Merge remote-tracking branches 'regulator/topic/tps65218' and 'regulator/topic/tps800...
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_sp.c
1 /* bnx2x_sp.c: Qlogic Everest network driver.
2 *
3 * Copyright 2011-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * Unless you and Qlogic execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2, available
10 * at http://www.gnu.org/licenses/gpl-2.0.html (the "GPL").
11 *
12 * Notwithstanding the above, under no circumstances may you combine this
13 * software in any way with any other Qlogic software provided under a
14 * license other than the GPL, without Qlogic's express prior written
15 * consent.
16 *
17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18 * Written by: Vladislav Zolotarov
19 *
20 */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/crc32.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/crc32c.h>
29 #include "bnx2x.h"
30 #include "bnx2x_cmn.h"
31 #include "bnx2x_sp.h"
32
33 #define BNX2X_MAX_EMUL_MULTI 16
34
35 /**** Exe Queue interfaces ****/
36
37 /**
38 * bnx2x_exe_queue_init - init the Exe Queue object
39 *
40 * @o: pointer to the object
41 * @exe_len: length
42 * @owner: pointer to the owner
43 * @validate: validate function pointer
44 * @optimize: optimize function pointer
45 * @exec: execute function pointer
46 * @get: get function pointer
47 */
48 static inline void bnx2x_exe_queue_init(struct bnx2x *bp,
49 struct bnx2x_exe_queue_obj *o,
50 int exe_len,
51 union bnx2x_qable_obj *owner,
52 exe_q_validate validate,
53 exe_q_remove remove,
54 exe_q_optimize optimize,
55 exe_q_execute exec,
56 exe_q_get get)
57 {
58 memset(o, 0, sizeof(*o));
59
60 INIT_LIST_HEAD(&o->exe_queue);
61 INIT_LIST_HEAD(&o->pending_comp);
62
63 spin_lock_init(&o->lock);
64
65 o->exe_chunk_len = exe_len;
66 o->owner = owner;
67
68 /* Owner specific callbacks */
69 o->validate = validate;
70 o->remove = remove;
71 o->optimize = optimize;
72 o->execute = exec;
73 o->get = get;
74
75 DP(BNX2X_MSG_SP, "Setup the execution queue with the chunk length of %d\n",
76 exe_len);
77 }
78
79 static inline void bnx2x_exe_queue_free_elem(struct bnx2x *bp,
80 struct bnx2x_exeq_elem *elem)
81 {
82 DP(BNX2X_MSG_SP, "Deleting an exe_queue element\n");
83 kfree(elem);
84 }
85
86 static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj *o)
87 {
88 struct bnx2x_exeq_elem *elem;
89 int cnt = 0;
90
91 spin_lock_bh(&o->lock);
92
93 list_for_each_entry(elem, &o->exe_queue, link)
94 cnt++;
95
96 spin_unlock_bh(&o->lock);
97
98 return cnt;
99 }
100
101 /**
102 * bnx2x_exe_queue_add - add a new element to the execution queue
103 *
104 * @bp: driver handle
105 * @o: queue
106 * @cmd: new command to add
107 * @restore: true - do not optimize the command
108 *
109 * If the element is optimized or is illegal, frees it.
110 */
111 static inline int bnx2x_exe_queue_add(struct bnx2x *bp,
112 struct bnx2x_exe_queue_obj *o,
113 struct bnx2x_exeq_elem *elem,
114 bool restore)
115 {
116 int rc;
117
118 spin_lock_bh(&o->lock);
119
120 if (!restore) {
121 /* Try to cancel this element queue */
122 rc = o->optimize(bp, o->owner, elem);
123 if (rc)
124 goto free_and_exit;
125
126 /* Check if this request is ok */
127 rc = o->validate(bp, o->owner, elem);
128 if (rc) {
129 DP(BNX2X_MSG_SP, "Preamble failed: %d\n", rc);
130 goto free_and_exit;
131 }
132 }
133
134 /* If so, add it to the execution queue */
135 list_add_tail(&elem->link, &o->exe_queue);
136
137 spin_unlock_bh(&o->lock);
138
139 return 0;
140
141 free_and_exit:
142 bnx2x_exe_queue_free_elem(bp, elem);
143
144 spin_unlock_bh(&o->lock);
145
146 return rc;
147 }
148
149 static inline void __bnx2x_exe_queue_reset_pending(
150 struct bnx2x *bp,
151 struct bnx2x_exe_queue_obj *o)
152 {
153 struct bnx2x_exeq_elem *elem;
154
155 while (!list_empty(&o->pending_comp)) {
156 elem = list_first_entry(&o->pending_comp,
157 struct bnx2x_exeq_elem, link);
158
159 list_del(&elem->link);
160 bnx2x_exe_queue_free_elem(bp, elem);
161 }
162 }
163
164 /**
165 * bnx2x_exe_queue_step - execute one execution chunk atomically
166 *
167 * @bp: driver handle
168 * @o: queue
169 * @ramrod_flags: flags
170 *
171 * (Should be called while holding the exe_queue->lock).
172 */
173 static inline int bnx2x_exe_queue_step(struct bnx2x *bp,
174 struct bnx2x_exe_queue_obj *o,
175 unsigned long *ramrod_flags)
176 {
177 struct bnx2x_exeq_elem *elem, spacer;
178 int cur_len = 0, rc;
179
180 memset(&spacer, 0, sizeof(spacer));
181
182 /* Next step should not be performed until the current is finished,
183 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
184 * properly clear object internals without sending any command to the FW
185 * which also implies there won't be any completion to clear the
186 * 'pending' list.
187 */
188 if (!list_empty(&o->pending_comp)) {
189 if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
190 DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
191 __bnx2x_exe_queue_reset_pending(bp, o);
192 } else {
193 return 1;
194 }
195 }
196
197 /* Run through the pending commands list and create a next
198 * execution chunk.
199 */
200 while (!list_empty(&o->exe_queue)) {
201 elem = list_first_entry(&o->exe_queue, struct bnx2x_exeq_elem,
202 link);
203 WARN_ON(!elem->cmd_len);
204
205 if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
206 cur_len += elem->cmd_len;
207 /* Prevent from both lists being empty when moving an
208 * element. This will allow the call of
209 * bnx2x_exe_queue_empty() without locking.
210 */
211 list_add_tail(&spacer.link, &o->pending_comp);
212 mb();
213 list_move_tail(&elem->link, &o->pending_comp);
214 list_del(&spacer.link);
215 } else
216 break;
217 }
218
219 /* Sanity check */
220 if (!cur_len)
221 return 0;
222
223 rc = o->execute(bp, o->owner, &o->pending_comp, ramrod_flags);
224 if (rc < 0)
225 /* In case of an error return the commands back to the queue
226 * and reset the pending_comp.
227 */
228 list_splice_init(&o->pending_comp, &o->exe_queue);
229 else if (!rc)
230 /* If zero is returned, means there are no outstanding pending
231 * completions and we may dismiss the pending list.
232 */
233 __bnx2x_exe_queue_reset_pending(bp, o);
234
235 return rc;
236 }
237
238 static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj *o)
239 {
240 bool empty = list_empty(&o->exe_queue);
241
242 /* Don't reorder!!! */
243 mb();
244
245 return empty && list_empty(&o->pending_comp);
246 }
247
248 static inline struct bnx2x_exeq_elem *bnx2x_exe_queue_alloc_elem(
249 struct bnx2x *bp)
250 {
251 DP(BNX2X_MSG_SP, "Allocating a new exe_queue element\n");
252 return kzalloc(sizeof(struct bnx2x_exeq_elem), GFP_ATOMIC);
253 }
254
255 /************************ raw_obj functions ***********************************/
256 static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj *o)
257 {
258 return !!test_bit(o->state, o->pstate);
259 }
260
261 static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj *o)
262 {
263 smp_mb__before_atomic();
264 clear_bit(o->state, o->pstate);
265 smp_mb__after_atomic();
266 }
267
268 static void bnx2x_raw_set_pending(struct bnx2x_raw_obj *o)
269 {
270 smp_mb__before_atomic();
271 set_bit(o->state, o->pstate);
272 smp_mb__after_atomic();
273 }
274
275 /**
276 * bnx2x_state_wait - wait until the given bit(state) is cleared
277 *
278 * @bp: device handle
279 * @state: state which is to be cleared
280 * @state_p: state buffer
281 *
282 */
283 static inline int bnx2x_state_wait(struct bnx2x *bp, int state,
284 unsigned long *pstate)
285 {
286 /* can take a while if any port is running */
287 int cnt = 5000;
288
289 if (CHIP_REV_IS_EMUL(bp))
290 cnt *= 20;
291
292 DP(BNX2X_MSG_SP, "waiting for state to become %d\n", state);
293
294 might_sleep();
295 while (cnt--) {
296 if (!test_bit(state, pstate)) {
297 #ifdef BNX2X_STOP_ON_ERROR
298 DP(BNX2X_MSG_SP, "exit (cnt %d)\n", 5000 - cnt);
299 #endif
300 return 0;
301 }
302
303 usleep_range(1000, 2000);
304
305 if (bp->panic)
306 return -EIO;
307 }
308
309 /* timeout! */
310 BNX2X_ERR("timeout waiting for state %d\n", state);
311 #ifdef BNX2X_STOP_ON_ERROR
312 bnx2x_panic();
313 #endif
314
315 return -EBUSY;
316 }
317
318 static int bnx2x_raw_wait(struct bnx2x *bp, struct bnx2x_raw_obj *raw)
319 {
320 return bnx2x_state_wait(bp, raw->state, raw->pstate);
321 }
322
323 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
324 /* credit handling callbacks */
325 static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int *offset)
326 {
327 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
328
329 WARN_ON(!mp);
330
331 return mp->get_entry(mp, offset);
332 }
333
334 static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj *o)
335 {
336 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
337
338 WARN_ON(!mp);
339
340 return mp->get(mp, 1);
341 }
342
343 static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int *offset)
344 {
345 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
346
347 WARN_ON(!vp);
348
349 return vp->get_entry(vp, offset);
350 }
351
352 static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj *o)
353 {
354 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
355
356 WARN_ON(!vp);
357
358 return vp->get(vp, 1);
359 }
360
361 static bool bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
362 {
363 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
364 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
365
366 if (!mp->get(mp, 1))
367 return false;
368
369 if (!vp->get(vp, 1)) {
370 mp->put(mp, 1);
371 return false;
372 }
373
374 return true;
375 }
376
377 static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int offset)
378 {
379 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
380
381 return mp->put_entry(mp, offset);
382 }
383
384 static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj *o)
385 {
386 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
387
388 return mp->put(mp, 1);
389 }
390
391 static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int offset)
392 {
393 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
394
395 return vp->put_entry(vp, offset);
396 }
397
398 static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj *o)
399 {
400 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
401
402 return vp->put(vp, 1);
403 }
404
405 static bool bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
406 {
407 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
408 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
409
410 if (!mp->put(mp, 1))
411 return false;
412
413 if (!vp->put(vp, 1)) {
414 mp->get(mp, 1);
415 return false;
416 }
417
418 return true;
419 }
420
421 /**
422 * __bnx2x_vlan_mac_h_write_trylock - try getting the vlan mac writer lock
423 *
424 * @bp: device handle
425 * @o: vlan_mac object
426 *
427 * @details: Non-blocking implementation; should be called under execution
428 * queue lock.
429 */
430 static int __bnx2x_vlan_mac_h_write_trylock(struct bnx2x *bp,
431 struct bnx2x_vlan_mac_obj *o)
432 {
433 if (o->head_reader) {
434 DP(BNX2X_MSG_SP, "vlan_mac_lock writer - There are readers; Busy\n");
435 return -EBUSY;
436 }
437
438 DP(BNX2X_MSG_SP, "vlan_mac_lock writer - Taken\n");
439 return 0;
440 }
441
442 /**
443 * __bnx2x_vlan_mac_h_exec_pending - execute step instead of a previous step
444 *
445 * @bp: device handle
446 * @o: vlan_mac object
447 *
448 * @details Should be called under execution queue lock; notice it might release
449 * and reclaim it during its run.
450 */
451 static void __bnx2x_vlan_mac_h_exec_pending(struct bnx2x *bp,
452 struct bnx2x_vlan_mac_obj *o)
453 {
454 int rc;
455 unsigned long ramrod_flags = o->saved_ramrod_flags;
456
457 DP(BNX2X_MSG_SP, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
458 ramrod_flags);
459 o->head_exe_request = false;
460 o->saved_ramrod_flags = 0;
461 rc = bnx2x_exe_queue_step(bp, &o->exe_queue, &ramrod_flags);
462 if ((rc != 0) && (rc != 1)) {
463 BNX2X_ERR("execution of pending commands failed with rc %d\n",
464 rc);
465 #ifdef BNX2X_STOP_ON_ERROR
466 bnx2x_panic();
467 #endif
468 }
469 }
470
471 /**
472 * __bnx2x_vlan_mac_h_pend - Pend an execution step which couldn't run
473 *
474 * @bp: device handle
475 * @o: vlan_mac object
476 * @ramrod_flags: ramrod flags of missed execution
477 *
478 * @details Should be called under execution queue lock.
479 */
480 static void __bnx2x_vlan_mac_h_pend(struct bnx2x *bp,
481 struct bnx2x_vlan_mac_obj *o,
482 unsigned long ramrod_flags)
483 {
484 o->head_exe_request = true;
485 o->saved_ramrod_flags = ramrod_flags;
486 DP(BNX2X_MSG_SP, "Placing pending execution with ramrod flags %lu\n",
487 ramrod_flags);
488 }
489
490 /**
491 * __bnx2x_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
492 *
493 * @bp: device handle
494 * @o: vlan_mac object
495 *
496 * @details Should be called under execution queue lock. Notice if a pending
497 * execution exists, it would perform it - possibly releasing and
498 * reclaiming the execution queue lock.
499 */
500 static void __bnx2x_vlan_mac_h_write_unlock(struct bnx2x *bp,
501 struct bnx2x_vlan_mac_obj *o)
502 {
503 /* It's possible a new pending execution was added since this writer
504 * executed. If so, execute again. [Ad infinitum]
505 */
506 while (o->head_exe_request) {
507 DP(BNX2X_MSG_SP, "vlan_mac_lock - writer release encountered a pending request\n");
508 __bnx2x_vlan_mac_h_exec_pending(bp, o);
509 }
510 }
511
512
513 /**
514 * __bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
515 *
516 * @bp: device handle
517 * @o: vlan_mac object
518 *
519 * @details Should be called under the execution queue lock. May sleep. May
520 * release and reclaim execution queue lock during its run.
521 */
522 static int __bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
523 struct bnx2x_vlan_mac_obj *o)
524 {
525 /* If we got here, we're holding lock --> no WRITER exists */
526 o->head_reader++;
527 DP(BNX2X_MSG_SP, "vlan_mac_lock - locked reader - number %d\n",
528 o->head_reader);
529
530 return 0;
531 }
532
533 /**
534 * bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
535 *
536 * @bp: device handle
537 * @o: vlan_mac object
538 *
539 * @details May sleep. Claims and releases execution queue lock during its run.
540 */
541 int bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
542 struct bnx2x_vlan_mac_obj *o)
543 {
544 int rc;
545
546 spin_lock_bh(&o->exe_queue.lock);
547 rc = __bnx2x_vlan_mac_h_read_lock(bp, o);
548 spin_unlock_bh(&o->exe_queue.lock);
549
550 return rc;
551 }
552
553 /**
554 * __bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
555 *
556 * @bp: device handle
557 * @o: vlan_mac object
558 *
559 * @details Should be called under execution queue lock. Notice if a pending
560 * execution exists, it would be performed if this was the last
561 * reader. possibly releasing and reclaiming the execution queue lock.
562 */
563 static void __bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
564 struct bnx2x_vlan_mac_obj *o)
565 {
566 if (!o->head_reader) {
567 BNX2X_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
568 #ifdef BNX2X_STOP_ON_ERROR
569 bnx2x_panic();
570 #endif
571 } else {
572 o->head_reader--;
573 DP(BNX2X_MSG_SP, "vlan_mac_lock - decreased readers to %d\n",
574 o->head_reader);
575 }
576
577 /* It's possible a new pending execution was added, and that this reader
578 * was last - if so we need to execute the command.
579 */
580 if (!o->head_reader && o->head_exe_request) {
581 DP(BNX2X_MSG_SP, "vlan_mac_lock - reader release encountered a pending request\n");
582
583 /* Writer release will do the trick */
584 __bnx2x_vlan_mac_h_write_unlock(bp, o);
585 }
586 }
587
588 /**
589 * bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
590 *
591 * @bp: device handle
592 * @o: vlan_mac object
593 *
594 * @details Notice if a pending execution exists, it would be performed if this
595 * was the last reader. Claims and releases the execution queue lock
596 * during its run.
597 */
598 void bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
599 struct bnx2x_vlan_mac_obj *o)
600 {
601 spin_lock_bh(&o->exe_queue.lock);
602 __bnx2x_vlan_mac_h_read_unlock(bp, o);
603 spin_unlock_bh(&o->exe_queue.lock);
604 }
605
606 static int bnx2x_get_n_elements(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o,
607 int n, u8 *base, u8 stride, u8 size)
608 {
609 struct bnx2x_vlan_mac_registry_elem *pos;
610 u8 *next = base;
611 int counter = 0;
612 int read_lock;
613
614 DP(BNX2X_MSG_SP, "get_n_elements - taking vlan_mac_lock (reader)\n");
615 read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
616 if (read_lock != 0)
617 BNX2X_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
618
619 /* traverse list */
620 list_for_each_entry(pos, &o->head, link) {
621 if (counter < n) {
622 memcpy(next, &pos->u, size);
623 counter++;
624 DP(BNX2X_MSG_SP, "copied element number %d to address %p element was:\n",
625 counter, next);
626 next += stride + size;
627 }
628 }
629
630 if (read_lock == 0) {
631 DP(BNX2X_MSG_SP, "get_n_elements - releasing vlan_mac_lock (reader)\n");
632 bnx2x_vlan_mac_h_read_unlock(bp, o);
633 }
634
635 return counter * ETH_ALEN;
636 }
637
638 /* check_add() callbacks */
639 static int bnx2x_check_mac_add(struct bnx2x *bp,
640 struct bnx2x_vlan_mac_obj *o,
641 union bnx2x_classification_ramrod_data *data)
642 {
643 struct bnx2x_vlan_mac_registry_elem *pos;
644
645 DP(BNX2X_MSG_SP, "Checking MAC %pM for ADD command\n", data->mac.mac);
646
647 if (!is_valid_ether_addr(data->mac.mac))
648 return -EINVAL;
649
650 /* Check if a requested MAC already exists */
651 list_for_each_entry(pos, &o->head, link)
652 if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
653 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
654 return -EEXIST;
655
656 return 0;
657 }
658
659 static int bnx2x_check_vlan_add(struct bnx2x *bp,
660 struct bnx2x_vlan_mac_obj *o,
661 union bnx2x_classification_ramrod_data *data)
662 {
663 struct bnx2x_vlan_mac_registry_elem *pos;
664
665 DP(BNX2X_MSG_SP, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
666
667 list_for_each_entry(pos, &o->head, link)
668 if (data->vlan.vlan == pos->u.vlan.vlan)
669 return -EEXIST;
670
671 return 0;
672 }
673
674 static int bnx2x_check_vlan_mac_add(struct bnx2x *bp,
675 struct bnx2x_vlan_mac_obj *o,
676 union bnx2x_classification_ramrod_data *data)
677 {
678 struct bnx2x_vlan_mac_registry_elem *pos;
679
680 DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for ADD command\n",
681 data->vlan_mac.mac, data->vlan_mac.vlan);
682
683 list_for_each_entry(pos, &o->head, link)
684 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
685 (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
686 ETH_ALEN)) &&
687 (data->vlan_mac.is_inner_mac ==
688 pos->u.vlan_mac.is_inner_mac))
689 return -EEXIST;
690
691 return 0;
692 }
693
694 /* check_del() callbacks */
695 static struct bnx2x_vlan_mac_registry_elem *
696 bnx2x_check_mac_del(struct bnx2x *bp,
697 struct bnx2x_vlan_mac_obj *o,
698 union bnx2x_classification_ramrod_data *data)
699 {
700 struct bnx2x_vlan_mac_registry_elem *pos;
701
702 DP(BNX2X_MSG_SP, "Checking MAC %pM for DEL command\n", data->mac.mac);
703
704 list_for_each_entry(pos, &o->head, link)
705 if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
706 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
707 return pos;
708
709 return NULL;
710 }
711
712 static struct bnx2x_vlan_mac_registry_elem *
713 bnx2x_check_vlan_del(struct bnx2x *bp,
714 struct bnx2x_vlan_mac_obj *o,
715 union bnx2x_classification_ramrod_data *data)
716 {
717 struct bnx2x_vlan_mac_registry_elem *pos;
718
719 DP(BNX2X_MSG_SP, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
720
721 list_for_each_entry(pos, &o->head, link)
722 if (data->vlan.vlan == pos->u.vlan.vlan)
723 return pos;
724
725 return NULL;
726 }
727
728 static struct bnx2x_vlan_mac_registry_elem *
729 bnx2x_check_vlan_mac_del(struct bnx2x *bp,
730 struct bnx2x_vlan_mac_obj *o,
731 union bnx2x_classification_ramrod_data *data)
732 {
733 struct bnx2x_vlan_mac_registry_elem *pos;
734
735 DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for DEL command\n",
736 data->vlan_mac.mac, data->vlan_mac.vlan);
737
738 list_for_each_entry(pos, &o->head, link)
739 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
740 (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
741 ETH_ALEN)) &&
742 (data->vlan_mac.is_inner_mac ==
743 pos->u.vlan_mac.is_inner_mac))
744 return pos;
745
746 return NULL;
747 }
748
749 /* check_move() callback */
750 static bool bnx2x_check_move(struct bnx2x *bp,
751 struct bnx2x_vlan_mac_obj *src_o,
752 struct bnx2x_vlan_mac_obj *dst_o,
753 union bnx2x_classification_ramrod_data *data)
754 {
755 struct bnx2x_vlan_mac_registry_elem *pos;
756 int rc;
757
758 /* Check if we can delete the requested configuration from the first
759 * object.
760 */
761 pos = src_o->check_del(bp, src_o, data);
762
763 /* check if configuration can be added */
764 rc = dst_o->check_add(bp, dst_o, data);
765
766 /* If this classification can not be added (is already set)
767 * or can't be deleted - return an error.
768 */
769 if (rc || !pos)
770 return false;
771
772 return true;
773 }
774
775 static bool bnx2x_check_move_always_err(
776 struct bnx2x *bp,
777 struct bnx2x_vlan_mac_obj *src_o,
778 struct bnx2x_vlan_mac_obj *dst_o,
779 union bnx2x_classification_ramrod_data *data)
780 {
781 return false;
782 }
783
784 static inline u8 bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj *o)
785 {
786 struct bnx2x_raw_obj *raw = &o->raw;
787 u8 rx_tx_flag = 0;
788
789 if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
790 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
791 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
792
793 if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
794 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
795 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
796
797 return rx_tx_flag;
798 }
799
800 static void bnx2x_set_mac_in_nig(struct bnx2x *bp,
801 bool add, unsigned char *dev_addr, int index)
802 {
803 u32 wb_data[2];
804 u32 reg_offset = BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM :
805 NIG_REG_LLH0_FUNC_MEM;
806
807 if (!IS_MF_SI(bp) && !IS_MF_AFEX(bp))
808 return;
809
810 if (index > BNX2X_LLH_CAM_MAX_PF_LINE)
811 return;
812
813 DP(BNX2X_MSG_SP, "Going to %s LLH configuration at entry %d\n",
814 (add ? "ADD" : "DELETE"), index);
815
816 if (add) {
817 /* LLH_FUNC_MEM is a u64 WB register */
818 reg_offset += 8*index;
819
820 wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
821 (dev_addr[4] << 8) | dev_addr[5]);
822 wb_data[1] = ((dev_addr[0] << 8) | dev_addr[1]);
823
824 REG_WR_DMAE(bp, reg_offset, wb_data, 2);
825 }
826
827 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
828 NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
829 }
830
831 /**
832 * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
833 *
834 * @bp: device handle
835 * @o: queue for which we want to configure this rule
836 * @add: if true the command is an ADD command, DEL otherwise
837 * @opcode: CLASSIFY_RULE_OPCODE_XXX
838 * @hdr: pointer to a header to setup
839 *
840 */
841 static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x *bp,
842 struct bnx2x_vlan_mac_obj *o, bool add, int opcode,
843 struct eth_classify_cmd_header *hdr)
844 {
845 struct bnx2x_raw_obj *raw = &o->raw;
846
847 hdr->client_id = raw->cl_id;
848 hdr->func_id = raw->func_id;
849
850 /* Rx or/and Tx (internal switching) configuration ? */
851 hdr->cmd_general_data |=
852 bnx2x_vlan_mac_get_rx_tx_flag(o);
853
854 if (add)
855 hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
856
857 hdr->cmd_general_data |=
858 (opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
859 }
860
861 /**
862 * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
863 *
864 * @cid: connection id
865 * @type: BNX2X_FILTER_XXX_PENDING
866 * @hdr: pointer to header to setup
867 * @rule_cnt:
868 *
869 * currently we always configure one rule and echo field to contain a CID and an
870 * opcode type.
871 */
872 static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid, int type,
873 struct eth_classify_header *hdr, int rule_cnt)
874 {
875 hdr->echo = cpu_to_le32((cid & BNX2X_SWCID_MASK) |
876 (type << BNX2X_SWCID_SHIFT));
877 hdr->rule_cnt = (u8)rule_cnt;
878 }
879
880 /* hw_config() callbacks */
881 static void bnx2x_set_one_mac_e2(struct bnx2x *bp,
882 struct bnx2x_vlan_mac_obj *o,
883 struct bnx2x_exeq_elem *elem, int rule_idx,
884 int cam_offset)
885 {
886 struct bnx2x_raw_obj *raw = &o->raw;
887 struct eth_classify_rules_ramrod_data *data =
888 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
889 int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
890 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
891 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
892 unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
893 u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac;
894
895 /* Set LLH CAM entry: currently only iSCSI and ETH macs are
896 * relevant. In addition, current implementation is tuned for a
897 * single ETH MAC.
898 *
899 * When multiple unicast ETH MACs PF configuration in switch
900 * independent mode is required (NetQ, multiple netdev MACs,
901 * etc.), consider better utilisation of 8 per function MAC
902 * entries in the LLH register. There is also
903 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
904 * total number of CAM entries to 16.
905 *
906 * Currently we won't configure NIG for MACs other than a primary ETH
907 * MAC and iSCSI L2 MAC.
908 *
909 * If this MAC is moving from one Queue to another, no need to change
910 * NIG configuration.
911 */
912 if (cmd != BNX2X_VLAN_MAC_MOVE) {
913 if (test_bit(BNX2X_ISCSI_ETH_MAC, vlan_mac_flags))
914 bnx2x_set_mac_in_nig(bp, add, mac,
915 BNX2X_LLH_CAM_ISCSI_ETH_LINE);
916 else if (test_bit(BNX2X_ETH_MAC, vlan_mac_flags))
917 bnx2x_set_mac_in_nig(bp, add, mac,
918 BNX2X_LLH_CAM_ETH_LINE);
919 }
920
921 /* Reset the ramrod data buffer for the first rule */
922 if (rule_idx == 0)
923 memset(data, 0, sizeof(*data));
924
925 /* Setup a command header */
926 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_MAC,
927 &rule_entry->mac.header);
928
929 DP(BNX2X_MSG_SP, "About to %s MAC %pM for Queue %d\n",
930 (add ? "add" : "delete"), mac, raw->cl_id);
931
932 /* Set a MAC itself */
933 bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
934 &rule_entry->mac.mac_mid,
935 &rule_entry->mac.mac_lsb, mac);
936 rule_entry->mac.inner_mac =
937 cpu_to_le16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac);
938
939 /* MOVE: Add a rule that will add this MAC to the target Queue */
940 if (cmd == BNX2X_VLAN_MAC_MOVE) {
941 rule_entry++;
942 rule_cnt++;
943
944 /* Setup ramrod data */
945 bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
946 elem->cmd_data.vlan_mac.target_obj,
947 true, CLASSIFY_RULE_OPCODE_MAC,
948 &rule_entry->mac.header);
949
950 /* Set a MAC itself */
951 bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
952 &rule_entry->mac.mac_mid,
953 &rule_entry->mac.mac_lsb, mac);
954 rule_entry->mac.inner_mac =
955 cpu_to_le16(elem->cmd_data.vlan_mac.
