Merge remote-tracking branch 'vfio/next'
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_sp.c
1 /* bnx2x_sp.c: Qlogic Everest network driver.
2 *
3 * Copyright 2011-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * Unless you and Qlogic execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2, available
10 * at http://www.gnu.org/licenses/gpl-2.0.html (the "GPL").
11 *
12 * Notwithstanding the above, under no circumstances may you combine this
13 * software in any way with any other Qlogic software provided under a
14 * license other than the GPL, without Qlogic's express prior written
15 * consent.
16 *
17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18 * Written by: Vladislav Zolotarov
19 *
20 */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/crc32.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/crc32c.h>
29 #include "bnx2x.h"
30 #include "bnx2x_cmn.h"
31 #include "bnx2x_sp.h"
32
33 #define BNX2X_MAX_EMUL_MULTI 16
34
35 /**** Exe Queue interfaces ****/
36
37 /**
38 * bnx2x_exe_queue_init - init the Exe Queue object
39 *
40 * @o: pointer to the object
41 * @exe_len: length
42 * @owner: pointer to the owner
43 * @validate: validate function pointer
44 * @optimize: optimize function pointer
45 * @exec: execute function pointer
46 * @get: get function pointer
47 */
48 static inline void bnx2x_exe_queue_init(struct bnx2x *bp,
49 struct bnx2x_exe_queue_obj *o,
50 int exe_len,
51 union bnx2x_qable_obj *owner,
52 exe_q_validate validate,
53 exe_q_remove remove,
54 exe_q_optimize optimize,
55 exe_q_execute exec,
56 exe_q_get get)
57 {
58 memset(o, 0, sizeof(*o));
59
60 INIT_LIST_HEAD(&o->exe_queue);
61 INIT_LIST_HEAD(&o->pending_comp);
62
63 spin_lock_init(&o->lock);
64
65 o->exe_chunk_len = exe_len;
66 o->owner = owner;
67
68 /* Owner specific callbacks */
69 o->validate = validate;
70 o->remove = remove;
71 o->optimize = optimize;
72 o->execute = exec;
73 o->get = get;
74
75 DP(BNX2X_MSG_SP, "Setup the execution queue with the chunk length of %d\n",
76 exe_len);
77 }
78
79 static inline void bnx2x_exe_queue_free_elem(struct bnx2x *bp,
80 struct bnx2x_exeq_elem *elem)
81 {
82 DP(BNX2X_MSG_SP, "Deleting an exe_queue element\n");
83 kfree(elem);
84 }
85
86 static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj *o)
87 {
88 struct bnx2x_exeq_elem *elem;
89 int cnt = 0;
90
91 spin_lock_bh(&o->lock);
92
93 list_for_each_entry(elem, &o->exe_queue, link)
94 cnt++;
95
96 spin_unlock_bh(&o->lock);
97
98 return cnt;
99 }
100
101 /**
102 * bnx2x_exe_queue_add - add a new element to the execution queue
103 *
104 * @bp: driver handle
105 * @o: queue
106 * @cmd: new command to add
107 * @restore: true - do not optimize the command
108 *
109 * If the element is optimized or is illegal, frees it.
110 */
111 static inline int bnx2x_exe_queue_add(struct bnx2x *bp,
112 struct bnx2x_exe_queue_obj *o,
113 struct bnx2x_exeq_elem *elem,
114 bool restore)
115 {
116 int rc;
117
118 spin_lock_bh(&o->lock);
119
120 if (!restore) {
121 /* Try to cancel this element queue */
122 rc = o->optimize(bp, o->owner, elem);
123 if (rc)
124 goto free_and_exit;
125
126 /* Check if this request is ok */
127 rc = o->validate(bp, o->owner, elem);
128 if (rc) {
129 DP(BNX2X_MSG_SP, "Preamble failed: %d\n", rc);
130 goto free_and_exit;
131 }
132 }
133
134 /* If so, add it to the execution queue */
135 list_add_tail(&elem->link, &o->exe_queue);
136
137 spin_unlock_bh(&o->lock);
138
139 return 0;
140
141 free_and_exit:
142 bnx2x_exe_queue_free_elem(bp, elem);
143
144 spin_unlock_bh(&o->lock);
145
146 return rc;
147 }
148
149 static inline void __bnx2x_exe_queue_reset_pending(
150 struct bnx2x *bp,
151 struct bnx2x_exe_queue_obj *o)
152 {
153 struct bnx2x_exeq_elem *elem;
154
155 while (!list_empty(&o->pending_comp)) {
156 elem = list_first_entry(&o->pending_comp,
157 struct bnx2x_exeq_elem, link);
158
159 list_del(&elem->link);
160 bnx2x_exe_queue_free_elem(bp, elem);
161 }
162 }
163
164 /**
165 * bnx2x_exe_queue_step - execute one execution chunk atomically
166 *
167 * @bp: driver handle
168 * @o: queue
169 * @ramrod_flags: flags
170 *
171 * (Should be called while holding the exe_queue->lock).
172 */
173 static inline int bnx2x_exe_queue_step(struct bnx2x *bp,
174 struct bnx2x_exe_queue_obj *o,
175 unsigned long *ramrod_flags)
176 {
177 struct bnx2x_exeq_elem *elem, spacer;
178 int cur_len = 0, rc;
179
180 memset(&spacer, 0, sizeof(spacer));
181
182 /* Next step should not be performed until the current is finished,
183 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
184 * properly clear object internals without sending any command to the FW
185 * which also implies there won't be any completion to clear the
186 * 'pending' list.
187 */
188 if (!list_empty(&o->pending_comp)) {
189 if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
190 DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
191 __bnx2x_exe_queue_reset_pending(bp, o);
192 } else {
193 return 1;
194 }
195 }
196
197 /* Run through the pending commands list and create a next
198 * execution chunk.
199 */
200 while (!list_empty(&o->exe_queue)) {
201 elem = list_first_entry(&o->exe_queue, struct bnx2x_exeq_elem,
202 link);
203 WARN_ON(!elem->cmd_len);
204
205 if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
206 cur_len += elem->cmd_len;
207 /* Prevent from both lists being empty when moving an
208 * element. This will allow the call of
209 * bnx2x_exe_queue_empty() without locking.
210 */
211 list_add_tail(&spacer.link, &o->pending_comp);
212 mb();
213 list_move_tail(&elem->link, &o->pending_comp);
214 list_del(&spacer.link);
215 } else
216 break;
217 }
218
219 /* Sanity check */
220 if (!cur_len)
221 return 0;
222
223 rc = o->execute(bp, o->owner, &o->pending_comp, ramrod_flags);
224 if (rc < 0)
225 /* In case of an error return the commands back to the queue
226 * and reset the pending_comp.
227 */
228 list_splice_init(&o->pending_comp, &o->exe_queue);
229 else if (!rc)
230 /* If zero is returned, means there are no outstanding pending
231 * completions and we may dismiss the pending list.
232 */
233 __bnx2x_exe_queue_reset_pending(bp, o);
234
235 return rc;
236 }
237
238 static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj *o)
239 {
240 bool empty = list_empty(&o->exe_queue);
241
242 /* Don't reorder!!! */
243 mb();
244
245 return empty && list_empty(&o->pending_comp);
246 }
247
248 static inline struct bnx2x_exeq_elem *bnx2x_exe_queue_alloc_elem(
249 struct bnx2x *bp)
250 {
251 DP(BNX2X_MSG_SP, "Allocating a new exe_queue element\n");
252 return kzalloc(sizeof(struct bnx2x_exeq_elem), GFP_ATOMIC);
253 }
254
255 /************************ raw_obj functions ***********************************/
256 static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj *o)
257 {
258 return !!test_bit(o->state, o->pstate);
259 }
260
261 static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj *o)
262 {
263 smp_mb__before_atomic();
264 clear_bit(o->state, o->pstate);
265 smp_mb__after_atomic();
266 }
267
268 static void bnx2x_raw_set_pending(struct bnx2x_raw_obj *o)
269 {
270 smp_mb__before_atomic();
271 set_bit(o->state, o->pstate);
272 smp_mb__after_atomic();
273 }
274
275 /**
276 * bnx2x_state_wait - wait until the given bit(state) is cleared
277 *
278 * @bp: device handle
279 * @state: state which is to be cleared
280 * @state_p: state buffer
281 *
282 */
283 static inline int bnx2x_state_wait(struct bnx2x *bp, int state,
284 unsigned long *pstate)
285 {
286 /* can take a while if any port is running */
287 int cnt = 5000;
288
289 if (CHIP_REV_IS_EMUL(bp))
290 cnt *= 20;
291
292 DP(BNX2X_MSG_SP, "waiting for state to become %d\n", state);
293
294 might_sleep();
295 while (cnt--) {
296 if (!test_bit(state, pstate)) {
297 #ifdef BNX2X_STOP_ON_ERROR
298 DP(BNX2X_MSG_SP, "exit (cnt %d)\n", 5000 - cnt);
299 #endif
300 return 0;
301 }
302
303 usleep_range(1000, 2000);
304
305 if (bp->panic)
306 return -EIO;
307 }
308
309 /* timeout! */
310 BNX2X_ERR("timeout waiting for state %d\n", state);
311 #ifdef BNX2X_STOP_ON_ERROR
312 bnx2x_panic();
313 #endif
314
315 return -EBUSY;
316 }
317
318 static int bnx2x_raw_wait(struct bnx2x *bp, struct bnx2x_raw_obj *raw)
319 {
320 return bnx2x_state_wait(bp, raw->state, raw->pstate);
321 }
322
323 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
324 /* credit handling callbacks */
325 static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int *offset)
326 {
327 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
328
329 WARN_ON(!mp);
330
331 return mp->get_entry(mp, offset);
332 }
333
334 static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj *o)
335 {
336 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
337
338 WARN_ON(!mp);
339
340 return mp->get(mp, 1);
341 }
342
343 static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int *offset)
344 {
345 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
346
347 WARN_ON(!vp);
348
349 return vp->get_entry(vp, offset);
350 }
351
352 static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj *o)
353 {
354 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
355
356 WARN_ON(!vp);
357
358 return vp->get(vp, 1);
359 }
360
361 static bool bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
362 {
363 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
364 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
365
366 if (!mp->get(mp, 1))
367 return false;
368
369 if (!vp->get(vp, 1)) {
370 mp->put(mp, 1);
371 return false;
372 }
373
374 return true;
375 }
376
377 static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int offset)
378 {
379 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
380
381 return mp->put_entry(mp, offset);
382 }
383
384 static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj *o)
385 {
386 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
387
388 return mp->put(mp, 1);
389 }
390
391 static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int offset)
392 {
393 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
394
395 return vp->put_entry(vp, offset);
396 }
397
398 static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj *o)
399 {
400 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
401
402 return vp->put(vp, 1);
403 }
404
405 static bool bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
406 {
407 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
408 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
409
410 if (!mp->put(mp, 1))
411 return false;
412
413 if (!vp->put(vp, 1)) {
414 mp->get(mp, 1);
415 return false;
416 }
417
418 return true;
419 }
420
421 /**
422 * __bnx2x_vlan_mac_h_write_trylock - try getting the vlan mac writer lock
423 *
424 * @bp: device handle
425 * @o: vlan_mac object
426 *
427 * @details: Non-blocking implementation; should be called under execution
428 * queue lock.
429 */
430 static int __bnx2x_vlan_mac_h_write_trylock(struct bnx2x *bp,
431 struct bnx2x_vlan_mac_obj *o)
432 {
433 if (o->head_reader) {
434 DP(BNX2X_MSG_SP, "vlan_mac_lock writer - There are readers; Busy\n");
435 return -EBUSY;
436 }
437
438 DP(BNX2X_MSG_SP, "vlan_mac_lock writer - Taken\n");
439 return 0;
440 }
441
442 /**
443 * __bnx2x_vlan_mac_h_exec_pending - execute step instead of a previous step
444 *
445 * @bp: device handle
446 * @o: vlan_mac object
447 *
448 * @details Should be called under execution queue lock; notice it might release
449 * and reclaim it during its run.
450 */
451 static void __bnx2x_vlan_mac_h_exec_pending(struct bnx2x *bp,
452 struct bnx2x_vlan_mac_obj *o)
453 {
454 int rc;
455 unsigned long ramrod_flags = o->saved_ramrod_flags;
456
457 DP(BNX2X_MSG_SP, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
458 ramrod_flags);
459 o->head_exe_request = false;
460 o->saved_ramrod_flags = 0;
461 rc = bnx2x_exe_queue_step(bp, &o->exe_queue, &ramrod_flags);
462 if ((rc != 0) && (rc != 1)) {
463 BNX2X_ERR("execution of pending commands failed with rc %d\n",
464 rc);
465 #ifdef BNX2X_STOP_ON_ERROR
466 bnx2x_panic();
467 #endif
468 }
469 }
470
471 /**
472 * __bnx2x_vlan_mac_h_pend - Pend an execution step which couldn't run
473 *
474 * @bp: device handle
475 * @o: vlan_mac object
476 * @ramrod_flags: ramrod flags of missed execution
477 *
478 * @details Should be called under execution queue lock.
479 */
480 static void __bnx2x_vlan_mac_h_pend(struct bnx2x *bp,
481 struct bnx2x_vlan_mac_obj *o,
482 unsigned long ramrod_flags)
483 {
484 o->head_exe_request = true;
485 o->saved_ramrod_flags = ramrod_flags;
486 DP(BNX2X_MSG_SP, "Placing pending execution with ramrod flags %lu\n",
487 ramrod_flags);
488 }
489
490 /**
491 * __bnx2x_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
492 *
493 * @bp: device handle
494 * @o: vlan_mac object
495 *
496 * @details Should be called under execution queue lock. Notice if a pending
497 * execution exists, it would perform it - possibly releasing and
498 * reclaiming the execution queue lock.
499 */
500 static void __bnx2x_vlan_mac_h_write_unlock(struct bnx2x *bp,
501 struct bnx2x_vlan_mac_obj *o)
502 {
503 /* It's possible a new pending execution was added since this writer
504 * executed. If so, execute again. [Ad infinitum]
505 */
506 while (o->head_exe_request) {
507 DP(BNX2X_MSG_SP, "vlan_mac_lock - writer release encountered a pending request\n");
508 __bnx2x_vlan_mac_h_exec_pending(bp, o);
509 }
510 }
511
512
513 /**
514 * __bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
515 *
516 * @bp: device handle
517 * @o: vlan_mac object
518 *
519 * @details Should be called under the execution queue lock. May sleep. May
520 * release and reclaim execution queue lock during its run.
521 */
522 static int __bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
523 struct bnx2x_vlan_mac_obj *o)
524 {
525 /* If we got here, we're holding lock --> no WRITER exists */
526 o->head_reader++;
527 DP(BNX2X_MSG_SP, "vlan_mac_lock - locked reader - number %d\n",
528 o->head_reader);
529
530 return 0;
531 }
532
533 /**
534 * bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
535 *
536 * @bp: device handle
537 * @o: vlan_mac object
538 *
539 * @details May sleep. Claims and releases execution queue lock during its run.
540 */
541 int bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
542 struct bnx2x_vlan_mac_obj *o)
543 {
544 int rc;
545
546 spin_lock_bh(&o->exe_queue.lock);
547 rc = __bnx2x_vlan_mac_h_read_lock(bp, o);
548 spin_unlock_bh(&o->exe_queue.lock);
549
550 return rc;
551 }
552
553 /**
554 * __bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
555 *
556 * @bp: device handle
557 * @o: vlan_mac object
558 *
559 * @details Should be called under execution queue lock. Notice if a pending
560 * execution exists, it would be performed if this was the last
561 * reader. possibly releasing and reclaiming the execution queue lock.
562 */
563 static void __bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
564 struct bnx2x_vlan_mac_obj *o)
565 {
566 if (!o->head_reader) {
567 BNX2X_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
568 #ifdef BNX2X_STOP_ON_ERROR
569 bnx2x_panic();
570 #endif
571 } else {
572 o->head_reader--;
573 DP(BNX2X_MSG_SP, "vlan_mac_lock - decreased readers to %d\n",
574 o->head_reader);
575 }
576
577 /* It's possible a new pending execution was added, and that this reader
578 * was last - if so we need to execute the command.
579 */
580 if (!o->head_reader && o->head_exe_request) {
581 DP(BNX2X_MSG_SP, "vlan_mac_lock - reader release encountered a pending request\n");
582
583 /* Writer release will do the trick */
584 __bnx2x_vlan_mac_h_write_unlock(bp, o);
585 }
586 }
587
588 /**
589 * bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
590 *
591 * @bp: device handle
592 * @o: vlan_mac object
593 *
594 * @details Notice if a pending execution exists, it would be performed if this
595 * was the last reader. Claims and releases the execution queue lock
596 * during its run.
597 */
598 void bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
599 struct bnx2x_vlan_mac_obj *o)
600 {
601 spin_lock_bh(&o->exe_queue.lock);
602 __bnx2x_vlan_mac_h_read_unlock(bp, o);
603 spin_unlock_bh(&o->exe_queue.lock);
604 }
605
606 static int bnx2x_get_n_elements(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o,
607 int n, u8 *base, u8 stride, u8 size)
608 {
609 struct bnx2x_vlan_mac_registry_elem *pos;
610 u8 *next = base;
611 int counter = 0;
612 int read_lock;
613
614 DP(BNX2X_MSG_SP, "get_n_elements - taking vlan_mac_lock (reader)\n");
615 read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
616 if (read_lock != 0)
617 BNX2X_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
618
619 /* traverse list */
620 list_for_each_entry(pos, &o->head, link) {
621 if (counter < n) {
622 memcpy(next, &pos->u, size);
623 counter++;
624 DP(BNX2X_MSG_SP, "copied element number %d to address %p element was:\n",
625 counter, next);
626 next += stride + size;
627 }
628 }
629
630 if (read_lock == 0) {
631 DP(BNX2X_MSG_SP, "get_n_elements - releasing vlan_mac_lock (reader)\n");
632 bnx2x_vlan_mac_h_read_unlock(bp, o);
633 }
634
635 return counter * ETH_ALEN;
636 }
637
638 /* check_add() callbacks */
639 static int bnx2x_check_mac_add(struct bnx2x *bp,
640 struct bnx2x_vlan_mac_obj *o,
641 union bnx2x_classification_ramrod_data *data)
642 {
643 struct bnx2x_vlan_mac_registry_elem *pos;
644
645 DP(BNX2X_MSG_SP, "Checking MAC %pM for ADD command\n", data->mac.mac);
646
647 if (!is_valid_ether_addr(data->mac.mac))
648 return -EINVAL;
649
650 /* Check if a requested MAC already exists */
651 list_for_each_entry(pos, &o->head, link)
652 if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
653 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
654 return -EEXIST;
655
656 return 0;
657 }
658
659 static int bnx2x_check_vlan_add(struct bnx2x *bp,
660 struct bnx2x_vlan_mac_obj *o,
661 union bnx2x_classification_ramrod_data *data)
662 {
663 struct bnx2x_vlan_mac_registry_elem *pos;
664
665 DP(BNX2X_MSG_SP, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
666
667 list_for_each_entry(pos, &o->head, link)
668 if (data->vlan.vlan == pos->u.vlan.vlan)
669 return -EEXIST;
670
671 return 0;
672 }
673
674 static int bnx2x_check_vlan_mac_add(struct bnx2x *bp,
675 struct bnx2x_vlan_mac_obj *o,
676 union bnx2x_classification_ramrod_data *data)
677 {
678 struct bnx2x_vlan_mac_registry_elem *pos;
679
680 DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for ADD command\n",
681 data->vlan_mac.mac, data->vlan_mac.vlan);
682
683 list_for_each_entry(pos, &o->head, link)
684 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
685 (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
686 ETH_ALEN)) &&
687 (data->vlan_mac.is_inner_mac ==
688 pos->u.vlan_mac.is_inner_mac))
689 return -EEXIST;
690
691 return 0;
692 }
693
694 /* check_del() callbacks */
695 static struct bnx2x_vlan_mac_registry_elem *
696 bnx2x_check_mac_del(struct bnx2x *bp,
697 struct bnx2x_vlan_mac_obj *o,
698 union bnx2x_classification_ramrod_data *data)
699 {
700 struct bnx2x_vlan_mac_registry_elem *pos;
701
702 DP(BNX2X_MSG_SP, "Checking MAC %pM for DEL command\n", data->mac.mac);
703
704 list_for_each_entry(pos, &o->head, link)
705 if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
706 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
707 return pos;
708
709 return NULL;
710 }
711
712 static struct bnx2x_vlan_mac_registry_elem *
713 bnx2x_check_vlan_del(struct bnx2x *bp,
714 struct bnx2x_vlan_mac_obj *o,
715 union bnx2x_classification_ramrod_data *data)
716 {
717 struct bnx2x_vlan_mac_registry_elem *pos;
718
719 DP(BNX2X_MSG_SP, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
720
721 list_for_each_entry(pos, &o->head, link)
722 if (data->vlan.vlan == pos->u.vlan.vlan)
723 return pos;
724
725 return NULL;
726 }
727
728 static struct bnx2x_vlan_mac_registry_elem *
729 bnx2x_check_vlan_mac_del(struct bnx2x *bp,
730 struct bnx2x_vlan_mac_obj *o,
731 union bnx2x_classification_ramrod_data *data)
732 {
733 struct bnx2x_vlan_mac_registry_elem *pos;
734
735 DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for DEL command\n",
736 data->vlan_mac.mac, data->vlan_mac.vlan);
737
738 list_for_each_entry(pos, &o->head, link)
739 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
740 (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
741 ETH_ALEN)) &&
742 (data->vlan_mac.is_inner_mac ==
743 pos->u.vlan_mac.is_inner_mac))
744 return pos;
745
746 return NULL;
747 }
748
749 /* check_move() callback */
750 static bool bnx2x_check_move(struct bnx2x *bp,
751 struct bnx2x_vlan_mac_obj *src_o,
752 struct bnx2x_vlan_mac_obj *dst_o,
753 union bnx2x_classification_ramrod_data *data)
754 {
755 struct bnx2x_vlan_mac_registry_elem *pos;
756 int rc;
757
758 /* Check if we can delete the requested configuration from the first
759 * object.
760 */
761 pos = src_o->check_del(bp, src_o, data);
762
763 /* check if configuration can be added */
764 rc = dst_o->check_add(bp, dst_o, data);
765
766 /* If this classification can not be added (is already set)
767 * or can't be deleted - return an error.
768 */
769 if (rc || !pos)
770 return false;
771
772 return true;
773 }
774
775 static bool bnx2x_check_move_always_err(
776 struct bnx2x *bp,
777 struct bnx2x_vlan_mac_obj *src_o,
778 struct bnx2x_vlan_mac_obj *dst_o,
779 union bnx2x_classification_ramrod_data *data)
780 {
781 return false;
782 }
783
784 static inline u8 bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj *o)
785 {
786 struct bnx2x_raw_obj *raw = &o->raw;
787 u8 rx_tx_flag = 0;
788
789 if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
790 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
791 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
792
793 if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
794 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
795 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
796
797 return rx_tx_flag;
798 }
799
800 static void bnx2x_set_mac_in_nig(struct bnx2x *bp,
801 bool add, unsigned char *dev_addr, int index)
802 {
803 u32 wb_data[2];
804 u32 reg_offset = BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM :
805 NIG_REG_LLH0_FUNC_MEM;
806
807 if (!IS_MF_SI(bp) && !IS_MF_AFEX(bp))
808 return;
809
810 if (index > BNX2X_LLH_CAM_MAX_PF_LINE)
811 return;
812
813 DP(BNX2X_MSG_SP, "Going to %s LLH configuration at entry %d\n",
814 (add ? "ADD" : "DELETE"), index);
815
816 if (add) {
817 /* LLH_FUNC_MEM is a u64 WB register */
818 reg_offset += 8*index;
819
820 wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
821 (dev_addr[4] << 8) | dev_addr[5]);
822 wb_data[1] = ((dev_addr[0] << 8) | dev_addr[1]);
823
824 REG_WR_DMAE(bp, reg_offset, wb_data, 2);
825 }
826
827 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
828 NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
829 }
830
831 /**
832 * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
833 *
834 * @bp: device handle
835 * @o: queue for which we want to configure this rule
836 * @add: if true the command is an ADD command, DEL otherwise
837 * @opcode: CLASSIFY_RULE_OPCODE_XXX
838 * @hdr: pointer to a header to setup
839 *
840 */
841 static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x *bp,
842 struct bnx2x_vlan_mac_obj *o, bool add, int opcode,
843 struct eth_classify_cmd_header *hdr)
844 {
845 struct bnx2x_raw_obj *raw = &o->raw;
846
847 hdr->client_id = raw->cl_id;
848 hdr->func_id = raw->func_id;
849
850 /* Rx or/and Tx (internal switching) configuration ? */
851 hdr->cmd_general_data |=
852 bnx2x_vlan_mac_get_rx_tx_flag(o);
853
854 if (add)
855 hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
856
857 hdr->cmd_general_data |=
858 (opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
859 }
860
861 /**
862 * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
863 *
864 * @cid: connection id
865 * @type: BNX2X_FILTER_XXX_PENDING
866 * @hdr: pointer to header to setup
867 * @rule_cnt:
868 *
869 * currently we always configure one rule and echo field to contain a CID and an
870 * opcode type.
871 */
872 static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid, int type,
873 struct eth_classify_header *hdr, int rule_cnt)
874 {
875 hdr->echo = cpu_to_le32((cid & BNX2X_SWCID_MASK) |
876 (type << BNX2X_SWCID_SHIFT));
877 hdr->rule_cnt = (u8)rule_cnt;
878 }
879
880 /* hw_config() callbacks */
881 static void bnx2x_set_one_mac_e2(struct bnx2x *bp,
882 struct bnx2x_vlan_mac_obj *o,
883 struct bnx2x_exeq_elem *elem, int rule_idx,
884 int cam_offset)
885 {
886 struct bnx2x_raw_obj *raw = &o->raw;
887 struct eth_classify_rules_ramrod_data *data =
888 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
889 int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
890 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
891 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
892 unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
893 u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac;
894
895 /* Set LLH CAM entry: currently only iSCSI and ETH macs are
896 * relevant. In addition, current implementation is tuned for a
897 * single ETH MAC.
898 *
899 * When multiple unicast ETH MACs PF configuration in switch
900 * independent mode is required (NetQ, multiple netdev MACs,
901 * etc.), consider better utilisation of 8 per function MAC
902 * entries in the LLH register. There is also
903 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
904 * total number of CAM entries to 16.
905 *
906 * Currently we won't configure NIG for MACs other than a primary ETH
907 * MAC and iSCSI L2 MAC.
908 *
909 * If this MAC is moving from one Queue to another, no need to change
910 * NIG configuration.
911 */
912 if (cmd != BNX2X_VLAN_MAC_MOVE) {
913 if (test_bit(BNX2X_ISCSI_ETH_MAC, vlan_mac_flags))
914 bnx2x_set_mac_in_nig(bp, add, mac,
915 BNX2X_LLH_CAM_ISCSI_ETH_LINE);
916 else if (test_bit(BNX2X_ETH_MAC, vlan_mac_flags))
917 bnx2x_set_mac_in_nig(bp, add, mac,
918 BNX2X_LLH_CAM_ETH_LINE);
919 }
920
921 /* Reset the ramrod data buffer for the first rule */
922 if (rule_idx == 0)
923 memset(data, 0, sizeof(*data));
924
925 /* Setup a command header */
926 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_MAC,
927 &rule_entry->mac.header);
928
929 DP(BNX2X_MSG_SP, "About to %s MAC %pM for Queue %d\n",
930 (add ? "add" : "delete"), mac, raw->cl_id);
931
932 /* Set a MAC itself */
933 bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
934 &rule_entry->mac.mac_mid,
935 &rule_entry->mac.mac_lsb, mac);
936 rule_entry->mac.inner_mac =
937 cpu_to_le16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac);
938
939 /* MOVE: Add a rule that will add this MAC to the target Queue */
940 if (cmd == BNX2X_VLAN_MAC_MOVE) {
941 rule_entry++;
942 rule_cnt++;
943
944 /* Setup ramrod data */
945 bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
946 elem->cmd_data.vlan_mac.target_obj,
947 true, CLASSIFY_RULE_OPCODE_MAC,
948 &rule_entry->mac.header);
949
950 /* Set a MAC itself */
951 bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
952 &rule_entry->mac.mac_mid,
953 &rule_entry->mac.mac_lsb, mac);
954 rule_entry->mac.inner_mac =
955 cpu_to_le16(elem->cmd_data.vlan_mac.
