Merge branches 'x86/amd', 'x86/vt-d', 'arm/exynos', 'arm/mediatek' and 'arm/renesas...
[deliverable/linux.git] / drivers / net / ethernet / brocade / bna / bnad.c
1 /*
2 * Linux network driver for QLogic BR-series Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 /*
14 * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
15 * Copyright (c) 2014-2015 QLogic Corporation
16 * All rights reserved
17 * www.qlogic.com
18 */
19 #include <linux/bitops.h>
20 #include <linux/netdevice.h>
21 #include <linux/skbuff.h>
22 #include <linux/etherdevice.h>
23 #include <linux/in.h>
24 #include <linux/ethtool.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_ether.h>
27 #include <linux/ip.h>
28 #include <linux/prefetch.h>
29 #include <linux/module.h>
30
31 #include "bnad.h"
32 #include "bna.h"
33 #include "cna.h"
34
35 static DEFINE_MUTEX(bnad_fwimg_mutex);
36
37 /*
38 * Module params
39 */
40 static uint bnad_msix_disable;
41 module_param(bnad_msix_disable, uint, 0444);
42 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
43
44 static uint bnad_ioc_auto_recover = 1;
45 module_param(bnad_ioc_auto_recover, uint, 0444);
46 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
47
48 static uint bna_debugfs_enable = 1;
49 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
50 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
51 " Range[false:0|true:1]");
52
53 /*
54 * Global variables
55 */
56 static u32 bnad_rxqs_per_cq = 2;
57 static u32 bna_id;
58 static struct mutex bnad_list_mutex;
59 static LIST_HEAD(bnad_list);
60 static const u8 bnad_bcast_addr[] __aligned(2) =
61 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
62
63 /*
64 * Local MACROS
65 */
66 #define BNAD_GET_MBOX_IRQ(_bnad) \
67 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \
68 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
69 ((_bnad)->pcidev->irq))
70
71 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size) \
72 do { \
73 (_res_info)->res_type = BNA_RES_T_MEM; \
74 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \
75 (_res_info)->res_u.mem_info.num = (_num); \
76 (_res_info)->res_u.mem_info.len = (_size); \
77 } while (0)
78
79 static void
80 bnad_add_to_list(struct bnad *bnad)
81 {
82 mutex_lock(&bnad_list_mutex);
83 list_add_tail(&bnad->list_entry, &bnad_list);
84 bnad->id = bna_id++;
85 mutex_unlock(&bnad_list_mutex);
86 }
87
88 static void
89 bnad_remove_from_list(struct bnad *bnad)
90 {
91 mutex_lock(&bnad_list_mutex);
92 list_del(&bnad->list_entry);
93 mutex_unlock(&bnad_list_mutex);
94 }
95
96 /*
97 * Reinitialize completions in CQ, once Rx is taken down
98 */
99 static void
100 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
101 {
102 struct bna_cq_entry *cmpl;
103 int i;
104
105 for (i = 0; i < ccb->q_depth; i++) {
106 cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
107 cmpl->valid = 0;
108 }
109 }
110
111 /* Tx Datapath functions */
112
113
114 /* Caller should ensure that the entry at unmap_q[index] is valid */
115 static u32
116 bnad_tx_buff_unmap(struct bnad *bnad,
117 struct bnad_tx_unmap *unmap_q,
118 u32 q_depth, u32 index)
119 {
120 struct bnad_tx_unmap *unmap;
121 struct sk_buff *skb;
122 int vector, nvecs;
123
124 unmap = &unmap_q[index];
125 nvecs = unmap->nvecs;
126
127 skb = unmap->skb;
128 unmap->skb = NULL;
129 unmap->nvecs = 0;
130 dma_unmap_single(&bnad->pcidev->dev,
131 dma_unmap_addr(&unmap->vectors[0], dma_addr),
132 skb_headlen(skb), DMA_TO_DEVICE);
133 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
134 nvecs--;
135
136 vector = 0;
137 while (nvecs) {
138 vector++;
139 if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
140 vector = 0;
141 BNA_QE_INDX_INC(index, q_depth);
142 unmap = &unmap_q[index];
143 }
144
145 dma_unmap_page(&bnad->pcidev->dev,
146 dma_unmap_addr(&unmap->vectors[vector], dma_addr),
147 dma_unmap_len(&unmap->vectors[vector], dma_len),
148 DMA_TO_DEVICE);
149 dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
150 nvecs--;
151 }
152
153 BNA_QE_INDX_INC(index, q_depth);
154
155 return index;
156 }
157
158 /*
159 * Frees all pending Tx Bufs
160 * At this point no activity is expected on the Q,
161 * so DMA unmap & freeing is fine.
162 */
163 static void
164 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
165 {
166 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
167 struct sk_buff *skb;
168 int i;
169
170 for (i = 0; i < tcb->q_depth; i++) {
171 skb = unmap_q[i].skb;
172 if (!skb)
173 continue;
174 bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
175
176 dev_kfree_skb_any(skb);
177 }
178 }
179
180 /*
181 * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
182 * Can be called in a) Interrupt context
183 * b) Sending context
184 */
185 static u32
186 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
187 {
188 u32 sent_packets = 0, sent_bytes = 0;
189 u32 wis, unmap_wis, hw_cons, cons, q_depth;
190 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
191 struct bnad_tx_unmap *unmap;
192 struct sk_buff *skb;
193
194 /* Just return if TX is stopped */
195 if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
196 return 0;
197
198 hw_cons = *(tcb->hw_consumer_index);
199 cons = tcb->consumer_index;
200 q_depth = tcb->q_depth;
201
202 wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
203 BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
204
205 while (wis) {
206 unmap = &unmap_q[cons];
207
208 skb = unmap->skb;
209
210 sent_packets++;
211 sent_bytes += skb->len;
212
213 unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
214 wis -= unmap_wis;
215
216 cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
217 dev_kfree_skb_any(skb);
218 }
219
220 /* Update consumer pointers. */
221 tcb->consumer_index = hw_cons;
222
223 tcb->txq->tx_packets += sent_packets;
224 tcb->txq->tx_bytes += sent_bytes;
225
226 return sent_packets;
227 }
228
229 static u32
230 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
231 {
232 struct net_device *netdev = bnad->netdev;
233 u32 sent = 0;
234
235 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
236 return 0;
237
238 sent = bnad_txcmpl_process(bnad, tcb);
239 if (sent) {
240 if (netif_queue_stopped(netdev) &&
241 netif_carrier_ok(netdev) &&
242 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
243 BNAD_NETIF_WAKE_THRESHOLD) {
244 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
245 netif_wake_queue(netdev);
246 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
247 }
248 }
249 }
250
251 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
252 bna_ib_ack(tcb->i_dbell, sent);
253
254 smp_mb__before_atomic();
255 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
256
257 return sent;
258 }
259
260 /* MSIX Tx Completion Handler */
261 static irqreturn_t
262 bnad_msix_tx(int irq, void *data)
263 {
264 struct bna_tcb *tcb = (struct bna_tcb *)data;
265 struct bnad *bnad = tcb->bnad;
266
267 bnad_tx_complete(bnad, tcb);
268
269 return IRQ_HANDLED;
270 }
271
272 static inline void
273 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
274 {
275 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
276
277 unmap_q->reuse_pi = -1;
278 unmap_q->alloc_order = -1;
279 unmap_q->map_size = 0;
280 unmap_q->type = BNAD_RXBUF_NONE;
281 }
282
283 /* Default is page-based allocation. Multi-buffer support - TBD */
284 static int
285 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
286 {
287 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
288 int order;
289
290 bnad_rxq_alloc_uninit(bnad, rcb);
291
292 order = get_order(rcb->rxq->buffer_size);
293
294 unmap_q->type = BNAD_RXBUF_PAGE;
295
296 if (bna_is_small_rxq(rcb->id)) {
297 unmap_q->alloc_order = 0;
298 unmap_q->map_size = rcb->rxq->buffer_size;
299 } else {
300 if (rcb->rxq->multi_buffer) {
301 unmap_q->alloc_order = 0;
302 unmap_q->map_size = rcb->rxq->buffer_size;
303 unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
304 } else {
305 unmap_q->alloc_order = order;
306 unmap_q->map_size =
307 (rcb->rxq->buffer_size > 2048) ?
308 PAGE_SIZE << order : 2048;
309 }
310 }
311
312 BUG_ON((PAGE_SIZE << order) % unmap_q->map_size);
313
314 return 0;
315 }
316
317 static inline void
318 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
319 {
320 if (!unmap->page)
321 return;
322
323 dma_unmap_page(&bnad->pcidev->dev,
324 dma_unmap_addr(&unmap->vector, dma_addr),
325 unmap->vector.len, DMA_FROM_DEVICE);
326 put_page(unmap->page);
327 unmap->page = NULL;
328 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
329 unmap->vector.len = 0;
330 }
331
332 static inline void
333 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
334 {
335 if (!unmap->skb)
336 return;
337
338 dma_unmap_single(&bnad->pcidev->dev,
339 dma_unmap_addr(&unmap->vector, dma_addr),
340 unmap->vector.len, DMA_FROM_DEVICE);
341 dev_kfree_skb_any(unmap->skb);
342 unmap->skb = NULL;
343 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
344 unmap->vector.len = 0;
345 }
346
347 static void
348 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
349 {
350 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
351 int i;
352
353 for (i = 0; i < rcb->q_depth; i++) {
354 struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
355
356 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
357 bnad_rxq_cleanup_skb(bnad, unmap);
358 else
359 bnad_rxq_cleanup_page(bnad, unmap);
360 }
361 bnad_rxq_alloc_uninit(bnad, rcb);
362 }
363
364 static u32
365 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
366 {
367 u32 alloced, prod, q_depth;
368 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
369 struct bnad_rx_unmap *unmap, *prev;
370 struct bna_rxq_entry *rxent;
371 struct page *page;
372 u32 page_offset, alloc_size;
373 dma_addr_t dma_addr;
374
375 prod = rcb->producer_index;
376 q_depth = rcb->q_depth;
377
378 alloc_size = PAGE_SIZE << unmap_q->alloc_order;
379 alloced = 0;
380
381 while (nalloc--) {
382 unmap = &unmap_q->unmap[prod];
383
384 if (unmap_q->reuse_pi < 0) {
385 page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
386 unmap_q->alloc_order);
387 page_offset = 0;
388 } else {
389 prev = &unmap_q->unmap[unmap_q->reuse_pi];
390 page = prev->page;
391 page_offset = prev->page_offset + unmap_q->map_size;
392 get_page(page);
393 }
394
395 if (unlikely(!page)) {
396 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
397 rcb->rxq->rxbuf_alloc_failed++;
398 goto finishing;
399 }
400
401 dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
402 unmap_q->map_size, DMA_FROM_DEVICE);
403 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
404 put_page(page);
405 BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
406 rcb->rxq->rxbuf_map_failed++;
407 goto finishing;
408 }
409
410 unmap->page = page;
411 unmap->page_offset = page_offset;
412 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
413 unmap->vector.len = unmap_q->map_size;
414 page_offset += unmap_q->map_size;
415
416 if (page_offset < alloc_size)
417 unmap_q->reuse_pi = prod;
418 else
419 unmap_q->reuse_pi = -1;
420
421 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
422 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
423 BNA_QE_INDX_INC(prod, q_depth);
424 alloced++;
425 }
426
427 finishing:
428 if (likely(alloced)) {
429 rcb->producer_index = prod;
430 smp_mb();
431 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
432 bna_rxq_prod_indx_doorbell(rcb);
433 }
434
435 return alloced;
436 }
437
438 static u32
439 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
440 {
441 u32 alloced, prod, q_depth, buff_sz;
442 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
443 struct bnad_rx_unmap *unmap;
444 struct bna_rxq_entry *rxent;
445 struct sk_buff *skb;
446 dma_addr_t dma_addr;
447
448 buff_sz = rcb->rxq->buffer_size;
449 prod = rcb->producer_index;
450 q_depth = rcb->q_depth;
451
452 alloced = 0;
453 while (nalloc--) {
454 unmap = &unmap_q->unmap[prod];
455
456 skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
457
458 if (unlikely(!skb)) {
459 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
460 rcb->rxq->rxbuf_alloc_failed++;
461 goto finishing;
462 }
463
464 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
465 buff_sz, DMA_FROM_DEVICE);
466 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
467 dev_kfree_skb_any(skb);
468 BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
469 rcb->rxq->rxbuf_map_failed++;
470 goto finishing;
471 }
472
473 unmap->skb = skb;
474 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
475 unmap->vector.len = buff_sz;
476
477 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
478 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
479 BNA_QE_INDX_INC(prod, q_depth);
480 alloced++;
481 }
482
483 finishing:
484 if (likely(alloced)) {
485 rcb->producer_index = prod;
486 smp_mb();
487 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
488 bna_rxq_prod_indx_doorbell(rcb);
489 }
490
491 return alloced;
492 }
493
494 static inline void
495 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
496 {
497 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
498 u32 to_alloc;
499
500 to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
501 if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
502 return;
503
504 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
505 bnad_rxq_refill_skb(bnad, rcb, to_alloc);
506 else
507 bnad_rxq_refill_page(bnad, rcb, to_alloc);
508 }
509
510 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
511 BNA_CQ_EF_IPV6 | \
512 BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
513 BNA_CQ_EF_L4_CKSUM_OK)
514
515 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
516 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
517 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
518 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
519 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
520 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
521 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
522 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
523
524 static void
525 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
526 u32 sop_ci, u32 nvecs)
527 {
528 struct bnad_rx_unmap_q *unmap_q;
529 struct bnad_rx_unmap *unmap;
530 u32 ci, vec;
531
532 unmap_q = rcb->unmap_q;
533 for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
534 unmap = &unmap_q->unmap[ci];
535 BNA_QE_INDX_INC(ci, rcb->q_depth);
536
537 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
538 bnad_rxq_cleanup_skb(bnad, unmap);
539 else
540 bnad_rxq_cleanup_page(bnad, unmap);
541 }
542 }
543
544 static void
545 bnad_cq_setup_skb_frags(struct bna_ccb *ccb, struct sk_buff *skb, u32 nvecs)
546 {
547 struct bna_rcb *rcb;
548 struct bnad *bnad;
549 struct bnad_rx_unmap_q *unmap_q;
550 struct bna_cq_entry *cq, *cmpl;
551 u32 ci, pi, totlen = 0;
552
553 cq = ccb->sw_q;
554 pi = ccb->producer_index;
555 cmpl = &cq[pi];
556
557 rcb = bna_is_small_rxq(cmpl->rxq_id) ? ccb->rcb[1] : ccb->rcb[0];
558 unmap_q = rcb->unmap_q;
559 bnad = rcb->bnad;
560 ci = rcb->consumer_index;
561
562 /* prefetch header */
563 prefetch(page_address(unmap_q->unmap[ci].page) +
564 unmap_q->unmap[ci].page_offset);
565
566 while (nvecs--) {
567 struct bnad_rx_unmap *unmap;
568 u32 len;
569
570 unmap = &unmap_q->unmap[ci];
571 BNA_QE_INDX_INC(ci, rcb->q_depth);
572
573 dma_unmap_page(&bnad->pcidev->dev,
574 dma_unmap_addr(&unmap->vector, dma_addr),
575 unmap->vector.len, DMA_FROM_DEVICE);
576
577 len = ntohs(cmpl->length);
578 skb->truesize += unmap->vector.len;
579 totlen += len;
580
581 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
582 unmap->page, unmap->page_offset, len);
583
584 unmap->page = NULL;
585 unmap->vector.len = 0;
586
587 BNA_QE_INDX_INC(pi, ccb->q_depth);
588 cmpl = &cq[pi];
589 }
590
591 skb->len += totlen;
592 skb->data_len += totlen;
593 }
594
595 static inline void
596 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
597 struct bnad_rx_unmap *unmap, u32 len)
598 {
599 prefetch(skb->data);
600
601 dma_unmap_single(&bnad->pcidev->dev,
602 dma_unmap_addr(&unmap->vector, dma_addr),
603 unmap->vector.len, DMA_FROM_DEVICE);
604
605 skb_put(skb, len);
606 skb->protocol = eth_type_trans(skb, bnad->netdev);
607
608 unmap->skb = NULL;
609 unmap->vector.len = 0;
610 }
611
612 static u32
613 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
614 {
615 struct bna_cq_entry *cq, *cmpl, *next_cmpl;
616 struct bna_rcb *rcb = NULL;
617 struct bnad_rx_unmap_q *unmap_q;
618 struct bnad_rx_unmap *unmap = NULL;
619 struct sk_buff *skb = NULL;
620 struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
621 struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
622 u32 packets = 0, len = 0, totlen = 0;
623 u32 pi, vec, sop_ci = 0, nvecs = 0;
624 u32 flags, masked_flags;
625
626 prefetch(bnad->netdev);
627
628 cq = ccb->sw_q;
629
630 while (packets < budget) {
631 cmpl = &cq[ccb->producer_index];
632 if (!cmpl->valid)
633 break;
634 /* The 'valid' field is set by the adapter, only after writing
635 * the other fields of completion entry. Hence, do not load
636 * other fields of completion entry *before* the 'valid' is
637 * loaded. Adding the rmb() here prevents the compiler and/or
638 * CPU from reordering the reads which would potentially result
639 * in reading stale values in completion entry.