956 u.mac.is_inner_mac);
957 }
958
959 /* Set the ramrod data header */
960 /* TODO: take this to the higher level in order to prevent multiple
961 writing */
962 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
963 rule_cnt);
964 }
965
966 /**
967 * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
968 *
969 * @bp: device handle
970 * @o: queue
971 * @type:
972 * @cam_offset: offset in cam memory
973 * @hdr: pointer to a header to setup
974 *
975 * E1/E1H
976 */
977 static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x *bp,
978 struct bnx2x_vlan_mac_obj *o, int type, int cam_offset,
979 struct mac_configuration_hdr *hdr)
980 {
981 struct bnx2x_raw_obj *r = &o->raw;
982
983 hdr->length = 1;
984 hdr->offset = (u8)cam_offset;
985 hdr->client_id = cpu_to_le16(0xff);
986 hdr->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
987 (type << BNX2X_SWCID_SHIFT));
988 }
989
990 static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x *bp,
991 struct bnx2x_vlan_mac_obj *o, bool add, int opcode, u8 *mac,
992 u16 vlan_id, struct mac_configuration_entry *cfg_entry)
993 {
994 struct bnx2x_raw_obj *r = &o->raw;
995 u32 cl_bit_vec = (1 << r->cl_id);
996
997 cfg_entry->clients_bit_vector = cpu_to_le32(cl_bit_vec);
998 cfg_entry->pf_id = r->func_id;
999 cfg_entry->vlan_id = cpu_to_le16(vlan_id);
1000
1001 if (add) {
1002 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1003 T_ETH_MAC_COMMAND_SET);
1004 SET_FLAG(cfg_entry->flags,
1005 MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE, opcode);
1006
1007 /* Set a MAC in a ramrod data */
1008 bnx2x_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
1009 &cfg_entry->middle_mac_addr,
1010 &cfg_entry->lsb_mac_addr, mac);
1011 } else
1012 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1013 T_ETH_MAC_COMMAND_INVALIDATE);
1014 }
1015
1016 static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x *bp,
1017 struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, bool add,
1018 u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config)
1019 {
1020 struct mac_configuration_entry *cfg_entry = &config->config_table[0];
1021 struct bnx2x_raw_obj *raw = &o->raw;
1022
1023 bnx2x_vlan_mac_set_rdata_hdr_e1x(bp, o, type, cam_offset,
1024 &config->hdr);
1025 bnx2x_vlan_mac_set_cfg_entry_e1x(bp, o, add, opcode, mac, vlan_id,
1026 cfg_entry);
1027
1028 DP(BNX2X_MSG_SP, "%s MAC %pM CLID %d CAM offset %d\n",
1029 (add ? "setting" : "clearing"),
1030 mac, raw->cl_id, cam_offset);
1031 }
1032
1033 /**
1034 * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data
1035 *
1036 * @bp: device handle
1037 * @o: bnx2x_vlan_mac_obj
1038 * @elem: bnx2x_exeq_elem
1039 * @rule_idx: rule_idx
1040 * @cam_offset: cam_offset
1041 */
1042 static void bnx2x_set_one_mac_e1x(struct bnx2x *bp,
1043 struct bnx2x_vlan_mac_obj *o,
1044 struct bnx2x_exeq_elem *elem, int rule_idx,
1045 int cam_offset)
1046 {
1047 struct bnx2x_raw_obj *raw = &o->raw;
1048 struct mac_configuration_cmd *config =
1049 (struct mac_configuration_cmd *)(raw->rdata);
1050 /* 57710 and 57711 do not support MOVE command,
1051 * so it's either ADD or DEL
1052 */
1053 bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1054 true : false;
1055
1056 /* Reset the ramrod data buffer */
1057 memset(config, 0, sizeof(*config));
1058
1059 bnx2x_vlan_mac_set_rdata_e1x(bp, o, raw->state,
1060 cam_offset, add,
1061 elem->cmd_data.vlan_mac.u.mac.mac, 0,
1062 ETH_VLAN_FILTER_ANY_VLAN, config);
1063 }
1064
1065 static void bnx2x_set_one_vlan_e2(struct bnx2x *bp,
1066 struct bnx2x_vlan_mac_obj *o,
1067 struct bnx2x_exeq_elem *elem, int rule_idx,
1068 int cam_offset)
1069 {
1070 struct bnx2x_raw_obj *raw = &o->raw;
1071 struct eth_classify_rules_ramrod_data *data =
1072 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1073 int rule_cnt = rule_idx + 1;
1074 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1075 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1076 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1077 u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1078
1079 /* Reset the ramrod data buffer for the first rule */
1080 if (rule_idx == 0)
1081 memset(data, 0, sizeof(*data));
1082
1083 /* Set a rule header */
1084 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1085 &rule_entry->vlan.header);
1086
1087 DP(BNX2X_MSG_SP, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1088 vlan);
1089
1090 /* Set a VLAN itself */
1091 rule_entry->vlan.vlan = cpu_to_le16(vlan);
1092
1093 /* MOVE: Add a rule that will add this MAC to the target Queue */
1094 if (cmd == BNX2X_VLAN_MAC_MOVE) {
1095 rule_entry++;
1096 rule_cnt++;
1097
1098 /* Setup ramrod data */
1099 bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
1100 elem->cmd_data.vlan_mac.target_obj,
1101 true, CLASSIFY_RULE_OPCODE_VLAN,
1102 &rule_entry->vlan.header);
1103
1104 /* Set a VLAN itself */
1105 rule_entry->vlan.vlan = cpu_to_le16(vlan);
1106 }
1107
1108 /* Set the ramrod data header */
1109 /* TODO: take this to the higher level in order to prevent multiple
1110 writing */
1111 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1112 rule_cnt);
1113 }
1114
1115 static void bnx2x_set_one_vlan_mac_e2(struct bnx2x *bp,
1116 struct bnx2x_vlan_mac_obj *o,
1117 struct bnx2x_exeq_elem *elem,
1118 int rule_idx, int cam_offset)
1119 {
1120 struct bnx2x_raw_obj *raw = &o->raw;
1121 struct eth_classify_rules_ramrod_data *data =
1122 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1123 int rule_cnt = rule_idx + 1;
1124 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1125 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1126 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1127 u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
1128 u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
1129 u16 inner_mac;
1130
1131 /* Reset the ramrod data buffer for the first rule */
1132 if (rule_idx == 0)
1133 memset(data, 0, sizeof(*data));
1134
1135 /* Set a rule header */
1136 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_PAIR,
1137 &rule_entry->pair.header);
1138
1139 /* Set VLAN and MAC themselves */
1140 rule_entry->pair.vlan = cpu_to_le16(vlan);
1141 bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1142 &rule_entry->pair.mac_mid,
1143 &rule_entry->pair.mac_lsb, mac);
1144 inner_mac = elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1145 rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1146 /* MOVE: Add a rule that will add this MAC/VLAN to the target Queue */
1147 if (cmd == BNX2X_VLAN_MAC_MOVE) {
1148 struct bnx2x_vlan_mac_obj *target_obj;
1149
1150 rule_entry++;
1151 rule_cnt++;
1152
1153 /* Setup ramrod data */
1154 target_obj = elem->cmd_data.vlan_mac.target_obj;
1155 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, target_obj,
1156 true, CLASSIFY_RULE_OPCODE_PAIR,
1157 &rule_entry->pair.header);
1158
1159 /* Set a VLAN itself */
1160 rule_entry->pair.vlan = cpu_to_le16(vlan);
1161 bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1162 &rule_entry->pair.mac_mid,
1163 &rule_entry->pair.mac_lsb, mac);
1164 rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1165 }
1166
1167 /* Set the ramrod data header */
1168 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1169 rule_cnt);
1170 }
1171
1172 /**
1173 * bnx2x_set_one_vlan_mac_e1h -
1174 *
1175 * @bp: device handle
1176 * @o: bnx2x_vlan_mac_obj
1177 * @elem: bnx2x_exeq_elem
1178 * @rule_idx: rule_idx
1179 * @cam_offset: cam_offset
1180 */
1181 static void bnx2x_set_one_vlan_mac_e1h(struct bnx2x *bp,
1182 struct bnx2x_vlan_mac_obj *o,
1183 struct bnx2x_exeq_elem *elem,
1184 int rule_idx, int cam_offset)
1185 {
1186 struct bnx2x_raw_obj *raw = &o->raw;
1187 struct mac_configuration_cmd *config =
1188 (struct mac_configuration_cmd *)(raw->rdata);
1189 /* 57710 and 57711 do not support MOVE command,
1190 * so it's either ADD or DEL
1191 */
1192 bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1193 true : false;
1194
1195 /* Reset the ramrod data buffer */
1196 memset(config, 0, sizeof(*config));
1197
1198 bnx2x_vlan_mac_set_rdata_e1x(bp, o, BNX2X_FILTER_VLAN_MAC_PENDING,
1199 cam_offset, add,
1200 elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1201 elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1202 ETH_VLAN_FILTER_CLASSIFY, config);
1203 }
1204
1205 /**
1206 * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1207 *
1208 * @bp: device handle
1209 * @p: command parameters
1210 * @ppos: pointer to the cookie
1211 *
1212 * reconfigure next MAC/VLAN/VLAN-MAC element from the
1213 * previously configured elements list.
1214 *
1215 * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is taken
1216 * into an account
1217 *
1218 * pointer to the cookie - that should be given back in the next call to make
1219 * function handle the next element. If *ppos is set to NULL it will restart the
1220 * iterator. If returned *ppos == NULL this means that the last element has been
1221 * handled.
1222 *
1223 */
1224 static int bnx2x_vlan_mac_restore(struct bnx2x *bp,
1225 struct bnx2x_vlan_mac_ramrod_params *p,
1226 struct bnx2x_vlan_mac_registry_elem **ppos)
1227 {
1228 struct bnx2x_vlan_mac_registry_elem *pos;
1229 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1230
1231 /* If list is empty - there is nothing to do here */
1232 if (list_empty(&o->head)) {
1233 *ppos = NULL;
1234 return 0;
1235 }
1236
1237 /* make a step... */
1238 if (*ppos == NULL)
1239 *ppos = list_first_entry(&o->head,
1240 struct bnx2x_vlan_mac_registry_elem,
1241 link);
1242 else
1243 *ppos = list_next_entry(*ppos, link);
1244
1245 pos = *ppos;
1246
1247 /* If it's the last step - return NULL */
1248 if (list_is_last(&pos->link, &o->head))
1249 *ppos = NULL;
1250
1251 /* Prepare a 'user_req' */
1252 memcpy(&p->user_req.u, &pos->u, sizeof(pos->u));
1253
1254 /* Set the command */
1255 p->user_req.cmd = BNX2X_VLAN_MAC_ADD;
1256
1257 /* Set vlan_mac_flags */
1258 p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1259
1260 /* Set a restore bit */
1261 __set_bit(RAMROD_RESTORE, &p->ramrod_flags);
1262
1263 return bnx2x_config_vlan_mac(bp, p);
1264 }
1265
1266 /* bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a
1267 * pointer to an element with a specific criteria and NULL if such an element
1268 * hasn't been found.
1269 */
1270 static struct bnx2x_exeq_elem *bnx2x_exeq_get_mac(
1271 struct bnx2x_exe_queue_obj *o,
1272 struct bnx2x_exeq_elem *elem)
1273 {
1274 struct bnx2x_exeq_elem *pos;
1275 struct bnx2x_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1276
1277 /* Check pending for execution commands */
1278 list_for_each_entry(pos, &o->exe_queue, link)
1279 if (!memcmp(&pos->cmd_data.vlan_mac.u.mac, data,
1280 sizeof(*data)) &&
1281 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1282 return pos;
1283
1284 return NULL;
1285 }
1286
1287 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan(
1288 struct bnx2x_exe_queue_obj *o,
1289 struct bnx2x_exeq_elem *elem)
1290 {
1291 struct bnx2x_exeq_elem *pos;
1292 struct bnx2x_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1293
1294 /* Check pending for execution commands */
1295 list_for_each_entry(pos, &o->exe_queue, link)
1296 if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan, data,
1297 sizeof(*data)) &&
1298 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1299 return pos;
1300
1301 return NULL;
1302 }
1303
1304 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan_mac(
1305 struct bnx2x_exe_queue_obj *o,
1306 struct bnx2x_exeq_elem *elem)
1307 {
1308 struct bnx2x_exeq_elem *pos;
1309 struct bnx2x_vlan_mac_ramrod_data *data =
1310 &elem->cmd_data.vlan_mac.u.vlan_mac;
1311
1312 /* Check pending for execution commands */
1313 list_for_each_entry(pos, &o->exe_queue, link)
1314 if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1315 sizeof(*data)) &&
1316 (pos->cmd_data.vlan_mac.cmd ==
1317 elem->cmd_data.vlan_mac.cmd))
1318 return pos;
1319
1320 return NULL;
1321 }
1322
1323 /**
1324 * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed
1325 *
1326 * @bp: device handle
1327 * @qo: bnx2x_qable_obj
1328 * @elem: bnx2x_exeq_elem
1329 *
1330 * Checks that the requested configuration can be added. If yes and if
1331 * requested, consume CAM credit.
1332 *
1333 * The 'validate' is run after the 'optimize'.
1334 *
1335 */
1336 static inline int bnx2x_validate_vlan_mac_add(struct bnx2x *bp,
1337 union bnx2x_qable_obj *qo,
1338 struct bnx2x_exeq_elem *elem)
1339 {
1340 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1341 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1342 int rc;
1343
1344 /* Check the registry */
1345 rc = o->check_add(bp, o, &elem->cmd_data.vlan_mac.u);
1346 if (rc) {
1347 DP(BNX2X_MSG_SP, "ADD command is not allowed considering current registry state.\n");
1348 return rc;
1349 }
1350
1351 /* Check if there is a pending ADD command for this
1352 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1353 */
1354 if (exeq->get(exeq, elem)) {
1355 DP(BNX2X_MSG_SP, "There is a pending ADD command already\n");
1356 return -EEXIST;
1357 }
1358
1359 /* TODO: Check the pending MOVE from other objects where this
1360 * object is a destination object.
1361 */
1362
1363 /* Consume the credit if not requested not to */
1364 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1365 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1366 o->get_credit(o)))
1367 return -EINVAL;
1368
1369 return 0;
1370 }
1371
1372 /**
1373 * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed
1374 *
1375 * @bp: device handle
1376 * @qo: quable object to check
1377 * @elem: element that needs to be deleted
1378 *
1379 * Checks that the requested configuration can be deleted. If yes and if
1380 * requested, returns a CAM credit.
1381 *
1382 * The 'validate' is run after the 'optimize'.
1383 */
1384 static inline int bnx2x_validate_vlan_mac_del(struct bnx2x *bp,
1385 union bnx2x_qable_obj *qo,
1386 struct bnx2x_exeq_elem *elem)
1387 {
1388 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1389 struct bnx2x_vlan_mac_registry_elem *pos;
1390 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1391 struct bnx2x_exeq_elem query_elem;
1392
1393 /* If this classification can not be deleted (doesn't exist)
1394 * - return a BNX2X_EXIST.
1395 */
1396 pos = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1397 if (!pos) {
1398 DP(BNX2X_MSG_SP, "DEL command is not allowed considering current registry state\n");
1399 return -EEXIST;
1400 }
1401
1402 /* Check if there are pending DEL or MOVE commands for this
1403 * MAC/VLAN/VLAN-MAC. Return an error if so.
1404 */
1405 memcpy(&query_elem, elem, sizeof(query_elem));
1406
1407 /* Check for MOVE commands */
1408 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_MOVE;
1409 if (exeq->get(exeq, &query_elem)) {
1410 BNX2X_ERR("There is a pending MOVE command already\n");
1411 return -EINVAL;
1412 }
1413
1414 /* Check for DEL commands */
1415 if (exeq->get(exeq, elem)) {
1416 DP(BNX2X_MSG_SP, "There is a pending DEL command already\n");
1417 return -EEXIST;
1418 }
1419
1420 /* Return the credit to the credit pool if not requested not to */
1421 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1422 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1423 o->put_credit(o))) {
1424 BNX2X_ERR("Failed to return a credit\n");
1425 return -EINVAL;
1426 }
1427
1428 return 0;
1429 }
1430
1431 /**
1432 * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed
1433 *
1434 * @bp: device handle
1435 * @qo: quable object to check (source)
1436 * @elem: element that needs to be moved
1437 *
1438 * Checks that the requested configuration can be moved. If yes and if
1439 * requested, returns a CAM credit.
1440 *
1441 * The 'validate' is run after the 'optimize'.
1442 */
1443 static inline int bnx2x_validate_vlan_mac_move(struct bnx2x *bp,
1444 union bnx2x_qable_obj *qo,
1445 struct bnx2x_exeq_elem *elem)
1446 {
1447 struct bnx2x_vlan_mac_obj *src_o = &qo->vlan_mac;
1448 struct bnx2x_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1449 struct bnx2x_exeq_elem query_elem;
1450 struct bnx2x_exe_queue_obj *src_exeq = &src_o->exe_queue;
1451 struct bnx2x_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1452
1453 /* Check if we can perform this operation based on the current registry
1454 * state.
1455 */
1456 if (!src_o->check_move(bp, src_o, dest_o,
1457 &elem->cmd_data.vlan_mac.u)) {
1458 DP(BNX2X_MSG_SP, "MOVE command is not allowed considering current registry state\n");
1459 return -EINVAL;
1460 }
1461
1462 /* Check if there is an already pending DEL or MOVE command for the
1463 * source object or ADD command for a destination object. Return an
1464 * error if so.
1465 */
1466 memcpy(&query_elem, elem, sizeof(query_elem));
1467
1468 /* Check DEL on source */
1469 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1470 if (src_exeq->get(src_exeq, &query_elem)) {
1471 BNX2X_ERR("There is a pending DEL command on the source queue already\n");
1472 return -EINVAL;
1473 }
1474
1475 /* Check MOVE on source */
1476 if (src_exeq->get(src_exeq, elem)) {
1477 DP(BNX2X_MSG_SP, "There is a pending MOVE command already\n");
1478 return -EEXIST;
1479 }
1480
1481 /* Check ADD on destination */
1482 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1483 if (dest_exeq->get(dest_exeq, &query_elem)) {
1484 BNX2X_ERR("There is a pending ADD command on the destination queue already\n");
1485 return -EINVAL;
1486 }
1487
1488 /* Consume the credit if not requested not to */
1489 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST,
1490 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1491 dest_o->get_credit(dest_o)))
1492 return -EINVAL;
1493
1494 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1495 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1496 src_o->put_credit(src_o))) {
1497 /* return the credit taken from dest... */
1498 dest_o->put_credit(dest_o);
1499 return -EINVAL;
1500 }
1501
1502 return 0;
1503 }
1504
1505 static int bnx2x_validate_vlan_mac(struct bnx2x *bp,
1506 union bnx2x_qable_obj *qo,
1507 struct bnx2x_exeq_elem *elem)
1508 {
1509 switch (elem->cmd_data.vlan_mac.cmd) {
1510 case BNX2X_VLAN_MAC_ADD:
1511 return bnx2x_validate_vlan_mac_add(bp, qo, elem);
1512 case BNX2X_VLAN_MAC_DEL:
1513 return bnx2x_validate_vlan_mac_del(bp, qo, elem);
1514 case BNX2X_VLAN_MAC_MOVE:
1515 return bnx2x_validate_vlan_mac_move(bp, qo, elem);
1516 default:
1517 return -EINVAL;
1518 }
1519 }
1520
1521 static int bnx2x_remove_vlan_mac(struct bnx2x *bp,
1522 union bnx2x_qable_obj *qo,
1523 struct bnx2x_exeq_elem *elem)
1524 {
1525 int rc = 0;
1526
1527 /* If consumption wasn't required, nothing to do */
1528 if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1529 &elem->cmd_data.vlan_mac.vlan_mac_flags))
1530 return 0;
1531
1532 switch (elem->cmd_data.vlan_mac.cmd) {
1533 case BNX2X_VLAN_MAC_ADD:
1534 case BNX2X_VLAN_MAC_MOVE:
1535 rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1536 break;
1537 case BNX2X_VLAN_MAC_DEL:
1538 rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1539 break;
1540 default:
1541 return -EINVAL;
1542 }
1543
1544 if (rc != true)
1545 return -EINVAL;
1546
1547 return 0;
1548 }
1549
1550 /**
1551 * bnx2x_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1552 *
1553 * @bp: device handle
1554 * @o: bnx2x_vlan_mac_obj
1555 *
1556 */
1557 static int bnx2x_wait_vlan_mac(struct bnx2x *bp,
1558 struct bnx2x_vlan_mac_obj *o)
1559 {
1560 int cnt = 5000, rc;
1561 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1562 struct bnx2x_raw_obj *raw = &o->raw;
1563
1564 while (cnt--) {
1565 /* Wait for the current command to complete */
1566 rc = raw->wait_comp(bp, raw);
1567 if (rc)
1568 return rc;
1569
1570 /* Wait until there are no pending commands */
1571 if (!bnx2x_exe_queue_empty(exeq))
1572 usleep_range(1000, 2000);
1573 else
1574 return 0;
1575 }
1576
1577 return -EBUSY;
1578 }
1579
1580 static int __bnx2x_vlan_mac_execute_step(struct bnx2x *bp,
1581 struct bnx2x_vlan_mac_obj *o,
1582 unsigned long *ramrod_flags)
1583 {
1584 int rc = 0;
1585
1586 spin_lock_bh(&o->exe_queue.lock);
1587
1588 DP(BNX2X_MSG_SP, "vlan_mac_execute_step - trying to take writer lock\n");
1589 rc = __bnx2x_vlan_mac_h_write_trylock(bp, o);
1590
1591 if (rc != 0) {
1592 __bnx2x_vlan_mac_h_pend(bp, o, *ramrod_flags);
1593
1594 /* Calling function should not diffrentiate between this case
1595 * and the case in which there is already a pending ramrod
1596 */
1597 rc = 1;
1598 } else {
1599 rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
1600 }
1601 spin_unlock_bh(&o->exe_queue.lock);
1602
1603 return rc;
1604 }
1605
1606 /**
1607 * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod
1608 *
1609 * @bp: device handle
1610 * @o: bnx2x_vlan_mac_obj
1611 * @cqe:
1612 * @cont: if true schedule next execution chunk
1613 *
1614 */
1615 static int bnx2x_complete_vlan_mac(struct bnx2x *bp,
1616 struct bnx2x_vlan_mac_obj *o,
1617 union event_ring_elem *cqe,
1618 unsigned long *ramrod_flags)
1619 {
1620 struct bnx2x_raw_obj *r = &o->raw;
1621 int rc;
1622
1623 /* Clearing the pending list & raw state should be made
1624 * atomically (as execution flow assumes they represent the same).
1625 */
1626 spin_lock_bh(&o->exe_queue.lock);
1627
1628 /* Reset pending list */
1629 __bnx2x_exe_queue_reset_pending(bp, &o->exe_queue);
1630
1631 /* Clear pending */
1632 r->clear_pending(r);
1633
1634 spin_unlock_bh(&o->exe_queue.lock);
1635
1636 /* If ramrod failed this is most likely a SW bug */
1637 if (cqe->message.error)
1638 return -EINVAL;
1639
1640 /* Run the next bulk of pending commands if requested */
1641 if (test_bit(RAMROD_CONT, ramrod_flags)) {
1642 rc = __bnx2x_vlan_mac_execute_step(bp, o, ramrod_flags);
1643
1644 if (rc < 0)
1645 return rc;
1646 }
1647
1648 /* If there is more work to do return PENDING */
1649 if (!bnx2x_exe_queue_empty(&o->exe_queue))
1650 return 1;
1651
1652 return 0;
1653 }
1654
1655 /**
1656 * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands.
1657 *
1658 * @bp: device handle
1659 * @o: bnx2x_qable_obj
1660 * @elem: bnx2x_exeq_elem
1661 */
1662 static int bnx2x_optimize_vlan_mac(struct bnx2x *bp,
1663 union bnx2x_qable_obj *qo,
1664 struct bnx2x_exeq_elem *elem)
1665 {
1666 struct bnx2x_exeq_elem query, *pos;
1667 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1668 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1669
1670 memcpy(&query, elem, sizeof(query));
1671
1672 switch (elem->cmd_data.vlan_mac.cmd) {
1673 case BNX2X_VLAN_MAC_ADD:
1674 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1675 break;
1676 case BNX2X_VLAN_MAC_DEL:
1677 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1678 break;
1679 default:
1680 /* Don't handle anything other than ADD or DEL */
1681 return 0;
1682 }
1683
1684 /* If we found the appropriate element - delete it */
1685 pos = exeq->get(exeq, &query);
1686 if (pos) {
1687
1688 /* Return the credit of the optimized command */
1689 if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1690 &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1691 if ((query.cmd_data.vlan_mac.cmd ==
1692 BNX2X_VLAN_MAC_ADD) && !o->put_credit(o)) {
1693 BNX2X_ERR("Failed to return the credit for the optimized ADD command\n");
1694 return -EINVAL;
1695 } else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1696 BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n");
1697 return -EINVAL;
1698 }
1699 }
1700
1701 DP(BNX2X_MSG_SP, "Optimizing %s command\n",
1702 (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1703 "ADD" : "DEL");
1704
1705 list_del(&pos->link);
1706 bnx2x_exe_queue_free_elem(bp, pos);
1707 return 1;
1708 }
1709
1710 return 0;
1711 }
1712
1713 /**
1714 * bnx2x_vlan_mac_get_registry_elem - prepare a registry element
1715 *
1716 * @bp: device handle
1717 * @o:
1718 * @elem:
1719 * @restore:
1720 * @re:
1721 *
1722 * prepare a registry element according to the current command request.
1723 */
1724 static inline int bnx2x_vlan_mac_get_registry_elem(
1725 struct bnx2x *bp,
1726 struct bnx2x_vlan_mac_obj *o,
1727 struct bnx2x_exeq_elem *elem,
1728 bool restore,
1729 struct bnx2x_vlan_mac_registry_elem **re)
1730 {
1731 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1732 struct bnx2x_vlan_mac_registry_elem *reg_elem;
1733
1734 /* Allocate a new registry element if needed. */
1735 if (!restore &&
1736 ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) {
1737 reg_elem = kzalloc(sizeof(*reg_elem), GFP_ATOMIC);
1738 if (!reg_elem)
1739 return -ENOMEM;
1740
1741 /* Get a new CAM offset */
1742 if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
1743 /* This shall never happen, because we have checked the
1744 * CAM availability in the 'validate'.