956 u.mac.is_inner_mac);
957 }
958
959 /* Set the ramrod data header */
960 /* TODO: take this to the higher level in order to prevent multiple
961 writing */
962 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
963 rule_cnt);
964 }
965
966 /**
967 * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
968 *
969 * @bp: device handle
970 * @o: queue
971 * @type:
972 * @cam_offset: offset in cam memory
973 * @hdr: pointer to a header to setup
974 *
975 * E1/E1H
976 */
977 static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x *bp,
978 struct bnx2x_vlan_mac_obj *o, int type, int cam_offset,
979 struct mac_configuration_hdr *hdr)
980 {
981 struct bnx2x_raw_obj *r = &o->raw;
982
983 hdr->length = 1;
984 hdr->offset = (u8)cam_offset;
985 hdr->client_id = cpu_to_le16(0xff);
986 hdr->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
987 (type << BNX2X_SWCID_SHIFT));
988 }
989
990 static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x *bp,
991 struct bnx2x_vlan_mac_obj *o, bool add, int opcode, u8 *mac,
992 u16 vlan_id, struct mac_configuration_entry *cfg_entry)
993 {
994 struct bnx2x_raw_obj *r = &o->raw;
995 u32 cl_bit_vec = (1 << r->cl_id);
996
997 cfg_entry->clients_bit_vector = cpu_to_le32(cl_bit_vec);
998 cfg_entry->pf_id = r->func_id;
999 cfg_entry->vlan_id = cpu_to_le16(vlan_id);
1000
1001 if (add) {
1002 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1003 T_ETH_MAC_COMMAND_SET);
1004 SET_FLAG(cfg_entry->flags,
1005 MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE, opcode);
1006
1007 /* Set a MAC in a ramrod data */
1008 bnx2x_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
1009 &cfg_entry->middle_mac_addr,
1010 &cfg_entry->lsb_mac_addr, mac);
1011 } else
1012 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1013 T_ETH_MAC_COMMAND_INVALIDATE);
1014 }
1015
1016 static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x *bp,
1017 struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, bool add,
1018 u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config)
1019 {
1020 struct mac_configuration_entry *cfg_entry = &config->config_table[0];
1021 struct bnx2x_raw_obj *raw = &o->raw;
1022
1023 bnx2x_vlan_mac_set_rdata_hdr_e1x(bp, o, type, cam_offset,
1024 &config->hdr);
1025 bnx2x_vlan_mac_set_cfg_entry_e1x(bp, o, add, opcode, mac, vlan_id,
1026 cfg_entry);
1027
1028 DP(BNX2X_MSG_SP, "%s MAC %pM CLID %d CAM offset %d\n",
1029 (add ? "setting" : "clearing"),
1030 mac, raw->cl_id, cam_offset);
1031 }
1032
1033 /**
1034 * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data
1035 *
1036 * @bp: device handle
1037 * @o: bnx2x_vlan_mac_obj
1038 * @elem: bnx2x_exeq_elem
1039 * @rule_idx: rule_idx
1040 * @cam_offset: cam_offset
1041 */
1042 static void bnx2x_set_one_mac_e1x(struct bnx2x *bp,
1043 struct bnx2x_vlan_mac_obj *o,
1044 struct bnx2x_exeq_elem *elem, int rule_idx,
1045 int cam_offset)
1046 {
1047 struct bnx2x_raw_obj *raw = &o->raw;
1048 struct mac_configuration_cmd *config =
1049 (struct mac_configuration_cmd *)(raw->rdata);
1050 /* 57710 and 57711 do not support MOVE command,
1051 * so it's either ADD or DEL
1052 */
1053 bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1054 true : false;
1055
1056 /* Reset the ramrod data buffer */
1057 memset(config, 0, sizeof(*config));
1058
1059 bnx2x_vlan_mac_set_rdata_e1x(bp, o, raw->state,
1060 cam_offset, add,
1061 elem->cmd_data.vlan_mac.u.mac.mac, 0,
1062 ETH_VLAN_FILTER_ANY_VLAN, config);
1063 }
1064
1065 static void bnx2x_set_one_vlan_e2(struct bnx2x *bp,
1066 struct bnx2x_vlan_mac_obj *o,
1067 struct bnx2x_exeq_elem *elem, int rule_idx,
1068 int cam_offset)
1069 {
1070 struct bnx2x_raw_obj *raw = &o->raw;
1071 struct eth_classify_rules_ramrod_data *data =
1072 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1073 int rule_cnt = rule_idx + 1;
1074 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1075 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1076 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1077 u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1078
1079 /* Reset the ramrod data buffer for the first rule */
1080 if (rule_idx == 0)
1081 memset(data, 0, sizeof(*data));
1082
1083 /* Set a rule header */
1084 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1085 &rule_entry->vlan.header);
1086
1087 DP(BNX2X_MSG_SP, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1088 vlan);
1089
1090 /* Set a VLAN itself */
1091 rule_entry->vlan.vlan = cpu_to_le16(vlan);
1092
1093 /* MOVE: Add a rule that will add this MAC to the target Queue */
1094 if (cmd == BNX2X_VLAN_MAC_MOVE) {
1095 rule_entry++;
1096 rule_cnt++;
1097
1098 /* Setup ramrod data */
1099 bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
1100 elem->cmd_data.vlan_mac.target_obj,
1101 true, CLASSIFY_RULE_OPCODE_VLAN,
1102 &rule_entry->vlan.header);
1103
1104 /* Set a VLAN itself */
1105 rule_entry->vlan.vlan = cpu_to_le16(vlan);
1106 }
1107
1108 /* Set the ramrod data header */
1109 /* TODO: take this to the higher level in order to prevent multiple
1110 writing */
1111 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1112 rule_cnt);
1113 }
1114
1115 static void bnx2x_set_one_vlan_mac_e2(struct bnx2x *bp,
1116 struct bnx2x_vlan_mac_obj *o,
1117 struct bnx2x_exeq_elem *elem,
1118 int rule_idx, int cam_offset)
1119 {
1120 struct bnx2x_raw_obj *raw = &o->raw;
1121 struct eth_classify_rules_ramrod_data *data =
1122 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1123 int rule_cnt = rule_idx + 1;
1124 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1125 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1126 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1127 u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
1128 u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
1129 u16 inner_mac;
1130
1131 /* Reset the ramrod data buffer for the first rule */
1132 if (rule_idx == 0)
1133 memset(data, 0, sizeof(*data));
1134
1135 /* Set a rule header */
1136 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_PAIR,
1137 &rule_entry->pair.header);
1138
1139 /* Set VLAN and MAC themselves */
1140 rule_entry->pair.vlan = cpu_to_le16(vlan);
1141 bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1142 &rule_entry->pair.mac_mid,
1143 &rule_entry->pair.mac_lsb, mac);
1144 inner_mac = elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1145 rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1146 /* MOVE: Add a rule that will add this MAC/VLAN to the target Queue */
1147 if (cmd == BNX2X_VLAN_MAC_MOVE) {
1148 struct bnx2x_vlan_mac_obj *target_obj;
1149
1150 rule_entry++;
1151 rule_cnt++;
1152
1153 /* Setup ramrod data */
1154 target_obj = elem->cmd_data.vlan_mac.target_obj;
1155 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, target_obj,
1156 true, CLASSIFY_RULE_OPCODE_PAIR,
1157 &rule_entry->pair.header);
1158
1159 /* Set a VLAN itself */
1160 rule_entry->pair.vlan = cpu_to_le16(vlan);
1161 bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1162 &rule_entry->pair.mac_mid,
1163 &rule_entry->pair.mac_lsb, mac);
1164 rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1165 }
1166
1167 /* Set the ramrod data header */
1168 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1169 rule_cnt);
1170 }
1171
1172 /**
1173 * bnx2x_set_one_vlan_mac_e1h -
1174 *
1175 * @bp: device handle
1176 * @o: bnx2x_vlan_mac_obj
1177 * @elem: bnx2x_exeq_elem
1178 * @rule_idx: rule_idx
1179 * @cam_offset: cam_offset
1180 */
1181 static void bnx2x_set_one_vlan_mac_e1h(struct bnx2x *bp,
1182 struct bnx2x_vlan_mac_obj *o,
1183 struct bnx2x_exeq_elem *elem,
1184 int rule_idx, int cam_offset)
1185 {
1186 struct bnx2x_raw_obj *raw = &o->raw;
1187 struct mac_configuration_cmd *config =
1188 (struct mac_configuration_cmd *)(raw->rdata);
1189 /* 57710 and 57711 do not support MOVE command,
1190 * so it's either ADD or DEL
1191 */
1192 bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1193 true : false;
1194
1195 /* Reset the ramrod data buffer */
1196 memset(config, 0, sizeof(*config));
1197
1198 bnx2x_vlan_mac_set_rdata_e1x(bp, o, BNX2X_FILTER_VLAN_MAC_PENDING,
1199 cam_offset, add,
1200 elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1201 elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1202 ETH_VLAN_FILTER_CLASSIFY, config);
1203 }
1204
1205 /**
1206 * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1207 *
1208 * @bp: device handle
1209 * @p: command parameters
1210 * @ppos: pointer to the cookie
1211 *
1212 * reconfigure next MAC/VLAN/VLAN-MAC element from the
1213 * previously configured elements list.
1214 *
1215 * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is taken
1216 * into an account
1217 *
1218 * pointer to the cookie - that should be given back in the next call to make
1219 * function handle the next element. If *ppos is set to NULL it will restart the
1220 * iterator. If returned *ppos == NULL this means that the last element has been
1221 * handled.
1222 *
1223 */
1224 static int bnx2x_vlan_mac_restore(struct bnx2x *bp,
1225 struct bnx2x_vlan_mac_ramrod_params *p,
1226 struct bnx2x_vlan_mac_registry_elem **ppos)
1227 {
1228 struct bnx2x_vlan_mac_registry_elem *pos;
1229 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1230
1231 /* If list is empty - there is nothing to do here */
1232 if (list_empty(&o->head)) {
1233 *ppos = NULL;
1234 return 0;
1235 }
1236
1237 /* make a step... */
1238 if (*ppos == NULL)
1239 *ppos = list_first_entry(&o->head,
1240 struct bnx2x_vlan_mac_registry_elem,
1241 link);
1242 else
1243 *ppos = list_next_entry(*ppos, link);
1244
1245 pos = *ppos;
1246
1247 /* If it's the last step - return NULL */
1248 if (list_is_last(&pos->link, &o->head))
1249 *ppos = NULL;
1250
1251 /* Prepare a 'user_req' */
1252 memcpy(&p->user_req.u, &pos->u, sizeof(pos->u));
1253
1254 /* Set the command */
1255 p->user_req.cmd = BNX2X_VLAN_MAC_ADD;
1256
1257 /* Set vlan_mac_flags */
1258 p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1259
1260 /* Set a restore bit */
1261 __set_bit(RAMROD_RESTORE, &p->ramrod_flags);
1262
1263 return bnx2x_config_vlan_mac(bp, p);
1264 }
1265
1266 /* bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a
1267 * pointer to an element with a specific criteria and NULL if such an element
1268 * hasn't been found.
1269 */
1270 static struct bnx2x_exeq_elem *bnx2x_exeq_get_mac(
1271 struct bnx2x_exe_queue_obj *o,
1272 struct bnx2x_exeq_elem *elem)
1273 {
1274 struct bnx2x_exeq_elem *pos;
1275 struct bnx2x_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1276
1277 /* Check pending for execution commands */
1278 list_for_each_entry(pos, &o->exe_queue, link)
1279 if (!memcmp(&pos->cmd_data.vlan_mac.u.mac, data,
1280 sizeof(*data)) &&
1281 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1282 return pos;
1283
1284 return NULL;
1285 }
1286
1287 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan(
1288 struct bnx2x_exe_queue_obj *o,
1289 struct bnx2x_exeq_elem *elem)
1290 {
1291 struct bnx2x_exeq_elem *pos;
1292 struct bnx2x_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1293
1294 /* Check pending for execution commands */
1295 list_for_each_entry(pos, &o->exe_queue, link)
1296 if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan, data,
1297 sizeof(*data)) &&
1298 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1299 return pos;
1300
1301 return NULL;
1302 }
1303
1304 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan_mac(
1305 struct bnx2x_exe_queue_obj *o,
1306 struct bnx2x_exeq_elem *elem)
1307 {
1308 struct bnx2x_exeq_elem *pos;
1309 struct bnx2x_vlan_mac_ramrod_data *data =
1310 &elem->cmd_data.vlan_mac.u.vlan_mac;
1311
1312 /* Check pending for execution commands */
1313 list_for_each_entry(pos, &o->exe_queue, link)
1314 if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1315 sizeof(*data)) &&
1316 (pos->cmd_data.vlan_mac.cmd ==
1317 elem->cmd_data.vlan_mac.cmd))
1318 return pos;
1319
1320 return NULL;
1321 }
1322
1323 /**
1324 * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed
1325 *
1326 * @bp: device handle
1327 * @qo: bnx2x_qable_obj
1328 * @elem: bnx2x_exeq_elem
1329 *
1330 * Checks that the requested configuration can be added. If yes and if
1331 * requested, consume CAM credit.
1332 *
1333 * The 'validate' is run after the 'optimize'.
1334 *
1335 */
1336 static inline int bnx2x_validate_vlan_mac_add(struct bnx2x *bp,
1337 union bnx2x_qable_obj *qo,
1338 struct bnx2x_exeq_elem *elem)
1339 {
1340 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1341 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1342 int rc;
1343
1344 /* Check the registry */
1345 rc = o->check_add(bp, o, &elem->cmd_data.vlan_mac.u);
1346 if (rc) {
1347 DP(BNX2X_MSG_SP, "ADD command is not allowed considering current registry state.\n");
1348 return rc;
1349 }
1350
1351 /* Check if there is a pending ADD command for this
1352 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1353 */
1354 if (exeq->get(exeq, elem)) {
1355 DP(BNX2X_MSG_SP, "There is a pending ADD command already\n");
1356 return -EEXIST;
1357 }
1358
1359 /* TODO: Check the pending MOVE from other objects where this
1360 * object is a destination object.
1361 */
1362
1363 /* Consume the credit if not requested not to */
1364 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1365 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1366 o->get_credit(o)))
1367 return -EINVAL;
1368
1369 return 0;
1370 }
1371
1372 /**
1373 * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed
1374 *
1375 * @bp: device handle
1376 * @qo: quable object to check
1377 * @elem: element that needs to be deleted
1378 *
1379 * Checks that the requested configuration can be deleted. If yes and if
1380 * requested, returns a CAM credit.
1381 *
1382 * The 'validate' is run after the 'optimize'.
1383 */
1384 static inline int bnx2x_validate_vlan_mac_del(struct bnx2x *bp,
1385 union bnx2x_qable_obj *qo,
1386 struct bnx2x_exeq_elem *elem)
1387 {
1388 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1389 struct bnx2x_vlan_mac_registry_elem *pos;
1390 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1391 struct bnx2x_exeq_elem query_elem;
1392
1393 /* If this classification can not be deleted (doesn't exist)
1394 * - return a BNX2X_EXIST.
1395 */
1396 pos = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1397 if (!pos) {
1398 DP(BNX2X_MSG_SP, "DEL command is not allowed considering current registry state\n");
1399 return -EEXIST;
1400 }
1401
1402 /* Check if there are pending DEL or MOVE commands for this
1403 * MAC/VLAN/VLAN-MAC. Return an error if so.
1404 */
1405 memcpy(&query_elem, elem, sizeof(query_elem));
1406
1407 /* Check for MOVE commands */
1408 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_MOVE;
1409 if (exeq->get(exeq, &query_elem)) {
1410 BNX2X_ERR("There is a pending MOVE command already\n");
1411 return -EINVAL;
1412 }
1413
1414 /* Check for DEL commands */
1415 if (exeq->get(exeq, elem)) {
1416 DP(BNX2X_MSG_SP, "There is a pending DEL command already\n");
1417 return -EEXIST;
1418 }
1419
1420 /* Return the credit to the credit pool if not requested not to */
1421 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1422 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1423 o->put_credit(o))) {
1424 BNX2X_ERR("Failed to return a credit\n");
1425 return -EINVAL;
1426 }
1427
1428 return 0;
1429 }
1430
1431 /**
1432 * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed
1433 *
1434 * @bp: device handle
1435 * @qo: quable object to check (source)
1436 * @elem: element that needs to be moved
1437 *
1438 * Checks that the requested configuration can be moved. If yes and if
1439 * requested, returns a CAM credit.
1440 *
1441 * The 'validate' is run after the 'optimize'.
1442 */
1443 static inline int bnx2x_validate_vlan_mac_move(struct bnx2x *bp,
1444 union bnx2x_qable_obj *qo,
1445 struct bnx2x_exeq_elem *elem)
1446 {
1447 struct bnx2x_vlan_mac_obj *src_o = &qo->vlan_mac;
1448 struct bnx2x_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1449 struct bnx2x_exeq_elem query_elem;
1450 struct bnx2x_exe_queue_obj *src_exeq = &src_o->exe_queue;
1451 struct bnx2x_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1452
1453 /* Check if we can perform this operation based on the current registry
1454 * state.
1455 */
1456 if (!src_o->check_move(bp, src_o, dest_o,
1457 &elem->cmd_data.vlan_mac.u)) {
1458 DP(BNX2X_MSG_SP, "MOVE command is not allowed considering current registry state\n");
1459 return -EINVAL;
1460 }
1461
1462 /* Check if there is an already pending DEL or MOVE command for the
1463 * source object or ADD command for a destination object. Return an
1464 * error if so.
1465 */
1466 memcpy(&query_elem, elem, sizeof(query_elem));
1467
1468 /* Check DEL on source */
1469 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1470 if (src_exeq->get(src_exeq, &query_elem)) {
1471 BNX2X_ERR("There is a pending DEL command on the source queue already\n");
1472 return -EINVAL;
1473 }
1474
1475 /* Check MOVE on source */
1476 if (src_exeq->get(src_exeq, elem)) {
1477 DP(BNX2X_MSG_SP, "There is a pending MOVE command already\n");
1478 return -EEXIST;
1479 }
1480
1481 /* Check ADD on destination */
1482 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1483 if (dest_exeq->get(dest_exeq, &query_elem)) {
1484 BNX2X_ERR("There is a pending ADD command on the destination queue already\n");
1485 return -EINVAL;
1486 }
1487
1488 /* Consume the credit if not requested not to */
1489 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST,
1490 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1491 dest_o->get_credit(dest_o)))
1492 return -EINVAL;
1493
1494 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1495 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1496 src_o->put_credit(src_o))) {
1497 /* return the credit taken from dest... */
1498 dest_o->put_credit(dest_o);
1499 return -EINVAL;
1500 }
1501
1502 return 0;
1503 }
1504
1505 static int bnx2x_validate_vlan_mac(struct bnx2x *bp,
1506 union bnx2x_qable_obj *qo,
1507 struct bnx2x_exeq_elem *elem)
1508 {
1509 switch (elem->cmd_data.vlan_mac.cmd) {
1510 case BNX2X_VLAN_MAC_ADD:
1511 return bnx2x_validate_vlan_mac_add(bp, qo, elem);
1512 case BNX2X_VLAN_MAC_DEL:
1513 return bnx2x_validate_vlan_mac_del(bp, qo, elem);
1514 case BNX2X_VLAN_MAC_MOVE:
1515 return bnx2x_validate_vlan_mac_move(bp, qo, elem);
1516 default:
1517 return -EINVAL;
1518 }
1519 }
1520
1521 static int bnx2x_remove_vlan_mac(struct bnx2x *bp,
1522 union bnx2x_qable_obj *qo,
1523 struct bnx2x_exeq_elem *elem)
1524 {
1525 int rc = 0;
1526
1527 /* If consumption wasn't required, nothing to do */
1528 if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1529 &elem->cmd_data.vlan_mac.vlan_mac_flags))
1530 return 0;
1531
1532 switch (elem->cmd_data.vlan_mac.cmd) {
1533 case BNX2X_VLAN_MAC_ADD:
1534 case BNX2X_VLAN_MAC_MOVE:
1535 rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1536 break;
1537 case BNX2X_VLAN_MAC_DEL:
1538 rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1539 break;
1540 default:
1541 return -EINVAL;
1542 }
1543
1544 if (rc != true)
1545 return -EINVAL;
1546
1547 return 0;
1548 }
1549
1550 /**
1551 * bnx2x_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1552 *
1553 * @bp: device handle
1554 * @o: bnx2x_vlan_mac_obj
1555 *
1556 */
1557 static int bnx2x_wait_vlan_mac(struct bnx2x *bp,
1558 struct bnx2x_vlan_mac_obj *o)
1559 {
1560 int cnt = 5000, rc;
1561 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1562 struct bnx2x_raw_obj *raw = &o->raw;
1563
1564 while (cnt--) {
1565 /* Wait for the current command to complete */
1566 rc = raw->wait_comp(bp, raw);
1567 if (rc)
1568 return rc;
1569
1570 /* Wait until there are no pending commands */
1571 if (!bnx2x_exe_queue_empty(exeq))
1572 usleep_range(1000, 2000);
1573 else
1574 return 0;
1575 }
1576
1577 return -EBUSY;
1578 }
1579
1580 static int __bnx2x_vlan_mac_execute_step(struct bnx2x *bp,
1581 struct bnx2x_vlan_mac_obj *o,
1582 unsigned long *ramrod_flags)
1583 {
1584 int rc = 0;
1585
1586 spin_lock_bh(&o->exe_queue.lock);
1587
1588 DP(BNX2X_MSG_SP, "vlan_mac_execute_step - trying to take writer lock\n");
1589 rc = __bnx2x_vlan_mac_h_write_trylock(bp, o);
1590
1591 if (rc != 0) {
1592 __bnx2x_vlan_mac_h_pend(bp, o, *ramrod_flags);
1593
1594 /* Calling function should not diffrentiate between this case
1595 * and the case in which there is already a pending ramrod
1596 */
1597 rc = 1;
1598 } else {
1599 rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
1600 }
1601 spin_unlock_bh(&o->exe_queue.lock);
1602
1603 return rc;
1604 }
1605
1606 /**
1607 * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod
1608 *
1609 * @bp: device handle
1610 * @o: bnx2x_vlan_mac_obj
1611 * @cqe:
1612 * @cont: if true schedule next execution chunk
1613 *
1614 */
1615 static int bnx2x_complete_vlan_mac(struct bnx2x *bp,
1616 struct bnx2x_vlan_mac_obj *o,
1617 union event_ring_elem *cqe,
1618 unsigned long *ramrod_flags)
1619 {
1620 struct bnx2x_raw_obj *r = &o->raw;
1621 int rc;
1622
1623 /* Clearing the pending list & raw state should be made
1624 * atomically (as execution flow assumes they represent the same).
1625 */
1626 spin_lock_bh(&o->exe_queue.lock);
1627
1628 /* Reset pending list */
1629 __bnx2x_exe_queue_reset_pending(bp, &o->exe_queue);
1630
1631 /* Clear pending */
1632 r->clear_pending(r);
1633
1634 spin_unlock_bh(&o->exe_queue.lock);
1635
1636 /* If ramrod failed this is most likely a SW bug */
1637 if (cqe->message.error)
1638 return -EINVAL;
1639
1640 /* Run the next bulk of pending commands if requested */
1641 if (test_bit(RAMROD_CONT, ramrod_flags)) {
1642 rc = __bnx2x_vlan_mac_execute_step(bp, o, ramrod_flags);
1643
1644 if (rc < 0)
1645 return rc;
1646 }
1647
1648 /* If there is more work to do return PENDING */
1649 if (!bnx2x_exe_queue_empty(&o->exe_queue))
1650 return 1;
1651
1652 return 0;
1653 }
1654
1655 /**
1656 * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands.
1657 *
1658 * @bp: device handle
1659 * @o: bnx2x_qable_obj
1660 * @elem: bnx2x_exeq_elem
1661 */
1662 static int bnx2x_optimize_vlan_mac(struct bnx2x *bp,
1663 union bnx2x_qable_obj *qo,
1664 struct bnx2x_exeq_elem *elem)
1665 {
1666 struct bnx2x_exeq_elem query, *pos;
1667 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1668 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1669
1670 memcpy(&query, elem, sizeof(query));
1671
1672 switch (elem->cmd_data.vlan_mac.cmd) {
1673 case BNX2X_VLAN_MAC_ADD:
1674 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1675 break;
1676 case BNX2X_VLAN_MAC_DEL:
1677 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1678 break;
1679 default:
1680 /* Don't handle anything other than ADD or DEL */
1681 return 0;
1682 }
1683
1684 /* If we found the appropriate element - delete it */
1685 pos = exeq->get(exeq, &query);
1686 if (pos) {
1687
1688 /* Return the credit of the optimized command */
1689 if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1690 &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1691 if ((query.cmd_data.vlan_mac.cmd ==
1692 BNX2X_VLAN_MAC_ADD) && !o->put_credit(o)) {
1693 BNX2X_ERR("Failed to return the credit for the optimized ADD command\n");
1694 return -EINVAL;
1695 } else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1696 BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n");
1697 return -EINVAL;
1698 }
1699 }
1700
1701 DP(BNX2X_MSG_SP, "Optimizing %s command\n",
1702 (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1703 "ADD" : "DEL");
1704
1705 list_del(&pos->link);
1706 bnx2x_exe_queue_free_elem(bp, pos);
1707 return 1;
1708 }
1709
1710 return 0;
1711 }
1712
1713 /**
1714 * bnx2x_vlan_mac_get_registry_elem - prepare a registry element
1715 *
1716 * @bp: device handle
1717 * @o:
1718 * @elem:
1719 * @restore:
1720 * @re:
1721 *
1722 * prepare a registry element according to the current command request.
1723 */
1724 static inline int bnx2x_vlan_mac_get_registry_elem(
1725 struct bnx2x *bp,
1726 struct bnx2x_vlan_mac_obj *o,
1727 struct bnx2x_exeq_elem *elem,
1728 bool restore,
1729 struct bnx2x_vlan_mac_registry_elem **re)
1730 {
1731 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1732 struct bnx2x_vlan_mac_registry_elem *reg_elem;
1733
1734 /* Allocate a new registry element if needed. */
1735 if (!restore &&
1736 ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) {
1737 reg_elem = kzalloc(sizeof(*reg_elem), GFP_ATOMIC);
1738 if (!reg_elem)
1739 return -ENOMEM;
1740
1741 /* Get a new CAM offset */
1742 if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
1743 /* This shall never happen, because we have checked the
1744 * CAM availability in the 'validate'.
1745 */
1746 WARN_ON(1);
1747 kfree(reg_elem);
1748 return -EINVAL;
1749 }
1750
1751 DP(BNX2X_MSG_SP, "Got cam offset %d\n", reg_elem->cam_offset);
1752
1753 /* Set a VLAN-MAC data */
1754 memcpy(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
1755 sizeof(reg_elem->u));
1756
1757 /* Copy the flags (needed for DEL and RESTORE flows) */
1758 reg_elem->vlan_mac_flags =
1759 elem->cmd_data.vlan_mac.vlan_mac_flags;
1760 } else /* DEL, RESTORE */
1761 reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1762
1763 *re = reg_elem;
1764 return 0;
1765 }
1766
1767 /**
1768 * bnx2x_execute_vlan_mac - execute vlan mac command
1769 *
1770 * @bp: device handle
1771 * @qo:
1772 * @exe_chunk:
1773 * @ramrod_flags:
1774 *
1775 * go and send a ramrod!
1776 */
1777 static int bnx2x_execute_vlan_mac(struct bnx2x *bp,
1778 union bnx2x_qable_obj *qo,
1779 struct list_head *exe_chunk,
1780 unsigned long *ramrod_flags)
1781 {
1782 struct bnx2x_exeq_elem *elem;
1783 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1784 struct bnx2x_raw_obj *r = &o->raw;
1785 int rc, idx = 0;
1786 bool restore = test_bit(RAMROD_RESTORE, ramrod_flags);
1787 bool drv_only = test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1788 struct bnx2x_vlan_mac_registry_elem *reg_elem;
1789 enum bnx2x_vlan_mac_cmd cmd;
1790
1791 /* If DRIVER_ONLY execution is requested, cleanup a registry
1792 * and exit. Otherwise send a ramrod to FW.
1793 */
1794 if (!drv_only) {
1795 WARN_ON(r->check_pending(r));
1796
1797 /* Set pending */
1798 r->set_pending(r);
1799
1800 /* Fill the ramrod data */
1801 list_for_each_entry(elem, exe_chunk, link) {
1802 cmd = elem->cmd_data.vlan_mac.cmd;
1803 /* We will add to the target object in MOVE command, so
1804 * change the object for a CAM search.
