Merge tag 'acpica-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[deliverable/linux.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2 * Broadcom GENET (Gigabit Ethernet) controller driver
3 *
4 * Copyright (c) 2014 Broadcom Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #define pr_fmt(fmt) "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT 4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY 0
56
57 #define GENET_Q16_RX_BD_CNT \
58 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT \
60 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62 #define RX_BUF_LENGTH 2048
63 #define SKB_ALIGNMENT 32
64
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
68
69 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
70 TOTAL_DESC * DMA_DESC_SIZE)
71
72 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
73 TOTAL_DESC * DMA_DESC_SIZE)
74
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 void __iomem *d, u32 value)
77 {
78 __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 void __iomem *d)
83 {
84 return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 void __iomem *d,
89 dma_addr_t addr)
90 {
91 __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92
93 /* Register writes to GISB bus can take couple hundred nanoseconds
94 * and are done for each packet, save these expensive writes unless
95 * the platform is explicitly configured for 64-bits/LPAE.
96 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 if (priv->hw_params->flags & GENET_HAS_40BITS)
99 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 dmadesc_set_length_status(priv, d, val);
108 dmadesc_set_addr(priv, d, addr);
109 }
110
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 void __iomem *d)
113 {
114 dma_addr_t addr;
115
116 addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117
118 /* Register writes to GISB bus can take couple hundred nanoseconds
119 * and are done for each packet, save these expensive writes unless
120 * the platform is explicitly configured for 64-bits/LPAE.
121 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 if (priv->hw_params->flags & GENET_HAS_40BITS)
124 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 return addr;
127 }
128
129 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
130
131 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 NETIF_MSG_LINK)
133
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 if (GENET_IS_V1(priv))
137 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 else
139 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 if (GENET_IS_V1(priv))
145 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 else
147 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149
150 /* These macros are defined to deal with register map change
151 * between GENET1.1 and GENET2. Only those currently being used
152 * by driver are defined.
153 */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 if (GENET_IS_V1(priv))
157 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 else
159 return __raw_readl(priv->base +
160 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 if (GENET_IS_V1(priv))
166 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 else
168 __raw_writel(val, priv->base +
169 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 if (GENET_IS_V1(priv))
175 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 else
177 return __raw_readl(priv->base +
178 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 if (GENET_IS_V1(priv))
184 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 else
186 __raw_writel(val, priv->base +
187 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 DMA_RING_CFG = 0,
193 DMA_CTRL,
194 DMA_STATUS,
195 DMA_SCB_BURST_SIZE,
196 DMA_ARB_CTRL,
197 DMA_PRIORITY_0,
198 DMA_PRIORITY_1,
199 DMA_PRIORITY_2,
200 DMA_INDEX2RING_0,
201 DMA_INDEX2RING_1,
202 DMA_INDEX2RING_2,
203 DMA_INDEX2RING_3,
204 DMA_INDEX2RING_4,
205 DMA_INDEX2RING_5,
206 DMA_INDEX2RING_6,
207 DMA_INDEX2RING_7,
208 };
209
210 static const u8 bcmgenet_dma_regs_v3plus[] = {
211 [DMA_RING_CFG] = 0x00,
212 [DMA_CTRL] = 0x04,
213 [DMA_STATUS] = 0x08,
214 [DMA_SCB_BURST_SIZE] = 0x0C,
215 [DMA_ARB_CTRL] = 0x2C,
216 [DMA_PRIORITY_0] = 0x30,
217 [DMA_PRIORITY_1] = 0x34,
218 [DMA_PRIORITY_2] = 0x38,
219 [DMA_INDEX2RING_0] = 0x70,
220 [DMA_INDEX2RING_1] = 0x74,
221 [DMA_INDEX2RING_2] = 0x78,
222 [DMA_INDEX2RING_3] = 0x7C,
223 [DMA_INDEX2RING_4] = 0x80,
224 [DMA_INDEX2RING_5] = 0x84,
225 [DMA_INDEX2RING_6] = 0x88,
226 [DMA_INDEX2RING_7] = 0x8C,
227 };
228
229 static const u8 bcmgenet_dma_regs_v2[] = {
230 [DMA_RING_CFG] = 0x00,
231 [DMA_CTRL] = 0x04,
232 [DMA_STATUS] = 0x08,
233 [DMA_SCB_BURST_SIZE] = 0x0C,
234 [DMA_ARB_CTRL] = 0x30,
235 [DMA_PRIORITY_0] = 0x34,
236 [DMA_PRIORITY_1] = 0x38,
237 [DMA_PRIORITY_2] = 0x3C,
238 };
239
240 static const u8 bcmgenet_dma_regs_v1[] = {
241 [DMA_CTRL] = 0x00,
242 [DMA_STATUS] = 0x04,
243 [DMA_SCB_BURST_SIZE] = 0x0C,
244 [DMA_ARB_CTRL] = 0x30,
245 [DMA_PRIORITY_0] = 0x34,
246 [DMA_PRIORITY_1] = 0x38,
247 [DMA_PRIORITY_2] = 0x3C,
248 };
249
250 /* Set at runtime once bcmgenet version is known */
251 static const u8 *bcmgenet_dma_regs;
252
253 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
254 {
255 return netdev_priv(dev_get_drvdata(dev));
256 }
257
258 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
259 enum dma_reg r)
260 {
261 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
262 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
263 }
264
265 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
266 u32 val, enum dma_reg r)
267 {
268 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
269 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
270 }
271
272 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
273 enum dma_reg r)
274 {
275 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
276 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
277 }
278
279 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
280 u32 val, enum dma_reg r)
281 {
282 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
283 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
284 }
285
286 /* RDMA/TDMA ring registers and accessors
287 * we merge the common fields and just prefix with T/D the registers
288 * having different meaning depending on the direction
289 */
290 enum dma_ring_reg {
291 TDMA_READ_PTR = 0,
292 RDMA_WRITE_PTR = TDMA_READ_PTR,
293 TDMA_READ_PTR_HI,
294 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
295 TDMA_CONS_INDEX,
296 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
297 TDMA_PROD_INDEX,
298 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
299 DMA_RING_BUF_SIZE,
300 DMA_START_ADDR,
301 DMA_START_ADDR_HI,
302 DMA_END_ADDR,
303 DMA_END_ADDR_HI,
304 DMA_MBUF_DONE_THRESH,
305 TDMA_FLOW_PERIOD,
306 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
307 TDMA_WRITE_PTR,
308 RDMA_READ_PTR = TDMA_WRITE_PTR,
309 TDMA_WRITE_PTR_HI,
310 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
311 };
312
313 /* GENET v4 supports 40-bits pointer addressing
314 * for obvious reasons the LO and HI word parts
315 * are contiguous, but this offsets the other
316 * registers.
317 */
318 static const u8 genet_dma_ring_regs_v4[] = {
319 [TDMA_READ_PTR] = 0x00,
320 [TDMA_READ_PTR_HI] = 0x04,
321 [TDMA_CONS_INDEX] = 0x08,
322 [TDMA_PROD_INDEX] = 0x0C,
323 [DMA_RING_BUF_SIZE] = 0x10,
324 [DMA_START_ADDR] = 0x14,
325 [DMA_START_ADDR_HI] = 0x18,
326 [DMA_END_ADDR] = 0x1C,
327 [DMA_END_ADDR_HI] = 0x20,
328 [DMA_MBUF_DONE_THRESH] = 0x24,
329 [TDMA_FLOW_PERIOD] = 0x28,
330 [TDMA_WRITE_PTR] = 0x2C,
331 [TDMA_WRITE_PTR_HI] = 0x30,
332 };
333
334 static const u8 genet_dma_ring_regs_v123[] = {
335 [TDMA_READ_PTR] = 0x00,
336 [TDMA_CONS_INDEX] = 0x04,
337 [TDMA_PROD_INDEX] = 0x08,
338 [DMA_RING_BUF_SIZE] = 0x0C,
339 [DMA_START_ADDR] = 0x10,
340 [DMA_END_ADDR] = 0x14,
341 [DMA_MBUF_DONE_THRESH] = 0x18,
342 [TDMA_FLOW_PERIOD] = 0x1C,
343 [TDMA_WRITE_PTR] = 0x20,
344 };
345
346 /* Set at runtime once GENET version is known */
347 static const u8 *genet_dma_ring_regs;
348
349 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
350 unsigned int ring,
351 enum dma_ring_reg r)
352 {
353 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
354 (DMA_RING_SIZE * ring) +
355 genet_dma_ring_regs[r]);
356 }
357
358 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
359 unsigned int ring, u32 val,
360 enum dma_ring_reg r)
361 {
362 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
363 (DMA_RING_SIZE * ring) +
364 genet_dma_ring_regs[r]);
365 }
366
367 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
368 unsigned int ring,
369 enum dma_ring_reg r)
370 {
371 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
372 (DMA_RING_SIZE * ring) +
373 genet_dma_ring_regs[r]);
374 }
375
376 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
377 unsigned int ring, u32 val,
378 enum dma_ring_reg r)
379 {
380 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
381 (DMA_RING_SIZE * ring) +
382 genet_dma_ring_regs[r]);
383 }
384
385 static int bcmgenet_get_settings(struct net_device *dev,
386 struct ethtool_cmd *cmd)
387 {
388 struct bcmgenet_priv *priv = netdev_priv(dev);
389
390 if (!netif_running(dev))
391 return -EINVAL;
392
393 if (!priv->phydev)
394 return -ENODEV;
395
396 return phy_ethtool_gset(priv->phydev, cmd);
397 }
398
399 static int bcmgenet_set_settings(struct net_device *dev,
400 struct ethtool_cmd *cmd)
401 {
402 struct bcmgenet_priv *priv = netdev_priv(dev);
403
404 if (!netif_running(dev))
405 return -EINVAL;
406
407 if (!priv->phydev)
408 return -ENODEV;
409
410 return phy_ethtool_sset(priv->phydev, cmd);
411 }
412
413 static int bcmgenet_set_rx_csum(struct net_device *dev,
414 netdev_features_t wanted)
415 {
416 struct bcmgenet_priv *priv = netdev_priv(dev);
417 u32 rbuf_chk_ctrl;
418 bool rx_csum_en;
419
420 rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
421
422 rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
423
424 /* enable rx checksumming */
425 if (rx_csum_en)
426 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
427 else
428 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
429 priv->desc_rxchk_en = rx_csum_en;
430
431 /* If UniMAC forwards CRC, we need to skip over it to get
432 * a valid CHK bit to be set in the per-packet status word
433 */
434 if (rx_csum_en && priv->crc_fwd_en)
435 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
436 else
437 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
438
439 bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
440
441 return 0;
442 }
443
444 static int bcmgenet_set_tx_csum(struct net_device *dev,
445 netdev_features_t wanted)
446 {
447 struct bcmgenet_priv *priv = netdev_priv(dev);
448 bool desc_64b_en;
449 u32 tbuf_ctrl, rbuf_ctrl;
450
451 tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
452 rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
453
454 desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
455
456 /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
457 if (desc_64b_en) {
458 tbuf_ctrl |= RBUF_64B_EN;
459 rbuf_ctrl |= RBUF_64B_EN;
460 } else {
461 tbuf_ctrl &= ~RBUF_64B_EN;
462 rbuf_ctrl &= ~RBUF_64B_EN;
463 }
464 priv->desc_64b_en = desc_64b_en;
465
466 bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
467 bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
468
469 return 0;
470 }
471
472 static int bcmgenet_set_features(struct net_device *dev,
473 netdev_features_t features)
474 {
475 netdev_features_t changed = features ^ dev->features;
476 netdev_features_t wanted = dev->wanted_features;
477 int ret = 0;
478
479 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
480 ret = bcmgenet_set_tx_csum(dev, wanted);
481 if (changed & (NETIF_F_RXCSUM))
482 ret = bcmgenet_set_rx_csum(dev, wanted);
483
484 return ret;
485 }
486
487 static u32 bcmgenet_get_msglevel(struct net_device *dev)
488 {
489 struct bcmgenet_priv *priv = netdev_priv(dev);
490
491 return priv->msg_enable;
492 }
493
494 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
495 {
496 struct bcmgenet_priv *priv = netdev_priv(dev);
497
498 priv->msg_enable = level;
499 }
500
501 /* standard ethtool support functions. */
502 enum bcmgenet_stat_type {
503 BCMGENET_STAT_NETDEV = -1,
504 BCMGENET_STAT_MIB_RX,
505 BCMGENET_STAT_MIB_TX,
506 BCMGENET_STAT_RUNT,
507 BCMGENET_STAT_MISC,
508 BCMGENET_STAT_SOFT,
509 };
510
511 struct bcmgenet_stats {
512 char stat_string[ETH_GSTRING_LEN];
513 int stat_sizeof;
514 int stat_offset;
515 enum bcmgenet_stat_type type;
516 /* reg offset from UMAC base for misc counters */
517 u16 reg_offset;
518 };
519
520 #define STAT_NETDEV(m) { \
521 .stat_string = __stringify(m), \
522 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
523 .stat_offset = offsetof(struct net_device_stats, m), \
524 .type = BCMGENET_STAT_NETDEV, \
525 }
526
527 #define STAT_GENET_MIB(str, m, _type) { \
528 .stat_string = str, \
529 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
530 .stat_offset = offsetof(struct bcmgenet_priv, m), \
531 .type = _type, \
532 }
533
534 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
535 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
