } else {
12737 /* VF will need to request the PF to make this change, and so
12738 * the VF needs to release the bottom-half lock prior to the
12739 * request (as it will likely require sleep on the VF side)
12740 */
12741 netif_addr_unlock_bh(bp->dev);
12742 bnx2x_vfpf_storm_rx_mode(bp);
12743 }
12744 }
12745
12746 /* called with rtnl_lock */
12747 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12748 int devad, u16 addr)
12749 {
12750 struct bnx2x *bp = netdev_priv(netdev);
12751 u16 value;
12752 int rc;
12753
12754 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12755 prtad, devad, addr);
12756
12757 /* The HW expects different devad if CL22 is used */
12758 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12759
12760 bnx2x_acquire_phy_lock(bp);
12761 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12762 bnx2x_release_phy_lock(bp);
12763 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12764
12765 if (!rc)
12766 rc = value;
12767 return rc;
12768 }
12769
12770 /* called with rtnl_lock */
12771 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12772 u16 addr, u16 value)
12773 {
12774 struct bnx2x *bp = netdev_priv(netdev);
12775 int rc;
12776
12777 DP(NETIF_MSG_LINK,
12778 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12779 prtad, devad, addr, value);
12780
12781 /* The HW expects different devad if CL22 is used */
12782 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12783
12784 bnx2x_acquire_phy_lock(bp);
12785 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12786 bnx2x_release_phy_lock(bp);
12787 return rc;
12788 }
12789
12790 /* called with rtnl_lock */
12791 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12792 {
12793 struct bnx2x *bp = netdev_priv(dev);
12794 struct mii_ioctl_data *mdio = if_mii(ifr);
12795
12796 if (!netif_running(dev))
12797 return -EAGAIN;
12798
12799 switch (cmd) {
12800 case SIOCSHWTSTAMP:
12801 return bnx2x_hwtstamp_ioctl(bp, ifr);
12802 default:
12803 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12804 mdio->phy_id, mdio->reg_num, mdio->val_in);
12805 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12806 }
12807 }
12808
12809 #ifdef CONFIG_NET_POLL_CONTROLLER
12810 static void poll_bnx2x(struct net_device *dev)
12811 {
12812 struct bnx2x *bp = netdev_priv(dev);
12813 int i;
12814
12815 for_each_eth_queue(bp, i) {
12816 struct bnx2x_fastpath *fp = &bp->fp[i];
12817 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12818 }
12819 }
12820 #endif
12821
12822 static int bnx2x_validate_addr(struct net_device *dev)
12823 {
12824 struct bnx2x *bp = netdev_priv(dev);
12825
12826 /* query the bulletin board for mac address configured by the PF */
12827 if (IS_VF(bp))
12828 bnx2x_sample_bulletin(bp);
12829
12830 if (!is_valid_ether_addr(dev->dev_addr)) {
12831 BNX2X_ERR("Non-valid Ethernet address\n");
12832 return -EADDRNOTAVAIL;
12833 }
12834 return 0;
12835 }
12836
12837 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12838 struct netdev_phys_item_id *ppid)
12839 {
12840 struct bnx2x *bp = netdev_priv(netdev);
12841
12842 if (!(bp->flags & HAS_PHYS_PORT_ID))
12843 return -EOPNOTSUPP;
12844
12845 ppid->id_len = sizeof(bp->phys_port_id);
12846 memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12847
12848 return 0;
12849 }
12850
12851 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12852 struct net_device *dev,
12853 netdev_features_t features)
12854 {
12855 features = vlan_features_check(skb, features);
12856 return vxlan_features_check(skb, features);
12857 }
12858
12859 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12860 {
12861 int rc;
12862
12863 if (IS_PF(bp)) {
12864 unsigned long ramrod_flags = 0;
12865
12866 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12867 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12868 add, &ramrod_flags);
12869 } else {
12870 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12871 }
12872
12873 return rc;
12874 }
12875
12876 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12877 {
12878 struct bnx2x_vlan_entry *vlan;
12879 int rc = 0;
12880
12881 /* Configure all non-configured entries */
12882 list_for_each_entry(vlan, &bp->vlan_reg, link) {
12883 if (vlan->hw)
12884 continue;
12885
12886 if (bp->vlan_cnt >= bp->vlan_credit)
12887 return -ENOBUFS;
12888
12889 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12890 if (rc) {
12891 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12892 return rc;
12893 }
12894
12895 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12896 vlan->hw = true;
12897 bp->vlan_cnt++;
12898 }
12899
12900 return 0;
12901 }
12902
12903 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12904 {
12905 bool need_accept_any_vlan;
12906
12907 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12908
12909 if (bp->accept_any_vlan != need_accept_any_vlan) {
12910 bp->accept_any_vlan = need_accept_any_vlan;
12911 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12912 bp->accept_any_vlan ? "raised" : "cleared");
12913 if (set_rx_mode) {
12914 if (IS_PF(bp))
12915 bnx2x_set_rx_mode_inner(bp);
12916 else
12917 bnx2x_vfpf_storm_rx_mode(bp);
12918 }
12919 }
12920 }
12921
12922 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12923 {
12924 struct bnx2x_vlan_entry *vlan;
12925
12926 /* The hw forgot all entries after reload */
12927 list_for_each_entry(vlan, &bp->vlan_reg, link)
12928 vlan->hw = false;
12929 bp->vlan_cnt = 0;
12930
12931 /* Don't set rx mode here. Our caller will do it. */
12932 bnx2x_vlan_configure(bp, false);
12933
12934 return 0;
12935 }
12936
12937 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12938 {
12939 struct bnx2x *bp = netdev_priv(dev);
12940 struct bnx2x_vlan_entry *vlan;
12941
12942 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12943
12944 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12945 if (!vlan)
12946 return -ENOMEM;
12947
12948 vlan->vid = vid;
12949 vlan->hw = false;
12950 list_add_tail(&vlan->link, &bp->vlan_reg);
12951
12952 if (netif_running(dev))
12953 bnx2x_vlan_configure(bp, true);
12954
12955 return 0;
12956 }
12957
12958 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12959 {
12960 struct bnx2x *bp = netdev_priv(dev);
12961 struct bnx2x_vlan_entry *vlan;
12962 bool found = false;
12963 int rc = 0;
12964
12965 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12966
12967 list_for_each_entry(vlan, &bp->vlan_reg, link)
12968 if (vlan->vid == vid) {
12969 found = true;
12970 break;
12971 }
12972
12973 if (!found) {
12974 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12975 return -EINVAL;
12976 }
12977
12978 if (netif_running(dev) && vlan->hw) {
12979 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12980 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
12981 bp->vlan_cnt--;
12982 }
12983
12984 list_del(&vlan->link);
12985 kfree(vlan);
12986
12987 if (netif_running(dev))
12988 bnx2x_vlan_configure(bp, true);
12989
12990 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
12991
12992 return rc;
12993 }
12994
12995 static const struct net_device_ops bnx2x_netdev_ops = {
12996 .ndo_open = bnx2x_open,
12997 .ndo_stop = bnx2x_close,
12998 .ndo_start_xmit = bnx2x_start_xmit,
12999 .ndo_select_queue = bnx2x_select_queue,
13000 .ndo_set_rx_mode = bnx2x_set_rx_mode,
13001 .ndo_set_mac_address = bnx2x_change_mac_addr,
13002 .ndo_validate_addr = bnx2x_validate_addr,
13003 .ndo_do_ioctl = bnx2x_ioctl,
13004 .ndo_change_mtu = bnx2x_change_mtu,
13005 .ndo_fix_features = bnx2x_fix_features,
13006 .ndo_set_features = bnx2x_set_features,
13007 .ndo_tx_timeout = bnx2x_tx_timeout,
13008 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid,
13009 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid,
13010 #ifdef CONFIG_NET_POLL_CONTROLLER
13011 .ndo_poll_controller = poll_bnx2x,
13012 #endif
13013 .ndo_setup_tc = __bnx2x_setup_tc,
13014 #ifdef CONFIG_BNX2X_SRIOV
13015 .ndo_set_vf_mac = bnx2x_set_vf_mac,
13016 .ndo_set_vf_vlan = bnx2x_set_vf_vlan,
13017 .ndo_get_vf_config = bnx2x_get_vf_config,
13018 #endif
13019 #ifdef NETDEV_FCOE_WWNN
13020 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
13021 #endif
13022
13023 .ndo_get_phys_port_id = bnx2x_get_phys_port_id,
13024 .ndo_set_vf_link_state = bnx2x_set_vf_link_state,
13025 .ndo_features_check = bnx2x_features_check,
13026 .ndo_udp_tunnel_add = bnx2x_udp_tunnel_add,
13027 .ndo_udp_tunnel_del = bnx2x_udp_tunnel_del,
13028 };
13029
13030 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13031 {
13032 struct device *dev = &bp->pdev->dev;
13033
13034 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13035 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13036 dev_err(dev, "System does not support DMA, aborting\n");
13037 return -EIO;
13038 }
13039
13040 return 0;
13041 }
13042
13043 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13044 {
13045 if (bp->flags & AER_ENABLED) {
13046 pci_disable_pcie_error_reporting(bp->pdev);
13047 bp->flags &= ~AER_ENABLED;
13048 }
13049 }
13050
13051 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13052 struct net_device *dev, unsigned long board_type)
13053 {
13054 int rc;
13055 u32 pci_cfg_dword;
13056 bool chip_is_e1x = (board_type == BCM57710 ||
13057 board_type == BCM57711 ||
13058 board_type == BCM57711E);
13059
13060 SET_NETDEV_DEV(dev, &pdev->dev);
13061
13062 bp->dev = dev;
13063 bp->pdev = pdev;
13064
13065 rc = pci_enable_device(pdev);
13066 if (rc) {
13067 dev_err(&bp->pdev->dev,
13068 "Cannot enable PCI device, aborting\n");
13069 goto err_out;
13070 }
13071
13072 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13073 dev_err(&bp->pdev->dev,
13074 "Cannot find PCI device base address, aborting\n");
13075 rc = -ENODEV;
13076 goto err_out_disable;
13077 }
13078
13079 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13080 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13081 rc = -ENODEV;
13082 goto err_out_disable;
13083 }
13084
13085 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13086 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13087 PCICFG_REVESION_ID_ERROR_VAL) {
13088 pr_err("PCI device error, probably due to fan failure, aborting\n");
13089 rc = -ENODEV;
13090 goto err_out_disable;
13091 }
13092
13093 if (atomic_read(&pdev->enable_cnt) == 1) {
13094 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13095 if (rc) {
13096 dev_err(&bp->pdev->dev,
13097 "Cannot obtain PCI resources, aborting\n");
13098 goto err_out_disable;
13099 }
13100
13101 pci_set_master(pdev);
13102 pci_save_state(pdev);
13103 }
13104
13105 if (IS_PF(bp)) {
13106 if (!pdev->pm_cap) {
13107 dev_err(&bp->pdev->dev,
13108 "Cannot find power management capability, aborting\n");
13109 rc = -EIO;
13110 goto err_out_release;
13111 }
13112 }
13113
13114 if (!pci_is_pcie(pdev)) {
13115 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13116 rc = -EIO;
13117 goto err_out_release;
13118 }
13119
13120 rc = bnx2x_set_coherency_mask(bp);
13121 if (rc)
13122 goto err_out_release;
13123
13124 dev->mem_start = pci_resource_start(pdev, 0);
13125 dev->base_addr = dev->mem_start;
13126 dev->mem_end = pci_resource_end(pdev, 0);
13127
13128 dev->irq = pdev->irq;
13129
13130 bp->regview = pci_ioremap_bar(pdev, 0);
13131 if (!bp->regview) {
13132 dev_err(&bp->pdev->dev,
13133 "Cannot map register space, aborting\n");
13134 rc = -ENOMEM;
13135 goto err_out_release;
13136 }
13137
13138 /* In E1/E1H use pci device function given by kernel.