1805 */
1806 if (cmd == BNX2X_VLAN_MAC_MOVE)
1807 cam_obj = elem->cmd_data.vlan_mac.target_obj;
1808 else
1809 cam_obj = o;
1810
1811 rc = bnx2x_vlan_mac_get_registry_elem(bp, cam_obj,
1812 elem, restore,
1813 &reg_elem);
1814 if (rc)
1815 goto error_exit;
1816
1817 WARN_ON(!reg_elem);
1818
1819 /* Push a new entry into the registry */
1820 if (!restore &&
1821 ((cmd == BNX2X_VLAN_MAC_ADD) ||
1822 (cmd == BNX2X_VLAN_MAC_MOVE)))
1823 list_add(&reg_elem->link, &cam_obj->head);
1824
1825 /* Configure a single command in a ramrod data buffer */
1826 o->set_one_rule(bp, o, elem, idx,
1827 reg_elem->cam_offset);
1828
1829 /* MOVE command consumes 2 entries in the ramrod data */
1830 if (cmd == BNX2X_VLAN_MAC_MOVE)
1831 idx += 2;
1832 else
1833 idx++;
1834 }
1835
1836 /* No need for an explicit memory barrier here as long we would
1837 * need to ensure the ordering of writing to the SPQ element
1838 * and updating of the SPQ producer which involves a memory
1839 * read and we will have to put a full memory barrier there
1840 * (inside bnx2x_sp_post()).
1841 */
1842
1843 rc = bnx2x_sp_post(bp, o->ramrod_cmd, r->cid,
1844 U64_HI(r->rdata_mapping),
1845 U64_LO(r->rdata_mapping),
1846 ETH_CONNECTION_TYPE);
1847 if (rc)
1848 goto error_exit;
1849 }
1850
1851 /* Now, when we are done with the ramrod - clean up the registry */
1852 list_for_each_entry(elem, exe_chunk, link) {
1853 cmd = elem->cmd_data.vlan_mac.cmd;
1854 if ((cmd == BNX2X_VLAN_MAC_DEL) ||
1855 (cmd == BNX2X_VLAN_MAC_MOVE)) {
1856 reg_elem = o->check_del(bp, o,
1857 &elem->cmd_data.vlan_mac.u);
1858
1859 WARN_ON(!reg_elem);
1860
1861 o->put_cam_offset(o, reg_elem->cam_offset);
1862 list_del(&reg_elem->link);
1863 kfree(reg_elem);
1864 }
1865 }
1866
1867 if (!drv_only)
1868 return 1;
1869 else
1870 return 0;
1871
1872 error_exit:
1873 r->clear_pending(r);
1874
1875 /* Cleanup a registry in case of a failure */
1876 list_for_each_entry(elem, exe_chunk, link) {
1877 cmd = elem->cmd_data.vlan_mac.cmd;
1878
1879 if (cmd == BNX2X_VLAN_MAC_MOVE)
1880 cam_obj = elem->cmd_data.vlan_mac.target_obj;
1881 else
1882 cam_obj = o;
1883
1884 /* Delete all newly added above entries */
1885 if (!restore &&
1886 ((cmd == BNX2X_VLAN_MAC_ADD) ||
1887 (cmd == BNX2X_VLAN_MAC_MOVE))) {
1888 reg_elem = o->check_del(bp, cam_obj,
1889 &elem->cmd_data.vlan_mac.u);
1890 if (reg_elem) {
1891 list_del(&reg_elem->link);
1892 kfree(reg_elem);
1893 }
1894 }
1895 }
1896
1897 return rc;
1898 }
1899
1900 static inline int bnx2x_vlan_mac_push_new_cmd(
1901 struct bnx2x *bp,
1902 struct bnx2x_vlan_mac_ramrod_params *p)
1903 {
1904 struct bnx2x_exeq_elem *elem;
1905 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1906 bool restore = test_bit(RAMROD_RESTORE, &p->ramrod_flags);
1907
1908 /* Allocate the execution queue element */
1909 elem = bnx2x_exe_queue_alloc_elem(bp);
1910 if (!elem)
1911 return -ENOMEM;
1912
1913 /* Set the command 'length' */
1914 switch (p->user_req.cmd) {
1915 case BNX2X_VLAN_MAC_MOVE:
1916 elem->cmd_len = 2;
1917 break;
1918 default:
1919 elem->cmd_len = 1;
1920 }
1921
1922 /* Fill the object specific info */
1923 memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
1924
1925 /* Try to add a new command to the pending list */
1926 return bnx2x_exe_queue_add(bp, &o->exe_queue, elem, restore);
1927 }
1928
1929 /**
1930 * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1931 *
1932 * @bp: device handle
1933 * @p:
1934 *
1935 */
1936 int bnx2x_config_vlan_mac(struct bnx2x *bp,
1937 struct bnx2x_vlan_mac_ramrod_params *p)
1938 {
1939 int rc = 0;
1940 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1941 unsigned long *ramrod_flags = &p->ramrod_flags;
1942 bool cont = test_bit(RAMROD_CONT, ramrod_flags);
1943 struct bnx2x_raw_obj *raw = &o->raw;
1944
1945 /*
1946 * Add new elements to the execution list for commands that require it.
1947 */
1948 if (!cont) {
1949 rc = bnx2x_vlan_mac_push_new_cmd(bp, p);
1950 if (rc)
1951 return rc;
1952 }
1953
1954 /* If nothing will be executed further in this iteration we want to
1955 * return PENDING if there are pending commands
1956 */
1957 if (!bnx2x_exe_queue_empty(&o->exe_queue))
1958 rc = 1;
1959
1960 if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
1961 DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
1962 raw->clear_pending(raw);
1963 }
1964
1965 /* Execute commands if required */
1966 if (cont || test_bit(RAMROD_EXEC, ramrod_flags) ||
1967 test_bit(RAMROD_COMP_WAIT, ramrod_flags)) {
1968 rc = __bnx2x_vlan_mac_execute_step(bp, p->vlan_mac_obj,
1969 &p->ramrod_flags);
1970 if (rc < 0)
1971 return rc;
1972 }
1973
1974 /* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
1975 * then user want to wait until the last command is done.
1976 */
1977 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
1978 /* Wait maximum for the current exe_queue length iterations plus
1979 * one (for the current pending command).
1980 */
1981 int max_iterations = bnx2x_exe_queue_length(&o->exe_queue) + 1;
1982
1983 while (!bnx2x_exe_queue_empty(&o->exe_queue) &&
1984 max_iterations--) {
1985
1986 /* Wait for the current command to complete */
1987 rc = raw->wait_comp(bp, raw);
1988 if (rc)
1989 return rc;
1990
1991 /* Make a next step */
1992 rc = __bnx2x_vlan_mac_execute_step(bp,
1993 p->vlan_mac_obj,
1994 &p->ramrod_flags);
1995 if (rc < 0)
1996 return rc;
1997 }
1998
1999 return 0;
2000 }
2001
2002 return rc;
2003 }
2004
2005 /**
2006 * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2007 *
2008 * @bp: device handle
2009 * @o:
2010 * @vlan_mac_flags:
2011 * @ramrod_flags: execution flags to be used for this deletion
2012 *
2013 * if the last operation has completed successfully and there are no
2014 * more elements left, positive value if the last operation has completed
2015 * successfully and there are more previously configured elements, negative
2016 * value is current operation has failed.
2017 */
2018 static int bnx2x_vlan_mac_del_all(struct bnx2x *bp,
2019 struct bnx2x_vlan_mac_obj *o,
2020 unsigned long *vlan_mac_flags,
2021 unsigned long *ramrod_flags)
2022 {
2023 struct bnx2x_vlan_mac_registry_elem *pos = NULL;
2024 struct bnx2x_vlan_mac_ramrod_params p;
2025 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
2026 struct bnx2x_exeq_elem *exeq_pos, *exeq_pos_n;
2027 unsigned long flags;
2028 int read_lock;
2029 int rc = 0;
2030
2031 /* Clear pending commands first */
2032
2033 spin_lock_bh(&exeq->lock);
2034
2035 list_for_each_entry_safe(exeq_pos, exeq_pos_n, &exeq->exe_queue, link) {
2036 flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags;
2037 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2038 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2039 rc = exeq->remove(bp, exeq->owner, exeq_pos);
2040 if (rc) {
2041 BNX2X_ERR("Failed to remove command\n");
2042 spin_unlock_bh(&exeq->lock);
2043 return rc;
2044 }
2045 list_del(&exeq_pos->link);
2046 bnx2x_exe_queue_free_elem(bp, exeq_pos);
2047 }
2048 }
2049
2050 spin_unlock_bh(&exeq->lock);
2051
2052 /* Prepare a command request */
2053 memset(&p, 0, sizeof(p));
2054 p.vlan_mac_obj = o;
2055 p.ramrod_flags = *ramrod_flags;
2056 p.user_req.cmd = BNX2X_VLAN_MAC_DEL;
2057
2058 /* Add all but the last VLAN-MAC to the execution queue without actually
2059 * execution anything.
2060 */
2061 __clear_bit(RAMROD_COMP_WAIT, &p.ramrod_flags);
2062 __clear_bit(RAMROD_EXEC, &p.ramrod_flags);
2063 __clear_bit(RAMROD_CONT, &p.ramrod_flags);
2064
2065 DP(BNX2X_MSG_SP, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2066 read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
2067 if (read_lock != 0)
2068 return read_lock;
2069
2070 list_for_each_entry(pos, &o->head, link) {
2071 flags = pos->vlan_mac_flags;
2072 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2073 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2074 p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
2075 memcpy(&p.user_req.u, &pos->u, sizeof(pos->u));
2076 rc = bnx2x_config_vlan_mac(bp, &p);
2077 if (rc < 0) {
2078 BNX2X_ERR("Failed to add a new DEL command\n");
2079 bnx2x_vlan_mac_h_read_unlock(bp, o);
2080 return rc;
2081 }
2082 }
2083 }
2084
2085 DP(BNX2X_MSG_SP, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2086 bnx2x_vlan_mac_h_read_unlock(bp, o);
2087
2088 p.ramrod_flags = *ramrod_flags;
2089 __set_bit(RAMROD_CONT, &p.ramrod_flags);
2090
2091 return bnx2x_config_vlan_mac(bp, &p);
2092 }
2093
2094 static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj *raw, u8 cl_id,
2095 u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state,
2096 unsigned long *pstate, bnx2x_obj_type type)
2097 {
2098 raw->func_id = func_id;
2099 raw->cid = cid;
2100 raw->cl_id = cl_id;
2101 raw->rdata = rdata;
2102 raw->rdata_mapping = rdata_mapping;
2103 raw->state = state;
2104 raw->pstate = pstate;
2105 raw->obj_type = type;
2106 raw->check_pending = bnx2x_raw_check_pending;
2107 raw->clear_pending = bnx2x_raw_clear_pending;
2108 raw->set_pending = bnx2x_raw_set_pending;
2109 raw->wait_comp = bnx2x_raw_wait;
2110 }
2111
2112 static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj *o,
2113 u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping,
2114 int state, unsigned long *pstate, bnx2x_obj_type type,
2115 struct bnx2x_credit_pool_obj *macs_pool,
2116 struct bnx2x_credit_pool_obj *vlans_pool)
2117 {
2118 INIT_LIST_HEAD(&o->head);
2119 o->head_reader = 0;
2120 o->head_exe_request = false;
2121 o->saved_ramrod_flags = 0;
2122
2123 o->macs_pool = macs_pool;
2124 o->vlans_pool = vlans_pool;
2125
2126 o->delete_all = bnx2x_vlan_mac_del_all;
2127 o->restore = bnx2x_vlan_mac_restore;
2128 o->complete = bnx2x_complete_vlan_mac;
2129 o->wait = bnx2x_wait_vlan_mac;
2130
2131 bnx2x_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
2132 state, pstate, type);
2133 }
2134
2135 void bnx2x_init_mac_obj(struct bnx2x *bp,
2136 struct bnx2x_vlan_mac_obj *mac_obj,
2137 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2138 dma_addr_t rdata_mapping, int state,
2139 unsigned long *pstate, bnx2x_obj_type type,
2140 struct bnx2x_credit_pool_obj *macs_pool)
2141 {
2142 union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)mac_obj;
2143
2144 bnx2x_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
2145 rdata_mapping, state, pstate, type,
2146 macs_pool, NULL);
2147
2148 /* CAM credit pool handling */
2149 mac_obj->get_credit = bnx2x_get_credit_mac;
2150 mac_obj->put_credit = bnx2x_put_credit_mac;
2151 mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2152 mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2153
2154 if (CHIP_IS_E1x(bp)) {
2155 mac_obj->set_one_rule = bnx2x_set_one_mac_e1x;
2156 mac_obj->check_del = bnx2x_check_mac_del;
2157 mac_obj->check_add = bnx2x_check_mac_add;
2158 mac_obj->check_move = bnx2x_check_move_always_err;
2159 mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
2160
2161 /* Exe Queue */
2162 bnx2x_exe_queue_init(bp,
2163 &mac_obj->exe_queue, 1, qable_obj,
2164 bnx2x_validate_vlan_mac,
2165 bnx2x_remove_vlan_mac,
2166 bnx2x_optimize_vlan_mac,
2167 bnx2x_execute_vlan_mac,
2168 bnx2x_exeq_get_mac);
2169 } else {
2170 mac_obj->set_one_rule = bnx2x_set_one_mac_e2;
2171 mac_obj->check_del = bnx2x_check_mac_del;
2172 mac_obj->check_add = bnx2x_check_mac_add;
2173 mac_obj->check_move = bnx2x_check_move;
2174 mac_obj->ramrod_cmd =
2175 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2176 mac_obj->get_n_elements = bnx2x_get_n_elements;
2177
2178 /* Exe Queue */
2179 bnx2x_exe_queue_init(bp,
2180 &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
2181 qable_obj, bnx2x_validate_vlan_mac,
2182 bnx2x_remove_vlan_mac,
2183 bnx2x_optimize_vlan_mac,
2184 bnx2x_execute_vlan_mac,
2185 bnx2x_exeq_get_mac);
2186 }
2187 }
2188
2189 void bnx2x_init_vlan_obj(struct bnx2x *bp,
2190 struct bnx2x_vlan_mac_obj *vlan_obj,
2191 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2192 dma_addr_t rdata_mapping, int state,
2193 unsigned long *pstate, bnx2x_obj_type type,
2194 struct bnx2x_credit_pool_obj *vlans_pool)
2195 {
2196 union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_obj;
2197
2198 bnx2x_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2199 rdata_mapping, state, pstate, type, NULL,
2200 vlans_pool);
2201
2202 vlan_obj->get_credit = bnx2x_get_credit_vlan;
2203 vlan_obj->put_credit = bnx2x_put_credit_vlan;
2204 vlan_obj->get_cam_offset = bnx2x_get_cam_offset_vlan;
2205 vlan_obj->put_cam_offset = bnx2x_put_cam_offset_vlan;
2206
2207 if (CHIP_IS_E1x(bp)) {
2208 BNX2X_ERR("Do not support chips others than E2 and newer\n");
2209 BUG();
2210 } else {
2211 vlan_obj->set_one_rule = bnx2x_set_one_vlan_e2;
2212 vlan_obj->check_del = bnx2x_check_vlan_del;
2213 vlan_obj->check_add = bnx2x_check_vlan_add;
2214 vlan_obj->check_move = bnx2x_check_move;
2215 vlan_obj->ramrod_cmd =
2216 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2217 vlan_obj->get_n_elements = bnx2x_get_n_elements;
2218
2219 /* Exe Queue */
2220 bnx2x_exe_queue_init(bp,
2221 &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2222 qable_obj, bnx2x_validate_vlan_mac,
2223 bnx2x_remove_vlan_mac,
2224 bnx2x_optimize_vlan_mac,
2225 bnx2x_execute_vlan_mac,
2226 bnx2x_exeq_get_vlan);
2227 }
2228 }
2229
2230 void bnx2x_init_vlan_mac_obj(struct bnx2x *bp,
2231 struct bnx2x_vlan_mac_obj *vlan_mac_obj,
2232 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2233 dma_addr_t rdata_mapping, int state,
2234 unsigned long *pstate, bnx2x_obj_type type,
2235 struct bnx2x_credit_pool_obj *macs_pool,
2236 struct bnx2x_credit_pool_obj *vlans_pool)
2237 {
2238 union bnx2x_qable_obj *qable_obj =
2239 (union bnx2x_qable_obj *)vlan_mac_obj;
2240
2241 bnx2x_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2242 rdata_mapping, state, pstate, type,
2243 macs_pool, vlans_pool);
2244
2245 /* CAM pool handling */
2246 vlan_mac_obj->get_credit = bnx2x_get_credit_vlan_mac;
2247 vlan_mac_obj->put_credit = bnx2x_put_credit_vlan_mac;
2248 /* CAM offset is relevant for 57710 and 57711 chips only which have a
2249 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2250 * will be taken from MACs' pool object only.
2251 */
2252 vlan_mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2253 vlan_mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2254
2255 if (CHIP_IS_E1(bp)) {
2256 BNX2X_ERR("Do not support chips others than E2\n");
2257 BUG();
2258 } else if (CHIP_IS_E1H(bp)) {
2259 vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e1h;
2260 vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del;
2261 vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add;
2262 vlan_mac_obj->check_move = bnx2x_check_move_always_err;
2263 vlan_mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
2264
2265 /* Exe Queue */
2266 bnx2x_exe_queue_init(bp,
2267 &vlan_mac_obj->exe_queue, 1, qable_obj,
2268 bnx2x_validate_vlan_mac,
2269 bnx2x_remove_vlan_mac,
2270 bnx2x_optimize_vlan_mac,
2271 bnx2x_execute_vlan_mac,
2272 bnx2x_exeq_get_vlan_mac);
2273 } else {
2274 vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e2;
2275 vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del;
2276 vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add;
2277 vlan_mac_obj->check_move = bnx2x_check_move;
2278 vlan_mac_obj->ramrod_cmd =
2279 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2280
2281 /* Exe Queue */
2282 bnx2x_exe_queue_init(bp,
2283 &vlan_mac_obj->exe_queue,
2284 CLASSIFY_RULES_COUNT,
2285 qable_obj, bnx2x_validate_vlan_mac,
2286 bnx2x_remove_vlan_mac,
2287 bnx2x_optimize_vlan_mac,
2288 bnx2x_execute_vlan_mac,
2289 bnx2x_exeq_get_vlan_mac);
2290 }
2291 }
2292 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2293 static inline void __storm_memset_mac_filters(struct bnx2x *bp,
2294 struct tstorm_eth_mac_filter_config *mac_filters,
2295 u16 pf_id)
2296 {
2297 size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2298
2299 u32 addr = BAR_TSTRORM_INTMEM +
2300 TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2301
2302 __storm_memset_struct(bp, addr, size, (u32 *)mac_filters);
2303 }
2304
2305 static int bnx2x_set_rx_mode_e1x(struct bnx2x *bp,
2306 struct bnx2x_rx_mode_ramrod_params *p)
2307 {
2308 /* update the bp MAC filter structure */
2309 u32 mask = (1 << p->cl_id);
2310
2311 struct tstorm_eth_mac_filter_config *mac_filters =
2312 (struct tstorm_eth_mac_filter_config *)p->rdata;
2313
2314 /* initial setting is drop-all */
2315 u8 drop_all_ucast = 1, drop_all_mcast = 1;
2316 u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2317 u8 unmatched_unicast = 0;
2318
2319 /* In e1x there we only take into account rx accept flag since tx switching
2320 * isn't enabled. */
2321 if (test_bit(BNX2X_ACCEPT_UNICAST, &p->rx_accept_flags))
2322 /* accept matched ucast */
2323 drop_all_ucast = 0;
2324
2325 if (test_bit(BNX2X_ACCEPT_MULTICAST, &p->rx_accept_flags))
2326 /* accept matched mcast */
2327 drop_all_mcast = 0;
2328
2329 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2330 /* accept all mcast */
2331 drop_all_ucast = 0;
2332 accp_all_ucast = 1;
2333 }
2334 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2335 /* accept all mcast */
2336 drop_all_mcast = 0;
2337 accp_all_mcast = 1;
2338 }
2339 if (test_bit(BNX2X_ACCEPT_BROADCAST, &p->rx_accept_flags))
2340 /* accept (all) bcast */
2341 accp_all_bcast = 1;
2342 if (test_bit(BNX2X_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2343 /* accept unmatched unicasts */
2344 unmatched_unicast = 1;
2345
2346 mac_filters->ucast_drop_all = drop_all_ucast ?
2347 mac_filters->ucast_drop_all | mask :
2348 mac_filters->ucast_drop_all & ~mask;
2349
2350 mac_filters->mcast_drop_all = drop_all_mcast ?
2351 mac_filters->mcast_drop_all | mask :
2352 mac_filters->mcast_drop_all & ~mask;
2353
2354 mac_filters->ucast_accept_all = accp_all_ucast ?
2355 mac_filters->ucast_accept_all | mask :
2356 mac_filters->ucast_accept_all & ~mask;
2357
2358 mac_filters->mcast_accept_all = accp_all_mcast ?
2359 mac_filters->mcast_accept_all | mask :
2360 mac_filters->mcast_accept_all & ~mask;
2361
2362 mac_filters->bcast_accept_all = accp_all_bcast ?
2363 mac_filters->bcast_accept_all | mask :
2364 mac_filters->bcast_accept_all & ~mask;
2365
2366 mac_filters->unmatched_unicast = unmatched_unicast ?
2367 mac_filters->unmatched_unicast | mask :
2368 mac_filters->unmatched_unicast & ~mask;
2369
2370 DP(BNX2X_MSG_SP, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2371 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2372 mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2373 mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2374 mac_filters->bcast_accept_all);
2375
2376 /* write the MAC filter structure*/
2377 __storm_memset_mac_filters(bp, mac_filters, p->func_id);
2378
2379 /* The operation is completed */
2380 clear_bit(p->state, p->pstate);
2381 smp_mb__after_atomic();
2382
2383 return 0;
2384 }
2385
2386 /* Setup ramrod data */
2387 static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid,
2388 struct eth_classify_header *hdr,
2389 u8 rule_cnt)
2390 {
2391 hdr->echo = cpu_to_le32(cid);
2392 hdr->rule_cnt = rule_cnt;
2393 }
2394
2395 static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x *bp,
2396 unsigned long *accept_flags,
2397 struct eth_filter_rules_cmd *cmd,
2398 bool clear_accept_all)
2399 {
2400 u16 state;
2401
2402 /* start with 'drop-all' */
2403 state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2404 ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2405
2406 if (test_bit(BNX2X_ACCEPT_UNICAST, accept_flags))
2407 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2408
2409 if (test_bit(BNX2X_ACCEPT_MULTICAST, accept_flags))
2410 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2411
2412 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, accept_flags)) {
2413 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2414 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2415 }
2416
2417 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, accept_flags)) {
2418 state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2419 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2420 }
2421
2422 if (test_bit(BNX2X_ACCEPT_BROADCAST, accept_flags))
2423 state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2424
2425 if (test_bit(BNX2X_ACCEPT_UNMATCHED, accept_flags)) {
2426 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2427 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2428 }
2429
2430 if (test_bit(BNX2X_ACCEPT_ANY_VLAN, accept_flags))
2431 state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2432
2433 /* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2434 if (clear_accept_all) {
2435 state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2436 state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2437 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2438 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2439 }
2440
2441 cmd->state = cpu_to_le16(state);
2442 }
2443
2444 static int bnx2x_set_rx_mode_e2(struct bnx2x *bp,
2445 struct bnx2x_rx_mode_ramrod_params *p)
2446 {
2447 struct eth_filter_rules_ramrod_data *data = p->rdata;
2448 int rc;
2449 u8 rule_idx = 0;
2450
2451 /* Reset the ramrod data buffer */
2452 memset(data, 0, sizeof(*data));
2453
2454 /* Setup ramrod data */
2455
2456 /* Tx (internal switching) */
2457 if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2458 data->rules[rule_idx].client_id = p->cl_id;
2459 data->rules[rule_idx].func_id = p->func_id;
2460
2461 data->rules[rule_idx].cmd_general_data =
2462 ETH_FILTER_RULES_CMD_TX_CMD;
2463
2464 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2465 &(data->rules[rule_idx++]),
2466 false);
2467 }
2468
2469 /* Rx */
2470 if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2471 data->rules[rule_idx].client_id = p->cl_id;
2472 data->rules[rule_idx].func_id = p->func_id;
2473
2474 data->rules[rule_idx].cmd_general_data =
2475 ETH_FILTER_RULES_CMD_RX_CMD;
2476
2477 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2478 &(data->rules[rule_idx++]),
2479 false);
2480 }
2481
2482 /* If FCoE Queue configuration has been requested configure the Rx and
2483 * internal switching modes for this queue in separate rules.
2484 *
2485 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2486 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2487 */
2488 if (test_bit(BNX2X_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2489 /* Tx (internal switching) */
2490 if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2491 data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2492 data->rules[rule_idx].func_id = p->func_id;
2493
2494 data->rules[rule_idx].cmd_general_data =
2495 ETH_FILTER_RULES_CMD_TX_CMD;
2496
2497 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2498 &(data->rules[rule_idx]),
2499 true);
2500 rule_idx++;
2501 }
2502
2503 /* Rx */
2504 if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2505 data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2506 data->rules[rule_idx].func_id = p->func_id;
2507
2508 data->rules[rule_idx].cmd_general_data =
2509 ETH_FILTER_RULES_CMD_RX_CMD;
2510
2511 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2512 &(data->rules[rule_idx]),
2513 true);
2514 rule_idx++;
2515 }
2516 }
2517
2518 /* Set the ramrod header (most importantly - number of rules to
2519 * configure).
2520 */
2521 bnx2x_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2522
2523 DP(BNX2X_MSG_SP, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2524 data->header.rule_cnt, p->rx_accept_flags,
2525 p->tx_accept_flags);
2526
2527 /* No need for an explicit memory barrier here as long as we
2528 * ensure the ordering of writing to the SPQ element
2529 * and updating of the SPQ producer which involves a memory
2530 * read. If the memory read is removed we will have to put a
2531 * full memory barrier there (inside bnx2x_sp_post()).
2532 */
2533
2534 /* Send a ramrod */
2535 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_FILTER_RULES, p->cid,
2536 U64_HI(p->rdata_mapping),
2537 U64_LO(p->rdata_mapping),
2538 ETH_CONNECTION_TYPE);
2539 if (rc)
2540 return rc;
2541
2542 /* Ramrod completion is pending */
2543 return 1;
2544 }
2545
2546 static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x *bp,
2547 struct bnx2x_rx_mode_ramrod_params *p)
2548 {
2549 return bnx2x_state_wait(bp, p->state, p->pstate);
2550 }
2551
2552 static int bnx2x_empty_rx_mode_wait(struct bnx2x *bp,
2553 struct bnx2x_rx_mode_ramrod_params *p)
2554 {
2555 /* Do nothing */
2556 return 0;
2557 }
2558
2559 int bnx2x_config_rx_mode(struct bnx2x *bp,
2560 struct bnx2x_rx_mode_ramrod_params *p)
2561 {
2562 int rc;
2563
2564 /* Configure the new classification in the chip */
2565 rc = p->rx_mode_obj->config_rx_mode(bp, p);
2566 if (rc < 0)
2567 return rc;
2568
2569 /* Wait for a ramrod completion if was requested */
2570 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2571 rc = p->rx_mode_obj->wait_comp(bp, p);
2572 if (rc)
2573 return rc;
2574 }
2575
2576 return rc;
2577 }
2578
2579 void bnx2x_init_rx_mode_obj(struct bnx2x *bp,
2580 struct bnx2x_rx_mode_obj *o)
2581 {
2582 if (CHIP_IS_E1x(bp)) {
2583 o->wait_comp = bnx2x_empty_rx_mode_wait;
2584 o->config_rx_mode = bnx2x_set_rx_mode_e1x;
2585 } else {
2586 o->wait_comp = bnx2x_wait_rx_mode_comp_e2;
2587 o->config_rx_mode = bnx2x_set_rx_mode_e2;
2588 }
2589 }
2590
2591 /********************* Multicast verbs: SET, CLEAR ****************************/
2592 static inline u8 bnx2x_mcast_bin_from_mac(u8 *mac)
2593 {
2594 return (crc32c_le(0, mac, ETH_ALEN) >> 24) & 0xff;
2595 }
2596
2597 struct bnx2x_mcast_mac_elem {
2598 struct list_head link;
2599 u8 mac[ETH_ALEN];
2600 u8 pad[2]; /* For a natural alignment of the following buffer */
2601 };
2602
2603 struct bnx2x_mcast_bin_elem {
2604 struct list_head link;
2605 int bin;
2606 int type; /* BNX2X_MCAST_CMD_SET_{ADD, DEL} */
2607 };
2608
2609 struct bnx2x_pending_mcast_cmd {
2610 struct list_head link;
2611 int type; /* BNX2X_MCAST_CMD_X */
2612 union {
2613 struct list_head macs_head;
2614 u32 macs_num; /* Needed for DEL command */
2615 int next_bin; /* Needed for RESTORE flow with aprox match */
2616 } data;
2617
2618 bool set_convert; /* in case type == BNX2X_MCAST_CMD_SET, this is set
2619 * when macs_head had been converted to a list of
2620 * bnx2x_mcast_bin_elem.