536 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
537 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
538
539 #define STAT_GENET_MISC(str, m, offset) { \
540 .stat_string = str, \
541 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
542 .stat_offset = offsetof(struct bcmgenet_priv, m), \
543 .type = BCMGENET_STAT_MISC, \
544 .reg_offset = offset, \
545 }
546
547
548 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
549 * between the end of TX stats and the beginning of the RX RUNT
550 */
551 #define BCMGENET_STAT_OFFSET 0xc
552
553 /* Hardware counters must be kept in sync because the order/offset
554 * is important here (order in structure declaration = order in hardware)
555 */
556 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
557 /* general stats */
558 STAT_NETDEV(rx_packets),
559 STAT_NETDEV(tx_packets),
560 STAT_NETDEV(rx_bytes),
561 STAT_NETDEV(tx_bytes),
562 STAT_NETDEV(rx_errors),
563 STAT_NETDEV(tx_errors),
564 STAT_NETDEV(rx_dropped),
565 STAT_NETDEV(tx_dropped),
566 STAT_NETDEV(multicast),
567 /* UniMAC RSV counters */
568 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
569 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
570 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
571 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
572 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
573 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
574 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
575 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
576 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
577 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
578 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
579 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
580 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
581 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
582 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
583 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
584 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
585 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
586 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
587 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
588 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
589 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
590 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
591 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
592 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
593 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
594 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
595 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
596 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
597 /* UniMAC TSV counters */
598 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
599 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
600 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
601 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
602 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
603 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
604 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
605 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
606 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
607 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
608 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
609 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
610 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
611 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
612 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
613 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
614 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
615 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
616 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
617 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
618 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
619 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
620 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
621 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
622 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
623 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
624 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
625 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
626 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
627 /* UniMAC RUNT counters */
628 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
629 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
630 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
631 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
632 /* Misc UniMAC counters */
633 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
634 UMAC_RBUF_OVFL_CNT),
635 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
636 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
637 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
638 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
639 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
640 };
641
642 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
643
644 static void bcmgenet_get_drvinfo(struct net_device *dev,
645 struct ethtool_drvinfo *info)
646 {
647 strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
648 strlcpy(info->version, "v2.0", sizeof(info->version));
649 info->n_stats = BCMGENET_STATS_LEN;
650 }
651
652 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
653 {
654 switch (string_set) {
655 case ETH_SS_STATS:
656 return BCMGENET_STATS_LEN;
657 default:
658 return -EOPNOTSUPP;
659 }
660 }
661
662 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
663 u8 *data)
664 {
665 int i;
666
667 switch (stringset) {
668 case ETH_SS_STATS:
669 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
670 memcpy(data + i * ETH_GSTRING_LEN,
671 bcmgenet_gstrings_stats[i].stat_string,
672 ETH_GSTRING_LEN);
673 }
674 break;
675 }
676 }
677
678 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
679 {
680 int i, j = 0;
681
682 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
683 const struct bcmgenet_stats *s;
684 u8 offset = 0;
685 u32 val = 0;
686 char *p;
687
688 s = &bcmgenet_gstrings_stats[i];
689 switch (s->type) {
690 case BCMGENET_STAT_NETDEV:
691 case BCMGENET_STAT_SOFT:
692 continue;
693 case BCMGENET_STAT_MIB_RX:
694 case BCMGENET_STAT_MIB_TX:
695 case BCMGENET_STAT_RUNT:
696 if (s->type != BCMGENET_STAT_MIB_RX)
697 offset = BCMGENET_STAT_OFFSET;
698 val = bcmgenet_umac_readl(priv,
699 UMAC_MIB_START + j + offset);
700 break;
701 case BCMGENET_STAT_MISC:
702 val = bcmgenet_umac_readl(priv, s->reg_offset);
703 /* clear if overflowed */
704 if (val == ~0)
705 bcmgenet_umac_writel(priv, 0, s->reg_offset);
706 break;
707 }
708
709 j += s->stat_sizeof;
710 p = (char *)priv + s->stat_offset;
711 *(u32 *)p = val;
712 }
713 }
714
715 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
716 struct ethtool_stats *stats,
717 u64 *data)
718 {
719 struct bcmgenet_priv *priv = netdev_priv(dev);
720 int i;
721
722 if (netif_running(dev))
723 bcmgenet_update_mib_counters(priv);
724
725 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
726 const struct bcmgenet_stats *s;
727 char *p;
728
729 s = &bcmgenet_gstrings_stats[i];
730 if (s->type == BCMGENET_STAT_NETDEV)
731 p = (char *)&dev->stats;
732 else
733 p = (char *)priv;
734 p += s->stat_offset;
735 data[i] = *(u32 *)p;
736 }
737 }
738
739 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
740 {
741 struct bcmgenet_priv *priv = netdev_priv(dev);
742 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
743 u32 reg;
744
745 if (enable && !priv->clk_eee_enabled) {
746 clk_prepare_enable(priv->clk_eee);
747 priv->clk_eee_enabled = true;
748 }
749
750 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
751 if (enable)
752 reg |= EEE_EN;
753 else
754 reg &= ~EEE_EN;
755 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
756
757 /* Enable EEE and switch to a 27Mhz clock automatically */
758 reg = __raw_readl(priv->base + off);
759 if (enable)
760 reg |= TBUF_EEE_EN | TBUF_PM_EN;
761 else
762 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
763 __raw_writel(reg, priv->base + off);
764
765 /* Do the same for thing for RBUF */
766 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
767 if (enable)
768 reg |= RBUF_EEE_EN | RBUF_PM_EN;
769 else
770 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
771 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
772
773 if (!enable && priv->clk_eee_enabled) {
774 clk_disable_unprepare(priv->clk_eee);
775 priv->clk_eee_enabled = false;
776 }
777
778 priv->eee.eee_enabled = enable;
779 priv->eee.eee_active = enable;
780 }
781
782 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
783 {
784 struct bcmgenet_priv *priv = netdev_priv(dev);
785 struct ethtool_eee *p = &priv->eee;
786
787 if (GENET_IS_V1(priv))
788 return -EOPNOTSUPP;
789
790 e->eee_enabled = p->eee_enabled;
791 e->eee_active = p->eee_active;
792 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
793
794 return phy_ethtool_get_eee(priv->phydev, e);
795 }
796
797 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
798 {
799 struct bcmgenet_priv *priv = netdev_priv(dev);
800 struct ethtool_eee *p = &priv->eee;
801 int ret = 0;
802
803 if (GENET_IS_V1(priv))
804 return -EOPNOTSUPP;
805
806 p->eee_enabled = e->eee_enabled;
807
808 if (!p->eee_enabled) {
809 bcmgenet_eee_enable_set(dev, false);
810 } else {
811 ret = phy_init_eee(priv->phydev, 0);
812 if (ret) {
813 netif_err(priv, hw, dev, "EEE initialization failed\n");
814 return ret;
815 }
816
817 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
818 bcmgenet_eee_enable_set(dev, true);
819 }
820
821 return phy_ethtool_set_eee(priv->phydev, e);
822 }
823
824 static int bcmgenet_nway_reset(struct net_device *dev)
825 {
826 struct bcmgenet_priv *priv = netdev_priv(dev);
827
828 return genphy_restart_aneg(priv->phydev);
829 }
830
831 /* standard ethtool support functions. */
832 static struct ethtool_ops bcmgenet_ethtool_ops = {
833 .get_strings = bcmgenet_get_strings,
834 .get_sset_count = bcmgenet_get_sset_count,
835 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
836 .get_settings = bcmgenet_get_settings,
837 .set_settings = bcmgenet_set_settings,
838 .get_drvinfo = bcmgenet_get_drvinfo,
839 .get_link = ethtool_op_get_link,
840 .get_msglevel = bcmgenet_get_msglevel,
841 .set_msglevel = bcmgenet_set_msglevel,
842 .get_wol = bcmgenet_get_wol,
843 .set_wol = bcmgenet_set_wol,
844 .get_eee = bcmgenet_get_eee,
845 .set_eee = bcmgenet_set_eee,
846 .nway_reset = bcmgenet_nway_reset,
847 };
848
849 /* Power down the unimac, based on mode. */
850 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
851 enum bcmgenet_power_mode mode)
852 {
853 int ret = 0;
854 u32 reg;
855
856 switch (mode) {
857 case GENET_POWER_CABLE_SENSE:
858 phy_detach(priv->phydev);
859 break;
860
861 case GENET_POWER_WOL_MAGIC:
862 ret = bcmgenet_wol_power_down_cfg(priv, mode);
863 break;
864
865 case GENET_POWER_PASSIVE:
866 /* Power down LED */
867 if (priv->hw_params->flags & GENET_HAS_EXT) {
868 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
869 reg |= (EXT_PWR_DOWN_PHY |
870 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
871 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
872
873 bcmgenet_phy_power_set(priv->dev, false);
874 }
875 break;
876 default:
877 break;
878 }
879
880 return 0;
881 }
882
883 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
884 enum bcmgenet_power_mode mode)
885 {
886 u32 reg;
887
888 if (!(priv->hw_params->flags & GENET_HAS_EXT))
889 return;
890
891 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
892
893 switch (mode) {
894 case GENET_POWER_PASSIVE:
895 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
896 EXT_PWR_DOWN_BIAS);
897 /* fallthrough */
898 case GENET_POWER_CABLE_SENSE:
899 /* enable APD */
900 reg |= EXT_PWR_DN_EN_LD;
901 break;
902 case GENET_POWER_WOL_MAGIC:
903 bcmgenet_wol_power_up_cfg(priv, mode);
904 return;
905 default:
906 break;
907 }
908
909 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
910
911 if (mode == GENET_POWER_PASSIVE)
912 bcmgenet_mii_reset(priv->dev);
913 }
914
915 /* ioctl handle special commands that are not present in ethtool. */
916 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
917 {
918 struct bcmgenet_priv *priv = netdev_priv(dev);
919 int val = 0;
920
921 if (!netif_running(dev))
922 return -EINVAL;
923
924 switch (cmd) {
925 case SIOCGMIIPHY:
926 case SIOCGMIIREG:
927 case SIOCSMIIREG:
928 if (!priv->phydev)
929 val = -ENODEV;
930 else
931 val = phy_mii_ioctl(priv->phydev, rq, cmd);
932 break;
933
934 default:
935 val = -EINVAL;
936 break;
937 }
938
939 return val;
940 }
941
942 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
943 struct bcmgenet_tx_ring *ring)
944 {
945 struct enet_cb *tx_cb_ptr;
946
947 tx_cb_ptr = ring->cbs;
948 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
949
950 /* Advancing local write pointer */
951 if (ring->write_ptr == ring->end_ptr)
952 ring->write_ptr = ring->cb_ptr;