640 */
641 rmb();
642
643 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
644
645 if (bna_is_small_rxq(cmpl->rxq_id))
646 rcb = ccb->rcb[1];
647 else
648 rcb = ccb->rcb[0];
649
650 unmap_q = rcb->unmap_q;
651
652 /* start of packet ci */
653 sop_ci = rcb->consumer_index;
654
655 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
656 unmap = &unmap_q->unmap[sop_ci];
657 skb = unmap->skb;
658 } else {
659 skb = napi_get_frags(&rx_ctrl->napi);
660 if (unlikely(!skb))
661 break;
662 }
663 prefetch(skb);
664
665 flags = ntohl(cmpl->flags);
666 len = ntohs(cmpl->length);
667 totlen = len;
668 nvecs = 1;
669
670 /* Check all the completions for this frame.
671 * busy-wait doesn't help much, break here.
672 */
673 if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
674 (flags & BNA_CQ_EF_EOP) == 0) {
675 pi = ccb->producer_index;
676 do {
677 BNA_QE_INDX_INC(pi, ccb->q_depth);
678 next_cmpl = &cq[pi];
679
680 if (!next_cmpl->valid)
681 break;
682 /* The 'valid' field is set by the adapter, only
683 * after writing the other fields of completion
684 * entry. Hence, do not load other fields of
685 * completion entry *before* the 'valid' is
686 * loaded. Adding the rmb() here prevents the
687 * compiler and/or CPU from reordering the reads
688 * which would potentially result in reading
689 * stale values in completion entry.
690 */
691 rmb();
692
693 len = ntohs(next_cmpl->length);
694 flags = ntohl(next_cmpl->flags);
695
696 nvecs++;
697 totlen += len;
698 } while ((flags & BNA_CQ_EF_EOP) == 0);
699
700 if (!next_cmpl->valid)
701 break;
702 }
703 packets++;
704
705 /* TODO: BNA_CQ_EF_LOCAL ? */
706 if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
707 BNA_CQ_EF_FCS_ERROR |
708 BNA_CQ_EF_TOO_LONG))) {
709 bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
710 rcb->rxq->rx_packets_with_error++;
711
712 goto next;
713 }
714
715 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
716 bnad_cq_setup_skb(bnad, skb, unmap, len);
717 else
718 bnad_cq_setup_skb_frags(ccb, skb, nvecs);
719
720 rcb->rxq->rx_packets++;
721 rcb->rxq->rx_bytes += totlen;
722 ccb->bytes_per_intr += totlen;
723
724 masked_flags = flags & flags_cksum_prot_mask;
725
726 if (likely
727 ((bnad->netdev->features & NETIF_F_RXCSUM) &&
728 ((masked_flags == flags_tcp4) ||
729 (masked_flags == flags_udp4) ||
730 (masked_flags == flags_tcp6) ||
731 (masked_flags == flags_udp6))))
732 skb->ip_summed = CHECKSUM_UNNECESSARY;
733 else
734 skb_checksum_none_assert(skb);
735
736 if ((flags & BNA_CQ_EF_VLAN) &&
737 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
738 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
739
740 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
741 netif_receive_skb(skb);
742 else
743 napi_gro_frags(&rx_ctrl->napi);
744
745 next:
746 BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
747 for (vec = 0; vec < nvecs; vec++) {
748 cmpl = &cq[ccb->producer_index];
749 cmpl->valid = 0;
750 BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
751 }
752 }
753
754 napi_gro_flush(&rx_ctrl->napi, false);
755 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
756 bna_ib_ack_disable_irq(ccb->i_dbell, packets);
757
758 bnad_rxq_post(bnad, ccb->rcb[0]);
759 if (ccb->rcb[1])
760 bnad_rxq_post(bnad, ccb->rcb[1]);
761
762 return packets;
763 }
764
765 static void
766 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
767 {
768 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
769 struct napi_struct *napi = &rx_ctrl->napi;
770
771 if (likely(napi_schedule_prep(napi))) {
772 __napi_schedule(napi);
773 rx_ctrl->rx_schedule++;
774 }
775 }
776
777 /* MSIX Rx Path Handler */
778 static irqreturn_t
779 bnad_msix_rx(int irq, void *data)
780 {
781 struct bna_ccb *ccb = (struct bna_ccb *)data;
782
783 if (ccb) {
784 ((struct bnad_rx_ctrl *)ccb->ctrl)->rx_intr_ctr++;
785 bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
786 }
787
788 return IRQ_HANDLED;
789 }
790
791 /* Interrupt handlers */
792
793 /* Mbox Interrupt Handlers */
794 static irqreturn_t
795 bnad_msix_mbox_handler(int irq, void *data)
796 {
797 u32 intr_status;
798 unsigned long flags;
799 struct bnad *bnad = (struct bnad *)data;
800
801 spin_lock_irqsave(&bnad->bna_lock, flags);
802 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
803 spin_unlock_irqrestore(&bnad->bna_lock, flags);
804 return IRQ_HANDLED;
805 }
806
807 bna_intr_status_get(&bnad->bna, intr_status);
808
809 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
810 bna_mbox_handler(&bnad->bna, intr_status);
811
812 spin_unlock_irqrestore(&bnad->bna_lock, flags);
813
814 return IRQ_HANDLED;
815 }
816
817 static irqreturn_t
818 bnad_isr(int irq, void *data)
819 {
820 int i, j;
821 u32 intr_status;
822 unsigned long flags;
823 struct bnad *bnad = (struct bnad *)data;
824 struct bnad_rx_info *rx_info;
825 struct bnad_rx_ctrl *rx_ctrl;
826 struct bna_tcb *tcb = NULL;
827
828 spin_lock_irqsave(&bnad->bna_lock, flags);
829 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
830 spin_unlock_irqrestore(&bnad->bna_lock, flags);
831 return IRQ_NONE;
832 }
833
834 bna_intr_status_get(&bnad->bna, intr_status);
835
836 if (unlikely(!intr_status)) {
837 spin_unlock_irqrestore(&bnad->bna_lock, flags);
838 return IRQ_NONE;
839 }
840
841 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
842 bna_mbox_handler(&bnad->bna, intr_status);
843
844 spin_unlock_irqrestore(&bnad->bna_lock, flags);
845
846 if (!BNA_IS_INTX_DATA_INTR(intr_status))
847 return IRQ_HANDLED;
848
849 /* Process data interrupts */
850 /* Tx processing */
851 for (i = 0; i < bnad->num_tx; i++) {
852 for (j = 0; j < bnad->num_txq_per_tx; j++) {
853 tcb = bnad->tx_info[i].tcb[j];
854 if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
855 bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
856 }
857 }
858 /* Rx processing */
859 for (i = 0; i < bnad->num_rx; i++) {
860 rx_info = &bnad->rx_info[i];
861 if (!rx_info->rx)
862 continue;
863 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
864 rx_ctrl = &rx_info->rx_ctrl[j];
865 if (rx_ctrl->ccb)
866 bnad_netif_rx_schedule_poll(bnad,
867 rx_ctrl->ccb);
868 }
869 }
870 return IRQ_HANDLED;
871 }
872
873 /*
874 * Called in interrupt / callback context
875 * with bna_lock held, so cfg_flags access is OK
876 */
877 static void
878 bnad_enable_mbox_irq(struct bnad *bnad)
879 {
880 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
881
882 BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
883 }
884
885 /*
886 * Called with bnad->bna_lock held b'cos of
887 * bnad->cfg_flags access.
888 */
889 static void
890 bnad_disable_mbox_irq(struct bnad *bnad)
891 {
892 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
893
894 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
895 }
896
897 static void
898 bnad_set_netdev_perm_addr(struct bnad *bnad)
899 {
900 struct net_device *netdev = bnad->netdev;
901
902 ether_addr_copy(netdev->perm_addr, bnad->perm_addr);
903 if (is_zero_ether_addr(netdev->dev_addr))
904 ether_addr_copy(netdev->dev_addr, bnad->perm_addr);
905 }
906
907 /* Control Path Handlers */
908
909 /* Callbacks */
910 void
911 bnad_cb_mbox_intr_enable(struct bnad *bnad)
912 {
913 bnad_enable_mbox_irq(bnad);
914 }
915
916 void
917 bnad_cb_mbox_intr_disable(struct bnad *bnad)
918 {
919 bnad_disable_mbox_irq(bnad);
920 }
921
922 void
923 bnad_cb_ioceth_ready(struct bnad *bnad)
924 {
925 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
926 complete(&bnad->bnad_completions.ioc_comp);
927 }
928
929 void
930 bnad_cb_ioceth_failed(struct bnad *bnad)
931 {
932 bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
933 complete(&bnad->bnad_completions.ioc_comp);
934 }
935
936 void
937 bnad_cb_ioceth_disabled(struct bnad *bnad)
938 {
939 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
940 complete(&bnad->bnad_completions.ioc_comp);
941 }
942
943 static void
944 bnad_cb_enet_disabled(void *arg)
945 {
946 struct bnad *bnad = (struct bnad *)arg;
947
948 netif_carrier_off(bnad->netdev);
949 complete(&bnad->bnad_completions.enet_comp);
950 }
951
952 void
953 bnad_cb_ethport_link_status(struct bnad *bnad,
954 enum bna_link_status link_status)
955 {
956 bool link_up = false;
957
958 link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
959
960 if (link_status == BNA_CEE_UP) {
961 if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
962 BNAD_UPDATE_CTR(bnad, cee_toggle);
963 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
964 } else {
965 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
966 BNAD_UPDATE_CTR(bnad, cee_toggle);
967 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
968 }
969
970 if (link_up) {
971 if (!netif_carrier_ok(bnad->netdev)) {
972 uint tx_id, tcb_id;
973 netdev_info(bnad->netdev, "link up\n");
974 netif_carrier_on(bnad->netdev);
975 BNAD_UPDATE_CTR(bnad, link_toggle);
976 for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
977 for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
978 tcb_id++) {
979 struct bna_tcb *tcb =
980 bnad->tx_info[tx_id].tcb[tcb_id];
981 u32 txq_id;
982 if (!tcb)
983 continue;
984
985 txq_id = tcb->id;
986
987 if (test_bit(BNAD_TXQ_TX_STARTED,
988 &tcb->flags)) {
989 /*
990 * Force an immediate
991 * Transmit Schedule */
992 netif_wake_subqueue(
993 bnad->netdev,
994 txq_id);
995 BNAD_UPDATE_CTR(bnad,
996 netif_queue_wakeup);
997 } else {
998 netif_stop_subqueue(
999 bnad->netdev,
1000 txq_id);
1001 BNAD_UPDATE_CTR(bnad,
1002 netif_queue_stop);
1003 }
1004 }
1005 }
1006 }
1007 } else {
1008 if (netif_carrier_ok(bnad->netdev)) {
1009 netdev_info(bnad->netdev, "link down\n");
1010 netif_carrier_off(bnad->netdev);
1011 BNAD_UPDATE_CTR(bnad, link_toggle);
1012 }
1013 }
1014 }
1015
1016 static void
1017 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
1018 {
1019 struct bnad *bnad = (struct bnad *)arg;
1020
1021 complete(&bnad->bnad_completions.tx_comp);
1022 }
1023
1024 static void
1025 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1026 {
1027 struct bnad_tx_info *tx_info =
1028 (struct bnad_tx_info *)tcb->txq->tx->priv;
1029
1030 tcb->priv = tcb;
1031 tx_info->tcb[tcb->id] = tcb;
1032 }
1033
1034 static void
1035 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1036 {
1037 struct bnad_tx_info *tx_info =
1038 (struct bnad_tx_info *)tcb->txq->tx->priv;
1039
1040 tx_info->tcb[tcb->id] = NULL;
1041 tcb->priv = NULL;
1042 }
1043
1044 static void
1045 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1046 {
1047 struct bnad_rx_info *rx_info =
1048 (struct bnad_rx_info *)ccb->cq->rx->priv;
1049
1050 rx_info->rx_ctrl[ccb->id].ccb = ccb;
1051 ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1052 }
1053
1054 static void
1055 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1056 {
1057 struct bnad_rx_info *rx_info =
1058 (struct bnad_rx_info *)ccb->cq->rx->priv;
1059
1060 rx_info->rx_ctrl[ccb->id].ccb = NULL;
1061 }
1062
1063 static void
1064 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1065 {
1066 struct bnad_tx_info *tx_info =
1067 (struct bnad_tx_info *)tx->priv;
1068 struct bna_tcb *tcb;
1069 u32 txq_id;
1070 int i;
1071
1072 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1073 tcb = tx_info->tcb[i];
1074 if (!tcb)
1075 continue;
1076 txq_id = tcb->id;
1077 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1078 netif_stop_subqueue(bnad->netdev, txq_id);
1079 }
1080 }
1081
1082 static void
1083 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1084 {
1085 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1086 struct bna_tcb *tcb;
1087 u32 txq_id;
1088 int i;
1089
1090 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1091 tcb = tx_info->tcb[i];
1092 if (!tcb)
1093 continue;
1094 txq_id = tcb->id;
1095
1096 BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1097 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1098 BUG_ON(*(tcb->hw_consumer_index) != 0);
1099
1100 if (netif_carrier_ok(bnad->netdev)) {
1101 netif_wake_subqueue(bnad->netdev, txq_id);
1102 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1103 }
1104 }
1105
1106 /*
1107 * Workaround for first ioceth enable failure & we
1108 * get a 0 MAC address. We try to get the MAC address
1109 * again here.