2621 */
2622
2623 bool done; /* set to true, when the command has been handled,
2624 * practically used in 57712 handling only, where one pending
2625 * command may be handled in a few operations. As long as for
2626 * other chips every operation handling is completed in a
2627 * single ramrod, there is no need to utilize this field.
2628 */
2629 };
2630
2631 static int bnx2x_mcast_wait(struct bnx2x *bp,
2632 struct bnx2x_mcast_obj *o)
2633 {
2634 if (bnx2x_state_wait(bp, o->sched_state, o->raw.pstate) ||
2635 o->raw.wait_comp(bp, &o->raw))
2636 return -EBUSY;
2637
2638 return 0;
2639 }
2640
2641 static int bnx2x_mcast_enqueue_cmd(struct bnx2x *bp,
2642 struct bnx2x_mcast_obj *o,
2643 struct bnx2x_mcast_ramrod_params *p,
2644 enum bnx2x_mcast_cmd cmd)
2645 {
2646 int total_sz;
2647 struct bnx2x_pending_mcast_cmd *new_cmd;
2648 struct bnx2x_mcast_mac_elem *cur_mac = NULL;
2649 struct bnx2x_mcast_list_elem *pos;
2650 int macs_list_len = 0, macs_list_len_size;
2651
2652 /* When adding MACs we'll need to store their values */
2653 if (cmd == BNX2X_MCAST_CMD_ADD || cmd == BNX2X_MCAST_CMD_SET)
2654 macs_list_len = p->mcast_list_len;
2655
2656 /* If the command is empty ("handle pending commands only"), break */
2657 if (!p->mcast_list_len)
2658 return 0;
2659
2660 /* For a set command, we need to allocate sufficient memory for all
2661 * the bins, since we can't analyze at this point how much memory would
2662 * be required.
2663 */
2664 macs_list_len_size = macs_list_len *
2665 sizeof(struct bnx2x_mcast_mac_elem);
2666 if (cmd == BNX2X_MCAST_CMD_SET) {
2667 int bin_size = BNX2X_MCAST_BINS_NUM *
2668 sizeof(struct bnx2x_mcast_bin_elem);
2669
2670 if (bin_size > macs_list_len_size)
2671 macs_list_len_size = bin_size;
2672 }
2673 total_sz = sizeof(*new_cmd) + macs_list_len_size;
2674
2675 /* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2676 new_cmd = kzalloc(total_sz, GFP_ATOMIC);
2677
2678 if (!new_cmd)
2679 return -ENOMEM;
2680
2681 DP(BNX2X_MSG_SP, "About to enqueue a new %d command. macs_list_len=%d\n",
2682 cmd, macs_list_len);
2683
2684 INIT_LIST_HEAD(&new_cmd->data.macs_head);
2685
2686 new_cmd->type = cmd;
2687 new_cmd->done = false;
2688
2689 switch (cmd) {
2690 case BNX2X_MCAST_CMD_ADD:
2691 case BNX2X_MCAST_CMD_SET:
2692 cur_mac = (struct bnx2x_mcast_mac_elem *)
2693 ((u8 *)new_cmd + sizeof(*new_cmd));
2694
2695 /* Push the MACs of the current command into the pending command
2696 * MACs list: FIFO
2697 */
2698 list_for_each_entry(pos, &p->mcast_list, link) {
2699 memcpy(cur_mac->mac, pos->mac, ETH_ALEN);
2700 list_add_tail(&cur_mac->link, &new_cmd->data.macs_head);
2701 cur_mac++;
2702 }
2703
2704 break;
2705
2706 case BNX2X_MCAST_CMD_DEL:
2707 new_cmd->data.macs_num = p->mcast_list_len;
2708 break;
2709
2710 case BNX2X_MCAST_CMD_RESTORE:
2711 new_cmd->data.next_bin = 0;
2712 break;
2713
2714 default:
2715 kfree(new_cmd);
2716 BNX2X_ERR("Unknown command: %d\n", cmd);
2717 return -EINVAL;
2718 }
2719
2720 /* Push the new pending command to the tail of the pending list: FIFO */
2721 list_add_tail(&new_cmd->link, &o->pending_cmds_head);
2722
2723 o->set_sched(o);
2724
2725 return 1;
2726 }
2727
2728 /**
2729 * bnx2x_mcast_get_next_bin - get the next set bin (index)
2730 *
2731 * @o:
2732 * @last: index to start looking from (including)
2733 *
2734 * returns the next found (set) bin or a negative value if none is found.
2735 */
2736 static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj *o, int last)
2737 {
2738 int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2739
2740 for (i = last / BIT_VEC64_ELEM_SZ; i < BNX2X_MCAST_VEC_SZ; i++) {
2741 if (o->registry.aprox_match.vec[i])
2742 for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2743 int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2744 if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2745 vec, cur_bit)) {
2746 return cur_bit;
2747 }
2748 }
2749 inner_start = 0;
2750 }
2751
2752 /* None found */
2753 return -1;
2754 }
2755
2756 /**
2757 * bnx2x_mcast_clear_first_bin - find the first set bin and clear it
2758 *
2759 * @o:
2760 *
2761 * returns the index of the found bin or -1 if none is found
2762 */
2763 static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj *o)
2764 {
2765 int cur_bit = bnx2x_mcast_get_next_bin(o, 0);
2766
2767 if (cur_bit >= 0)
2768 BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2769
2770 return cur_bit;
2771 }
2772
2773 static inline u8 bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj *o)
2774 {
2775 struct bnx2x_raw_obj *raw = &o->raw;
2776 u8 rx_tx_flag = 0;
2777
2778 if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
2779 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2780 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2781
2782 if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
2783 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2784 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2785
2786 return rx_tx_flag;
2787 }
2788
2789 static void bnx2x_mcast_set_one_rule_e2(struct bnx2x *bp,
2790 struct bnx2x_mcast_obj *o, int idx,
2791 union bnx2x_mcast_config_data *cfg_data,
2792 enum bnx2x_mcast_cmd cmd)
2793 {
2794 struct bnx2x_raw_obj *r = &o->raw;
2795 struct eth_multicast_rules_ramrod_data *data =
2796 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
2797 u8 func_id = r->func_id;
2798 u8 rx_tx_add_flag = bnx2x_mcast_get_rx_tx_flag(o);
2799 int bin;
2800
2801 if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE) ||
2802 (cmd == BNX2X_MCAST_CMD_SET_ADD))
2803 rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
2804
2805 data->rules[idx].cmd_general_data |= rx_tx_add_flag;
2806
2807 /* Get a bin and update a bins' vector */
2808 switch (cmd) {
2809 case BNX2X_MCAST_CMD_ADD:
2810 bin = bnx2x_mcast_bin_from_mac(cfg_data->mac);
2811 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2812 break;
2813
2814 case BNX2X_MCAST_CMD_DEL:
2815 /* If there were no more bins to clear
2816 * (bnx2x_mcast_clear_first_bin() returns -1) then we would
2817 * clear any (0xff) bin.
2818 * See bnx2x_mcast_validate_e2() for explanation when it may
2819 * happen.
2820 */
2821 bin = bnx2x_mcast_clear_first_bin(o);
2822 break;
2823
2824 case BNX2X_MCAST_CMD_RESTORE:
2825 bin = cfg_data->bin;
2826 break;
2827
2828 case BNX2X_MCAST_CMD_SET_ADD:
2829 bin = cfg_data->bin;
2830 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2831 break;
2832
2833 case BNX2X_MCAST_CMD_SET_DEL:
2834 bin = cfg_data->bin;
2835 BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, bin);
2836 break;
2837
2838 default:
2839 BNX2X_ERR("Unknown command: %d\n", cmd);
2840 return;
2841 }
2842
2843 DP(BNX2X_MSG_SP, "%s bin %d\n",
2844 ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
2845 "Setting" : "Clearing"), bin);
2846
2847 data->rules[idx].bin_id = (u8)bin;
2848 data->rules[idx].func_id = func_id;
2849 data->rules[idx].engine_id = o->engine_id;
2850 }
2851
2852 /**
2853 * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2854 *
2855 * @bp: device handle
2856 * @o:
2857 * @start_bin: index in the registry to start from (including)
2858 * @rdata_idx: index in the ramrod data to start from
2859 *
2860 * returns last handled bin index or -1 if all bins have been handled
2861 */
2862 static inline int bnx2x_mcast_handle_restore_cmd_e2(
2863 struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_bin,
2864 int *rdata_idx)
2865 {
2866 int cur_bin, cnt = *rdata_idx;
2867 union bnx2x_mcast_config_data cfg_data = {NULL};
2868
2869 /* go through the registry and configure the bins from it */
2870 for (cur_bin = bnx2x_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
2871 cur_bin = bnx2x_mcast_get_next_bin(o, cur_bin + 1)) {
2872
2873 cfg_data.bin = (u8)cur_bin;
2874 o->set_one_rule(bp, o, cnt, &cfg_data,
2875 BNX2X_MCAST_CMD_RESTORE);
2876
2877 cnt++;
2878
2879 DP(BNX2X_MSG_SP, "About to configure a bin %d\n", cur_bin);
2880
2881 /* Break if we reached the maximum number
2882 * of rules.
2883 */
2884 if (cnt >= o->max_cmd_len)
2885 break;
2886 }
2887
2888 *rdata_idx = cnt;
2889
2890 return cur_bin;
2891 }
2892
2893 static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x *bp,
2894 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2895 int *line_idx)
2896 {
2897 struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
2898 int cnt = *line_idx;
2899 union bnx2x_mcast_config_data cfg_data = {NULL};
2900
2901 list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
2902 link) {
2903
2904 cfg_data.mac = &pmac_pos->mac[0];
2905 o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
2906
2907 cnt++;
2908
2909 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2910 pmac_pos->mac);
2911
2912 list_del(&pmac_pos->link);
2913
2914 /* Break if we reached the maximum number
2915 * of rules.
2916 */
2917 if (cnt >= o->max_cmd_len)
2918 break;
2919 }
2920
2921 *line_idx = cnt;
2922
2923 /* if no more MACs to configure - we are done */
2924 if (list_empty(&cmd_pos->data.macs_head))
2925 cmd_pos->done = true;
2926 }
2927
2928 static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x *bp,
2929 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2930 int *line_idx)
2931 {
2932 int cnt = *line_idx;
2933
2934 while (cmd_pos->data.macs_num) {
2935 o->set_one_rule(bp, o, cnt, NULL, cmd_pos->type);
2936
2937 cnt++;
2938
2939 cmd_pos->data.macs_num--;
2940
2941 DP(BNX2X_MSG_SP, "Deleting MAC. %d left,cnt is %d\n",
2942 cmd_pos->data.macs_num, cnt);
2943
2944 /* Break if we reached the maximum
2945 * number of rules.
2946 */
2947 if (cnt >= o->max_cmd_len)
2948 break;
2949 }
2950
2951 *line_idx = cnt;
2952
2953 /* If we cleared all bins - we are done */
2954 if (!cmd_pos->data.macs_num)
2955 cmd_pos->done = true;
2956 }
2957
2958 static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x *bp,
2959 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2960 int *line_idx)
2961 {
2962 cmd_pos->data.next_bin = o->hdl_restore(bp, o, cmd_pos->data.next_bin,
2963 line_idx);
2964
2965 if (cmd_pos->data.next_bin < 0)
2966 /* If o->set_restore returned -1 we are done */
2967 cmd_pos->done = true;
2968 else
2969 /* Start from the next bin next time */
2970 cmd_pos->data.next_bin++;
2971 }
2972
2973 static void
2974 bnx2x_mcast_hdl_pending_set_e2_convert(struct bnx2x *bp,
2975 struct bnx2x_mcast_obj *o,
2976 struct bnx2x_pending_mcast_cmd *cmd_pos)
2977 {
2978 u64 cur[BNX2X_MCAST_VEC_SZ], req[BNX2X_MCAST_VEC_SZ];
2979 struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
2980 struct bnx2x_mcast_bin_elem *p_item;
2981 int i, cnt = 0, mac_cnt = 0;
2982
2983 memset(req, 0, sizeof(u64) * BNX2X_MCAST_VEC_SZ);
2984 memcpy(cur, o->registry.aprox_match.vec,
2985 sizeof(u64) * BNX2X_MCAST_VEC_SZ);
2986
2987 /* Fill `current' with the required set of bins to configure */
2988 list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
2989 link) {
2990 int bin = bnx2x_mcast_bin_from_mac(pmac_pos->mac);
2991
2992 DP(BNX2X_MSG_SP, "Set contains %pM mcast MAC\n",
2993 pmac_pos->mac);
2994
2995 BIT_VEC64_SET_BIT(req, bin);
2996 list_del(&pmac_pos->link);
2997 mac_cnt++;
2998 }
2999
3000 /* We no longer have use for the MACs; Need to re-use memory for
3001 * a list that will be used to configure bins.
3002 */
3003 cmd_pos->set_convert = true;
3004 p_item = (struct bnx2x_mcast_bin_elem *)(cmd_pos + 1);
3005 INIT_LIST_HEAD(&cmd_pos->data.macs_head);
3006
3007 for (i = 0; i < BNX2X_MCAST_BINS_NUM; i++) {
3008 bool b_current = !!BIT_VEC64_TEST_BIT(cur, i);
3009 bool b_required = !!BIT_VEC64_TEST_BIT(req, i);
3010
3011 if (b_current == b_required)
3012 continue;
3013
3014 p_item->bin = i;
3015 p_item->type = b_required ? BNX2X_MCAST_CMD_SET_ADD
3016 : BNX2X_MCAST_CMD_SET_DEL;
3017 list_add_tail(&p_item->link , &cmd_pos->data.macs_head);
3018 p_item++;
3019 cnt++;
3020 }
3021
3022 /* We now definitely know how many commands are hiding here.
3023 * Also need to correct the disruption we've added to guarantee this
3024 * would be enqueued.
3025 */
3026 o->total_pending_num -= (o->max_cmd_len + mac_cnt);
3027 o->total_pending_num += cnt;
3028
3029 DP(BNX2X_MSG_SP, "o->total_pending_num=%d\n", o->total_pending_num);
3030 }
3031
3032 static void
3033 bnx2x_mcast_hdl_pending_set_e2(struct bnx2x *bp,
3034 struct bnx2x_mcast_obj *o,
3035 struct bnx2x_pending_mcast_cmd *cmd_pos,
3036 int *cnt)
3037 {
3038 union bnx2x_mcast_config_data cfg_data = {NULL};
3039 struct bnx2x_mcast_bin_elem *p_item, *p_item_n;
3040
3041 /* This is actually a 2-part scheme - it starts by converting the MACs
3042 * into a list of bins to be added/removed, and correcting the numbers
3043 * on the object. this is now allowed, as we're now sure that all
3044 * previous configured requests have already applied.
3045 * The second part is actually adding rules for the newly introduced
3046 * entries [like all the rest of the hdl_pending functions].
3047 */
3048 if (!cmd_pos->set_convert)
3049 bnx2x_mcast_hdl_pending_set_e2_convert(bp, o, cmd_pos);
3050
3051 list_for_each_entry_safe(p_item, p_item_n, &cmd_pos->data.macs_head,
3052 link) {
3053 cfg_data.bin = (u8)p_item->bin;
3054 o->set_one_rule(bp, o, *cnt, &cfg_data, p_item->type);
3055 (*cnt)++;
3056
3057 list_del(&p_item->link);
3058
3059 /* Break if we reached the maximum number of rules. */
3060 if (*cnt >= o->max_cmd_len)
3061 break;
3062 }
3063
3064 /* if no more MACs to configure - we are done */
3065 if (list_empty(&cmd_pos->data.macs_head))
3066 cmd_pos->done = true;
3067 }
3068
3069 static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x *bp,
3070 struct bnx2x_mcast_ramrod_params *p)
3071 {
3072 struct bnx2x_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
3073 int cnt = 0;
3074 struct bnx2x_mcast_obj *o = p->mcast_obj;
3075
3076 list_for_each_entry_safe(cmd_pos, cmd_pos_n, &o->pending_cmds_head,
3077 link) {
3078 switch (cmd_pos->type) {
3079 case BNX2X_MCAST_CMD_ADD:
3080 bnx2x_mcast_hdl_pending_add_e2(bp, o, cmd_pos, &cnt);
3081 break;
3082
3083 case BNX2X_MCAST_CMD_DEL:
3084 bnx2x_mcast_hdl_pending_del_e2(bp, o, cmd_pos, &cnt);
3085 break;
3086
3087 case BNX2X_MCAST_CMD_RESTORE:
3088 bnx2x_mcast_hdl_pending_restore_e2(bp, o, cmd_pos,
3089 &cnt);
3090 break;
3091
3092 case BNX2X_MCAST_CMD_SET:
3093 bnx2x_mcast_hdl_pending_set_e2(bp, o, cmd_pos, &cnt);
3094 break;
3095
3096 default:
3097 BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3098 return -EINVAL;
3099 }
3100
3101 /* If the command has been completed - remove it from the list
3102 * and free the memory
3103 */
3104 if (cmd_pos->done) {
3105 list_del(&cmd_pos->link);
3106 kfree(cmd_pos);
3107 }
3108
3109 /* Break if we reached the maximum number of rules */
3110 if (cnt >= o->max_cmd_len)
3111 break;
3112 }
3113
3114 return cnt;
3115 }
3116
3117 static inline void bnx2x_mcast_hdl_add(struct bnx2x *bp,
3118 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3119 int *line_idx)
3120 {
3121 struct bnx2x_mcast_list_elem *mlist_pos;
3122 union bnx2x_mcast_config_data cfg_data = {NULL};
3123 int cnt = *line_idx;
3124
3125 list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3126 cfg_data.mac = mlist_pos->mac;
3127 o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_ADD);
3128
3129 cnt++;
3130
3131 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3132 mlist_pos->mac);
3133 }
3134
3135 *line_idx = cnt;
3136 }
3137
3138 static inline void bnx2x_mcast_hdl_del(struct bnx2x *bp,
3139 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3140 int *line_idx)
3141 {
3142 int cnt = *line_idx, i;
3143
3144 for (i = 0; i < p->mcast_list_len; i++) {
3145 o->set_one_rule(bp, o, cnt, NULL, BNX2X_MCAST_CMD_DEL);
3146
3147 cnt++;
3148
3149 DP(BNX2X_MSG_SP, "Deleting MAC. %d left\n",
3150 p->mcast_list_len - i - 1);
3151 }
3152
3153 *line_idx = cnt;
3154 }
3155
3156 /**
3157 * bnx2x_mcast_handle_current_cmd -
3158 *
3159 * @bp: device handle
3160 * @p:
3161 * @cmd:
3162 * @start_cnt: first line in the ramrod data that may be used
3163 *
3164 * This function is called iff there is enough place for the current command in
3165 * the ramrod data.
3166 * Returns number of lines filled in the ramrod data in total.
3167 */
3168 static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x *bp,
3169 struct bnx2x_mcast_ramrod_params *p,
3170 enum bnx2x_mcast_cmd cmd,
3171 int start_cnt)
3172 {
3173 struct bnx2x_mcast_obj *o = p->mcast_obj;
3174 int cnt = start_cnt;
3175
3176 DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3177
3178 switch (cmd) {
3179 case BNX2X_MCAST_CMD_ADD:
3180 bnx2x_mcast_hdl_add(bp, o, p, &cnt);
3181 break;
3182
3183 case BNX2X_MCAST_CMD_DEL:
3184 bnx2x_mcast_hdl_del(bp, o, p, &cnt);
3185 break;
3186
3187 case BNX2X_MCAST_CMD_RESTORE:
3188 o->hdl_restore(bp, o, 0, &cnt);
3189 break;
3190
3191 default:
3192 BNX2X_ERR("Unknown command: %d\n", cmd);
3193 return -EINVAL;
3194 }
3195
3196 /* The current command has been handled */
3197 p->mcast_list_len = 0;
3198
3199 return cnt;
3200 }
3201
3202 static int bnx2x_mcast_validate_e2(struct bnx2x *bp,
3203 struct bnx2x_mcast_ramrod_params *p,
3204 enum bnx2x_mcast_cmd cmd)
3205 {
3206 struct bnx2x_mcast_obj *o = p->mcast_obj;
3207 int reg_sz = o->get_registry_size(o);
3208
3209 switch (cmd) {
3210 /* DEL command deletes all currently configured MACs */
3211 case BNX2X_MCAST_CMD_DEL:
3212 o->set_registry_size(o, 0);
3213 /* Don't break */
3214
3215 /* RESTORE command will restore the entire multicast configuration */
3216 case BNX2X_MCAST_CMD_RESTORE:
3217 /* Here we set the approximate amount of work to do, which in
3218 * fact may be only less as some MACs in postponed ADD
3219 * command(s) scheduled before this command may fall into
3220 * the same bin and the actual number of bins set in the
3221 * registry would be less than we estimated here. See
3222 * bnx2x_mcast_set_one_rule_e2() for further details.
3223 */
3224 p->mcast_list_len = reg_sz;
3225 break;
3226
3227 case BNX2X_MCAST_CMD_ADD:
3228 case BNX2X_MCAST_CMD_CONT:
3229 /* Here we assume that all new MACs will fall into new bins.
3230 * However we will correct the real registry size after we
3231 * handle all pending commands.
3232 */
3233 o->set_registry_size(o, reg_sz + p->mcast_list_len);
3234 break;
3235
3236 case BNX2X_MCAST_CMD_SET:
3237 /* We can only learn how many commands would actually be used
3238 * when this is being configured. So for now, simply guarantee
3239 * the command will be enqueued [to refrain from adding logic
3240 * that handles this and THEN learns it needs several ramrods].
3241 * Just like for ADD/Cont, the mcast_list_len might be an over
3242 * estimation; or even more so, since we don't take into
3243 * account the possibility of removal of existing bins.
3244 */
3245 o->set_registry_size(o, reg_sz + p->mcast_list_len);
3246 o->total_pending_num += o->max_cmd_len;
3247 break;
3248
3249 default:
3250 BNX2X_ERR("Unknown command: %d\n", cmd);
3251 return -EINVAL;
3252 }
3253
3254 /* Increase the total number of MACs pending to be configured */
3255 o->total_pending_num += p->mcast_list_len;
3256
3257 return 0;
3258 }
3259
3260 static void bnx2x_mcast_revert_e2(struct bnx2x *bp,
3261 struct bnx2x_mcast_ramrod_params *p,
3262 int old_num_bins,
3263 enum bnx2x_mcast_cmd cmd)
3264 {
3265 struct bnx2x_mcast_obj *o = p->mcast_obj;
3266
3267 o->set_registry_size(o, old_num_bins);
3268 o->total_pending_num -= p->mcast_list_len;
3269
3270 if (cmd == BNX2X_MCAST_CMD_SET)
3271 o->total_pending_num -= o->max_cmd_len;
3272 }
3273
3274 /**
3275 * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values
3276 *
3277 * @bp: device handle
3278 * @p:
3279 * @len: number of rules to handle
3280 */
3281 static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x *bp,
3282 struct bnx2x_mcast_ramrod_params *p,
3283 u8 len)
3284 {
3285 struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3286 struct eth_multicast_rules_ramrod_data *data =
3287 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
3288
3289 data->header.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3290 (BNX2X_FILTER_MCAST_PENDING <<
3291 BNX2X_SWCID_SHIFT));
3292 data->header.rule_cnt = len;
3293 }
3294
3295 /**
3296 * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3297 *
3298 * @bp: device handle
3299 * @o:
3300 *
3301 * Recalculate the actual number of set bins in the registry using Brian
3302 * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3303 *
3304 * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1().
3305 */
3306 static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x *bp,
3307 struct bnx2x_mcast_obj *o)
3308 {
3309 int i, cnt = 0;
3310 u64 elem;
3311
3312 for (i = 0; i < BNX2X_MCAST_VEC_SZ; i++) {
3313 elem = o->registry.aprox_match.vec[i];
3314 for (; elem; cnt++)
3315 elem &= elem - 1;
3316 }
3317
3318 o->set_registry_size(o, cnt);
3319
3320 return 0;
3321 }
3322
3323 static int bnx2x_mcast_setup_e2(struct bnx2x *bp,
3324 struct bnx2x_mcast_ramrod_params *p,
3325 enum bnx2x_mcast_cmd cmd)
3326 {
3327 struct bnx2x_raw_obj *raw = &p->mcast_obj->raw;
3328 struct bnx2x_mcast_obj *o = p->mcast_obj;
3329 struct eth_multicast_rules_ramrod_data *data =
3330 (struct eth_multicast_rules_ramrod_data *)(raw->rdata);
3331 int cnt = 0, rc;
3332
3333 /* Reset the ramrod data buffer */
3334 memset(data, 0, sizeof(*data));
3335
3336 cnt = bnx2x_mcast_handle_pending_cmds_e2(bp, p);
3337
3338 /* If there are no more pending commands - clear SCHEDULED state */
3339 if (list_empty(&o->pending_cmds_head))
3340 o->clear_sched(o);
3341
3342 /* The below may be true iff there was enough room in ramrod
3343 * data for all pending commands and for the current
3344 * command. Otherwise the current command would have been added
3345 * to the pending commands and p->mcast_list_len would have been
3346 * zeroed.
3347 */
3348 if (p->mcast_list_len > 0)
3349 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, cnt);
3350
3351 /* We've pulled out some MACs - update the total number of
3352 * outstanding.
3353 */
3354 o->total_pending_num -= cnt;
3355
3356 /* send a ramrod */
3357 WARN_ON(o->total_pending_num < 0);
3358 WARN_ON(cnt > o->max_cmd_len);
3359
3360 bnx2x_mcast_set_rdata_hdr_e2(bp, p, (u8)cnt);
3361
3362 /* Update a registry size if there are no more pending operations.
3363 *
3364 * We don't want to change the value of the registry size if there are
3365 * pending operations because we want it to always be equal to the
3366 * exact or the approximate number (see bnx2x_mcast_validate_e2()) of
3367 * set bins after the last requested operation in order to properly
3368 * evaluate the size of the next DEL/RESTORE operation.
3369 *
3370 * Note that we update the registry itself during command(s) handling
3371 * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we
3372 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3373 * with a limited amount of update commands (per MAC/bin) and we don't
3374 * know in this scope what the actual state of bins configuration is
3375 * going to be after this ramrod.
3376 */
3377 if (!o->total_pending_num)
3378 bnx2x_mcast_refresh_registry_e2(bp, o);
3379
3380 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3381 * RAMROD_PENDING status immediately. due to the SET option, it's also
3382 * possible that after evaluating the differences there's no need for
3383 * a ramrod. In that case, we can skip it as well.
3384 */
3385 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags) || !cnt) {
3386 raw->clear_pending(raw);
3387 return 0;
3388 } else {
3389 /* No need for an explicit memory barrier here as long as we
3390 * ensure the ordering of writing to the SPQ element
3391 * and updating of the SPQ producer which involves a memory
3392 * read. If the memory read is removed we will have to put a
3393 * full memory barrier there (inside bnx2x_sp_post()).