953 else
954 ring->write_ptr++;
955
956 return tx_cb_ptr;
957 }
958
959 /* Simple helper to free a control block's resources */
960 static void bcmgenet_free_cb(struct enet_cb *cb)
961 {
962 dev_kfree_skb_any(cb->skb);
963 cb->skb = NULL;
964 dma_unmap_addr_set(cb, dma_addr, 0);
965 }
966
967 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
968 {
969 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
970 INTRL2_CPU_MASK_SET);
971 }
972
973 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
974 {
975 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
976 INTRL2_CPU_MASK_CLEAR);
977 }
978
979 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
980 {
981 bcmgenet_intrl2_1_writel(ring->priv,
982 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
983 INTRL2_CPU_MASK_SET);
984 }
985
986 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
987 {
988 bcmgenet_intrl2_1_writel(ring->priv,
989 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
990 INTRL2_CPU_MASK_CLEAR);
991 }
992
993 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
994 {
995 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
996 INTRL2_CPU_MASK_SET);
997 }
998
999 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1000 {
1001 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1002 INTRL2_CPU_MASK_CLEAR);
1003 }
1004
1005 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1006 {
1007 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1008 INTRL2_CPU_MASK_CLEAR);
1009 }
1010
1011 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1012 {
1013 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1014 INTRL2_CPU_MASK_SET);
1015 }
1016
1017 /* Unlocked version of the reclaim routine */
1018 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1019 struct bcmgenet_tx_ring *ring)
1020 {
1021 struct bcmgenet_priv *priv = netdev_priv(dev);
1022 struct enet_cb *tx_cb_ptr;
1023 struct netdev_queue *txq;
1024 unsigned int pkts_compl = 0;
1025 unsigned int c_index;
1026 unsigned int txbds_ready;
1027 unsigned int txbds_processed = 0;
1028
1029 /* Compute how many buffers are transmitted since last xmit call */
1030 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1031 c_index &= DMA_C_INDEX_MASK;
1032
1033 if (likely(c_index >= ring->c_index))
1034 txbds_ready = c_index - ring->c_index;
1035 else
1036 txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1037
1038 netif_dbg(priv, tx_done, dev,
1039 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1040 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1041
1042 /* Reclaim transmitted buffers */
1043 while (txbds_processed < txbds_ready) {
1044 tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1045 if (tx_cb_ptr->skb) {
1046 pkts_compl++;
1047 dev->stats.tx_packets++;
1048 dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1049 dma_unmap_single(&dev->dev,
1050 dma_unmap_addr(tx_cb_ptr, dma_addr),
1051 tx_cb_ptr->skb->len,
1052 DMA_TO_DEVICE);
1053 bcmgenet_free_cb(tx_cb_ptr);
1054 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1055 dev->stats.tx_bytes +=
1056 dma_unmap_len(tx_cb_ptr, dma_len);
1057 dma_unmap_page(&dev->dev,
1058 dma_unmap_addr(tx_cb_ptr, dma_addr),
1059 dma_unmap_len(tx_cb_ptr, dma_len),
1060 DMA_TO_DEVICE);
1061 dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1062 }
1063
1064 txbds_processed++;
1065 if (likely(ring->clean_ptr < ring->end_ptr))
1066 ring->clean_ptr++;
1067 else
1068 ring->clean_ptr = ring->cb_ptr;
1069 }
1070
1071 ring->free_bds += txbds_processed;
1072 ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1073
1074 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1075 txq = netdev_get_tx_queue(dev, ring->queue);
1076 if (netif_tx_queue_stopped(txq))
1077 netif_tx_wake_queue(txq);
1078 }
1079
1080 return pkts_compl;
1081 }
1082
1083 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1084 struct bcmgenet_tx_ring *ring)
1085 {
1086 unsigned int released;
1087 unsigned long flags;
1088
1089 spin_lock_irqsave(&ring->lock, flags);
1090 released = __bcmgenet_tx_reclaim(dev, ring);
1091 spin_unlock_irqrestore(&ring->lock, flags);
1092
1093 return released;
1094 }
1095
1096 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1097 {
1098 struct bcmgenet_tx_ring *ring =
1099 container_of(napi, struct bcmgenet_tx_ring, napi);
1100 unsigned int work_done = 0;
1101
1102 work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1103
1104 if (work_done == 0) {
1105 napi_complete(napi);
1106 ring->int_enable(ring);
1107
1108 return 0;
1109 }
1110
1111 return budget;
1112 }
1113
1114 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1115 {
1116 struct bcmgenet_priv *priv = netdev_priv(dev);
1117 int i;
1118
1119 if (netif_is_multiqueue(dev)) {
1120 for (i = 0; i < priv->hw_params->tx_queues; i++)
1121 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1122 }
1123
1124 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1125 }
1126
1127 /* Transmits a single SKB (either head of a fragment or a single SKB)
1128 * caller must hold priv->lock
1129 */
1130 static int bcmgenet_xmit_single(struct net_device *dev,
1131 struct sk_buff *skb,
1132 u16 dma_desc_flags,
1133 struct bcmgenet_tx_ring *ring)
1134 {
1135 struct bcmgenet_priv *priv = netdev_priv(dev);
1136 struct device *kdev = &priv->pdev->dev;
1137 struct enet_cb *tx_cb_ptr;
1138 unsigned int skb_len;
1139 dma_addr_t mapping;
1140 u32 length_status;
1141 int ret;
1142
1143 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1144
1145 if (unlikely(!tx_cb_ptr))
1146 BUG();
1147
1148 tx_cb_ptr->skb = skb;
1149
1150 skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
1151
1152 mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1153 ret = dma_mapping_error(kdev, mapping);
1154 if (ret) {
1155 priv->mib.tx_dma_failed++;
1156 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1157 dev_kfree_skb(skb);
1158 return ret;
1159 }
1160
1161 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1162 dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
1163 length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1164 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1165 DMA_TX_APPEND_CRC;
1166
1167 if (skb->ip_summed == CHECKSUM_PARTIAL)
1168 length_status |= DMA_TX_DO_CSUM;
1169
1170 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1171
1172 return 0;
1173 }
1174
1175 /* Transmit a SKB fragment */
1176 static int bcmgenet_xmit_frag(struct net_device *dev,
1177 skb_frag_t *frag,
1178 u16 dma_desc_flags,
1179 struct bcmgenet_tx_ring *ring)
1180 {
1181 struct bcmgenet_priv *priv = netdev_priv(dev);
1182 struct device *kdev = &priv->pdev->dev;
1183 struct enet_cb *tx_cb_ptr;
1184 dma_addr_t mapping;
1185 int ret;
1186
1187 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1188
1189 if (unlikely(!tx_cb_ptr))
1190 BUG();
1191 tx_cb_ptr->skb = NULL;
1192
1193 mapping = skb_frag_dma_map(kdev, frag, 0,
1194 skb_frag_size(frag), DMA_TO_DEVICE);
1195 ret = dma_mapping_error(kdev, mapping);
1196 if (ret) {
1197 priv->mib.tx_dma_failed++;
1198 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1199 __func__);
1200 return ret;
1201 }
1202
1203 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1204 dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1205
1206 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1207 (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1208 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1209
1210 return 0;
1211 }
1212
1213 /* Reallocate the SKB to put enough headroom in front of it and insert
1214 * the transmit checksum offsets in the descriptors
1215 */
1216 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1217 struct sk_buff *skb)
1218 {
1219 struct status_64 *status = NULL;
1220 struct sk_buff *new_skb;
1221 u16 offset;
1222 u8 ip_proto;
1223 u16 ip_ver;
1224 u32 tx_csum_info;
1225
1226 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1227 /* If 64 byte status block enabled, must make sure skb has
1228 * enough headroom for us to insert 64B status block.
1229 */
1230 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1231 dev_kfree_skb(skb);
1232 if (!new_skb) {
1233 dev->stats.tx_errors++;
1234 dev->stats.tx_dropped++;
1235 return NULL;
1236 }
1237 skb = new_skb;
1238 }
1239
1240 skb_push(skb, sizeof(*status));
1241 status = (struct status_64 *)skb->data;
1242
1243 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1244 ip_ver = htons(skb->protocol);
1245 switch (ip_ver) {
1246 case ETH_P_IP:
1247 ip_proto = ip_hdr(skb)->protocol;
1248 break;
1249 case ETH_P_IPV6:
1250 ip_proto = ipv6_hdr(skb)->nexthdr;
1251 break;
1252 default:
1253 return skb;
1254 }
1255
1256 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1257 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1258 (offset + skb->csum_offset);
1259
1260 /* Set the length valid bit for TCP and UDP and just set
1261 * the special UDP flag for IPv4, else just set to 0.
1262 */
1263 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1264 tx_csum_info |= STATUS_TX_CSUM_LV;
1265 if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1266 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1267 } else {
1268 tx_csum_info = 0;
1269 }
1270
1271 status->tx_csum_info = tx_csum_info;
1272 }
1273
1274 return skb;
1275 }
1276
1277 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1278 {
1279 struct bcmgenet_priv *priv = netdev_priv(dev);
1280 struct bcmgenet_tx_ring *ring = NULL;
1281 struct netdev_queue *txq;
1282 unsigned long flags = 0;
1283 int nr_frags, index;
1284 u16 dma_desc_flags;
1285 int ret;
1286 int i;
1287
1288 index = skb_get_queue_mapping(skb);
1289 /* Mapping strategy:
1290 * queue_mapping = 0, unclassified, packet xmited through ring16
1291 * queue_mapping = 1, goes to ring 0. (highest priority queue
1292 * queue_mapping = 2, goes to ring 1.
1293 * queue_mapping = 3, goes to ring 2.
1294 * queue_mapping = 4, goes to ring 3.
1295 */
1296 if (index == 0)
1297 index = DESC_INDEX;
1298 else
1299 index -= 1;
1300
1301 nr_frags = skb_shinfo(skb)->nr_frags;
1302 ring = &priv->tx_rings[index];
1303 txq = netdev_get_tx_queue(dev, ring->queue);
1304
1305 spin_lock_irqsave(&ring->lock, flags);
1306 if (ring->free_bds <= nr_frags + 1) {
1307 netif_tx_stop_queue(txq);
1308 netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1309 __func__, index, ring->queue);
1310 ret = NETDEV_TX_BUSY;
1311 goto out;
1312 }
1313
1314 if (skb_padto(skb, ETH_ZLEN)) {
1315 ret = NETDEV_TX_OK;
1316 goto out;
1317 }
1318
1319 /* set the SKB transmit checksum */
1320 if (priv->desc_64b_en) {
1321 skb = bcmgenet_put_tx_csum(dev, skb);
1322 if (!skb) {
1323 ret = NETDEV_TX_OK;
1324 goto out;
1325 }
1326 }
1327
1328 dma_desc_flags = DMA_SOP;
1329 if (nr_frags == 0)
1330 dma_desc_flags |= DMA_EOP;
1331
1332 /* Transmit single SKB or head of fragment list */
1333 ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1334 if (ret) {
1335 ret = NETDEV_TX_OK;
1336 goto out;
1337 }
1338
1339 /* xmit fragment */
1340 for (i = 0; i < nr_frags; i++) {
1341 ret = bcmgenet_xmit_frag(dev,
1342 &skb_shinfo(skb)->frags[i],
1343 (i == nr_frags - 1) ? DMA_EOP : 0,
1344 ring);
1345 if (ret) {
1346 ret = NETDEV_TX_OK;
1347 goto out;
1348 }
1349 }
1350
1351 skb_tx_timestamp(skb);
1352
1353 /* Decrement total BD count and advance our write pointer */
1354 ring->free_bds -= nr_frags + 1;
1355 ring->prod_index += nr_frags + 1;
1356 ring->prod_index &= DMA_P_INDEX_MASK;
1357
1358 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1359 netif_tx_stop_queue(txq);
1360
1361 if (!skb->xmit_more || netif_xmit_stopped(txq))
1362 /* Packets are ready, update producer index */
1363 bcmgenet_tdma_ring_writel(priv, ring->index,
1364 ring->prod_index, TDMA_PROD_INDEX);
1365 out:
1366 spin_unlock_irqrestore(&ring->lock, flags);
1367
1368 return ret;
1369 }
1370
1371 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1372 struct enet_cb *cb)
1373 {
1374 struct device *kdev = &priv->pdev->dev;
1375 struct sk_buff *skb;
1376 struct sk_buff *rx_skb;
1377 dma_addr_t mapping;
1378
1379 /* Allocate a new Rx skb */
1380 skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1381 if (!skb) {
1382 priv->mib.alloc_rx_buff_failed++;
1383 netif_err(priv, rx_err, priv->dev,
1384 "%s: Rx skb allocation failed\n", __func__);
1385 return NULL;
1386 }
1387
1388 /* DMA-map the new Rx skb */
1389 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1390 DMA_FROM_DEVICE);
1391 if (dma_mapping_error(kdev, mapping)) {
1392 priv->mib.rx_dma_failed++;
1393 dev_kfree_skb_any(skb);
1394 netif_err(priv, rx_err, priv->dev,
1395 "%s: Rx skb DMA mapping failed\n", __func__);
1396 return NULL;
1397 }
1398
1399 /* Grab the current Rx skb from the ring and DMA-unmap it */
1400 rx_skb = cb->skb;
1401 if (likely(rx_skb))
1402 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1403 priv->rx_buf_len, DMA_FROM_DEVICE);
1404
1405 /* Put the new Rx skb on the ring */
1406 cb->skb = skb;
1407 dma_unmap_addr_set(cb, dma_addr, mapping);
1408 dmadesc_set_addr(priv, cb->bd_addr, mapping);
1409
1410 /* Return the current Rx skb to caller */
1411 return rx_skb;
1412 }
1413
1414 /* bcmgenet_desc_rx - descriptor based rx process.