13139 * In E2/E3 read physical function from ME register since these chips
13140 * support Physical Device Assignment where kernel BDF maybe arbitrary
13141 * (depending on hypervisor).
13142 */
13143 if (chip_is_e1x) {
13144 bp->pf_num = PCI_FUNC(pdev->devfn);
13145 } else {
13146 /* chip is E2/3*/
13147 pci_read_config_dword(bp->pdev,
13148 PCICFG_ME_REGISTER, &pci_cfg_dword);
13149 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13150 ME_REG_ABS_PF_NUM_SHIFT);
13151 }
13152 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13153
13154 /* clean indirect addresses */
13155 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13156 PCICFG_VENDOR_ID_OFFSET);
13157
13158 /* Set PCIe reset type to fundamental for EEH recovery */
13159 pdev->needs_freset = 1;
13160
13161 /* AER (Advanced Error reporting) configuration */
13162 rc = pci_enable_pcie_error_reporting(pdev);
13163 if (!rc)
13164 bp->flags |= AER_ENABLED;
13165 else
13166 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13167
13168 /*
13169 * Clean the following indirect addresses for all functions since it
13170 * is not used by the driver.
13171 */
13172 if (IS_PF(bp)) {
13173 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13174 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13175 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13176 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13177
13178 if (chip_is_e1x) {
13179 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13180 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13181 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13182 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13183 }
13184
13185 /* Enable internal target-read (in case we are probed after PF
13186 * FLR). Must be done prior to any BAR read access. Only for
13187 * 57712 and up
13188 */
13189 if (!chip_is_e1x)
13190 REG_WR(bp,
13191 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13192 }
13193
13194 dev->watchdog_timeo = TX_TIMEOUT;
13195
13196 dev->netdev_ops = &bnx2x_netdev_ops;
13197 bnx2x_set_ethtool_ops(bp, dev);
13198
13199 dev->priv_flags |= IFF_UNICAST_FLT;
13200
13201 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13202 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13203 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
13204 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13205 if (!chip_is_e1x) {
13206 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
13207 NETIF_F_GSO_IPXIP4;
13208 dev->hw_enc_features =
13209 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13210 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13211 NETIF_F_GSO_IPXIP4 |
13212 NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
13213 }
13214
13215 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13216 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13217
13218 /* VF with OLD Hypervisor or old PF do not support filtering */
13219 if (IS_PF(bp)) {
13220 if (chip_is_e1x)
13221 bp->accept_any_vlan = true;
13222 else
13223 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13224 #ifdef CONFIG_BNX2X_SRIOV
13225 } else if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13226 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13227 #endif
13228 }
13229
13230 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13231 dev->features |= NETIF_F_HIGHDMA;
13232
13233 /* Add Loopback capability to the device */
13234 dev->hw_features |= NETIF_F_LOOPBACK;
13235
13236 #ifdef BCM_DCBNL
13237 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13238 #endif
13239
13240 /* get_port_hwinfo() will set prtad and mmds properly */
13241 bp->mdio.prtad = MDIO_PRTAD_NONE;
13242 bp->mdio.mmds = 0;
13243 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13244 bp->mdio.dev = dev;
13245 bp->mdio.mdio_read = bnx2x_mdio_read;
13246 bp->mdio.mdio_write = bnx2x_mdio_write;
13247
13248 return 0;
13249
13250 err_out_release:
13251 if (atomic_read(&pdev->enable_cnt) == 1)
13252 pci_release_regions(pdev);
13253
13254 err_out_disable:
13255 pci_disable_device(pdev);
13256
13257 err_out:
13258 return rc;
13259 }
13260
13261 static int bnx2x_check_firmware(struct bnx2x *bp)
13262 {
13263 const struct firmware *firmware = bp->firmware;
13264 struct bnx2x_fw_file_hdr *fw_hdr;
13265 struct bnx2x_fw_file_section *sections;
13266 u32 offset, len, num_ops;
13267 __be16 *ops_offsets;
13268 int i;
13269 const u8 *fw_ver;
13270
13271 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13272 BNX2X_ERR("Wrong FW size\n");
13273 return -EINVAL;
13274 }
13275
13276 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13277 sections = (struct bnx2x_fw_file_section *)fw_hdr;
13278
13279 /* Make sure none of the offsets and sizes make us read beyond
13280 * the end of the firmware data */
13281 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13282 offset = be32_to_cpu(sections[i].offset);
13283 len = be32_to_cpu(sections[i].len);
13284 if (offset + len > firmware->size) {
13285 BNX2X_ERR("Section %d length is out of bounds\n", i);
13286 return -EINVAL;
13287 }
13288 }
13289
13290 /* Likewise for the init_ops offsets */
13291 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13292 ops_offsets = (__force __be16 *)(firmware->data + offset);
13293 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13294
13295 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13296 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13297 BNX2X_ERR("Section offset %d is out of bounds\n", i);
13298 return -EINVAL;
13299 }
13300 }
13301
13302 /* Check FW version */
13303 offset = be32_to_cpu(fw_hdr->fw_version.offset);
13304 fw_ver = firmware->data + offset;
13305 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13306 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13307 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13308 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13309 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13310 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13311 BCM_5710_FW_MAJOR_VERSION,
13312 BCM_5710_FW_MINOR_VERSION,
13313 BCM_5710_FW_REVISION_VERSION,
13314 BCM_5710_FW_ENGINEERING_VERSION);
13315 return -EINVAL;
13316 }
13317
13318 return 0;
13319 }
13320
13321 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13322 {
13323 const __be32 *source = (const __be32 *)_source;
13324 u32 *target = (u32 *)_target;
13325 u32 i;
13326
13327 for (i = 0; i < n/4; i++)
13328 target[i] = be32_to_cpu(source[i]);
13329 }
13330
13331 /*
13332 Ops array is stored in the following format:
13333 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13334 */
13335 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13336 {
13337 const __be32 *source = (const __be32 *)_source;
13338 struct raw_op *target = (struct raw_op *)_target;
13339 u32 i, j, tmp;
13340
13341 for (i = 0, j = 0; i < n/8; i++, j += 2) {
13342 tmp = be32_to_cpu(source[j]);
13343 target[i].op = (tmp >> 24) & 0xff;
13344 target[i].offset = tmp & 0xffffff;
13345 target[i].raw_data = be32_to_cpu(source[j + 1]);
13346 }
13347 }
13348
13349 /* IRO array is stored in the following format:
13350 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13351 */
13352 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13353 {
13354 const __be32 *source = (const __be32 *)_source;
13355 struct iro *target = (struct iro *)_target;
13356 u32 i, j, tmp;
13357
13358 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13359 target[i].base = be32_to_cpu(source[j]);
13360 j++;
13361 tmp = be32_to_cpu(source[j]);
13362 target[i].m1 = (tmp >> 16) & 0xffff;
13363 target[i].m2 = tmp & 0xffff;
13364 j++;
13365 tmp = be32_to_cpu(source[j]);
13366 target[i].m3 = (tmp >> 16) & 0xffff;
13367 target[i].size = tmp & 0xffff;
13368 j++;
13369 }
13370 }
13371
13372 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13373 {
13374 const __be16 *source = (const __be16 *)_source;
13375 u16 *target = (u16 *)_target;
13376 u32 i;
13377
13378 for (i = 0; i < n/2; i++)
13379 target[i] = be16_to_cpu(source[i]);
13380 }
13381
13382 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
13383 do { \
13384 u32 len = be32_to_cpu(fw_hdr->arr.len); \
13385 bp->arr = kmalloc(len, GFP_KERNEL); \
13386 if (!bp->arr) \
13387 goto lbl; \
13388 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
13389 (u8 *)bp->arr, len); \
13390 } while (0)
13391
13392 static int bnx2x_init_firmware(struct bnx2x *bp)
13393 {
13394 const char *fw_file_name;
13395 struct bnx2x_fw_file_hdr *fw_hdr;