1745 */
1746 WARN_ON(1);
1747 kfree(reg_elem);
1748 return -EINVAL;
1749 }
1750
1751 DP(BNX2X_MSG_SP, "Got cam offset %d\n", reg_elem->cam_offset);
1752
1753 /* Set a VLAN-MAC data */
1754 memcpy(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
1755 sizeof(reg_elem->u));
1756
1757 /* Copy the flags (needed for DEL and RESTORE flows) */
1758 reg_elem->vlan_mac_flags =
1759 elem->cmd_data.vlan_mac.vlan_mac_flags;
1760 } else /* DEL, RESTORE */
1761 reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1762
1763 *re = reg_elem;
1764 return 0;
1765 }
1766
1767 /**
1768 * bnx2x_execute_vlan_mac - execute vlan mac command
1769 *
1770 * @bp: device handle
1771 * @qo:
1772 * @exe_chunk:
1773 * @ramrod_flags:
1774 *
1775 * go and send a ramrod!
1776 */
1777 static int bnx2x_execute_vlan_mac(struct bnx2x *bp,
1778 union bnx2x_qable_obj *qo,
1779 struct list_head *exe_chunk,
1780 unsigned long *ramrod_flags)
1781 {
1782 struct bnx2x_exeq_elem *elem;
1783 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1784 struct bnx2x_raw_obj *r = &o->raw;
1785 int rc, idx = 0;
1786 bool restore = test_bit(RAMROD_RESTORE, ramrod_flags);
1787 bool drv_only = test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1788 struct bnx2x_vlan_mac_registry_elem *reg_elem;
1789 enum bnx2x_vlan_mac_cmd cmd;
1790
1791 /* If DRIVER_ONLY execution is requested, cleanup a registry
1792 * and exit. Otherwise send a ramrod to FW.
1793 */
1794 if (!drv_only) {
1795 WARN_ON(r->check_pending(r));
1796
1797 /* Set pending */
1798 r->set_pending(r);
1799
1800 /* Fill the ramrod data */
1801 list_for_each_entry(elem, exe_chunk, link) {
1802 cmd = elem->cmd_data.vlan_mac.cmd;
1803 /* We will add to the target object in MOVE command, so
1804 * change the object for a CAM search.
1805 */
1806 if (cmd == BNX2X_VLAN_MAC_MOVE)
1807 cam_obj = elem->cmd_data.vlan_mac.target_obj;
1808 else
1809 cam_obj = o;
1810
1811 rc = bnx2x_vlan_mac_get_registry_elem(bp, cam_obj,
1812 elem, restore,
1813 &reg_elem);
1814 if (rc)
1815 goto error_exit;
1816
1817 WARN_ON(!reg_elem);
1818
1819 /* Push a new entry into the registry */
1820 if (!restore &&
1821 ((cmd == BNX2X_VLAN_MAC_ADD) ||
1822 (cmd == BNX2X_VLAN_MAC_MOVE)))
1823 list_add(&reg_elem->link, &cam_obj->head);
1824
1825 /* Configure a single command in a ramrod data buffer */
1826 o->set_one_rule(bp, o, elem, idx,
1827 reg_elem->cam_offset);
1828
1829 /* MOVE command consumes 2 entries in the ramrod data */
1830 if (cmd == BNX2X_VLAN_MAC_MOVE)
1831 idx += 2;
1832 else
1833 idx++;
1834 }
1835
1836 /* No need for an explicit memory barrier here as long we would
1837 * need to ensure the ordering of writing to the SPQ element
1838 * and updating of the SPQ producer which involves a memory
1839 * read and we will have to put a full memory barrier there
1840 * (inside bnx2x_sp_post()).
1841 */
1842
1843 rc = bnx2x_sp_post(bp, o->ramrod_cmd, r->cid,
1844 U64_HI(r->rdata_mapping),
1845 U64_LO(r->rdata_mapping),
1846 ETH_CONNECTION_TYPE);
1847 if (rc)
1848 goto error_exit;
1849 }
1850
1851 /* Now, when we are done with the ramrod - clean up the registry */
1852 list_for_each_entry(elem, exe_chunk, link) {
1853 cmd = elem->cmd_data.vlan_mac.cmd;
1854 if ((cmd == BNX2X_VLAN_MAC_DEL) ||
1855 (cmd == BNX2X_VLAN_MAC_MOVE)) {
1856 reg_elem = o->check_del(bp, o,
1857 &elem->cmd_data.vlan_mac.u);
1858
1859 WARN_ON(!reg_elem);
1860
1861 o->put_cam_offset(o, reg_elem->cam_offset);
1862 list_del(&reg_elem->link);
1863 kfree(reg_elem);
1864 }
1865 }
1866
1867 if (!drv_only)
1868 return 1;
1869 else
1870 return 0;
1871
1872 error_exit:
1873 r->clear_pending(r);
1874
1875 /* Cleanup a registry in case of a failure */
1876 list_for_each_entry(elem, exe_chunk, link) {
1877 cmd = elem->cmd_data.vlan_mac.cmd;
1878
1879 if (cmd == BNX2X_VLAN_MAC_MOVE)
1880 cam_obj = elem->cmd_data.vlan_mac.target_obj;
1881 else
1882 cam_obj = o;
1883
1884 /* Delete all newly added above entries */
1885 if (!restore &&
1886 ((cmd == BNX2X_VLAN_MAC_ADD) ||
1887 (cmd == BNX2X_VLAN_MAC_MOVE))) {
1888 reg_elem = o->check_del(bp, cam_obj,
1889 &elem->cmd_data.vlan_mac.u);
1890 if (reg_elem) {
1891 list_del(&reg_elem->link);
1892 kfree(reg_elem);
1893 }
1894 }
1895 }
1896
1897 return rc;
1898 }
1899
1900 static inline int bnx2x_vlan_mac_push_new_cmd(
1901 struct bnx2x *bp,
1902 struct bnx2x_vlan_mac_ramrod_params *p)
1903 {
1904 struct bnx2x_exeq_elem *elem;
1905 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1906 bool restore = test_bit(RAMROD_RESTORE, &p->ramrod_flags);
1907
1908 /* Allocate the execution queue element */
1909 elem = bnx2x_exe_queue_alloc_elem(bp);
1910 if (!elem)
1911 return -ENOMEM;
1912
1913 /* Set the command 'length' */
1914 switch (p->user_req.cmd) {
1915 case BNX2X_VLAN_MAC_MOVE:
1916 elem->cmd_len = 2;
1917 break;
1918 default:
1919 elem->cmd_len = 1;
1920 }
1921
1922 /* Fill the object specific info */
1923 memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
1924
1925 /* Try to add a new command to the pending list */
1926 return bnx2x_exe_queue_add(bp, &o->exe_queue, elem, restore);
1927 }
1928
1929 /**
1930 * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1931 *
1932 * @bp: device handle
1933 * @p:
1934 *
1935 */
1936 int bnx2x_config_vlan_mac(struct bnx2x *bp,
1937 struct bnx2x_vlan_mac_ramrod_params *p)
1938 {
1939 int rc = 0;
1940 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1941 unsigned long *ramrod_flags = &p->ramrod_flags;
1942 bool cont = test_bit(RAMROD_CONT, ramrod_flags);
1943 struct bnx2x_raw_obj *raw = &o->raw;
1944
1945 /*
1946 * Add new elements to the execution list for commands that require it.
1947 */
1948 if (!cont) {
1949 rc = bnx2x_vlan_mac_push_new_cmd(bp, p);
1950 if (rc)
1951 return rc;
1952 }
1953
1954 /* If nothing will be executed further in this iteration we want to
1955 * return PENDING if there are pending commands
1956 */
1957 if (!bnx2x_exe_queue_empty(&o->exe_queue))
1958 rc = 1;
1959
1960 if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
1961 DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
1962 raw->clear_pending(raw);
1963 }
1964
1965 /* Execute commands if required */
1966 if (cont || test_bit(RAMROD_EXEC, ramrod_flags) ||
1967 test_bit(RAMROD_COMP_WAIT, ramrod_flags)) {
1968 rc = __bnx2x_vlan_mac_execute_step(bp, p->vlan_mac_obj,
1969 &p->ramrod_flags);
1970 if (rc < 0)
1971 return rc;
1972 }
1973
1974 /* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
1975 * then user want to wait until the last command is done.
1976 */
1977 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
1978 /* Wait maximum for the current exe_queue length iterations plus
1979 * one (for the current pending command).
1980 */
1981 int max_iterations = bnx2x_exe_queue_length(&o->exe_queue) + 1;
1982
1983 while (!bnx2x_exe_queue_empty(&o->exe_queue) &&
1984 max_iterations--) {
1985
1986 /* Wait for the current command to complete */
1987 rc = raw->wait_comp(bp, raw);
1988 if (rc)
1989 return rc;
1990
1991 /* Make a next step */
1992 rc = __bnx2x_vlan_mac_execute_step(bp,
1993 p->vlan_mac_obj,
1994 &p->ramrod_flags);
1995 if (rc < 0)
1996 return rc;
1997 }
1998
1999 return 0;
2000 }
2001
2002 return rc;
2003 }
2004
2005 /**
2006 * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2007 *
2008 * @bp: device handle
2009 * @o:
2010 * @vlan_mac_flags:
2011 * @ramrod_flags: execution flags to be used for this deletion
2012 *
2013 * if the last operation has completed successfully and there are no
2014 * more elements left, positive value if the last operation has completed
2015 * successfully and there are more previously configured elements, negative
2016 * value is current operation has failed.
2017 */
2018 static int bnx2x_vlan_mac_del_all(struct bnx2x *bp,
2019 struct bnx2x_vlan_mac_obj *o,
2020 unsigned long *vlan_mac_flags,
2021 unsigned long *ramrod_flags)
2022 {
2023 struct bnx2x_vlan_mac_registry_elem *pos = NULL;
2024 struct bnx2x_vlan_mac_ramrod_params p;
2025 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
2026 struct bnx2x_exeq_elem *exeq_pos, *exeq_pos_n;
2027 unsigned long flags;
2028 int read_lock;
2029 int rc = 0;
2030
2031 /* Clear pending commands first */
2032
2033 spin_lock_bh(&exeq->lock);
2034
2035 list_for_each_entry_safe(exeq_pos, exeq_pos_n, &exeq->exe_queue, link) {
2036 flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags;
2037 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2038 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2039 rc = exeq->remove(bp, exeq->owner, exeq_pos);
2040 if (rc) {
2041 BNX2X_ERR("Failed to remove command\n");
2042 spin_unlock_bh(&exeq->lock);
2043 return rc;
2044 }
2045 list_del(&exeq_pos->link);
2046 bnx2x_exe_queue_free_elem(bp, exeq_pos);
2047 }
2048 }
2049
2050 spin_unlock_bh(&exeq->lock);
2051
2052 /* Prepare a command request */
2053 memset(&p, 0, sizeof(p));
2054 p.vlan_mac_obj = o;
2055 p.ramrod_flags = *ramrod_flags;
2056 p.user_req.cmd = BNX2X_VLAN_MAC_DEL;
2057
2058 /* Add all but the last VLAN-MAC to the execution queue without actually
2059 * execution anything.
2060 */
2061 __clear_bit(RAMROD_COMP_WAIT, &p.ramrod_flags);
2062 __clear_bit(RAMROD_EXEC, &p.ramrod_flags);
2063 __clear_bit(RAMROD_CONT, &p.ramrod_flags);
2064
2065 DP(BNX2X_MSG_SP, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2066 read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
2067 if (read_lock != 0)
2068 return read_lock;
2069
2070 list_for_each_entry(pos, &o->head, link) {
2071 flags = pos->vlan_mac_flags;
2072 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2073 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2074 p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
2075 memcpy(&p.user_req.u, &pos->u, sizeof(pos->u));
2076 rc = bnx2x_config_vlan_mac(bp, &p);
2077 if (rc < 0) {
2078 BNX2X_ERR("Failed to add a new DEL command\n");
2079 bnx2x_vlan_mac_h_read_unlock(bp, o);
2080 return rc;
2081 }
2082 }
2083 }
2084
2085 DP(BNX2X_MSG_SP, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2086 bnx2x_vlan_mac_h_read_unlock(bp, o);
2087
2088 p.ramrod_flags = *ramrod_flags;
2089 __set_bit(RAMROD_CONT, &p.ramrod_flags);
2090
2091 return bnx2x_config_vlan_mac(bp, &p);
2092 }
2093
2094 static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj *raw, u8 cl_id,
2095 u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state,
2096 unsigned long *pstate, bnx2x_obj_type type)
2097 {
2098 raw->func_id = func_id;
2099 raw->cid = cid;
2100 raw->cl_id = cl_id;
2101 raw->rdata = rdata;
2102 raw->rdata_mapping = rdata_mapping;
2103 raw->state = state;
2104 raw->pstate = pstate;
2105 raw->obj_type = type;
2106 raw->check_pending = bnx2x_raw_check_pending;
2107 raw->clear_pending = bnx2x_raw_clear_pending;
2108 raw->set_pending = bnx2x_raw_set_pending;
2109 raw->wait_comp = bnx2x_raw_wait;
2110 }
2111
2112 static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj *o,
2113 u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping,
2114 int state, unsigned long *pstate, bnx2x_obj_type type,
2115 struct bnx2x_credit_pool_obj *macs_pool,
2116 struct bnx2x_credit_pool_obj *vlans_pool)
2117 {
2118 INIT_LIST_HEAD(&o->head);
2119 o->head_reader = 0;
2120 o->head_exe_request = false;
2121 o->saved_ramrod_flags = 0;
2122
2123 o->macs_pool = macs_pool;
2124 o->vlans_pool = vlans_pool;
2125
2126 o->delete_all = bnx2x_vlan_mac_del_all;
2127 o->restore = bnx2x_vlan_mac_restore;
2128 o->complete = bnx2x_complete_vlan_mac;
2129 o->wait = bnx2x_wait_vlan_mac;
2130
2131 bnx2x_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
2132 state, pstate, type);
2133 }
2134
2135 void bnx2x_init_mac_obj(struct bnx2x *bp,
2136 struct bnx2x_vlan_mac_obj *mac_obj,
2137 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2138 dma_addr_t rdata_mapping, int state,
2139 unsigned long *pstate, bnx2x_obj_type type,
2140 struct bnx2x_credit_pool_obj *macs_pool)
2141 {
2142 union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)mac_obj;
2143
2144 bnx2x_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
2145 rdata_mapping, state, pstate, type,
2146 macs_pool, NULL);
2147
2148 /* CAM credit pool handling */
2149 mac_obj->get_credit = bnx2x_get_credit_mac;
2150 mac_obj->put_credit = bnx2x_put_credit_mac;
2151 mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2152 mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2153
2154 if (CHIP_IS_E1x(bp)) {
2155 mac_obj->set_one_rule = bnx2x_set_one_mac_e1x;
2156 mac_obj->check_del = bnx2x_check_mac_del;
2157 mac_obj->check_add = bnx2x_check_mac_add;
2158 mac_obj->check_move = bnx2x_check_move_always_err;
2159 mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
2160
2161 /* Exe Queue */
2162 bnx2x_exe_queue_init(bp,
2163 &mac_obj->exe_queue, 1, qable_obj,
2164 bnx2x_validate_vlan_mac,
2165 bnx2x_remove_vlan_mac,
2166 bnx2x_optimize_vlan_mac,
2167 bnx2x_execute_vlan_mac,
2168 bnx2x_exeq_get_mac);
2169 } else {
2170 mac_obj->set_one_rule = bnx2x_set_one_mac_e2;
2171 mac_obj->check_del = bnx2x_check_mac_del;
2172 mac_obj->check_add = bnx2x_check_mac_add;
2173 mac_obj->check_move = bnx2x_check_move;
2174 mac_obj->ramrod_cmd =
2175 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2176 mac_obj->get_n_elements = bnx2x_get_n_elements;
2177
2178 /* Exe Queue */
2179 bnx2x_exe_queue_init(bp,
2180 &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
2181 qable_obj, bnx2x_validate_vlan_mac,
2182 bnx2x_remove_vlan_mac,
2183 bnx2x_optimize_vlan_mac,
2184 bnx2x_execute_vlan_mac,
2185 bnx2x_exeq_get_mac);
2186 }
2187 }
2188
2189 void bnx2x_init_vlan_obj(struct bnx2x *bp,
2190 struct bnx2x_vlan_mac_obj *vlan_obj,
2191 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2192 dma_addr_t rdata_mapping, int state,
2193 unsigned long *pstate, bnx2x_obj_type type,
2194 struct bnx2x_credit_pool_obj *vlans_pool)
2195 {
2196 union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_obj;
2197
2198 bnx2x_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2199 rdata_mapping, state, pstate, type, NULL,
2200 vlans_pool);
2201
2202 vlan_obj->get_credit = bnx2x_get_credit_vlan;
2203 vlan_obj->put_credit = bnx2x_put_credit_vlan;
2204 vlan_obj->get_cam_offset = bnx2x_get_cam_offset_vlan;
2205 vlan_obj->put_cam_offset = bnx2x_put_cam_offset_vlan;
2206
2207 if (CHIP_IS_E1x(bp)) {
2208 BNX2X_ERR("Do not support chips others than E2 and newer\n");
2209 BUG();
2210 } else {
2211 vlan_obj->set_one_rule = bnx2x_set_one_vlan_e2;
2212 vlan_obj->check_del = bnx2x_check_vlan_del;
2213 vlan_obj->check_add = bnx2x_check_vlan_add;
2214 vlan_obj->check_move = bnx2x_check_move;
2215 vlan_obj->ramrod_cmd =
2216 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2217 vlan_obj->get_n_elements = bnx2x_get_n_elements;
2218
2219 /* Exe Queue */
2220 bnx2x_exe_queue_init(bp,
2221 &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2222 qable_obj, bnx2x_validate_vlan_mac,
2223 bnx2x_remove_vlan_mac,
2224 bnx2x_optimize_vlan_mac,
2225 bnx2x_execute_vlan_mac,
2226 bnx2x_exeq_get_vlan);
2227 }
2228 }
2229
2230 void bnx2x_init_vlan_mac_obj(struct bnx2x *bp,
2231 struct bnx2x_vlan_mac_obj *vlan_mac_obj,
2232 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2233 dma_addr_t rdata_mapping, int state,
2234 unsigned long *pstate, bnx2x_obj_type type,
2235 struct bnx2x_credit_pool_obj *macs_pool,
2236 struct bnx2x_credit_pool_obj *vlans_pool)
2237 {
2238 union bnx2x_qable_obj *qable_obj =
2239 (union bnx2x_qable_obj *)vlan_mac_obj;
2240
2241 bnx2x_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2242 rdata_mapping, state, pstate, type,
2243 macs_pool, vlans_pool);
2244
2245 /* CAM pool handling */
2246 vlan_mac_obj->get_credit = bnx2x_get_credit_vlan_mac;
2247 vlan_mac_obj->put_credit = bnx2x_put_credit_vlan_mac;
2248 /* CAM offset is relevant for 57710 and 57711 chips only which have a
2249 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2250 * will be taken from MACs' pool object only.
2251 */
2252 vlan_mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2253 vlan_mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2254
2255 if (CHIP_IS_E1(bp)) {
2256 BNX2X_ERR("Do not support chips others than E2\n");
2257 BUG();
2258 } else if (CHIP_IS_E1H(bp)) {
2259 vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e1h;
2260 vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del;
2261 vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add;
2262 vlan_mac_obj->check_move = bnx2x_check_move_always_err;
2263 vlan_mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
2264
2265 /* Exe Queue */
2266 bnx2x_exe_queue_init(bp,
2267 &vlan_mac_obj->exe_queue, 1, qable_obj,
2268 bnx2x_validate_vlan_mac,
2269 bnx2x_remove_vlan_mac,
2270 bnx2x_optimize_vlan_mac,
2271 bnx2x_execute_vlan_mac,
2272 bnx2x_exeq_get_vlan_mac);
2273 } else {
2274 vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e2;
2275 vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del;
2276 vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add;
2277 vlan_mac_obj->check_move = bnx2x_check_move;
2278 vlan_mac_obj->ramrod_cmd =
2279 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2280
2281 /* Exe Queue */
2282 bnx2x_exe_queue_init(bp,
2283 &vlan_mac_obj->exe_queue,
2284 CLASSIFY_RULES_COUNT,
2285 qable_obj, bnx2x_validate_vlan_mac,
2286 bnx2x_remove_vlan_mac,
2287 bnx2x_optimize_vlan_mac,
2288 bnx2x_execute_vlan_mac,
2289 bnx2x_exeq_get_vlan_mac);
2290 }
2291 }
2292 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2293 static inline void __storm_memset_mac_filters(struct bnx2x *bp,
2294 struct tstorm_eth_mac_filter_config *mac_filters,
2295 u16 pf_id)
2296 {
2297 size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2298
2299 u32 addr = BAR_TSTRORM_INTMEM +
2300 TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2301
2302 __storm_memset_struct(bp, addr, size, (u32 *)mac_filters);
2303 }
2304
2305 static int bnx2x_set_rx_mode_e1x(struct bnx2x *bp,
2306 struct bnx2x_rx_mode_ramrod_params *p)
2307 {
2308 /* update the bp MAC filter structure */
2309 u32 mask = (1 << p->cl_id);
2310
2311 struct tstorm_eth_mac_filter_config *mac_filters =
2312 (struct tstorm_eth_mac_filter_config *)p->rdata;
2313
2314 /* initial setting is drop-all */
2315 u8 drop_all_ucast = 1, drop_all_mcast = 1;
2316 u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2317 u8 unmatched_unicast = 0;
2318
2319 /* In e1x there we only take into account rx accept flag since tx switching
2320 * isn't enabled. */
2321 if (test_bit(BNX2X_ACCEPT_UNICAST, &p->rx_accept_flags))
2322 /* accept matched ucast */
2323 drop_all_ucast = 0;
2324
2325 if (test_bit(BNX2X_ACCEPT_MULTICAST, &p->rx_accept_flags))
2326 /* accept matched mcast */
2327 drop_all_mcast = 0;
2328
2329 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2330 /* accept all mcast */
2331 drop_all_ucast = 0;
2332 accp_all_ucast = 1;
2333 }
2334 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2335 /* accept all mcast */
2336 drop_all_mcast = 0;
2337 accp_all_mcast = 1;
2338 }
2339 if (test_bit(BNX2X_ACCEPT_BROADCAST, &p->rx_accept_flags))
2340 /* accept (all) bcast */
2341 accp_all_bcast = 1;
2342 if (test_bit(BNX2X_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2343 /* accept unmatched unicasts */
2344 unmatched_unicast = 1;
2345
2346 mac_filters->ucast_drop_all = drop_all_ucast ?
2347 mac_filters->ucast_drop_all | mask :
2348 mac_filters->ucast_drop_all & ~mask;
2349
2350 mac_filters->mcast_drop_all = drop_all_mcast ?
2351 mac_filters->mcast_drop_all | mask :
2352 mac_filters->mcast_drop_all & ~mask;
2353
2354 mac_filters->ucast_accept_all = accp_all_ucast ?
2355 mac_filters->ucast_accept_all | mask :
2356 mac_filters->ucast_accept_all & ~mask;
2357
2358 mac_filters->mcast_accept_all = accp_all_mcast ?
2359 mac_filters->mcast_accept_all | mask :
2360 mac_filters->mcast_accept_all & ~mask;
2361
2362 mac_filters->bcast_accept_all = accp_all_bcast ?
2363 mac_filters->bcast_accept_all | mask :
2364 mac_filters->bcast_accept_all & ~mask;
2365
2366 mac_filters->unmatched_unicast = unmatched_unicast ?
2367 mac_filters->unmatched_unicast | mask :
2368 mac_filters->unmatched_unicast & ~mask;
2369
2370 DP(BNX2X_MSG_SP, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2371 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2372 mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2373 mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2374 mac_filters->bcast_accept_all);
2375
2376 /* write the MAC filter structure*/
2377 __storm_memset_mac_filters(bp, mac_filters, p->func_id);
2378
2379 /* The operation is completed */
2380 clear_bit(p->state, p->pstate);
2381 smp_mb__after_atomic();
2382
2383 return 0;
2384 }
2385
2386 /* Setup ramrod data */
2387 static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid,
2388 struct eth_classify_header *hdr,
2389 u8 rule_cnt)
2390 {
2391 hdr->echo = cpu_to_le32(cid);
2392 hdr->rule_cnt = rule_cnt;
2393 }
2394
2395 static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x *bp,
2396 unsigned long *accept_flags,
2397 struct eth_filter_rules_cmd *cmd,
2398 bool clear_accept_all)
2399 {
2400 u16 state;
2401
2402 /* start with 'drop-all' */
2403 state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2404 ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2405
2406 if (test_bit(BNX2X_ACCEPT_UNICAST, accept_flags))
2407 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2408
2409 if (test_bit(BNX2X_ACCEPT_MULTICAST, accept_flags))
2410 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2411
2412 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, accept_flags)) {
2413 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2414 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2415 }
2416
2417 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, accept_flags)) {
2418 state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2419 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2420 }
2421
2422 if (test_bit(BNX2X_ACCEPT_BROADCAST, accept_flags))
2423 state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2424
2425 if (test_bit(BNX2X_ACCEPT_UNMATCHED, accept_flags)) {
2426 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2427 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2428 }
2429
2430 if (test_bit(BNX2X_ACCEPT_ANY_VLAN, accept_flags))
2431 state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2432
2433 /* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2434 if (clear_accept_all) {
2435 state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2436 state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2437 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2438 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2439 }
2440
2441 cmd->state = cpu_to_le16(state);
2442 }
2443
2444 static int bnx2x_set_rx_mode_e2(struct bnx2x *bp,
2445 struct bnx2x_rx_mode_ramrod_params *p)
2446 {
2447 struct eth_filter_rules_ramrod_data *data = p->rdata;
2448 int rc;
2449 u8 rule_idx = 0;
2450
2451 /* Reset the ramrod data buffer */
2452 memset(data, 0, sizeof(*data));
2453
2454 /* Setup ramrod data */
2455
2456 /* Tx (internal switching) */
2457 if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2458 data->rules[rule_idx].client_id = p->cl_id;
2459 data->rules[rule_idx].func_id = p->func_id;
2460
2461 data->rules[rule_idx].cmd_general_data =
2462 ETH_FILTER_RULES_CMD_TX_CMD;
2463
2464 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2465 &(data->rules[rule_idx++]),
2466 false);
2467 }
2468
2469 /* Rx */
2470 if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2471 data->rules[rule_idx].client_id = p->cl_id;
2472 data->rules[rule_idx].func_id = p->func_id;
2473
2474 data->rules[rule_idx].cmd_general_data =
2475 ETH_FILTER_RULES_CMD_RX_CMD;
2476
2477 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2478 &(data->rules[rule_idx++]),
2479 false);
2480 }
2481
2482 /* If FCoE Queue configuration has been requested configure the Rx and
2483 * internal switching modes for this queue in separate rules.
2484 *
2485 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2486 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2487 */
2488 if (test_bit(BNX2X_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2489 /* Tx (internal switching) */
2490 if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2491 data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2492 data->rules[rule_idx].func_id = p->func_id;
2493
2494 data->rules[rule_idx].cmd_general_data =
2495 ETH_FILTER_RULES_CMD_TX_CMD;
2496
2497 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2498 &(data->rules[rule_idx]),
2499 true);
2500 rule_idx++;
2501 }
2502
2503 /* Rx */
2504 if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2505 data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2506 data->rules[rule_idx].func_id = p->func_id;
2507
2508 data->rules[rule_idx].cmd_general_data =
2509 ETH_FILTER_RULES_CMD_RX_CMD;
2510
2511 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2512 &(data->rules[rule_idx]),
2513 true);
2514 rule_idx++;
2515 }
2516 }
2517
2518 /* Set the ramrod header (most importantly - number of rules to
2519 * configure).
2520 */
2521 bnx2x_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2522
2523 DP(BNX2X_MSG_SP, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2524 data->header.rule_cnt, p->rx_accept_flags,
2525 p->tx_accept_flags);
2526
2527 /* No need for an explicit memory barrier here as long as we
2528 * ensure the ordering of writing to the SPQ element
2529 * and updating of the SPQ producer which involves a memory
2530 * read. If the memory read is removed we will have to put a
2531 * full memory barrier there (inside bnx2x_sp_post()).