1110 */
1111 if (is_zero_ether_addr(bnad->perm_addr)) {
1112 bna_enet_perm_mac_get(&bnad->bna.enet, bnad->perm_addr);
1113 bnad_set_netdev_perm_addr(bnad);
1114 }
1115 }
1116
1117 /*
1118 * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1119 */
1120 static void
1121 bnad_tx_cleanup(struct delayed_work *work)
1122 {
1123 struct bnad_tx_info *tx_info =
1124 container_of(work, struct bnad_tx_info, tx_cleanup_work);
1125 struct bnad *bnad = NULL;
1126 struct bna_tcb *tcb;
1127 unsigned long flags;
1128 u32 i, pending = 0;
1129
1130 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1131 tcb = tx_info->tcb[i];
1132 if (!tcb)
1133 continue;
1134
1135 bnad = tcb->bnad;
1136
1137 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1138 pending++;
1139 continue;
1140 }
1141
1142 bnad_txq_cleanup(bnad, tcb);
1143
1144 smp_mb__before_atomic();
1145 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1146 }
1147
1148 if (pending) {
1149 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1150 msecs_to_jiffies(1));
1151 return;
1152 }
1153
1154 spin_lock_irqsave(&bnad->bna_lock, flags);
1155 bna_tx_cleanup_complete(tx_info->tx);
1156 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1157 }
1158
1159 static void
1160 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1161 {
1162 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1163 struct bna_tcb *tcb;
1164 int i;
1165
1166 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1167 tcb = tx_info->tcb[i];
1168 if (!tcb)
1169 continue;
1170 }
1171
1172 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1173 }
1174
1175 static void
1176 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1177 {
1178 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1179 struct bna_ccb *ccb;
1180 struct bnad_rx_ctrl *rx_ctrl;
1181 int i;
1182
1183 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1184 rx_ctrl = &rx_info->rx_ctrl[i];
1185 ccb = rx_ctrl->ccb;
1186 if (!ccb)
1187 continue;
1188
1189 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1190
1191 if (ccb->rcb[1])
1192 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1193 }
1194 }
1195
1196 /*
1197 * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1198 */
1199 static void
1200 bnad_rx_cleanup(void *work)
1201 {
1202 struct bnad_rx_info *rx_info =
1203 container_of(work, struct bnad_rx_info, rx_cleanup_work);
1204 struct bnad_rx_ctrl *rx_ctrl;
1205 struct bnad *bnad = NULL;
1206 unsigned long flags;
1207 u32 i;
1208
1209 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1210 rx_ctrl = &rx_info->rx_ctrl[i];
1211
1212 if (!rx_ctrl->ccb)
1213 continue;
1214
1215 bnad = rx_ctrl->ccb->bnad;
1216
1217 /*
1218 * Wait till the poll handler has exited
1219 * and nothing can be scheduled anymore
1220 */
1221 napi_disable(&rx_ctrl->napi);
1222
1223 bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1224 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1225 if (rx_ctrl->ccb->rcb[1])
1226 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1227 }
1228
1229 spin_lock_irqsave(&bnad->bna_lock, flags);
1230 bna_rx_cleanup_complete(rx_info->rx);
1231 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1232 }
1233
1234 static void
1235 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1236 {
1237 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1238 struct bna_ccb *ccb;
1239 struct bnad_rx_ctrl *rx_ctrl;
1240 int i;
1241
1242 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1243 rx_ctrl = &rx_info->rx_ctrl[i];
1244 ccb = rx_ctrl->ccb;
1245 if (!ccb)
1246 continue;
1247
1248 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1249
1250 if (ccb->rcb[1])
1251 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1252 }
1253
1254 queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1255 }
1256
1257 static void
1258 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1259 {
1260 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1261 struct bna_ccb *ccb;
1262 struct bna_rcb *rcb;
1263 struct bnad_rx_ctrl *rx_ctrl;
1264 int i, j;
1265
1266 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1267 rx_ctrl = &rx_info->rx_ctrl[i];
1268 ccb = rx_ctrl->ccb;
1269 if (!ccb)
1270 continue;
1271
1272 napi_enable(&rx_ctrl->napi);
1273
1274 for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1275 rcb = ccb->rcb[j];
1276 if (!rcb)
1277 continue;
1278
1279 bnad_rxq_alloc_init(bnad, rcb);
1280 set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1281 set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1282 bnad_rxq_post(bnad, rcb);
1283 }
1284 }
1285 }
1286
1287 static void
1288 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1289 {
1290 struct bnad *bnad = (struct bnad *)arg;
1291
1292 complete(&bnad->bnad_completions.rx_comp);
1293 }
1294
1295 static void
1296 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1297 {
1298 bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1299 complete(&bnad->bnad_completions.mcast_comp);
1300 }
1301
1302 void
1303 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1304 struct bna_stats *stats)
1305 {
1306 if (status == BNA_CB_SUCCESS)
1307 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1308
1309 if (!netif_running(bnad->netdev) ||
1310 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1311 return;
1312
1313 mod_timer(&bnad->stats_timer,
1314 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1315 }
1316
1317 static void
1318 bnad_cb_enet_mtu_set(struct bnad *bnad)
1319 {
1320 bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1321 complete(&bnad->bnad_completions.mtu_comp);
1322 }
1323
1324 void
1325 bnad_cb_completion(void *arg, enum bfa_status status)
1326 {
1327 struct bnad_iocmd_comp *iocmd_comp =
1328 (struct bnad_iocmd_comp *)arg;
1329
1330 iocmd_comp->comp_status = (u32) status;
1331 complete(&iocmd_comp->comp);
1332 }
1333
1334 /* Resource allocation, free functions */
1335
1336 static void
1337 bnad_mem_free(struct bnad *bnad,
1338 struct bna_mem_info *mem_info)
1339 {
1340 int i;
1341 dma_addr_t dma_pa;
1342
1343 if (mem_info->mdl == NULL)
1344 return;
1345
1346 for (i = 0; i < mem_info->num; i++) {
1347 if (mem_info->mdl[i].kva != NULL) {
1348 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1349 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1350 dma_pa);
1351 dma_free_coherent(&bnad->pcidev->dev,
1352 mem_info->mdl[i].len,
1353 mem_info->mdl[i].kva, dma_pa);
1354 } else
1355 kfree(mem_info->mdl[i].kva);
1356 }
1357 }
1358 kfree(mem_info->mdl);
1359 mem_info->mdl = NULL;
1360 }
1361
1362 static int
1363 bnad_mem_alloc(struct bnad *bnad,
1364 struct bna_mem_info *mem_info)
1365 {
1366 int i;
1367 dma_addr_t dma_pa;
1368
1369 if ((mem_info->num == 0) || (mem_info->len == 0)) {
1370 mem_info->mdl = NULL;
1371 return 0;
1372 }
1373
1374 mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1375 GFP_KERNEL);
1376 if (mem_info->mdl == NULL)
1377 return -ENOMEM;
1378
1379 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1380 for (i = 0; i < mem_info->num; i++) {
1381 mem_info->mdl[i].len = mem_info->len;
1382 mem_info->mdl[i].kva =
1383 dma_alloc_coherent(&bnad->pcidev->dev,
1384 mem_info->len, &dma_pa,
1385 GFP_KERNEL);
1386 if (mem_info->mdl[i].kva == NULL)
1387 goto err_return;
1388
1389 BNA_SET_DMA_ADDR(dma_pa,
1390 &(mem_info->mdl[i].dma));
1391 }
1392 } else {
1393 for (i = 0; i < mem_info->num; i++) {
1394 mem_info->mdl[i].len = mem_info->len;
1395 mem_info->mdl[i].kva = kzalloc(mem_info->len,
1396 GFP_KERNEL);
1397 if (mem_info->mdl[i].kva == NULL)
1398 goto err_return;
1399 }
1400 }
1401
1402 return 0;
1403
1404 err_return:
1405 bnad_mem_free(bnad, mem_info);
1406 return -ENOMEM;
1407 }
1408
1409 /* Free IRQ for Mailbox */
1410 static void
1411 bnad_mbox_irq_free(struct bnad *bnad)
1412 {
1413 int irq;
1414 unsigned long flags;
1415
1416 spin_lock_irqsave(&bnad->bna_lock, flags);
1417 bnad_disable_mbox_irq(bnad);
1418 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1419
1420 irq = BNAD_GET_MBOX_IRQ(bnad);
1421 free_irq(irq, bnad);
1422 }
1423
1424 /*
1425 * Allocates IRQ for Mailbox, but keep it disabled
1426 * This will be enabled once we get the mbox enable callback
1427 * from bna
1428 */
1429 static int
1430 bnad_mbox_irq_alloc(struct bnad *bnad)
1431 {
1432 int err = 0;
1433 unsigned long irq_flags, flags;
1434 u32 irq;
1435 irq_handler_t irq_handler;
1436
1437 spin_lock_irqsave(&bnad->bna_lock, flags);
1438 if (bnad->cfg_flags & BNAD_CF_MSIX) {
1439 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1440 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1441 irq_flags = 0;
1442 } else {
1443 irq_handler = (irq_handler_t)bnad_isr;
1444 irq = bnad->pcidev->irq;
1445 irq_flags = IRQF_SHARED;
1446 }
1447
1448 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1449 sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1450
1451 /*
1452 * Set the Mbox IRQ disable flag, so that the IRQ handler
1453 * called from request_irq() for SHARED IRQs do not execute
1454 */
1455 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1456
1457 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1458
1459 err = request_irq(irq, irq_handler, irq_flags,
1460 bnad->mbox_irq_name, bnad);
1461
1462 return err;
1463 }
1464
1465 static void
1466 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1467 {
1468 kfree(intr_info->idl);
1469 intr_info->idl = NULL;
1470 }
1471
1472 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1473 static int
1474 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1475 u32 txrx_id, struct bna_intr_info *intr_info)
1476 {
1477 int i, vector_start = 0;
1478 u32 cfg_flags;
1479 unsigned long flags;
1480
1481 spin_lock_irqsave(&bnad->bna_lock, flags);
1482 cfg_flags = bnad->cfg_flags;
1483 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1484
1485 if (cfg_flags & BNAD_CF_MSIX) {
1486 intr_info->intr_type = BNA_INTR_T_MSIX;
1487 intr_info->idl = kcalloc(intr_info->num,
1488 sizeof(struct bna_intr_descr),
1489 GFP_KERNEL);
1490 if (!intr_info->idl)
1491 return -ENOMEM;
1492
1493 switch (src) {
1494 case BNAD_INTR_TX:
1495 vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1496 break;
1497
1498 case BNAD_INTR_RX:
1499 vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1500 (bnad->num_tx * bnad->num_txq_per_tx) +
1501 txrx_id;
1502 break;
1503
1504 default:
1505 BUG();
1506 }
1507
1508 for (i = 0; i < intr_info->num; i++)
1509 intr_info->idl[i].vector = vector_start + i;
1510 } else {
1511 intr_info->intr_type = BNA_INTR_T_INTX;
1512 intr_info->num = 1;
1513 intr_info->idl = kcalloc(intr_info->num,
1514 sizeof(struct bna_intr_descr),
1515 GFP_KERNEL);
1516 if (!intr_info->idl)
1517 return -ENOMEM;
1518
1519 switch (src) {
1520 case BNAD_INTR_TX:
1521 intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1522 break;
1523
1524 case BNAD_INTR_RX:
1525 intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1526 break;
1527 }
1528 }
1529 return 0;
1530 }
1531
1532 /* NOTE: Should be called for MSIX only
1533 * Unregisters Tx MSIX vector(s) from the kernel
1534 */
1535 static void
1536 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1537 int num_txqs)
1538 {
1539 int i;
1540 int vector_num;
1541
1542 for (i = 0; i < num_txqs; i++) {
1543 if (tx_info->tcb[i] == NULL)
1544 continue;
1545
1546 vector_num = tx_info->tcb[i]->intr_vector;
1547 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1548 }
1549 }
1550
1551 /* NOTE: Should be called for MSIX only
1552 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1553 */
1554 static int
1555 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1556 u32 tx_id, int num_txqs)
1557 {
1558 int i;
1559 int err;
1560 int vector_num;
1561
1562 for (i = 0; i < num_txqs; i++) {
1563 vector_num = tx_info->tcb[i]->intr_vector;
1564 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1565 tx_id + tx_info->tcb[i]->id);
1566 err = request_irq(bnad->msix_table[vector_num].vector,
1567 (irq_handler_t)bnad_msix_tx, 0,
1568 tx_info->tcb[i]->name,
1569 tx_info->tcb[i]);
1570 if (err)
1571 goto err_return;
1572 }
1573
1574 return 0;
1575
1576 err_return:
1577 if (i > 0)
1578 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1579 return -1;
1580 }
1581
1582 /* NOTE: Should be called for MSIX only
1583 * Unregisters Rx MSIX vector(s) from the kernel
1584 */
1585 static void
1586 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1587 int num_rxps)
1588 {
1589 int i;
1590 int vector_num;
1591
1592 for (i = 0; i < num_rxps; i++) {
1593 if (rx_info->rx_ctrl[i].ccb == NULL)
1594 continue;
1595
1596 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1597 free_irq(bnad->msix_table[vector_num].vector,
1598 rx_info->rx_ctrl[i].ccb);
1599 }
1600 }
1601
1602 /* NOTE: Should be called for MSIX only
1603 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1604 */
1605 static int
1606 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1607 u32 rx_id, int num_rxps)
1608 {
1609 int i;
1610 int err;
1611 int vector_num;
1612
1613 for (i = 0; i < num_rxps; i++) {
1614 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1615 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1616 bnad->netdev->name,
1617 rx_id + rx_info->rx_ctrl[i].ccb->id);
1618 err = request_irq(bnad->msix_table[vector_num].vector,
1619 (irq_handler_t)bnad_msix_rx, 0,
1620 rx_info->rx_ctrl[i].ccb->name,
1621 rx_info->rx_ctrl[i].ccb);
1622 if (err)
1623 goto err_return;
1624 }
1625
1626 return 0;
1627
1628 err_return:
1629 if (i > 0)
1630 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1631 return -1;
1632 }
1633
1634 /* Free Tx object Resources */
1635 static void
1636 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1637 {
1638 int i;
1639