13396 int rc;
13397
13398 if (bp->firmware)
13399 return 0;
13400
13401 if (CHIP_IS_E1(bp))
13402 fw_file_name = FW_FILE_NAME_E1;
13403 else if (CHIP_IS_E1H(bp))
13404 fw_file_name = FW_FILE_NAME_E1H;
13405 else if (!CHIP_IS_E1x(bp))
13406 fw_file_name = FW_FILE_NAME_E2;
13407 else {
13408 BNX2X_ERR("Unsupported chip revision\n");
13409 return -EINVAL;
13410 }
13411 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13412
13413 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13414 if (rc) {
13415 BNX2X_ERR("Can't load firmware file %s\n",
13416 fw_file_name);
13417 goto request_firmware_exit;
13418 }
13419
13420 rc = bnx2x_check_firmware(bp);
13421 if (rc) {
13422 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13423 goto request_firmware_exit;
13424 }
13425
13426 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13427
13428 /* Initialize the pointers to the init arrays */
13429 /* Blob */
13430 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13431
13432 /* Opcodes */
13433 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13434
13435 /* Offsets */
13436 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13437 be16_to_cpu_n);
13438
13439 /* STORMs firmware */
13440 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13441 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13442 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
13443 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13444 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13445 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13446 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
13447 be32_to_cpu(fw_hdr->usem_pram_data.offset);
13448 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13449 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13450 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
13451 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13452 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13453 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13454 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
13455 be32_to_cpu(fw_hdr->csem_pram_data.offset);
13456 /* IRO */
13457 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13458
13459 return 0;
13460
13461 iro_alloc_err:
13462 kfree(bp->init_ops_offsets);
13463 init_offsets_alloc_err:
13464 kfree(bp->init_ops);
13465 init_ops_alloc_err:
13466 kfree(bp->init_data);
13467 request_firmware_exit:
13468 release_firmware(bp->firmware);
13469 bp->firmware = NULL;
13470
13471 return rc;
13472 }
13473
13474 static void bnx2x_release_firmware(struct bnx2x *bp)
13475 {
13476 kfree(bp->init_ops_offsets);
13477 kfree(bp->init_ops);
13478 kfree(bp->init_data);
13479 release_firmware(bp->firmware);
13480 bp->firmware = NULL;
13481 }
13482
13483 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13484 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13485 .init_hw_cmn = bnx2x_init_hw_common,
13486 .init_hw_port = bnx2x_init_hw_port,
13487 .init_hw_func = bnx2x_init_hw_func,
13488
13489 .reset_hw_cmn = bnx2x_reset_common,
13490 .reset_hw_port = bnx2x_reset_port,
13491 .reset_hw_func = bnx2x_reset_func,
13492
13493 .gunzip_init = bnx2x_gunzip_init,
13494 .gunzip_end = bnx2x_gunzip_end,
13495
13496 .init_fw = bnx2x_init_firmware,
13497 .release_fw = bnx2x_release_firmware,
13498 };
13499
13500 void bnx2x__init_func_obj(struct bnx2x *bp)
13501 {
13502 /* Prepare DMAE related driver resources */
13503 bnx2x_setup_dmae(bp);
13504
13505 bnx2x_init_func_obj(bp, &bp->func_obj,
13506 bnx2x_sp(bp, func_rdata),
13507 bnx2x_sp_mapping(bp, func_rdata),
13508 bnx2x_sp(bp, func_afex_rdata),
13509 bnx2x_sp_mapping(bp, func_afex_rdata),
13510 &bnx2x_func_sp_drv);
13511 }
13512
13513 /* must be called after sriov-enable */
13514 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13515 {
13516 int cid_count = BNX2X_L2_MAX_CID(bp);
13517
13518 if (IS_SRIOV(bp))
13519 cid_count += BNX2X_VF_CIDS;
13520
13521 if (CNIC_SUPPORT(bp))
13522 cid_count += CNIC_CID_MAX;
13523
13524 return roundup(cid_count, QM_CID_ROUND);
13525 }
13526
13527 /**
13528 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13529 *
13530 * @dev: pci device
13531 *
13532 */
13533 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13534 {
13535 int index;
13536 u16 control = 0;
13537
13538 /*
13539 * If MSI-X is not supported - return number of SBs needed to support
13540 * one fast path queue: one FP queue + SB for CNIC
13541 */
13542 if (!pdev->msix_cap) {
13543 dev_info(&pdev->dev, "no msix capability found\n");
13544 return 1 + cnic_cnt;
13545 }
13546 dev_info(&pdev->dev, "msix capability found\n");
13547
13548 /*
13549 * The value in the PCI configuration space is the index of the last
13550 * entry, namely one less than the actual size of the table, which is
13551 * exactly what we want to return from this function: number of all SBs
13552 * without the default SB.
13553 * For VFs there is no default SB, then we return (index+1).
13554 */
13555 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13556
13557 index = control & PCI_MSIX_FLAGS_QSIZE;
13558
13559 return index;
13560 }
13561
13562 static int set_max_cos_est(int chip_id)
13563 {
13564 switch (chip_id) {
13565 case BCM57710:
13566 case BCM57711:
13567 case BCM57711E:
13568 return BNX2X_MULTI_TX_COS_E1X;
13569 case BCM57712:
13570 case BCM57712_MF:
13571 return BNX2X_MULTI_TX_COS_E2_E3A0;
13572 case BCM57800:
13573 case BCM57800_MF:
13574 case BCM57810:
13575 case BCM57810_MF:
13576 case BCM57840_4_10:
13577 case BCM57840_2_20:
13578 case BCM57840_O:
13579 case BCM57840_MFO:
13580 case BCM57840_MF:
13581 case BCM57811:
13582 case BCM57811_MF:
13583 return BNX2X_MULTI_TX_COS_E3B0;
13584 case BCM57712_VF:
13585 case BCM57800_VF:
13586 case BCM57810_VF:
13587 case BCM57840_VF:
13588 case BCM57811_VF:
13589 return 1;
13590 default:
13591 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13592 return -ENODEV;
13593 }
13594 }
13595
13596 static int set_is_vf(int chip_id)
13597 {
13598 switch (chip_id) {
13599 case BCM57712_VF:
13600 case BCM57800_VF:
13601 case BCM57810_VF:
13602 case BCM57840_VF:
13603 case BCM57811_VF:
13604 return true;
13605 default:
13606 return false;
13607 }
13608 }
13609
13610 /* nig_tsgen registers relative address */
13611 #define tsgen_ctrl 0x0
13612 #define tsgen_freecount 0x10
13613 #define tsgen_synctime_t0 0x20
13614 #define tsgen_offset_t0 0x28
13615 #define tsgen_drift_t0 0x30
13616 #define tsgen_synctime_t1 0x58
13617 #define tsgen_offset_t1 0x60
13618 #define tsgen_drift_t1 0x68
13619
13620 /* FW workaround for setting drift */
13621 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13622 int best_val, int best_period)
13623 {
13624 struct bnx2x_func_state_params func_params = {NULL};
13625 struct bnx2x_func_set_timesync_params *set_timesync_params =
13626 &func_params.params.set_timesync;
13627
13628 /* Prepare parameters for function state transitions */
13629 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13630 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13631
13632 func_params.f_obj = &bp->func_obj;
13633 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13634
13635 /* Function parameters */
13636 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13637 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13638 set_timesync_params->add_sub_drift_adjust_value =
13639 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13640 set_timesync_params->drift_adjust_value = best_val;
13641 set_timesync_params->drift_adjust_period = best_period;
13642
13643 return bnx2x_func_state_change(bp, &func_params);
13644 }
13645
13646 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13647 {
13648 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13649 int rc;
13650 int drift_dir = 1;
13651 int val, period, period1, period2, dif, dif1, dif2;
13652 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13653
13654 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13655
13656 if (!netif_running(bp->dev)) {
13657 DP(BNX2X_MSG_PTP,
13658 "PTP adjfreq called while the interface is down\n");
13659 return -EFAULT;
13660 }
13661
13662 if (ppb < 0) {
13663 ppb = -ppb;
13664 drift_dir = 0;
13665 }
13666
13667 if (ppb == 0) {
13668 best_val = 1;
13669 best_period = 0x1FFFFFF;
13670 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13671 best_val = 31;
13672 best_period = 1;
13673 } else {
13674 /* Changed not to allow val = 8, 16, 24 as these values
13675 * are not supported in workaround.