1415 * this could be called from bottom half, or from NAPI polling method.
1416 */
1417 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1418 unsigned int budget)
1419 {
1420 struct bcmgenet_priv *priv = ring->priv;
1421 struct net_device *dev = priv->dev;
1422 struct enet_cb *cb;
1423 struct sk_buff *skb;
1424 u32 dma_length_status;
1425 unsigned long dma_flag;
1426 int len;
1427 unsigned int rxpktprocessed = 0, rxpkttoprocess;
1428 unsigned int p_index;
1429 unsigned int discards;
1430 unsigned int chksum_ok = 0;
1431
1432 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1433
1434 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1435 DMA_P_INDEX_DISCARD_CNT_MASK;
1436 if (discards > ring->old_discards) {
1437 discards = discards - ring->old_discards;
1438 dev->stats.rx_missed_errors += discards;
1439 dev->stats.rx_errors += discards;
1440 ring->old_discards += discards;
1441
1442 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1443 if (ring->old_discards >= 0xC000) {
1444 ring->old_discards = 0;
1445 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1446 RDMA_PROD_INDEX);
1447 }
1448 }
1449
1450 p_index &= DMA_P_INDEX_MASK;
1451
1452 if (likely(p_index >= ring->c_index))
1453 rxpkttoprocess = p_index - ring->c_index;
1454 else
1455 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1456 p_index;
1457
1458 netif_dbg(priv, rx_status, dev,
1459 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1460
1461 while ((rxpktprocessed < rxpkttoprocess) &&
1462 (rxpktprocessed < budget)) {
1463 cb = &priv->rx_cbs[ring->read_ptr];
1464 skb = bcmgenet_rx_refill(priv, cb);
1465
1466 if (unlikely(!skb)) {
1467 dev->stats.rx_dropped++;
1468 dev->stats.rx_errors++;
1469 goto next;
1470 }
1471
1472 if (!priv->desc_64b_en) {
1473 dma_length_status =
1474 dmadesc_get_length_status(priv, cb->bd_addr);
1475 } else {
1476 struct status_64 *status;
1477
1478 status = (struct status_64 *)skb->data;
1479 dma_length_status = status->length_status;
1480 }
1481
1482 /* DMA flags and length are still valid no matter how
1483 * we got the Receive Status Vector (64B RSB or register)
1484 */
1485 dma_flag = dma_length_status & 0xffff;
1486 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1487
1488 netif_dbg(priv, rx_status, dev,
1489 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1490 __func__, p_index, ring->c_index,
1491 ring->read_ptr, dma_length_status);
1492
1493 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1494 netif_err(priv, rx_status, dev,
1495 "dropping fragmented packet!\n");
1496 dev->stats.rx_dropped++;
1497 dev->stats.rx_errors++;
1498 dev_kfree_skb_any(skb);
1499 goto next;
1500 }
1501
1502 /* report errors */
1503 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1504 DMA_RX_OV |
1505 DMA_RX_NO |
1506 DMA_RX_LG |
1507 DMA_RX_RXER))) {
1508 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1509 (unsigned int)dma_flag);
1510 if (dma_flag & DMA_RX_CRC_ERROR)
1511 dev->stats.rx_crc_errors++;
1512 if (dma_flag & DMA_RX_OV)
1513 dev->stats.rx_over_errors++;
1514 if (dma_flag & DMA_RX_NO)
1515 dev->stats.rx_frame_errors++;
1516 if (dma_flag & DMA_RX_LG)
1517 dev->stats.rx_length_errors++;
1518 dev->stats.rx_dropped++;
1519 dev->stats.rx_errors++;
1520 dev_kfree_skb_any(skb);
1521 goto next;
1522 } /* error packet */
1523
1524 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1525 priv->desc_rxchk_en;
1526
1527 skb_put(skb, len);
1528 if (priv->desc_64b_en) {
1529 skb_pull(skb, 64);
1530 len -= 64;
1531 }
1532
1533 if (likely(chksum_ok))
1534 skb->ip_summed = CHECKSUM_UNNECESSARY;
1535
1536 /* remove hardware 2bytes added for IP alignment */
1537 skb_pull(skb, 2);
1538 len -= 2;
1539
1540 if (priv->crc_fwd_en) {
1541 skb_trim(skb, len - ETH_FCS_LEN);
1542 len -= ETH_FCS_LEN;
1543 }
1544
1545 /*Finish setting up the received SKB and send it to the kernel*/
1546 skb->protocol = eth_type_trans(skb, priv->dev);
1547 dev->stats.rx_packets++;
1548 dev->stats.rx_bytes += len;
1549 if (dma_flag & DMA_RX_MULT)
1550 dev->stats.multicast++;
1551
1552 /* Notify kernel */
1553 napi_gro_receive(&ring->napi, skb);
1554 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1555
1556 next:
1557 rxpktprocessed++;
1558 if (likely(ring->read_ptr < ring->end_ptr))
1559 ring->read_ptr++;
1560 else
1561 ring->read_ptr = ring->cb_ptr;
1562
1563 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1564 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1565 }
1566
1567 return rxpktprocessed;
1568 }
1569
1570 /* Rx NAPI polling method */
1571 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1572 {
1573 struct bcmgenet_rx_ring *ring = container_of(napi,
1574 struct bcmgenet_rx_ring, napi);
1575 unsigned int work_done;
1576
1577 work_done = bcmgenet_desc_rx(ring, budget);
1578
1579 if (work_done < budget) {
1580 napi_complete(napi);
1581 ring->int_enable(ring);
1582 }
1583
1584 return work_done;
1585 }
1586
1587 /* Assign skb to RX DMA descriptor. */
1588 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1589 struct bcmgenet_rx_ring *ring)
1590 {
1591 struct enet_cb *cb;
1592 struct sk_buff *skb;
1593 int i;
1594
1595 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1596
1597 /* loop here for each buffer needing assign */
1598 for (i = 0; i < ring->size; i++) {
1599 cb = ring->cbs + i;
1600 skb = bcmgenet_rx_refill(priv, cb);
1601 if (skb)
1602 dev_kfree_skb_any(skb);
1603 if (!cb->skb)
1604 return -ENOMEM;
1605 }
1606
1607 return 0;
1608 }
1609
1610 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1611 {
1612 struct enet_cb *cb;
1613 int i;
1614
1615 for (i = 0; i < priv->num_rx_bds; i++) {
1616 cb = &priv->rx_cbs[i];
1617
1618 if (dma_unmap_addr(cb, dma_addr)) {
1619 dma_unmap_single(&priv->dev->dev,
1620 dma_unmap_addr(cb, dma_addr),
1621 priv->rx_buf_len, DMA_FROM_DEVICE);
1622 dma_unmap_addr_set(cb, dma_addr, 0);
1623 }
1624
1625 if (cb->skb)
1626 bcmgenet_free_cb(cb);
1627 }
1628 }
1629
1630 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1631 {
1632 u32 reg;
1633
1634 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1635 if (enable)
1636 reg |= mask;
1637 else
1638 reg &= ~mask;
1639 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1640
1641 /* UniMAC stops on a packet boundary, wait for a full-size packet
1642 * to be processed
1643 */
1644 if (enable == 0)
1645 usleep_range(1000, 2000);
1646 }
1647
1648 static int reset_umac(struct bcmgenet_priv *priv)
1649 {
1650 struct device *kdev = &priv->pdev->dev;
1651 unsigned int timeout = 0;
1652 u32 reg;
1653
1654 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1655 bcmgenet_rbuf_ctrl_set(priv, 0);
1656 udelay(10);
1657
1658 /* disable MAC while updating its registers */
1659 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1660
1661 /* issue soft reset, wait for it to complete */
1662 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1663 while (timeout++ < 1000) {
1664 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1665 if (!(reg & CMD_SW_RESET))
1666 return 0;
1667
1668 udelay(1);
1669 }
1670
1671 if (timeout == 1000) {
1672 dev_err(kdev,
1673 "timeout waiting for MAC to come out of reset\n");
1674 return -ETIMEDOUT;
1675 }
1676
1677 return 0;
1678 }
1679
1680 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1681 {
1682 /* Mask all interrupts.*/
1683 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1684 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1685 bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1686 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1687 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1688 bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1689 }
1690
1691 static int init_umac(struct bcmgenet_priv *priv)
1692 {
1693 struct device *kdev = &priv->pdev->dev;
1694 int ret;
1695 u32 reg;
1696 u32 int0_enable = 0;
1697 u32 int1_enable = 0;
1698 int i;
1699
1700 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1701
1702 ret = reset_umac(priv);
1703 if (ret)
1704 return ret;
1705
1706 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1707 /* clear tx/rx counter */
1708 bcmgenet_umac_writel(priv,
1709 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1710 UMAC_MIB_CTRL);
1711 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1712
1713 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1714
1715 /* init rx registers, enable ip header optimization */
1716 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1717 reg |= RBUF_ALIGN_2B;
1718 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1719
1720 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1721 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1722
1723 bcmgenet_intr_disable(priv);
1724
1725 /* Enable Rx default queue 16 interrupts */
1726 int0_enable |= UMAC_IRQ_RXDMA_DONE;
1727
1728 /* Enable Tx default queue 16 interrupts */
1729 int0_enable |= UMAC_IRQ_TXDMA_DONE;
1730
1731 /* Monitor cable plug/unplugged event for internal PHY */
1732 if (phy_is_internal(priv->phydev)) {
1733 int0_enable |= UMAC_IRQ_LINK_EVENT;
1734 } else if (priv->ext_phy) {
1735 int0_enable |= UMAC_IRQ_LINK_EVENT;
1736 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1737 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1738 int0_enable |= UMAC_IRQ_LINK_EVENT;
1739
1740 reg = bcmgenet_bp_mc_get(priv);
1741 reg |= BIT(priv->hw_params->bp_in_en_shift);
1742
1743 /* bp_mask: back pressure mask */
1744 if (netif_is_multiqueue(priv->dev))
1745 reg |= priv->hw_params->bp_in_mask;
1746 else
1747 reg &= ~priv->hw_params->bp_in_mask;
1748 bcmgenet_bp_mc_set(priv, reg);
1749 }
1750
1751 /* Enable MDIO interrupts on GENET v3+ */
1752 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1753 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1754
1755 /* Enable Rx priority queue interrupts */
1756 for (i = 0; i < priv->hw_params->rx_queues; ++i)
1757 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1758
1759 /* Enable Tx priority queue interrupts */
1760 for (i = 0; i < priv->hw_params->tx_queues; ++i)
1761 int1_enable |= (1 << i);
1762
1763 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1764 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1765
1766 /* Enable rx/tx engine.*/
1767 dev_dbg(kdev, "done init umac\n");
1768
1769 return 0;
1770 }
1771
1772 /* Initialize a Tx ring along with corresponding hardware registers */
1773 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1774 unsigned int index, unsigned int size,
1775 unsigned int start_ptr, unsigned int end_ptr)
1776 {
1777 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1778 u32 words_per_bd = WORDS_PER_BD(priv);
1779 u32 flow_period_val = 0;
1780
1781 spin_lock_init(&ring->lock);
1782 ring->priv = priv;
1783 ring->index = index;
1784 if (index == DESC_INDEX) {
1785 ring->queue = 0;
1786 ring->int_enable = bcmgenet_tx_ring16_int_enable;
1787 ring->int_disable = bcmgenet_tx_ring16_int_disable;
1788 } else {
1789 ring->queue = index + 1;
1790 ring->int_enable = bcmgenet_tx_ring_int_enable;
1791 ring->int_disable = bcmgenet_tx_ring_int_disable;
1792 }
1793 ring->cbs = priv->tx_cbs + start_ptr;
1794 ring->size = size;
1795 ring->clean_ptr = start_ptr;
1796 ring->c_index = 0;
1797 ring->free_bds = size;
1798 ring->write_ptr = start_ptr;
1799 ring->cb_ptr = start_ptr;
1800 ring->end_ptr = end_ptr - 1;
1801 ring->prod_index = 0;
1802
1803 /* Set flow period for ring != 16 */
1804 if (index != DESC_INDEX)
1805 flow_period_val = ENET_MAX_MTU_SIZE << 16;
1806
1807 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1808 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1809 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1810 /* Disable rate control for now */
1811 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1812 TDMA_FLOW_PERIOD);
1813 bcmgenet_tdma_ring_writel(priv, index,
1814 ((size << DMA_RING_SIZE_SHIFT) |
1815 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1816
1817 /* Set start and end address, read and write pointers */
1818 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1819 DMA_START_ADDR);
1820 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1821 TDMA_READ_PTR);
1822 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1823 TDMA_WRITE_PTR);
1824 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1825 DMA_END_ADDR);
1826 }
1827
1828 /* Initialize a RDMA ring */
1829 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1830 unsigned int index, unsigned int size,
1831 unsigned int start_ptr, unsigned int end_ptr)
1832 {
1833 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
1834 u32 words_per_bd = WORDS_PER_BD(priv);
1835 int ret;
1836
1837 ring->priv = priv;
1838 ring->index = index;
1839 if (index == DESC_INDEX) {
1840 ring->int_enable = bcmgenet_rx_ring16_int_enable;
1841 ring->int_disable = bcmgenet_rx_ring16_int_disable;
1842 } else {
1843 ring->int_enable = bcmgenet_rx_ring_int_enable;
1844 ring->int_disable = bcmgenet_rx_ring_int_disable;
1845 }