1640 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1641 if (res_info[i].res_type == BNA_RES_T_MEM)
1642 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1643 else if (res_info[i].res_type == BNA_RES_T_INTR)
1644 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1645 }
1646 }
1647
1648 /* Allocates memory and interrupt resources for Tx object */
1649 static int
1650 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1651 u32 tx_id)
1652 {
1653 int i, err = 0;
1654
1655 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1656 if (res_info[i].res_type == BNA_RES_T_MEM)
1657 err = bnad_mem_alloc(bnad,
1658 &res_info[i].res_u.mem_info);
1659 else if (res_info[i].res_type == BNA_RES_T_INTR)
1660 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1661 &res_info[i].res_u.intr_info);
1662 if (err)
1663 goto err_return;
1664 }
1665 return 0;
1666
1667 err_return:
1668 bnad_tx_res_free(bnad, res_info);
1669 return err;
1670 }
1671
1672 /* Free Rx object Resources */
1673 static void
1674 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1675 {
1676 int i;
1677
1678 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1679 if (res_info[i].res_type == BNA_RES_T_MEM)
1680 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1681 else if (res_info[i].res_type == BNA_RES_T_INTR)
1682 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1683 }
1684 }
1685
1686 /* Allocates memory and interrupt resources for Rx object */
1687 static int
1688 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1689 uint rx_id)
1690 {
1691 int i, err = 0;
1692
1693 /* All memory needs to be allocated before setup_ccbs */
1694 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1695 if (res_info[i].res_type == BNA_RES_T_MEM)
1696 err = bnad_mem_alloc(bnad,
1697 &res_info[i].res_u.mem_info);
1698 else if (res_info[i].res_type == BNA_RES_T_INTR)
1699 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1700 &res_info[i].res_u.intr_info);
1701 if (err)
1702 goto err_return;
1703 }
1704 return 0;
1705
1706 err_return:
1707 bnad_rx_res_free(bnad, res_info);
1708 return err;
1709 }
1710
1711 /* Timer callbacks */
1712 /* a) IOC timer */
1713 static void
1714 bnad_ioc_timeout(unsigned long data)
1715 {
1716 struct bnad *bnad = (struct bnad *)data;
1717 unsigned long flags;
1718
1719 spin_lock_irqsave(&bnad->bna_lock, flags);
1720 bfa_nw_ioc_timeout(&bnad->bna.ioceth.ioc);
1721 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1722 }
1723
1724 static void
1725 bnad_ioc_hb_check(unsigned long data)
1726 {
1727 struct bnad *bnad = (struct bnad *)data;
1728 unsigned long flags;
1729
1730 spin_lock_irqsave(&bnad->bna_lock, flags);
1731 bfa_nw_ioc_hb_check(&bnad->bna.ioceth.ioc);
1732 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1733 }
1734
1735 static void
1736 bnad_iocpf_timeout(unsigned long data)
1737 {
1738 struct bnad *bnad = (struct bnad *)data;
1739 unsigned long flags;
1740
1741 spin_lock_irqsave(&bnad->bna_lock, flags);
1742 bfa_nw_iocpf_timeout(&bnad->bna.ioceth.ioc);
1743 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1744 }
1745
1746 static void
1747 bnad_iocpf_sem_timeout(unsigned long data)
1748 {
1749 struct bnad *bnad = (struct bnad *)data;
1750 unsigned long flags;
1751
1752 spin_lock_irqsave(&bnad->bna_lock, flags);
1753 bfa_nw_iocpf_sem_timeout(&bnad->bna.ioceth.ioc);
1754 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1755 }
1756
1757 /*
1758 * All timer routines use bnad->bna_lock to protect against
1759 * the following race, which may occur in case of no locking:
1760 * Time CPU m CPU n
1761 * 0 1 = test_bit
1762 * 1 clear_bit
1763 * 2 del_timer_sync
1764 * 3 mod_timer
1765 */
1766
1767 /* b) Dynamic Interrupt Moderation Timer */
1768 static void
1769 bnad_dim_timeout(unsigned long data)
1770 {
1771 struct bnad *bnad = (struct bnad *)data;
1772 struct bnad_rx_info *rx_info;
1773 struct bnad_rx_ctrl *rx_ctrl;
1774 int i, j;
1775 unsigned long flags;
1776
1777 if (!netif_carrier_ok(bnad->netdev))
1778 return;
1779
1780 spin_lock_irqsave(&bnad->bna_lock, flags);
1781 for (i = 0; i < bnad->num_rx; i++) {
1782 rx_info = &bnad->rx_info[i];
1783 if (!rx_info->rx)
1784 continue;
1785 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1786 rx_ctrl = &rx_info->rx_ctrl[j];
1787 if (!rx_ctrl->ccb)
1788 continue;
1789 bna_rx_dim_update(rx_ctrl->ccb);
1790 }
1791 }
1792
1793 /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1794 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1795 mod_timer(&bnad->dim_timer,
1796 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1797 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1798 }
1799
1800 /* c) Statistics Timer */
1801 static void
1802 bnad_stats_timeout(unsigned long data)
1803 {
1804 struct bnad *bnad = (struct bnad *)data;
1805 unsigned long flags;
1806
1807 if (!netif_running(bnad->netdev) ||
1808 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1809 return;
1810
1811 spin_lock_irqsave(&bnad->bna_lock, flags);
1812 bna_hw_stats_get(&bnad->bna);
1813 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1814 }
1815
1816 /*
1817 * Set up timer for DIM
1818 * Called with bnad->bna_lock held
1819 */
1820 void
1821 bnad_dim_timer_start(struct bnad *bnad)
1822 {
1823 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1824 !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1825 setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1826 (unsigned long)bnad);
1827 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1828 mod_timer(&bnad->dim_timer,
1829 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1830 }
1831 }
1832
1833 /*
1834 * Set up timer for statistics
1835 * Called with mutex_lock(&bnad->conf_mutex) held
1836 */
1837 static void
1838 bnad_stats_timer_start(struct bnad *bnad)
1839 {
1840 unsigned long flags;
1841
1842 spin_lock_irqsave(&bnad->bna_lock, flags);
1843 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1844 setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1845 (unsigned long)bnad);
1846 mod_timer(&bnad->stats_timer,
1847 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1848 }
1849 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1850 }
1851
1852 /*
1853 * Stops the stats timer
1854 * Called with mutex_lock(&bnad->conf_mutex) held
1855 */
1856 static void
1857 bnad_stats_timer_stop(struct bnad *bnad)
1858 {
1859 int to_del = 0;
1860 unsigned long flags;
1861
1862 spin_lock_irqsave(&bnad->bna_lock, flags);
1863 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1864 to_del = 1;
1865 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1866 if (to_del)
1867 del_timer_sync(&bnad->stats_timer);
1868 }
1869
1870 /* Utilities */
1871
1872 static void
1873 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1874 {
1875 int i = 1; /* Index 0 has broadcast address */
1876 struct netdev_hw_addr *mc_addr;
1877
1878 netdev_for_each_mc_addr(mc_addr, netdev) {
1879 ether_addr_copy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0]);
1880 i++;
1881 }
1882 }
1883
1884 static int
1885 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1886 {
1887 struct bnad_rx_ctrl *rx_ctrl =
1888 container_of(napi, struct bnad_rx_ctrl, napi);
1889 struct bnad *bnad = rx_ctrl->bnad;
1890 int rcvd = 0;
1891
1892 rx_ctrl->rx_poll_ctr++;
1893
1894 if (!netif_carrier_ok(bnad->netdev))
1895 goto poll_exit;
1896
1897 rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1898 if (rcvd >= budget)
1899 return rcvd;
1900
1901 poll_exit:
1902 napi_complete(napi);
1903
1904 rx_ctrl->rx_complete++;
1905
1906 if (rx_ctrl->ccb)
1907 bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1908
1909 return rcvd;
1910 }
1911
1912 #define BNAD_NAPI_POLL_QUOTA 64
1913 static void
1914 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1915 {
1916 struct bnad_rx_ctrl *rx_ctrl;
1917 int i;
1918
1919 /* Initialize & enable NAPI */
1920 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1921 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1922 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1923 bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1924 }
1925 }
1926
1927 static void
1928 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1929 {
1930 int i;
1931
1932 /* First disable and then clean up */
1933 for (i = 0; i < bnad->num_rxp_per_rx; i++)
1934 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1935 }
1936
1937 /* Should be held with conf_lock held */
1938 void
1939 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1940 {
1941 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1942 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1943 unsigned long flags;
1944
1945 if (!tx_info->tx)
1946 return;
1947
1948 init_completion(&bnad->bnad_completions.tx_comp);
1949 spin_lock_irqsave(&bnad->bna_lock, flags);
1950 bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1951 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1952 wait_for_completion(&bnad->bnad_completions.tx_comp);
1953
1954 if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1955 bnad_tx_msix_unregister(bnad, tx_info,
1956 bnad->num_txq_per_tx);
1957
1958 spin_lock_irqsave(&bnad->bna_lock, flags);
1959 bna_tx_destroy(tx_info->tx);
1960 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1961
1962 tx_info->tx = NULL;
1963 tx_info->tx_id = 0;
1964
1965 bnad_tx_res_free(bnad, res_info);
1966 }
1967
1968 /* Should be held with conf_lock held */
1969 int
1970 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1971 {
1972 int err;
1973 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1974 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1975 struct bna_intr_info *intr_info =
1976 &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1977 struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1978 static const struct bna_tx_event_cbfn tx_cbfn = {
1979 .tcb_setup_cbfn = bnad_cb_tcb_setup,
1980 .tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1981 .tx_stall_cbfn = bnad_cb_tx_stall,
1982 .tx_resume_cbfn = bnad_cb_tx_resume,
1983 .tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1984 };
1985
1986 struct bna_tx *tx;
1987 unsigned long flags;
1988
1989 tx_info->tx_id = tx_id;
1990
1991 /* Initialize the Tx object configuration */
1992 tx_config->num_txq = bnad->num_txq_per_tx;
1993 tx_config->txq_depth = bnad->txq_depth;
1994 tx_config->tx_type = BNA_TX_T_REGULAR;
1995 tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1996
1997 /* Get BNA's resource requirement for one tx object */
1998 spin_lock_irqsave(&bnad->bna_lock, flags);
1999 bna_tx_res_req(bnad->num_txq_per_tx,
2000 bnad->txq_depth, res_info);
2001 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2002
2003 /* Fill Unmap Q memory requirements */
2004 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
2005 bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
2006 bnad->txq_depth));
2007
2008 /* Allocate resources */
2009 err = bnad_tx_res_alloc(bnad, res_info, tx_id);
2010 if (err)
2011 return err;
2012
2013 /* Ask BNA to create one Tx object, supplying required resources */
2014 spin_lock_irqsave(&bnad->bna_lock, flags);
2015 tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
2016 tx_info);
2017 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2018 if (!tx) {
2019 err = -ENOMEM;
2020 goto err_return;
2021 }
2022 tx_info->tx = tx;
2023
2024 INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
2025 (work_func_t)bnad_tx_cleanup);
2026
2027 /* Register ISR for the Tx object */
2028 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2029 err = bnad_tx_msix_register(bnad, tx_info,
2030 tx_id, bnad->num_txq_per_tx);
2031 if (err)
2032 goto cleanup_tx;
2033 }
2034
2035 spin_lock_irqsave(&bnad->bna_lock, flags);
2036 bna_tx_enable(tx);
2037 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2038
2039 return 0;
2040
2041 cleanup_tx:
2042 spin_lock_irqsave(&bnad->bna_lock, flags);
2043 bna_tx_destroy(tx_info->tx);
2044 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2045 tx_info->tx = NULL;
2046 tx_info->tx_id = 0;
2047 err_return:
2048 bnad_tx_res_free(bnad, res_info);
2049 return err;
2050 }
2051
2052 /* Setup the rx config for bna_rx_create */
2053 /* bnad decides the configuration */
2054 static void
2055 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2056 {
2057 memset(rx_config, 0, sizeof(*rx_config));
2058 rx_config->rx_type = BNA_RX_T_REGULAR;
2059 rx_config->num_paths = bnad->num_rxp_per_rx;
2060 rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2061
2062 if (bnad->num_rxp_per_rx > 1) {
2063 rx_config->rss_status = BNA_STATUS_T_ENABLED;
2064 rx_config->rss_config.hash_type =
2065 (BFI_ENET_RSS_IPV6 |
2066 BFI_ENET_RSS_IPV6_TCP |
2067 BFI_ENET_RSS_IPV4 |
2068 BFI_ENET_RSS_IPV4_TCP);
2069 rx_config->rss_config.hash_mask =
2070 bnad->num_rxp_per_rx - 1;
2071 netdev_rss_key_fill(rx_config->rss_config.toeplitz_hash_key,
2072 sizeof(rx_config->rss_config.toeplitz_hash_key));
2073 } else {
2074 rx_config->rss_status = BNA_STATUS_T_DISABLED;
2075 memset(&rx_config->rss_config, 0,
2076 sizeof(rx_config->rss_config));
2077 }
2078
2079 rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2080 rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2081
2082 /* BNA_RXP_SINGLE - one data-buffer queue
2083 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2084 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2085 */
2086 /* TODO: configurable param for queue type */
2087 rx_config->rxp_type = BNA_RXP_SLR;
2088
2089 if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2090 rx_config->frame_size > 4096) {
2091 /* though size_routing_enable is set in SLR,
2092 * small packets may get routed to same rxq.