2532 */
2533
2534 /* Send a ramrod */
2535 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_FILTER_RULES, p->cid,
2536 U64_HI(p->rdata_mapping),
2537 U64_LO(p->rdata_mapping),
2538 ETH_CONNECTION_TYPE);
2539 if (rc)
2540 return rc;
2541
2542 /* Ramrod completion is pending */
2543 return 1;
2544 }
2545
2546 static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x *bp,
2547 struct bnx2x_rx_mode_ramrod_params *p)
2548 {
2549 return bnx2x_state_wait(bp, p->state, p->pstate);
2550 }
2551
2552 static int bnx2x_empty_rx_mode_wait(struct bnx2x *bp,
2553 struct bnx2x_rx_mode_ramrod_params *p)
2554 {
2555 /* Do nothing */
2556 return 0;
2557 }
2558
2559 int bnx2x_config_rx_mode(struct bnx2x *bp,
2560 struct bnx2x_rx_mode_ramrod_params *p)
2561 {
2562 int rc;
2563
2564 /* Configure the new classification in the chip */
2565 rc = p->rx_mode_obj->config_rx_mode(bp, p);
2566 if (rc < 0)
2567 return rc;
2568
2569 /* Wait for a ramrod completion if was requested */
2570 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2571 rc = p->rx_mode_obj->wait_comp(bp, p);
2572 if (rc)
2573 return rc;
2574 }
2575
2576 return rc;
2577 }
2578
2579 void bnx2x_init_rx_mode_obj(struct bnx2x *bp,
2580 struct bnx2x_rx_mode_obj *o)
2581 {
2582 if (CHIP_IS_E1x(bp)) {
2583 o->wait_comp = bnx2x_empty_rx_mode_wait;
2584 o->config_rx_mode = bnx2x_set_rx_mode_e1x;
2585 } else {
2586 o->wait_comp = bnx2x_wait_rx_mode_comp_e2;
2587 o->config_rx_mode = bnx2x_set_rx_mode_e2;
2588 }
2589 }
2590
2591 /********************* Multicast verbs: SET, CLEAR ****************************/
2592 static inline u8 bnx2x_mcast_bin_from_mac(u8 *mac)
2593 {
2594 return (crc32c_le(0, mac, ETH_ALEN) >> 24) & 0xff;
2595 }
2596
2597 struct bnx2x_mcast_mac_elem {
2598 struct list_head link;
2599 u8 mac[ETH_ALEN];
2600 u8 pad[2]; /* For a natural alignment of the following buffer */
2601 };
2602
2603 struct bnx2x_pending_mcast_cmd {
2604 struct list_head link;
2605 int type; /* BNX2X_MCAST_CMD_X */
2606 union {
2607 struct list_head macs_head;
2608 u32 macs_num; /* Needed for DEL command */
2609 int next_bin; /* Needed for RESTORE flow with aprox match */
2610 } data;
2611
2612 bool done; /* set to true, when the command has been handled,
2613 * practically used in 57712 handling only, where one pending
2614 * command may be handled in a few operations. As long as for
2615 * other chips every operation handling is completed in a
2616 * single ramrod, there is no need to utilize this field.
2617 */
2618 };
2619
2620 static int bnx2x_mcast_wait(struct bnx2x *bp,
2621 struct bnx2x_mcast_obj *o)
2622 {
2623 if (bnx2x_state_wait(bp, o->sched_state, o->raw.pstate) ||
2624 o->raw.wait_comp(bp, &o->raw))
2625 return -EBUSY;
2626
2627 return 0;
2628 }
2629
2630 static int bnx2x_mcast_enqueue_cmd(struct bnx2x *bp,
2631 struct bnx2x_mcast_obj *o,
2632 struct bnx2x_mcast_ramrod_params *p,
2633 enum bnx2x_mcast_cmd cmd)
2634 {
2635 int total_sz;
2636 struct bnx2x_pending_mcast_cmd *new_cmd;
2637 struct bnx2x_mcast_mac_elem *cur_mac = NULL;
2638 struct bnx2x_mcast_list_elem *pos;
2639 int macs_list_len = ((cmd == BNX2X_MCAST_CMD_ADD) ?
2640 p->mcast_list_len : 0);
2641
2642 /* If the command is empty ("handle pending commands only"), break */
2643 if (!p->mcast_list_len)
2644 return 0;
2645
2646 total_sz = sizeof(*new_cmd) +
2647 macs_list_len * sizeof(struct bnx2x_mcast_mac_elem);
2648
2649 /* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2650 new_cmd = kzalloc(total_sz, GFP_ATOMIC);
2651
2652 if (!new_cmd)
2653 return -ENOMEM;
2654
2655 DP(BNX2X_MSG_SP, "About to enqueue a new %d command. macs_list_len=%d\n",
2656 cmd, macs_list_len);
2657
2658 INIT_LIST_HEAD(&new_cmd->data.macs_head);
2659
2660 new_cmd->type = cmd;
2661 new_cmd->done = false;
2662
2663 switch (cmd) {
2664 case BNX2X_MCAST_CMD_ADD:
2665 cur_mac = (struct bnx2x_mcast_mac_elem *)
2666 ((u8 *)new_cmd + sizeof(*new_cmd));
2667
2668 /* Push the MACs of the current command into the pending command
2669 * MACs list: FIFO
2670 */
2671 list_for_each_entry(pos, &p->mcast_list, link) {
2672 memcpy(cur_mac->mac, pos->mac, ETH_ALEN);
2673 list_add_tail(&cur_mac->link, &new_cmd->data.macs_head);
2674 cur_mac++;
2675 }
2676
2677 break;
2678
2679 case BNX2X_MCAST_CMD_DEL:
2680 new_cmd->data.macs_num = p->mcast_list_len;
2681 break;
2682
2683 case BNX2X_MCAST_CMD_RESTORE:
2684 new_cmd->data.next_bin = 0;
2685 break;
2686
2687 default:
2688 kfree(new_cmd);
2689 BNX2X_ERR("Unknown command: %d\n", cmd);
2690 return -EINVAL;
2691 }
2692
2693 /* Push the new pending command to the tail of the pending list: FIFO */
2694 list_add_tail(&new_cmd->link, &o->pending_cmds_head);
2695
2696 o->set_sched(o);
2697
2698 return 1;
2699 }
2700
2701 /**
2702 * bnx2x_mcast_get_next_bin - get the next set bin (index)
2703 *
2704 * @o:
2705 * @last: index to start looking from (including)
2706 *
2707 * returns the next found (set) bin or a negative value if none is found.
2708 */
2709 static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj *o, int last)
2710 {
2711 int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2712
2713 for (i = last / BIT_VEC64_ELEM_SZ; i < BNX2X_MCAST_VEC_SZ; i++) {
2714 if (o->registry.aprox_match.vec[i])
2715 for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2716 int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2717 if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2718 vec, cur_bit)) {
2719 return cur_bit;
2720 }
2721 }
2722 inner_start = 0;
2723 }
2724
2725 /* None found */
2726 return -1;
2727 }
2728
2729 /**
2730 * bnx2x_mcast_clear_first_bin - find the first set bin and clear it
2731 *
2732 * @o:
2733 *
2734 * returns the index of the found bin or -1 if none is found
2735 */
2736 static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj *o)
2737 {
2738 int cur_bit = bnx2x_mcast_get_next_bin(o, 0);
2739
2740 if (cur_bit >= 0)
2741 BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2742
2743 return cur_bit;
2744 }
2745
2746 static inline u8 bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj *o)
2747 {
2748 struct bnx2x_raw_obj *raw = &o->raw;
2749 u8 rx_tx_flag = 0;
2750
2751 if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
2752 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2753 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2754
2755 if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
2756 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2757 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2758
2759 return rx_tx_flag;
2760 }
2761
2762 static void bnx2x_mcast_set_one_rule_e2(struct bnx2x *bp,
2763 struct bnx2x_mcast_obj *o, int idx,
2764 union bnx2x_mcast_config_data *cfg_data,
2765 enum bnx2x_mcast_cmd cmd)
2766 {
2767 struct bnx2x_raw_obj *r = &o->raw;
2768 struct eth_multicast_rules_ramrod_data *data =
2769 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
2770 u8 func_id = r->func_id;
2771 u8 rx_tx_add_flag = bnx2x_mcast_get_rx_tx_flag(o);
2772 int bin;
2773
2774 if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE))
2775 rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
2776
2777 data->rules[idx].cmd_general_data |= rx_tx_add_flag;
2778
2779 /* Get a bin and update a bins' vector */
2780 switch (cmd) {
2781 case BNX2X_MCAST_CMD_ADD:
2782 bin = bnx2x_mcast_bin_from_mac(cfg_data->mac);
2783 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2784 break;
2785
2786 case BNX2X_MCAST_CMD_DEL:
2787 /* If there were no more bins to clear
2788 * (bnx2x_mcast_clear_first_bin() returns -1) then we would
2789 * clear any (0xff) bin.
2790 * See bnx2x_mcast_validate_e2() for explanation when it may
2791 * happen.
2792 */
2793 bin = bnx2x_mcast_clear_first_bin(o);
2794 break;
2795
2796 case BNX2X_MCAST_CMD_RESTORE:
2797 bin = cfg_data->bin;
2798 break;
2799
2800 default:
2801 BNX2X_ERR("Unknown command: %d\n", cmd);
2802 return;
2803 }
2804
2805 DP(BNX2X_MSG_SP, "%s bin %d\n",
2806 ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
2807 "Setting" : "Clearing"), bin);
2808
2809 data->rules[idx].bin_id = (u8)bin;
2810 data->rules[idx].func_id = func_id;
2811 data->rules[idx].engine_id = o->engine_id;
2812 }
2813
2814 /**
2815 * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2816 *
2817 * @bp: device handle
2818 * @o:
2819 * @start_bin: index in the registry to start from (including)
2820 * @rdata_idx: index in the ramrod data to start from
2821 *
2822 * returns last handled bin index or -1 if all bins have been handled
2823 */
2824 static inline int bnx2x_mcast_handle_restore_cmd_e2(
2825 struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_bin,
2826 int *rdata_idx)
2827 {
2828 int cur_bin, cnt = *rdata_idx;
2829 union bnx2x_mcast_config_data cfg_data = {NULL};
2830
2831 /* go through the registry and configure the bins from it */
2832 for (cur_bin = bnx2x_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
2833 cur_bin = bnx2x_mcast_get_next_bin(o, cur_bin + 1)) {
2834
2835 cfg_data.bin = (u8)cur_bin;
2836 o->set_one_rule(bp, o, cnt, &cfg_data,
2837 BNX2X_MCAST_CMD_RESTORE);
2838
2839 cnt++;
2840
2841 DP(BNX2X_MSG_SP, "About to configure a bin %d\n", cur_bin);
2842
2843 /* Break if we reached the maximum number
2844 * of rules.
2845 */
2846 if (cnt >= o->max_cmd_len)
2847 break;
2848 }
2849
2850 *rdata_idx = cnt;
2851
2852 return cur_bin;
2853 }
2854
2855 static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x *bp,
2856 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2857 int *line_idx)
2858 {
2859 struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
2860 int cnt = *line_idx;
2861 union bnx2x_mcast_config_data cfg_data = {NULL};
2862
2863 list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
2864 link) {
2865
2866 cfg_data.mac = &pmac_pos->mac[0];
2867 o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
2868
2869 cnt++;
2870
2871 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2872 pmac_pos->mac);
2873
2874 list_del(&pmac_pos->link);
2875
2876 /* Break if we reached the maximum number
2877 * of rules.
2878 */
2879 if (cnt >= o->max_cmd_len)
2880 break;
2881 }
2882
2883 *line_idx = cnt;
2884
2885 /* if no more MACs to configure - we are done */
2886 if (list_empty(&cmd_pos->data.macs_head))
2887 cmd_pos->done = true;
2888 }
2889
2890 static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x *bp,
2891 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2892 int *line_idx)
2893 {
2894 int cnt = *line_idx;
2895
2896 while (cmd_pos->data.macs_num) {
2897 o->set_one_rule(bp, o, cnt, NULL, cmd_pos->type);
2898
2899 cnt++;
2900
2901 cmd_pos->data.macs_num--;
2902
2903 DP(BNX2X_MSG_SP, "Deleting MAC. %d left,cnt is %d\n",
2904 cmd_pos->data.macs_num, cnt);
2905
2906 /* Break if we reached the maximum
2907 * number of rules.
2908 */
2909 if (cnt >= o->max_cmd_len)
2910 break;
2911 }
2912
2913 *line_idx = cnt;
2914
2915 /* If we cleared all bins - we are done */
2916 if (!cmd_pos->data.macs_num)
2917 cmd_pos->done = true;
2918 }
2919
2920 static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x *bp,
2921 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2922 int *line_idx)
2923 {
2924 cmd_pos->data.next_bin = o->hdl_restore(bp, o, cmd_pos->data.next_bin,
2925 line_idx);
2926
2927 if (cmd_pos->data.next_bin < 0)
2928 /* If o->set_restore returned -1 we are done */
2929 cmd_pos->done = true;
2930 else
2931 /* Start from the next bin next time */
2932 cmd_pos->data.next_bin++;
2933 }
2934
2935 static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x *bp,
2936 struct bnx2x_mcast_ramrod_params *p)
2937 {
2938 struct bnx2x_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
2939 int cnt = 0;
2940 struct bnx2x_mcast_obj *o = p->mcast_obj;
2941
2942 list_for_each_entry_safe(cmd_pos, cmd_pos_n, &o->pending_cmds_head,
2943 link) {
2944 switch (cmd_pos->type) {
2945 case BNX2X_MCAST_CMD_ADD:
2946 bnx2x_mcast_hdl_pending_add_e2(bp, o, cmd_pos, &cnt);
2947 break;
2948
2949 case BNX2X_MCAST_CMD_DEL:
2950 bnx2x_mcast_hdl_pending_del_e2(bp, o, cmd_pos, &cnt);
2951 break;
2952
2953 case BNX2X_MCAST_CMD_RESTORE:
2954 bnx2x_mcast_hdl_pending_restore_e2(bp, o, cmd_pos,
2955 &cnt);
2956 break;
2957
2958 default:
2959 BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
2960 return -EINVAL;
2961 }
2962
2963 /* If the command has been completed - remove it from the list
2964 * and free the memory
2965 */
2966 if (cmd_pos->done) {
2967 list_del(&cmd_pos->link);
2968 kfree(cmd_pos);
2969 }
2970
2971 /* Break if we reached the maximum number of rules */
2972 if (cnt >= o->max_cmd_len)
2973 break;
2974 }
2975
2976 return cnt;
2977 }
2978
2979 static inline void bnx2x_mcast_hdl_add(struct bnx2x *bp,
2980 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
2981 int *line_idx)
2982 {
2983 struct bnx2x_mcast_list_elem *mlist_pos;
2984 union bnx2x_mcast_config_data cfg_data = {NULL};
2985 int cnt = *line_idx;
2986
2987 list_for_each_entry(mlist_pos, &p->mcast_list, link) {
2988 cfg_data.mac = mlist_pos->mac;
2989 o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_ADD);
2990
2991 cnt++;
2992
2993 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2994 mlist_pos->mac);
2995 }
2996
2997 *line_idx = cnt;
2998 }
2999
3000 static inline void bnx2x_mcast_hdl_del(struct bnx2x *bp,
3001 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3002 int *line_idx)
3003 {
3004 int cnt = *line_idx, i;
3005
3006 for (i = 0; i < p->mcast_list_len; i++) {
3007 o->set_one_rule(bp, o, cnt, NULL, BNX2X_MCAST_CMD_DEL);
3008
3009 cnt++;
3010
3011 DP(BNX2X_MSG_SP, "Deleting MAC. %d left\n",
3012 p->mcast_list_len - i - 1);
3013 }
3014
3015 *line_idx = cnt;
3016 }
3017
3018 /**
3019 * bnx2x_mcast_handle_current_cmd -
3020 *
3021 * @bp: device handle
3022 * @p:
3023 * @cmd:
3024 * @start_cnt: first line in the ramrod data that may be used
3025 *
3026 * This function is called iff there is enough place for the current command in
3027 * the ramrod data.
3028 * Returns number of lines filled in the ramrod data in total.
3029 */
3030 static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x *bp,
3031 struct bnx2x_mcast_ramrod_params *p,
3032 enum bnx2x_mcast_cmd cmd,
3033 int start_cnt)
3034 {
3035 struct bnx2x_mcast_obj *o = p->mcast_obj;
3036 int cnt = start_cnt;
3037
3038 DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3039
3040 switch (cmd) {
3041 case BNX2X_MCAST_CMD_ADD:
3042 bnx2x_mcast_hdl_add(bp, o, p, &cnt);
3043 break;
3044
3045 case BNX2X_MCAST_CMD_DEL:
3046 bnx2x_mcast_hdl_del(bp, o, p, &cnt);
3047 break;
3048
3049 case BNX2X_MCAST_CMD_RESTORE:
3050 o->hdl_restore(bp, o, 0, &cnt);
3051 break;
3052
3053 default:
3054 BNX2X_ERR("Unknown command: %d\n", cmd);
3055 return -EINVAL;
3056 }
3057
3058 /* The current command has been handled */
3059 p->mcast_list_len = 0;
3060
3061 return cnt;
3062 }
3063
3064 static int bnx2x_mcast_validate_e2(struct bnx2x *bp,
3065 struct bnx2x_mcast_ramrod_params *p,
3066 enum bnx2x_mcast_cmd cmd)
3067 {
3068 struct bnx2x_mcast_obj *o = p->mcast_obj;
3069 int reg_sz = o->get_registry_size(o);
3070
3071 switch (cmd) {
3072 /* DEL command deletes all currently configured MACs */
3073 case BNX2X_MCAST_CMD_DEL:
3074 o->set_registry_size(o, 0);
3075 /* Don't break */
3076
3077 /* RESTORE command will restore the entire multicast configuration */
3078 case BNX2X_MCAST_CMD_RESTORE:
3079 /* Here we set the approximate amount of work to do, which in
3080 * fact may be only less as some MACs in postponed ADD
3081 * command(s) scheduled before this command may fall into
3082 * the same bin and the actual number of bins set in the
3083 * registry would be less than we estimated here. See
3084 * bnx2x_mcast_set_one_rule_e2() for further details.
3085 */
3086 p->mcast_list_len = reg_sz;
3087 break;
3088
3089 case BNX2X_MCAST_CMD_ADD:
3090 case BNX2X_MCAST_CMD_CONT:
3091 /* Here we assume that all new MACs will fall into new bins.
3092 * However we will correct the real registry size after we
3093 * handle all pending commands.
3094 */
3095 o->set_registry_size(o, reg_sz + p->mcast_list_len);
3096 break;
3097
3098 default:
3099 BNX2X_ERR("Unknown command: %d\n", cmd);
3100 return -EINVAL;
3101 }
3102
3103 /* Increase the total number of MACs pending to be configured */
3104 o->total_pending_num += p->mcast_list_len;
3105
3106 return 0;
3107 }
3108
3109 static void bnx2x_mcast_revert_e2(struct bnx2x *bp,
3110 struct bnx2x_mcast_ramrod_params *p,
3111 int old_num_bins)
3112 {
3113 struct bnx2x_mcast_obj *o = p->mcast_obj;
3114
3115 o->set_registry_size(o, old_num_bins);
3116 o->total_pending_num -= p->mcast_list_len;
3117 }
3118
3119 /**
3120 * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values
3121 *
3122 * @bp: device handle
3123 * @p:
3124 * @len: number of rules to handle
3125 */
3126 static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x *bp,
3127 struct bnx2x_mcast_ramrod_params *p,
3128 u8 len)
3129 {
3130 struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3131 struct eth_multicast_rules_ramrod_data *data =
3132 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
3133
3134 data->header.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3135 (BNX2X_FILTER_MCAST_PENDING <<
3136 BNX2X_SWCID_SHIFT));
3137 data->header.rule_cnt = len;
3138 }
3139
3140 /**
3141 * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3142 *
3143 * @bp: device handle
3144 * @o:
3145 *
3146 * Recalculate the actual number of set bins in the registry using Brian
3147 * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3148 *
3149 * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1().
3150 */
3151 static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x *bp,
3152 struct bnx2x_mcast_obj *o)
3153 {
3154 int i, cnt = 0;
3155 u64 elem;
3156
3157 for (i = 0; i < BNX2X_MCAST_VEC_SZ; i++) {
3158 elem = o->registry.aprox_match.vec[i];
3159 for (; elem; cnt++)
3160 elem &= elem - 1;
3161 }
3162
3163 o->set_registry_size(o, cnt);
3164
3165 return 0;
3166 }
3167
3168 static int bnx2x_mcast_setup_e2(struct bnx2x *bp,
3169 struct bnx2x_mcast_ramrod_params *p,
3170 enum bnx2x_mcast_cmd cmd)
3171 {
3172 struct bnx2x_raw_obj *raw = &p->mcast_obj->raw;
3173 struct bnx2x_mcast_obj *o = p->mcast_obj;
3174 struct eth_multicast_rules_ramrod_data *data =
3175 (struct eth_multicast_rules_ramrod_data *)(raw->rdata);
3176 int cnt = 0, rc;
3177
3178 /* Reset the ramrod data buffer */
3179 memset(data, 0, sizeof(*data));
3180
3181 cnt = bnx2x_mcast_handle_pending_cmds_e2(bp, p);
3182
3183 /* If there are no more pending commands - clear SCHEDULED state */
3184 if (list_empty(&o->pending_cmds_head))
3185 o->clear_sched(o);
3186
3187 /* The below may be true iff there was enough room in ramrod
3188 * data for all pending commands and for the current
3189 * command. Otherwise the current command would have been added
3190 * to the pending commands and p->mcast_list_len would have been
3191 * zeroed.
3192 */
3193 if (p->mcast_list_len > 0)
3194 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, cnt);
3195
3196 /* We've pulled out some MACs - update the total number of
3197 * outstanding.
3198 */
3199 o->total_pending_num -= cnt;
3200
3201 /* send a ramrod */
3202 WARN_ON(o->total_pending_num < 0);
3203 WARN_ON(cnt > o->max_cmd_len);
3204
3205 bnx2x_mcast_set_rdata_hdr_e2(bp, p, (u8)cnt);
3206
3207 /* Update a registry size if there are no more pending operations.
3208 *
3209 * We don't want to change the value of the registry size if there are
3210 * pending operations because we want it to always be equal to the
3211 * exact or the approximate number (see bnx2x_mcast_validate_e2()) of
3212 * set bins after the last requested operation in order to properly
3213 * evaluate the size of the next DEL/RESTORE operation.
3214 *
3215 * Note that we update the registry itself during command(s) handling
3216 * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we
3217 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3218 * with a limited amount of update commands (per MAC/bin) and we don't
3219 * know in this scope what the actual state of bins configuration is
3220 * going to be after this ramrod.
3221 */
3222 if (!o->total_pending_num)
3223 bnx2x_mcast_refresh_registry_e2(bp, o);
3224
3225 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3226 * RAMROD_PENDING status immediately.
3227 */
3228 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3229 raw->clear_pending(raw);
3230 return 0;
3231 } else {
3232 /* No need for an explicit memory barrier here as long as we
3233 * ensure the ordering of writing to the SPQ element
3234 * and updating of the SPQ producer which involves a memory
3235 * read. If the memory read is removed we will have to put a
3236 * full memory barrier there (inside bnx2x_sp_post()).
3237 */
3238
3239 /* Send a ramrod */
3240 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3241 raw->cid, U64_HI(raw->rdata_mapping),
3242 U64_LO(raw->rdata_mapping),
3243 ETH_CONNECTION_TYPE);
3244 if (rc)
3245 return rc;
3246
3247 /* Ramrod completion is pending */
3248 return 1;
3249 }
3250 }
3251
3252 static int bnx2x_mcast_validate_e1h(struct bnx2x *bp,
3253 struct bnx2x_mcast_ramrod_params *p,
3254 enum bnx2x_mcast_cmd cmd)
3255 {
3256 /* Mark, that there is a work to do */
3257 if ((cmd == BNX2X_MCAST_CMD_DEL) || (cmd == BNX2X_MCAST_CMD_RESTORE))
3258 p->mcast_list_len = 1;
3259
3260 return 0;
3261 }
3262
3263 static void bnx2x_mcast_revert_e1h(struct bnx2x *bp,
3264 struct bnx2x_mcast_ramrod_params *p,
3265 int old_num_bins)
3266 {
3267 /* Do nothing */
3268 }
3269
3270 #define BNX2X_57711_SET_MC_FILTER(filter, bit) \
3271 do { \
3272 (filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3273 } while (0)
3274
3275 static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x *bp,
3276 struct bnx2x_mcast_obj *o,
3277 struct bnx2x_mcast_ramrod_params *p,
3278 u32 *mc_filter)
3279 {
3280 struct bnx2x_mcast_list_elem *mlist_pos;
3281 int bit;
3282
3283 list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3284 bit = bnx2x_mcast_bin_from_mac(mlist_pos->mac);
3285 BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3286
3287 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC, bin %d\n",
3288 mlist_pos->mac, bit);
3289
3290 /* bookkeeping... */
3291 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3292 bit);
3293 }
3294 }
3295
3296 static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x *bp,
3297 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3298 u32 *mc_filter)
3299 {
3300 int bit;
3301
3302 for (bit = bnx2x_mcast_get_next_bin(o, 0);
3303 bit >= 0;
3304 bit = bnx2x_mcast_get_next_bin(o, bit + 1)) {
3305 BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3306 DP(BNX2X_MSG_SP, "About to set bin %d\n", bit);
3307 }
3308 }
3309
3310 /* On 57711 we write the multicast MACs' approximate match
3311 * table by directly into the TSTORM's internal RAM. So we don't
3312 * really need to handle any tricks to make it work.
3313 */
3314 static int bnx2x_mcast_setup_e1h(struct bnx2x *bp,
3315 struct bnx2x_mcast_ramrod_params *p,
3316 enum bnx2x_mcast_cmd cmd)
3317 {
3318 int i;
3319 struct bnx2x_mcast_obj *o = p->mcast_obj;
3320 struct bnx2x_raw_obj *r = &o->raw;
3321
3322 /* If CLEAR_ONLY has been requested - clear the registry
3323 * and clear a pending bit.
3324 */
3325 if (!test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3326 u32 mc_filter[MC_HASH_SIZE] = {0};
3327
3328 /* Set the multicast filter bits before writing it into
3329 * the internal memory.