1846 ring->cbs = priv->rx_cbs + start_ptr;
1847 ring->size = size;
1848 ring->c_index = 0;
1849 ring->read_ptr = start_ptr;
1850 ring->cb_ptr = start_ptr;
1851 ring->end_ptr = end_ptr - 1;
1852
1853 ret = bcmgenet_alloc_rx_buffers(priv, ring);
1854 if (ret)
1855 return ret;
1856
1857 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
1858 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
1859 bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1860 bcmgenet_rdma_ring_writel(priv, index,
1861 ((size << DMA_RING_SIZE_SHIFT) |
1862 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1863 bcmgenet_rdma_ring_writel(priv, index,
1864 (DMA_FC_THRESH_LO <<
1865 DMA_XOFF_THRESHOLD_SHIFT) |
1866 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
1867
1868 /* Set start and end address, read and write pointers */
1869 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
1870 DMA_START_ADDR);
1871 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
1872 RDMA_READ_PTR);
1873 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
1874 RDMA_WRITE_PTR);
1875 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1876 DMA_END_ADDR);
1877
1878 return ret;
1879 }
1880
1881 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
1882 {
1883 unsigned int i;
1884 struct bcmgenet_tx_ring *ring;
1885
1886 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
1887 ring = &priv->tx_rings[i];
1888 netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
1889 }
1890
1891 ring = &priv->tx_rings[DESC_INDEX];
1892 netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
1893 }
1894
1895 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
1896 {
1897 unsigned int i;
1898 struct bcmgenet_tx_ring *ring;
1899
1900 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
1901 ring = &priv->tx_rings[i];
1902 napi_enable(&ring->napi);
1903 }
1904
1905 ring = &priv->tx_rings[DESC_INDEX];
1906 napi_enable(&ring->napi);
1907 }
1908
1909 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
1910 {
1911 unsigned int i;
1912 struct bcmgenet_tx_ring *ring;
1913
1914 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
1915 ring = &priv->tx_rings[i];
1916 napi_disable(&ring->napi);
1917 }
1918
1919 ring = &priv->tx_rings[DESC_INDEX];
1920 napi_disable(&ring->napi);
1921 }
1922
1923 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
1924 {
1925 unsigned int i;
1926 struct bcmgenet_tx_ring *ring;
1927
1928 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
1929 ring = &priv->tx_rings[i];
1930 netif_napi_del(&ring->napi);
1931 }
1932
1933 ring = &priv->tx_rings[DESC_INDEX];
1934 netif_napi_del(&ring->napi);
1935 }
1936
1937 /* Initialize Tx queues
1938 *
1939 * Queues 0-3 are priority-based, each one has 32 descriptors,
1940 * with queue 0 being the highest priority queue.
1941 *
1942 * Queue 16 is the default Tx queue with
1943 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
1944 *
1945 * The transmit control block pool is then partitioned as follows:
1946 * - Tx queue 0 uses tx_cbs[0..31]
1947 * - Tx queue 1 uses tx_cbs[32..63]
1948 * - Tx queue 2 uses tx_cbs[64..95]
1949 * - Tx queue 3 uses tx_cbs[96..127]
1950 * - Tx queue 16 uses tx_cbs[128..255]
1951 */
1952 static void bcmgenet_init_tx_queues(struct net_device *dev)
1953 {
1954 struct bcmgenet_priv *priv = netdev_priv(dev);
1955 u32 i, dma_enable;
1956 u32 dma_ctrl, ring_cfg;
1957 u32 dma_priority[3] = {0, 0, 0};
1958
1959 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
1960 dma_enable = dma_ctrl & DMA_EN;
1961 dma_ctrl &= ~DMA_EN;
1962 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
1963
1964 dma_ctrl = 0;
1965 ring_cfg = 0;
1966
1967 /* Enable strict priority arbiter mode */
1968 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
1969
1970 /* Initialize Tx priority queues */
1971 for (i = 0; i < priv->hw_params->tx_queues; i++) {
1972 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
1973 i * priv->hw_params->tx_bds_per_q,
1974 (i + 1) * priv->hw_params->tx_bds_per_q);
1975 ring_cfg |= (1 << i);
1976 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
1977 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
1978 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
1979 }
1980
1981 /* Initialize Tx default queue 16 */
1982 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
1983 priv->hw_params->tx_queues *
1984 priv->hw_params->tx_bds_per_q,
1985 TOTAL_DESC);
1986 ring_cfg |= (1 << DESC_INDEX);
1987 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
1988 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
1989 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
1990 DMA_PRIO_REG_SHIFT(DESC_INDEX));
1991
1992 /* Set Tx queue priorities */
1993 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
1994 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
1995 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
1996
1997 /* Initialize Tx NAPI */
1998 bcmgenet_init_tx_napi(priv);
1999
2000 /* Enable Tx queues */
2001 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2002
2003 /* Enable Tx DMA */
2004 if (dma_enable)
2005 dma_ctrl |= DMA_EN;
2006 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2007 }
2008
2009 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2010 {
2011 unsigned int i;
2012 struct bcmgenet_rx_ring *ring;
2013
2014 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2015 ring = &priv->rx_rings[i];
2016 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2017 }
2018
2019 ring = &priv->rx_rings[DESC_INDEX];
2020 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2021 }
2022
2023 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2024 {
2025 unsigned int i;
2026 struct bcmgenet_rx_ring *ring;
2027
2028 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2029 ring = &priv->rx_rings[i];
2030 napi_enable(&ring->napi);
2031 }
2032
2033 ring = &priv->rx_rings[DESC_INDEX];
2034 napi_enable(&ring->napi);
2035 }
2036
2037 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2038 {
2039 unsigned int i;
2040 struct bcmgenet_rx_ring *ring;
2041
2042 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2043 ring = &priv->rx_rings[i];
2044 napi_disable(&ring->napi);
2045 }
2046
2047 ring = &priv->rx_rings[DESC_INDEX];
2048 napi_disable(&ring->napi);
2049 }
2050
2051 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2052 {
2053 unsigned int i;
2054 struct bcmgenet_rx_ring *ring;
2055
2056 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2057 ring = &priv->rx_rings[i];
2058 netif_napi_del(&ring->napi);
2059 }
2060
2061 ring = &priv->rx_rings[DESC_INDEX];
2062 netif_napi_del(&ring->napi);
2063 }
2064
2065 /* Initialize Rx queues
2066 *
2067 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2068 * used to direct traffic to these queues.
2069 *
2070 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2071 */
2072 static int bcmgenet_init_rx_queues(struct net_device *dev)
2073 {
2074 struct bcmgenet_priv *priv = netdev_priv(dev);
2075 u32 i;
2076 u32 dma_enable;
2077 u32 dma_ctrl;
2078 u32 ring_cfg;
2079 int ret;
2080
2081 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2082 dma_enable = dma_ctrl & DMA_EN;
2083 dma_ctrl &= ~DMA_EN;
2084 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2085
2086 dma_ctrl = 0;
2087 ring_cfg = 0;
2088
2089 /* Initialize Rx priority queues */
2090 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2091 ret = bcmgenet_init_rx_ring(priv, i,
2092 priv->hw_params->rx_bds_per_q,
2093 i * priv->hw_params->rx_bds_per_q,
2094 (i + 1) *
2095 priv->hw_params->rx_bds_per_q);
2096 if (ret)
2097 return ret;
2098
2099 ring_cfg |= (1 << i);
2100 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2101 }
2102
2103 /* Initialize Rx default queue 16 */
2104 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2105 priv->hw_params->rx_queues *
2106 priv->hw_params->rx_bds_per_q,
2107 TOTAL_DESC);
2108 if (ret)
2109 return ret;
2110
2111 ring_cfg |= (1 << DESC_INDEX);
2112 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2113
2114 /* Initialize Rx NAPI */
2115 bcmgenet_init_rx_napi(priv);
2116
2117 /* Enable rings */
2118 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2119
2120 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2121 if (dma_enable)
2122 dma_ctrl |= DMA_EN;
2123 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2124
2125 return 0;
2126 }
2127
2128 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2129 {
2130 int ret = 0;
2131 int timeout = 0;
2132 u32 reg;
2133
2134 /* Disable TDMA to stop add more frames in TX DMA */
2135 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2136 reg &= ~DMA_EN;
2137 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2138
2139 /* Check TDMA status register to confirm TDMA is disabled */
2140 while (timeout++ < DMA_TIMEOUT_VAL) {
2141 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2142 if (reg & DMA_DISABLED)
2143 break;
2144
2145 udelay(1);
2146 }
2147
2148 if (timeout == DMA_TIMEOUT_VAL) {
2149 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2150 ret = -ETIMEDOUT;
2151 }
2152
2153 /* Wait 10ms for packet drain in both tx and rx dma */
2154 usleep_range(10000, 20000);
2155
2156 /* Disable RDMA */
2157 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2158 reg &= ~DMA_EN;
2159 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2160
2161 timeout = 0;
2162 /* Check RDMA status register to confirm RDMA is disabled */
2163 while (timeout++ < DMA_TIMEOUT_VAL) {
2164 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2165 if (reg & DMA_DISABLED)
2166 break;
2167
2168 udelay(1);
2169 }
2170
2171 if (timeout == DMA_TIMEOUT_VAL) {
2172 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2173 ret = -ETIMEDOUT;
2174 }
2175
2176 return ret;
2177 }
2178
2179 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2180 {
2181 int i;
2182
2183 bcmgenet_fini_rx_napi(priv);
2184 bcmgenet_fini_tx_napi(priv);
2185
2186 /* disable DMA */
2187 bcmgenet_dma_teardown(priv);
2188
2189 for (i = 0; i < priv->num_tx_bds; i++) {
2190 if (priv->tx_cbs[i].skb != NULL) {
2191 dev_kfree_skb(priv->tx_cbs[i].skb);
2192 priv->tx_cbs[i].skb = NULL;
2193 }
2194 }
2195
2196 bcmgenet_free_rx_buffers(priv);
2197 kfree(priv->rx_cbs);
2198 kfree(priv->tx_cbs);
2199 }
2200
2201 /* init_edma: Initialize DMA control register */
2202 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2203 {
2204 int ret;
2205 unsigned int i;
2206 struct enet_cb *cb;
2207
2208 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2209
2210 /* Initialize common Rx ring structures */
2211 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2212 priv->num_rx_bds = TOTAL_DESC;
2213 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2214 GFP_KERNEL);
2215 if (!priv->rx_cbs)
2216 return -ENOMEM;
2217
2218 for (i = 0; i < priv->num_rx_bds; i++) {
2219 cb = priv->rx_cbs + i;
2220 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2221 }
2222
2223 /* Initialize common TX ring structures */
2224 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2225 priv->num_tx_bds = TOTAL_DESC;
2226 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2227 GFP_KERNEL);
2228 if (!priv->tx_cbs) {
2229 kfree(priv->rx_cbs);
2230 return -ENOMEM;
2231 }
2232
2233 for (i = 0; i < priv->num_tx_bds; i++) {
2234 cb = priv->tx_cbs + i;
2235 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2236 }
2237
2238 /* Init rDma */
2239 bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2240
2241 /* Initialize Rx queues */
2242 ret = bcmgenet_init_rx_queues(priv->dev);
2243 if (ret) {
2244 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2245 bcmgenet_free_rx_buffers(priv);
2246 kfree(priv->rx_cbs);
2247 kfree(priv->tx_cbs);
2248 return ret;
2249 }
2250
2251 /* Init tDma */
2252 bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2253
2254 /* Initialize Tx queues */
2255 bcmgenet_init_tx_queues(priv->dev);
2256
2257 return 0;
2258 }
2259
2260 /* Interrupt bottom half */
2261 static void bcmgenet_irq_task(struct work_struct *work)
2262 {
2263 struct bcmgenet_priv *priv = container_of(
2264 work, struct bcmgenet_priv, bcmgenet_irq_work);
2265
2266 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2267
2268 if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2269 priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2270 netif_dbg(priv, wol, priv->dev,
2271 "magic packet detected, waking up\n");
2272 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2273 }
2274
2275 /* Link UP/DOWN event */
2276 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2277 (priv->irq0_stat & UMAC_IRQ_LINK_EVENT)) {
2278 phy_mac_interrupt(priv->phydev,
2279 !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2280 priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2281 }
2282 }
2283
2284 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2285 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2286 {
2287 struct bcmgenet_priv *priv = dev_id;
2288 struct bcmgenet_rx_ring *rx_ring;