2093 * set buf_size to 2048 instead of PAGE_SIZE.
2094 */
2095 rx_config->q0_buf_size = 2048;
2096 /* this should be in multiples of 2 */
2097 rx_config->q0_num_vecs = 4;
2098 rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2099 rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2100 } else {
2101 rx_config->q0_buf_size = rx_config->frame_size;
2102 rx_config->q0_num_vecs = 1;
2103 rx_config->q0_depth = bnad->rxq_depth;
2104 }
2105
2106 /* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2107 if (rx_config->rxp_type == BNA_RXP_SLR) {
2108 rx_config->q1_depth = bnad->rxq_depth;
2109 rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2110 }
2111
2112 rx_config->vlan_strip_status =
2113 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ?
2114 BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED;
2115 }
2116
2117 static void
2118 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2119 {
2120 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2121 int i;
2122
2123 for (i = 0; i < bnad->num_rxp_per_rx; i++)
2124 rx_info->rx_ctrl[i].bnad = bnad;
2125 }
2126
2127 /* Called with mutex_lock(&bnad->conf_mutex) held */
2128 static u32
2129 bnad_reinit_rx(struct bnad *bnad)
2130 {
2131 struct net_device *netdev = bnad->netdev;
2132 u32 err = 0, current_err = 0;
2133 u32 rx_id = 0, count = 0;
2134 unsigned long flags;
2135
2136 /* destroy and create new rx objects */
2137 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2138 if (!bnad->rx_info[rx_id].rx)
2139 continue;
2140 bnad_destroy_rx(bnad, rx_id);
2141 }
2142
2143 spin_lock_irqsave(&bnad->bna_lock, flags);
2144 bna_enet_mtu_set(&bnad->bna.enet,
2145 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2146 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2147
2148 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2149 count++;
2150 current_err = bnad_setup_rx(bnad, rx_id);
2151 if (current_err && !err) {
2152 err = current_err;
2153 netdev_err(netdev, "RXQ:%u setup failed\n", rx_id);
2154 }
2155 }
2156
2157 /* restore rx configuration */
2158 if (bnad->rx_info[0].rx && !err) {
2159 bnad_restore_vlans(bnad, 0);
2160 bnad_enable_default_bcast(bnad);
2161 spin_lock_irqsave(&bnad->bna_lock, flags);
2162 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2163 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2164 bnad_set_rx_mode(netdev);
2165 }
2166
2167 return count;
2168 }
2169
2170 /* Called with bnad_conf_lock() held */
2171 void
2172 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2173 {
2174 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2175 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2176 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2177 unsigned long flags;
2178 int to_del = 0;
2179
2180 if (!rx_info->rx)
2181 return;
2182
2183 if (0 == rx_id) {
2184 spin_lock_irqsave(&bnad->bna_lock, flags);
2185 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2186 test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2187 clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2188 to_del = 1;
2189 }
2190 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2191 if (to_del)
2192 del_timer_sync(&bnad->dim_timer);
2193 }
2194
2195 init_completion(&bnad->bnad_completions.rx_comp);
2196 spin_lock_irqsave(&bnad->bna_lock, flags);
2197 bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2198 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2199 wait_for_completion(&bnad->bnad_completions.rx_comp);
2200
2201 if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2202 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2203
2204 bnad_napi_delete(bnad, rx_id);
2205
2206 spin_lock_irqsave(&bnad->bna_lock, flags);
2207 bna_rx_destroy(rx_info->rx);
2208
2209 rx_info->rx = NULL;
2210 rx_info->rx_id = 0;
2211 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2212
2213 bnad_rx_res_free(bnad, res_info);
2214 }
2215
2216 /* Called with mutex_lock(&bnad->conf_mutex) held */
2217 int
2218 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2219 {
2220 int err;
2221 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2222 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2223 struct bna_intr_info *intr_info =
2224 &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2225 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2226 static const struct bna_rx_event_cbfn rx_cbfn = {
2227 .rcb_setup_cbfn = NULL,
2228 .rcb_destroy_cbfn = NULL,
2229 .ccb_setup_cbfn = bnad_cb_ccb_setup,
2230 .ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2231 .rx_stall_cbfn = bnad_cb_rx_stall,
2232 .rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2233 .rx_post_cbfn = bnad_cb_rx_post,
2234 };
2235 struct bna_rx *rx;
2236 unsigned long flags;
2237
2238 rx_info->rx_id = rx_id;
2239
2240 /* Initialize the Rx object configuration */
2241 bnad_init_rx_config(bnad, rx_config);
2242
2243 /* Get BNA's resource requirement for one Rx object */
2244 spin_lock_irqsave(&bnad->bna_lock, flags);
2245 bna_rx_res_req(rx_config, res_info);
2246 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2247
2248 /* Fill Unmap Q memory requirements */
2249 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2250 rx_config->num_paths,
2251 (rx_config->q0_depth *
2252 sizeof(struct bnad_rx_unmap)) +
2253 sizeof(struct bnad_rx_unmap_q));
2254
2255 if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2256 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2257 rx_config->num_paths,
2258 (rx_config->q1_depth *
2259 sizeof(struct bnad_rx_unmap) +
2260 sizeof(struct bnad_rx_unmap_q)));
2261 }
2262 /* Allocate resource */
2263 err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2264 if (err)
2265 return err;
2266
2267 bnad_rx_ctrl_init(bnad, rx_id);
2268
2269 /* Ask BNA to create one Rx object, supplying required resources */
2270 spin_lock_irqsave(&bnad->bna_lock, flags);
2271 rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2272 rx_info);
2273 if (!rx) {
2274 err = -ENOMEM;
2275 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2276 goto err_return;
2277 }
2278 rx_info->rx = rx;
2279 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2280
2281 INIT_WORK(&rx_info->rx_cleanup_work,
2282 (work_func_t)(bnad_rx_cleanup));
2283
2284 /*
2285 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2286 * so that IRQ handler cannot schedule NAPI at this point.
2287 */
2288 bnad_napi_add(bnad, rx_id);
2289
2290 /* Register ISR for the Rx object */
2291 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2292 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2293 rx_config->num_paths);
2294 if (err)
2295 goto err_return;
2296 }
2297
2298 spin_lock_irqsave(&bnad->bna_lock, flags);
2299 if (0 == rx_id) {
2300 /* Set up Dynamic Interrupt Moderation Vector */
2301 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2302 bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2303
2304 /* Enable VLAN filtering only on the default Rx */
2305 bna_rx_vlanfilter_enable(rx);
2306
2307 /* Start the DIM timer */
2308 bnad_dim_timer_start(bnad);
2309 }
2310
2311 bna_rx_enable(rx);
2312 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2313
2314 return 0;
2315
2316 err_return:
2317 bnad_destroy_rx(bnad, rx_id);
2318 return err;
2319 }
2320
2321 /* Called with conf_lock & bnad->bna_lock held */
2322 void
2323 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2324 {
2325 struct bnad_tx_info *tx_info;
2326
2327 tx_info = &bnad->tx_info[0];
2328 if (!tx_info->tx)
2329 return;
2330
2331 bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2332 }
2333
2334 /* Called with conf_lock & bnad->bna_lock held */
2335 void
2336 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2337 {
2338 struct bnad_rx_info *rx_info;
2339 int i;
2340
2341 for (i = 0; i < bnad->num_rx; i++) {
2342 rx_info = &bnad->rx_info[i];
2343 if (!rx_info->rx)
2344 continue;
2345 bna_rx_coalescing_timeo_set(rx_info->rx,
2346 bnad->rx_coalescing_timeo);
2347 }
2348 }
2349
2350 /*
2351 * Called with bnad->bna_lock held
2352 */
2353 int
2354 bnad_mac_addr_set_locked(struct bnad *bnad, const u8 *mac_addr)
2355 {
2356 int ret;
2357
2358 if (!is_valid_ether_addr(mac_addr))
2359 return -EADDRNOTAVAIL;
2360
2361 /* If datapath is down, pretend everything went through */
2362 if (!bnad->rx_info[0].rx)
2363 return 0;
2364
2365 ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr);
2366 if (ret != BNA_CB_SUCCESS)
2367 return -EADDRNOTAVAIL;
2368
2369 return 0;
2370 }
2371
2372 /* Should be called with conf_lock held */
2373 int
2374 bnad_enable_default_bcast(struct bnad *bnad)
2375 {
2376 struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2377 int ret;
2378 unsigned long flags;
2379
2380 init_completion(&bnad->bnad_completions.mcast_comp);
2381
2382 spin_lock_irqsave(&bnad->bna_lock, flags);
2383 ret = bna_rx_mcast_add(rx_info->rx, bnad_bcast_addr,
2384 bnad_cb_rx_mcast_add);
2385 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2386
2387 if (ret == BNA_CB_SUCCESS)
2388 wait_for_completion(&bnad->bnad_completions.mcast_comp);
2389 else
2390 return -ENODEV;
2391
2392 if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2393 return -ENODEV;
2394
2395 return 0;
2396 }
2397
2398 /* Called with mutex_lock(&bnad->conf_mutex) held */
2399 void
2400 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2401 {
2402 u16 vid;
2403 unsigned long flags;
2404
2405 for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2406 spin_lock_irqsave(&bnad->bna_lock, flags);
2407 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2408 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2409 }
2410 }
2411
2412 /* Statistics utilities */
2413 void
2414 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2415 {
2416 int i, j;
2417
2418 for (i = 0; i < bnad->num_rx; i++) {
2419 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2420 if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2421 stats->rx_packets += bnad->rx_info[i].
2422 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2423 stats->rx_bytes += bnad->rx_info[i].
2424 rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2425 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2426 bnad->rx_info[i].rx_ctrl[j].ccb->
2427 rcb[1]->rxq) {
2428 stats->rx_packets +=
2429 bnad->rx_info[i].rx_ctrl[j].
2430 ccb->rcb[1]->rxq->rx_packets;
2431 stats->rx_bytes +=
2432 bnad->rx_info[i].rx_ctrl[j].
2433 ccb->rcb[1]->rxq->rx_bytes;
2434 }
2435 }
2436 }
2437 }
2438 for (i = 0; i < bnad->num_tx; i++) {
2439 for (j = 0; j < bnad->num_txq_per_tx; j++) {
2440 if (bnad->tx_info[i].tcb[j]) {
2441 stats->tx_packets +=
2442 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2443 stats->tx_bytes +=
2444 bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2445 }
2446 }
2447 }
2448 }
2449
2450 /*
2451 * Must be called with the bna_lock held.
2452 */
2453 void
2454 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2455 {
2456 struct bfi_enet_stats_mac *mac_stats;
2457 u32 bmap;
2458 int i;
2459
2460 mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2461 stats->rx_errors =
2462 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2463 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2464 mac_stats->rx_undersize;
2465 stats->tx_errors = mac_stats->tx_fcs_error +
2466 mac_stats->tx_undersize;
2467 stats->rx_dropped = mac_stats->rx_drop;
2468 stats->tx_dropped = mac_stats->tx_drop;
2469 stats->multicast = mac_stats->rx_multicast;
2470 stats->collisions = mac_stats->tx_total_collision;
2471
2472 stats->rx_length_errors = mac_stats->rx_frame_length_error;
2473
2474 /* receive ring buffer overflow ?? */
2475
2476 stats->rx_crc_errors = mac_stats->rx_fcs_error;
2477 stats->rx_frame_errors = mac_stats->rx_alignment_error;
2478 /* recv'r fifo overrun */
2479 bmap = bna_rx_rid_mask(&bnad->bna);
2480 for (i = 0; bmap; i++) {
2481 if (bmap & 1) {
2482 stats->rx_fifo_errors +=
2483 bnad->stats.bna_stats->
2484 hw_stats.rxf_stats[i].frame_drops;
2485 break;
2486 }
2487 bmap >>= 1;
2488 }
2489 }
2490
2491 static void
2492 bnad_mbox_irq_sync(struct bnad *bnad)
2493 {
2494 u32 irq;
2495 unsigned long flags;
2496
2497 spin_lock_irqsave(&bnad->bna_lock, flags);
2498 if (bnad->cfg_flags & BNAD_CF_MSIX)
2499 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2500 else
2501 irq = bnad->pcidev->irq;
2502 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2503
2504 synchronize_irq(irq);
2505 }
2506
2507 /* Utility used by bnad_start_xmit, for doing TSO */
2508 static int
2509 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2510 {
2511 int err;
2512
2513 err = skb_cow_head(skb, 0);
2514 if (err < 0) {
2515 BNAD_UPDATE_CTR(bnad, tso_err);
2516 return err;
2517 }
2518
2519 /*
2520 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2521 * excluding the length field.