3330 */
3331 switch (cmd) {
3332 case BNX2X_MCAST_CMD_ADD:
3333 bnx2x_mcast_hdl_add_e1h(bp, o, p, mc_filter);
3334 break;
3335
3336 case BNX2X_MCAST_CMD_DEL:
3337 DP(BNX2X_MSG_SP,
3338 "Invalidating multicast MACs configuration\n");
3339
3340 /* clear the registry */
3341 memset(o->registry.aprox_match.vec, 0,
3342 sizeof(o->registry.aprox_match.vec));
3343 break;
3344
3345 case BNX2X_MCAST_CMD_RESTORE:
3346 bnx2x_mcast_hdl_restore_e1h(bp, o, p, mc_filter);
3347 break;
3348
3349 default:
3350 BNX2X_ERR("Unknown command: %d\n", cmd);
3351 return -EINVAL;
3352 }
3353
3354 /* Set the mcast filter in the internal memory */
3355 for (i = 0; i < MC_HASH_SIZE; i++)
3356 REG_WR(bp, MC_HASH_OFFSET(bp, i), mc_filter[i]);
3357 } else
3358 /* clear the registry */
3359 memset(o->registry.aprox_match.vec, 0,
3360 sizeof(o->registry.aprox_match.vec));
3361
3362 /* We are done */
3363 r->clear_pending(r);
3364
3365 return 0;
3366 }
3367
3368 static int bnx2x_mcast_validate_e1(struct bnx2x *bp,
3369 struct bnx2x_mcast_ramrod_params *p,
3370 enum bnx2x_mcast_cmd cmd)
3371 {
3372 struct bnx2x_mcast_obj *o = p->mcast_obj;
3373 int reg_sz = o->get_registry_size(o);
3374
3375 switch (cmd) {
3376 /* DEL command deletes all currently configured MACs */
3377 case BNX2X_MCAST_CMD_DEL:
3378 o->set_registry_size(o, 0);
3379 /* Don't break */
3380
3381 /* RESTORE command will restore the entire multicast configuration */
3382 case BNX2X_MCAST_CMD_RESTORE:
3383 p->mcast_list_len = reg_sz;
3384 DP(BNX2X_MSG_SP, "Command %d, p->mcast_list_len=%d\n",
3385 cmd, p->mcast_list_len);
3386 break;
3387
3388 case BNX2X_MCAST_CMD_ADD:
3389 case BNX2X_MCAST_CMD_CONT:
3390 /* Multicast MACs on 57710 are configured as unicast MACs and
3391 * there is only a limited number of CAM entries for that
3392 * matter.
3393 */
3394 if (p->mcast_list_len > o->max_cmd_len) {
3395 BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n",
3396 o->max_cmd_len);
3397 return -EINVAL;
3398 }
3399 /* Every configured MAC should be cleared if DEL command is
3400 * called. Only the last ADD command is relevant as long as
3401 * every ADD commands overrides the previous configuration.
3402 */
3403 DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3404 if (p->mcast_list_len > 0)
3405 o->set_registry_size(o, p->mcast_list_len);
3406
3407 break;
3408
3409 default:
3410 BNX2X_ERR("Unknown command: %d\n", cmd);
3411 return -EINVAL;
3412 }
3413
3414 /* We want to ensure that commands are executed one by one for 57710.
3415 * Therefore each none-empty command will consume o->max_cmd_len.
3416 */
3417 if (p->mcast_list_len)
3418 o->total_pending_num += o->max_cmd_len;
3419
3420 return 0;
3421 }
3422
3423 static void bnx2x_mcast_revert_e1(struct bnx2x *bp,
3424 struct bnx2x_mcast_ramrod_params *p,
3425 int old_num_macs)
3426 {
3427 struct bnx2x_mcast_obj *o = p->mcast_obj;
3428
3429 o->set_registry_size(o, old_num_macs);
3430
3431 /* If current command hasn't been handled yet and we are
3432 * here means that it's meant to be dropped and we have to
3433 * update the number of outstanding MACs accordingly.
3434 */
3435 if (p->mcast_list_len)
3436 o->total_pending_num -= o->max_cmd_len;
3437 }
3438
3439 static void bnx2x_mcast_set_one_rule_e1(struct bnx2x *bp,
3440 struct bnx2x_mcast_obj *o, int idx,
3441 union bnx2x_mcast_config_data *cfg_data,
3442 enum bnx2x_mcast_cmd cmd)
3443 {
3444 struct bnx2x_raw_obj *r = &o->raw;
3445 struct mac_configuration_cmd *data =
3446 (struct mac_configuration_cmd *)(r->rdata);
3447
3448 /* copy mac */
3449 if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) {
3450 bnx2x_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3451 &data->config_table[idx].middle_mac_addr,
3452 &data->config_table[idx].lsb_mac_addr,
3453 cfg_data->mac);
3454
3455 data->config_table[idx].vlan_id = 0;
3456 data->config_table[idx].pf_id = r->func_id;
3457 data->config_table[idx].clients_bit_vector =
3458 cpu_to_le32(1 << r->cl_id);
3459
3460 SET_FLAG(data->config_table[idx].flags,
3461 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3462 T_ETH_MAC_COMMAND_SET);
3463 }
3464 }
3465
3466 /**
3467 * bnx2x_mcast_set_rdata_hdr_e1 - set header values in mac_configuration_cmd
3468 *
3469 * @bp: device handle
3470 * @p:
3471 * @len: number of rules to handle
3472 */
3473 static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x *bp,
3474 struct bnx2x_mcast_ramrod_params *p,
3475 u8 len)
3476 {
3477 struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3478 struct mac_configuration_cmd *data =
3479 (struct mac_configuration_cmd *)(r->rdata);
3480
3481 u8 offset = (CHIP_REV_IS_SLOW(bp) ?
3482 BNX2X_MAX_EMUL_MULTI*(1 + r->func_id) :
3483 BNX2X_MAX_MULTICAST*(1 + r->func_id));
3484
3485 data->hdr.offset = offset;
3486 data->hdr.client_id = cpu_to_le16(0xff);
3487 data->hdr.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3488 (BNX2X_FILTER_MCAST_PENDING <<
3489 BNX2X_SWCID_SHIFT));
3490 data->hdr.length = len;
3491 }
3492
3493 /**
3494 * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710
3495 *
3496 * @bp: device handle
3497 * @o:
3498 * @start_idx: index in the registry to start from
3499 * @rdata_idx: index in the ramrod data to start from
3500 *
3501 * restore command for 57710 is like all other commands - always a stand alone
3502 * command - start_idx and rdata_idx will always be 0. This function will always
3503 * succeed.
3504 * returns -1 to comply with 57712 variant.
3505 */
3506 static inline int bnx2x_mcast_handle_restore_cmd_e1(
3507 struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_idx,
3508 int *rdata_idx)
3509 {
3510 struct bnx2x_mcast_mac_elem *elem;
3511 int i = 0;
3512 union bnx2x_mcast_config_data cfg_data = {NULL};
3513
3514 /* go through the registry and configure the MACs from it. */
3515 list_for_each_entry(elem, &o->registry.exact_match.macs, link) {
3516 cfg_data.mac = &elem->mac[0];
3517 o->set_one_rule(bp, o, i, &cfg_data, BNX2X_MCAST_CMD_RESTORE);
3518
3519 i++;
3520
3521 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3522 cfg_data.mac);
3523 }
3524
3525 *rdata_idx = i;
3526
3527 return -1;
3528 }
3529
3530 static inline int bnx2x_mcast_handle_pending_cmds_e1(
3531 struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p)
3532 {
3533 struct bnx2x_pending_mcast_cmd *cmd_pos;
3534 struct bnx2x_mcast_mac_elem *pmac_pos;
3535 struct bnx2x_mcast_obj *o = p->mcast_obj;
3536 union bnx2x_mcast_config_data cfg_data = {NULL};
3537 int cnt = 0;
3538
3539 /* If nothing to be done - return */
3540 if (list_empty(&o->pending_cmds_head))
3541 return 0;
3542
3543 /* Handle the first command */
3544 cmd_pos = list_first_entry(&o->pending_cmds_head,
3545 struct bnx2x_pending_mcast_cmd, link);
3546
3547 switch (cmd_pos->type) {
3548 case BNX2X_MCAST_CMD_ADD:
3549 list_for_each_entry(pmac_pos, &cmd_pos->data.macs_head, link) {
3550 cfg_data.mac = &pmac_pos->mac[0];
3551 o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
3552
3553 cnt++;
3554
3555 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3556 pmac_pos->mac);
3557 }
3558 break;
3559
3560 case BNX2X_MCAST_CMD_DEL:
3561 cnt = cmd_pos->data.macs_num;
3562 DP(BNX2X_MSG_SP, "About to delete %d multicast MACs\n", cnt);
3563 break;
3564
3565 case BNX2X_MCAST_CMD_RESTORE:
3566 o->hdl_restore(bp, o, 0, &cnt);
3567 break;
3568
3569 default:
3570 BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3571 return -EINVAL;
3572 }
3573
3574 list_del(&cmd_pos->link);
3575 kfree(cmd_pos);
3576
3577 return cnt;
3578 }
3579
3580 /**
3581 * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr().
3582 *
3583 * @fw_hi:
3584 * @fw_mid:
3585 * @fw_lo:
3586 * @mac:
3587 */
3588 static inline void bnx2x_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid,
3589 __le16 *fw_lo, u8 *mac)
3590 {
3591 mac[1] = ((u8 *)fw_hi)[0];
3592 mac[0] = ((u8 *)fw_hi)[1];
3593 mac[3] = ((u8 *)fw_mid)[0];
3594 mac[2] = ((u8 *)fw_mid)[1];
3595 mac[5] = ((u8 *)fw_lo)[0];
3596 mac[4] = ((u8 *)fw_lo)[1];
3597 }
3598
3599 /**
3600 * bnx2x_mcast_refresh_registry_e1 -
3601 *
3602 * @bp: device handle
3603 * @cnt:
3604 *
3605 * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3606 * and update the registry correspondingly: if ADD - allocate a memory and add
3607 * the entries to the registry (list), if DELETE - clear the registry and free
3608 * the memory.
3609 */
3610 static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x *bp,
3611 struct bnx2x_mcast_obj *o)
3612 {
3613 struct bnx2x_raw_obj *raw = &o->raw;
3614 struct bnx2x_mcast_mac_elem *elem;
3615 struct mac_configuration_cmd *data =
3616 (struct mac_configuration_cmd *)(raw->rdata);
3617
3618 /* If first entry contains a SET bit - the command was ADD,
3619 * otherwise - DEL_ALL
3620 */
3621 if (GET_FLAG(data->config_table[0].flags,
3622 MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3623 int i, len = data->hdr.length;
3624
3625 /* Break if it was a RESTORE command */
3626 if (!list_empty(&o->registry.exact_match.macs))
3627 return 0;
3628
3629 elem = kcalloc(len, sizeof(*elem), GFP_ATOMIC);
3630 if (!elem) {
3631 BNX2X_ERR("Failed to allocate registry memory\n");
3632 return -ENOMEM;
3633 }
3634
3635 for (i = 0; i < len; i++, elem++) {
3636 bnx2x_get_fw_mac_addr(
3637 &data->config_table[i].msb_mac_addr,
3638 &data->config_table[i].middle_mac_addr,
3639 &data->config_table[i].lsb_mac_addr,
3640 elem->mac);
3641 DP(BNX2X_MSG_SP, "Adding registry entry for [%pM]\n",
3642 elem->mac);
3643 list_add_tail(&elem->link,
3644 &o->registry.exact_match.macs);
3645 }
3646 } else {
3647 elem = list_first_entry(&o->registry.exact_match.macs,
3648 struct bnx2x_mcast_mac_elem, link);
3649 DP(BNX2X_MSG_SP, "Deleting a registry\n");
3650 kfree(elem);
3651 INIT_LIST_HEAD(&o->registry.exact_match.macs);
3652 }
3653
3654 return 0;
3655 }
3656
3657 static int bnx2x_mcast_setup_e1(struct bnx2x *bp,
3658 struct bnx2x_mcast_ramrod_params *p,
3659 enum bnx2x_mcast_cmd cmd)
3660 {
3661 struct bnx2x_mcast_obj *o = p->mcast_obj;
3662 struct bnx2x_raw_obj *raw = &o->raw;
3663 struct mac_configuration_cmd *data =
3664 (struct mac_configuration_cmd *)(raw->rdata);
3665 int cnt = 0, i, rc;
3666
3667 /* Reset the ramrod data buffer */
3668 memset(data, 0, sizeof(*data));
3669
3670 /* First set all entries as invalid */
3671 for (i = 0; i < o->max_cmd_len ; i++)
3672 SET_FLAG(data->config_table[i].flags,
3673 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3674 T_ETH_MAC_COMMAND_INVALIDATE);
3675
3676 /* Handle pending commands first */
3677 cnt = bnx2x_mcast_handle_pending_cmds_e1(bp, p);
3678
3679 /* If there are no more pending commands - clear SCHEDULED state */
3680 if (list_empty(&o->pending_cmds_head))
3681 o->clear_sched(o);
3682
3683 /* The below may be true iff there were no pending commands */
3684 if (!cnt)
3685 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, 0);
3686
3687 /* For 57710 every command has o->max_cmd_len length to ensure that
3688 * commands are done one at a time.
3689 */
3690 o->total_pending_num -= o->max_cmd_len;
3691
3692 /* send a ramrod */
3693
3694 WARN_ON(cnt > o->max_cmd_len);
3695
3696 /* Set ramrod header (in particular, a number of entries to update) */
3697 bnx2x_mcast_set_rdata_hdr_e1(bp, p, (u8)cnt);
3698
3699 /* update a registry: we need the registry contents to be always up
3700 * to date in order to be able to execute a RESTORE opcode. Here
3701 * we use the fact that for 57710 we sent one command at a time
3702 * hence we may take the registry update out of the command handling
3703 * and do it in a simpler way here.
3704 */
3705 rc = bnx2x_mcast_refresh_registry_e1(bp, o);
3706 if (rc)
3707 return rc;
3708
3709 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3710 * RAMROD_PENDING status immediately.
3711 */
3712 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3713 raw->clear_pending(raw);
3714 return 0;
3715 } else {
3716 /* No need for an explicit memory barrier here as long as we
3717 * ensure the ordering of writing to the SPQ element
3718 * and updating of the SPQ producer which involves a memory
3719 * read. If the memory read is removed we will have to put a
3720 * full memory barrier there (inside bnx2x_sp_post()).
3721 */
3722
3723 /* Send a ramrod */
3724 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, raw->cid,
3725 U64_HI(raw->rdata_mapping),
3726 U64_LO(raw->rdata_mapping),
3727 ETH_CONNECTION_TYPE);
3728 if (rc)
3729 return rc;
3730
3731 /* Ramrod completion is pending */
3732 return 1;
3733 }
3734 }
3735
3736 static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj *o)
3737 {
3738 return o->registry.exact_match.num_macs_set;
3739 }
3740
3741 static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj *o)
3742 {
3743 return o->registry.aprox_match.num_bins_set;
3744 }
3745
3746 static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj *o,
3747 int n)
3748 {
3749 o->registry.exact_match.num_macs_set = n;
3750 }
3751
3752 static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj *o,
3753 int n)
3754 {
3755 o->registry.aprox_match.num_bins_set = n;
3756 }
3757
3758 int bnx2x_config_mcast(struct bnx2x *bp,
3759 struct bnx2x_mcast_ramrod_params *p,
3760 enum bnx2x_mcast_cmd cmd)
3761 {
3762 struct bnx2x_mcast_obj *o = p->mcast_obj;
3763 struct bnx2x_raw_obj *r = &o->raw;
3764 int rc = 0, old_reg_size;
3765
3766 /* This is needed to recover number of currently configured mcast macs
3767 * in case of failure.
3768 */
3769 old_reg_size = o->get_registry_size(o);
3770
3771 /* Do some calculations and checks */
3772 rc = o->validate(bp, p, cmd);
3773 if (rc)
3774 return rc;
3775
3776 /* Return if there is no work to do */
3777 if ((!p->mcast_list_len) && (!o->check_sched(o)))
3778 return 0;
3779
3780 DP(BNX2X_MSG_SP, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
3781 o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
3782
3783 /* Enqueue the current command to the pending list if we can't complete
3784 * it in the current iteration
3785 */
3786 if (r->check_pending(r) ||
3787 ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
3788 rc = o->enqueue_cmd(bp, p->mcast_obj, p, cmd);
3789 if (rc < 0)
3790 goto error_exit1;
3791
3792 /* As long as the current command is in a command list we
3793 * don't need to handle it separately.
3794 */
3795 p->mcast_list_len = 0;
3796 }
3797
3798 if (!r->check_pending(r)) {
3799
3800 /* Set 'pending' state */
3801 r->set_pending(r);
3802
3803 /* Configure the new classification in the chip */
3804 rc = o->config_mcast(bp, p, cmd);
3805 if (rc < 0)
3806 goto error_exit2;
3807
3808 /* Wait for a ramrod completion if was requested */
3809 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
3810 rc = o->wait_comp(bp, o);
3811 }
3812
3813 return rc;
3814
3815 error_exit2:
3816 r->clear_pending(r);
3817
3818 error_exit1:
3819 o->revert(bp, p, old_reg_size);
3820
3821 return rc;
3822 }
3823
3824 static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj *o)
3825 {
3826 smp_mb__before_atomic();
3827 clear_bit(o->sched_state, o->raw.pstate);
3828 smp_mb__after_atomic();
3829 }
3830
3831 static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj *o)
3832 {
3833 smp_mb__before_atomic();
3834 set_bit(o->sched_state, o->raw.pstate);
3835 smp_mb__after_atomic();
3836 }
3837
3838 static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj *o)
3839 {
3840 return !!test_bit(o->sched_state, o->raw.pstate);
3841 }
3842
3843 static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj *o)
3844 {
3845 return o->raw.check_pending(&o->raw) || o->check_sched(o);
3846 }
3847
3848 void bnx2x_init_mcast_obj(struct bnx2x *bp,
3849 struct bnx2x_mcast_obj *mcast_obj,
3850 u8 mcast_cl_id, u32 mcast_cid, u8 func_id,
3851 u8 engine_id, void *rdata, dma_addr_t rdata_mapping,
3852 int state, unsigned long *pstate, bnx2x_obj_type type)
3853 {
3854 memset(mcast_obj, 0, sizeof(*mcast_obj));
3855
3856 bnx2x_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
3857 rdata, rdata_mapping, state, pstate, type);
3858
3859 mcast_obj->engine_id = engine_id;
3860
3861 INIT_LIST_HEAD(&mcast_obj->pending_cmds_head);
3862
3863 mcast_obj->sched_state = BNX2X_FILTER_MCAST_SCHED;
3864 mcast_obj->check_sched = bnx2x_mcast_check_sched;
3865 mcast_obj->set_sched = bnx2x_mcast_set_sched;
3866 mcast_obj->clear_sched = bnx2x_mcast_clear_sched;
3867
3868 if (CHIP_IS_E1(bp)) {
3869 mcast_obj->config_mcast = bnx2x_mcast_setup_e1;
3870 mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd;
3871 mcast_obj->hdl_restore =
3872 bnx2x_mcast_handle_restore_cmd_e1;
3873 mcast_obj->check_pending = bnx2x_mcast_check_pending;
3874
3875 if (CHIP_REV_IS_SLOW(bp))
3876 mcast_obj->max_cmd_len = BNX2X_MAX_EMUL_MULTI;
3877 else
3878 mcast_obj->max_cmd_len = BNX2X_MAX_MULTICAST;
3879
3880 mcast_obj->wait_comp = bnx2x_mcast_wait;
3881 mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e1;
3882 mcast_obj->validate = bnx2x_mcast_validate_e1;
3883 mcast_obj->revert = bnx2x_mcast_revert_e1;
3884 mcast_obj->get_registry_size =
3885 bnx2x_mcast_get_registry_size_exact;
3886 mcast_obj->set_registry_size =
3887 bnx2x_mcast_set_registry_size_exact;
3888
3889 /* 57710 is the only chip that uses the exact match for mcast
3890 * at the moment.
3891 */
3892 INIT_LIST_HEAD(&mcast_obj->registry.exact_match.macs);
3893
3894 } else if (CHIP_IS_E1H(bp)) {
3895 mcast_obj->config_mcast = bnx2x_mcast_setup_e1h;
3896 mcast_obj->enqueue_cmd = NULL;
3897 mcast_obj->hdl_restore = NULL;
3898 mcast_obj->check_pending = bnx2x_mcast_check_pending;
3899
3900 /* 57711 doesn't send a ramrod, so it has unlimited credit
3901 * for one command.
3902 */
3903 mcast_obj->max_cmd_len = -1;
3904 mcast_obj->wait_comp = bnx2x_mcast_wait;
3905 mcast_obj->set_one_rule = NULL;
3906 mcast_obj->validate = bnx2x_mcast_validate_e1h;
3907 mcast_obj->revert = bnx2x_mcast_revert_e1h;
3908 mcast_obj->get_registry_size =
3909 bnx2x_mcast_get_registry_size_aprox;
3910 mcast_obj->set_registry_size =
3911 bnx2x_mcast_set_registry_size_aprox;
3912 } else {
3913 mcast_obj->config_mcast = bnx2x_mcast_setup_e2;
3914 mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd;
3915 mcast_obj->hdl_restore =
3916 bnx2x_mcast_handle_restore_cmd_e2;
3917 mcast_obj->check_pending = bnx2x_mcast_check_pending;
3918 /* TODO: There should be a proper HSI define for this number!!!
3919 */
3920 mcast_obj->max_cmd_len = 16;
3921 mcast_obj->wait_comp = bnx2x_mcast_wait;
3922 mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e2;
3923 mcast_obj->validate = bnx2x_mcast_validate_e2;
3924 mcast_obj->revert = bnx2x_mcast_revert_e2;
3925 mcast_obj->get_registry_size =
3926 bnx2x_mcast_get_registry_size_aprox;
3927 mcast_obj->set_registry_size =
3928 bnx2x_mcast_set_registry_size_aprox;
3929 }
3930 }
3931
3932 /*************************** Credit handling **********************************/
3933
3934 /**
3935 * atomic_add_ifless - add if the result is less than a given value.
3936 *
3937 * @v: pointer of type atomic_t
3938 * @a: the amount to add to v...
3939 * @u: ...if (v + a) is less than u.
3940 *
3941 * returns true if (v + a) was less than u, and false otherwise.
3942 *
3943 */
3944 static inline bool __atomic_add_ifless(atomic_t *v, int a, int u)
3945 {
3946 int c, old;
3947
3948 c = atomic_read(v);
3949 for (;;) {
3950 if (unlikely(c + a >= u))
3951 return false;
3952
3953 old = atomic_cmpxchg((v), c, c + a);
3954 if (likely(old == c))
3955 break;
3956 c = old;
3957 }
3958
3959 return true;
3960 }
3961
3962 /**
3963 * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
3964 *
3965 * @v: pointer of type atomic_t
3966 * @a: the amount to dec from v...
3967 * @u: ...if (v - a) is more or equal than u.
3968 *
3969 * returns true if (v - a) was more or equal than u, and false
3970 * otherwise.
3971 */
3972 static inline bool __atomic_dec_ifmoe(atomic_t *v, int a, int u)
3973 {
3974 int c, old;
3975
3976 c = atomic_read(v);
3977 for (;;) {
3978 if (unlikely(c - a < u))
3979 return false;
3980
3981 old = atomic_cmpxchg((v), c, c - a);
3982 if (likely(old == c))
3983 break;
3984 c = old;
3985 }
3986
3987 return true;
3988 }
3989
3990 static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj *o, int cnt)
3991 {
3992 bool rc;
3993
3994 smp_mb();
3995 rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
3996 smp_mb();
3997
3998 return rc;
3999 }
4000
4001 static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj *o, int cnt)
4002 {
4003 bool rc;
4004
4005 smp_mb();
4006
4007 /* Don't let to refill if credit + cnt > pool_sz */
4008 rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
4009
4010 smp_mb();
4011
4012 return rc;
4013 }
4014
4015 static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj *o)
4016 {
4017 int cur_credit;
4018
4019 smp_mb();
4020 cur_credit = atomic_read(&o->credit);
4021
4022 return cur_credit;
4023 }
4024
4025 static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj *o,
4026 int cnt)
4027 {
4028 return true;
4029 }
4030
4031 static bool bnx2x_credit_pool_get_entry(
4032 struct bnx2x_credit_pool_obj *o,
4033 int *offset)
4034 {
4035 int idx, vec, i;
4036
4037 *offset = -1;
4038
4039 /* Find "internal cam-offset" then add to base for this object... */
4040 for (vec = 0; vec < BNX2X_POOL_VEC_SIZE; vec++) {
4041
4042 /* Skip the current vector if there are no free entries in it */
4043 if (!o->pool_mirror[vec])
4044 continue;
4045
4046 /* If we've got here we are going to find a free entry */
4047 for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
4048 i < BIT_VEC64_ELEM_SZ; idx++, i++)
4049
4050 if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
4051 /* Got one!! */
4052 BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
4053 *offset = o->base_pool_offset + idx;
4054 return true;
4055 }
4056 }
4057
4058 return false;
4059 }
4060
4061 static bool bnx2x_credit_pool_put_entry(
4062 struct bnx2x_credit_pool_obj *o,
4063 int offset)
4064 {
4065 if (offset < o->base_pool_offset)
4066 return false;
4067
4068 offset -= o->base_pool_offset;
4069
4070 if (offset >= o->pool_sz)
4071 return false;
4072
4073 /* Return the entry to the pool */
4074 BIT_VEC64_SET_BIT(o->pool_mirror, offset);
4075
4076 return true;
4077 }
4078
4079 static bool bnx2x_credit_pool_put_entry_always_true(
4080 struct bnx2x_credit_pool_obj *o,
4081 int offset)
4082 {
4083 return true;
4084 }
4085
4086 static bool bnx2x_credit_pool_get_entry_always_true(
4087 struct bnx2x_credit_pool_obj *o,
4088 int *offset)
4089 {
4090 *offset = -1;
4091 return true;
4092 }
4093 /**
4094 * bnx2x_init_credit_pool - initialize credit pool internals.
4095 *
4096 * @p:
4097 * @base: Base entry in the CAM to use.
4098 * @credit: pool size.
4099 *
4100 * If base is negative no CAM entries handling will be performed.
4101 * If credit is negative pool operations will always succeed (unlimited pool).
4102 *
4103 */
4104 void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj *p,
4105 int base, int credit)
4106 {
4107 /* Zero the object first */
4108 memset(p, 0, sizeof(*p));
4109
4110 /* Set the table to all 1s */
4111 memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
4112
4113 /* Init a pool as full */
4114 atomic_set(&p->credit, credit);
4115
4116 /* The total poll size */
4117 p->pool_sz = credit;
4118
4119 p->base_pool_offset = base;
4120
4121 /* Commit the change */
4122 smp_mb();
4123
4124 p->check = bnx2x_credit_pool_check;
4125
4126 /* if pool credit is negative - disable the checks */
4127 if (credit >= 0) {
4128 p->put = bnx2x_credit_pool_put;
4129 p->get = bnx2x_credit_pool_get;
4130 p->put_entry = bnx2x_credit_pool_put_entry;
4131 p->get_entry = bnx2x_credit_pool_get_entry;
4132 } else {
4133 p->put = bnx2x_credit_pool_always_true;
4134 p->get = bnx2x_credit_pool_always_true;
4135 p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4136 p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4137 }
4138
4139 /* If base is negative - disable entries handling */
4140 if (base < 0) {
4141 p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4142 p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4143 }
4144 }
4145
4146 void bnx2x_init_mac_credit_pool(struct bnx2x *bp,
4147 struct bnx2x_credit_pool_obj *p, u8 func_id,
4148 u8 func_num)
4149 {
4150 /* TODO: this will be defined in consts as well... */
4151 #define BNX2X_CAM_SIZE_EMUL 5
4152
4153 int cam_sz;
4154
4155 if (CHIP_IS_E1(bp)) {
4156 /* In E1, Multicast is saved in cam... */
4157 if (!CHIP_REV_IS_SLOW(bp))
4158 cam_sz = (MAX_MAC_CREDIT_E1 / 2) - BNX2X_MAX_MULTICAST;
4159 else
4160 cam_sz = BNX2X_CAM_SIZE_EMUL - BNX2X_MAX_EMUL_MULTI;
4161
4162 bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4163
4164 } else if (CHIP_IS_E1H(bp)) {
4165 /* CAM credit is equaly divided between all active functions
4166 * on the PORT!.
4167 */
4168 if ((func_num > 0)) {
4169 if (!CHIP_REV_IS_SLOW(bp))
4170 cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
4171 else
4172 cam_sz = BNX2X_CAM_SIZE_EMUL;
4173 bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4174 } else {
4175 /* this should never happen! Block MAC operations. */
4176 bnx2x_init_credit_pool(p, 0, 0);
4177 }
4178
4179 } else {
4180
4181 /* CAM credit is equaly divided between all active functions
4182 * on the PATH.