13676 */
13677 for (val = 0; val <= 31; val++) {
13678 if ((val & 0x7) == 0)
13679 continue;
13680 period1 = val * 1000000 / ppb;
13681 period2 = period1 + 1;
13682 if (period1 != 0)
13683 dif1 = ppb - (val * 1000000 / period1);
13684 else
13685 dif1 = BNX2X_MAX_PHC_DRIFT;
13686 if (dif1 < 0)
13687 dif1 = -dif1;
13688 dif2 = ppb - (val * 1000000 / period2);
13689 if (dif2 < 0)
13690 dif2 = -dif2;
13691 dif = (dif1 < dif2) ? dif1 : dif2;
13692 period = (dif1 < dif2) ? period1 : period2;
13693 if (dif < best_dif) {
13694 best_dif = dif;
13695 best_val = val;
13696 best_period = period;
13697 }
13698 }
13699 }
13700
13701 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13702 best_period);
13703 if (rc) {
13704 BNX2X_ERR("Failed to set drift\n");
13705 return -EFAULT;
13706 }
13707
13708 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13709 best_period);
13710
13711 return 0;
13712 }
13713
13714 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13715 {
13716 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13717
13718 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13719
13720 timecounter_adjtime(&bp->timecounter, delta);
13721
13722 return 0;
13723 }
13724
13725 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13726 {
13727 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13728 u64 ns;
13729
13730 ns = timecounter_read(&bp->timecounter);
13731
13732 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13733
13734 *ts = ns_to_timespec64(ns);
13735
13736 return 0;
13737 }
13738
13739 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13740 const struct timespec64 *ts)
13741 {
13742 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13743 u64 ns;
13744
13745 ns = timespec64_to_ns(ts);
13746
13747 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13748
13749 /* Re-init the timecounter */
13750 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13751
13752 return 0;
13753 }
13754
13755 /* Enable (or disable) ancillary features of the phc subsystem */
13756 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13757 struct ptp_clock_request *rq, int on)
13758 {
13759 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13760
13761 BNX2X_ERR("PHC ancillary features are not supported\n");
13762 return -ENOTSUPP;
13763 }
13764
13765 static void bnx2x_register_phc(struct bnx2x *bp)
13766 {
13767 /* Fill the ptp_clock_info struct and register PTP clock*/
13768 bp->ptp_clock_info.owner = THIS_MODULE;
13769 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13770 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13771 bp->ptp_clock_info.n_alarm = 0;
13772 bp->ptp_clock_info.n_ext_ts = 0;
13773 bp->ptp_clock_info.n_per_out = 0;
13774 bp->ptp_clock_info.pps = 0;
13775 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13776 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13777 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13778 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13779 bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13780
13781 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13782 if (IS_ERR(bp->ptp_clock)) {
13783 bp->ptp_clock = NULL;
13784 BNX2X_ERR("PTP clock registeration failed\n");
13785 }
13786 }
13787
13788 static int bnx2x_init_one(struct pci_dev *pdev,
13789 const struct pci_device_id *ent)
13790 {
13791 struct net_device *dev = NULL;
13792 struct bnx2x *bp;
13793 enum pcie_link_width pcie_width;
13794 enum pci_bus_speed pcie_speed;
13795 int rc, max_non_def_sbs;
13796 int rx_count, tx_count, rss_count, doorbell_size;
13797 int max_cos_est;
13798 bool is_vf;
13799 int cnic_cnt;
13800
13801 /* Management FW 'remembers' living interfaces. Allow it some time
13802 * to forget previously living interfaces, allowing a proper re-load.
13803 */
13804 if (is_kdump_kernel()) {
13805 ktime_t now = ktime_get_boottime();
13806 ktime_t fw_ready_time = ktime_set(5, 0);
13807
13808 if (ktime_before(now, fw_ready_time))
13809 msleep(ktime_ms_delta(fw_ready_time, now));
13810 }
13811
13812 /* An estimated maximum supported CoS number according to the chip
13813 * version.
13814 * We will try to roughly estimate the maximum number of CoSes this chip
13815 * may support in order to minimize the memory allocated for Tx
13816 * netdev_queue's. This number will be accurately calculated during the
13817 * initialization of bp->max_cos based on the chip versions AND chip
13818 * revision in the bnx2x_init_bp().
13819 */
13820 max_cos_est = set_max_cos_est(ent->driver_data);
13821 if (max_cos_est < 0)
13822 return max_cos_est;
13823 is_vf = set_is_vf(ent->driver_data);
13824 cnic_cnt = is_vf ? 0 : 1;
13825
13826 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13827
13828 /* add another SB for VF as it has no default SB */
13829 max_non_def_sbs += is_vf ? 1 : 0;
13830
13831 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13832 rss_count = max_non_def_sbs - cnic_cnt;
13833
13834 if (rss_count < 1)
13835 return -EINVAL;
13836
13837 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13838 rx_count = rss_count + cnic_cnt;
13839
13840 /* Maximum number of netdev Tx queues:
13841 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
13842 */
13843 tx_count = rss_count * max_cos_est + cnic_cnt;
13844
13845 /* dev zeroed in init_etherdev */
13846 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13847 if (!dev)
13848 return -ENOMEM;
13849
13850 bp = netdev_priv(dev);
13851
13852 bp->flags = 0;
13853 if (is_vf)
13854 bp->flags |= IS_VF_FLAG;
13855
13856 bp->igu_sb_cnt = max_non_def_sbs;
13857 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13858 bp->msg_enable = debug;
13859 bp->cnic_support = cnic_cnt;
13860 bp->cnic_probe = bnx2x_cnic_probe;
13861
13862 pci_set_drvdata(pdev, dev);
13863
13864 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13865 if (rc < 0) {
13866 free_netdev(dev);
13867 return rc;
13868 }
13869
13870 BNX2X_DEV_INFO("This is a %s function\n",
13871 IS_PF(bp) ? "physical" : "virtual");
13872 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13873 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13874 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13875 tx_count, rx_count);
13876
13877 rc = bnx2x_init_bp(bp);
13878 if (rc)
13879 goto init_one_exit;
13880
13881 /* Map doorbells here as we need the real value of bp->max_cos which
13882 * is initialized in bnx2x_init_bp() to determine the number of
13883 * l2 connections.
13884 */
13885 if (IS_VF(bp)) {
13886 bp->doorbells = bnx2x_vf_doorbells(bp);
13887 rc = bnx2x_vf_pci_alloc(bp);
13888 if (rc)
13889 goto init_one_freemem;
13890 } else {
13891 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13892 if (doorbell_size > pci_resource_len(pdev, 2)) {
13893 dev_err(&bp->pdev->dev,
13894 "Cannot map doorbells, bar size too small, aborting\n");
13895 rc = -ENOMEM;
13896 goto init_one_freemem;
13897 }
13898 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13899 doorbell_size);
13900 }
13901 if (!bp->doorbells) {
13902 dev_err(&bp->pdev->dev,
13903 "Cannot map doorbell space, aborting\n");
13904 rc = -ENOMEM;
13905 goto init_one_freemem;
13906 }
13907
13908 if (IS_VF(bp)) {
13909 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13910 if (rc)
13911 goto init_one_freemem;
13912 }
13913
13914 /* Enable SRIOV if capability found in configuration space */
13915 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13916 if (rc)
13917 goto init_one_freemem;
13918
13919 /* calc qm_cid_count */
13920 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13921 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13922
13923 /* disable FCOE L2 queue for E1x*/
13924 if (CHIP_IS_E1x(bp))
13925 bp->flags |= NO_FCOE_FLAG;
13926
13927 /* Set bp->num_queues for MSI-X mode*/
13928 bnx2x_set_num_queues(bp);
13929
13930 /* Configure interrupt mode: try to enable MSI-X/MSI if
13931 * needed.
13932 */
13933 rc = bnx2x_set_int_mode(bp);
13934 if (rc) {
13935 dev_err(&pdev->dev, "Cannot set interrupts\n");
13936 goto init_one_freemem;
13937 }
13938 BNX2X_DEV_INFO("set interrupts successfully\n");
13939
13940 /* register the net device */
13941 rc = register_netdev(dev);
13942 if (rc) {
13943 dev_err(&pdev->dev, "Cannot register net device\n");
13944 goto init_one_freemem;
13945 }
13946 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13947
13948 if (!NO_FCOE(bp)) {
13949 /* Add storage MAC address */
13950 rtnl_lock();
13951 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13952 rtnl_unlock();
13953 }
13954 if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13955 pcie_speed == PCI_SPEED_UNKNOWN ||
13956 pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13957 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13958 else
13959 BNX2X_DEV_INFO(
13960 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13961 board_info[ent->driver_data].name,
13962 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13963 pcie_width,
13964 pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13965 pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13966 pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13967 "Unknown",
13968 dev->base_addr, bp->pdev->irq, dev->dev_addr);
13969
13970 bnx2x_register_phc(bp);
13971
13972 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
13973 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
13974
13975 return 0;
13976
13977 init_one_freemem:
13978 bnx2x_free_mem_bp(bp);
13979
13980 init_one_exit:
13981 bnx2x_disable_pcie_error_reporting(bp);
13982
13983 if (bp->regview)
13984 iounmap(bp->regview);
13985
13986 if (IS_PF(bp) && bp->doorbells)
13987 iounmap(bp->doorbells);
13988
13989 free_netdev(dev);
13990
13991 if (atomic_read(&pdev->enable_cnt) == 1)
13992 pci_release_regions(pdev);
13993
13994 pci_disable_device(pdev);
13995
13996 return rc;
13997 }
13998
13999 static void __bnx2x_remove(struct pci_dev *pdev,
14000 struct net_device *dev,
14001 struct bnx2x *bp,
14002 bool remove_netdev)
14003 {
14004 if (bp->ptp_clock) {
14005 ptp_clock_unregister(bp->ptp_clock);
14006 bp->ptp_clock = NULL;
14007 }
14008
14009 /* Delete storage MAC address */
14010 if (!NO_FCOE(bp)) {
14011 rtnl_lock();
14012 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14013 rtnl_unlock();
14014 }
14015
14016 #ifdef BCM_DCBNL
14017 /* Delete app tlvs from dcbnl */
14018 bnx2x_dcbnl_update_applist(bp, true);
14019 #endif
14020
14021 if (IS_PF(bp) &&
14022 !BP_NOMCP(bp) &&
14023 (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14024 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14025
14026 /* Close the interface - either directly or implicitly */
14027 if (remove_netdev) {
14028 unregister_netdev(dev);
14029 } else {
14030 rtnl_lock();
14031 dev_close(dev);
14032 rtnl_unlock();
14033 }
14034
14035 bnx2x_iov_remove_one(bp);
14036
14037 /* Power on: we can't let PCI layer write to us while we are in D3 */
14038 if (IS_PF(bp)) {
14039 bnx2x_set_power_state(bp, PCI_D0);
14040 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14041
14042 /* Set endianity registers to reset values in case next driver
14043 * boots in different endianty environment.