2522 */
2523 if (vlan_get_protocol(skb) == htons(ETH_P_IP)) {
2524 struct iphdr *iph = ip_hdr(skb);
2525
2526 /* Do we really need these? */
2527 iph->tot_len = 0;
2528 iph->check = 0;
2529
2530 tcp_hdr(skb)->check =
2531 ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2532 IPPROTO_TCP, 0);
2533 BNAD_UPDATE_CTR(bnad, tso4);
2534 } else {
2535 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2536
2537 ipv6h->payload_len = 0;
2538 tcp_hdr(skb)->check =
2539 ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2540 IPPROTO_TCP, 0);
2541 BNAD_UPDATE_CTR(bnad, tso6);
2542 }
2543
2544 return 0;
2545 }
2546
2547 /*
2548 * Initialize Q numbers depending on Rx Paths
2549 * Called with bnad->bna_lock held, because of cfg_flags
2550 * access.
2551 */
2552 static void
2553 bnad_q_num_init(struct bnad *bnad)
2554 {
2555 int rxps;
2556
2557 rxps = min((uint)num_online_cpus(),
2558 (uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2559
2560 if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2561 rxps = 1; /* INTx */
2562
2563 bnad->num_rx = 1;
2564 bnad->num_tx = 1;
2565 bnad->num_rxp_per_rx = rxps;
2566 bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2567 }
2568
2569 /*
2570 * Adjusts the Q numbers, given a number of msix vectors
2571 * Give preference to RSS as opposed to Tx priority Queues,
2572 * in such a case, just use 1 Tx Q
2573 * Called with bnad->bna_lock held b'cos of cfg_flags access
2574 */
2575 static void
2576 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2577 {
2578 bnad->num_txq_per_tx = 1;
2579 if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) +
2580 bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2581 (bnad->cfg_flags & BNAD_CF_MSIX)) {
2582 bnad->num_rxp_per_rx = msix_vectors -
2583 (bnad->num_tx * bnad->num_txq_per_tx) -
2584 BNAD_MAILBOX_MSIX_VECTORS;
2585 } else
2586 bnad->num_rxp_per_rx = 1;
2587 }
2588
2589 /* Enable / disable ioceth */
2590 static int
2591 bnad_ioceth_disable(struct bnad *bnad)
2592 {
2593 unsigned long flags;
2594 int err = 0;
2595
2596 spin_lock_irqsave(&bnad->bna_lock, flags);
2597 init_completion(&bnad->bnad_completions.ioc_comp);
2598 bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2599 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2600
2601 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2602 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2603
2604 err = bnad->bnad_completions.ioc_comp_status;
2605 return err;
2606 }
2607
2608 static int
2609 bnad_ioceth_enable(struct bnad *bnad)
2610 {
2611 int err = 0;
2612 unsigned long flags;
2613
2614 spin_lock_irqsave(&bnad->bna_lock, flags);
2615 init_completion(&bnad->bnad_completions.ioc_comp);
2616 bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2617 bna_ioceth_enable(&bnad->bna.ioceth);
2618 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2619
2620 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2621 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2622
2623 err = bnad->bnad_completions.ioc_comp_status;
2624
2625 return err;
2626 }
2627
2628 /* Free BNA resources */
2629 static void
2630 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2631 u32 res_val_max)
2632 {
2633 int i;
2634
2635 for (i = 0; i < res_val_max; i++)
2636 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2637 }
2638
2639 /* Allocates memory and interrupt resources for BNA */
2640 static int
2641 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2642 u32 res_val_max)
2643 {
2644 int i, err;
2645
2646 for (i = 0; i < res_val_max; i++) {
2647 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2648 if (err)
2649 goto err_return;
2650 }
2651 return 0;
2652
2653 err_return:
2654 bnad_res_free(bnad, res_info, res_val_max);
2655 return err;
2656 }
2657
2658 /* Interrupt enable / disable */
2659 static void
2660 bnad_enable_msix(struct bnad *bnad)
2661 {
2662 int i, ret;
2663 unsigned long flags;
2664
2665 spin_lock_irqsave(&bnad->bna_lock, flags);
2666 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2667 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2668 return;
2669 }
2670 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2671
2672 if (bnad->msix_table)
2673 return;
2674
2675 bnad->msix_table =
2676 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2677
2678 if (!bnad->msix_table)
2679 goto intx_mode;
2680
2681 for (i = 0; i < bnad->msix_num; i++)
2682 bnad->msix_table[i].entry = i;
2683
2684 ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table,
2685 1, bnad->msix_num);
2686 if (ret < 0) {
2687 goto intx_mode;
2688 } else if (ret < bnad->msix_num) {
2689 dev_warn(&bnad->pcidev->dev,
2690 "%d MSI-X vectors allocated < %d requested\n",
2691 ret, bnad->msix_num);
2692
2693 spin_lock_irqsave(&bnad->bna_lock, flags);
2694 /* ret = #of vectors that we got */
2695 bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2696 (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2697 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2698
2699 bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2700 BNAD_MAILBOX_MSIX_VECTORS;
2701
2702 if (bnad->msix_num > ret) {
2703 pci_disable_msix(bnad->pcidev);
2704 goto intx_mode;
2705 }
2706 }
2707
2708 pci_intx(bnad->pcidev, 0);
2709
2710 return;
2711
2712 intx_mode:
2713 dev_warn(&bnad->pcidev->dev,
2714 "MSI-X enable failed - operating in INTx mode\n");
2715
2716 kfree(bnad->msix_table);
2717 bnad->msix_table = NULL;
2718 bnad->msix_num = 0;
2719 spin_lock_irqsave(&bnad->bna_lock, flags);
2720 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2721 bnad_q_num_init(bnad);
2722 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2723 }
2724
2725 static void
2726 bnad_disable_msix(struct bnad *bnad)
2727 {
2728 u32 cfg_flags;
2729 unsigned long flags;
2730
2731 spin_lock_irqsave(&bnad->bna_lock, flags);
2732 cfg_flags = bnad->cfg_flags;
2733 if (bnad->cfg_flags & BNAD_CF_MSIX)
2734 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2735 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2736
2737 if (cfg_flags & BNAD_CF_MSIX) {
2738 pci_disable_msix(bnad->pcidev);
2739 kfree(bnad->msix_table);
2740 bnad->msix_table = NULL;
2741 }
2742 }
2743
2744 /* Netdev entry points */
2745 static int
2746 bnad_open(struct net_device *netdev)
2747 {
2748 int err;
2749 struct bnad *bnad = netdev_priv(netdev);
2750 struct bna_pause_config pause_config;
2751 unsigned long flags;
2752
2753 mutex_lock(&bnad->conf_mutex);
2754
2755 /* Tx */
2756 err = bnad_setup_tx(bnad, 0);
2757 if (err)
2758 goto err_return;
2759
2760 /* Rx */
2761 err = bnad_setup_rx(bnad, 0);
2762 if (err)
2763 goto cleanup_tx;
2764
2765 /* Port */
2766 pause_config.tx_pause = 0;
2767 pause_config.rx_pause = 0;
2768
2769 spin_lock_irqsave(&bnad->bna_lock, flags);
2770 bna_enet_mtu_set(&bnad->bna.enet,
2771 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2772 bna_enet_pause_config(&bnad->bna.enet, &pause_config);
2773 bna_enet_enable(&bnad->bna.enet);
2774 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2775
2776 /* Enable broadcast */
2777 bnad_enable_default_bcast(bnad);
2778
2779 /* Restore VLANs, if any */
2780 bnad_restore_vlans(bnad, 0);
2781
2782 /* Set the UCAST address */
2783 spin_lock_irqsave(&bnad->bna_lock, flags);
2784 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2785 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2786
2787 /* Start the stats timer */
2788 bnad_stats_timer_start(bnad);
2789
2790 mutex_unlock(&bnad->conf_mutex);
2791
2792 return 0;
2793
2794 cleanup_tx:
2795 bnad_destroy_tx(bnad, 0);
2796
2797 err_return:
2798 mutex_unlock(&bnad->conf_mutex);
2799 return err;
2800 }
2801
2802 static int
2803 bnad_stop(struct net_device *netdev)
2804 {
2805 struct bnad *bnad = netdev_priv(netdev);
2806 unsigned long flags;
2807
2808 mutex_lock(&bnad->conf_mutex);
2809
2810 /* Stop the stats timer */
2811 bnad_stats_timer_stop(bnad);
2812
2813 init_completion(&bnad->bnad_completions.enet_comp);
2814
2815 spin_lock_irqsave(&bnad->bna_lock, flags);
2816 bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2817 bnad_cb_enet_disabled);
2818 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2819
2820 wait_for_completion(&bnad->bnad_completions.enet_comp);
2821
2822 bnad_destroy_tx(bnad, 0);
2823 bnad_destroy_rx(bnad, 0);
2824
2825 /* Synchronize mailbox IRQ */
2826 bnad_mbox_irq_sync(bnad);
2827
2828 mutex_unlock(&bnad->conf_mutex);
2829
2830 return 0;
2831 }
2832
2833 /* TX */
2834 /* Returns 0 for success */
2835 static int
2836 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2837 struct sk_buff *skb, struct bna_txq_entry *txqent)
2838 {
2839 u16 flags = 0;
2840 u32 gso_size;
2841 u16 vlan_tag = 0;
2842
2843 if (skb_vlan_tag_present(skb)) {
2844 vlan_tag = (u16)skb_vlan_tag_get(skb);
2845 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2846 }
2847 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2848 vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2849 | (vlan_tag & 0x1fff);
2850 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2851 }
2852 txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2853
2854 if (skb_is_gso(skb)) {
2855 gso_size = skb_shinfo(skb)->gso_size;
2856 if (unlikely(gso_size > bnad->netdev->mtu)) {
2857 BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2858 return -EINVAL;
2859 }
2860 if (unlikely((gso_size + skb_transport_offset(skb) +
2861 tcp_hdrlen(skb)) >= skb->len)) {
2862 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2863 txqent->hdr.wi.lso_mss = 0;
2864 BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2865 } else {
2866 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO);
2867 txqent->hdr.wi.lso_mss = htons(gso_size);
2868 }
2869
2870 if (bnad_tso_prepare(bnad, skb)) {
2871 BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2872 return -EINVAL;
2873 }
2874
2875 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2876 txqent->hdr.wi.l4_hdr_size_n_offset =
2877 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2878 tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2879 } else {
2880 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2881 txqent->hdr.wi.lso_mss = 0;
2882
2883 if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) {
2884 BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2885 return -EINVAL;
2886 }
2887
2888 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2889 __be16 net_proto = vlan_get_protocol(skb);
2890 u8 proto = 0;
2891
2892 if (net_proto == htons(ETH_P_IP))
2893 proto = ip_hdr(skb)->protocol;
2894 #ifdef NETIF_F_IPV6_CSUM
2895 else if (net_proto == htons(ETH_P_IPV6)) {
2896 /* nexthdr may not be TCP immediately. */
2897 proto = ipv6_hdr(skb)->nexthdr;
2898 }
2899 #endif
2900 if (proto == IPPROTO_TCP) {
2901 flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2902 txqent->hdr.wi.l4_hdr_size_n_offset =
2903 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2904 (0, skb_transport_offset(skb)));
2905
2906 BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2907
2908 if (unlikely(skb_headlen(skb) <
2909 skb_transport_offset(skb) +
2910 tcp_hdrlen(skb))) {
2911 BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2912 return -EINVAL;
2913 }
2914 } else if (proto == IPPROTO_UDP) {
2915 flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2916 txqent->hdr.wi.l4_hdr_size_n_offset =
2917 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2918 (0, skb_transport_offset(skb)));
2919
2920 BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2921 if (unlikely(skb_headlen(skb) <
2922 skb_transport_offset(skb) +
2923 sizeof(struct udphdr))) {
2924 BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2925 return -EINVAL;
2926 }
2927 } else {
2928
2929 BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2930 return -EINVAL;
2931 }
2932 } else
2933 txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2934 }
2935
2936 txqent->hdr.wi.flags = htons(flags);
2937 txqent->hdr.wi.frame_length = htonl(skb->len);
2938
2939 return 0;
2940 }
2941
2942 /*
2943 * bnad_start_xmit : Netdev entry point for Transmit
2944 * Called under lock held by net_device
2945 */
2946 static netdev_tx_t
2947 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2948 {
2949 struct bnad *bnad = netdev_priv(netdev);
2950 u32 txq_id = 0;
2951 struct bna_tcb *tcb = NULL;
2952 struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2953 u32 prod, q_depth, vect_id;
2954 u32 wis, vectors, len;
2955 int i;
2956 dma_addr_t dma_addr;
2957 struct bna_txq_entry *txqent;
2958
2959 len = skb_headlen(skb);
2960
2961 /* Sanity checks for the skb */
2962
2963 if (unlikely(skb->len <= ETH_HLEN)) {
2964 dev_kfree_skb_any(skb);
2965 BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2966 return NETDEV_TX_OK;
2967 }
2968 if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2969 dev_kfree_skb_any(skb);
2970 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2971 return NETDEV_TX_OK;
2972 }
2973 if (unlikely(len == 0)) {
2974 dev_kfree_skb_any(skb);
2975 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2976 return NETDEV_TX_OK;
2977 }
2978
2979 tcb = bnad->tx_info[0].tcb[txq_id];
2980
2981 /*
2982 * Takes care of the Tx that is scheduled between clearing the flag
2983 * and the netif_tx_stop_all_queues() call.