2289 struct bcmgenet_tx_ring *tx_ring;
2290 unsigned int index;
2291
2292 /* Save irq status for bottom-half processing. */
2293 priv->irq1_stat =
2294 bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2295 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2296
2297 /* clear interrupts */
2298 bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2299
2300 netif_dbg(priv, intr, priv->dev,
2301 "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2302
2303 /* Check Rx priority queue interrupts */
2304 for (index = 0; index < priv->hw_params->rx_queues; index++) {
2305 if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2306 continue;
2307
2308 rx_ring = &priv->rx_rings[index];
2309
2310 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2311 rx_ring->int_disable(rx_ring);
2312 __napi_schedule(&rx_ring->napi);
2313 }
2314 }
2315
2316 /* Check Tx priority queue interrupts */
2317 for (index = 0; index < priv->hw_params->tx_queues; index++) {
2318 if (!(priv->irq1_stat & BIT(index)))
2319 continue;
2320
2321 tx_ring = &priv->tx_rings[index];
2322
2323 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2324 tx_ring->int_disable(tx_ring);
2325 __napi_schedule(&tx_ring->napi);
2326 }
2327 }
2328
2329 return IRQ_HANDLED;
2330 }
2331
2332 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2333 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2334 {
2335 struct bcmgenet_priv *priv = dev_id;
2336 struct bcmgenet_rx_ring *rx_ring;
2337 struct bcmgenet_tx_ring *tx_ring;
2338
2339 /* Save irq status for bottom-half processing. */
2340 priv->irq0_stat =
2341 bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2342 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2343
2344 /* clear interrupts */
2345 bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2346
2347 netif_dbg(priv, intr, priv->dev,
2348 "IRQ=0x%x\n", priv->irq0_stat);
2349
2350 if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2351 rx_ring = &priv->rx_rings[DESC_INDEX];
2352
2353 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2354 rx_ring->int_disable(rx_ring);
2355 __napi_schedule(&rx_ring->napi);
2356 }
2357 }
2358
2359 if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2360 tx_ring = &priv->tx_rings[DESC_INDEX];
2361
2362 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2363 tx_ring->int_disable(tx_ring);
2364 __napi_schedule(&tx_ring->napi);
2365 }
2366 }
2367
2368 if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2369 UMAC_IRQ_PHY_DET_F |
2370 UMAC_IRQ_LINK_EVENT |
2371 UMAC_IRQ_HFB_SM |
2372 UMAC_IRQ_HFB_MM |
2373 UMAC_IRQ_MPD_R)) {
2374 /* all other interested interrupts handled in bottom half */
2375 schedule_work(&priv->bcmgenet_irq_work);
2376 }
2377
2378 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2379 priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2380 priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2381 wake_up(&priv->wq);
2382 }
2383
2384 return IRQ_HANDLED;
2385 }
2386
2387 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2388 {
2389 struct bcmgenet_priv *priv = dev_id;
2390
2391 pm_wakeup_event(&priv->pdev->dev, 0);
2392
2393 return IRQ_HANDLED;
2394 }
2395
2396 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2397 {
2398 u32 reg;
2399
2400 reg = bcmgenet_rbuf_ctrl_get(priv);
2401 reg |= BIT(1);
2402 bcmgenet_rbuf_ctrl_set(priv, reg);
2403 udelay(10);
2404
2405 reg &= ~BIT(1);
2406 bcmgenet_rbuf_ctrl_set(priv, reg);
2407 udelay(10);
2408 }
2409
2410 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2411 unsigned char *addr)
2412 {
2413 bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2414 (addr[2] << 8) | addr[3], UMAC_MAC0);
2415 bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2416 }
2417
2418 /* Returns a reusable dma control register value */
2419 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2420 {
2421 u32 reg;
2422 u32 dma_ctrl;
2423
2424 /* disable DMA */
2425 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2426 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2427 reg &= ~dma_ctrl;
2428 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2429
2430 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2431 reg &= ~dma_ctrl;
2432 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2433
2434 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2435 udelay(10);
2436 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2437
2438 return dma_ctrl;
2439 }
2440
2441 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2442 {
2443 u32 reg;
2444
2445 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2446 reg |= dma_ctrl;
2447 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2448
2449 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2450 reg |= dma_ctrl;
2451 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2452 }
2453
2454 static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
2455 u32 f_index)
2456 {
2457 u32 offset;
2458 u32 reg;
2459
2460 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2461 reg = bcmgenet_hfb_reg_readl(priv, offset);
2462 return !!(reg & (1 << (f_index % 32)));
2463 }
2464
2465 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
2466 {
2467 u32 offset;
2468 u32 reg;
2469
2470 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2471 reg = bcmgenet_hfb_reg_readl(priv, offset);
2472 reg |= (1 << (f_index % 32));
2473 bcmgenet_hfb_reg_writel(priv, reg, offset);
2474 }
2475
2476 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
2477 u32 f_index, u32 rx_queue)
2478 {
2479 u32 offset;
2480 u32 reg;
2481
2482 offset = f_index / 8;
2483 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
2484 reg &= ~(0xF << (4 * (f_index % 8)));
2485 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
2486 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
2487 }
2488
2489 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
2490 u32 f_index, u32 f_length)
2491 {
2492 u32 offset;
2493 u32 reg;
2494
2495 offset = HFB_FLT_LEN_V3PLUS +
2496 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
2497 sizeof(u32);
2498 reg = bcmgenet_hfb_reg_readl(priv, offset);
2499 reg &= ~(0xFF << (8 * (f_index % 4)));
2500 reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
2501 bcmgenet_hfb_reg_writel(priv, reg, offset);
2502 }
2503
2504 static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
2505 {
2506 u32 f_index;
2507
2508 for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
2509 if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
2510 return f_index;
2511
2512 return -ENOMEM;
2513 }
2514
2515 /* bcmgenet_hfb_add_filter
2516 *
2517 * Add new filter to Hardware Filter Block to match and direct Rx traffic to
2518 * desired Rx queue.
2519 *
2520 * f_data is an array of unsigned 32-bit integers where each 32-bit integer
2521 * provides filter data for 2 bytes (4 nibbles) of Rx frame:
2522 *
2523 * bits 31:20 - unused
2524 * bit 19 - nibble 0 match enable
2525 * bit 18 - nibble 1 match enable
2526 * bit 17 - nibble 2 match enable
2527 * bit 16 - nibble 3 match enable
2528 * bits 15:12 - nibble 0 data
2529 * bits 11:8 - nibble 1 data
2530 * bits 7:4 - nibble 2 data
2531 * bits 3:0 - nibble 3 data
2532 *
2533 * Example:
2534 * In order to match:
2535 * - Ethernet frame type = 0x0800 (IP)
2536 * - IP version field = 4
2537 * - IP protocol field = 0x11 (UDP)
2538 *
2539 * The following filter is needed:
2540 * u32 hfb_filter_ipv4_udp[] = {
2541 * Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
2542 * Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
2543 * Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
2544 * };
2545 *
2546 * To add the filter to HFB and direct the traffic to Rx queue 0, call:
2547 * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
2548 * ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
2549 */
2550 int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
2551 u32 f_length, u32 rx_queue)
2552 {
2553 int f_index;
2554 u32 i;
2555
2556 f_index = bcmgenet_hfb_find_unused_filter(priv);
2557 if (f_index < 0)
2558 return -ENOMEM;
2559
2560 if (f_length > priv->hw_params->hfb_filter_size)
2561 return -EINVAL;
2562
2563 for (i = 0; i < f_length; i++)
2564 bcmgenet_hfb_writel(priv, f_data[i],
2565 (f_index * priv->hw_params->hfb_filter_size + i) *
2566 sizeof(u32));
2567
2568 bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
2569 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
2570 bcmgenet_hfb_enable_filter(priv, f_index);
2571 bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);
2572
2573 return 0;
2574 }
2575
2576 /* bcmgenet_hfb_clear
2577 *
2578 * Clear Hardware Filter Block and disable all filtering.
2579 */
2580 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2581 {
2582 u32 i;
2583
2584 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2585 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2586 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2587
2588 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2589 bcmgenet_rdma_writel(priv, 0x0, i);
2590
2591 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2592 bcmgenet_hfb_reg_writel(priv, 0x0,
2593 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2594
2595 for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2596 priv->hw_params->hfb_filter_size; i++)
2597 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2598 }
2599
2600 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2601 {
2602 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2603 return;
2604
2605 bcmgenet_hfb_clear(priv);
2606 }
2607
2608 static void bcmgenet_netif_start(struct net_device *dev)
2609 {
2610 struct bcmgenet_priv *priv = netdev_priv(dev);
2611
2612 /* Start the network engine */
2613 bcmgenet_enable_rx_napi(priv);
2614 bcmgenet_enable_tx_napi(priv);
2615
2616 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2617
2618 netif_tx_start_all_queues(dev);
2619
2620 phy_start(priv->phydev);
2621 }
2622
2623 static int bcmgenet_open(struct net_device *dev)
2624 {
2625 struct bcmgenet_priv *priv = netdev_priv(dev);
2626 unsigned long dma_ctrl;
2627 u32 reg;
2628 int ret;
2629
2630 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2631
2632 /* Turn on the clock */
2633 if (!IS_ERR(priv->clk))
2634 clk_prepare_enable(priv->clk);
2635
2636 /* If this is an internal GPHY, power it back on now, before UniMAC is
2637 * brought out of reset as absolutely no UniMAC activity is allowed
2638 */
2639 if (phy_is_internal(priv->phydev))
2640 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2641
2642 /* take MAC out of reset */
2643 bcmgenet_umac_reset(priv);
2644
2645 ret = init_umac(priv);
2646 if (ret)
2647 goto err_clk_disable;
2648
2649 /* disable ethernet MAC while updating its registers */
2650 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2651
2652 /* Make sure we reflect the value of CRC_CMD_FWD */
2653 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2654 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2655
2656 bcmgenet_set_hw_addr(priv, dev->dev_addr);
2657
2658 if (phy_is_internal(priv->phydev)) {
2659 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2660 reg |= EXT_ENERGY_DET_MASK;
2661 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2662 }
2663
2664 /* Disable RX/TX DMA and flush TX queues */
2665 dma_ctrl = bcmgenet_dma_disable(priv);
2666
2667 /* Reinitialize TDMA and RDMA and SW housekeeping */
2668 ret = bcmgenet_init_dma(priv);
2669 if (ret) {
2670 netdev_err(dev, "failed to initialize DMA\n");
2671 goto err_clk_disable;
2672 }
2673
2674 /* Always enable ring 16 - descriptor ring */
2675 bcmgenet_enable_dma(priv, dma_ctrl);
2676
2677 /* HFB init */
2678 bcmgenet_hfb_init(priv);
2679
2680 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2681 dev->name, priv);
2682 if (ret < 0) {
2683 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2684 goto err_fini_dma;
2685 }
2686
2687 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2688 dev->name, priv);
2689 if (ret < 0) {
2690 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2691 goto err_irq0;
2692 }
2693
2694 /* Re-configure the port multiplexer towards the PHY device */
2695 bcmgenet_mii_config(priv->dev, false);
2696
2697 phy_connect_direct(dev, priv->phydev, bcmgenet_mii_setup,
2698 priv->phy_interface);
2699
2700 bcmgenet_netif_start(dev);
2701
2702 return 0;
2703
2704 err_irq0:
2705 free_irq(priv->irq0, dev);
2706 err_fini_dma:
2707 bcmgenet_fini_dma(priv);
2708 err_clk_disable:
2709 if (!IS_ERR(priv->clk))
2710 clk_disable_unprepare(priv->clk);
2711 return ret;
2712 }
2713
2714 static void bcmgenet_netif_stop(struct net_device *dev)
2715 {
2716 struct bcmgenet_priv *priv = netdev_priv(dev);
2717
2718 netif_tx_stop_all_queues(dev);
2719 phy_stop(priv->phydev);
2720 bcmgenet_intr_disable(priv);
2721 bcmgenet_disable_rx_napi(priv);
2722 bcmgenet_disable_tx_napi(priv);
2723
2724 /* Wait for pending work items to complete. Since interrupts are
2725 * disabled no new work will be scheduled.