4183 */
4184 if (func_num > 0) {
4185 if (!CHIP_REV_IS_SLOW(bp))
4186 cam_sz = PF_MAC_CREDIT_E2(bp, func_num);
4187 else
4188 cam_sz = BNX2X_CAM_SIZE_EMUL;
4189
4190 /* No need for CAM entries handling for 57712 and
4191 * newer.
4192 */
4193 bnx2x_init_credit_pool(p, -1, cam_sz);
4194 } else {
4195 /* this should never happen! Block MAC operations. */
4196 bnx2x_init_credit_pool(p, 0, 0);
4197 }
4198 }
4199 }
4200
4201 void bnx2x_init_vlan_credit_pool(struct bnx2x *bp,
4202 struct bnx2x_credit_pool_obj *p,
4203 u8 func_id,
4204 u8 func_num)
4205 {
4206 if (CHIP_IS_E1x(bp)) {
4207 /* There is no VLAN credit in HW on 57710 and 57711 only
4208 * MAC / MAC-VLAN can be set
4209 */
4210 bnx2x_init_credit_pool(p, 0, -1);
4211 } else {
4212 /* CAM credit is equally divided between all active functions
4213 * on the PATH.
4214 */
4215 if (func_num > 0) {
4216 int credit = PF_VLAN_CREDIT_E2(bp, func_num);
4217
4218 bnx2x_init_credit_pool(p, -1/*unused for E2*/, credit);
4219 } else
4220 /* this should never happen! Block VLAN operations. */
4221 bnx2x_init_credit_pool(p, 0, 0);
4222 }
4223 }
4224
4225 /****************** RSS Configuration ******************/
4226 /**
4227 * bnx2x_debug_print_ind_table - prints the indirection table configuration.
4228 *
4229 * @bp: driver handle
4230 * @p: pointer to rss configuration
4231 *
4232 * Prints it when NETIF_MSG_IFUP debug level is configured.
4233 */
4234 static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp,
4235 struct bnx2x_config_rss_params *p)
4236 {
4237 int i;
4238
4239 DP(BNX2X_MSG_SP, "Setting indirection table to:\n");
4240 DP(BNX2X_MSG_SP, "0x0000: ");
4241 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
4242 DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]);
4243
4244 /* Print 4 bytes in a line */
4245 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
4246 (((i + 1) & 0x3) == 0)) {
4247 DP_CONT(BNX2X_MSG_SP, "\n");
4248 DP(BNX2X_MSG_SP, "0x%04x: ", i + 1);
4249 }
4250 }
4251
4252 DP_CONT(BNX2X_MSG_SP, "\n");
4253 }
4254
4255 /**
4256 * bnx2x_setup_rss - configure RSS
4257 *
4258 * @bp: device handle
4259 * @p: rss configuration
4260 *
4261 * sends on UPDATE ramrod for that matter.
4262 */
4263 static int bnx2x_setup_rss(struct bnx2x *bp,
4264 struct bnx2x_config_rss_params *p)
4265 {
4266 struct bnx2x_rss_config_obj *o = p->rss_obj;
4267 struct bnx2x_raw_obj *r = &o->raw;
4268 struct eth_rss_update_ramrod_data *data =
4269 (struct eth_rss_update_ramrod_data *)(r->rdata);
4270 u16 caps = 0;
4271 u8 rss_mode = 0;
4272 int rc;
4273
4274 memset(data, 0, sizeof(*data));
4275
4276 DP(BNX2X_MSG_SP, "Configuring RSS\n");
4277
4278 /* Set an echo field */
4279 data->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
4280 (r->state << BNX2X_SWCID_SHIFT));
4281
4282 /* RSS mode */
4283 if (test_bit(BNX2X_RSS_MODE_DISABLED, &p->rss_flags))
4284 rss_mode = ETH_RSS_MODE_DISABLED;
4285 else if (test_bit(BNX2X_RSS_MODE_REGULAR, &p->rss_flags))
4286 rss_mode = ETH_RSS_MODE_REGULAR;
4287
4288 data->rss_mode = rss_mode;
4289
4290 DP(BNX2X_MSG_SP, "rss_mode=%d\n", rss_mode);
4291
4292 /* RSS capabilities */
4293 if (test_bit(BNX2X_RSS_IPV4, &p->rss_flags))
4294 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4295
4296 if (test_bit(BNX2X_RSS_IPV4_TCP, &p->rss_flags))
4297 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4298
4299 if (test_bit(BNX2X_RSS_IPV4_UDP, &p->rss_flags))
4300 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4301
4302 if (test_bit(BNX2X_RSS_IPV6, &p->rss_flags))
4303 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4304
4305 if (test_bit(BNX2X_RSS_IPV6_TCP, &p->rss_flags))
4306 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4307
4308 if (test_bit(BNX2X_RSS_IPV6_UDP, &p->rss_flags))
4309 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4310
4311 if (test_bit(BNX2X_RSS_IPV4_VXLAN, &p->rss_flags))
4312 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY;
4313
4314 if (test_bit(BNX2X_RSS_IPV6_VXLAN, &p->rss_flags))
4315 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY;
4316
4317 if (test_bit(BNX2X_RSS_TUNN_INNER_HDRS, &p->rss_flags))
4318 caps |= ETH_RSS_UPDATE_RAMROD_DATA_TUNN_INNER_HDRS_CAPABILITY;
4319
4320 /* RSS keys */
4321 if (test_bit(BNX2X_RSS_SET_SRCH, &p->rss_flags)) {
4322 u8 *dst = (u8 *)(data->rss_key) + sizeof(data->rss_key);
4323 const u8 *src = (const u8 *)p->rss_key;
4324 int i;
4325
4326 /* Apparently, bnx2x reads this array in reverse order
4327 * We need to byte swap rss_key to comply with Toeplitz specs.
4328 */
4329 for (i = 0; i < sizeof(data->rss_key); i++)
4330 *--dst = *src++;
4331
4332 caps |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4333 }
4334
4335 data->capabilities = cpu_to_le16(caps);
4336
4337 /* Hashing mask */
4338 data->rss_result_mask = p->rss_result_mask;
4339
4340 /* RSS engine ID */
4341 data->rss_engine_id = o->engine_id;
4342
4343 DP(BNX2X_MSG_SP, "rss_engine_id=%d\n", data->rss_engine_id);
4344
4345 /* Indirection table */
4346 memcpy(data->indirection_table, p->ind_table,
4347 T_ETH_INDIRECTION_TABLE_SIZE);
4348
4349 /* Remember the last configuration */
4350 memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4351
4352 /* Print the indirection table */
4353 if (netif_msg_ifup(bp))
4354 bnx2x_debug_print_ind_table(bp, p);
4355
4356 /* No need for an explicit memory barrier here as long as we
4357 * ensure the ordering of writing to the SPQ element
4358 * and updating of the SPQ producer which involves a memory
4359 * read. If the memory read is removed we will have to put a
4360 * full memory barrier there (inside bnx2x_sp_post()).
4361 */
4362
4363 /* Send a ramrod */
4364 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_RSS_UPDATE, r->cid,
4365 U64_HI(r->rdata_mapping),
4366 U64_LO(r->rdata_mapping),
4367 ETH_CONNECTION_TYPE);
4368
4369 if (rc < 0)
4370 return rc;
4371
4372 return 1;
4373 }
4374
4375 void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj *rss_obj,
4376 u8 *ind_table)
4377 {
4378 memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4379 }
4380
4381 int bnx2x_config_rss(struct bnx2x *bp,
4382 struct bnx2x_config_rss_params *p)
4383 {
4384 int rc;
4385 struct bnx2x_rss_config_obj *o = p->rss_obj;
4386 struct bnx2x_raw_obj *r = &o->raw;
4387
4388 /* Do nothing if only driver cleanup was requested */
4389 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4390 DP(BNX2X_MSG_SP, "Not configuring RSS ramrod_flags=%lx\n",
4391 p->ramrod_flags);
4392 return 0;
4393 }
4394
4395 r->set_pending(r);
4396
4397 rc = o->config_rss(bp, p);
4398 if (rc < 0) {
4399 r->clear_pending(r);
4400 return rc;
4401 }
4402
4403 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4404 rc = r->wait_comp(bp, r);
4405
4406 return rc;
4407 }
4408
4409 void bnx2x_init_rss_config_obj(struct bnx2x *bp,
4410 struct bnx2x_rss_config_obj *rss_obj,
4411 u8 cl_id, u32 cid, u8 func_id, u8 engine_id,
4412 void *rdata, dma_addr_t rdata_mapping,
4413 int state, unsigned long *pstate,
4414 bnx2x_obj_type type)
4415 {
4416 bnx2x_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4417 rdata_mapping, state, pstate, type);
4418
4419 rss_obj->engine_id = engine_id;
4420 rss_obj->config_rss = bnx2x_setup_rss;
4421 }
4422
4423 /********************** Queue state object ***********************************/
4424
4425 /**
4426 * bnx2x_queue_state_change - perform Queue state change transition
4427 *
4428 * @bp: device handle
4429 * @params: parameters to perform the transition
4430 *
4431 * returns 0 in case of successfully completed transition, negative error
4432 * code in case of failure, positive (EBUSY) value if there is a completion
4433 * to that is still pending (possible only if RAMROD_COMP_WAIT is
4434 * not set in params->ramrod_flags for asynchronous commands).
4435 *
4436 */
4437 int bnx2x_queue_state_change(struct bnx2x *bp,
4438 struct bnx2x_queue_state_params *params)
4439 {
4440 struct bnx2x_queue_sp_obj *o = params->q_obj;
4441 int rc, pending_bit;
4442 unsigned long *pending = &o->pending;
4443
4444 /* Check that the requested transition is legal */
4445 rc = o->check_transition(bp, o, params);
4446 if (rc) {
4447 BNX2X_ERR("check transition returned an error. rc %d\n", rc);
4448 return -EINVAL;
4449 }
4450
4451 /* Set "pending" bit */
4452 DP(BNX2X_MSG_SP, "pending bit was=%lx\n", o->pending);
4453 pending_bit = o->set_pending(o, params);
4454 DP(BNX2X_MSG_SP, "pending bit now=%lx\n", o->pending);
4455
4456 /* Don't send a command if only driver cleanup was requested */
4457 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
4458 o->complete_cmd(bp, o, pending_bit);
4459 else {
4460 /* Send a ramrod */
4461 rc = o->send_cmd(bp, params);
4462 if (rc) {
4463 o->next_state = BNX2X_Q_STATE_MAX;
4464 clear_bit(pending_bit, pending);
4465 smp_mb__after_atomic();
4466 return rc;
4467 }
4468
4469 if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
4470 rc = o->wait_comp(bp, o, pending_bit);
4471 if (rc)
4472 return rc;
4473
4474 return 0;
4475 }
4476 }
4477
4478 return !!test_bit(pending_bit, pending);
4479 }
4480
4481 static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj *obj,
4482 struct bnx2x_queue_state_params *params)
4483 {
4484 enum bnx2x_queue_cmd cmd = params->cmd, bit;
4485
4486 /* ACTIVATE and DEACTIVATE commands are implemented on top of
4487 * UPDATE command.
4488 */
4489 if ((cmd == BNX2X_Q_CMD_ACTIVATE) ||
4490 (cmd == BNX2X_Q_CMD_DEACTIVATE))
4491 bit = BNX2X_Q_CMD_UPDATE;
4492 else
4493 bit = cmd;
4494
4495 set_bit(bit, &obj->pending);
4496 return bit;
4497 }
4498
4499 static int bnx2x_queue_wait_comp(struct bnx2x *bp,
4500 struct bnx2x_queue_sp_obj *o,
4501 enum bnx2x_queue_cmd cmd)
4502 {
4503 return bnx2x_state_wait(bp, cmd, &o->pending);
4504 }
4505
4506 /**
4507 * bnx2x_queue_comp_cmd - complete the state change command.
4508 *
4509 * @bp: device handle
4510 * @o:
4511 * @cmd:
4512 *
4513 * Checks that the arrived completion is expected.
4514 */
4515 static int bnx2x_queue_comp_cmd(struct bnx2x *bp,
4516 struct bnx2x_queue_sp_obj *o,
4517 enum bnx2x_queue_cmd cmd)
4518 {
4519 unsigned long cur_pending = o->pending;
4520
4521 if (!test_and_clear_bit(cmd, &cur_pending)) {
4522 BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4523 cmd, o->cids[BNX2X_PRIMARY_CID_INDEX],
4524 o->state, cur_pending, o->next_state);
4525 return -EINVAL;
4526 }
4527
4528 if (o->next_tx_only >= o->max_cos)
4529 /* >= because tx only must always be smaller than cos since the
4530 * primary connection supports COS 0
4531 */
4532 BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d",
4533 o->next_tx_only, o->max_cos);
4534
4535 DP(BNX2X_MSG_SP,
4536 "Completing command %d for queue %d, setting state to %d\n",
4537 cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_state);
4538
4539 if (o->next_tx_only) /* print num tx-only if any exist */
4540 DP(BNX2X_MSG_SP, "primary cid %d: num tx-only cons %d\n",
4541 o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_tx_only);
4542
4543 o->state = o->next_state;
4544 o->num_tx_only = o->next_tx_only;
4545 o->next_state = BNX2X_Q_STATE_MAX;
4546
4547 /* It's important that o->state and o->next_state are
4548 * updated before o->pending.
4549 */
4550 wmb();
4551
4552 clear_bit(cmd, &o->pending);
4553 smp_mb__after_atomic();
4554
4555 return 0;
4556 }
4557
4558 static void bnx2x_q_fill_setup_data_e2(struct bnx2x *bp,
4559 struct bnx2x_queue_state_params *cmd_params,
4560 struct client_init_ramrod_data *data)
4561 {
4562 struct bnx2x_queue_setup_params *params = &cmd_params->params.setup;
4563
4564 /* Rx data */
4565
4566 /* IPv6 TPA supported for E2 and above only */
4567 data->rx.tpa_en |= test_bit(BNX2X_Q_FLG_TPA_IPV6, &params->flags) *
4568 CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4569 }
4570
4571 static void bnx2x_q_fill_init_general_data(struct bnx2x *bp,
4572 struct bnx2x_queue_sp_obj *o,
4573 struct bnx2x_general_setup_params *params,
4574 struct client_init_general_data *gen_data,
4575 unsigned long *flags)
4576 {
4577 gen_data->client_id = o->cl_id;
4578
4579 if (test_bit(BNX2X_Q_FLG_STATS, flags)) {
4580 gen_data->statistics_counter_id =
4581 params->stat_id;
4582 gen_data->statistics_en_flg = 1;
4583 gen_data->statistics_zero_flg =
4584 test_bit(BNX2X_Q_FLG_ZERO_STATS, flags);
4585 } else
4586 gen_data->statistics_counter_id =
4587 DISABLE_STATISTIC_COUNTER_ID_VALUE;
4588
4589 gen_data->is_fcoe_flg = test_bit(BNX2X_Q_FLG_FCOE, flags);
4590 gen_data->activate_flg = test_bit(BNX2X_Q_FLG_ACTIVE, flags);
4591 gen_data->sp_client_id = params->spcl_id;
4592 gen_data->mtu = cpu_to_le16(params->mtu);
4593 gen_data->func_id = o->func_id;
4594
4595 gen_data->cos = params->cos;
4596
4597 gen_data->traffic_type =
4598 test_bit(BNX2X_Q_FLG_FCOE, flags) ?
4599 LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4600
4601 gen_data->fp_hsi_ver = params->fp_hsi;
4602
4603 DP(BNX2X_MSG_SP, "flags: active %d, cos %d, stats en %d\n",
4604 gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4605 }
4606
4607 static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj *o,
4608 struct bnx2x_txq_setup_params *params,
4609 struct client_init_tx_data *tx_data,
4610 unsigned long *flags)
4611 {
4612 tx_data->enforce_security_flg =
4613 test_bit(BNX2X_Q_FLG_TX_SEC, flags);
4614 tx_data->default_vlan =
4615 cpu_to_le16(params->default_vlan);
4616 tx_data->default_vlan_flg =
4617 test_bit(BNX2X_Q_FLG_DEF_VLAN, flags);
4618 tx_data->tx_switching_flg =
4619 test_bit(BNX2X_Q_FLG_TX_SWITCH, flags);
4620 tx_data->anti_spoofing_flg =
4621 test_bit(BNX2X_Q_FLG_ANTI_SPOOF, flags);
4622 tx_data->force_default_pri_flg =
4623 test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, flags);
4624 tx_data->refuse_outband_vlan_flg =
4625 test_bit(BNX2X_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
4626 tx_data->tunnel_lso_inc_ip_id =
4627 test_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4628 tx_data->tunnel_non_lso_pcsum_location =
4629 test_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
4630 CSUM_ON_BD;
4631
4632 tx_data->tx_status_block_id = params->fw_sb_id;
4633 tx_data->tx_sb_index_number = params->sb_cq_index;
4634 tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4635
4636 tx_data->tx_bd_page_base.lo =
4637 cpu_to_le32(U64_LO(params->dscr_map));
4638 tx_data->tx_bd_page_base.hi =
4639 cpu_to_le32(U64_HI(params->dscr_map));
4640
4641 /* Don't configure any Tx switching mode during queue SETUP */
4642 tx_data->state = 0;
4643 }
4644
4645 static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj *o,
4646 struct rxq_pause_params *params,
4647 struct client_init_rx_data *rx_data)
4648 {
4649 /* flow control data */
4650 rx_data->cqe_pause_thr_low = cpu_to_le16(params->rcq_th_lo);
4651 rx_data->cqe_pause_thr_high = cpu_to_le16(params->rcq_th_hi);
4652 rx_data->bd_pause_thr_low = cpu_to_le16(params->bd_th_lo);
4653 rx_data->bd_pause_thr_high = cpu_to_le16(params->bd_th_hi);
4654 rx_data->sge_pause_thr_low = cpu_to_le16(params->sge_th_lo);
4655 rx_data->sge_pause_thr_high = cpu_to_le16(params->sge_th_hi);
4656 rx_data->rx_cos_mask = cpu_to_le16(params->pri_map);
4657 }
4658
4659 static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj *o,
4660 struct bnx2x_rxq_setup_params *params,
4661 struct client_init_rx_data *rx_data,
4662 unsigned long *flags)
4663 {
4664 rx_data->tpa_en = test_bit(BNX2X_Q_FLG_TPA, flags) *
4665 CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4666 rx_data->tpa_en |= test_bit(BNX2X_Q_FLG_TPA_GRO, flags) *
4667 CLIENT_INIT_RX_DATA_TPA_MODE;
4668 rx_data->vmqueue_mode_en_flg = 0;
4669
4670 rx_data->cache_line_alignment_log_size =
4671 params->cache_line_log;
4672 rx_data->enable_dynamic_hc =
4673 test_bit(BNX2X_Q_FLG_DHC, flags);
4674 rx_data->max_sges_for_packet = params->max_sges_pkt;
4675 rx_data->client_qzone_id = params->cl_qzone_id;
4676 rx_data->max_agg_size = cpu_to_le16(params->tpa_agg_sz);
4677
4678 /* Always start in DROP_ALL mode */
4679 rx_data->state = cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4680 CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4681
4682 /* We don't set drop flags */
4683 rx_data->drop_ip_cs_err_flg = 0;
4684 rx_data->drop_tcp_cs_err_flg = 0;
4685 rx_data->drop_ttl0_flg = 0;
4686 rx_data->drop_udp_cs_err_flg = 0;
4687 rx_data->inner_vlan_removal_enable_flg =
4688 test_bit(BNX2X_Q_FLG_VLAN, flags);
4689 rx_data->outer_vlan_removal_enable_flg =
4690 test_bit(BNX2X_Q_FLG_OV, flags);
4691 rx_data->status_block_id = params->fw_sb_id;
4692 rx_data->rx_sb_index_number = params->sb_cq_index;
4693 rx_data->max_tpa_queues = params->max_tpa_queues;
4694 rx_data->max_bytes_on_bd = cpu_to_le16(params->buf_sz);
4695 rx_data->sge_buff_size = cpu_to_le16(params->sge_buf_sz);
4696 rx_data->bd_page_base.lo =
4697 cpu_to_le32(U64_LO(params->dscr_map));
4698 rx_data->bd_page_base.hi =
4699 cpu_to_le32(U64_HI(params->dscr_map));
4700 rx_data->sge_page_base.lo =
4701 cpu_to_le32(U64_LO(params->sge_map));
4702 rx_data->sge_page_base.hi =
4703 cpu_to_le32(U64_HI(params->sge_map));
4704 rx_data->cqe_page_base.lo =
4705 cpu_to_le32(U64_LO(params->rcq_map));
4706 rx_data->cqe_page_base.hi =
4707 cpu_to_le32(U64_HI(params->rcq_map));
4708 rx_data->is_leading_rss = test_bit(BNX2X_Q_FLG_LEADING_RSS, flags);
4709
4710 if (test_bit(BNX2X_Q_FLG_MCAST, flags)) {
4711 rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4712 rx_data->is_approx_mcast = 1;
4713 }
4714
4715 rx_data->rss_engine_id = params->rss_engine_id;
4716
4717 /* silent vlan removal */
4718 rx_data->silent_vlan_removal_flg =
4719 test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, flags);
4720 rx_data->silent_vlan_value =
4721 cpu_to_le16(params->silent_removal_value);
4722 rx_data->silent_vlan_mask =
4723 cpu_to_le16(params->silent_removal_mask);
4724 }
4725
4726 /* initialize the general, tx and rx parts of a queue object */
4727 static void bnx2x_q_fill_setup_data_cmn(struct bnx2x *bp,
4728 struct bnx2x_queue_state_params *cmd_params,
4729 struct client_init_ramrod_data *data)
4730 {
4731 bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4732 &cmd_params->params.setup.gen_params,
4733 &data->general,
4734 &cmd_params->params.setup.flags);
4735
4736 bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4737 &cmd_params->params.setup.txq_params,
4738 &data->tx,
4739 &cmd_params->params.setup.flags);
4740
4741 bnx2x_q_fill_init_rx_data(cmd_params->q_obj,
4742 &cmd_params->params.setup.rxq_params,
4743 &data->rx,
4744 &cmd_params->params.setup.flags);
4745
4746 bnx2x_q_fill_init_pause_data(cmd_params->q_obj,
4747 &cmd_params->params.setup.pause_params,
4748 &data->rx);
4749 }
4750
4751 /* initialize the general and tx parts of a tx-only queue object */
4752 static void bnx2x_q_fill_setup_tx_only(struct bnx2x *bp,
4753 struct bnx2x_queue_state_params *cmd_params,
4754 struct tx_queue_init_ramrod_data *data)
4755 {
4756 bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4757 &cmd_params->params.tx_only.gen_params,
4758 &data->general,
4759 &cmd_params->params.tx_only.flags);
4760
4761 bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4762 &cmd_params->params.tx_only.txq_params,
4763 &data->tx,
4764 &cmd_params->params.tx_only.flags);
4765
4766 DP(BNX2X_MSG_SP, "cid %d, tx bd page lo %x hi %x",
4767 cmd_params->q_obj->cids[0],
4768 data->tx.tx_bd_page_base.lo,
4769 data->tx.tx_bd_page_base.hi);
4770 }
4771
4772 /**
4773 * bnx2x_q_init - init HW/FW queue
4774 *
4775 * @bp: device handle
4776 * @params:
4777 *
4778 * HW/FW initial Queue configuration:
4779 * - HC: Rx and Tx
4780 * - CDU context validation
4781 *
4782 */
4783 static inline int bnx2x_q_init(struct bnx2x *bp,
4784 struct bnx2x_queue_state_params *params)
4785 {
4786 struct bnx2x_queue_sp_obj *o = params->q_obj;
4787 struct bnx2x_queue_init_params *init = &params->params.init;
4788 u16 hc_usec;
4789 u8 cos;
4790
4791 /* Tx HC configuration */
4792 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &o->type) &&
4793 test_bit(BNX2X_Q_FLG_HC, &init->tx.flags)) {
4794 hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
4795
4796 bnx2x_update_coalesce_sb_index(bp, init->tx.fw_sb_id,
4797 init->tx.sb_cq_index,
4798 !test_bit(BNX2X_Q_FLG_HC_EN, &init->tx.flags),
4799 hc_usec);
4800 }
4801
4802 /* Rx HC configuration */
4803 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &o->type) &&
4804 test_bit(BNX2X_Q_FLG_HC, &init->rx.flags)) {
4805 hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
4806
4807 bnx2x_update_coalesce_sb_index(bp, init->rx.fw_sb_id,
4808 init->rx.sb_cq_index,
4809 !test_bit(BNX2X_Q_FLG_HC_EN, &init->rx.flags),
4810 hc_usec);
4811 }
4812
4813 /* Set CDU context validation values */
4814 for (cos = 0; cos < o->max_cos; cos++) {
4815 DP(BNX2X_MSG_SP, "setting context validation. cid %d, cos %d\n",
4816 o->cids[cos], cos);
4817 DP(BNX2X_MSG_SP, "context pointer %p\n", init->cxts[cos]);
4818 bnx2x_set_ctx_validation(bp, init->cxts[cos], o->cids[cos]);
4819 }
4820
4821 /* As no ramrod is sent, complete the command immediately */
4822 o->complete_cmd(bp, o, BNX2X_Q_CMD_INIT);
4823
4824 mmiowb();
4825 smp_mb();
4826
4827 return 0;
4828 }
4829
4830 static inline int bnx2x_q_send_setup_e1x(struct bnx2x *bp,
4831 struct bnx2x_queue_state_params *params)
4832 {
4833 struct bnx2x_queue_sp_obj *o = params->q_obj;
4834 struct client_init_ramrod_data *rdata =
4835 (struct client_init_ramrod_data *)o->rdata;
4836 dma_addr_t data_mapping = o->rdata_mapping;
4837 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
4838
4839 /* Clear the ramrod data */
4840 memset(rdata, 0, sizeof(*rdata));
4841
4842 /* Fill the ramrod data */
4843 bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
4844
4845 /* No need for an explicit memory barrier here as long as we
4846 * ensure the ordering of writing to the SPQ element
4847 * and updating of the SPQ producer which involves a memory
4848 * read. If the memory read is removed we will have to put a
4849 * full memory barrier there (inside bnx2x_sp_post()).
4850 */
4851 return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
4852 U64_HI(data_mapping),
4853 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4854 }
4855
4856 static inline int bnx2x_q_send_setup_e2(struct bnx2x *bp,
4857 struct bnx2x_queue_state_params *params)
4858 {
4859 struct bnx2x_queue_sp_obj *o = params->q_obj;
4860 struct client_init_ramrod_data *rdata =
4861 (struct client_init_ramrod_data *)o->rdata;
4862 dma_addr_t data_mapping = o->rdata_mapping;
4863 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
4864
4865 /* Clear the ramrod data */
4866 memset(rdata, 0, sizeof(*rdata));
4867
4868 /* Fill the ramrod data */
4869 bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
4870 bnx2x_q_fill_setup_data_e2(bp, params, rdata);
4871
4872 /* No need for an explicit memory barrier here as long as we
4873 * ensure the ordering of writing to the SPQ element
4874 * and updating of the SPQ producer which involves a memory
4875 * read. If the memory read is removed we will have to put a
4876 * full memory barrier there (inside bnx2x_sp_post()).