2984 */
2985 if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2986 dev_kfree_skb_any(skb);
2987 BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2988 return NETDEV_TX_OK;
2989 }
2990
2991 q_depth = tcb->q_depth;
2992 prod = tcb->producer_index;
2993 unmap_q = tcb->unmap_q;
2994
2995 vectors = 1 + skb_shinfo(skb)->nr_frags;
2996 wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */
2997
2998 if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2999 dev_kfree_skb_any(skb);
3000 BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
3001 return NETDEV_TX_OK;
3002 }
3003
3004 /* Check for available TxQ resources */
3005 if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
3006 if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
3007 !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
3008 u32 sent;
3009 sent = bnad_txcmpl_process(bnad, tcb);
3010 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3011 bna_ib_ack(tcb->i_dbell, sent);
3012 smp_mb__before_atomic();
3013 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
3014 } else {
3015 netif_stop_queue(netdev);
3016 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3017 }
3018
3019 smp_mb();
3020 /*
3021 * Check again to deal with race condition between
3022 * netif_stop_queue here, and netif_wake_queue in
3023 * interrupt handler which is not inside netif tx lock.
3024 */
3025 if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
3026 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3027 return NETDEV_TX_BUSY;
3028 } else {
3029 netif_wake_queue(netdev);
3030 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
3031 }
3032 }
3033
3034 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3035 head_unmap = &unmap_q[prod];
3036
3037 /* Program the opcode, flags, frame_len, num_vectors in WI */
3038 if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3039 dev_kfree_skb_any(skb);
3040 return NETDEV_TX_OK;
3041 }
3042 txqent->hdr.wi.reserved = 0;
3043 txqent->hdr.wi.num_vectors = vectors;
3044
3045 head_unmap->skb = skb;
3046 head_unmap->nvecs = 0;
3047
3048 /* Program the vectors */
3049 unmap = head_unmap;
3050 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3051 len, DMA_TO_DEVICE);
3052 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3053 dev_kfree_skb_any(skb);
3054 BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3055 return NETDEV_TX_OK;
3056 }
3057 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3058 txqent->vector[0].length = htons(len);
3059 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3060 head_unmap->nvecs++;
3061
3062 for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3063 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
3064 u32 size = skb_frag_size(frag);
3065
3066 if (unlikely(size == 0)) {
3067 /* Undo the changes starting at tcb->producer_index */
3068 bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3069 tcb->producer_index);
3070 dev_kfree_skb_any(skb);
3071 BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3072 return NETDEV_TX_OK;
3073 }
3074
3075 len += size;
3076
3077 vect_id++;
3078 if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3079 vect_id = 0;
3080 BNA_QE_INDX_INC(prod, q_depth);
3081 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3082 txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
3083 unmap = &unmap_q[prod];
3084 }
3085
3086 dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3087 0, size, DMA_TO_DEVICE);
3088 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3089 /* Undo the changes starting at tcb->producer_index */
3090 bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3091 tcb->producer_index);
3092 dev_kfree_skb_any(skb);
3093 BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3094 return NETDEV_TX_OK;
3095 }
3096
3097 dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3098 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3099 txqent->vector[vect_id].length = htons(size);
3100 dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3101 dma_addr);
3102 head_unmap->nvecs++;
3103 }
3104
3105 if (unlikely(len != skb->len)) {
3106 /* Undo the changes starting at tcb->producer_index */
3107 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3108 dev_kfree_skb_any(skb);
3109 BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3110 return NETDEV_TX_OK;
3111 }
3112
3113 BNA_QE_INDX_INC(prod, q_depth);
3114 tcb->producer_index = prod;
3115
3116 smp_mb();
3117
3118 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3119 return NETDEV_TX_OK;
3120
3121 skb_tx_timestamp(skb);
3122
3123 bna_txq_prod_indx_doorbell(tcb);
3124 smp_mb();
3125
3126 return NETDEV_TX_OK;
3127 }
3128
3129 /*
3130 * Used spin_lock to synchronize reading of stats structures, which
3131 * is written by BNA under the same lock.
3132 */
3133 static struct rtnl_link_stats64 *
3134 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3135 {
3136 struct bnad *bnad = netdev_priv(netdev);
3137 unsigned long flags;
3138
3139 spin_lock_irqsave(&bnad->bna_lock, flags);
3140
3141 bnad_netdev_qstats_fill(bnad, stats);
3142 bnad_netdev_hwstats_fill(bnad, stats);
3143
3144 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3145
3146 return stats;
3147 }
3148
3149 static void
3150 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3151 {
3152 struct net_device *netdev = bnad->netdev;
3153 int uc_count = netdev_uc_count(netdev);
3154 enum bna_cb_status ret;
3155 u8 *mac_list;
3156 struct netdev_hw_addr *ha;
3157 int entry;
3158
3159 if (netdev_uc_empty(bnad->netdev)) {
3160 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3161 return;
3162 }
3163
3164 if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3165 goto mode_default;
3166
3167 mac_list = kzalloc(uc_count * ETH_ALEN, GFP_ATOMIC);
3168 if (mac_list == NULL)
3169 goto mode_default;
3170
3171 entry = 0;
3172 netdev_for_each_uc_addr(ha, netdev) {
3173 ether_addr_copy(&mac_list[entry * ETH_ALEN], &ha->addr[0]);
3174 entry++;
3175 }
3176
3177 ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry, mac_list);
3178 kfree(mac_list);
3179
3180 if (ret != BNA_CB_SUCCESS)
3181 goto mode_default;
3182
3183 return;
3184
3185 /* ucast packets not in UCAM are routed to default function */
3186 mode_default:
3187 bnad->cfg_flags |= BNAD_CF_DEFAULT;
3188 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3189 }
3190
3191 static void
3192 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3193 {
3194 struct net_device *netdev = bnad->netdev;
3195 int mc_count = netdev_mc_count(netdev);
3196 enum bna_cb_status ret;
3197 u8 *mac_list;
3198
3199 if (netdev->flags & IFF_ALLMULTI)
3200 goto mode_allmulti;
3201
3202 if (netdev_mc_empty(netdev))
3203 return;
3204
3205 if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3206 goto mode_allmulti;
3207
3208 mac_list = kzalloc((mc_count + 1) * ETH_ALEN, GFP_ATOMIC);
3209
3210 if (mac_list == NULL)
3211 goto mode_allmulti;
3212
3213 ether_addr_copy(&mac_list[0], &bnad_bcast_addr[0]);
3214
3215 /* copy rest of the MCAST addresses */
3216 bnad_netdev_mc_list_get(netdev, mac_list);
3217 ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1, mac_list);
3218 kfree(mac_list);
3219
3220 if (ret != BNA_CB_SUCCESS)
3221 goto mode_allmulti;
3222
3223 return;
3224
3225 mode_allmulti:
3226 bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3227 bna_rx_mcast_delall(bnad->rx_info[0].rx);
3228 }
3229
3230 void
3231 bnad_set_rx_mode(struct net_device *netdev)
3232 {
3233 struct bnad *bnad = netdev_priv(netdev);
3234 enum bna_rxmode new_mode, mode_mask;
3235 unsigned long flags;
3236
3237 spin_lock_irqsave(&bnad->bna_lock, flags);
3238
3239 if (bnad->rx_info[0].rx == NULL) {
3240 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3241 return;
3242 }
3243
3244 /* clear bnad flags to update it with new settings */
3245 bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3246 BNAD_CF_ALLMULTI);
3247
3248 new_mode = 0;
3249 if (netdev->flags & IFF_PROMISC) {
3250 new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3251 bnad->cfg_flags |= BNAD_CF_PROMISC;
3252 } else {
3253 bnad_set_rx_mcast_fltr(bnad);
3254
3255 if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3256 new_mode |= BNA_RXMODE_ALLMULTI;
3257
3258 bnad_set_rx_ucast_fltr(bnad);
3259
3260 if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3261 new_mode |= BNA_RXMODE_DEFAULT;
3262 }
3263
3264 mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3265 BNA_RXMODE_ALLMULTI;
3266 bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask);
3267
3268 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3269 }
3270
3271 /*
3272 * bna_lock is used to sync writes to netdev->addr
3273 * conf_lock cannot be used since this call may be made
3274 * in a non-blocking context.
3275 */
3276 static int
3277 bnad_set_mac_address(struct net_device *netdev, void *addr)
3278 {
3279 int err;
3280 struct bnad *bnad = netdev_priv(netdev);
3281 struct sockaddr *sa = (struct sockaddr *)addr;
3282 unsigned long flags;
3283
3284 spin_lock_irqsave(&bnad->bna_lock, flags);
3285
3286 err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3287 if (!err)
3288 ether_addr_copy(netdev->dev_addr, sa->sa_data);
3289
3290 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3291
3292 return err;
3293 }
3294
3295 static int
3296 bnad_mtu_set(struct bnad *bnad, int frame_size)
3297 {
3298 unsigned long flags;
3299
3300 init_completion(&bnad->bnad_completions.mtu_comp);
3301
3302 spin_lock_irqsave(&bnad->bna_lock, flags);
3303 bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3304 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3305
3306 wait_for_completion(&bnad->bnad_completions.mtu_comp);
3307
3308 return bnad->bnad_completions.mtu_comp_status;
3309 }
3310
3311 static int
3312 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3313 {
3314 int err, mtu;
3315 struct bnad *bnad = netdev_priv(netdev);
3316 u32 rx_count = 0, frame, new_frame;
3317
3318 if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
3319 return -EINVAL;
3320
3321 mutex_lock(&bnad->conf_mutex);
3322
3323 mtu = netdev->mtu;
3324 netdev->mtu = new_mtu;
3325
3326 frame = BNAD_FRAME_SIZE(mtu);
3327 new_frame = BNAD_FRAME_SIZE(new_mtu);
3328
3329 /* check if multi-buffer needs to be enabled */
3330 if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3331 netif_running(bnad->netdev)) {
3332 /* only when transition is over 4K */
3333 if ((frame <= 4096 && new_frame > 4096) ||
3334 (frame > 4096 && new_frame <= 4096))
3335 rx_count = bnad_reinit_rx(bnad);
3336 }
3337
3338 /* rx_count > 0 - new rx created
3339 * - Linux set err = 0 and return
3340 */
3341 err = bnad_mtu_set(bnad, new_frame);
3342 if (err)
3343 err = -EBUSY;
3344
3345 mutex_unlock(&bnad->conf_mutex);
3346 return err;
3347 }
3348
3349 static int
3350 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3351 {
3352 struct bnad *bnad = netdev_priv(netdev);
3353 unsigned long flags;
3354
3355 if (!bnad->rx_info[0].rx)
3356 return 0;
3357
3358 mutex_lock(&bnad->conf_mutex);
3359
3360 spin_lock_irqsave(&bnad->bna_lock, flags);
3361 bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3362 set_bit(vid, bnad->active_vlans);
3363 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3364
3365 mutex_unlock(&bnad->conf_mutex);
3366
3367 return 0;
3368 }
3369
3370 static int
3371 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3372 {
3373 struct bnad *bnad = netdev_priv(netdev);
3374 unsigned long flags;
3375
3376 if (!bnad->rx_info[0].rx)
3377 return 0;
3378
3379 mutex_lock(&bnad->conf_mutex);
3380
3381 spin_lock_irqsave(&bnad->bna_lock, flags);
3382 clear_bit(vid, bnad->active_vlans);
3383 bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3384 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3385
3386 mutex_unlock(&bnad->conf_mutex);
3387
3388 return 0;
3389 }
3390
3391 static int bnad_set_features(struct net_device *dev, netdev_features_t features)
3392 {
3393 struct bnad *bnad = netdev_priv(dev);
3394 netdev_features_t changed = features ^ dev->features;
3395
3396 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) {
3397 unsigned long flags;
3398
3399 spin_lock_irqsave(&bnad->bna_lock, flags);
3400
3401 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3402 bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3403 else
3404 bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3405
3406 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3407 }
3408
3409 return 0;
3410 }
3411
3412 #ifdef CONFIG_NET_POLL_CONTROLLER
3413 static void
3414 bnad_netpoll(struct net_device *netdev)
3415 {
3416 struct bnad *bnad = netdev_priv(netdev);
3417 struct bnad_rx_info *rx_info;
3418 struct bnad_rx_ctrl *rx_ctrl;
3419 u32 curr_mask;
3420 int i, j;
3421
3422 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3423 bna_intx_disable(&bnad->bna, curr_mask);
3424 bnad_isr(bnad->pcidev->irq, netdev);
3425 bna_intx_enable(&bnad->bna, curr_mask);
3426 } else {
3427 /*
3428 * Tx processing may happen in sending context, so no need
3429 * to explicitly process completions here
3430 */
3431
3432 /* Rx processing */
3433 for (i = 0; i < bnad->num_rx; i++) {
3434 rx_info = &bnad->rx_info[i];
3435 if (!rx_info->rx)
3436 continue;
3437 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3438 rx_ctrl = &rx_info->rx_ctrl[j];
3439 if (rx_ctrl->ccb)
3440 bnad_netif_rx_schedule_poll(bnad,
3441 rx_ctrl->ccb);
3442 }
3443 }
3444 }
3445 }
3446 #endif
3447
3448 static const struct net_device_ops bnad_netdev_ops = {
3449 .ndo_open = bnad_open,
3450 .ndo_stop = bnad_stop,
3451 .ndo_start_xmit = bnad_start_xmit,
3452 .ndo_get_stats64 = bnad_get_stats64,
3453 .ndo_set_rx_mode = bnad_set_rx_mode,
3454 .ndo_validate_addr = eth_validate_addr,
3455 .ndo_set_mac_address = bnad_set_mac_address,
3456 .ndo_change_mtu = bnad_change_mtu,
3457 .ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid,
3458 .ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid,
3459 .ndo_set_features = bnad_set_features,
3460 #ifdef CONFIG_NET_POLL_CONTROLLER
3461 .ndo_poll_controller = bnad_netpoll
3462 #endif
3463 };
3464
3465 static void
3466 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3467 {
3468 struct net_device *netdev = bnad->netdev;
3469
3470 netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3471 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3472 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX |
3473 NETIF_F_HW_VLAN_CTAG_RX;
3474
3475 netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3476 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3477 NETIF_F_TSO | NETIF_F_TSO6;
3478
3479 netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
3480
3481 if (using_dac)
3482 netdev->features |= NETIF_F_HIGHDMA;
3483
3484 netdev->mem_start = bnad->mmio_start;
3485 netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3486
3487 netdev->netdev_ops = &bnad_netdev_ops;
3488 bnad_set_ethtool_ops(netdev);
3489 }
3490
3491 /*
3492 * 1. Initialize the bnad structure
3493 * 2. Setup netdev pointer in pci_dev
3494 * 3. Initialize no. of TxQ & CQs & MSIX vectors
3495 * 4. Initialize work queue.