14044 */
14045 bnx2x_reset_endianity(bp);
14046 }
14047
14048 /* Disable MSI/MSI-X */
14049 bnx2x_disable_msi(bp);
14050
14051 /* Power off */
14052 if (IS_PF(bp))
14053 bnx2x_set_power_state(bp, PCI_D3hot);
14054
14055 /* Make sure RESET task is not scheduled before continuing */
14056 cancel_delayed_work_sync(&bp->sp_rtnl_task);
14057
14058 /* send message via vfpf channel to release the resources of this vf */
14059 if (IS_VF(bp))
14060 bnx2x_vfpf_release(bp);
14061
14062 /* Assumes no further PCIe PM changes will occur */
14063 if (system_state == SYSTEM_POWER_OFF) {
14064 pci_wake_from_d3(pdev, bp->wol);
14065 pci_set_power_state(pdev, PCI_D3hot);
14066 }
14067
14068 bnx2x_disable_pcie_error_reporting(bp);
14069 if (remove_netdev) {
14070 if (bp->regview)
14071 iounmap(bp->regview);
14072
14073 /* For vfs, doorbells are part of the regview and were unmapped
14074 * along with it. FW is only loaded by PF.
14075 */
14076 if (IS_PF(bp)) {
14077 if (bp->doorbells)
14078 iounmap(bp->doorbells);
14079
14080 bnx2x_release_firmware(bp);
14081 } else {
14082 bnx2x_vf_pci_dealloc(bp);
14083 }
14084 bnx2x_free_mem_bp(bp);
14085
14086 free_netdev(dev);
14087
14088 if (atomic_read(&pdev->enable_cnt) == 1)
14089 pci_release_regions(pdev);
14090
14091 pci_disable_device(pdev);
14092 }
14093 }
14094
14095 static void bnx2x_remove_one(struct pci_dev *pdev)
14096 {
14097 struct net_device *dev = pci_get_drvdata(pdev);
14098 struct bnx2x *bp;
14099
14100 if (!dev) {
14101 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14102 return;
14103 }
14104 bp = netdev_priv(dev);
14105
14106 __bnx2x_remove(pdev, dev, bp, true);
14107 }
14108
14109 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14110 {
14111 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14112
14113 bp->rx_mode = BNX2X_RX_MODE_NONE;
14114
14115 if (CNIC_LOADED(bp))
14116 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14117
14118 /* Stop Tx */
14119 bnx2x_tx_disable(bp);
14120 /* Delete all NAPI objects */
14121 bnx2x_del_all_napi(bp);
14122 if (CNIC_LOADED(bp))
14123 bnx2x_del_all_napi_cnic(bp);
14124 netdev_reset_tc(bp->dev);
14125
14126 del_timer_sync(&bp->timer);
14127 cancel_delayed_work_sync(&bp->sp_task);
14128 cancel_delayed_work_sync(&bp->period_task);
14129
14130 if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14131 bp->stats_state = STATS_STATE_DISABLED;
14132 up(&bp->stats_lock);
14133 }
14134
14135 bnx2x_save_statistics(bp);
14136
14137 netif_carrier_off(bp->dev);
14138
14139 return 0;
14140 }
14141
14142 /**
14143 * bnx2x_io_error_detected - called when PCI error is detected
14144 * @pdev: Pointer to PCI device
14145 * @state: The current pci connection state
14146 *
14147 * This function is called after a PCI bus error affecting
14148 * this device has been detected.
14149 */
14150 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14151 pci_channel_state_t state)
14152 {
14153 struct net_device *dev = pci_get_drvdata(pdev);
14154 struct bnx2x *bp = netdev_priv(dev);
14155
14156 rtnl_lock();
14157
14158 BNX2X_ERR("IO error detected\n");
14159
14160 netif_device_detach(dev);
14161
14162 if (state == pci_channel_io_perm_failure) {
14163 rtnl_unlock();
14164 return PCI_ERS_RESULT_DISCONNECT;
14165 }
14166
14167 if (netif_running(dev))
14168 bnx2x_eeh_nic_unload(bp);
14169
14170 bnx2x_prev_path_mark_eeh(bp);
14171
14172 pci_disable_device(pdev);
14173
14174 rtnl_unlock();
14175
14176 /* Request a slot reset */
14177 return PCI_ERS_RESULT_NEED_RESET;
14178 }
14179
14180 /**
14181 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14182 * @pdev: Pointer to PCI device
14183 *
14184 * Restart the card from scratch, as if from a cold-boot.
14185 */
14186 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14187 {
14188 struct net_device *dev = pci_get_drvdata(pdev);
14189 struct bnx2x *bp = netdev_priv(dev);
14190 int i;
14191
14192 rtnl_lock();
14193 BNX2X_ERR("IO slot reset initializing...\n");
14194 if (pci_enable_device(pdev)) {
14195 dev_err(&pdev->dev,
14196 "Cannot re-enable PCI device after reset\n");
14197 rtnl_unlock();
14198 return PCI_ERS_RESULT_DISCONNECT;
14199 }
14200
14201 pci_set_master(pdev);
14202 pci_restore_state(pdev);
14203 pci_save_state(pdev);
14204
14205 if (netif_running(dev))
14206 bnx2x_set_power_state(bp, PCI_D0);
14207
14208 if (netif_running(dev)) {
14209 BNX2X_ERR("IO slot reset --> driver unload\n");
14210
14211 /* MCP should have been reset; Need to wait for validity */
14212 bnx2x_init_shmem(bp);
14213
14214 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14215 u32 v;
14216
14217 v = SHMEM2_RD(bp,
14218 drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14219 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14220 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14221 }
14222 bnx2x_drain_tx_queues(bp);
14223 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14224 bnx2x_netif_stop(bp, 1);
14225 bnx2x_free_irq(bp);
14226
14227 /* Report UNLOAD_DONE to MCP */
14228 bnx2x_send_unload_done(bp, true);
14229
14230 bp->sp_state = 0;
14231 bp->port.pmf = 0;
14232
14233 bnx2x_prev_unload(bp);
14234
14235 /* We should have reseted the engine, so It's fair to
14236 * assume the FW will no longer write to the bnx2x driver.
14237 */
14238 bnx2x_squeeze_objects(bp);
14239 bnx2x_free_skbs(bp);
14240 for_each_rx_queue(bp, i)
14241 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14242 bnx2x_free_fp_mem(bp);
14243 bnx2x_free_mem(bp);
14244
14245 bp->state = BNX2X_STATE_CLOSED;
14246 }
14247
14248 rtnl_unlock();
14249
14250 /* If AER, perform cleanup of the PCIe registers */
14251 if (bp->flags & AER_ENABLED) {
14252 if (pci_cleanup_aer_uncorrect_error_status(pdev))
14253 BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
14254 else
14255 DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
14256 }
14257
14258 return PCI_ERS_RESULT_RECOVERED;
14259 }
14260
14261 /**
14262 * bnx2x_io_resume - called when traffic can start flowing again
14263 * @pdev: Pointer to PCI device
14264 *
14265 * This callback is called when the error recovery driver tells us that
14266 * its OK to resume normal operation.
14267 */
14268 static void bnx2x_io_resume(struct pci_dev *pdev)
14269 {
14270 struct net_device *dev = pci_get_drvdata(pdev);
14271 struct bnx2x *bp = netdev_priv(dev);
14272
14273 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14274 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14275 return;
14276 }
14277
14278 rtnl_lock();
14279
14280 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14281 DRV_MSG_SEQ_NUMBER_MASK;
14282
14283 if (netif_running(dev))
14284 bnx2x_nic_load(bp, LOAD_NORMAL);
14285
14286 netif_device_attach(dev);
14287
14288 rtnl_unlock();
14289 }
14290
14291 static const struct pci_error_handlers bnx2x_err_handler = {
14292 .error_detected = bnx2x_io_error_detected,
14293 .slot_reset = bnx2x_io_slot_reset,
14294 .resume = bnx2x_io_resume,
14295 };
14296
14297 static void bnx2x_shutdown(struct pci_dev *pdev)
14298 {
14299 struct net_device *dev = pci_get_drvdata(pdev);
14300 struct bnx2x *bp;
14301
14302 if (!dev)
14303 return;
14304
14305 bp = netdev_priv(dev);
14306 if (!bp)
14307 return;
14308
14309 rtnl_lock();
14310 netif_device_detach(dev);
14311 rtnl_unlock();
14312
14313 /* Don't remove the netdevice, as there are scenarios which will cause
14314 * the kernel to hang, e.g., when trying to remove bnx2i while the
14315 * rootfs is mounted from SAN.