2726 */
2727 cancel_work_sync(&priv->bcmgenet_irq_work);
2728
2729 priv->old_link = -1;
2730 priv->old_speed = -1;
2731 priv->old_duplex = -1;
2732 priv->old_pause = -1;
2733 }
2734
2735 static int bcmgenet_close(struct net_device *dev)
2736 {
2737 struct bcmgenet_priv *priv = netdev_priv(dev);
2738 int ret;
2739
2740 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2741
2742 bcmgenet_netif_stop(dev);
2743
2744 /* Really kill the PHY state machine and disconnect from it */
2745 phy_disconnect(priv->phydev);
2746
2747 /* Disable MAC receive */
2748 umac_enable_set(priv, CMD_RX_EN, false);
2749
2750 ret = bcmgenet_dma_teardown(priv);
2751 if (ret)
2752 return ret;
2753
2754 /* Disable MAC transmit. TX DMA disabled have to done before this */
2755 umac_enable_set(priv, CMD_TX_EN, false);
2756
2757 /* tx reclaim */
2758 bcmgenet_tx_reclaim_all(dev);
2759 bcmgenet_fini_dma(priv);
2760
2761 free_irq(priv->irq0, priv);
2762 free_irq(priv->irq1, priv);
2763
2764 if (phy_is_internal(priv->phydev))
2765 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2766
2767 if (!IS_ERR(priv->clk))
2768 clk_disable_unprepare(priv->clk);
2769
2770 return ret;
2771 }
2772
2773 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2774 {
2775 struct bcmgenet_priv *priv = ring->priv;
2776 u32 p_index, c_index, intsts, intmsk;
2777 struct netdev_queue *txq;
2778 unsigned int free_bds;
2779 unsigned long flags;
2780 bool txq_stopped;
2781
2782 if (!netif_msg_tx_err(priv))
2783 return;
2784
2785 txq = netdev_get_tx_queue(priv->dev, ring->queue);
2786
2787 spin_lock_irqsave(&ring->lock, flags);
2788 if (ring->index == DESC_INDEX) {
2789 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2790 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2791 } else {
2792 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2793 intmsk = 1 << ring->index;
2794 }
2795 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2796 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2797 txq_stopped = netif_tx_queue_stopped(txq);
2798 free_bds = ring->free_bds;
2799 spin_unlock_irqrestore(&ring->lock, flags);
2800
2801 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2802 "TX queue status: %s, interrupts: %s\n"
2803 "(sw)free_bds: %d (sw)size: %d\n"
2804 "(sw)p_index: %d (hw)p_index: %d\n"
2805 "(sw)c_index: %d (hw)c_index: %d\n"
2806 "(sw)clean_p: %d (sw)write_p: %d\n"
2807 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2808 ring->index, ring->queue,
2809 txq_stopped ? "stopped" : "active",
2810 intsts & intmsk ? "enabled" : "disabled",
2811 free_bds, ring->size,
2812 ring->prod_index, p_index & DMA_P_INDEX_MASK,
2813 ring->c_index, c_index & DMA_C_INDEX_MASK,
2814 ring->clean_ptr, ring->write_ptr,
2815 ring->cb_ptr, ring->end_ptr);
2816 }
2817
2818 static void bcmgenet_timeout(struct net_device *dev)
2819 {
2820 struct bcmgenet_priv *priv = netdev_priv(dev);
2821 u32 int0_enable = 0;
2822 u32 int1_enable = 0;
2823 unsigned int q;
2824
2825 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2826
2827 bcmgenet_disable_tx_napi(priv);
2828
2829 for (q = 0; q < priv->hw_params->tx_queues; q++)
2830 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
2831 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
2832
2833 bcmgenet_tx_reclaim_all(dev);
2834
2835 for (q = 0; q < priv->hw_params->tx_queues; q++)
2836 int1_enable |= (1 << q);
2837
2838 int0_enable = UMAC_IRQ_TXDMA_DONE;
2839
2840 /* Re-enable TX interrupts if disabled */
2841 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2842 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2843
2844 bcmgenet_enable_tx_napi(priv);
2845
2846 dev->trans_start = jiffies;
2847
2848 dev->stats.tx_errors++;
2849
2850 netif_tx_wake_all_queues(dev);
2851 }
2852
2853 #define MAX_MC_COUNT 16
2854
2855 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
2856 unsigned char *addr,
2857 int *i,
2858 int *mc)
2859 {
2860 u32 reg;
2861
2862 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
2863 UMAC_MDF_ADDR + (*i * 4));
2864 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
2865 addr[4] << 8 | addr[5],
2866 UMAC_MDF_ADDR + ((*i + 1) * 4));
2867 reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
2868 reg |= (1 << (MAX_MC_COUNT - *mc));
2869 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
2870 *i += 2;
2871 (*mc)++;
2872 }
2873
2874 static void bcmgenet_set_rx_mode(struct net_device *dev)
2875 {
2876 struct bcmgenet_priv *priv = netdev_priv(dev);
2877 struct netdev_hw_addr *ha;
2878 int i, mc;
2879 u32 reg;
2880
2881 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
2882
2883 /* Promiscuous mode */
2884 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2885 if (dev->flags & IFF_PROMISC) {
2886 reg |= CMD_PROMISC;
2887 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2888 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
2889 return;
2890 } else {
2891 reg &= ~CMD_PROMISC;
2892 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2893 }
2894
2895 /* UniMac doesn't support ALLMULTI */
2896 if (dev->flags & IFF_ALLMULTI) {
2897 netdev_warn(dev, "ALLMULTI is not supported\n");
2898 return;
2899 }
2900
2901 /* update MDF filter */
2902 i = 0;
2903 mc = 0;
2904 /* Broadcast */
2905 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
2906 /* my own address.*/
2907 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
2908 /* Unicast list*/
2909 if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
2910 return;
2911
2912 if (!netdev_uc_empty(dev))
2913 netdev_for_each_uc_addr(ha, dev)
2914 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2915 /* Multicast */
2916 if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
2917 return;
2918
2919 netdev_for_each_mc_addr(ha, dev)
2920 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2921 }
2922
2923 /* Set the hardware MAC address. */
2924 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
2925 {
2926 struct sockaddr *addr = p;
2927
2928 /* Setting the MAC address at the hardware level is not possible
2929 * without disabling the UniMAC RX/TX enable bits.
2930 */
2931 if (netif_running(dev))
2932 return -EBUSY;
2933
2934 ether_addr_copy(dev->dev_addr, addr->sa_data);
2935
2936 return 0;
2937 }
2938
2939 static const struct net_device_ops bcmgenet_netdev_ops = {
2940 .ndo_open = bcmgenet_open,
2941 .ndo_stop = bcmgenet_close,
2942 .ndo_start_xmit = bcmgenet_xmit,
2943 .ndo_tx_timeout = bcmgenet_timeout,
2944 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
2945 .ndo_set_mac_address = bcmgenet_set_mac_addr,
2946 .ndo_do_ioctl = bcmgenet_ioctl,
2947 .ndo_set_features = bcmgenet_set_features,
2948 };
2949
2950 /* Array of GENET hardware parameters/characteristics */
2951 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
2952 [GENET_V1] = {
2953 .tx_queues = 0,
2954 .tx_bds_per_q = 0,
2955 .rx_queues = 0,
2956 .rx_bds_per_q = 0,
2957 .bp_in_en_shift = 16,
2958 .bp_in_mask = 0xffff,
2959 .hfb_filter_cnt = 16,
2960 .qtag_mask = 0x1F,
2961 .hfb_offset = 0x1000,
2962 .rdma_offset = 0x2000,
2963 .tdma_offset = 0x3000,
2964 .words_per_bd = 2,
2965 },
2966 [GENET_V2] = {
2967 .tx_queues = 4,
2968 .tx_bds_per_q = 32,
2969 .rx_queues = 0,
2970 .rx_bds_per_q = 0,
2971 .bp_in_en_shift = 16,
2972 .bp_in_mask = 0xffff,
2973 .hfb_filter_cnt = 16,
2974 .qtag_mask = 0x1F,
2975 .tbuf_offset = 0x0600,
2976 .hfb_offset = 0x1000,
2977 .hfb_reg_offset = 0x2000,
2978 .rdma_offset = 0x3000,
2979 .tdma_offset = 0x4000,
2980 .words_per_bd = 2,
2981 .flags = GENET_HAS_EXT,
2982 },
2983 [GENET_V3] = {
2984 .tx_queues = 4,
2985 .tx_bds_per_q = 32,
2986 .rx_queues = 0,
2987 .rx_bds_per_q = 0,
2988 .bp_in_en_shift = 17,
2989 .bp_in_mask = 0x1ffff,
2990 .hfb_filter_cnt = 48,
2991 .hfb_filter_size = 128,
2992 .qtag_mask = 0x3F,
2993 .tbuf_offset = 0x0600,
2994 .hfb_offset = 0x8000,
2995 .hfb_reg_offset = 0xfc00,
2996 .rdma_offset = 0x10000,
2997 .tdma_offset = 0x11000,
2998 .words_per_bd = 2,
2999 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3000 GENET_HAS_MOCA_LINK_DET,
3001 },
3002 [GENET_V4] = {
3003 .tx_queues = 4,
3004 .tx_bds_per_q = 32,
3005 .rx_queues = 0,
3006 .rx_bds_per_q = 0,
3007 .bp_in_en_shift = 17,
3008 .bp_in_mask = 0x1ffff,
3009 .hfb_filter_cnt = 48,
3010 .hfb_filter_size = 128,
3011 .qtag_mask = 0x3F,
3012 .tbuf_offset = 0x0600,
3013 .hfb_offset = 0x8000,
3014 .hfb_reg_offset = 0xfc00,
3015 .rdma_offset = 0x2000,
3016 .tdma_offset = 0x4000,
3017 .words_per_bd = 3,
3018 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3019 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3020 },
3021 };
3022
3023 /* Infer hardware parameters from the detected GENET version */
3024 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3025 {
3026 struct bcmgenet_hw_params *params;
3027 u32 reg;
3028 u8 major;
3029 u16 gphy_rev;
3030
3031 if (GENET_IS_V4(priv)) {
3032 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3033 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3034 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3035 priv->version = GENET_V4;
3036 } else if (GENET_IS_V3(priv)) {
3037 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3038 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3039 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3040 priv->version = GENET_V3;
3041 } else if (GENET_IS_V2(priv)) {
3042 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3043 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3044 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3045 priv->version = GENET_V2;
3046 } else if (GENET_IS_V1(priv)) {
3047 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3048 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3049 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3050 priv->version = GENET_V1;
3051 }
3052
3053 /* enum genet_version starts at 1 */
3054 priv->hw_params = &bcmgenet_hw_params[priv->version];
3055 params = priv->hw_params;
3056
3057 /* Read GENET HW version */
3058 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3059 major = (reg >> 24 & 0x0f);
3060 if (major == 5)
3061 major = 4;
3062 else if (major == 0)
3063 major = 1;
3064 if (major != priv->version) {
3065 dev_err(&priv->pdev->dev,
3066 "GENET version mismatch, got: %d, configured for: %d\n",
3067 major, priv->version);
3068 }
3069
3070 /* Print the GENET core version */
3071 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3072 major, (reg >> 16) & 0x0f, reg & 0xffff);
3073
3074 /* Store the integrated PHY revision for the MDIO probing function
3075 * to pass this information to the PHY driver. The PHY driver expects
3076 * to find the PHY major revision in bits 15:8 while the GENET register
3077 * stores that information in bits 7:0, account for that.