4877 */
4878 return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
4879 U64_HI(data_mapping),
4880 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4881 }
4882
4883 static inline int bnx2x_q_send_setup_tx_only(struct bnx2x *bp,
4884 struct bnx2x_queue_state_params *params)
4885 {
4886 struct bnx2x_queue_sp_obj *o = params->q_obj;
4887 struct tx_queue_init_ramrod_data *rdata =
4888 (struct tx_queue_init_ramrod_data *)o->rdata;
4889 dma_addr_t data_mapping = o->rdata_mapping;
4890 int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
4891 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
4892 &params->params.tx_only;
4893 u8 cid_index = tx_only_params->cid_index;
4894
4895 if (cid_index >= o->max_cos) {
4896 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4897 o->cl_id, cid_index);
4898 return -EINVAL;
4899 }
4900
4901 DP(BNX2X_MSG_SP, "parameters received: cos: %d sp-id: %d\n",
4902 tx_only_params->gen_params.cos,
4903 tx_only_params->gen_params.spcl_id);
4904
4905 /* Clear the ramrod data */
4906 memset(rdata, 0, sizeof(*rdata));
4907
4908 /* Fill the ramrod data */
4909 bnx2x_q_fill_setup_tx_only(bp, params, rdata);
4910
4911 DP(BNX2X_MSG_SP, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
4912 o->cids[cid_index], rdata->general.client_id,
4913 rdata->general.sp_client_id, rdata->general.cos);
4914
4915 /* No need for an explicit memory barrier here as long as we
4916 * ensure the ordering of writing to the SPQ element
4917 * and updating of the SPQ producer which involves a memory
4918 * read. If the memory read is removed we will have to put a
4919 * full memory barrier there (inside bnx2x_sp_post()).
4920 */
4921 return bnx2x_sp_post(bp, ramrod, o->cids[cid_index],
4922 U64_HI(data_mapping),
4923 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4924 }
4925
4926 static void bnx2x_q_fill_update_data(struct bnx2x *bp,
4927 struct bnx2x_queue_sp_obj *obj,
4928 struct bnx2x_queue_update_params *params,
4929 struct client_update_ramrod_data *data)
4930 {
4931 /* Client ID of the client to update */
4932 data->client_id = obj->cl_id;
4933
4934 /* Function ID of the client to update */
4935 data->func_id = obj->func_id;
4936
4937 /* Default VLAN value */
4938 data->default_vlan = cpu_to_le16(params->def_vlan);
4939
4940 /* Inner VLAN stripping */
4941 data->inner_vlan_removal_enable_flg =
4942 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM, &params->update_flags);
4943 data->inner_vlan_removal_change_flg =
4944 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG,
4945 &params->update_flags);
4946
4947 /* Outer VLAN stripping */
4948 data->outer_vlan_removal_enable_flg =
4949 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM, &params->update_flags);
4950 data->outer_vlan_removal_change_flg =
4951 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG,
4952 &params->update_flags);
4953
4954 /* Drop packets that have source MAC that doesn't belong to this
4955 * Queue.
4956 */
4957 data->anti_spoofing_enable_flg =
4958 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, &params->update_flags);
4959 data->anti_spoofing_change_flg =
4960 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, &params->update_flags);
4961
4962 /* Activate/Deactivate */
4963 data->activate_flg =
4964 test_bit(BNX2X_Q_UPDATE_ACTIVATE, &params->update_flags);
4965 data->activate_change_flg =
4966 test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &params->update_flags);
4967
4968 /* Enable default VLAN */
4969 data->default_vlan_enable_flg =
4970 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &params->update_flags);
4971 data->default_vlan_change_flg =
4972 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
4973 &params->update_flags);
4974
4975 /* silent vlan removal */
4976 data->silent_vlan_change_flg =
4977 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4978 &params->update_flags);
4979 data->silent_vlan_removal_flg =
4980 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &params->update_flags);
4981 data->silent_vlan_value = cpu_to_le16(params->silent_removal_value);
4982 data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask);
4983
4984 /* tx switching */
4985 data->tx_switching_flg =
4986 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING, &params->update_flags);
4987 data->tx_switching_change_flg =
4988 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
4989 &params->update_flags);
4990
4991 /* PTP */
4992 data->handle_ptp_pkts_flg =
4993 test_bit(BNX2X_Q_UPDATE_PTP_PKTS, &params->update_flags);
4994 data->handle_ptp_pkts_change_flg =
4995 test_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, &params->update_flags);
4996 }
4997
4998 static inline int bnx2x_q_send_update(struct bnx2x *bp,
4999 struct bnx2x_queue_state_params *params)
5000 {
5001 struct bnx2x_queue_sp_obj *o = params->q_obj;
5002 struct client_update_ramrod_data *rdata =
5003 (struct client_update_ramrod_data *)o->rdata;
5004 dma_addr_t data_mapping = o->rdata_mapping;
5005 struct bnx2x_queue_update_params *update_params =
5006 &params->params.update;
5007 u8 cid_index = update_params->cid_index;
5008
5009 if (cid_index >= o->max_cos) {
5010 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5011 o->cl_id, cid_index);
5012 return -EINVAL;
5013 }
5014
5015 /* Clear the ramrod data */
5016 memset(rdata, 0, sizeof(*rdata));
5017
5018 /* Fill the ramrod data */
5019 bnx2x_q_fill_update_data(bp, o, update_params, rdata);
5020
5021 /* No need for an explicit memory barrier here as long as we
5022 * ensure the ordering of writing to the SPQ element
5023 * and updating of the SPQ producer which involves a memory
5024 * read. If the memory read is removed we will have to put a
5025 * full memory barrier there (inside bnx2x_sp_post()).
5026 */
5027 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
5028 o->cids[cid_index], U64_HI(data_mapping),
5029 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5030 }
5031
5032 /**
5033 * bnx2x_q_send_deactivate - send DEACTIVATE command
5034 *
5035 * @bp: device handle
5036 * @params:
5037 *
5038 * implemented using the UPDATE command.
5039 */
5040 static inline int bnx2x_q_send_deactivate(struct bnx2x *bp,
5041 struct bnx2x_queue_state_params *params)
5042 {
5043 struct bnx2x_queue_update_params *update = &params->params.update;
5044
5045 memset(update, 0, sizeof(*update));
5046
5047 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5048
5049 return bnx2x_q_send_update(bp, params);
5050 }
5051
5052 /**
5053 * bnx2x_q_send_activate - send ACTIVATE command
5054 *
5055 * @bp: device handle
5056 * @params:
5057 *
5058 * implemented using the UPDATE command.
5059 */
5060 static inline int bnx2x_q_send_activate(struct bnx2x *bp,
5061 struct bnx2x_queue_state_params *params)
5062 {
5063 struct bnx2x_queue_update_params *update = &params->params.update;
5064
5065 memset(update, 0, sizeof(*update));
5066
5067 __set_bit(BNX2X_Q_UPDATE_ACTIVATE, &update->update_flags);
5068 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5069
5070 return bnx2x_q_send_update(bp, params);
5071 }
5072
5073 static void bnx2x_q_fill_update_tpa_data(struct bnx2x *bp,
5074 struct bnx2x_queue_sp_obj *obj,
5075 struct bnx2x_queue_update_tpa_params *params,
5076 struct tpa_update_ramrod_data *data)
5077 {
5078 data->client_id = obj->cl_id;
5079 data->complete_on_both_clients = params->complete_on_both_clients;
5080 data->dont_verify_rings_pause_thr_flg =
5081 params->dont_verify_thr;
5082 data->max_agg_size = cpu_to_le16(params->max_agg_sz);
5083 data->max_sges_for_packet = params->max_sges_pkt;
5084 data->max_tpa_queues = params->max_tpa_queues;
5085 data->sge_buff_size = cpu_to_le16(params->sge_buff_sz);
5086 data->sge_page_base_hi = cpu_to_le32(U64_HI(params->sge_map));
5087 data->sge_page_base_lo = cpu_to_le32(U64_LO(params->sge_map));
5088 data->sge_pause_thr_high = cpu_to_le16(params->sge_pause_thr_high);
5089 data->sge_pause_thr_low = cpu_to_le16(params->sge_pause_thr_low);
5090 data->tpa_mode = params->tpa_mode;
5091 data->update_ipv4 = params->update_ipv4;
5092 data->update_ipv6 = params->update_ipv6;
5093 }
5094
5095 static inline int bnx2x_q_send_update_tpa(struct bnx2x *bp,
5096 struct bnx2x_queue_state_params *params)
5097 {
5098 struct bnx2x_queue_sp_obj *o = params->q_obj;
5099 struct tpa_update_ramrod_data *rdata =
5100 (struct tpa_update_ramrod_data *)o->rdata;
5101 dma_addr_t data_mapping = o->rdata_mapping;
5102 struct bnx2x_queue_update_tpa_params *update_tpa_params =
5103 &params->params.update_tpa;
5104 u16 type;
5105
5106 /* Clear the ramrod data */
5107 memset(rdata, 0, sizeof(*rdata));
5108
5109 /* Fill the ramrod data */
5110 bnx2x_q_fill_update_tpa_data(bp, o, update_tpa_params, rdata);
5111
5112 /* Add the function id inside the type, so that sp post function
5113 * doesn't automatically add the PF func-id, this is required
5114 * for operations done by PFs on behalf of their VFs
5115 */
5116 type = ETH_CONNECTION_TYPE |
5117 ((o->func_id) << SPE_HDR_FUNCTION_ID_SHIFT);
5118
5119 /* No need for an explicit memory barrier here as long as we
5120 * ensure the ordering of writing to the SPQ element
5121 * and updating of the SPQ producer which involves a memory
5122 * read. If the memory read is removed we will have to put a
5123 * full memory barrier there (inside bnx2x_sp_post()).
5124 */
5125 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TPA_UPDATE,
5126 o->cids[BNX2X_PRIMARY_CID_INDEX],
5127 U64_HI(data_mapping),
5128 U64_LO(data_mapping), type);
5129 }
5130
5131 static inline int bnx2x_q_send_halt(struct bnx2x *bp,
5132 struct bnx2x_queue_state_params *params)
5133 {
5134 struct bnx2x_queue_sp_obj *o = params->q_obj;
5135
5136 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT,
5137 o->cids[BNX2X_PRIMARY_CID_INDEX], 0, o->cl_id,
5138 ETH_CONNECTION_TYPE);
5139 }
5140
5141 static inline int bnx2x_q_send_cfc_del(struct bnx2x *bp,
5142 struct bnx2x_queue_state_params *params)
5143 {
5144 struct bnx2x_queue_sp_obj *o = params->q_obj;
5145 u8 cid_idx = params->params.cfc_del.cid_index;
5146
5147 if (cid_idx >= o->max_cos) {
5148 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5149 o->cl_id, cid_idx);
5150 return -EINVAL;
5151 }
5152
5153 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_CFC_DEL,
5154 o->cids[cid_idx], 0, 0, NONE_CONNECTION_TYPE);
5155 }
5156
5157 static inline int bnx2x_q_send_terminate(struct bnx2x *bp,
5158 struct bnx2x_queue_state_params *params)
5159 {
5160 struct bnx2x_queue_sp_obj *o = params->q_obj;
5161 u8 cid_index = params->params.terminate.cid_index;
5162
5163 if (cid_index >= o->max_cos) {
5164 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5165 o->cl_id, cid_index);
5166 return -EINVAL;
5167 }
5168
5169 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TERMINATE,
5170 o->cids[cid_index], 0, 0, ETH_CONNECTION_TYPE);
5171 }
5172
5173 static inline int bnx2x_q_send_empty(struct bnx2x *bp,
5174 struct bnx2x_queue_state_params *params)
5175 {
5176 struct bnx2x_queue_sp_obj *o = params->q_obj;
5177
5178 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_EMPTY,
5179 o->cids[BNX2X_PRIMARY_CID_INDEX], 0, 0,
5180 ETH_CONNECTION_TYPE);
5181 }
5182
5183 static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x *bp,
5184 struct bnx2x_queue_state_params *params)
5185 {
5186 switch (params->cmd) {
5187 case BNX2X_Q_CMD_INIT:
5188 return bnx2x_q_init(bp, params);
5189 case BNX2X_Q_CMD_SETUP_TX_ONLY:
5190 return bnx2x_q_send_setup_tx_only(bp, params);
5191 case BNX2X_Q_CMD_DEACTIVATE:
5192 return bnx2x_q_send_deactivate(bp, params);
5193 case BNX2X_Q_CMD_ACTIVATE:
5194 return bnx2x_q_send_activate(bp, params);
5195 case BNX2X_Q_CMD_UPDATE:
5196 return bnx2x_q_send_update(bp, params);
5197 case BNX2X_Q_CMD_UPDATE_TPA:
5198 return bnx2x_q_send_update_tpa(bp, params);
5199 case BNX2X_Q_CMD_HALT:
5200 return bnx2x_q_send_halt(bp, params);
5201 case BNX2X_Q_CMD_CFC_DEL:
5202 return bnx2x_q_send_cfc_del(bp, params);
5203 case BNX2X_Q_CMD_TERMINATE:
5204 return bnx2x_q_send_terminate(bp, params);
5205 case BNX2X_Q_CMD_EMPTY:
5206 return bnx2x_q_send_empty(bp, params);
5207 default:
5208 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5209 return -EINVAL;
5210 }
5211 }
5212
5213 static int bnx2x_queue_send_cmd_e1x(struct bnx2x *bp,
5214 struct bnx2x_queue_state_params *params)
5215 {
5216 switch (params->cmd) {
5217 case BNX2X_Q_CMD_SETUP:
5218 return bnx2x_q_send_setup_e1x(bp, params);
5219 case BNX2X_Q_CMD_INIT:
5220 case BNX2X_Q_CMD_SETUP_TX_ONLY:
5221 case BNX2X_Q_CMD_DEACTIVATE:
5222 case BNX2X_Q_CMD_ACTIVATE:
5223 case BNX2X_Q_CMD_UPDATE:
5224 case BNX2X_Q_CMD_UPDATE_TPA:
5225 case BNX2X_Q_CMD_HALT:
5226 case BNX2X_Q_CMD_CFC_DEL:
5227 case BNX2X_Q_CMD_TERMINATE:
5228 case BNX2X_Q_CMD_EMPTY:
5229 return bnx2x_queue_send_cmd_cmn(bp, params);
5230 default:
5231 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5232 return -EINVAL;
5233 }
5234 }
5235
5236 static int bnx2x_queue_send_cmd_e2(struct bnx2x *bp,
5237 struct bnx2x_queue_state_params *params)
5238 {
5239 switch (params->cmd) {
5240 case BNX2X_Q_CMD_SETUP:
5241 return bnx2x_q_send_setup_e2(bp, params);
5242 case BNX2X_Q_CMD_INIT:
5243 case BNX2X_Q_CMD_SETUP_TX_ONLY:
5244 case BNX2X_Q_CMD_DEACTIVATE:
5245 case BNX2X_Q_CMD_ACTIVATE:
5246 case BNX2X_Q_CMD_UPDATE:
5247 case BNX2X_Q_CMD_UPDATE_TPA:
5248 case BNX2X_Q_CMD_HALT:
5249 case BNX2X_Q_CMD_CFC_DEL:
5250 case BNX2X_Q_CMD_TERMINATE:
5251 case BNX2X_Q_CMD_EMPTY:
5252 return bnx2x_queue_send_cmd_cmn(bp, params);
5253 default:
5254 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5255 return -EINVAL;
5256 }
5257 }
5258
5259 /**
5260 * bnx2x_queue_chk_transition - check state machine of a regular Queue
5261 *
5262 * @bp: device handle
5263 * @o:
5264 * @params:
5265 *
5266 * (not Forwarding)
5267 * It both checks if the requested command is legal in a current
5268 * state and, if it's legal, sets a `next_state' in the object
5269 * that will be used in the completion flow to set the `state'
5270 * of the object.
5271 *
5272 * returns 0 if a requested command is a legal transition,
5273 * -EINVAL otherwise.
5274 */
5275 static int bnx2x_queue_chk_transition(struct bnx2x *bp,
5276 struct bnx2x_queue_sp_obj *o,
5277 struct bnx2x_queue_state_params *params)
5278 {
5279 enum bnx2x_q_state state = o->state, next_state = BNX2X_Q_STATE_MAX;
5280 enum bnx2x_queue_cmd cmd = params->cmd;
5281 struct bnx2x_queue_update_params *update_params =
5282 &params->params.update;
5283 u8 next_tx_only = o->num_tx_only;
5284
5285 /* Forget all pending for completion commands if a driver only state
5286 * transition has been requested.
5287 */
5288 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5289 o->pending = 0;
5290 o->next_state = BNX2X_Q_STATE_MAX;
5291 }
5292
5293 /* Don't allow a next state transition if we are in the middle of
5294 * the previous one.
5295 */
5296 if (o->pending) {
5297 BNX2X_ERR("Blocking transition since pending was %lx\n",
5298 o->pending);
5299 return -EBUSY;
5300 }
5301
5302 switch (state) {
5303 case BNX2X_Q_STATE_RESET:
5304 if (cmd == BNX2X_Q_CMD_INIT)
5305 next_state = BNX2X_Q_STATE_INITIALIZED;
5306
5307 break;
5308 case BNX2X_Q_STATE_INITIALIZED:
5309 if (cmd == BNX2X_Q_CMD_SETUP) {
5310 if (test_bit(BNX2X_Q_FLG_ACTIVE,
5311 &params->params.setup.flags))
5312 next_state = BNX2X_Q_STATE_ACTIVE;
5313 else
5314 next_state = BNX2X_Q_STATE_INACTIVE;
5315 }
5316
5317 break;
5318 case BNX2X_Q_STATE_ACTIVE:
5319 if (cmd == BNX2X_Q_CMD_DEACTIVATE)
5320 next_state = BNX2X_Q_STATE_INACTIVE;
5321
5322 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5323 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5324 next_state = BNX2X_Q_STATE_ACTIVE;
5325
5326 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5327 next_state = BNX2X_Q_STATE_MULTI_COS;
5328 next_tx_only = 1;
5329 }
5330
5331 else if (cmd == BNX2X_Q_CMD_HALT)
5332 next_state = BNX2X_Q_STATE_STOPPED;
5333
5334 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5335 /* If "active" state change is requested, update the
5336 * state accordingly.
5337 */
5338 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5339 &update_params->update_flags) &&
5340 !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5341 &update_params->update_flags))
5342 next_state = BNX2X_Q_STATE_INACTIVE;
5343 else
5344 next_state = BNX2X_Q_STATE_ACTIVE;
5345 }
5346
5347 break;
5348 case BNX2X_Q_STATE_MULTI_COS:
5349 if (cmd == BNX2X_Q_CMD_TERMINATE)
5350 next_state = BNX2X_Q_STATE_MCOS_TERMINATED;
5351
5352 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5353 next_state = BNX2X_Q_STATE_MULTI_COS;
5354 next_tx_only = o->num_tx_only + 1;
5355 }
5356
5357 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5358 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5359 next_state = BNX2X_Q_STATE_MULTI_COS;
5360
5361 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5362 /* If "active" state change is requested, update the
5363 * state accordingly.
5364 */
5365 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5366 &update_params->update_flags) &&
5367 !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5368 &update_params->update_flags))
5369 next_state = BNX2X_Q_STATE_INACTIVE;
5370 else
5371 next_state = BNX2X_Q_STATE_MULTI_COS;
5372 }
5373
5374 break;
5375 case BNX2X_Q_STATE_MCOS_TERMINATED:
5376 if (cmd == BNX2X_Q_CMD_CFC_DEL) {
5377 next_tx_only = o->num_tx_only - 1;
5378 if (next_tx_only == 0)
5379 next_state = BNX2X_Q_STATE_ACTIVE;
5380 else
5381 next_state = BNX2X_Q_STATE_MULTI_COS;
5382 }
5383
5384 break;
5385 case BNX2X_Q_STATE_INACTIVE:
5386 if (cmd == BNX2X_Q_CMD_ACTIVATE)
5387 next_state = BNX2X_Q_STATE_ACTIVE;
5388
5389 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5390 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5391 next_state = BNX2X_Q_STATE_INACTIVE;
5392
5393 else if (cmd == BNX2X_Q_CMD_HALT)
5394 next_state = BNX2X_Q_STATE_STOPPED;
5395
5396 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5397 /* If "active" state change is requested, update the
5398 * state accordingly.
5399 */
5400 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5401 &update_params->update_flags) &&
5402 test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5403 &update_params->update_flags)){
5404 if (o->num_tx_only == 0)
5405 next_state = BNX2X_Q_STATE_ACTIVE;
5406 else /* tx only queues exist for this queue */
5407 next_state = BNX2X_Q_STATE_MULTI_COS;
5408 } else
5409 next_state = BNX2X_Q_STATE_INACTIVE;
5410 }
5411
5412 break;
5413 case BNX2X_Q_STATE_STOPPED:
5414 if (cmd == BNX2X_Q_CMD_TERMINATE)
5415 next_state = BNX2X_Q_STATE_TERMINATED;
5416
5417 break;
5418 case BNX2X_Q_STATE_TERMINATED:
5419 if (cmd == BNX2X_Q_CMD_CFC_DEL)
5420 next_state = BNX2X_Q_STATE_RESET;
5421
5422 break;
5423 default:
5424 BNX2X_ERR("Illegal state: %d\n", state);
5425 }
5426
5427 /* Transition is assured */
5428 if (next_state != BNX2X_Q_STATE_MAX) {
5429 DP(BNX2X_MSG_SP, "Good state transition: %d(%d)->%d\n",
5430 state, cmd, next_state);
5431 o->next_state = next_state;
5432 o->next_tx_only = next_tx_only;
5433 return 0;
5434 }
5435
5436 DP(BNX2X_MSG_SP, "Bad state transition request: %d %d\n", state, cmd);
5437
5438 return -EINVAL;
5439 }
5440
5441 void bnx2x_init_queue_obj(struct bnx2x *bp,
5442 struct bnx2x_queue_sp_obj *obj,
5443 u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id,
5444 void *rdata,
5445 dma_addr_t rdata_mapping, unsigned long type)
5446 {
5447 memset(obj, 0, sizeof(*obj));
5448
5449 /* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */
5450 BUG_ON(BNX2X_MULTI_TX_COS < cid_cnt);
5451
5452 memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5453 obj->max_cos = cid_cnt;
5454 obj->cl_id = cl_id;
5455 obj->func_id = func_id;
5456 obj->rdata = rdata;
5457 obj->rdata_mapping = rdata_mapping;
5458 obj->type = type;
5459 obj->next_state = BNX2X_Q_STATE_MAX;
5460
5461 if (CHIP_IS_E1x(bp))
5462 obj->send_cmd = bnx2x_queue_send_cmd_e1x;
5463 else
5464 obj->send_cmd = bnx2x_queue_send_cmd_e2;
5465
5466 obj->check_transition = bnx2x_queue_chk_transition;
5467
5468 obj->complete_cmd = bnx2x_queue_comp_cmd;
5469 obj->wait_comp = bnx2x_queue_wait_comp;
5470 obj->set_pending = bnx2x_queue_set_pending;
5471 }
5472
5473 /* return a queue object's logical state*/
5474 int bnx2x_get_q_logical_state(struct bnx2x *bp,
5475 struct bnx2x_queue_sp_obj *obj)
5476 {
5477 switch (obj->state) {
5478 case BNX2X_Q_STATE_ACTIVE:
5479 case BNX2X_Q_STATE_MULTI_COS:
5480 return BNX2X_Q_LOGICAL_STATE_ACTIVE;
5481 case BNX2X_Q_STATE_RESET:
5482 case BNX2X_Q_STATE_INITIALIZED:
5483 case BNX2X_Q_STATE_MCOS_TERMINATED:
5484 case BNX2X_Q_STATE_INACTIVE:
5485 case BNX2X_Q_STATE_STOPPED:
5486 case BNX2X_Q_STATE_TERMINATED:
5487 case BNX2X_Q_STATE_FLRED:
5488 return BNX2X_Q_LOGICAL_STATE_STOPPED;
5489 default:
5490 return -EINVAL;
5491 }
5492 }
5493
5494 /********************** Function state object *********************************/
5495 enum bnx2x_func_state bnx2x_func_get_state(struct bnx2x *bp,
5496 struct bnx2x_func_sp_obj *o)
5497 {
5498 /* in the middle of transaction - return INVALID state */
5499 if (o->pending)
5500 return BNX2X_F_STATE_MAX;
5501
5502 /* unsure the order of reading of o->pending and o->state
5503 * o->pending should be read first
5504 */
5505 rmb();
5506
5507 return o->state;
5508 }
5509
5510 static int bnx2x_func_wait_comp(struct bnx2x *bp,
5511 struct bnx2x_func_sp_obj *o,
5512 enum bnx2x_func_cmd cmd)
5513 {
5514 return bnx2x_state_wait(bp, cmd, &o->pending);
5515 }
5516
5517 /**
5518 * bnx2x_func_state_change_comp - complete the state machine transition
5519 *
5520 * @bp: device handle
5521 * @o:
5522 * @cmd:
5523 *
5524 * Called on state change transition. Completes the state
5525 * machine transition only - no HW interaction.
5526 */
5527 static inline int bnx2x_func_state_change_comp(struct bnx2x *bp,
5528 struct bnx2x_func_sp_obj *o,
5529 enum bnx2x_func_cmd cmd)
5530 {
5531 unsigned long cur_pending = o->pending;
5532
5533 if (!test_and_clear_bit(cmd, &cur_pending)) {
5534 BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5535 cmd, BP_FUNC(bp), o->state,
5536 cur_pending, o->next_state);
5537 return -EINVAL;
5538 }
5539
5540 DP(BNX2X_MSG_SP,
5541 "Completing command %d for func %d, setting state to %d\n",
5542 cmd, BP_FUNC(bp), o->next_state);
5543
5544 o->state = o->next_state;
5545 o->next_state = BNX2X_F_STATE_MAX;
5546
5547 /* It's important that o->state and o->next_state are
5548 * updated before o->pending.
5549 */
5550 wmb();
5551
5552 clear_bit(cmd, &o->pending);
5553 smp_mb__after_atomic();
5554
5555 return 0;
5556 }
5557
5558 /**
5559 * bnx2x_func_comp_cmd - complete the state change command
5560 *
5561 * @bp: device handle
5562 * @o:
5563 * @cmd:
5564 *
5565 * Checks that the arrived completion is expected.
5566 */
5567 static int bnx2x_func_comp_cmd(struct bnx2x *bp,
5568 struct bnx2x_func_sp_obj *o,
5569 enum bnx2x_func_cmd cmd)
5570 {
5571 /* Complete the state machine part first, check if it's a
5572 * legal completion.
5573 */
5574 int rc = bnx2x_func_state_change_comp(bp, o, cmd);
5575 return rc;
5576 }
5577
5578 /**
5579 * bnx2x_func_chk_transition - perform function state machine transition
5580 *
5581 * @bp: device handle
5582 * @o:
5583 * @params:
5584 *
5585 * It both checks if the requested command is legal in a current
5586 * state and, if it's legal, sets a `next_state' in the object
5587 * that will be used in the completion flow to set the `state'
5588 * of the object.
5589 *
5590 * returns 0 if a requested command is a legal transition,
5591 * -EINVAL otherwise.
5592 */
5593 static int bnx2x_func_chk_transition(struct bnx2x *bp,
5594 struct bnx2x_func_sp_obj *o,
5595 struct bnx2x_func_state_params *params)
5596 {
5597 enum bnx2x_func_state state = o->state, next_state = BNX2X_F_STATE_MAX;
5598 enum bnx2x_func_cmd cmd = params->cmd;
5599
5600 /* Forget all pending for completion commands if a driver only state
5601 * transition has been requested.
5602 */
5603 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5604 o->pending = 0;
5605 o->next_state = BNX2X_F_STATE_MAX;
5606 }
5607
5608 /* Don't allow a next state transition if we are in the middle of
5609 * the previous one.