14316 */
14317 __bnx2x_remove(pdev, dev, bp, false);
14318 }
14319
14320 static struct pci_driver bnx2x_pci_driver = {
14321 .name = DRV_MODULE_NAME,
14322 .id_table = bnx2x_pci_tbl,
14323 .probe = bnx2x_init_one,
14324 .remove = bnx2x_remove_one,
14325 .suspend = bnx2x_suspend,
14326 .resume = bnx2x_resume,
14327 .err_handler = &bnx2x_err_handler,
14328 #ifdef CONFIG_BNX2X_SRIOV
14329 .sriov_configure = bnx2x_sriov_configure,
14330 #endif
14331 .shutdown = bnx2x_shutdown,
14332 };
14333
14334 static int __init bnx2x_init(void)
14335 {
14336 int ret;
14337
14338 pr_info("%s", version);
14339
14340 bnx2x_wq = create_singlethread_workqueue("bnx2x");
14341 if (bnx2x_wq == NULL) {
14342 pr_err("Cannot create workqueue\n");
14343 return -ENOMEM;
14344 }
14345 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14346 if (!bnx2x_iov_wq) {
14347 pr_err("Cannot create iov workqueue\n");
14348 destroy_workqueue(bnx2x_wq);
14349 return -ENOMEM;
14350 }
14351
14352 ret = pci_register_driver(&bnx2x_pci_driver);
14353 if (ret) {
14354 pr_err("Cannot register driver\n");
14355 destroy_workqueue(bnx2x_wq);
14356 destroy_workqueue(bnx2x_iov_wq);
14357 }
14358 return ret;
14359 }
14360
14361 static void __exit bnx2x_cleanup(void)
14362 {
14363 struct list_head *pos, *q;
14364
14365 pci_unregister_driver(&bnx2x_pci_driver);
14366
14367 destroy_workqueue(bnx2x_wq);
14368 destroy_workqueue(bnx2x_iov_wq);
14369
14370 /* Free globally allocated resources */
14371 list_for_each_safe(pos, q, &bnx2x_prev_list) {
14372 struct bnx2x_prev_path_list *tmp =
14373 list_entry(pos, struct bnx2x_prev_path_list, list);
14374 list_del(pos);
14375 kfree(tmp);
14376 }
14377 }
14378
14379 void bnx2x_notify_link_changed(struct bnx2x *bp)
14380 {
14381 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14382 }
14383
14384 module_init(bnx2x_init);
14385 module_exit(bnx2x_cleanup);
14386
14387 /**
14388 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14389 *
14390 * @bp: driver handle
14391 * @set: set or clear the CAM entry
14392 *
14393 * This function will wait until the ramrod completion returns.
14394 * Return 0 if success, -ENODEV if ramrod doesn't return.
14395 */
14396 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14397 {
14398 unsigned long ramrod_flags = 0;
14399
14400 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14401 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14402 &bp->iscsi_l2_mac_obj, true,
14403 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14404 }
14405
14406 /* count denotes the number of new completions we have seen */
14407 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14408 {
14409 struct eth_spe *spe;
14410 int cxt_index, cxt_offset;
14411
14412 #ifdef BNX2X_STOP_ON_ERROR
14413 if (unlikely(bp->panic))
14414 return;
14415 #endif
14416
14417 spin_lock_bh(&bp->spq_lock);
14418 BUG_ON(bp->cnic_spq_pending < count);
14419 bp->cnic_spq_pending -= count;
14420
14421 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14422 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14423 & SPE_HDR_CONN_TYPE) >>
14424 SPE_HDR_CONN_TYPE_SHIFT;
14425 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14426 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14427
14428 /* Set validation for iSCSI L2 client before sending SETUP
14429 * ramrod
14430 */
14431 if (type == ETH_CONNECTION_TYPE) {
14432 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14433 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14434 ILT_PAGE_CIDS;
14435 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14436 (cxt_index * ILT_PAGE_CIDS);
14437 bnx2x_set_ctx_validation(bp,
14438 &bp->context[cxt_index].
14439 vcxt[cxt_offset].eth,
14440 BNX2X_ISCSI_ETH_CID(bp));
14441 }
14442 }
14443
14444 /*
14445 * There may be not more than 8 L2, not more than 8 L5 SPEs
14446 * and in the air. We also check that number of outstanding
14447 * COMMON ramrods is not more than the EQ and SPQ can
14448 * accommodate.
14449 */
14450 if (type == ETH_CONNECTION_TYPE) {
14451 if (!atomic_read(&bp->cq_spq_left))
14452 break;
14453 else
14454 atomic_dec(&bp->cq_spq_left);
14455 } else if (type == NONE_CONNECTION_TYPE) {
14456 if (!atomic_read(&bp->eq_spq_left))
14457 break;
14458 else
14459 atomic_dec(&bp->eq_spq_left);
14460 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14461 (type == FCOE_CONNECTION_TYPE)) {
14462 if (bp->cnic_spq_pending >=
14463 bp->cnic_eth_dev.max_kwqe_pending)
14464 break;
14465 else
14466 bp->cnic_spq_pending++;
14467 } else {
14468 BNX2X_ERR("Unknown SPE type: %d\n", type);
14469 bnx2x_panic();
14470 break;
14471 }
14472
14473 spe = bnx2x_sp_get_next(bp);
14474 *spe = *bp->cnic_kwq_cons;
14475
14476 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14477 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14478
14479 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14480 bp->cnic_kwq_cons = bp->cnic_kwq;
14481 else
14482 bp->cnic_kwq_cons++;
14483 }
14484 bnx2x_sp_prod_update(bp);
14485 spin_unlock_bh(&bp->spq_lock);
14486 }
14487
14488 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14489 struct kwqe_16 *kwqes[], u32 count)
14490 {
14491 struct bnx2x *bp = netdev_priv(dev);
14492 int i;
14493
14494 #ifdef BNX2X_STOP_ON_ERROR
14495 if (unlikely(bp->panic)) {
14496 BNX2X_ERR("Can't post to SP queue while panic\n");
14497 return -EIO;
14498 }
14499 #endif
14500
14501 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14502 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14503 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14504 return -EAGAIN;
14505 }
14506
14507 spin_lock_bh(&bp->spq_lock);
14508
14509 for (i = 0; i < count; i++) {
14510 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14511
14512 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14513 break;
14514
14515 *bp->cnic_kwq_prod = *spe;
14516
14517 bp->cnic_kwq_pending++;
14518
14519 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14520 spe->hdr.conn_and_cmd_data, spe->hdr.type,
14521 spe->data.update_data_addr.hi,
14522 spe->data.update_data_addr.lo,
14523 bp->cnic_kwq_pending);
14524
14525 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14526 bp->cnic_kwq_prod = bp->cnic_kwq;
14527 else
14528 bp->cnic_kwq_prod++;
14529 }
14530
14531 spin_unlock_bh(&bp->spq_lock);
14532
14533 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14534 bnx2x_cnic_sp_post(bp, 0);
14535
14536 return i;
14537 }
14538
14539 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14540 {
14541 struct cnic_ops *c_ops;
14542 int rc = 0;
14543
14544 mutex_lock(&bp->cnic_mutex);
14545 c_ops = rcu_dereference_protected(bp->cnic_ops,
14546 lockdep_is_held(&bp->cnic_mutex));
14547 if (c_ops)
14548 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14549 mutex_unlock(&bp->cnic_mutex);
14550
14551 return rc;
14552 }
14553
14554 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14555 {
14556 struct cnic_ops *c_ops;
14557 int rc = 0;
14558
14559 rcu_read_lock();
14560 c_ops = rcu_dereference(bp->cnic_ops);
14561 if (c_ops)
14562 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14563 rcu_read_unlock();
14564
14565 return rc;
14566 }
14567
14568 /*
14569 * for commands that have no data
14570 */
14571 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14572 {
14573 struct cnic_ctl_info ctl = {0};
14574
14575 ctl.cmd = cmd;
14576
14577 return bnx2x_cnic_ctl_send(bp, &ctl);
14578 }
14579
14580 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14581 {
14582 struct cnic_ctl_info ctl = {0};
14583
14584 /* first we tell CNIC and only then we count this as a completion */
14585 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14586 ctl.data.comp.cid = cid;
14587 ctl.data.comp.error = err;
14588
14589 bnx2x_cnic_ctl_send_bh(bp, &ctl);
14590 bnx2x_cnic_sp_post(bp, 0);
14591 }
14592
14593 /* Called with netif_addr_lock_bh() taken.
14594 * Sets an rx_mode config for an iSCSI ETH client.
14595 * Doesn't block.
14596 * Completion should be checked outside.
14597 */
14598 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14599 {
14600 unsigned long accept_flags = 0, ramrod_flags = 0;
14601 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14602 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14603
14604 if (start) {
14605 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14606 * because it's the only way for UIO Queue to accept
14607 * multicasts (in non-promiscuous mode only one Queue per
14608 * function will receive multicast packets (leading in our
14609 * case).