3394 */
3395
3396 /* Send a ramrod */
3397 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3398 raw->cid, U64_HI(raw->rdata_mapping),
3399 U64_LO(raw->rdata_mapping),
3400 ETH_CONNECTION_TYPE);
3401 if (rc)
3402 return rc;
3403
3404 /* Ramrod completion is pending */
3405 return 1;
3406 }
3407 }
3408
3409 static int bnx2x_mcast_validate_e1h(struct bnx2x *bp,
3410 struct bnx2x_mcast_ramrod_params *p,
3411 enum bnx2x_mcast_cmd cmd)
3412 {
3413 if (cmd == BNX2X_MCAST_CMD_SET) {
3414 BNX2X_ERR("Can't use `set' command on e1h!\n");
3415 return -EINVAL;
3416 }
3417
3418 /* Mark, that there is a work to do */
3419 if ((cmd == BNX2X_MCAST_CMD_DEL) || (cmd == BNX2X_MCAST_CMD_RESTORE))
3420 p->mcast_list_len = 1;
3421
3422 return 0;
3423 }
3424
3425 static void bnx2x_mcast_revert_e1h(struct bnx2x *bp,
3426 struct bnx2x_mcast_ramrod_params *p,
3427 int old_num_bins,
3428 enum bnx2x_mcast_cmd cmd)
3429 {
3430 /* Do nothing */
3431 }
3432
3433 #define BNX2X_57711_SET_MC_FILTER(filter, bit) \
3434 do { \
3435 (filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3436 } while (0)
3437
3438 static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x *bp,
3439 struct bnx2x_mcast_obj *o,
3440 struct bnx2x_mcast_ramrod_params *p,
3441 u32 *mc_filter)
3442 {
3443 struct bnx2x_mcast_list_elem *mlist_pos;
3444 int bit;
3445
3446 list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3447 bit = bnx2x_mcast_bin_from_mac(mlist_pos->mac);
3448 BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3449
3450 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC, bin %d\n",
3451 mlist_pos->mac, bit);
3452
3453 /* bookkeeping... */
3454 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3455 bit);
3456 }
3457 }
3458
3459 static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x *bp,
3460 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3461 u32 *mc_filter)
3462 {
3463 int bit;
3464
3465 for (bit = bnx2x_mcast_get_next_bin(o, 0);
3466 bit >= 0;
3467 bit = bnx2x_mcast_get_next_bin(o, bit + 1)) {
3468 BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3469 DP(BNX2X_MSG_SP, "About to set bin %d\n", bit);
3470 }
3471 }
3472
3473 /* On 57711 we write the multicast MACs' approximate match
3474 * table by directly into the TSTORM's internal RAM. So we don't
3475 * really need to handle any tricks to make it work.
3476 */
3477 static int bnx2x_mcast_setup_e1h(struct bnx2x *bp,
3478 struct bnx2x_mcast_ramrod_params *p,
3479 enum bnx2x_mcast_cmd cmd)
3480 {
3481 int i;
3482 struct bnx2x_mcast_obj *o = p->mcast_obj;
3483 struct bnx2x_raw_obj *r = &o->raw;
3484
3485 /* If CLEAR_ONLY has been requested - clear the registry
3486 * and clear a pending bit.
3487 */
3488 if (!test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3489 u32 mc_filter[MC_HASH_SIZE] = {0};
3490
3491 /* Set the multicast filter bits before writing it into
3492 * the internal memory.
3493 */
3494 switch (cmd) {
3495 case BNX2X_MCAST_CMD_ADD:
3496 bnx2x_mcast_hdl_add_e1h(bp, o, p, mc_filter);
3497 break;
3498
3499 case BNX2X_MCAST_CMD_DEL:
3500 DP(BNX2X_MSG_SP,
3501 "Invalidating multicast MACs configuration\n");
3502
3503 /* clear the registry */
3504 memset(o->registry.aprox_match.vec, 0,
3505 sizeof(o->registry.aprox_match.vec));
3506 break;
3507
3508 case BNX2X_MCAST_CMD_RESTORE:
3509 bnx2x_mcast_hdl_restore_e1h(bp, o, p, mc_filter);
3510 break;
3511
3512 default:
3513 BNX2X_ERR("Unknown command: %d\n", cmd);
3514 return -EINVAL;
3515 }
3516
3517 /* Set the mcast filter in the internal memory */
3518 for (i = 0; i < MC_HASH_SIZE; i++)
3519 REG_WR(bp, MC_HASH_OFFSET(bp, i), mc_filter[i]);
3520 } else
3521 /* clear the registry */
3522 memset(o->registry.aprox_match.vec, 0,
3523 sizeof(o->registry.aprox_match.vec));
3524
3525 /* We are done */
3526 r->clear_pending(r);
3527
3528 return 0;
3529 }
3530
3531 static int bnx2x_mcast_validate_e1(struct bnx2x *bp,
3532 struct bnx2x_mcast_ramrod_params *p,
3533 enum bnx2x_mcast_cmd cmd)
3534 {
3535 struct bnx2x_mcast_obj *o = p->mcast_obj;
3536 int reg_sz = o->get_registry_size(o);
3537
3538 if (cmd == BNX2X_MCAST_CMD_SET) {
3539 BNX2X_ERR("Can't use `set' command on e1!\n");
3540 return -EINVAL;
3541 }
3542
3543 switch (cmd) {
3544 /* DEL command deletes all currently configured MACs */
3545 case BNX2X_MCAST_CMD_DEL:
3546 o->set_registry_size(o, 0);
3547 /* Don't break */
3548
3549 /* RESTORE command will restore the entire multicast configuration */
3550 case BNX2X_MCAST_CMD_RESTORE:
3551 p->mcast_list_len = reg_sz;
3552 DP(BNX2X_MSG_SP, "Command %d, p->mcast_list_len=%d\n",
3553 cmd, p->mcast_list_len);
3554 break;
3555
3556 case BNX2X_MCAST_CMD_ADD:
3557 case BNX2X_MCAST_CMD_CONT:
3558 /* Multicast MACs on 57710 are configured as unicast MACs and
3559 * there is only a limited number of CAM entries for that
3560 * matter.
3561 */
3562 if (p->mcast_list_len > o->max_cmd_len) {
3563 BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n",
3564 o->max_cmd_len);
3565 return -EINVAL;
3566 }
3567 /* Every configured MAC should be cleared if DEL command is
3568 * called. Only the last ADD command is relevant as long as
3569 * every ADD commands overrides the previous configuration.
3570 */
3571 DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3572 if (p->mcast_list_len > 0)
3573 o->set_registry_size(o, p->mcast_list_len);
3574
3575 break;
3576
3577 default:
3578 BNX2X_ERR("Unknown command: %d\n", cmd);
3579 return -EINVAL;
3580 }
3581
3582 /* We want to ensure that commands are executed one by one for 57710.
3583 * Therefore each none-empty command will consume o->max_cmd_len.
3584 */
3585 if (p->mcast_list_len)
3586 o->total_pending_num += o->max_cmd_len;
3587
3588 return 0;
3589 }
3590
3591 static void bnx2x_mcast_revert_e1(struct bnx2x *bp,
3592 struct bnx2x_mcast_ramrod_params *p,
3593 int old_num_macs,
3594 enum bnx2x_mcast_cmd cmd)
3595 {
3596 struct bnx2x_mcast_obj *o = p->mcast_obj;
3597
3598 o->set_registry_size(o, old_num_macs);
3599
3600 /* If current command hasn't been handled yet and we are
3601 * here means that it's meant to be dropped and we have to
3602 * update the number of outstanding MACs accordingly.
3603 */
3604 if (p->mcast_list_len)
3605 o->total_pending_num -= o->max_cmd_len;
3606 }
3607
3608 static void bnx2x_mcast_set_one_rule_e1(struct bnx2x *bp,
3609 struct bnx2x_mcast_obj *o, int idx,
3610 union bnx2x_mcast_config_data *cfg_data,
3611 enum bnx2x_mcast_cmd cmd)
3612 {
3613 struct bnx2x_raw_obj *r = &o->raw;
3614 struct mac_configuration_cmd *data =
3615 (struct mac_configuration_cmd *)(r->rdata);
3616
3617 /* copy mac */
3618 if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) {
3619 bnx2x_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3620 &data->config_table[idx].middle_mac_addr,
3621 &data->config_table[idx].lsb_mac_addr,
3622 cfg_data->mac);
3623
3624 data->config_table[idx].vlan_id = 0;
3625 data->config_table[idx].pf_id = r->func_id;
3626 data->config_table[idx].clients_bit_vector =
3627 cpu_to_le32(1 << r->cl_id);
3628
3629 SET_FLAG(data->config_table[idx].flags,
3630 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3631 T_ETH_MAC_COMMAND_SET);
3632 }
3633 }
3634
3635 /**
3636 * bnx2x_mcast_set_rdata_hdr_e1 - set header values in mac_configuration_cmd
3637 *
3638 * @bp: device handle
3639 * @p:
3640 * @len: number of rules to handle
3641 */
3642 static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x *bp,
3643 struct bnx2x_mcast_ramrod_params *p,
3644 u8 len)
3645 {
3646 struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3647 struct mac_configuration_cmd *data =
3648 (struct mac_configuration_cmd *)(r->rdata);
3649
3650 u8 offset = (CHIP_REV_IS_SLOW(bp) ?
3651 BNX2X_MAX_EMUL_MULTI*(1 + r->func_id) :
3652 BNX2X_MAX_MULTICAST*(1 + r->func_id));
3653
3654 data->hdr.offset = offset;
3655 data->hdr.client_id = cpu_to_le16(0xff);
3656 data->hdr.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3657 (BNX2X_FILTER_MCAST_PENDING <<
3658 BNX2X_SWCID_SHIFT));
3659 data->hdr.length = len;
3660 }
3661
3662 /**
3663 * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710
3664 *
3665 * @bp: device handle
3666 * @o:
3667 * @start_idx: index in the registry to start from
3668 * @rdata_idx: index in the ramrod data to start from
3669 *
3670 * restore command for 57710 is like all other commands - always a stand alone
3671 * command - start_idx and rdata_idx will always be 0. This function will always
3672 * succeed.
3673 * returns -1 to comply with 57712 variant.
3674 */
3675 static inline int bnx2x_mcast_handle_restore_cmd_e1(
3676 struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_idx,
3677 int *rdata_idx)
3678 {
3679 struct bnx2x_mcast_mac_elem *elem;
3680 int i = 0;
3681 union bnx2x_mcast_config_data cfg_data = {NULL};
3682
3683 /* go through the registry and configure the MACs from it. */
3684 list_for_each_entry(elem, &o->registry.exact_match.macs, link) {
3685 cfg_data.mac = &elem->mac[0];
3686 o->set_one_rule(bp, o, i, &cfg_data, BNX2X_MCAST_CMD_RESTORE);
3687
3688 i++;
3689
3690 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3691 cfg_data.mac);
3692 }
3693
3694 *rdata_idx = i;
3695
3696 return -1;
3697 }
3698
3699 static inline int bnx2x_mcast_handle_pending_cmds_e1(
3700 struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p)
3701 {
3702 struct bnx2x_pending_mcast_cmd *cmd_pos;
3703 struct bnx2x_mcast_mac_elem *pmac_pos;
3704 struct bnx2x_mcast_obj *o = p->mcast_obj;
3705 union bnx2x_mcast_config_data cfg_data = {NULL};
3706 int cnt = 0;
3707
3708 /* If nothing to be done - return */
3709 if (list_empty(&o->pending_cmds_head))
3710 return 0;
3711
3712 /* Handle the first command */
3713 cmd_pos = list_first_entry(&o->pending_cmds_head,
3714 struct bnx2x_pending_mcast_cmd, link);
3715
3716 switch (cmd_pos->type) {
3717 case BNX2X_MCAST_CMD_ADD:
3718 list_for_each_entry(pmac_pos, &cmd_pos->data.macs_head, link) {
3719 cfg_data.mac = &pmac_pos->mac[0];
3720 o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
3721
3722 cnt++;
3723
3724 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3725 pmac_pos->mac);
3726 }
3727 break;
3728
3729 case BNX2X_MCAST_CMD_DEL:
3730 cnt = cmd_pos->data.macs_num;
3731 DP(BNX2X_MSG_SP, "About to delete %d multicast MACs\n", cnt);
3732 break;
3733
3734 case BNX2X_MCAST_CMD_RESTORE:
3735 o->hdl_restore(bp, o, 0, &cnt);
3736 break;
3737
3738 default:
3739 BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3740 return -EINVAL;
3741 }
3742
3743 list_del(&cmd_pos->link);
3744 kfree(cmd_pos);
3745
3746 return cnt;
3747 }
3748
3749 /**
3750 * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr().
3751 *
3752 * @fw_hi:
3753 * @fw_mid:
3754 * @fw_lo:
3755 * @mac:
3756 */
3757 static inline void bnx2x_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid,
3758 __le16 *fw_lo, u8 *mac)
3759 {
3760 mac[1] = ((u8 *)fw_hi)[0];
3761 mac[0] = ((u8 *)fw_hi)[1];
3762 mac[3] = ((u8 *)fw_mid)[0];
3763 mac[2] = ((u8 *)fw_mid)[1];
3764 mac[5] = ((u8 *)fw_lo)[0];
3765 mac[4] = ((u8 *)fw_lo)[1];
3766 }
3767
3768 /**
3769 * bnx2x_mcast_refresh_registry_e1 -
3770 *
3771 * @bp: device handle
3772 * @cnt:
3773 *
3774 * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3775 * and update the registry correspondingly: if ADD - allocate a memory and add
3776 * the entries to the registry (list), if DELETE - clear the registry and free
3777 * the memory.
3778 */
3779 static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x *bp,
3780 struct bnx2x_mcast_obj *o)
3781 {
3782 struct bnx2x_raw_obj *raw = &o->raw;
3783 struct bnx2x_mcast_mac_elem *elem;
3784 struct mac_configuration_cmd *data =
3785 (struct mac_configuration_cmd *)(raw->rdata);
3786
3787 /* If first entry contains a SET bit - the command was ADD,
3788 * otherwise - DEL_ALL
3789 */
3790 if (GET_FLAG(data->config_table[0].flags,
3791 MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3792 int i, len = data->hdr.length;
3793
3794 /* Break if it was a RESTORE command */
3795 if (!list_empty(&o->registry.exact_match.macs))
3796 return 0;
3797
3798 elem = kcalloc(len, sizeof(*elem), GFP_ATOMIC);
3799 if (!elem) {
3800 BNX2X_ERR("Failed to allocate registry memory\n");
3801 return -ENOMEM;
3802 }
3803
3804 for (i = 0; i < len; i++, elem++) {
3805 bnx2x_get_fw_mac_addr(
3806 &data->config_table[i].msb_mac_addr,
3807 &data->config_table[i].middle_mac_addr,
3808 &data->config_table[i].lsb_mac_addr,
3809 elem->mac);
3810 DP(BNX2X_MSG_SP, "Adding registry entry for [%pM]\n",
3811 elem->mac);
3812 list_add_tail(&elem->link,
3813 &o->registry.exact_match.macs);
3814 }
3815 } else {
3816 elem = list_first_entry(&o->registry.exact_match.macs,
3817 struct bnx2x_mcast_mac_elem, link);
3818 DP(BNX2X_MSG_SP, "Deleting a registry\n");
3819 kfree(elem);
3820 INIT_LIST_HEAD(&o->registry.exact_match.macs);
3821 }
3822
3823 return 0;
3824 }
3825
3826 static int bnx2x_mcast_setup_e1(struct bnx2x *bp,
3827 struct bnx2x_mcast_ramrod_params *p,
3828 enum bnx2x_mcast_cmd cmd)
3829 {
3830 struct bnx2x_mcast_obj *o = p->mcast_obj;
3831 struct bnx2x_raw_obj *raw = &o->raw;
3832 struct mac_configuration_cmd *data =
3833 (struct mac_configuration_cmd *)(raw->rdata);
3834 int cnt = 0, i, rc;
3835
3836 /* Reset the ramrod data buffer */
3837 memset(data, 0, sizeof(*data));
3838
3839 /* First set all entries as invalid */
3840 for (i = 0; i < o->max_cmd_len ; i++)
3841 SET_FLAG(data->config_table[i].flags,
3842 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3843 T_ETH_MAC_COMMAND_INVALIDATE);
3844
3845 /* Handle pending commands first */
3846 cnt = bnx2x_mcast_handle_pending_cmds_e1(bp, p);
3847
3848 /* If there are no more pending commands - clear SCHEDULED state */
3849 if (list_empty(&o->pending_cmds_head))
3850 o->clear_sched(o);
3851
3852 /* The below may be true iff there were no pending commands */
3853 if (!cnt)
3854 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, 0);
3855
3856 /* For 57710 every command has o->max_cmd_len length to ensure that
3857 * commands are done one at a time.
3858 */
3859 o->total_pending_num -= o->max_cmd_len;
3860
3861 /* send a ramrod */
3862
3863 WARN_ON(cnt > o->max_cmd_len);
3864
3865 /* Set ramrod header (in particular, a number of entries to update) */
3866 bnx2x_mcast_set_rdata_hdr_e1(bp, p, (u8)cnt);
3867
3868 /* update a registry: we need the registry contents to be always up
3869 * to date in order to be able to execute a RESTORE opcode. Here
3870 * we use the fact that for 57710 we sent one command at a time
3871 * hence we may take the registry update out of the command handling
3872 * and do it in a simpler way here.
3873 */
3874 rc = bnx2x_mcast_refresh_registry_e1(bp, o);
3875 if (rc)
3876 return rc;
3877
3878 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3879 * RAMROD_PENDING status immediately.
3880 */
3881 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3882 raw->clear_pending(raw);
3883 return 0;
3884 } else {
3885 /* No need for an explicit memory barrier here as long as we
3886 * ensure the ordering of writing to the SPQ element
3887 * and updating of the SPQ producer which involves a memory
3888 * read. If the memory read is removed we will have to put a
3889 * full memory barrier there (inside bnx2x_sp_post()).
3890 */
3891
3892 /* Send a ramrod */
3893 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, raw->cid,
3894 U64_HI(raw->rdata_mapping),
3895 U64_LO(raw->rdata_mapping),
3896 ETH_CONNECTION_TYPE);
3897 if (rc)
3898 return rc;
3899
3900 /* Ramrod completion is pending */
3901 return 1;
3902 }
3903 }
3904
3905 static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj *o)
3906 {
3907 return o->registry.exact_match.num_macs_set;
3908 }
3909
3910 static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj *o)
3911 {
3912 return o->registry.aprox_match.num_bins_set;
3913 }
3914
3915 static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj *o,
3916 int n)
3917 {
3918 o->registry.exact_match.num_macs_set = n;
3919 }
3920
3921 static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj *o,
3922 int n)
3923 {
3924 o->registry.aprox_match.num_bins_set = n;
3925 }
3926
3927 int bnx2x_config_mcast(struct bnx2x *bp,
3928 struct bnx2x_mcast_ramrod_params *p,
3929 enum bnx2x_mcast_cmd cmd)
3930 {
3931 struct bnx2x_mcast_obj *o = p->mcast_obj;
3932 struct bnx2x_raw_obj *r = &o->raw;
3933 int rc = 0, old_reg_size;
3934
3935 /* This is needed to recover number of currently configured mcast macs
3936 * in case of failure.
3937 */
3938 old_reg_size = o->get_registry_size(o);
3939
3940 /* Do some calculations and checks */
3941 rc = o->validate(bp, p, cmd);
3942 if (rc)
3943 return rc;
3944
3945 /* Return if there is no work to do */
3946 if ((!p->mcast_list_len) && (!o->check_sched(o)))
3947 return 0;
3948
3949 DP(BNX2X_MSG_SP, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
3950 o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
3951
3952 /* Enqueue the current command to the pending list if we can't complete
3953 * it in the current iteration
3954 */
3955 if (r->check_pending(r) ||
3956 ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
3957 rc = o->enqueue_cmd(bp, p->mcast_obj, p, cmd);
3958 if (rc < 0)
3959 goto error_exit1;
3960
3961 /* As long as the current command is in a command list we
3962 * don't need to handle it separately.
3963 */
3964 p->mcast_list_len = 0;
3965 }
3966
3967 if (!r->check_pending(r)) {
3968
3969 /* Set 'pending' state */
3970 r->set_pending(r);
3971
3972 /* Configure the new classification in the chip */
3973 rc = o->config_mcast(bp, p, cmd);
3974 if (rc < 0)
3975 goto error_exit2;
3976
3977 /* Wait for a ramrod completion if was requested */
3978 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
3979 rc = o->wait_comp(bp, o);
3980 }
3981
3982 return rc;
3983
3984 error_exit2:
3985 r->clear_pending(r);
3986
3987 error_exit1:
3988 o->revert(bp, p, old_reg_size, cmd);
3989
3990 return rc;
3991 }
3992
3993 static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj *o)
3994 {
3995 smp_mb__before_atomic();
3996 clear_bit(o->sched_state, o->raw.pstate);
3997 smp_mb__after_atomic();
3998 }
3999
4000 static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj *o)
4001 {
4002 smp_mb__before_atomic();
4003 set_bit(o->sched_state, o->raw.pstate);
4004 smp_mb__after_atomic();
4005 }
4006
4007 static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj *o)
4008 {
4009 return !!test_bit(o->sched_state, o->raw.pstate);
4010 }
4011
4012 static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj *o)
4013 {
4014 return o->raw.check_pending(&o->raw) || o->check_sched(o);
4015 }
4016
4017 void bnx2x_init_mcast_obj(struct bnx2x *bp,
4018 struct bnx2x_mcast_obj *mcast_obj,
4019 u8 mcast_cl_id, u32 mcast_cid, u8 func_id,
4020 u8 engine_id, void *rdata, dma_addr_t rdata_mapping,
4021 int state, unsigned long *pstate, bnx2x_obj_type type)
4022 {
4023 memset(mcast_obj, 0, sizeof(*mcast_obj));
4024
4025 bnx2x_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
4026 rdata, rdata_mapping, state, pstate, type);
4027
4028 mcast_obj->engine_id = engine_id;
4029
4030 INIT_LIST_HEAD(&mcast_obj->pending_cmds_head);
4031
4032 mcast_obj->sched_state = BNX2X_FILTER_MCAST_SCHED;
4033 mcast_obj->check_sched = bnx2x_mcast_check_sched;
4034 mcast_obj->set_sched = bnx2x_mcast_set_sched;
4035 mcast_obj->clear_sched = bnx2x_mcast_clear_sched;
4036
4037 if (CHIP_IS_E1(bp)) {
4038 mcast_obj->config_mcast = bnx2x_mcast_setup_e1;
4039 mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd;
4040 mcast_obj->hdl_restore =
4041 bnx2x_mcast_handle_restore_cmd_e1;
4042 mcast_obj->check_pending = bnx2x_mcast_check_pending;
4043
4044 if (CHIP_REV_IS_SLOW(bp))
4045 mcast_obj->max_cmd_len = BNX2X_MAX_EMUL_MULTI;
4046 else
4047 mcast_obj->max_cmd_len = BNX2X_MAX_MULTICAST;
4048
4049 mcast_obj->wait_comp = bnx2x_mcast_wait;
4050 mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e1;
4051 mcast_obj->validate = bnx2x_mcast_validate_e1;
4052 mcast_obj->revert = bnx2x_mcast_revert_e1;
4053 mcast_obj->get_registry_size =
4054 bnx2x_mcast_get_registry_size_exact;
4055 mcast_obj->set_registry_size =
4056 bnx2x_mcast_set_registry_size_exact;
4057
4058 /* 57710 is the only chip that uses the exact match for mcast
4059 * at the moment.
4060 */
4061 INIT_LIST_HEAD(&mcast_obj->registry.exact_match.macs);
4062
4063 } else if (CHIP_IS_E1H(bp)) {
4064 mcast_obj->config_mcast = bnx2x_mcast_setup_e1h;
4065 mcast_obj->enqueue_cmd = NULL;
4066 mcast_obj->hdl_restore = NULL;
4067 mcast_obj->check_pending = bnx2x_mcast_check_pending;
4068
4069 /* 57711 doesn't send a ramrod, so it has unlimited credit
4070 * for one command.
4071 */
4072 mcast_obj->max_cmd_len = -1;
4073 mcast_obj->wait_comp = bnx2x_mcast_wait;
4074 mcast_obj->set_one_rule = NULL;
4075 mcast_obj->validate = bnx2x_mcast_validate_e1h;
4076 mcast_obj->revert = bnx2x_mcast_revert_e1h;
4077 mcast_obj->get_registry_size =
4078 bnx2x_mcast_get_registry_size_aprox;
4079 mcast_obj->set_registry_size =
4080 bnx2x_mcast_set_registry_size_aprox;
4081 } else {
4082 mcast_obj->config_mcast = bnx2x_mcast_setup_e2;
4083 mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd;
4084 mcast_obj->hdl_restore =
4085 bnx2x_mcast_handle_restore_cmd_e2;
4086 mcast_obj->check_pending = bnx2x_mcast_check_pending;
4087 /* TODO: There should be a proper HSI define for this number!!!
4088 */
4089 mcast_obj->max_cmd_len = 16;
4090 mcast_obj->wait_comp = bnx2x_mcast_wait;
4091 mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e2;
4092 mcast_obj->validate = bnx2x_mcast_validate_e2;
4093 mcast_obj->revert = bnx2x_mcast_revert_e2;
4094 mcast_obj->get_registry_size =
4095 bnx2x_mcast_get_registry_size_aprox;
4096 mcast_obj->set_registry_size =
4097 bnx2x_mcast_set_registry_size_aprox;
4098 }
4099 }
4100
4101 /*************************** Credit handling **********************************/
4102
4103 /**
4104 * atomic_add_ifless - add if the result is less than a given value.
4105 *
4106 * @v: pointer of type atomic_t
4107 * @a: the amount to add to v...
4108 * @u: ...if (v + a) is less than u.
4109 *
4110 * returns true if (v + a) was less than u, and false otherwise.
4111 *
4112 */
4113 static inline bool __atomic_add_ifless(atomic_t *v, int a, int u)
4114 {
4115 int c, old;
4116
4117 c = atomic_read(v);
4118 for (;;) {
4119 if (unlikely(c + a >= u))
4120 return false;
4121
4122 old = atomic_cmpxchg((v), c, c + a);
4123 if (likely(old == c))
4124 break;
4125 c = old;
4126 }
4127
4128 return true;
4129 }
4130
4131 /**
4132 * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
4133 *
4134 * @v: pointer of type atomic_t
4135 * @a: the amount to dec from v...
4136 * @u: ...if (v - a) is more or equal than u.
4137 *
4138 * returns true if (v - a) was more or equal than u, and false
4139 * otherwise.
4140 */
4141 static inline bool __atomic_dec_ifmoe(atomic_t *v, int a, int u)
4142 {
4143 int c, old;
4144
4145 c = atomic_read(v);
4146 for (;;) {
4147 if (unlikely(c - a < u))
4148 return false;
4149
4150 old = atomic_cmpxchg((v), c, c - a);
4151 if (likely(old == c))
4152 break;
4153 c = old;
4154 }
4155
4156 return true;
4157 }
4158
4159 static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj *o, int cnt)
4160 {
4161 bool rc;
4162
4163 smp_mb();
4164 rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
4165 smp_mb();
4166
4167 return rc;
4168 }
4169
4170 static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj *o, int cnt)
4171 {
4172 bool rc;
4173
4174 smp_mb();
4175
4176 /* Don't let to refill if credit + cnt > pool_sz */
4177 rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
4178
4179 smp_mb();
4180
4181 return rc;
4182 }
4183
4184 static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj *o)
4185 {
4186 int cur_credit;
4187
4188 smp_mb();
4189 cur_credit = atomic_read(&o->credit);
4190
4191 return cur_credit;
4192 }
4193
4194 static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj *o,
4195 int cnt)
4196 {
4197 return true;
4198 }
4199
4200 static bool bnx2x_credit_pool_get_entry(
4201 struct bnx2x_credit_pool_obj *o,
4202 int *offset)
4203 {
4204 int idx, vec, i;
4205
4206 *offset = -1;
4207
4208 /* Find "internal cam-offset" then add to base for this object... */
4209 for (vec = 0; vec < BNX2X_POOL_VEC_SIZE; vec++) {
4210
4211 /* Skip the current vector if there are no free entries in it */
4212 if (!o->pool_mirror[vec])
4213 continue;
4214
4215 /* If we've got here we are going to find a free entry */
4216 for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
4217 i < BIT_VEC64_ELEM_SZ; idx++, i++)
4218
4219 if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
4220 /* Got one!! */
4221 BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
4222 *offset = o->base_pool_offset + idx;
4223 return true;
4224 }
4225 }
4226
4227 return false;
4228 }
4229
4230 static bool bnx2x_credit_pool_put_entry(
4231 struct bnx2x_credit_pool_obj *o,
4232 int offset)
4233 {
4234 if (offset < o->base_pool_offset)
4235 return false;
4236
4237 offset -= o->base_pool_offset;
4238
4239 if (offset >= o->pool_sz)
4240 return false;
4241
4242 /* Return the entry to the pool */
4243 BIT_VEC64_SET_BIT(o->pool_mirror, offset);
4244
4245 return true;
4246 }
4247
4248 static bool bnx2x_credit_pool_put_entry_always_true(
4249 struct bnx2x_credit_pool_obj *o,
4250 int offset)
4251 {
4252 return true;
4253 }
4254
4255 static bool bnx2x_credit_pool_get_entry_always_true(
4256 struct bnx2x_credit_pool_obj *o,
4257 int *offset)
4258 {
4259 *offset = -1;
4260 return true;
4261 }
4262 /**
4263 * bnx2x_init_credit_pool - initialize credit pool internals.