3078 *
3079 * On newer chips, starting with PHY revision G0, a new scheme is
3080 * deployed similar to the Starfighter 2 switch with GPHY major
3081 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3082 * is reserved as well as special value 0x01ff, we have a small
3083 * heuristic to check for the new GPHY revision and re-arrange things
3084 * so the GPHY driver is happy.
3085 */
3086 gphy_rev = reg & 0xffff;
3087
3088 /* This is the good old scheme, just GPHY major, no minor nor patch */
3089 if ((gphy_rev & 0xf0) != 0)
3090 priv->gphy_rev = gphy_rev << 8;
3091
3092 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3093 else if ((gphy_rev & 0xff00) != 0)
3094 priv->gphy_rev = gphy_rev;
3095
3096 /* This is reserved so should require special treatment */
3097 else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3098 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3099 return;
3100 }
3101
3102 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3103 if (!(params->flags & GENET_HAS_40BITS))
3104 pr_warn("GENET does not support 40-bits PA\n");
3105 #endif
3106
3107 pr_debug("Configuration for version: %d\n"
3108 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3109 "BP << en: %2d, BP msk: 0x%05x\n"
3110 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3111 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3112 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3113 "Words/BD: %d\n",
3114 priv->version,
3115 params->tx_queues, params->tx_bds_per_q,
3116 params->rx_queues, params->rx_bds_per_q,
3117 params->bp_in_en_shift, params->bp_in_mask,
3118 params->hfb_filter_cnt, params->qtag_mask,
3119 params->tbuf_offset, params->hfb_offset,
3120 params->hfb_reg_offset,
3121 params->rdma_offset, params->tdma_offset,
3122 params->words_per_bd);
3123 }
3124
3125 static const struct of_device_id bcmgenet_match[] = {
3126 { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3127 { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3128 { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3129 { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3130 { },
3131 };
3132
3133 static int bcmgenet_probe(struct platform_device *pdev)
3134 {
3135 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3136 struct device_node *dn = pdev->dev.of_node;
3137 const struct of_device_id *of_id = NULL;
3138 struct bcmgenet_priv *priv;
3139 struct net_device *dev;
3140 const void *macaddr;
3141 struct resource *r;
3142 int err = -EIO;
3143
3144 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3145 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3146 GENET_MAX_MQ_CNT + 1);
3147 if (!dev) {
3148 dev_err(&pdev->dev, "can't allocate net device\n");
3149 return -ENOMEM;
3150 }
3151
3152 if (dn) {
3153 of_id = of_match_node(bcmgenet_match, dn);
3154 if (!of_id)
3155 return -EINVAL;
3156 }
3157
3158 priv = netdev_priv(dev);
3159 priv->irq0 = platform_get_irq(pdev, 0);
3160 priv->irq1 = platform_get_irq(pdev, 1);
3161 priv->wol_irq = platform_get_irq(pdev, 2);
3162 if (!priv->irq0 || !priv->irq1) {
3163 dev_err(&pdev->dev, "can't find IRQs\n");
3164 err = -EINVAL;
3165 goto err;
3166 }
3167
3168 if (dn) {
3169 macaddr = of_get_mac_address(dn);
3170 if (!macaddr) {
3171 dev_err(&pdev->dev, "can't find MAC address\n");
3172 err = -EINVAL;
3173 goto err;
3174 }
3175 } else {
3176 macaddr = pd->mac_address;
3177 }
3178
3179 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3180 priv->base = devm_ioremap_resource(&pdev->dev, r);
3181 if (IS_ERR(priv->base)) {
3182 err = PTR_ERR(priv->base);
3183 goto err;
3184 }
3185
3186 SET_NETDEV_DEV(dev, &pdev->dev);
3187 dev_set_drvdata(&pdev->dev, dev);
3188 ether_addr_copy(dev->dev_addr, macaddr);
3189 dev->watchdog_timeo = 2 * HZ;
3190 dev->ethtool_ops = &bcmgenet_ethtool_ops;
3191 dev->netdev_ops = &bcmgenet_netdev_ops;
3192
3193 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3194
3195 /* Set hardware features */
3196 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3197 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3198
3199 /* Request the WOL interrupt and advertise suspend if available */
3200 priv->wol_irq_disabled = true;
3201 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3202 dev->name, priv);
3203 if (!err)
3204 device_set_wakeup_capable(&pdev->dev, 1);
3205
3206 /* Set the needed headroom to account for any possible
3207 * features enabling/disabling at runtime
3208 */
3209 dev->needed_headroom += 64;
3210
3211 netdev_boot_setup_check(dev);
3212
3213 priv->dev = dev;
3214 priv->pdev = pdev;
3215 if (of_id)
3216 priv->version = (enum bcmgenet_version)of_id->data;
3217 else
3218 priv->version = pd->genet_version;
3219
3220 priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3221 if (IS_ERR(priv->clk))
3222 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3223
3224 if (!IS_ERR(priv->clk))
3225 clk_prepare_enable(priv->clk);
3226
3227 bcmgenet_set_hw_params(priv);
3228
3229 /* Mii wait queue */
3230 init_waitqueue_head(&priv->wq);
3231 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3232 priv->rx_buf_len = RX_BUF_LENGTH;
3233 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3234
3235 priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3236 if (IS_ERR(priv->clk_wol))
3237 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3238
3239 priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3240 if (IS_ERR(priv->clk_eee)) {
3241 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3242 priv->clk_eee = NULL;
3243 }
3244
3245 err = reset_umac(priv);
3246 if (err)
3247 goto err_clk_disable;
3248
3249 err = bcmgenet_mii_init(dev);
3250 if (err)
3251 goto err_clk_disable;
3252
3253 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
3254 * just the ring 16 descriptor based TX
3255 */
3256 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3257 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3258
3259 /* libphy will determine the link state */
3260 netif_carrier_off(dev);
3261
3262 /* Turn off the main clock, WOL clock is handled separately */
3263 if (!IS_ERR(priv->clk))
3264 clk_disable_unprepare(priv->clk);
3265
3266 err = register_netdev(dev);
3267 if (err)
3268 goto err;
3269
3270 return err;
3271
3272 err_clk_disable:
3273 if (!IS_ERR(priv->clk))
3274 clk_disable_unprepare(priv->clk);
3275 err:
3276 free_netdev(dev);
3277 return err;
3278 }
3279
3280 static int bcmgenet_remove(struct platform_device *pdev)
3281 {
3282 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3283
3284 dev_set_drvdata(&pdev->dev, NULL);
3285 unregister_netdev(priv->dev);
3286 bcmgenet_mii_exit(priv->dev);
3287 free_netdev(priv->dev);
3288
3289 return 0;
3290 }
3291
3292 #ifdef CONFIG_PM_SLEEP
3293 static int bcmgenet_suspend(struct device *d)
3294 {
3295 struct net_device *dev = dev_get_drvdata(d);
3296 struct bcmgenet_priv *priv = netdev_priv(dev);
3297 int ret;
3298
3299 if (!netif_running(dev))
3300 return 0;
3301
3302 bcmgenet_netif_stop(dev);
3303
3304 phy_suspend(priv->phydev);
3305
3306 netif_device_detach(dev);
3307
3308 /* Disable MAC receive */
3309 umac_enable_set(priv, CMD_RX_EN, false);
3310
3311 ret = bcmgenet_dma_teardown(priv);
3312 if (ret)
3313 return ret;
3314
3315 /* Disable MAC transmit. TX DMA disabled have to done before this */
3316 umac_enable_set(priv, CMD_TX_EN, false);
3317
3318 /* tx reclaim */
3319 bcmgenet_tx_reclaim_all(dev);
3320 bcmgenet_fini_dma(priv);
3321
3322 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3323 if (device_may_wakeup(d) && priv->wolopts) {
3324 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3325 clk_prepare_enable(priv->clk_wol);
3326 } else if (phy_is_internal(priv->phydev)) {
3327 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3328 }
3329
3330 /* Turn off the clocks */
3331 clk_disable_unprepare(priv->clk);
3332
3333 return ret;
3334 }
3335
3336 static int bcmgenet_resume(struct device *d)
3337 {
3338 struct net_device *dev = dev_get_drvdata(d);
3339 struct bcmgenet_priv *priv = netdev_priv(dev);
3340 unsigned long dma_ctrl;
3341 int ret;
3342 u32 reg;
3343
3344 if (!netif_running(dev))
3345 return 0;
3346
3347 /* Turn on the clock */
3348 ret = clk_prepare_enable(priv->clk);
3349 if (ret)
3350 return ret;
3351
3352 /* If this is an internal GPHY, power it back on now, before UniMAC is
3353 * brought out of reset as absolutely no UniMAC activity is allowed
3354 */
3355 if (phy_is_internal(priv->phydev))
3356 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3357
3358 bcmgenet_umac_reset(priv);
3359
3360 ret = init_umac(priv);
3361 if (ret)
3362 goto out_clk_disable;
3363
3364 /* From WOL-enabled suspend, switch to regular clock */
3365 if (priv->wolopts)
3366 clk_disable_unprepare(priv->clk_wol);
3367
3368 phy_init_hw(priv->phydev);
3369 /* Speed settings must be restored */
3370 bcmgenet_mii_config(priv->dev, false);
3371
3372 /* disable ethernet MAC while updating its registers */
3373 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3374
3375 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3376
3377 if (phy_is_internal(priv->phydev)) {
3378 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3379 reg |= EXT_ENERGY_DET_MASK;
3380 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3381 }
3382
3383 if (priv->wolopts)
3384 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3385
3386 /* Disable RX/TX DMA and flush TX queues */
3387 dma_ctrl = bcmgenet_dma_disable(priv);
3388
3389 /* Reinitialize TDMA and RDMA and SW housekeeping */
3390 ret = bcmgenet_init_dma(priv);
3391 if (ret) {
3392 netdev_err(dev, "failed to initialize DMA\n");
3393 goto out_clk_disable;
3394 }
3395
3396 /* Always enable ring 16 - descriptor ring */
3397 bcmgenet_enable_dma(priv, dma_ctrl);
3398
3399 netif_device_attach(dev);
3400
3401 phy_resume(priv->phydev);
3402
3403 if (priv->eee.eee_enabled)
3404 bcmgenet_eee_enable_set(dev, true);
3405
3406 bcmgenet_netif_start(dev);
3407
3408 return 0;
3409
3410 out_clk_disable:
3411 clk_disable_unprepare(priv->clk);
3412 return ret;
3413 }
3414 #endif /* CONFIG_PM_SLEEP */
3415
3416 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3417
3418 static struct platform_driver bcmgenet_driver = {
3419 .probe = bcmgenet_probe,
3420 .remove = bcmgenet_remove,
3421 .driver = {
3422 .name = "bcmgenet",
3423 .of_match_table = bcmgenet_match,
3424 .pm = &bcmgenet_pm_ops,
3425 },
3426 };
3427 module_platform_driver(bcmgenet_driver);
3428
3429 MODULE_AUTHOR("Broadcom Corporation");
3430 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3431 MODULE_ALIAS("platform:bcmgenet");
3432 MODULE_LICENSE("GPL");
This page took 0.147323 seconds and 6 git commands to generate.