14610 */
14611 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14612 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14613 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14614 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14615
14616 /* Clear STOP_PENDING bit if START is requested */
14617 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14618
14619 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14620 } else
14621 /* Clear START_PENDING bit if STOP is requested */
14622 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14623
14624 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14625 set_bit(sched_state, &bp->sp_state);
14626 else {
14627 __set_bit(RAMROD_RX, &ramrod_flags);
14628 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14629 ramrod_flags);
14630 }
14631 }
14632
14633 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14634 {
14635 struct bnx2x *bp = netdev_priv(dev);
14636 int rc = 0;
14637
14638 switch (ctl->cmd) {
14639 case DRV_CTL_CTXTBL_WR_CMD: {
14640 u32 index = ctl->data.io.offset;
14641 dma_addr_t addr = ctl->data.io.dma_addr;
14642
14643 bnx2x_ilt_wr(bp, index, addr);
14644 break;
14645 }
14646
14647 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14648 int count = ctl->data.credit.credit_count;
14649
14650 bnx2x_cnic_sp_post(bp, count);
14651 break;
14652 }
14653
14654 /* rtnl_lock is held. */
14655 case DRV_CTL_START_L2_CMD: {
14656 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14657 unsigned long sp_bits = 0;
14658
14659 /* Configure the iSCSI classification object */
14660 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14661 cp->iscsi_l2_client_id,
14662 cp->iscsi_l2_cid, BP_FUNC(bp),
14663 bnx2x_sp(bp, mac_rdata),
14664 bnx2x_sp_mapping(bp, mac_rdata),
14665 BNX2X_FILTER_MAC_PENDING,
14666 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14667 &bp->macs_pool);
14668
14669 /* Set iSCSI MAC address */
14670 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14671 if (rc)
14672 break;
14673
14674 mmiowb();
14675 barrier();
14676
14677 /* Start accepting on iSCSI L2 ring */
14678
14679 netif_addr_lock_bh(dev);
14680 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14681 netif_addr_unlock_bh(dev);
14682
14683 /* bits to wait on */
14684 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14685 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14686
14687 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14688 BNX2X_ERR("rx_mode completion timed out!\n");
14689
14690 break;
14691 }
14692
14693 /* rtnl_lock is held. */
14694 case DRV_CTL_STOP_L2_CMD: {
14695 unsigned long sp_bits = 0;
14696
14697 /* Stop accepting on iSCSI L2 ring */
14698 netif_addr_lock_bh(dev);
14699 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14700 netif_addr_unlock_bh(dev);
14701
14702 /* bits to wait on */
14703 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14704 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14705
14706 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14707 BNX2X_ERR("rx_mode completion timed out!\n");
14708
14709 mmiowb();
14710 barrier();
14711
14712 /* Unset iSCSI L2 MAC */
14713 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14714 BNX2X_ISCSI_ETH_MAC, true);
14715 break;
14716 }
14717 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14718 int count = ctl->data.credit.credit_count;
14719
14720 smp_mb__before_atomic();
14721 atomic_add(count, &bp->cq_spq_left);
14722 smp_mb__after_atomic();
14723 break;
14724 }
14725 case DRV_CTL_ULP_REGISTER_CMD: {
14726 int ulp_type = ctl->data.register_data.ulp_type;
14727
14728 if (CHIP_IS_E3(bp)) {
14729 int idx = BP_FW_MB_IDX(bp);
14730 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14731 int path = BP_PATH(bp);
14732 int port = BP_PORT(bp);
14733 int i;
14734 u32 scratch_offset;
14735 u32 *host_addr;
14736
14737 /* first write capability to shmem2 */
14738 if (ulp_type == CNIC_ULP_ISCSI)
14739 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14740 else if (ulp_type == CNIC_ULP_FCOE)
14741 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14742 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14743
14744 if ((ulp_type != CNIC_ULP_FCOE) ||
14745 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14746 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
14747 break;
14748
14749 /* if reached here - should write fcoe capabilities */
14750 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14751 if (!scratch_offset)
14752 break;
14753 scratch_offset += offsetof(struct glob_ncsi_oem_data,
14754 fcoe_features[path][port]);
14755 host_addr = (u32 *) &(ctl->data.register_data.
14756 fcoe_features);
14757 for (i = 0; i < sizeof(struct fcoe_capabilities);
14758 i += 4)
14759 REG_WR(bp, scratch_offset + i,
14760 *(host_addr + i/4));
14761 }
14762 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14763 break;
14764 }
14765
14766 case DRV_CTL_ULP_UNREGISTER_CMD: {
14767 int ulp_type = ctl->data.ulp_type;
14768
14769 if (CHIP_IS_E3(bp)) {
14770 int idx = BP_FW_MB_IDX(bp);
14771 u32 cap;
14772
14773 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14774 if (ulp_type == CNIC_ULP_ISCSI)
14775 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14776 else if (ulp_type == CNIC_ULP_FCOE)
14777 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14778 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14779 }
14780 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14781 break;
14782 }
14783
14784 default:
14785 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14786 rc = -EINVAL;
14787 }
14788
14789 /* For storage-only interfaces, change driver state */
14790 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14791 switch (ctl->drv_state) {
14792 case DRV_NOP:
14793 break;
14794 case DRV_ACTIVE:
14795 bnx2x_set_os_driver_state(bp,
14796 OS_DRIVER_STATE_ACTIVE);
14797 break;
14798 case DRV_INACTIVE:
14799 bnx2x_set_os_driver_state(bp,
14800 OS_DRIVER_STATE_DISABLED);
14801 break;
14802 case DRV_UNLOADED:
14803 bnx2x_set_os_driver_state(bp,
14804 OS_DRIVER_STATE_NOT_LOADED);
14805 break;
14806 default:
14807 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14808 }
14809 }
14810
14811 return rc;
14812 }
14813
14814 static int bnx2x_get_fc_npiv(struct net_device *dev,
14815 struct cnic_fc_npiv_tbl *cnic_tbl)
14816 {
14817 struct bnx2x *bp = netdev_priv(dev);
14818 struct bdn_fc_npiv_tbl *tbl = NULL;
14819 u32 offset, entries;
14820 int rc = -EINVAL;
14821 int i;
14822
14823 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14824 goto out;
14825
14826 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14827
14828 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14829 if (!tbl) {
14830 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14831 goto out;
14832 }
14833
14834 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14835 if (!offset) {
14836 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14837 goto out;
14838 }
14839 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14840
14841 /* Read the table contents from nvram */
14842 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14843 BNX2X_ERR("Failed to read FC-NPIV table\n");
14844 goto out;
14845 }
14846
14847 /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14848 * the number of entries back to cpu endianness.
14849 */
14850 entries = tbl->fc_npiv_cfg.num_of_npiv;
14851 entries = (__force u32)be32_to_cpu((__force __be32)entries);
14852 tbl->fc_npiv_cfg.num_of_npiv = entries;
14853
14854 if (!tbl->fc_npiv_cfg.num_of_npiv) {
14855 DP(BNX2X_MSG_MCP,
14856 "No FC-NPIV table [valid, simply not present]\n");
14857 goto out;
14858 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14859 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14860 tbl->fc_npiv_cfg.num_of_npiv);
14861 goto out;
14862 } else {
14863 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14864 tbl->fc_npiv_cfg.num_of_npiv);
14865 }
14866
14867 /* Copy the data into cnic-provided struct */
14868 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14869 for (i = 0; i < cnic_tbl->count; i++) {
14870 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14871 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14872 }
14873
14874 rc = 0;
14875 out:
14876 kfree(tbl);
14877 return rc;
14878 }
14879
14880 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14881 {
14882 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14883
14884 if (bp->flags & USING_MSIX_FLAG) {
14885 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14886 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14887 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14888 } else {
14889 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14890 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14891 }
14892 if (!CHIP_IS_E1x(bp))
14893 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14894 else
14895 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14896
14897 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
14898 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14899 cp->irq_arr[1].status_blk = bp->def_status_blk;
14900 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14901 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14902
14903 cp->num_irq = 2;
14904 }
14905
14906 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14907 {
14908 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14909
14910 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14911 bnx2x_cid_ilt_lines(bp);
14912 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14913 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14914 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14915
14916 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14917 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14918 cp->iscsi_l2_cid);
14919
14920 if (NO_ISCSI_OOO(bp))
14921 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14922 }
14923
14924 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14925 void *data)
14926 {
14927 struct bnx2x *bp = netdev_priv(dev);
14928 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14929 int rc;
14930
14931 DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14932
14933 if (ops == NULL) {
14934 BNX2X_ERR("NULL ops received\n");
14935 return -EINVAL;
14936 }
14937
14938 if (!CNIC_SUPPORT(bp)) {
14939 BNX2X_ERR("Can't register CNIC when not supported\n");
14940 return -EOPNOTSUPP;
14941 }
14942
14943 if (!CNIC_LOADED(bp)) {
14944 rc = bnx2x_load_cnic(bp);
14945 if (rc) {
14946 BNX2X_ERR("CNIC-related load failed\n");
14947 return rc;
14948 }
14949 }
14950
14951 bp->cnic_enabled = true;
14952
14953 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14954 if (!bp->cnic_kwq)
14955 return -ENOMEM;
14956
14957 bp->cnic_kwq_cons = bp->cnic_kwq;
14958 bp->cnic_kwq_prod = bp->cnic_kwq;
14959 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14960
14961 bp->cnic_spq_pending = 0;
14962 bp->cnic_kwq_pending = 0;
14963
14964 bp->cnic_data = data;
14965
14966 cp->num_irq = 0;
14967 cp->drv_state |= CNIC_DRV_STATE_REGD;
14968 cp->iro_arr = bp->iro_arr;
14969
14970 bnx2x_setup_cnic_irq_info(bp);
14971
14972 rcu_assign_pointer(bp->cnic_ops, ops);
14973
14974 /* Schedule driver to read CNIC driver versions */
14975 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14976
14977 return 0;
14978 }
14979
14980 static int bnx2x_unregister_cnic(struct net_device *dev)
14981 {
14982 struct bnx2x *bp = netdev_priv(dev);
14983 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14984
14985 mutex_lock(&bp->cnic_mutex);
14986 cp->drv_state = 0;
14987 RCU_INIT_POINTER(bp->cnic_ops, NULL);
14988 mutex_unlock(&bp->cnic_mutex);
14989 synchronize_rcu();
14990 bp->cnic_enabled = false;
14991 kfree(bp->cnic_kwq);
14992 bp->cnic_kwq = NULL;
14993
14994 return 0;
14995 }
14996
14997 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14998 {
14999 struct bnx2x *bp = netdev_priv(dev);
15000 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15001
15002 /* If both iSCSI and FCoE are disabled - return NULL in
15003 * order to indicate CNIC that it should not try to work
15004 * with this device.