4264 *
4265 * @p:
4266 * @base: Base entry in the CAM to use.
4267 * @credit: pool size.
4268 *
4269 * If base is negative no CAM entries handling will be performed.
4270 * If credit is negative pool operations will always succeed (unlimited pool).
4271 *
4272 */
4273 void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj *p,
4274 int base, int credit)
4275 {
4276 /* Zero the object first */
4277 memset(p, 0, sizeof(*p));
4278
4279 /* Set the table to all 1s */
4280 memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
4281
4282 /* Init a pool as full */
4283 atomic_set(&p->credit, credit);
4284
4285 /* The total poll size */
4286 p->pool_sz = credit;
4287
4288 p->base_pool_offset = base;
4289
4290 /* Commit the change */
4291 smp_mb();
4292
4293 p->check = bnx2x_credit_pool_check;
4294
4295 /* if pool credit is negative - disable the checks */
4296 if (credit >= 0) {
4297 p->put = bnx2x_credit_pool_put;
4298 p->get = bnx2x_credit_pool_get;
4299 p->put_entry = bnx2x_credit_pool_put_entry;
4300 p->get_entry = bnx2x_credit_pool_get_entry;
4301 } else {
4302 p->put = bnx2x_credit_pool_always_true;
4303 p->get = bnx2x_credit_pool_always_true;
4304 p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4305 p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4306 }
4307
4308 /* If base is negative - disable entries handling */
4309 if (base < 0) {
4310 p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4311 p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4312 }
4313 }
4314
4315 void bnx2x_init_mac_credit_pool(struct bnx2x *bp,
4316 struct bnx2x_credit_pool_obj *p, u8 func_id,
4317 u8 func_num)
4318 {
4319 /* TODO: this will be defined in consts as well... */
4320 #define BNX2X_CAM_SIZE_EMUL 5
4321
4322 int cam_sz;
4323
4324 if (CHIP_IS_E1(bp)) {
4325 /* In E1, Multicast is saved in cam... */
4326 if (!CHIP_REV_IS_SLOW(bp))
4327 cam_sz = (MAX_MAC_CREDIT_E1 / 2) - BNX2X_MAX_MULTICAST;
4328 else
4329 cam_sz = BNX2X_CAM_SIZE_EMUL - BNX2X_MAX_EMUL_MULTI;
4330
4331 bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4332
4333 } else if (CHIP_IS_E1H(bp)) {
4334 /* CAM credit is equaly divided between all active functions
4335 * on the PORT!.
4336 */
4337 if ((func_num > 0)) {
4338 if (!CHIP_REV_IS_SLOW(bp))
4339 cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
4340 else
4341 cam_sz = BNX2X_CAM_SIZE_EMUL;
4342 bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4343 } else {
4344 /* this should never happen! Block MAC operations. */
4345 bnx2x_init_credit_pool(p, 0, 0);
4346 }
4347
4348 } else {
4349
4350 /* CAM credit is equaly divided between all active functions
4351 * on the PATH.
4352 */
4353 if (func_num > 0) {
4354 if (!CHIP_REV_IS_SLOW(bp))
4355 cam_sz = PF_MAC_CREDIT_E2(bp, func_num);
4356 else
4357 cam_sz = BNX2X_CAM_SIZE_EMUL;
4358
4359 /* No need for CAM entries handling for 57712 and
4360 * newer.
4361 */
4362 bnx2x_init_credit_pool(p, -1, cam_sz);
4363 } else {
4364 /* this should never happen! Block MAC operations. */
4365 bnx2x_init_credit_pool(p, 0, 0);
4366 }
4367 }
4368 }
4369
4370 void bnx2x_init_vlan_credit_pool(struct bnx2x *bp,
4371 struct bnx2x_credit_pool_obj *p,
4372 u8 func_id,
4373 u8 func_num)
4374 {
4375 if (CHIP_IS_E1x(bp)) {
4376 /* There is no VLAN credit in HW on 57710 and 57711 only
4377 * MAC / MAC-VLAN can be set
4378 */
4379 bnx2x_init_credit_pool(p, 0, -1);
4380 } else {
4381 /* CAM credit is equally divided between all active functions
4382 * on the PATH.
4383 */
4384 if (func_num > 0) {
4385 int credit = PF_VLAN_CREDIT_E2(bp, func_num);
4386
4387 bnx2x_init_credit_pool(p, -1/*unused for E2*/, credit);
4388 } else
4389 /* this should never happen! Block VLAN operations. */
4390 bnx2x_init_credit_pool(p, 0, 0);
4391 }
4392 }
4393
4394 /****************** RSS Configuration ******************/
4395 /**
4396 * bnx2x_debug_print_ind_table - prints the indirection table configuration.
4397 *
4398 * @bp: driver handle
4399 * @p: pointer to rss configuration
4400 *
4401 * Prints it when NETIF_MSG_IFUP debug level is configured.
4402 */
4403 static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp,
4404 struct bnx2x_config_rss_params *p)
4405 {
4406 int i;
4407
4408 DP(BNX2X_MSG_SP, "Setting indirection table to:\n");
4409 DP(BNX2X_MSG_SP, "0x0000: ");
4410 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
4411 DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]);
4412
4413 /* Print 4 bytes in a line */
4414 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
4415 (((i + 1) & 0x3) == 0)) {
4416 DP_CONT(BNX2X_MSG_SP, "\n");
4417 DP(BNX2X_MSG_SP, "0x%04x: ", i + 1);
4418 }
4419 }
4420
4421 DP_CONT(BNX2X_MSG_SP, "\n");
4422 }
4423
4424 /**
4425 * bnx2x_setup_rss - configure RSS
4426 *
4427 * @bp: device handle
4428 * @p: rss configuration
4429 *
4430 * sends on UPDATE ramrod for that matter.
4431 */
4432 static int bnx2x_setup_rss(struct bnx2x *bp,
4433 struct bnx2x_config_rss_params *p)
4434 {
4435 struct bnx2x_rss_config_obj *o = p->rss_obj;
4436 struct bnx2x_raw_obj *r = &o->raw;
4437 struct eth_rss_update_ramrod_data *data =
4438 (struct eth_rss_update_ramrod_data *)(r->rdata);
4439 u16 caps = 0;
4440 u8 rss_mode = 0;
4441 int rc;
4442
4443 memset(data, 0, sizeof(*data));
4444
4445 DP(BNX2X_MSG_SP, "Configuring RSS\n");
4446
4447 /* Set an echo field */
4448 data->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
4449 (r->state << BNX2X_SWCID_SHIFT));
4450
4451 /* RSS mode */
4452 if (test_bit(BNX2X_RSS_MODE_DISABLED, &p->rss_flags))
4453 rss_mode = ETH_RSS_MODE_DISABLED;
4454 else if (test_bit(BNX2X_RSS_MODE_REGULAR, &p->rss_flags))
4455 rss_mode = ETH_RSS_MODE_REGULAR;
4456
4457 data->rss_mode = rss_mode;
4458
4459 DP(BNX2X_MSG_SP, "rss_mode=%d\n", rss_mode);
4460
4461 /* RSS capabilities */
4462 if (test_bit(BNX2X_RSS_IPV4, &p->rss_flags))
4463 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4464
4465 if (test_bit(BNX2X_RSS_IPV4_TCP, &p->rss_flags))
4466 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4467
4468 if (test_bit(BNX2X_RSS_IPV4_UDP, &p->rss_flags))
4469 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4470
4471 if (test_bit(BNX2X_RSS_IPV6, &p->rss_flags))
4472 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4473
4474 if (test_bit(BNX2X_RSS_IPV6_TCP, &p->rss_flags))
4475 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4476
4477 if (test_bit(BNX2X_RSS_IPV6_UDP, &p->rss_flags))
4478 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4479
4480 if (test_bit(BNX2X_RSS_IPV4_VXLAN, &p->rss_flags))
4481 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY;
4482
4483 if (test_bit(BNX2X_RSS_IPV6_VXLAN, &p->rss_flags))
4484 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY;
4485
4486 if (test_bit(BNX2X_RSS_TUNN_INNER_HDRS, &p->rss_flags))
4487 caps |= ETH_RSS_UPDATE_RAMROD_DATA_TUNN_INNER_HDRS_CAPABILITY;
4488
4489 /* RSS keys */
4490 if (test_bit(BNX2X_RSS_SET_SRCH, &p->rss_flags)) {
4491 u8 *dst = (u8 *)(data->rss_key) + sizeof(data->rss_key);
4492 const u8 *src = (const u8 *)p->rss_key;
4493 int i;
4494
4495 /* Apparently, bnx2x reads this array in reverse order
4496 * We need to byte swap rss_key to comply with Toeplitz specs.
4497 */
4498 for (i = 0; i < sizeof(data->rss_key); i++)
4499 *--dst = *src++;
4500
4501 caps |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4502 }
4503
4504 data->capabilities = cpu_to_le16(caps);
4505
4506 /* Hashing mask */
4507 data->rss_result_mask = p->rss_result_mask;
4508
4509 /* RSS engine ID */
4510 data->rss_engine_id = o->engine_id;
4511
4512 DP(BNX2X_MSG_SP, "rss_engine_id=%d\n", data->rss_engine_id);
4513
4514 /* Indirection table */
4515 memcpy(data->indirection_table, p->ind_table,
4516 T_ETH_INDIRECTION_TABLE_SIZE);
4517
4518 /* Remember the last configuration */
4519 memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4520
4521 /* Print the indirection table */
4522 if (netif_msg_ifup(bp))
4523 bnx2x_debug_print_ind_table(bp, p);
4524
4525 /* No need for an explicit memory barrier here as long as we
4526 * ensure the ordering of writing to the SPQ element
4527 * and updating of the SPQ producer which involves a memory
4528 * read. If the memory read is removed we will have to put a
4529 * full memory barrier there (inside bnx2x_sp_post()).
4530 */
4531
4532 /* Send a ramrod */
4533 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_RSS_UPDATE, r->cid,
4534 U64_HI(r->rdata_mapping),
4535 U64_LO(r->rdata_mapping),
4536 ETH_CONNECTION_TYPE);
4537
4538 if (rc < 0)
4539 return rc;
4540
4541 return 1;
4542 }
4543
4544 void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj *rss_obj,
4545 u8 *ind_table)
4546 {
4547 memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4548 }
4549
4550 int bnx2x_config_rss(struct bnx2x *bp,
4551 struct bnx2x_config_rss_params *p)
4552 {
4553 int rc;
4554 struct bnx2x_rss_config_obj *o = p->rss_obj;
4555 struct bnx2x_raw_obj *r = &o->raw;
4556
4557 /* Do nothing if only driver cleanup was requested */
4558 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4559 DP(BNX2X_MSG_SP, "Not configuring RSS ramrod_flags=%lx\n",
4560 p->ramrod_flags);
4561 return 0;
4562 }
4563
4564 r->set_pending(r);
4565
4566 rc = o->config_rss(bp, p);
4567 if (rc < 0) {
4568 r->clear_pending(r);
4569 return rc;
4570 }
4571
4572 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4573 rc = r->wait_comp(bp, r);
4574
4575 return rc;
4576 }
4577
4578 void bnx2x_init_rss_config_obj(struct bnx2x *bp,
4579 struct bnx2x_rss_config_obj *rss_obj,
4580 u8 cl_id, u32 cid, u8 func_id, u8 engine_id,
4581 void *rdata, dma_addr_t rdata_mapping,
4582 int state, unsigned long *pstate,
4583 bnx2x_obj_type type)
4584 {
4585 bnx2x_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4586 rdata_mapping, state, pstate, type);
4587
4588 rss_obj->engine_id = engine_id;
4589 rss_obj->config_rss = bnx2x_setup_rss;
4590 }
4591
4592 /********************** Queue state object ***********************************/
4593
4594 /**
4595 * bnx2x_queue_state_change - perform Queue state change transition
4596 *
4597 * @bp: device handle
4598 * @params: parameters to perform the transition
4599 *
4600 * returns 0 in case of successfully completed transition, negative error
4601 * code in case of failure, positive (EBUSY) value if there is a completion
4602 * to that is still pending (possible only if RAMROD_COMP_WAIT is
4603 * not set in params->ramrod_flags for asynchronous commands).
4604 *
4605 */
4606 int bnx2x_queue_state_change(struct bnx2x *bp,
4607 struct bnx2x_queue_state_params *params)
4608 {
4609 struct bnx2x_queue_sp_obj *o = params->q_obj;
4610 int rc, pending_bit;
4611 unsigned long *pending = &o->pending;
4612
4613 /* Check that the requested transition is legal */
4614 rc = o->check_transition(bp, o, params);
4615 if (rc) {
4616 BNX2X_ERR("check transition returned an error. rc %d\n", rc);
4617 return -EINVAL;
4618 }
4619
4620 /* Set "pending" bit */
4621 DP(BNX2X_MSG_SP, "pending bit was=%lx\n", o->pending);
4622 pending_bit = o->set_pending(o, params);
4623 DP(BNX2X_MSG_SP, "pending bit now=%lx\n", o->pending);
4624
4625 /* Don't send a command if only driver cleanup was requested */
4626 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
4627 o->complete_cmd(bp, o, pending_bit);
4628 else {
4629 /* Send a ramrod */
4630 rc = o->send_cmd(bp, params);
4631 if (rc) {
4632 o->next_state = BNX2X_Q_STATE_MAX;
4633 clear_bit(pending_bit, pending);
4634 smp_mb__after_atomic();
4635 return rc;
4636 }
4637
4638 if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
4639 rc = o->wait_comp(bp, o, pending_bit);
4640 if (rc)
4641 return rc;
4642
4643 return 0;
4644 }
4645 }
4646
4647 return !!test_bit(pending_bit, pending);
4648 }
4649
4650 static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj *obj,
4651 struct bnx2x_queue_state_params *params)
4652 {
4653 enum bnx2x_queue_cmd cmd = params->cmd, bit;
4654
4655 /* ACTIVATE and DEACTIVATE commands are implemented on top of
4656 * UPDATE command.
4657 */
4658 if ((cmd == BNX2X_Q_CMD_ACTIVATE) ||
4659 (cmd == BNX2X_Q_CMD_DEACTIVATE))
4660 bit = BNX2X_Q_CMD_UPDATE;
4661 else
4662 bit = cmd;
4663
4664 set_bit(bit, &obj->pending);
4665 return bit;
4666 }
4667
4668 static int bnx2x_queue_wait_comp(struct bnx2x *bp,
4669 struct bnx2x_queue_sp_obj *o,
4670 enum bnx2x_queue_cmd cmd)
4671 {
4672 return bnx2x_state_wait(bp, cmd, &o->pending);
4673 }
4674
4675 /**
4676 * bnx2x_queue_comp_cmd - complete the state change command.
4677 *
4678 * @bp: device handle
4679 * @o:
4680 * @cmd:
4681 *
4682 * Checks that the arrived completion is expected.
4683 */
4684 static int bnx2x_queue_comp_cmd(struct bnx2x *bp,
4685 struct bnx2x_queue_sp_obj *o,
4686 enum bnx2x_queue_cmd cmd)
4687 {
4688 unsigned long cur_pending = o->pending;
4689
4690 if (!test_and_clear_bit(cmd, &cur_pending)) {
4691 BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4692 cmd, o->cids[BNX2X_PRIMARY_CID_INDEX],
4693 o->state, cur_pending, o->next_state);
4694 return -EINVAL;
4695 }
4696
4697 if (o->next_tx_only >= o->max_cos)
4698 /* >= because tx only must always be smaller than cos since the
4699 * primary connection supports COS 0
4700 */
4701 BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d",
4702 o->next_tx_only, o->max_cos);
4703
4704 DP(BNX2X_MSG_SP,
4705 "Completing command %d for queue %d, setting state to %d\n",
4706 cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_state);
4707
4708 if (o->next_tx_only) /* print num tx-only if any exist */
4709 DP(BNX2X_MSG_SP, "primary cid %d: num tx-only cons %d\n",
4710 o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_tx_only);
4711
4712 o->state = o->next_state;
4713 o->num_tx_only = o->next_tx_only;
4714 o->next_state = BNX2X_Q_STATE_MAX;
4715
4716 /* It's important that o->state and o->next_state are
4717 * updated before o->pending.
4718 */
4719 wmb();
4720
4721 clear_bit(cmd, &o->pending);
4722 smp_mb__after_atomic();
4723
4724 return 0;
4725 }
4726
4727 static void bnx2x_q_fill_setup_data_e2(struct bnx2x *bp,
4728 struct bnx2x_queue_state_params *cmd_params,
4729 struct client_init_ramrod_data *data)
4730 {
4731 struct bnx2x_queue_setup_params *params = &cmd_params->params.setup;
4732
4733 /* Rx data */
4734
4735 /* IPv6 TPA supported for E2 and above only */
4736 data->rx.tpa_en |= test_bit(BNX2X_Q_FLG_TPA_IPV6, &params->flags) *
4737 CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4738 }
4739
4740 static void bnx2x_q_fill_init_general_data(struct bnx2x *bp,
4741 struct bnx2x_queue_sp_obj *o,
4742 struct bnx2x_general_setup_params *params,
4743 struct client_init_general_data *gen_data,
4744 unsigned long *flags)
4745 {
4746 gen_data->client_id = o->cl_id;
4747
4748 if (test_bit(BNX2X_Q_FLG_STATS, flags)) {
4749 gen_data->statistics_counter_id =
4750 params->stat_id;
4751 gen_data->statistics_en_flg = 1;
4752 gen_data->statistics_zero_flg =
4753 test_bit(BNX2X_Q_FLG_ZERO_STATS, flags);
4754 } else
4755 gen_data->statistics_counter_id =
4756 DISABLE_STATISTIC_COUNTER_ID_VALUE;
4757
4758 gen_data->is_fcoe_flg = test_bit(BNX2X_Q_FLG_FCOE, flags);
4759 gen_data->activate_flg = test_bit(BNX2X_Q_FLG_ACTIVE, flags);
4760 gen_data->sp_client_id = params->spcl_id;
4761 gen_data->mtu = cpu_to_le16(params->mtu);
4762 gen_data->func_id = o->func_id;
4763
4764 gen_data->cos = params->cos;
4765
4766 gen_data->traffic_type =
4767 test_bit(BNX2X_Q_FLG_FCOE, flags) ?
4768 LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4769
4770 gen_data->fp_hsi_ver = params->fp_hsi;
4771
4772 DP(BNX2X_MSG_SP, "flags: active %d, cos %d, stats en %d\n",
4773 gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4774 }
4775
4776 static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj *o,
4777 struct bnx2x_txq_setup_params *params,
4778 struct client_init_tx_data *tx_data,
4779 unsigned long *flags)
4780 {
4781 tx_data->enforce_security_flg =
4782 test_bit(BNX2X_Q_FLG_TX_SEC, flags);
4783 tx_data->default_vlan =
4784 cpu_to_le16(params->default_vlan);
4785 tx_data->default_vlan_flg =
4786 test_bit(BNX2X_Q_FLG_DEF_VLAN, flags);
4787 tx_data->tx_switching_flg =
4788 test_bit(BNX2X_Q_FLG_TX_SWITCH, flags);
4789 tx_data->anti_spoofing_flg =
4790 test_bit(BNX2X_Q_FLG_ANTI_SPOOF, flags);
4791 tx_data->force_default_pri_flg =
4792 test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, flags);
4793 tx_data->refuse_outband_vlan_flg =
4794 test_bit(BNX2X_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
4795 tx_data->tunnel_lso_inc_ip_id =
4796 test_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4797 tx_data->tunnel_non_lso_pcsum_location =
4798 test_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
4799 CSUM_ON_BD;
4800
4801 tx_data->tx_status_block_id = params->fw_sb_id;
4802 tx_data->tx_sb_index_number = params->sb_cq_index;
4803 tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4804
4805 tx_data->tx_bd_page_base.lo =
4806 cpu_to_le32(U64_LO(params->dscr_map));
4807 tx_data->tx_bd_page_base.hi =
4808 cpu_to_le32(U64_HI(params->dscr_map));
4809
4810 /* Don't configure any Tx switching mode during queue SETUP */
4811 tx_data->state = 0;
4812 }
4813
4814 static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj *o,
4815 struct rxq_pause_params *params,
4816 struct client_init_rx_data *rx_data)
4817 {
4818 /* flow control data */
4819 rx_data->cqe_pause_thr_low = cpu_to_le16(params->rcq_th_lo);
4820 rx_data->cqe_pause_thr_high = cpu_to_le16(params->rcq_th_hi);
4821 rx_data->bd_pause_thr_low = cpu_to_le16(params->bd_th_lo);
4822 rx_data->bd_pause_thr_high = cpu_to_le16(params->bd_th_hi);
4823 rx_data->sge_pause_thr_low = cpu_to_le16(params->sge_th_lo);
4824 rx_data->sge_pause_thr_high = cpu_to_le16(params->sge_th_hi);
4825 rx_data->rx_cos_mask = cpu_to_le16(params->pri_map);
4826 }
4827
4828 static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj *o,
4829 struct bnx2x_rxq_setup_params *params,
4830 struct client_init_rx_data *rx_data,
4831 unsigned long *flags)
4832 {
4833 rx_data->tpa_en = test_bit(BNX2X_Q_FLG_TPA, flags) *
4834 CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4835 rx_data->tpa_en |= test_bit(BNX2X_Q_FLG_TPA_GRO, flags) *
4836 CLIENT_INIT_RX_DATA_TPA_MODE;
4837 rx_data->vmqueue_mode_en_flg = 0;
4838
4839 rx_data->cache_line_alignment_log_size =
4840 params->cache_line_log;
4841 rx_data->enable_dynamic_hc =
4842 test_bit(BNX2X_Q_FLG_DHC, flags);
4843 rx_data->max_sges_for_packet = params->max_sges_pkt;
4844 rx_data->client_qzone_id = params->cl_qzone_id;
4845 rx_data->max_agg_size = cpu_to_le16(params->tpa_agg_sz);
4846
4847 /* Always start in DROP_ALL mode */
4848 rx_data->state = cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4849 CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4850
4851 /* We don't set drop flags */
4852 rx_data->drop_ip_cs_err_flg = 0;
4853 rx_data->drop_tcp_cs_err_flg = 0;
4854 rx_data->drop_ttl0_flg = 0;
4855 rx_data->drop_udp_cs_err_flg = 0;
4856 rx_data->inner_vlan_removal_enable_flg =
4857 test_bit(BNX2X_Q_FLG_VLAN, flags);
4858 rx_data->outer_vlan_removal_enable_flg =
4859 test_bit(BNX2X_Q_FLG_OV, flags);
4860 rx_data->status_block_id = params->fw_sb_id;
4861 rx_data->rx_sb_index_number = params->sb_cq_index;
4862 rx_data->max_tpa_queues = params->max_tpa_queues;
4863 rx_data->max_bytes_on_bd = cpu_to_le16(params->buf_sz);
4864 rx_data->sge_buff_size = cpu_to_le16(params->sge_buf_sz);
4865 rx_data->bd_page_base.lo =
4866 cpu_to_le32(U64_LO(params->dscr_map));
4867 rx_data->bd_page_base.hi =
4868 cpu_to_le32(U64_HI(params->dscr_map));
4869 rx_data->sge_page_base.lo =
4870 cpu_to_le32(U64_LO(params->sge_map));
4871 rx_data->sge_page_base.hi =
4872 cpu_to_le32(U64_HI(params->sge_map));
4873 rx_data->cqe_page_base.lo =
4874 cpu_to_le32(U64_LO(params->rcq_map));
4875 rx_data->cqe_page_base.hi =
4876 cpu_to_le32(U64_HI(params->rcq_map));
4877 rx_data->is_leading_rss = test_bit(BNX2X_Q_FLG_LEADING_RSS, flags);
4878
4879 if (test_bit(BNX2X_Q_FLG_MCAST, flags)) {
4880 rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4881 rx_data->is_approx_mcast = 1;
4882 }
4883
4884 rx_data->rss_engine_id = params->rss_engine_id;
4885
4886 /* silent vlan removal */
4887 rx_data->silent_vlan_removal_flg =
4888 test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, flags);
4889 rx_data->silent_vlan_value =
4890 cpu_to_le16(params->silent_removal_value);
4891 rx_data->silent_vlan_mask =
4892 cpu_to_le16(params->silent_removal_mask);
4893 }
4894
4895 /* initialize the general, tx and rx parts of a queue object */
4896 static void bnx2x_q_fill_setup_data_cmn(struct bnx2x *bp,
4897 struct bnx2x_queue_state_params *cmd_params,
4898 struct client_init_ramrod_data *data)
4899 {
4900 bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4901 &cmd_params->params.setup.gen_params,
4902 &data->general,
4903 &cmd_params->params.setup.flags);
4904
4905 bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4906 &cmd_params->params.setup.txq_params,
4907 &data->tx,
4908 &cmd_params->params.setup.flags);
4909
4910 bnx2x_q_fill_init_rx_data(cmd_params->q_obj,
4911 &cmd_params->params.setup.rxq_params,
4912 &data->rx,
4913 &cmd_params->params.setup.flags);
4914
4915 bnx2x_q_fill_init_pause_data(cmd_params->q_obj,
4916 &cmd_params->params.setup.pause_params,
4917 &data->rx);
4918 }
4919
4920 /* initialize the general and tx parts of a tx-only queue object */
4921 static void bnx2x_q_fill_setup_tx_only(struct bnx2x *bp,
4922 struct bnx2x_queue_state_params *cmd_params,
4923 struct tx_queue_init_ramrod_data *data)
4924 {
4925 bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4926 &cmd_params->params.tx_only.gen_params,
4927 &data->general,
4928 &cmd_params->params.tx_only.flags);
4929
4930 bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4931 &cmd_params->params.tx_only.txq_params,
4932 &data->tx,
4933 &cmd_params->params.tx_only.flags);
4934
4935 DP(BNX2X_MSG_SP, "cid %d, tx bd page lo %x hi %x",
4936 cmd_params->q_obj->cids[0],
4937 data->tx.tx_bd_page_base.lo,
4938 data->tx.tx_bd_page_base.hi);
4939 }
4940
4941 /**
4942 * bnx2x_q_init - init HW/FW queue
4943 *
4944 * @bp: device handle
4945 * @params:
4946 *
4947 * HW/FW initial Queue configuration:
4948 * - HC: Rx and Tx
4949 * - CDU context validation
4950 *
4951 */
4952 static inline int bnx2x_q_init(struct bnx2x *bp,
4953 struct bnx2x_queue_state_params *params)
4954 {
4955 struct bnx2x_queue_sp_obj *o = params->q_obj;
4956 struct bnx2x_queue_init_params *init = &params->params.init;
4957 u16 hc_usec;
4958 u8 cos;
4959
4960 /* Tx HC configuration */
4961 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &o->type) &&
4962 test_bit(BNX2X_Q_FLG_HC, &init->tx.flags)) {
4963 hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
4964
4965 bnx2x_update_coalesce_sb_index(bp, init->tx.fw_sb_id,
4966 init->tx.sb_cq_index,
4967 !test_bit(BNX2X_Q_FLG_HC_EN, &init->tx.flags),
4968 hc_usec);
4969 }
4970
4971 /* Rx HC configuration */
4972 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &o->type) &&
4973 test_bit(BNX2X_Q_FLG_HC, &init->rx.flags)) {
4974 hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
4975
4976 bnx2x_update_coalesce_sb_index(bp, init->rx.fw_sb_id,
4977 init->rx.sb_cq_index,
4978 !test_bit(BNX2X_Q_FLG_HC_EN, &init->rx.flags),
4979 hc_usec);
4980 }
4981
4982 /* Set CDU context validation values */
4983 for (cos = 0; cos < o->max_cos; cos++) {
4984 DP(BNX2X_MSG_SP, "setting context validation. cid %d, cos %d\n",
4985 o->cids[cos], cos);
4986 DP(BNX2X_MSG_SP, "context pointer %p\n", init->cxts[cos]);
4987 bnx2x_set_ctx_validation(bp, init->cxts[cos], o->cids[cos]);
4988 }
4989
4990 /* As no ramrod is sent, complete the command immediately */
4991 o->complete_cmd(bp, o, BNX2X_Q_CMD_INIT);
4992
4993 mmiowb();
4994 smp_mb();
4995
4996 return 0;
4997 }
4998
4999 static inline int bnx2x_q_send_setup_e1x(struct bnx2x *bp,
5000 struct bnx2x_queue_state_params *params)
5001 {
5002 struct bnx2x_queue_sp_obj *o = params->q_obj;
5003 struct client_init_ramrod_data *rdata =
5004 (struct client_init_ramrod_data *)o->rdata;
5005 dma_addr_t data_mapping = o->rdata_mapping;
5006 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5007
5008 /* Clear the ramrod data */
5009 memset(rdata, 0, sizeof(*rdata));
5010
5011 /* Fill the ramrod data */
5012 bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
5013
5014 /* No need for an explicit memory barrier here as long as we
5015 * ensure the ordering of writing to the SPQ element
5016 * and updating of the SPQ producer which involves a memory
5017 * read. If the memory read is removed we will have to put a
5018 * full memory barrier there (inside bnx2x_sp_post()).