5610 */
5611 if (o->pending)
5612 return -EBUSY;
5613
5614 switch (state) {
5615 case BNX2X_F_STATE_RESET:
5616 if (cmd == BNX2X_F_CMD_HW_INIT)
5617 next_state = BNX2X_F_STATE_INITIALIZED;
5618
5619 break;
5620 case BNX2X_F_STATE_INITIALIZED:
5621 if (cmd == BNX2X_F_CMD_START)
5622 next_state = BNX2X_F_STATE_STARTED;
5623
5624 else if (cmd == BNX2X_F_CMD_HW_RESET)
5625 next_state = BNX2X_F_STATE_RESET;
5626
5627 break;
5628 case BNX2X_F_STATE_STARTED:
5629 if (cmd == BNX2X_F_CMD_STOP)
5630 next_state = BNX2X_F_STATE_INITIALIZED;
5631 /* afex ramrods can be sent only in started mode, and only
5632 * if not pending for function_stop ramrod completion
5633 * for these events - next state remained STARTED.
5634 */
5635 else if ((cmd == BNX2X_F_CMD_AFEX_UPDATE) &&
5636 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5637 next_state = BNX2X_F_STATE_STARTED;
5638
5639 else if ((cmd == BNX2X_F_CMD_AFEX_VIFLISTS) &&
5640 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5641 next_state = BNX2X_F_STATE_STARTED;
5642
5643 /* Switch_update ramrod can be sent in either started or
5644 * tx_stopped state, and it doesn't change the state.
5645 */
5646 else if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5647 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5648 next_state = BNX2X_F_STATE_STARTED;
5649
5650 else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5651 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5652 next_state = BNX2X_F_STATE_STARTED;
5653
5654 else if (cmd == BNX2X_F_CMD_TX_STOP)
5655 next_state = BNX2X_F_STATE_TX_STOPPED;
5656
5657 break;
5658 case BNX2X_F_STATE_TX_STOPPED:
5659 if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5660 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5661 next_state = BNX2X_F_STATE_TX_STOPPED;
5662
5663 else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5664 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5665 next_state = BNX2X_F_STATE_TX_STOPPED;
5666
5667 else if (cmd == BNX2X_F_CMD_TX_START)
5668 next_state = BNX2X_F_STATE_STARTED;
5669
5670 break;
5671 default:
5672 BNX2X_ERR("Unknown state: %d\n", state);
5673 }
5674
5675 /* Transition is assured */
5676 if (next_state != BNX2X_F_STATE_MAX) {
5677 DP(BNX2X_MSG_SP, "Good function state transition: %d(%d)->%d\n",
5678 state, cmd, next_state);
5679 o->next_state = next_state;
5680 return 0;
5681 }
5682
5683 DP(BNX2X_MSG_SP, "Bad function state transition request: %d %d\n",
5684 state, cmd);
5685
5686 return -EINVAL;
5687 }
5688
5689 /**
5690 * bnx2x_func_init_func - performs HW init at function stage
5691 *
5692 * @bp: device handle
5693 * @drv:
5694 *
5695 * Init HW when the current phase is
5696 * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
5697 * HW blocks.
5698 */
5699 static inline int bnx2x_func_init_func(struct bnx2x *bp,
5700 const struct bnx2x_func_sp_drv_ops *drv)
5701 {
5702 return drv->init_hw_func(bp);
5703 }
5704
5705 /**
5706 * bnx2x_func_init_port - performs HW init at port stage
5707 *
5708 * @bp: device handle
5709 * @drv:
5710 *
5711 * Init HW when the current phase is
5712 * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
5713 * FUNCTION-only HW blocks.
5714 *
5715 */
5716 static inline int bnx2x_func_init_port(struct bnx2x *bp,
5717 const struct bnx2x_func_sp_drv_ops *drv)
5718 {
5719 int rc = drv->init_hw_port(bp);
5720 if (rc)
5721 return rc;
5722
5723 return bnx2x_func_init_func(bp, drv);
5724 }
5725
5726 /**
5727 * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage
5728 *
5729 * @bp: device handle
5730 * @drv:
5731 *
5732 * Init HW when the current phase is
5733 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
5734 * PORT-only and FUNCTION-only HW blocks.
5735 */
5736 static inline int bnx2x_func_init_cmn_chip(struct bnx2x *bp,
5737 const struct bnx2x_func_sp_drv_ops *drv)
5738 {
5739 int rc = drv->init_hw_cmn_chip(bp);
5740 if (rc)
5741 return rc;
5742
5743 return bnx2x_func_init_port(bp, drv);
5744 }
5745
5746 /**
5747 * bnx2x_func_init_cmn - performs HW init at common stage
5748 *
5749 * @bp: device handle
5750 * @drv:
5751 *
5752 * Init HW when the current phase is
5753 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
5754 * PORT-only and FUNCTION-only HW blocks.
5755 */
5756 static inline int bnx2x_func_init_cmn(struct bnx2x *bp,
5757 const struct bnx2x_func_sp_drv_ops *drv)
5758 {
5759 int rc = drv->init_hw_cmn(bp);
5760 if (rc)
5761 return rc;
5762
5763 return bnx2x_func_init_port(bp, drv);
5764 }
5765
5766 static int bnx2x_func_hw_init(struct bnx2x *bp,
5767 struct bnx2x_func_state_params *params)
5768 {
5769 u32 load_code = params->params.hw_init.load_phase;
5770 struct bnx2x_func_sp_obj *o = params->f_obj;
5771 const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5772 int rc = 0;
5773
5774 DP(BNX2X_MSG_SP, "function %d load_code %x\n",
5775 BP_ABS_FUNC(bp), load_code);
5776
5777 /* Prepare buffers for unzipping the FW */
5778 rc = drv->gunzip_init(bp);
5779 if (rc)
5780 return rc;
5781
5782 /* Prepare FW */
5783 rc = drv->init_fw(bp);
5784 if (rc) {
5785 BNX2X_ERR("Error loading firmware\n");
5786 goto init_err;
5787 }
5788
5789 /* Handle the beginning of COMMON_XXX pases separately... */
5790 switch (load_code) {
5791 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5792 rc = bnx2x_func_init_cmn_chip(bp, drv);
5793 if (rc)
5794 goto init_err;
5795
5796 break;
5797 case FW_MSG_CODE_DRV_LOAD_COMMON:
5798 rc = bnx2x_func_init_cmn(bp, drv);
5799 if (rc)
5800 goto init_err;
5801
5802 break;
5803 case FW_MSG_CODE_DRV_LOAD_PORT:
5804 rc = bnx2x_func_init_port(bp, drv);
5805 if (rc)
5806 goto init_err;
5807
5808 break;
5809 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5810 rc = bnx2x_func_init_func(bp, drv);
5811 if (rc)
5812 goto init_err;
5813
5814 break;
5815 default:
5816 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5817 rc = -EINVAL;
5818 }
5819
5820 init_err:
5821 drv->gunzip_end(bp);
5822
5823 /* In case of success, complete the command immediately: no ramrods
5824 * have been sent.
5825 */
5826 if (!rc)
5827 o->complete_cmd(bp, o, BNX2X_F_CMD_HW_INIT);
5828
5829 return rc;
5830 }
5831
5832 /**
5833 * bnx2x_func_reset_func - reset HW at function stage
5834 *
5835 * @bp: device handle
5836 * @drv:
5837 *
5838 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
5839 * FUNCTION-only HW blocks.
5840 */
5841 static inline void bnx2x_func_reset_func(struct bnx2x *bp,
5842 const struct bnx2x_func_sp_drv_ops *drv)
5843 {
5844 drv->reset_hw_func(bp);
5845 }
5846
5847 /**
5848 * bnx2x_func_reset_port - reset HW at port stage
5849 *
5850 * @bp: device handle
5851 * @drv:
5852 *
5853 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
5854 * FUNCTION-only and PORT-only HW blocks.
5855 *
5856 * !!!IMPORTANT!!!
5857 *
5858 * It's important to call reset_port before reset_func() as the last thing
5859 * reset_func does is pf_disable() thus disabling PGLUE_B, which
5860 * makes impossible any DMAE transactions.
5861 */
5862 static inline void bnx2x_func_reset_port(struct bnx2x *bp,
5863 const struct bnx2x_func_sp_drv_ops *drv)
5864 {
5865 drv->reset_hw_port(bp);
5866 bnx2x_func_reset_func(bp, drv);
5867 }
5868
5869 /**
5870 * bnx2x_func_reset_cmn - reset HW at common stage
5871 *
5872 * @bp: device handle
5873 * @drv:
5874 *
5875 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
5876 * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
5877 * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
5878 */
5879 static inline void bnx2x_func_reset_cmn(struct bnx2x *bp,
5880 const struct bnx2x_func_sp_drv_ops *drv)
5881 {
5882 bnx2x_func_reset_port(bp, drv);
5883 drv->reset_hw_cmn(bp);
5884 }
5885
5886 static inline int bnx2x_func_hw_reset(struct bnx2x *bp,
5887 struct bnx2x_func_state_params *params)
5888 {
5889 u32 reset_phase = params->params.hw_reset.reset_phase;
5890 struct bnx2x_func_sp_obj *o = params->f_obj;
5891 const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5892
5893 DP(BNX2X_MSG_SP, "function %d reset_phase %x\n", BP_ABS_FUNC(bp),
5894 reset_phase);
5895
5896 switch (reset_phase) {
5897 case FW_MSG_CODE_DRV_UNLOAD_COMMON:
5898 bnx2x_func_reset_cmn(bp, drv);
5899 break;
5900 case FW_MSG_CODE_DRV_UNLOAD_PORT:
5901 bnx2x_func_reset_port(bp, drv);
5902 break;
5903 case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
5904 bnx2x_func_reset_func(bp, drv);
5905 break;
5906 default:
5907 BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n",
5908 reset_phase);
5909 break;
5910 }
5911
5912 /* Complete the command immediately: no ramrods have been sent. */
5913 o->complete_cmd(bp, o, BNX2X_F_CMD_HW_RESET);
5914
5915 return 0;
5916 }
5917
5918 static inline int bnx2x_func_send_start(struct bnx2x *bp,
5919 struct bnx2x_func_state_params *params)
5920 {
5921 struct bnx2x_func_sp_obj *o = params->f_obj;
5922 struct function_start_data *rdata =
5923 (struct function_start_data *)o->rdata;
5924 dma_addr_t data_mapping = o->rdata_mapping;
5925 struct bnx2x_func_start_params *start_params = &params->params.start;
5926
5927 memset(rdata, 0, sizeof(*rdata));
5928
5929 /* Fill the ramrod data with provided parameters */
5930 rdata->function_mode = (u8)start_params->mf_mode;
5931 rdata->sd_vlan_tag = cpu_to_le16(start_params->sd_vlan_tag);
5932 rdata->path_id = BP_PATH(bp);
5933 rdata->network_cos_mode = start_params->network_cos_mode;
5934
5935 rdata->vxlan_dst_port = cpu_to_le16(start_params->vxlan_dst_port);
5936 rdata->geneve_dst_port = cpu_to_le16(start_params->geneve_dst_port);
5937 rdata->inner_clss_l2gre = start_params->inner_clss_l2gre;
5938 rdata->inner_clss_l2geneve = start_params->inner_clss_l2geneve;
5939 rdata->inner_clss_vxlan = start_params->inner_clss_vxlan;
5940 rdata->inner_rss = start_params->inner_rss;
5941
5942 rdata->sd_accept_mf_clss_fail = start_params->class_fail;
5943 if (start_params->class_fail_ethtype) {
5944 rdata->sd_accept_mf_clss_fail_match_ethtype = 1;
5945 rdata->sd_accept_mf_clss_fail_ethtype =
5946 cpu_to_le16(start_params->class_fail_ethtype);
5947 }
5948
5949 rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri;
5950 rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val;
5951 if (start_params->sd_vlan_eth_type)
5952 rdata->sd_vlan_eth_type =
5953 cpu_to_le16(start_params->sd_vlan_eth_type);
5954 else
5955 rdata->sd_vlan_eth_type =
5956 cpu_to_le16(0x8100);
5957
5958 rdata->no_added_tags = start_params->no_added_tags;
5959
5960 rdata->c2s_pri_tt_valid = start_params->c2s_pri_valid;
5961 if (rdata->c2s_pri_tt_valid) {
5962 memcpy(rdata->c2s_pri_trans_table.val,
5963 start_params->c2s_pri,
5964 MAX_VLAN_PRIORITIES);
5965 rdata->c2s_pri_default = start_params->c2s_pri_default;
5966 }
5967 /* No need for an explicit memory barrier here as long we would
5968 * need to ensure the ordering of writing to the SPQ element
5969 * and updating of the SPQ producer which involves a memory
5970 * read and we will have to put a full memory barrier there
5971 * (inside bnx2x_sp_post()).
5972 */
5973
5974 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
5975 U64_HI(data_mapping),
5976 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
5977 }
5978
5979 static inline int bnx2x_func_send_switch_update(struct bnx2x *bp,
5980 struct bnx2x_func_state_params *params)
5981 {
5982 struct bnx2x_func_sp_obj *o = params->f_obj;
5983 struct function_update_data *rdata =
5984 (struct function_update_data *)o->rdata;
5985 dma_addr_t data_mapping = o->rdata_mapping;
5986 struct bnx2x_func_switch_update_params *switch_update_params =
5987 &params->params.switch_update;
5988
5989 memset(rdata, 0, sizeof(*rdata));
5990
5991 /* Fill the ramrod data with provided parameters */
5992 if (test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
5993 &switch_update_params->changes)) {
5994 rdata->tx_switch_suspend_change_flg = 1;
5995 rdata->tx_switch_suspend =
5996 test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
5997 &switch_update_params->changes);
5998 }
5999
6000 if (test_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
6001 &switch_update_params->changes)) {
6002 rdata->sd_vlan_tag_change_flg = 1;
6003 rdata->sd_vlan_tag =
6004 cpu_to_le16(switch_update_params->vlan);
6005 }
6006
6007 if (test_bit(BNX2X_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG,
6008 &switch_update_params->changes)) {
6009 rdata->sd_vlan_eth_type_change_flg = 1;
6010 rdata->sd_vlan_eth_type =
6011 cpu_to_le16(switch_update_params->vlan_eth_type);
6012 }
6013
6014 if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_CHNG,
6015 &switch_update_params->changes)) {
6016 rdata->sd_vlan_force_pri_change_flg = 1;
6017 if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_FLAG,
6018 &switch_update_params->changes))
6019 rdata->sd_vlan_force_pri_flg = 1;
6020 rdata->sd_vlan_force_pri_flg =
6021 switch_update_params->vlan_force_prio;
6022 }
6023
6024 if (test_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
6025 &switch_update_params->changes)) {
6026 rdata->update_tunn_cfg_flg = 1;
6027 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GRE,
6028 &switch_update_params->changes))
6029 rdata->inner_clss_l2gre = 1;
6030 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_VXLAN,
6031 &switch_update_params->changes))
6032 rdata->inner_clss_vxlan = 1;
6033 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GENEVE,
6034 &switch_update_params->changes))
6035 rdata->inner_clss_l2geneve = 1;
6036 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
6037 &switch_update_params->changes))
6038 rdata->inner_rss = 1;
6039 rdata->vxlan_dst_port =
6040 cpu_to_le16(switch_update_params->vxlan_dst_port);
6041 rdata->geneve_dst_port =
6042 cpu_to_le16(switch_update_params->geneve_dst_port);
6043 }
6044
6045 rdata->echo = SWITCH_UPDATE;
6046
6047 /* No need for an explicit memory barrier here as long as we
6048 * ensure the ordering of writing to the SPQ element
6049 * and updating of the SPQ producer which involves a memory
6050 * read. If the memory read is removed we will have to put a
6051 * full memory barrier there (inside bnx2x_sp_post()).
6052 */
6053 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6054 U64_HI(data_mapping),
6055 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6056 }
6057
6058 static inline int bnx2x_func_send_afex_update(struct bnx2x *bp,
6059 struct bnx2x_func_state_params *params)
6060 {
6061 struct bnx2x_func_sp_obj *o = params->f_obj;
6062 struct function_update_data *rdata =
6063 (struct function_update_data *)o->afex_rdata;
6064 dma_addr_t data_mapping = o->afex_rdata_mapping;
6065 struct bnx2x_func_afex_update_params *afex_update_params =
6066 &params->params.afex_update;
6067
6068 memset(rdata, 0, sizeof(*rdata));
6069
6070 /* Fill the ramrod data with provided parameters */
6071 rdata->vif_id_change_flg = 1;
6072 rdata->vif_id = cpu_to_le16(afex_update_params->vif_id);
6073 rdata->afex_default_vlan_change_flg = 1;
6074 rdata->afex_default_vlan =
6075 cpu_to_le16(afex_update_params->afex_default_vlan);
6076 rdata->allowed_priorities_change_flg = 1;
6077 rdata->allowed_priorities = afex_update_params->allowed_priorities;
6078 rdata->echo = AFEX_UPDATE;
6079
6080 /* No need for an explicit memory barrier here as long as we
6081 * ensure the ordering of writing to the SPQ element
6082 * and updating of the SPQ producer which involves a memory
6083 * read. If the memory read is removed we will have to put a
6084 * full memory barrier there (inside bnx2x_sp_post()).
6085 */
6086 DP(BNX2X_MSG_SP,
6087 "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
6088 rdata->vif_id,
6089 rdata->afex_default_vlan, rdata->allowed_priorities);
6090
6091 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6092 U64_HI(data_mapping),
6093 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6094 }
6095
6096 static
6097 inline int bnx2x_func_send_afex_viflists(struct bnx2x *bp,
6098 struct bnx2x_func_state_params *params)
6099 {
6100 struct bnx2x_func_sp_obj *o = params->f_obj;
6101 struct afex_vif_list_ramrod_data *rdata =
6102 (struct afex_vif_list_ramrod_data *)o->afex_rdata;
6103 struct bnx2x_func_afex_viflists_params *afex_vif_params =
6104 &params->params.afex_viflists;
6105 u64 *p_rdata = (u64 *)rdata;
6106
6107 memset(rdata, 0, sizeof(*rdata));
6108
6109 /* Fill the ramrod data with provided parameters */
6110 rdata->vif_list_index = cpu_to_le16(afex_vif_params->vif_list_index);
6111 rdata->func_bit_map = afex_vif_params->func_bit_map;
6112 rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
6113 rdata->func_to_clear = afex_vif_params->func_to_clear;
6114
6115 /* send in echo type of sub command */
6116 rdata->echo = afex_vif_params->afex_vif_list_command;
6117
6118 /* No need for an explicit memory barrier here as long we would
6119 * need to ensure the ordering of writing to the SPQ element
6120 * and updating of the SPQ producer which involves a memory
6121 * read and we will have to put a full memory barrier there
6122 * (inside bnx2x_sp_post()).
6123 */
6124
6125 DP(BNX2X_MSG_SP, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
6126 rdata->afex_vif_list_command, rdata->vif_list_index,
6127 rdata->func_bit_map, rdata->func_to_clear);
6128
6129 /* this ramrod sends data directly and not through DMA mapping */
6130 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
6131 U64_HI(*p_rdata), U64_LO(*p_rdata),
6132 NONE_CONNECTION_TYPE);
6133 }
6134
6135 static inline int bnx2x_func_send_stop(struct bnx2x *bp,
6136 struct bnx2x_func_state_params *params)
6137 {
6138 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0, 0,
6139 NONE_CONNECTION_TYPE);
6140 }
6141
6142 static inline int bnx2x_func_send_tx_stop(struct bnx2x *bp,
6143 struct bnx2x_func_state_params *params)
6144 {
6145 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0, 0,
6146 NONE_CONNECTION_TYPE);
6147 }
6148 static inline int bnx2x_func_send_tx_start(struct bnx2x *bp,
6149 struct bnx2x_func_state_params *params)
6150 {
6151 struct bnx2x_func_sp_obj *o = params->f_obj;
6152 struct flow_control_configuration *rdata =
6153 (struct flow_control_configuration *)o->rdata;
6154 dma_addr_t data_mapping = o->rdata_mapping;
6155 struct bnx2x_func_tx_start_params *tx_start_params =
6156 &params->params.tx_start;
6157 int i;
6158
6159 memset(rdata, 0, sizeof(*rdata));
6160
6161 rdata->dcb_enabled = tx_start_params->dcb_enabled;
6162 rdata->dcb_version = tx_start_params->dcb_version;
6163 rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en;
6164
6165 for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
6166 rdata->traffic_type_to_priority_cos[i] =
6167 tx_start_params->traffic_type_to_priority_cos[i];
6168
6169 for (i = 0; i < MAX_TRAFFIC_TYPES; i++)
6170 rdata->dcb_outer_pri[i] = tx_start_params->dcb_outer_pri[i];
6171 /* No need for an explicit memory barrier here as long as we
6172 * ensure the ordering of writing to the SPQ element
6173 * and updating of the SPQ producer which involves a memory
6174 * read. If the memory read is removed we will have to put a
6175 * full memory barrier there (inside bnx2x_sp_post()).
6176 */
6177 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
6178 U64_HI(data_mapping),
6179 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6180 }
6181
6182 static inline
6183 int bnx2x_func_send_set_timesync(struct bnx2x *bp,
6184 struct bnx2x_func_state_params *params)
6185 {
6186 struct bnx2x_func_sp_obj *o = params->f_obj;
6187 struct set_timesync_ramrod_data *rdata =
6188 (struct set_timesync_ramrod_data *)o->rdata;
6189 dma_addr_t data_mapping = o->rdata_mapping;
6190 struct bnx2x_func_set_timesync_params *set_timesync_params =
6191 &params->params.set_timesync;
6192
6193 memset(rdata, 0, sizeof(*rdata));
6194
6195 /* Fill the ramrod data with provided parameters */
6196 rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd;
6197 rdata->offset_cmd = set_timesync_params->offset_cmd;
6198 rdata->add_sub_drift_adjust_value =
6199 set_timesync_params->add_sub_drift_adjust_value;
6200 rdata->drift_adjust_value = set_timesync_params->drift_adjust_value;
6201 rdata->drift_adjust_period = set_timesync_params->drift_adjust_period;
6202 rdata->offset_delta.lo =
6203 cpu_to_le32(U64_LO(set_timesync_params->offset_delta));
6204 rdata->offset_delta.hi =
6205 cpu_to_le32(U64_HI(set_timesync_params->offset_delta));
6206
6207 DP(BNX2X_MSG_SP, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n",
6208 rdata->drift_adjust_cmd, rdata->offset_cmd,
6209 rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value,
6210 rdata->drift_adjust_period, rdata->offset_delta.lo,
6211 rdata->offset_delta.hi);
6212
6213 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0,
6214 U64_HI(data_mapping),
6215 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6216 }
6217
6218 static int bnx2x_func_send_cmd(struct bnx2x *bp,
6219 struct bnx2x_func_state_params *params)
6220 {
6221 switch (params->cmd) {
6222 case BNX2X_F_CMD_HW_INIT:
6223 return bnx2x_func_hw_init(bp, params);
6224 case BNX2X_F_CMD_START:
6225 return bnx2x_func_send_start(bp, params);
6226 case BNX2X_F_CMD_STOP:
6227 return bnx2x_func_send_stop(bp, params);
6228 case BNX2X_F_CMD_HW_RESET:
6229 return bnx2x_func_hw_reset(bp, params);
6230 case BNX2X_F_CMD_AFEX_UPDATE:
6231 return bnx2x_func_send_afex_update(bp, params);
6232 case BNX2X_F_CMD_AFEX_VIFLISTS:
6233 return bnx2x_func_send_afex_viflists(bp, params);
6234 case BNX2X_F_CMD_TX_STOP:
6235 return bnx2x_func_send_tx_stop(bp, params);
6236 case BNX2X_F_CMD_TX_START:
6237 return bnx2x_func_send_tx_start(bp, params);
6238 case BNX2X_F_CMD_SWITCH_UPDATE:
6239 return bnx2x_func_send_switch_update(bp, params);
6240 case BNX2X_F_CMD_SET_TIMESYNC:
6241 return bnx2x_func_send_set_timesync(bp, params);
6242 default:
6243 BNX2X_ERR("Unknown command: %d\n", params->cmd);
6244 return -EINVAL;
6245 }
6246 }
6247
6248 void bnx2x_init_func_obj(struct bnx2x *bp,
6249 struct bnx2x_func_sp_obj *obj,
6250 void *rdata, dma_addr_t rdata_mapping,
6251 void *afex_rdata, dma_addr_t afex_rdata_mapping,
6252 struct bnx2x_func_sp_drv_ops *drv_iface)
6253 {
6254 memset(obj, 0, sizeof(*obj));
6255
6256 mutex_init(&obj->one_pending_mutex);
6257
6258 obj->rdata = rdata;
6259 obj->rdata_mapping = rdata_mapping;
6260 obj->afex_rdata = afex_rdata;
6261 obj->afex_rdata_mapping = afex_rdata_mapping;
6262 obj->send_cmd = bnx2x_func_send_cmd;
6263 obj->check_transition = bnx2x_func_chk_transition;
6264 obj->complete_cmd = bnx2x_func_comp_cmd;
6265 obj->wait_comp = bnx2x_func_wait_comp;
6266
6267 obj->drv = drv_iface;
6268 }
6269
6270 /**
6271 * bnx2x_func_state_change - perform Function state change transition
6272 *
6273 * @bp: device handle
6274 * @params: parameters to perform the transaction
6275 *
6276 * returns 0 in case of successfully completed transition,
6277 * negative error code in case of failure, positive
6278 * (EBUSY) value if there is a completion to that is
6279 * still pending (possible only if RAMROD_COMP_WAIT is
6280 * not set in params->ramrod_flags for asynchronous
6281 * commands).
6282 */
6283 int bnx2x_func_state_change(struct bnx2x *bp,
6284 struct bnx2x_func_state_params *params)
6285 {
6286 struct bnx2x_func_sp_obj *o = params->f_obj;
6287 int rc, cnt = 300;
6288 enum bnx2x_func_cmd cmd = params->cmd;
6289 unsigned long *pending = &o->pending;
6290
6291 mutex_lock(&o->one_pending_mutex);
6292
6293 /* Check that the requested transition is legal */
6294 rc = o->check_transition(bp, o, params);
6295 if ((rc == -EBUSY) &&
6296 (test_bit(RAMROD_RETRY, &params->ramrod_flags))) {
6297 while ((rc == -EBUSY) && (--cnt > 0)) {
6298 mutex_unlock(&o->one_pending_mutex);
6299 msleep(10);
6300 mutex_lock(&o->one_pending_mutex);
6301 rc = o->check_transition(bp, o, params);
6302 }
6303 if (rc == -EBUSY) {
6304 mutex_unlock(&o->one_pending_mutex);
6305 BNX2X_ERR("timeout waiting for previous ramrod completion\n");
6306 return rc;
6307 }
6308 } else if (rc) {
6309 mutex_unlock(&o->one_pending_mutex);
6310 return rc;
6311 }
6312
6313 /* Set "pending" bit */
6314 set_bit(cmd, pending);
6315
6316 /* Don't send a command if only driver cleanup was requested */
6317 if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
6318 bnx2x_func_state_change_comp(bp, o, cmd);
6319 mutex_unlock(&o->one_pending_mutex);
6320 } else {
6321 /* Send a ramrod */
6322 rc = o->send_cmd(bp, params);
6323
6324 mutex_unlock(&o->one_pending_mutex);
6325
6326 if (rc) {
6327 o->next_state = BNX2X_F_STATE_MAX;
6328 clear_bit(cmd, pending);
6329 smp_mb__after_atomic();
6330 return rc;
6331 }
6332
6333 if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
6334 rc = o->wait_comp(bp, o, cmd);
6335 if (rc)
6336 return rc;
6337
6338 return 0;
6339 }
6340 }
6341
6342 return !!test_bit(cmd, pending);
6343 }
This page took 0.250155 seconds and 5 git commands to generate.