3496 */
3497 static int
3498 bnad_init(struct bnad *bnad,
3499 struct pci_dev *pdev, struct net_device *netdev)
3500 {
3501 unsigned long flags;
3502
3503 SET_NETDEV_DEV(netdev, &pdev->dev);
3504 pci_set_drvdata(pdev, netdev);
3505
3506 bnad->netdev = netdev;
3507 bnad->pcidev = pdev;
3508 bnad->mmio_start = pci_resource_start(pdev, 0);
3509 bnad->mmio_len = pci_resource_len(pdev, 0);
3510 bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3511 if (!bnad->bar0) {
3512 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3513 return -ENOMEM;
3514 }
3515 dev_info(&pdev->dev, "bar0 mapped to %p, len %llu\n", bnad->bar0,
3516 (unsigned long long) bnad->mmio_len);
3517
3518 spin_lock_irqsave(&bnad->bna_lock, flags);
3519 if (!bnad_msix_disable)
3520 bnad->cfg_flags = BNAD_CF_MSIX;
3521
3522 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3523
3524 bnad_q_num_init(bnad);
3525 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3526
3527 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3528 (bnad->num_rx * bnad->num_rxp_per_rx) +
3529 BNAD_MAILBOX_MSIX_VECTORS;
3530
3531 bnad->txq_depth = BNAD_TXQ_DEPTH;
3532 bnad->rxq_depth = BNAD_RXQ_DEPTH;
3533
3534 bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3535 bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3536
3537 sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3538 bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3539 if (!bnad->work_q) {
3540 iounmap(bnad->bar0);
3541 return -ENOMEM;
3542 }
3543
3544 return 0;
3545 }
3546
3547 /*
3548 * Must be called after bnad_pci_uninit()
3549 * so that iounmap() and pci_set_drvdata(NULL)
3550 * happens only after PCI uninitialization.
3551 */
3552 static void
3553 bnad_uninit(struct bnad *bnad)
3554 {
3555 if (bnad->work_q) {
3556 flush_workqueue(bnad->work_q);
3557 destroy_workqueue(bnad->work_q);
3558 bnad->work_q = NULL;
3559 }
3560
3561 if (bnad->bar0)
3562 iounmap(bnad->bar0);
3563 }
3564
3565 /*
3566 * Initialize locks
3567 a) Per ioceth mutes used for serializing configuration
3568 changes from OS interface
3569 b) spin lock used to protect bna state machine
3570 */
3571 static void
3572 bnad_lock_init(struct bnad *bnad)
3573 {
3574 spin_lock_init(&bnad->bna_lock);
3575 mutex_init(&bnad->conf_mutex);
3576 mutex_init(&bnad_list_mutex);
3577 }
3578
3579 static void
3580 bnad_lock_uninit(struct bnad *bnad)
3581 {
3582 mutex_destroy(&bnad->conf_mutex);
3583 mutex_destroy(&bnad_list_mutex);
3584 }
3585
3586 /* PCI Initialization */
3587 static int
3588 bnad_pci_init(struct bnad *bnad,
3589 struct pci_dev *pdev, bool *using_dac)
3590 {
3591 int err;
3592
3593 err = pci_enable_device(pdev);
3594 if (err)
3595 return err;
3596 err = pci_request_regions(pdev, BNAD_NAME);
3597 if (err)
3598 goto disable_device;
3599 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3600 *using_dac = true;
3601 } else {
3602 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3603 if (err)
3604 goto release_regions;
3605 *using_dac = false;
3606 }
3607 pci_set_master(pdev);
3608 return 0;
3609
3610 release_regions:
3611 pci_release_regions(pdev);
3612 disable_device:
3613 pci_disable_device(pdev);
3614
3615 return err;
3616 }
3617
3618 static void
3619 bnad_pci_uninit(struct pci_dev *pdev)
3620 {
3621 pci_release_regions(pdev);
3622 pci_disable_device(pdev);
3623 }
3624
3625 static int
3626 bnad_pci_probe(struct pci_dev *pdev,
3627 const struct pci_device_id *pcidev_id)
3628 {
3629 bool using_dac;
3630 int err;
3631 struct bnad *bnad;
3632 struct bna *bna;
3633 struct net_device *netdev;
3634 struct bfa_pcidev pcidev_info;
3635 unsigned long flags;
3636
3637 mutex_lock(&bnad_fwimg_mutex);
3638 if (!cna_get_firmware_buf(pdev)) {
3639 mutex_unlock(&bnad_fwimg_mutex);
3640 dev_err(&pdev->dev, "failed to load firmware image!\n");
3641 return -ENODEV;
3642 }
3643 mutex_unlock(&bnad_fwimg_mutex);
3644
3645 /*
3646 * Allocates sizeof(struct net_device + struct bnad)
3647 * bnad = netdev->priv
3648 */
3649 netdev = alloc_etherdev(sizeof(struct bnad));
3650 if (!netdev) {
3651 err = -ENOMEM;
3652 return err;
3653 }
3654 bnad = netdev_priv(netdev);
3655 bnad_lock_init(bnad);
3656 bnad_add_to_list(bnad);
3657
3658 mutex_lock(&bnad->conf_mutex);
3659 /*
3660 * PCI initialization
3661 * Output : using_dac = 1 for 64 bit DMA
3662 * = 0 for 32 bit DMA
3663 */
3664 using_dac = false;
3665 err = bnad_pci_init(bnad, pdev, &using_dac);
3666 if (err)
3667 goto unlock_mutex;
3668
3669 /*
3670 * Initialize bnad structure
3671 * Setup relation between pci_dev & netdev
3672 */
3673 err = bnad_init(bnad, pdev, netdev);
3674 if (err)
3675 goto pci_uninit;
3676
3677 /* Initialize netdev structure, set up ethtool ops */
3678 bnad_netdev_init(bnad, using_dac);
3679
3680 /* Set link to down state */
3681 netif_carrier_off(netdev);
3682
3683 /* Setup the debugfs node for this bfad */
3684 if (bna_debugfs_enable)
3685 bnad_debugfs_init(bnad);
3686
3687 /* Get resource requirement form bna */
3688 spin_lock_irqsave(&bnad->bna_lock, flags);
3689 bna_res_req(&bnad->res_info[0]);
3690 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3691
3692 /* Allocate resources from bna */
3693 err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3694 if (err)
3695 goto drv_uninit;
3696
3697 bna = &bnad->bna;
3698
3699 /* Setup pcidev_info for bna_init() */
3700 pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3701 pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3702 pcidev_info.device_id = bnad->pcidev->device;
3703 pcidev_info.pci_bar_kva = bnad->bar0;
3704
3705 spin_lock_irqsave(&bnad->bna_lock, flags);
3706 bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3707 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3708
3709 bnad->stats.bna_stats = &bna->stats;
3710
3711 bnad_enable_msix(bnad);
3712 err = bnad_mbox_irq_alloc(bnad);
3713 if (err)
3714 goto res_free;
3715
3716 /* Set up timers */
3717 setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3718 (unsigned long)bnad);
3719 setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3720 (unsigned long)bnad);
3721 setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3722 (unsigned long)bnad);
3723 setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3724 (unsigned long)bnad);
3725
3726 /*
3727 * Start the chip
3728 * If the call back comes with error, we bail out.
3729 * This is a catastrophic error.
3730 */
3731 err = bnad_ioceth_enable(bnad);
3732 if (err) {
3733 dev_err(&pdev->dev, "initialization failed err=%d\n", err);
3734 goto probe_success;
3735 }
3736
3737 spin_lock_irqsave(&bnad->bna_lock, flags);
3738 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3739 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3740 bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3741 bna_attr(bna)->num_rxp - 1);
3742 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3743 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3744 err = -EIO;
3745 }
3746 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3747 if (err)
3748 goto disable_ioceth;
3749
3750 spin_lock_irqsave(&bnad->bna_lock, flags);
3751 bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3752 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3753
3754 err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3755 if (err) {
3756 err = -EIO;
3757 goto disable_ioceth;
3758 }
3759
3760 spin_lock_irqsave(&bnad->bna_lock, flags);
3761 bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3762 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3763
3764 /* Get the burnt-in mac */
3765 spin_lock_irqsave(&bnad->bna_lock, flags);
3766 bna_enet_perm_mac_get(&bna->enet, bnad->perm_addr);
3767 bnad_set_netdev_perm_addr(bnad);
3768 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3769
3770 mutex_unlock(&bnad->conf_mutex);
3771
3772 /* Finally, reguister with net_device layer */
3773 err = register_netdev(netdev);
3774 if (err) {
3775 dev_err(&pdev->dev, "registering net device failed\n");
3776 goto probe_uninit;
3777 }
3778 set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3779
3780 return 0;
3781
3782 probe_success:
3783 mutex_unlock(&bnad->conf_mutex);
3784 return 0;
3785
3786 probe_uninit:
3787 mutex_lock(&bnad->conf_mutex);
3788 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3789 disable_ioceth:
3790 bnad_ioceth_disable(bnad);
3791 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3792 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3793 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3794 spin_lock_irqsave(&bnad->bna_lock, flags);
3795 bna_uninit(bna);
3796 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3797 bnad_mbox_irq_free(bnad);
3798 bnad_disable_msix(bnad);
3799 res_free:
3800 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3801 drv_uninit:
3802 /* Remove the debugfs node for this bnad */
3803 kfree(bnad->regdata);
3804 bnad_debugfs_uninit(bnad);
3805 bnad_uninit(bnad);
3806 pci_uninit:
3807 bnad_pci_uninit(pdev);
3808 unlock_mutex:
3809 mutex_unlock(&bnad->conf_mutex);
3810 bnad_remove_from_list(bnad);
3811 bnad_lock_uninit(bnad);
3812 free_netdev(netdev);
3813 return err;
3814 }
3815
3816 static void
3817 bnad_pci_remove(struct pci_dev *pdev)
3818 {
3819 struct net_device *netdev = pci_get_drvdata(pdev);
3820 struct bnad *bnad;
3821 struct bna *bna;
3822 unsigned long flags;
3823
3824 if (!netdev)
3825 return;
3826
3827 bnad = netdev_priv(netdev);
3828 bna = &bnad->bna;
3829
3830 if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3831 unregister_netdev(netdev);
3832
3833 mutex_lock(&bnad->conf_mutex);
3834 bnad_ioceth_disable(bnad);
3835 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3836 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3837 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3838 spin_lock_irqsave(&bnad->bna_lock, flags);
3839 bna_uninit(bna);
3840 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3841
3842 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3843 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3844 bnad_mbox_irq_free(bnad);
3845 bnad_disable_msix(bnad);
3846 bnad_pci_uninit(pdev);
3847 mutex_unlock(&bnad->conf_mutex);
3848 bnad_remove_from_list(bnad);
3849 bnad_lock_uninit(bnad);
3850 /* Remove the debugfs node for this bnad */
3851 kfree(bnad->regdata);
3852 bnad_debugfs_uninit(bnad);
3853 bnad_uninit(bnad);
3854 free_netdev(netdev);
3855 }
3856
3857 static const struct pci_device_id bnad_pci_id_table[] = {
3858 {
3859 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3860 PCI_DEVICE_ID_BROCADE_CT),
3861 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3862 .class_mask = 0xffff00
3863 },
3864 {
3865 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3866 BFA_PCI_DEVICE_ID_CT2),
3867 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3868 .class_mask = 0xffff00
3869 },
3870 {0, },
3871 };
3872
3873 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3874
3875 static struct pci_driver bnad_pci_driver = {
3876 .name = BNAD_NAME,
3877 .id_table = bnad_pci_id_table,
3878 .probe = bnad_pci_probe,
3879 .remove = bnad_pci_remove,
3880 };
3881
3882 static int __init
3883 bnad_module_init(void)
3884 {
3885 int err;
3886
3887 pr_info("bna: QLogic BR-series 10G Ethernet driver - version: %s\n",
3888 BNAD_VERSION);
3889
3890 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3891
3892 err = pci_register_driver(&bnad_pci_driver);
3893 if (err < 0) {
3894 pr_err("bna: PCI driver registration failed err=%d\n", err);
3895 return err;
3896 }
3897
3898 return 0;
3899 }
3900
3901 static void __exit
3902 bnad_module_exit(void)
3903 {
3904 pci_unregister_driver(&bnad_pci_driver);
3905 release_firmware(bfi_fw);
3906 }
3907
3908 module_init(bnad_module_init);
3909 module_exit(bnad_module_exit);
3910
3911 MODULE_AUTHOR("Brocade");
3912 MODULE_LICENSE("GPL");
3913 MODULE_DESCRIPTION("QLogic BR-series 10G PCIe Ethernet driver");
3914 MODULE_VERSION(BNAD_VERSION);
3915 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3916 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
This page took 0.192643 seconds and 5 git commands to generate.