5019 */
5020 return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
5021 U64_HI(data_mapping),
5022 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5023 }
5024
5025 static inline int bnx2x_q_send_setup_e2(struct bnx2x *bp,
5026 struct bnx2x_queue_state_params *params)
5027 {
5028 struct bnx2x_queue_sp_obj *o = params->q_obj;
5029 struct client_init_ramrod_data *rdata =
5030 (struct client_init_ramrod_data *)o->rdata;
5031 dma_addr_t data_mapping = o->rdata_mapping;
5032 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5033
5034 /* Clear the ramrod data */
5035 memset(rdata, 0, sizeof(*rdata));
5036
5037 /* Fill the ramrod data */
5038 bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
5039 bnx2x_q_fill_setup_data_e2(bp, params, rdata);
5040
5041 /* No need for an explicit memory barrier here as long as we
5042 * ensure the ordering of writing to the SPQ element
5043 * and updating of the SPQ producer which involves a memory
5044 * read. If the memory read is removed we will have to put a
5045 * full memory barrier there (inside bnx2x_sp_post()).
5046 */
5047 return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
5048 U64_HI(data_mapping),
5049 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5050 }
5051
5052 static inline int bnx2x_q_send_setup_tx_only(struct bnx2x *bp,
5053 struct bnx2x_queue_state_params *params)
5054 {
5055 struct bnx2x_queue_sp_obj *o = params->q_obj;
5056 struct tx_queue_init_ramrod_data *rdata =
5057 (struct tx_queue_init_ramrod_data *)o->rdata;
5058 dma_addr_t data_mapping = o->rdata_mapping;
5059 int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
5060 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
5061 &params->params.tx_only;
5062 u8 cid_index = tx_only_params->cid_index;
5063
5064 if (cid_index >= o->max_cos) {
5065 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5066 o->cl_id, cid_index);
5067 return -EINVAL;
5068 }
5069
5070 DP(BNX2X_MSG_SP, "parameters received: cos: %d sp-id: %d\n",
5071 tx_only_params->gen_params.cos,
5072 tx_only_params->gen_params.spcl_id);
5073
5074 /* Clear the ramrod data */
5075 memset(rdata, 0, sizeof(*rdata));
5076
5077 /* Fill the ramrod data */
5078 bnx2x_q_fill_setup_tx_only(bp, params, rdata);
5079
5080 DP(BNX2X_MSG_SP, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
5081 o->cids[cid_index], rdata->general.client_id,
5082 rdata->general.sp_client_id, rdata->general.cos);
5083
5084 /* No need for an explicit memory barrier here as long as we
5085 * ensure the ordering of writing to the SPQ element
5086 * and updating of the SPQ producer which involves a memory
5087 * read. If the memory read is removed we will have to put a
5088 * full memory barrier there (inside bnx2x_sp_post()).
5089 */
5090 return bnx2x_sp_post(bp, ramrod, o->cids[cid_index],
5091 U64_HI(data_mapping),
5092 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5093 }
5094
5095 static void bnx2x_q_fill_update_data(struct bnx2x *bp,
5096 struct bnx2x_queue_sp_obj *obj,
5097 struct bnx2x_queue_update_params *params,
5098 struct client_update_ramrod_data *data)
5099 {
5100 /* Client ID of the client to update */
5101 data->client_id = obj->cl_id;
5102
5103 /* Function ID of the client to update */
5104 data->func_id = obj->func_id;
5105
5106 /* Default VLAN value */
5107 data->default_vlan = cpu_to_le16(params->def_vlan);
5108
5109 /* Inner VLAN stripping */
5110 data->inner_vlan_removal_enable_flg =
5111 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM, &params->update_flags);
5112 data->inner_vlan_removal_change_flg =
5113 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG,
5114 &params->update_flags);
5115
5116 /* Outer VLAN stripping */
5117 data->outer_vlan_removal_enable_flg =
5118 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM, &params->update_flags);
5119 data->outer_vlan_removal_change_flg =
5120 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG,
5121 &params->update_flags);
5122
5123 /* Drop packets that have source MAC that doesn't belong to this
5124 * Queue.
5125 */
5126 data->anti_spoofing_enable_flg =
5127 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, &params->update_flags);
5128 data->anti_spoofing_change_flg =
5129 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, &params->update_flags);
5130
5131 /* Activate/Deactivate */
5132 data->activate_flg =
5133 test_bit(BNX2X_Q_UPDATE_ACTIVATE, &params->update_flags);
5134 data->activate_change_flg =
5135 test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &params->update_flags);
5136
5137 /* Enable default VLAN */
5138 data->default_vlan_enable_flg =
5139 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &params->update_flags);
5140 data->default_vlan_change_flg =
5141 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
5142 &params->update_flags);
5143
5144 /* silent vlan removal */
5145 data->silent_vlan_change_flg =
5146 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5147 &params->update_flags);
5148 data->silent_vlan_removal_flg =
5149 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &params->update_flags);
5150 data->silent_vlan_value = cpu_to_le16(params->silent_removal_value);
5151 data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask);
5152
5153 /* tx switching */
5154 data->tx_switching_flg =
5155 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING, &params->update_flags);
5156 data->tx_switching_change_flg =
5157 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
5158 &params->update_flags);
5159
5160 /* PTP */
5161 data->handle_ptp_pkts_flg =
5162 test_bit(BNX2X_Q_UPDATE_PTP_PKTS, &params->update_flags);
5163 data->handle_ptp_pkts_change_flg =
5164 test_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, &params->update_flags);
5165 }
5166
5167 static inline int bnx2x_q_send_update(struct bnx2x *bp,
5168 struct bnx2x_queue_state_params *params)
5169 {
5170 struct bnx2x_queue_sp_obj *o = params->q_obj;
5171 struct client_update_ramrod_data *rdata =
5172 (struct client_update_ramrod_data *)o->rdata;
5173 dma_addr_t data_mapping = o->rdata_mapping;
5174 struct bnx2x_queue_update_params *update_params =
5175 &params->params.update;
5176 u8 cid_index = update_params->cid_index;
5177
5178 if (cid_index >= o->max_cos) {
5179 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5180 o->cl_id, cid_index);
5181 return -EINVAL;
5182 }
5183
5184 /* Clear the ramrod data */
5185 memset(rdata, 0, sizeof(*rdata));
5186
5187 /* Fill the ramrod data */
5188 bnx2x_q_fill_update_data(bp, o, update_params, rdata);
5189
5190 /* No need for an explicit memory barrier here as long as we
5191 * ensure the ordering of writing to the SPQ element
5192 * and updating of the SPQ producer which involves a memory
5193 * read. If the memory read is removed we will have to put a
5194 * full memory barrier there (inside bnx2x_sp_post()).
5195 */
5196 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
5197 o->cids[cid_index], U64_HI(data_mapping),
5198 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5199 }
5200
5201 /**
5202 * bnx2x_q_send_deactivate - send DEACTIVATE command
5203 *
5204 * @bp: device handle
5205 * @params:
5206 *
5207 * implemented using the UPDATE command.
5208 */
5209 static inline int bnx2x_q_send_deactivate(struct bnx2x *bp,
5210 struct bnx2x_queue_state_params *params)
5211 {
5212 struct bnx2x_queue_update_params *update = &params->params.update;
5213
5214 memset(update, 0, sizeof(*update));
5215
5216 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5217
5218 return bnx2x_q_send_update(bp, params);
5219 }
5220
5221 /**
5222 * bnx2x_q_send_activate - send ACTIVATE command
5223 *
5224 * @bp: device handle
5225 * @params:
5226 *
5227 * implemented using the UPDATE command.
5228 */
5229 static inline int bnx2x_q_send_activate(struct bnx2x *bp,
5230 struct bnx2x_queue_state_params *params)
5231 {
5232 struct bnx2x_queue_update_params *update = &params->params.update;
5233
5234 memset(update, 0, sizeof(*update));
5235
5236 __set_bit(BNX2X_Q_UPDATE_ACTIVATE, &update->update_flags);
5237 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5238
5239 return bnx2x_q_send_update(bp, params);
5240 }
5241
5242 static void bnx2x_q_fill_update_tpa_data(struct bnx2x *bp,
5243 struct bnx2x_queue_sp_obj *obj,
5244 struct bnx2x_queue_update_tpa_params *params,
5245 struct tpa_update_ramrod_data *data)
5246 {
5247 data->client_id = obj->cl_id;
5248 data->complete_on_both_clients = params->complete_on_both_clients;
5249 data->dont_verify_rings_pause_thr_flg =
5250 params->dont_verify_thr;
5251 data->max_agg_size = cpu_to_le16(params->max_agg_sz);
5252 data->max_sges_for_packet = params->max_sges_pkt;
5253 data->max_tpa_queues = params->max_tpa_queues;
5254 data->sge_buff_size = cpu_to_le16(params->sge_buff_sz);
5255 data->sge_page_base_hi = cpu_to_le32(U64_HI(params->sge_map));
5256 data->sge_page_base_lo = cpu_to_le32(U64_LO(params->sge_map));
5257 data->sge_pause_thr_high = cpu_to_le16(params->sge_pause_thr_high);
5258 data->sge_pause_thr_low = cpu_to_le16(params->sge_pause_thr_low);
5259 data->tpa_mode = params->tpa_mode;
5260 data->update_ipv4 = params->update_ipv4;
5261 data->update_ipv6 = params->update_ipv6;
5262 }
5263
5264 static inline int bnx2x_q_send_update_tpa(struct bnx2x *bp,
5265 struct bnx2x_queue_state_params *params)
5266 {
5267 struct bnx2x_queue_sp_obj *o = params->q_obj;
5268 struct tpa_update_ramrod_data *rdata =
5269 (struct tpa_update_ramrod_data *)o->rdata;
5270 dma_addr_t data_mapping = o->rdata_mapping;
5271 struct bnx2x_queue_update_tpa_params *update_tpa_params =
5272 &params->params.update_tpa;
5273 u16 type;
5274
5275 /* Clear the ramrod data */
5276 memset(rdata, 0, sizeof(*rdata));
5277
5278 /* Fill the ramrod data */
5279 bnx2x_q_fill_update_tpa_data(bp, o, update_tpa_params, rdata);
5280
5281 /* Add the function id inside the type, so that sp post function
5282 * doesn't automatically add the PF func-id, this is required
5283 * for operations done by PFs on behalf of their VFs
5284 */
5285 type = ETH_CONNECTION_TYPE |
5286 ((o->func_id) << SPE_HDR_FUNCTION_ID_SHIFT);
5287
5288 /* No need for an explicit memory barrier here as long as we
5289 * ensure the ordering of writing to the SPQ element
5290 * and updating of the SPQ producer which involves a memory
5291 * read. If the memory read is removed we will have to put a
5292 * full memory barrier there (inside bnx2x_sp_post()).
5293 */
5294 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TPA_UPDATE,
5295 o->cids[BNX2X_PRIMARY_CID_INDEX],
5296 U64_HI(data_mapping),
5297 U64_LO(data_mapping), type);
5298 }
5299
5300 static inline int bnx2x_q_send_halt(struct bnx2x *bp,
5301 struct bnx2x_queue_state_params *params)
5302 {
5303 struct bnx2x_queue_sp_obj *o = params->q_obj;
5304
5305 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT,
5306 o->cids[BNX2X_PRIMARY_CID_INDEX], 0, o->cl_id,
5307 ETH_CONNECTION_TYPE);
5308 }
5309
5310 static inline int bnx2x_q_send_cfc_del(struct bnx2x *bp,
5311 struct bnx2x_queue_state_params *params)
5312 {
5313 struct bnx2x_queue_sp_obj *o = params->q_obj;
5314 u8 cid_idx = params->params.cfc_del.cid_index;
5315
5316 if (cid_idx >= o->max_cos) {
5317 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5318 o->cl_id, cid_idx);
5319 return -EINVAL;
5320 }
5321
5322 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_CFC_DEL,
5323 o->cids[cid_idx], 0, 0, NONE_CONNECTION_TYPE);
5324 }
5325
5326 static inline int bnx2x_q_send_terminate(struct bnx2x *bp,
5327 struct bnx2x_queue_state_params *params)
5328 {
5329 struct bnx2x_queue_sp_obj *o = params->q_obj;
5330 u8 cid_index = params->params.terminate.cid_index;
5331
5332 if (cid_index >= o->max_cos) {
5333 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5334 o->cl_id, cid_index);
5335 return -EINVAL;
5336 }
5337
5338 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TERMINATE,
5339 o->cids[cid_index], 0, 0, ETH_CONNECTION_TYPE);
5340 }
5341
5342 static inline int bnx2x_q_send_empty(struct bnx2x *bp,
5343 struct bnx2x_queue_state_params *params)
5344 {
5345 struct bnx2x_queue_sp_obj *o = params->q_obj;
5346
5347 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_EMPTY,
5348 o->cids[BNX2X_PRIMARY_CID_INDEX], 0, 0,
5349 ETH_CONNECTION_TYPE);
5350 }
5351
5352 static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x *bp,
5353 struct bnx2x_queue_state_params *params)
5354 {
5355 switch (params->cmd) {
5356 case BNX2X_Q_CMD_INIT:
5357 return bnx2x_q_init(bp, params);
5358 case BNX2X_Q_CMD_SETUP_TX_ONLY:
5359 return bnx2x_q_send_setup_tx_only(bp, params);
5360 case BNX2X_Q_CMD_DEACTIVATE:
5361 return bnx2x_q_send_deactivate(bp, params);
5362 case BNX2X_Q_CMD_ACTIVATE:
5363 return bnx2x_q_send_activate(bp, params);
5364 case BNX2X_Q_CMD_UPDATE:
5365 return bnx2x_q_send_update(bp, params);
5366 case BNX2X_Q_CMD_UPDATE_TPA:
5367 return bnx2x_q_send_update_tpa(bp, params);
5368 case BNX2X_Q_CMD_HALT:
5369 return bnx2x_q_send_halt(bp, params);
5370 case BNX2X_Q_CMD_CFC_DEL:
5371 return bnx2x_q_send_cfc_del(bp, params);
5372 case BNX2X_Q_CMD_TERMINATE:
5373 return bnx2x_q_send_terminate(bp, params);
5374 case BNX2X_Q_CMD_EMPTY:
5375 return bnx2x_q_send_empty(bp, params);
5376 default:
5377 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5378 return -EINVAL;
5379 }
5380 }
5381
5382 static int bnx2x_queue_send_cmd_e1x(struct bnx2x *bp,
5383 struct bnx2x_queue_state_params *params)
5384 {
5385 switch (params->cmd) {
5386 case BNX2X_Q_CMD_SETUP:
5387 return bnx2x_q_send_setup_e1x(bp, params);
5388 case BNX2X_Q_CMD_INIT:
5389 case BNX2X_Q_CMD_SETUP_TX_ONLY:
5390 case BNX2X_Q_CMD_DEACTIVATE:
5391 case BNX2X_Q_CMD_ACTIVATE:
5392 case BNX2X_Q_CMD_UPDATE:
5393 case BNX2X_Q_CMD_UPDATE_TPA:
5394 case BNX2X_Q_CMD_HALT:
5395 case BNX2X_Q_CMD_CFC_DEL:
5396 case BNX2X_Q_CMD_TERMINATE:
5397 case BNX2X_Q_CMD_EMPTY:
5398 return bnx2x_queue_send_cmd_cmn(bp, params);
5399 default:
5400 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5401 return -EINVAL;
5402 }
5403 }
5404
5405 static int bnx2x_queue_send_cmd_e2(struct bnx2x *bp,
5406 struct bnx2x_queue_state_params *params)
5407 {
5408 switch (params->cmd) {
5409 case BNX2X_Q_CMD_SETUP:
5410 return bnx2x_q_send_setup_e2(bp, params);
5411 case BNX2X_Q_CMD_INIT:
5412 case BNX2X_Q_CMD_SETUP_TX_ONLY:
5413 case BNX2X_Q_CMD_DEACTIVATE:
5414 case BNX2X_Q_CMD_ACTIVATE:
5415 case BNX2X_Q_CMD_UPDATE:
5416 case BNX2X_Q_CMD_UPDATE_TPA:
5417 case BNX2X_Q_CMD_HALT:
5418 case BNX2X_Q_CMD_CFC_DEL:
5419 case BNX2X_Q_CMD_TERMINATE:
5420 case BNX2X_Q_CMD_EMPTY:
5421 return bnx2x_queue_send_cmd_cmn(bp, params);
5422 default:
5423 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5424 return -EINVAL;
5425 }
5426 }
5427
5428 /**
5429 * bnx2x_queue_chk_transition - check state machine of a regular Queue
5430 *
5431 * @bp: device handle
5432 * @o:
5433 * @params:
5434 *
5435 * (not Forwarding)
5436 * It both checks if the requested command is legal in a current
5437 * state and, if it's legal, sets a `next_state' in the object
5438 * that will be used in the completion flow to set the `state'
5439 * of the object.
5440 *
5441 * returns 0 if a requested command is a legal transition,
5442 * -EINVAL otherwise.
5443 */
5444 static int bnx2x_queue_chk_transition(struct bnx2x *bp,
5445 struct bnx2x_queue_sp_obj *o,
5446 struct bnx2x_queue_state_params *params)
5447 {
5448 enum bnx2x_q_state state = o->state, next_state = BNX2X_Q_STATE_MAX;
5449 enum bnx2x_queue_cmd cmd = params->cmd;
5450 struct bnx2x_queue_update_params *update_params =
5451 &params->params.update;
5452 u8 next_tx_only = o->num_tx_only;
5453
5454 /* Forget all pending for completion commands if a driver only state
5455 * transition has been requested.
5456 */
5457 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5458 o->pending = 0;
5459 o->next_state = BNX2X_Q_STATE_MAX;
5460 }
5461
5462 /* Don't allow a next state transition if we are in the middle of
5463 * the previous one.
5464 */
5465 if (o->pending) {
5466 BNX2X_ERR("Blocking transition since pending was %lx\n",
5467 o->pending);
5468 return -EBUSY;
5469 }
5470
5471 switch (state) {
5472 case BNX2X_Q_STATE_RESET:
5473 if (cmd == BNX2X_Q_CMD_INIT)
5474 next_state = BNX2X_Q_STATE_INITIALIZED;
5475
5476 break;
5477 case BNX2X_Q_STATE_INITIALIZED:
5478 if (cmd == BNX2X_Q_CMD_SETUP) {
5479 if (test_bit(BNX2X_Q_FLG_ACTIVE,
5480 &params->params.setup.flags))
5481 next_state = BNX2X_Q_STATE_ACTIVE;
5482 else
5483 next_state = BNX2X_Q_STATE_INACTIVE;
5484 }
5485
5486 break;
5487 case BNX2X_Q_STATE_ACTIVE:
5488 if (cmd == BNX2X_Q_CMD_DEACTIVATE)
5489 next_state = BNX2X_Q_STATE_INACTIVE;
5490
5491 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5492 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5493 next_state = BNX2X_Q_STATE_ACTIVE;
5494
5495 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5496 next_state = BNX2X_Q_STATE_MULTI_COS;
5497 next_tx_only = 1;
5498 }
5499
5500 else if (cmd == BNX2X_Q_CMD_HALT)
5501 next_state = BNX2X_Q_STATE_STOPPED;
5502
5503 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5504 /* If "active" state change is requested, update the
5505 * state accordingly.
5506 */
5507 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5508 &update_params->update_flags) &&
5509 !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5510 &update_params->update_flags))
5511 next_state = BNX2X_Q_STATE_INACTIVE;
5512 else
5513 next_state = BNX2X_Q_STATE_ACTIVE;
5514 }
5515
5516 break;
5517 case BNX2X_Q_STATE_MULTI_COS:
5518 if (cmd == BNX2X_Q_CMD_TERMINATE)
5519 next_state = BNX2X_Q_STATE_MCOS_TERMINATED;
5520
5521 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5522 next_state = BNX2X_Q_STATE_MULTI_COS;
5523 next_tx_only = o->num_tx_only + 1;
5524 }
5525
5526 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5527 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5528 next_state = BNX2X_Q_STATE_MULTI_COS;
5529
5530 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5531 /* If "active" state change is requested, update the
5532 * state accordingly.
5533 */
5534 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5535 &update_params->update_flags) &&
5536 !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5537 &update_params->update_flags))
5538 next_state = BNX2X_Q_STATE_INACTIVE;
5539 else
5540 next_state = BNX2X_Q_STATE_MULTI_COS;
5541 }
5542
5543 break;
5544 case BNX2X_Q_STATE_MCOS_TERMINATED:
5545 if (cmd == BNX2X_Q_CMD_CFC_DEL) {
5546 next_tx_only = o->num_tx_only - 1;
5547 if (next_tx_only == 0)
5548 next_state = BNX2X_Q_STATE_ACTIVE;
5549 else
5550 next_state = BNX2X_Q_STATE_MULTI_COS;
5551 }
5552
5553 break;
5554 case BNX2X_Q_STATE_INACTIVE:
5555 if (cmd == BNX2X_Q_CMD_ACTIVATE)
5556 next_state = BNX2X_Q_STATE_ACTIVE;
5557
5558 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5559 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5560 next_state = BNX2X_Q_STATE_INACTIVE;
5561
5562 else if (cmd == BNX2X_Q_CMD_HALT)
5563 next_state = BNX2X_Q_STATE_STOPPED;
5564
5565 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5566 /* If "active" state change is requested, update the
5567 * state accordingly.
5568 */
5569 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5570 &update_params->update_flags) &&
5571 test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5572 &update_params->update_flags)){
5573 if (o->num_tx_only == 0)
5574 next_state = BNX2X_Q_STATE_ACTIVE;
5575 else /* tx only queues exist for this queue */
5576 next_state = BNX2X_Q_STATE_MULTI_COS;
5577 } else
5578 next_state = BNX2X_Q_STATE_INACTIVE;
5579 }
5580
5581 break;
5582 case BNX2X_Q_STATE_STOPPED:
5583 if (cmd == BNX2X_Q_CMD_TERMINATE)
5584 next_state = BNX2X_Q_STATE_TERMINATED;
5585
5586 break;
5587 case BNX2X_Q_STATE_TERMINATED:
5588 if (cmd == BNX2X_Q_CMD_CFC_DEL)
5589 next_state = BNX2X_Q_STATE_RESET;
5590
5591 break;
5592 default:
5593 BNX2X_ERR("Illegal state: %d\n", state);
5594 }
5595
5596 /* Transition is assured */
5597 if (next_state != BNX2X_Q_STATE_MAX) {
5598 DP(BNX2X_MSG_SP, "Good state transition: %d(%d)->%d\n",
5599 state, cmd, next_state);
5600 o->next_state = next_state;
5601 o->next_tx_only = next_tx_only;
5602 return 0;
5603 }
5604
5605 DP(BNX2X_MSG_SP, "Bad state transition request: %d %d\n", state, cmd);
5606
5607 return -EINVAL;
5608 }
5609
5610 void bnx2x_init_queue_obj(struct bnx2x *bp,
5611 struct bnx2x_queue_sp_obj *obj,
5612 u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id,
5613 void *rdata,
5614 dma_addr_t rdata_mapping, unsigned long type)
5615 {
5616 memset(obj, 0, sizeof(*obj));
5617
5618 /* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */
5619 BUG_ON(BNX2X_MULTI_TX_COS < cid_cnt);
5620
5621 memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5622 obj->max_cos = cid_cnt;
5623 obj->cl_id = cl_id;
5624 obj->func_id = func_id;
5625 obj->rdata = rdata;
5626 obj->rdata_mapping = rdata_mapping;
5627 obj->type = type;
5628 obj->next_state = BNX2X_Q_STATE_MAX;
5629
5630 if (CHIP_IS_E1x(bp))
5631 obj->send_cmd = bnx2x_queue_send_cmd_e1x;
5632 else
5633 obj->send_cmd = bnx2x_queue_send_cmd_e2;
5634
5635 obj->check_transition = bnx2x_queue_chk_transition;
5636
5637 obj->complete_cmd = bnx2x_queue_comp_cmd;
5638 obj->wait_comp = bnx2x_queue_wait_comp;
5639 obj->set_pending = bnx2x_queue_set_pending;
5640 }
5641
5642 /* return a queue object's logical state*/
5643 int bnx2x_get_q_logical_state(struct bnx2x *bp,
5644 struct bnx2x_queue_sp_obj *obj)
5645 {
5646 switch (obj->state) {
5647 case BNX2X_Q_STATE_ACTIVE:
5648 case BNX2X_Q_STATE_MULTI_COS:
5649 return BNX2X_Q_LOGICAL_STATE_ACTIVE;
5650 case BNX2X_Q_STATE_RESET:
5651 case BNX2X_Q_STATE_INITIALIZED:
5652 case BNX2X_Q_STATE_MCOS_TERMINATED:
5653 case BNX2X_Q_STATE_INACTIVE:
5654 case BNX2X_Q_STATE_STOPPED:
5655 case BNX2X_Q_STATE_TERMINATED:
5656 case BNX2X_Q_STATE_FLRED:
5657 return BNX2X_Q_LOGICAL_STATE_STOPPED;
5658 default:
5659 return -EINVAL;
5660 }
5661 }
5662
5663 /********************** Function state object *********************************/
5664 enum bnx2x_func_state bnx2x_func_get_state(struct bnx2x *bp,
5665 struct bnx2x_func_sp_obj *o)
5666 {
5667 /* in the middle of transaction - return INVALID state */
5668 if (o->pending)
5669 return BNX2X_F_STATE_MAX;
5670
5671 /* unsure the order of reading of o->pending and o->state
5672 * o->pending should be read first
5673 */
5674 rmb();
5675
5676 return o->state;
5677 }
5678
5679 static int bnx2x_func_wait_comp(struct bnx2x *bp,
5680 struct bnx2x_func_sp_obj *o,
5681 enum bnx2x_func_cmd cmd)
5682 {
5683 return bnx2x_state_wait(bp, cmd, &o->pending);
5684 }
5685
5686 /**
5687 * bnx2x_func_state_change_comp - complete the state machine transition
5688 *
5689 * @bp: device handle
5690 * @o:
5691 * @cmd:
5692 *
5693 * Called on state change transition. Completes the state
5694 * machine transition only - no HW interaction.
5695 */
5696 static inline int bnx2x_func_state_change_comp(struct bnx2x *bp,
5697 struct bnx2x_func_sp_obj *o,
5698 enum bnx2x_func_cmd cmd)
5699 {
5700 unsigned long cur_pending = o->pending;
5701
5702 if (!test_and_clear_bit(cmd, &cur_pending)) {
5703 BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5704 cmd, BP_FUNC(bp), o->state,
5705 cur_pending, o->next_state);
5706 return -EINVAL;
5707 }
5708
5709 DP(BNX2X_MSG_SP,
5710 "Completing command %d for func %d, setting state to %d\n",
5711 cmd, BP_FUNC(bp), o->next_state);
5712
5713 o->state = o->next_state;
5714 o->next_state = BNX2X_F_STATE_MAX;
5715
5716 /* It's important that o->state and o->next_state are
5717 * updated before o->pending.
5718 */
5719 wmb();
5720
5721 clear_bit(cmd, &o->pending);
5722 smp_mb__after_atomic();
5723
5724 return 0;
5725 }
5726
5727 /**
5728 * bnx2x_func_comp_cmd - complete the state change command
5729 *
5730 * @bp: device handle
5731 * @o:
5732 * @cmd:
5733 *
5734 * Checks that the arrived completion is expected.
5735 */
5736 static int bnx2x_func_comp_cmd(struct bnx2x *bp,
5737 struct bnx2x_func_sp_obj *o,
5738 enum bnx2x_func_cmd cmd)
5739 {
5740 /* Complete the state machine part first, check if it's a
5741 * legal completion.
5742 */
5743 int rc = bnx2x_func_state_change_comp(bp, o, cmd);
5744 return rc;
5745 }
5746
5747 /**
5748 * bnx2x_func_chk_transition - perform function state machine transition
5749 *
5750 * @bp: device handle
5751 * @o:
5752 * @params:
5753 *
5754 * It both checks if the requested command is legal in a current
5755 * state and, if it's legal, sets a `next_state' in the object
5756 * that will be used in the completion flow to set the `state'
5757 * of the object.
5758 *
5759 * returns 0 if a requested command is a legal transition,
5760 * -EINVAL otherwise.