15005 */
15006 if (NO_ISCSI(bp) && NO_FCOE(bp))
15007 return NULL;
15008
15009 cp->drv_owner = THIS_MODULE;
15010 cp->chip_id = CHIP_ID(bp);
15011 cp->pdev = bp->pdev;
15012 cp->io_base = bp->regview;
15013 cp->io_base2 = bp->doorbells;
15014 cp->max_kwqe_pending = 8;
15015 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15016 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15017 bnx2x_cid_ilt_lines(bp);
15018 cp->ctx_tbl_len = CNIC_ILT_LINES;
15019 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15020 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15021 cp->drv_ctl = bnx2x_drv_ctl;
15022 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15023 cp->drv_register_cnic = bnx2x_register_cnic;
15024 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15025 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15026 cp->iscsi_l2_client_id =
15027 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15028 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15029
15030 if (NO_ISCSI_OOO(bp))
15031 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15032
15033 if (NO_ISCSI(bp))
15034 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15035
15036 if (NO_FCOE(bp))
15037 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15038
15039 BNX2X_DEV_INFO(
15040 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15041 cp->ctx_blk_size,
15042 cp->ctx_tbl_offset,
15043 cp->ctx_tbl_len,
15044 cp->starting_cid);
15045 return cp;
15046 }
15047
15048 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15049 {
15050 struct bnx2x *bp = fp->bp;
15051 u32 offset = BAR_USTRORM_INTMEM;
15052
15053 if (IS_VF(bp))
15054 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15055 else if (!CHIP_IS_E1x(bp))
15056 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15057 else
15058 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15059
15060 return offset;
15061 }
15062
15063 /* called only on E1H or E2.
15064 * When pretending to be PF, the pretend value is the function number 0...7
15065 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15066 * combination
15067 */
15068 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15069 {
15070 u32 pretend_reg;
15071
15072 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15073 return -1;
15074
15075 /* get my own pretend register */
15076 pretend_reg = bnx2x_get_pretend_reg(bp);
15077 REG_WR(bp, pretend_reg, pretend_func_val);
15078 REG_RD(bp, pretend_reg);
15079 return 0;
15080 }
15081
15082 static void bnx2x_ptp_task(struct work_struct *work)
15083 {
15084 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15085 int port = BP_PORT(bp);
15086 u32 val_seq;
15087 u64 timestamp, ns;
15088 struct skb_shared_hwtstamps shhwtstamps;
15089
15090 /* Read Tx timestamp registers */
15091 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15092 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15093 if (val_seq & 0x10000) {
15094 /* There is a valid timestamp value */
15095 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15096 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15097 timestamp <<= 32;
15098 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15099 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15100 /* Reset timestamp register to allow new timestamp */
15101 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15102 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15103 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15104
15105 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15106 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15107 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15108 dev_kfree_skb_any(bp->ptp_tx_skb);
15109 bp->ptp_tx_skb = NULL;
15110
15111 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15112 timestamp, ns);
15113 } else {
15114 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15115 /* Reschedule to keep checking for a valid timestamp value */
15116 schedule_work(&bp->ptp_task);
15117 }
15118 }
15119
15120 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15121 {
15122 int port = BP_PORT(bp);
15123 u64 timestamp, ns;
15124
15125 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15126 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15127 timestamp <<= 32;
15128 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15129 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15130
15131 /* Reset timestamp register to allow new timestamp */
15132 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15133 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15134
15135 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15136
15137 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15138
15139 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15140 timestamp, ns);
15141 }
15142
15143 /* Read the PHC */
15144 static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15145 {
15146 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15147 int port = BP_PORT(bp);
15148 u32 wb_data[2];
15149 u64 phc_cycles;
15150
15151 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15152 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15153 phc_cycles = wb_data[1];
15154 phc_cycles = (phc_cycles << 32) + wb_data[0];
15155
15156 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15157
15158 return phc_cycles;
15159 }
15160
15161 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15162 {
15163 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15164 bp->cyclecounter.read = bnx2x_cyclecounter_read;
15165 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15166 bp->cyclecounter.shift = 1;
15167 bp->cyclecounter.mult = 1;
15168 }
15169
15170 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15171 {
15172 struct bnx2x_func_state_params func_params = {NULL};
15173 struct bnx2x_func_set_timesync_params *set_timesync_params =
15174 &func_params.params.set_timesync;
15175
15176 /* Prepare parameters for function state transitions */
15177 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15178 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15179
15180 func_params.f_obj = &bp->func_obj;
15181 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15182
15183 /* Function parameters */
15184 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15185 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15186
15187 return bnx2x_func_state_change(bp, &func_params);
15188 }
15189
15190 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15191 {
15192 struct bnx2x_queue_state_params q_params;
15193 int rc, i;
15194
15195 /* send queue update ramrod to enable PTP packets */
15196 memset(&q_params, 0, sizeof(q_params));
15197 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15198 q_params.cmd = BNX2X_Q_CMD_UPDATE;
15199 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15200 &q_params.params.update.update_flags);
15201 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15202 &q_params.params.update.update_flags);
15203
15204 /* send the ramrod on all the queues of the PF */
15205 for_each_eth_queue(bp, i) {
15206 struct bnx2x_fastpath *fp = &bp->fp[i];
15207
15208 /* Set the appropriate Queue object */
15209 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15210
15211 /* Update the Queue state */
15212 rc = bnx2x_queue_state_change(bp, &q_params);
15213 if (rc) {
15214 BNX2X_ERR("Failed to enable PTP packets\n");
15215 return rc;
15216 }
15217 }
15218
15219 return 0;
15220 }
15221
15222 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15223 {
15224 int port = BP_PORT(bp);
15225 int rc;
15226
15227 if (!bp->hwtstamp_ioctl_called)
15228 return 0;
15229
15230 switch (bp->tx_type) {
15231 case HWTSTAMP_TX_ON:
15232 bp->flags |= TX_TIMESTAMPING_EN;
15233 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15234 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15235 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15236 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15237 break;
15238 case HWTSTAMP_TX_ONESTEP_SYNC:
15239 BNX2X_ERR("One-step timestamping is not supported\n");
15240 return -ERANGE;
15241 }
15242
15243 switch (bp->rx_filter) {
15244 case HWTSTAMP_FILTER_NONE:
15245 break;
15246 case HWTSTAMP_FILTER_ALL:
15247 case HWTSTAMP_FILTER_SOME:
15248 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15249 break;
15250 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15251 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15252 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15253 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15254 /* Initialize PTP detection for UDP/IPv4 events */
15255 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15256 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15257 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15258 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15259 break;
15260 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15261 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15262 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15263 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15264 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15265 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15266 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15267 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15268 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15269 break;
15270 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15271 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15272 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15273 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15274 /* Initialize PTP detection L2 events */
15275 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15276 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15277 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15278 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15279
15280 break;
15281 case HWTSTAMP_FILTER_PTP_V2_EVENT:
15282 case HWTSTAMP_FILTER_PTP_V2_SYNC:
15283 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15284 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15285 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15286 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15287 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15288 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15289 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15290 break;
15291 }
15292
15293 /* Indicate to FW that this PF expects recorded PTP packets */
15294 rc = bnx2x_enable_ptp_packets(bp);
15295 if (rc)
15296 return rc;
15297
15298 /* Enable sending PTP packets to host */
15299 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15300 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15301
15302 return 0;
15303 }
15304
15305 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15306 {
15307 struct hwtstamp_config config;
15308 int rc;
15309
15310 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15311
15312 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15313 return -EFAULT;
15314
15315 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15316 config.tx_type, config.rx_filter);
15317
15318 if (config.flags) {
15319 BNX2X_ERR("config.flags is reserved for future use\n");
15320 return -EINVAL;
15321 }
15322
15323 bp->hwtstamp_ioctl_called = 1;
15324 bp->tx_type = config.tx_type;
15325 bp->rx_filter = config.rx_filter;
15326
15327 rc = bnx2x_configure_ptp_filters(bp);
15328 if (rc)
15329 return rc;
15330
15331 config.rx_filter = bp->rx_filter;
15332
15333 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15334 -EFAULT : 0;
15335 }
15336
15337 /* Configures HW for PTP */
15338 static int bnx2x_configure_ptp(struct bnx2x *bp)
15339 {
15340 int rc, port = BP_PORT(bp);
15341 u32 wb_data[2];
15342
15343 /* Reset PTP event detection rules - will be configured in the IOCTL */
15344 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15345 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15346 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15347 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15348 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15349 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15350 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15351 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15352
15353 /* Disable PTP packets to host - will be configured in the IOCTL*/
15354 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15355 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15356
15357 /* Enable the PTP feature */
15358 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15359 NIG_REG_P0_PTP_EN, 0x3F);
15360
15361 /* Enable the free-running counter */
15362 wb_data[0] = 0;
15363 wb_data[1] = 0;
15364 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15365
15366 /* Reset drift register (offset register is not reset) */
15367 rc = bnx2x_send_reset_timesync_ramrod(bp);
15368 if (rc) {
15369 BNX2X_ERR("Failed to reset PHC drift register\n");
15370 return -EFAULT;
15371 }
15372
15373 /* Reset possibly old timestamps */
15374 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15375 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15376 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15377 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15378
15379 return 0;
15380 }
15381
15382 /* Called during load, to initialize PTP-related stuff */
15383 void bnx2x_init_ptp(struct bnx2x *bp)
15384 {
15385 int rc;
15386
15387 /* Configure PTP in HW */
15388 rc = bnx2x_configure_ptp(bp);
15389 if (rc) {
15390 BNX2X_ERR("Stopping PTP initialization\n");
15391 return;
15392 }
15393
15394 /* Init work queue for Tx timestamping */
15395 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15396
15397 /* Init cyclecounter and timecounter. This is done only in the first
15398 * load. If done in every load, PTP application will fail when doing
15399 * unload / load (e.g. MTU change) while it is running.
15400 */
15401 if (!bp->timecounter_init_done) {
15402 bnx2x_init_cyclecounter(bp);
15403 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15404 ktime_to_ns(ktime_get_real()));
15405 bp->timecounter_init_done = 1;
15406 }
15407
15408 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15409 }
This page took 0.50503 seconds and 5 git commands to generate.