5761 */
5762 static int bnx2x_func_chk_transition(struct bnx2x *bp,
5763 struct bnx2x_func_sp_obj *o,
5764 struct bnx2x_func_state_params *params)
5765 {
5766 enum bnx2x_func_state state = o->state, next_state = BNX2X_F_STATE_MAX;
5767 enum bnx2x_func_cmd cmd = params->cmd;
5768
5769 /* Forget all pending for completion commands if a driver only state
5770 * transition has been requested.
5771 */
5772 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5773 o->pending = 0;
5774 o->next_state = BNX2X_F_STATE_MAX;
5775 }
5776
5777 /* Don't allow a next state transition if we are in the middle of
5778 * the previous one.
5779 */
5780 if (o->pending)
5781 return -EBUSY;
5782
5783 switch (state) {
5784 case BNX2X_F_STATE_RESET:
5785 if (cmd == BNX2X_F_CMD_HW_INIT)
5786 next_state = BNX2X_F_STATE_INITIALIZED;
5787
5788 break;
5789 case BNX2X_F_STATE_INITIALIZED:
5790 if (cmd == BNX2X_F_CMD_START)
5791 next_state = BNX2X_F_STATE_STARTED;
5792
5793 else if (cmd == BNX2X_F_CMD_HW_RESET)
5794 next_state = BNX2X_F_STATE_RESET;
5795
5796 break;
5797 case BNX2X_F_STATE_STARTED:
5798 if (cmd == BNX2X_F_CMD_STOP)
5799 next_state = BNX2X_F_STATE_INITIALIZED;
5800 /* afex ramrods can be sent only in started mode, and only
5801 * if not pending for function_stop ramrod completion
5802 * for these events - next state remained STARTED.
5803 */
5804 else if ((cmd == BNX2X_F_CMD_AFEX_UPDATE) &&
5805 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5806 next_state = BNX2X_F_STATE_STARTED;
5807
5808 else if ((cmd == BNX2X_F_CMD_AFEX_VIFLISTS) &&
5809 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5810 next_state = BNX2X_F_STATE_STARTED;
5811
5812 /* Switch_update ramrod can be sent in either started or
5813 * tx_stopped state, and it doesn't change the state.
5814 */
5815 else if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5816 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5817 next_state = BNX2X_F_STATE_STARTED;
5818
5819 else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5820 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5821 next_state = BNX2X_F_STATE_STARTED;
5822
5823 else if (cmd == BNX2X_F_CMD_TX_STOP)
5824 next_state = BNX2X_F_STATE_TX_STOPPED;
5825
5826 break;
5827 case BNX2X_F_STATE_TX_STOPPED:
5828 if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5829 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5830 next_state = BNX2X_F_STATE_TX_STOPPED;
5831
5832 else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5833 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5834 next_state = BNX2X_F_STATE_TX_STOPPED;
5835
5836 else if (cmd == BNX2X_F_CMD_TX_START)
5837 next_state = BNX2X_F_STATE_STARTED;
5838
5839 break;
5840 default:
5841 BNX2X_ERR("Unknown state: %d\n", state);
5842 }
5843
5844 /* Transition is assured */
5845 if (next_state != BNX2X_F_STATE_MAX) {
5846 DP(BNX2X_MSG_SP, "Good function state transition: %d(%d)->%d\n",
5847 state, cmd, next_state);
5848 o->next_state = next_state;
5849 return 0;
5850 }
5851
5852 DP(BNX2X_MSG_SP, "Bad function state transition request: %d %d\n",
5853 state, cmd);
5854
5855 return -EINVAL;
5856 }
5857
5858 /**
5859 * bnx2x_func_init_func - performs HW init at function stage
5860 *
5861 * @bp: device handle
5862 * @drv:
5863 *
5864 * Init HW when the current phase is
5865 * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
5866 * HW blocks.
5867 */
5868 static inline int bnx2x_func_init_func(struct bnx2x *bp,
5869 const struct bnx2x_func_sp_drv_ops *drv)
5870 {
5871 return drv->init_hw_func(bp);
5872 }
5873
5874 /**
5875 * bnx2x_func_init_port - performs HW init at port stage
5876 *
5877 * @bp: device handle
5878 * @drv:
5879 *
5880 * Init HW when the current phase is
5881 * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
5882 * FUNCTION-only HW blocks.
5883 *
5884 */
5885 static inline int bnx2x_func_init_port(struct bnx2x *bp,
5886 const struct bnx2x_func_sp_drv_ops *drv)
5887 {
5888 int rc = drv->init_hw_port(bp);
5889 if (rc)
5890 return rc;
5891
5892 return bnx2x_func_init_func(bp, drv);
5893 }
5894
5895 /**
5896 * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage
5897 *
5898 * @bp: device handle
5899 * @drv:
5900 *
5901 * Init HW when the current phase is
5902 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
5903 * PORT-only and FUNCTION-only HW blocks.
5904 */
5905 static inline int bnx2x_func_init_cmn_chip(struct bnx2x *bp,
5906 const struct bnx2x_func_sp_drv_ops *drv)
5907 {
5908 int rc = drv->init_hw_cmn_chip(bp);
5909 if (rc)
5910 return rc;
5911
5912 return bnx2x_func_init_port(bp, drv);
5913 }
5914
5915 /**
5916 * bnx2x_func_init_cmn - performs HW init at common stage
5917 *
5918 * @bp: device handle
5919 * @drv:
5920 *
5921 * Init HW when the current phase is
5922 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
5923 * PORT-only and FUNCTION-only HW blocks.
5924 */
5925 static inline int bnx2x_func_init_cmn(struct bnx2x *bp,
5926 const struct bnx2x_func_sp_drv_ops *drv)
5927 {
5928 int rc = drv->init_hw_cmn(bp);
5929 if (rc)
5930 return rc;
5931
5932 return bnx2x_func_init_port(bp, drv);
5933 }
5934
5935 static int bnx2x_func_hw_init(struct bnx2x *bp,
5936 struct bnx2x_func_state_params *params)
5937 {
5938 u32 load_code = params->params.hw_init.load_phase;
5939 struct bnx2x_func_sp_obj *o = params->f_obj;
5940 const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5941 int rc = 0;
5942
5943 DP(BNX2X_MSG_SP, "function %d load_code %x\n",
5944 BP_ABS_FUNC(bp), load_code);
5945
5946 /* Prepare buffers for unzipping the FW */
5947 rc = drv->gunzip_init(bp);
5948 if (rc)
5949 return rc;
5950
5951 /* Prepare FW */
5952 rc = drv->init_fw(bp);
5953 if (rc) {
5954 BNX2X_ERR("Error loading firmware\n");
5955 goto init_err;
5956 }
5957
5958 /* Handle the beginning of COMMON_XXX pases separately... */
5959 switch (load_code) {
5960 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5961 rc = bnx2x_func_init_cmn_chip(bp, drv);
5962 if (rc)
5963 goto init_err;
5964
5965 break;
5966 case FW_MSG_CODE_DRV_LOAD_COMMON:
5967 rc = bnx2x_func_init_cmn(bp, drv);
5968 if (rc)
5969 goto init_err;
5970
5971 break;
5972 case FW_MSG_CODE_DRV_LOAD_PORT:
5973 rc = bnx2x_func_init_port(bp, drv);
5974 if (rc)
5975 goto init_err;
5976
5977 break;
5978 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5979 rc = bnx2x_func_init_func(bp, drv);
5980 if (rc)
5981 goto init_err;
5982
5983 break;
5984 default:
5985 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5986 rc = -EINVAL;
5987 }
5988
5989 init_err:
5990 drv->gunzip_end(bp);
5991
5992 /* In case of success, complete the command immediately: no ramrods
5993 * have been sent.
5994 */
5995 if (!rc)
5996 o->complete_cmd(bp, o, BNX2X_F_CMD_HW_INIT);
5997
5998 return rc;
5999 }
6000
6001 /**
6002 * bnx2x_func_reset_func - reset HW at function stage
6003 *
6004 * @bp: device handle
6005 * @drv:
6006 *
6007 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
6008 * FUNCTION-only HW blocks.
6009 */
6010 static inline void bnx2x_func_reset_func(struct bnx2x *bp,
6011 const struct bnx2x_func_sp_drv_ops *drv)
6012 {
6013 drv->reset_hw_func(bp);
6014 }
6015
6016 /**
6017 * bnx2x_func_reset_port - reset HW at port stage
6018 *
6019 * @bp: device handle
6020 * @drv:
6021 *
6022 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
6023 * FUNCTION-only and PORT-only HW blocks.
6024 *
6025 * !!!IMPORTANT!!!
6026 *
6027 * It's important to call reset_port before reset_func() as the last thing
6028 * reset_func does is pf_disable() thus disabling PGLUE_B, which
6029 * makes impossible any DMAE transactions.
6030 */
6031 static inline void bnx2x_func_reset_port(struct bnx2x *bp,
6032 const struct bnx2x_func_sp_drv_ops *drv)
6033 {
6034 drv->reset_hw_port(bp);
6035 bnx2x_func_reset_func(bp, drv);
6036 }
6037
6038 /**
6039 * bnx2x_func_reset_cmn - reset HW at common stage
6040 *
6041 * @bp: device handle
6042 * @drv:
6043 *
6044 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
6045 * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
6046 * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
6047 */
6048 static inline void bnx2x_func_reset_cmn(struct bnx2x *bp,
6049 const struct bnx2x_func_sp_drv_ops *drv)
6050 {
6051 bnx2x_func_reset_port(bp, drv);
6052 drv->reset_hw_cmn(bp);
6053 }
6054
6055 static inline int bnx2x_func_hw_reset(struct bnx2x *bp,
6056 struct bnx2x_func_state_params *params)
6057 {
6058 u32 reset_phase = params->params.hw_reset.reset_phase;
6059 struct bnx2x_func_sp_obj *o = params->f_obj;
6060 const struct bnx2x_func_sp_drv_ops *drv = o->drv;
6061
6062 DP(BNX2X_MSG_SP, "function %d reset_phase %x\n", BP_ABS_FUNC(bp),
6063 reset_phase);
6064
6065 switch (reset_phase) {
6066 case FW_MSG_CODE_DRV_UNLOAD_COMMON:
6067 bnx2x_func_reset_cmn(bp, drv);
6068 break;
6069 case FW_MSG_CODE_DRV_UNLOAD_PORT:
6070 bnx2x_func_reset_port(bp, drv);
6071 break;
6072 case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
6073 bnx2x_func_reset_func(bp, drv);
6074 break;
6075 default:
6076 BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n",
6077 reset_phase);
6078 break;
6079 }
6080
6081 /* Complete the command immediately: no ramrods have been sent. */
6082 o->complete_cmd(bp, o, BNX2X_F_CMD_HW_RESET);
6083
6084 return 0;
6085 }
6086
6087 static inline int bnx2x_func_send_start(struct bnx2x *bp,
6088 struct bnx2x_func_state_params *params)
6089 {
6090 struct bnx2x_func_sp_obj *o = params->f_obj;
6091 struct function_start_data *rdata =
6092 (struct function_start_data *)o->rdata;
6093 dma_addr_t data_mapping = o->rdata_mapping;
6094 struct bnx2x_func_start_params *start_params = &params->params.start;
6095
6096 memset(rdata, 0, sizeof(*rdata));
6097
6098 /* Fill the ramrod data with provided parameters */
6099 rdata->function_mode = (u8)start_params->mf_mode;
6100 rdata->sd_vlan_tag = cpu_to_le16(start_params->sd_vlan_tag);
6101 rdata->path_id = BP_PATH(bp);
6102 rdata->network_cos_mode = start_params->network_cos_mode;
6103
6104 rdata->vxlan_dst_port = cpu_to_le16(start_params->vxlan_dst_port);
6105 rdata->geneve_dst_port = cpu_to_le16(start_params->geneve_dst_port);
6106 rdata->inner_clss_l2gre = start_params->inner_clss_l2gre;
6107 rdata->inner_clss_l2geneve = start_params->inner_clss_l2geneve;
6108 rdata->inner_clss_vxlan = start_params->inner_clss_vxlan;
6109 rdata->inner_rss = start_params->inner_rss;
6110
6111 rdata->sd_accept_mf_clss_fail = start_params->class_fail;
6112 if (start_params->class_fail_ethtype) {
6113 rdata->sd_accept_mf_clss_fail_match_ethtype = 1;
6114 rdata->sd_accept_mf_clss_fail_ethtype =
6115 cpu_to_le16(start_params->class_fail_ethtype);
6116 }
6117
6118 rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri;
6119 rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val;
6120 if (start_params->sd_vlan_eth_type)
6121 rdata->sd_vlan_eth_type =
6122 cpu_to_le16(start_params->sd_vlan_eth_type);
6123 else
6124 rdata->sd_vlan_eth_type =
6125 cpu_to_le16(0x8100);
6126
6127 rdata->no_added_tags = start_params->no_added_tags;
6128
6129 rdata->c2s_pri_tt_valid = start_params->c2s_pri_valid;
6130 if (rdata->c2s_pri_tt_valid) {
6131 memcpy(rdata->c2s_pri_trans_table.val,
6132 start_params->c2s_pri,
6133 MAX_VLAN_PRIORITIES);
6134 rdata->c2s_pri_default = start_params->c2s_pri_default;
6135 }
6136 /* No need for an explicit memory barrier here as long we would
6137 * need to ensure the ordering of writing to the SPQ element
6138 * and updating of the SPQ producer which involves a memory
6139 * read and we will have to put a full memory barrier there
6140 * (inside bnx2x_sp_post()).
6141 */
6142
6143 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
6144 U64_HI(data_mapping),
6145 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6146 }
6147
6148 static inline int bnx2x_func_send_switch_update(struct bnx2x *bp,
6149 struct bnx2x_func_state_params *params)
6150 {
6151 struct bnx2x_func_sp_obj *o = params->f_obj;
6152 struct function_update_data *rdata =
6153 (struct function_update_data *)o->rdata;
6154 dma_addr_t data_mapping = o->rdata_mapping;
6155 struct bnx2x_func_switch_update_params *switch_update_params =
6156 &params->params.switch_update;
6157
6158 memset(rdata, 0, sizeof(*rdata));
6159
6160 /* Fill the ramrod data with provided parameters */
6161 if (test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
6162 &switch_update_params->changes)) {
6163 rdata->tx_switch_suspend_change_flg = 1;
6164 rdata->tx_switch_suspend =
6165 test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
6166 &switch_update_params->changes);
6167 }
6168
6169 if (test_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
6170 &switch_update_params->changes)) {
6171 rdata->sd_vlan_tag_change_flg = 1;
6172 rdata->sd_vlan_tag =
6173 cpu_to_le16(switch_update_params->vlan);
6174 }
6175
6176 if (test_bit(BNX2X_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG,
6177 &switch_update_params->changes)) {
6178 rdata->sd_vlan_eth_type_change_flg = 1;
6179 rdata->sd_vlan_eth_type =
6180 cpu_to_le16(switch_update_params->vlan_eth_type);
6181 }
6182
6183 if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_CHNG,
6184 &switch_update_params->changes)) {
6185 rdata->sd_vlan_force_pri_change_flg = 1;
6186 if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_FLAG,
6187 &switch_update_params->changes))
6188 rdata->sd_vlan_force_pri_flg = 1;
6189 rdata->sd_vlan_force_pri_flg =
6190 switch_update_params->vlan_force_prio;
6191 }
6192
6193 if (test_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
6194 &switch_update_params->changes)) {
6195 rdata->update_tunn_cfg_flg = 1;
6196 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GRE,
6197 &switch_update_params->changes))
6198 rdata->inner_clss_l2gre = 1;
6199 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_VXLAN,
6200 &switch_update_params->changes))
6201 rdata->inner_clss_vxlan = 1;
6202 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GENEVE,
6203 &switch_update_params->changes))
6204 rdata->inner_clss_l2geneve = 1;
6205 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
6206 &switch_update_params->changes))
6207 rdata->inner_rss = 1;
6208 rdata->vxlan_dst_port =
6209 cpu_to_le16(switch_update_params->vxlan_dst_port);
6210 rdata->geneve_dst_port =
6211 cpu_to_le16(switch_update_params->geneve_dst_port);
6212 }
6213
6214 rdata->echo = SWITCH_UPDATE;
6215
6216 /* No need for an explicit memory barrier here as long as we
6217 * ensure the ordering of writing to the SPQ element
6218 * and updating of the SPQ producer which involves a memory
6219 * read. If the memory read is removed we will have to put a
6220 * full memory barrier there (inside bnx2x_sp_post()).
6221 */
6222 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6223 U64_HI(data_mapping),
6224 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6225 }
6226
6227 static inline int bnx2x_func_send_afex_update(struct bnx2x *bp,
6228 struct bnx2x_func_state_params *params)
6229 {
6230 struct bnx2x_func_sp_obj *o = params->f_obj;
6231 struct function_update_data *rdata =
6232 (struct function_update_data *)o->afex_rdata;
6233 dma_addr_t data_mapping = o->afex_rdata_mapping;
6234 struct bnx2x_func_afex_update_params *afex_update_params =
6235 &params->params.afex_update;
6236
6237 memset(rdata, 0, sizeof(*rdata));
6238
6239 /* Fill the ramrod data with provided parameters */
6240 rdata->vif_id_change_flg = 1;
6241 rdata->vif_id = cpu_to_le16(afex_update_params->vif_id);
6242 rdata->afex_default_vlan_change_flg = 1;
6243 rdata->afex_default_vlan =
6244 cpu_to_le16(afex_update_params->afex_default_vlan);
6245 rdata->allowed_priorities_change_flg = 1;
6246 rdata->allowed_priorities = afex_update_params->allowed_priorities;
6247 rdata->echo = AFEX_UPDATE;
6248
6249 /* No need for an explicit memory barrier here as long as we
6250 * ensure the ordering of writing to the SPQ element
6251 * and updating of the SPQ producer which involves a memory
6252 * read. If the memory read is removed we will have to put a
6253 * full memory barrier there (inside bnx2x_sp_post()).
6254 */
6255 DP(BNX2X_MSG_SP,
6256 "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
6257 rdata->vif_id,
6258 rdata->afex_default_vlan, rdata->allowed_priorities);
6259
6260 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6261 U64_HI(data_mapping),
6262 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6263 }
6264
6265 static
6266 inline int bnx2x_func_send_afex_viflists(struct bnx2x *bp,
6267 struct bnx2x_func_state_params *params)
6268 {
6269 struct bnx2x_func_sp_obj *o = params->f_obj;
6270 struct afex_vif_list_ramrod_data *rdata =
6271 (struct afex_vif_list_ramrod_data *)o->afex_rdata;
6272 struct bnx2x_func_afex_viflists_params *afex_vif_params =
6273 &params->params.afex_viflists;
6274 u64 *p_rdata = (u64 *)rdata;
6275
6276 memset(rdata, 0, sizeof(*rdata));
6277
6278 /* Fill the ramrod data with provided parameters */
6279 rdata->vif_list_index = cpu_to_le16(afex_vif_params->vif_list_index);
6280 rdata->func_bit_map = afex_vif_params->func_bit_map;
6281 rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
6282 rdata->func_to_clear = afex_vif_params->func_to_clear;
6283
6284 /* send in echo type of sub command */
6285 rdata->echo = afex_vif_params->afex_vif_list_command;
6286
6287 /* No need for an explicit memory barrier here as long we would
6288 * need to ensure the ordering of writing to the SPQ element
6289 * and updating of the SPQ producer which involves a memory
6290 * read and we will have to put a full memory barrier there
6291 * (inside bnx2x_sp_post()).
6292 */
6293
6294 DP(BNX2X_MSG_SP, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
6295 rdata->afex_vif_list_command, rdata->vif_list_index,
6296 rdata->func_bit_map, rdata->func_to_clear);
6297
6298 /* this ramrod sends data directly and not through DMA mapping */
6299 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
6300 U64_HI(*p_rdata), U64_LO(*p_rdata),
6301 NONE_CONNECTION_TYPE);
6302 }
6303
6304 static inline int bnx2x_func_send_stop(struct bnx2x *bp,
6305 struct bnx2x_func_state_params *params)
6306 {
6307 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0, 0,
6308 NONE_CONNECTION_TYPE);
6309 }
6310
6311 static inline int bnx2x_func_send_tx_stop(struct bnx2x *bp,
6312 struct bnx2x_func_state_params *params)
6313 {
6314 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0, 0,
6315 NONE_CONNECTION_TYPE);
6316 }
6317 static inline int bnx2x_func_send_tx_start(struct bnx2x *bp,
6318 struct bnx2x_func_state_params *params)
6319 {
6320 struct bnx2x_func_sp_obj *o = params->f_obj;
6321 struct flow_control_configuration *rdata =
6322 (struct flow_control_configuration *)o->rdata;
6323 dma_addr_t data_mapping = o->rdata_mapping;
6324 struct bnx2x_func_tx_start_params *tx_start_params =
6325 &params->params.tx_start;
6326 int i;
6327
6328 memset(rdata, 0, sizeof(*rdata));
6329
6330 rdata->dcb_enabled = tx_start_params->dcb_enabled;
6331 rdata->dcb_version = tx_start_params->dcb_version;
6332 rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en;
6333
6334 for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
6335 rdata->traffic_type_to_priority_cos[i] =
6336 tx_start_params->traffic_type_to_priority_cos[i];
6337
6338 for (i = 0; i < MAX_TRAFFIC_TYPES; i++)
6339 rdata->dcb_outer_pri[i] = tx_start_params->dcb_outer_pri[i];
6340 /* No need for an explicit memory barrier here as long as we
6341 * ensure the ordering of writing to the SPQ element
6342 * and updating of the SPQ producer which involves a memory
6343 * read. If the memory read is removed we will have to put a
6344 * full memory barrier there (inside bnx2x_sp_post()).
6345 */
6346 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
6347 U64_HI(data_mapping),
6348 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6349 }
6350
6351 static inline
6352 int bnx2x_func_send_set_timesync(struct bnx2x *bp,
6353 struct bnx2x_func_state_params *params)
6354 {
6355 struct bnx2x_func_sp_obj *o = params->f_obj;
6356 struct set_timesync_ramrod_data *rdata =
6357 (struct set_timesync_ramrod_data *)o->rdata;
6358 dma_addr_t data_mapping = o->rdata_mapping;
6359 struct bnx2x_func_set_timesync_params *set_timesync_params =
6360 &params->params.set_timesync;
6361
6362 memset(rdata, 0, sizeof(*rdata));
6363
6364 /* Fill the ramrod data with provided parameters */
6365 rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd;
6366 rdata->offset_cmd = set_timesync_params->offset_cmd;
6367 rdata->add_sub_drift_adjust_value =
6368 set_timesync_params->add_sub_drift_adjust_value;
6369 rdata->drift_adjust_value = set_timesync_params->drift_adjust_value;
6370 rdata->drift_adjust_period = set_timesync_params->drift_adjust_period;
6371 rdata->offset_delta.lo =
6372 cpu_to_le32(U64_LO(set_timesync_params->offset_delta));
6373 rdata->offset_delta.hi =
6374 cpu_to_le32(U64_HI(set_timesync_params->offset_delta));
6375
6376 DP(BNX2X_MSG_SP, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n",
6377 rdata->drift_adjust_cmd, rdata->offset_cmd,
6378 rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value,
6379 rdata->drift_adjust_period, rdata->offset_delta.lo,
6380 rdata->offset_delta.hi);
6381
6382 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0,
6383 U64_HI(data_mapping),
6384 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6385 }
6386
6387 static int bnx2x_func_send_cmd(struct bnx2x *bp,
6388 struct bnx2x_func_state_params *params)
6389 {
6390 switch (params->cmd) {
6391 case BNX2X_F_CMD_HW_INIT:
6392 return bnx2x_func_hw_init(bp, params);
6393 case BNX2X_F_CMD_START:
6394 return bnx2x_func_send_start(bp, params);
6395 case BNX2X_F_CMD_STOP:
6396 return bnx2x_func_send_stop(bp, params);
6397 case BNX2X_F_CMD_HW_RESET:
6398 return bnx2x_func_hw_reset(bp, params);
6399 case BNX2X_F_CMD_AFEX_UPDATE:
6400 return bnx2x_func_send_afex_update(bp, params);
6401 case BNX2X_F_CMD_AFEX_VIFLISTS:
6402 return bnx2x_func_send_afex_viflists(bp, params);
6403 case BNX2X_F_CMD_TX_STOP:
6404 return bnx2x_func_send_tx_stop(bp, params);
6405 case BNX2X_F_CMD_TX_START:
6406 return bnx2x_func_send_tx_start(bp, params);
6407 case BNX2X_F_CMD_SWITCH_UPDATE:
6408 return bnx2x_func_send_switch_update(bp, params);
6409 case BNX2X_F_CMD_SET_TIMESYNC:
6410 return bnx2x_func_send_set_timesync(bp, params);
6411 default:
6412 BNX2X_ERR("Unknown command: %d\n", params->cmd);
6413 return -EINVAL;
6414 }
6415 }
6416
6417 void bnx2x_init_func_obj(struct bnx2x *bp,
6418 struct bnx2x_func_sp_obj *obj,
6419 void *rdata, dma_addr_t rdata_mapping,
6420 void *afex_rdata, dma_addr_t afex_rdata_mapping,
6421 struct bnx2x_func_sp_drv_ops *drv_iface)
6422 {
6423 memset(obj, 0, sizeof(*obj));
6424
6425 mutex_init(&obj->one_pending_mutex);
6426
6427 obj->rdata = rdata;
6428 obj->rdata_mapping = rdata_mapping;
6429 obj->afex_rdata = afex_rdata;
6430 obj->afex_rdata_mapping = afex_rdata_mapping;
6431 obj->send_cmd = bnx2x_func_send_cmd;
6432 obj->check_transition = bnx2x_func_chk_transition;
6433 obj->complete_cmd = bnx2x_func_comp_cmd;
6434 obj->wait_comp = bnx2x_func_wait_comp;
6435
6436 obj->drv = drv_iface;
6437 }
6438
6439 /**
6440 * bnx2x_func_state_change - perform Function state change transition
6441 *
6442 * @bp: device handle
6443 * @params: parameters to perform the transaction
6444 *
6445 * returns 0 in case of successfully completed transition,
6446 * negative error code in case of failure, positive
6447 * (EBUSY) value if there is a completion to that is
6448 * still pending (possible only if RAMROD_COMP_WAIT is
6449 * not set in params->ramrod_flags for asynchronous
6450 * commands).
6451 */
6452 int bnx2x_func_state_change(struct bnx2x *bp,
6453 struct bnx2x_func_state_params *params)
6454 {
6455 struct bnx2x_func_sp_obj *o = params->f_obj;
6456 int rc, cnt = 300;
6457 enum bnx2x_func_cmd cmd = params->cmd;
6458 unsigned long *pending = &o->pending;
6459
6460 mutex_lock(&o->one_pending_mutex);
6461
6462 /* Check that the requested transition is legal */
6463 rc = o->check_transition(bp, o, params);
6464 if ((rc == -EBUSY) &&
6465 (test_bit(RAMROD_RETRY, &params->ramrod_flags))) {
6466 while ((rc == -EBUSY) && (--cnt > 0)) {
6467 mutex_unlock(&o->one_pending_mutex);
6468 msleep(10);
6469 mutex_lock(&o->one_pending_mutex);
6470 rc = o->check_transition(bp, o, params);
6471 }
6472 if (rc == -EBUSY) {
6473 mutex_unlock(&o->one_pending_mutex);
6474 BNX2X_ERR("timeout waiting for previous ramrod completion\n");
6475 return rc;
6476 }
6477 } else if (rc) {
6478 mutex_unlock(&o->one_pending_mutex);
6479 return rc;
6480 }
6481
6482 /* Set "pending" bit */
6483 set_bit(cmd, pending);
6484
6485 /* Don't send a command if only driver cleanup was requested */
6486 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
6487 bnx2x_func_state_change_comp(bp, o, cmd);
6488 mutex_unlock(&o->one_pending_mutex);
6489 } else {
6490 /* Send a ramrod */
6491 rc = o->send_cmd(bp, params);
6492
6493 mutex_unlock(&o->one_pending_mutex);
6494
6495 if (rc) {
6496 o->next_state = BNX2X_F_STATE_MAX;
6497 clear_bit(cmd, pending);
6498 smp_mb__after_atomic();
6499 return rc;
6500 }
6501
6502 if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
6503 rc = o->wait_comp(bp, o, cmd);
6504 if (rc)
6505 return rc;
6506
6507 return 0;
6508 }
6509 }
6510
6511 return !!test_bit(cmd, pending);
6512 }
This page took 0.27023 seconds and 5 git commands to generate.