Merge remote-tracking branch 'regulator/for-next'
[deliverable/linux.git] / drivers / net / ethernet / cavium / liquidio / lio_main.c
1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2015 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more
17 * details.
18 *
19 * This file may also be available under a different license from Cavium.
20 * Contact Cavium, Inc. for more information
21 **********************************************************************/
22 #include <linux/version.h>
23 #include <linux/pci.h>
24 #include <linux/firmware.h>
25 #include <linux/ptp_clock_kernel.h>
26 #include <net/vxlan.h>
27 #include <linux/kthread.h>
28 #include "liquidio_common.h"
29 #include "octeon_droq.h"
30 #include "octeon_iq.h"
31 #include "response_manager.h"
32 #include "octeon_device.h"
33 #include "octeon_nic.h"
34 #include "octeon_main.h"
35 #include "octeon_network.h"
36 #include "cn66xx_regs.h"
37 #include "cn66xx_device.h"
38 #include "cn68xx_device.h"
39 #include "cn23xx_pf_device.h"
40 #include "liquidio_image.h"
41
42 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
43 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver");
44 MODULE_LICENSE("GPL");
45 MODULE_VERSION(LIQUIDIO_VERSION);
46 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX);
47 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX);
48 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX);
49
50 static int ddr_timeout = 10000;
51 module_param(ddr_timeout, int, 0644);
52 MODULE_PARM_DESC(ddr_timeout,
53 "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check");
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
56
57 #define INCR_INSTRQUEUE_PKT_COUNT(octeon_dev_ptr, iq_no, field, count) \
58 (octeon_dev_ptr->instr_queue[iq_no]->stats.field += count)
59
60 static int debug = -1;
61 module_param(debug, int, 0644);
62 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
63
64 static char fw_type[LIO_MAX_FW_TYPE_LEN];
65 module_param_string(fw_type, fw_type, sizeof(fw_type), 0000);
66 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\"");
67
68 static int conf_type;
69 module_param(conf_type, int, 0);
70 MODULE_PARM_DESC(conf_type, "select octeon configuration 0 default 1 ovs");
71
72 static int ptp_enable = 1;
73
74 /* Bit mask values for lio->ifstate */
75 #define LIO_IFSTATE_DROQ_OPS 0x01
76 #define LIO_IFSTATE_REGISTERED 0x02
77 #define LIO_IFSTATE_RUNNING 0x04
78 #define LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
79
80 /* Polling interval for determining when NIC application is alive */
81 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100
82
83 /* runtime link query interval */
84 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS 1000
85
86 struct liquidio_if_cfg_context {
87 int octeon_id;
88
89 wait_queue_head_t wc;
90
91 int cond;
92 };
93
94 struct liquidio_if_cfg_resp {
95 u64 rh;
96 struct liquidio_if_cfg_info cfg_info;
97 u64 status;
98 };
99
100 struct liquidio_rx_ctl_context {
101 int octeon_id;
102
103 wait_queue_head_t wc;
104
105 int cond;
106 };
107
108 struct oct_link_status_resp {
109 u64 rh;
110 struct oct_link_info link_info;
111 u64 status;
112 };
113
114 struct oct_timestamp_resp {
115 u64 rh;
116 u64 timestamp;
117 u64 status;
118 };
119
120 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp))
121
122 union tx_info {
123 u64 u64;
124 struct {
125 #ifdef __BIG_ENDIAN_BITFIELD
126 u16 gso_size;
127 u16 gso_segs;
128 u32 reserved;
129 #else
130 u32 reserved;
131 u16 gso_segs;
132 u16 gso_size;
133 #endif
134 } s;
135 };
136
137 /** Octeon device properties to be used by the NIC module.
138 * Each octeon device in the system will be represented
139 * by this structure in the NIC module.
140 */
141
142 #define OCTNIC_MAX_SG (MAX_SKB_FRAGS)
143
144 #define OCTNIC_GSO_MAX_HEADER_SIZE 128
145 #define OCTNIC_GSO_MAX_SIZE \
146 (CN23XX_DEFAULT_INPUT_JABBER - OCTNIC_GSO_MAX_HEADER_SIZE)
147
148 /** Structure of a node in list of gather components maintained by
149 * NIC driver for each network device.
150 */
151 struct octnic_gather {
152 /** List manipulation. Next and prev pointers. */
153 struct list_head list;
154
155 /** Size of the gather component at sg in bytes. */
156 int sg_size;
157
158 /** Number of bytes that sg was adjusted to make it 8B-aligned. */
159 int adjust;
160
161 /** Gather component that can accommodate max sized fragment list
162 * received from the IP layer.
163 */
164 struct octeon_sg_entry *sg;
165
166 u64 sg_dma_ptr;
167 };
168
169 struct handshake {
170 struct completion init;
171 struct completion started;
172 struct pci_dev *pci_dev;
173 int init_ok;
174 int started_ok;
175 };
176
177 struct octeon_device_priv {
178 /** Tasklet structures for this device. */
179 struct tasklet_struct droq_tasklet;
180 unsigned long napi_mask;
181 };
182
183 static int octeon_device_init(struct octeon_device *);
184 static int liquidio_stop(struct net_device *netdev);
185 static void liquidio_remove(struct pci_dev *pdev);
186 static int liquidio_probe(struct pci_dev *pdev,
187 const struct pci_device_id *ent);
188
189 static struct handshake handshake[MAX_OCTEON_DEVICES];
190 static struct completion first_stage;
191
192 static void octeon_droq_bh(unsigned long pdev)
193 {
194 int q_no;
195 int reschedule = 0;
196 struct octeon_device *oct = (struct octeon_device *)pdev;
197 struct octeon_device_priv *oct_priv =
198 (struct octeon_device_priv *)oct->priv;
199
200 /* for (q_no = 0; q_no < oct->num_oqs; q_no++) { */
201 for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES(oct); q_no++) {
202 if (!(oct->io_qmask.oq & (1ULL << q_no)))
203 continue;
204 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no],
205 MAX_PACKET_BUDGET);
206 lio_enable_irq(oct->droq[q_no], NULL);
207
208 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) {
209 /* set time and cnt interrupt thresholds for this DROQ
210 * for NAPI
211 */
212 int adjusted_q_no = q_no + oct->sriov_info.pf_srn;
213
214 octeon_write_csr64(
215 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(adjusted_q_no),
216 0x5700000040ULL);
217 octeon_write_csr64(
218 oct, CN23XX_SLI_OQ_PKTS_SENT(adjusted_q_no), 0);
219 }
220 }
221
222 if (reschedule)
223 tasklet_schedule(&oct_priv->droq_tasklet);
224 }
225
226 static int lio_wait_for_oq_pkts(struct octeon_device *oct)
227 {
228 struct octeon_device_priv *oct_priv =
229 (struct octeon_device_priv *)oct->priv;
230 int retry = 100, pkt_cnt = 0, pending_pkts = 0;
231 int i;
232
233 do {
234 pending_pkts = 0;
235
236 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
237 if (!(oct->io_qmask.oq & (1ULL << i)))
238 continue;
239 pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]);
240 }
241 if (pkt_cnt > 0) {
242 pending_pkts += pkt_cnt;
243 tasklet_schedule(&oct_priv->droq_tasklet);
244 }
245 pkt_cnt = 0;
246 schedule_timeout_uninterruptible(1);
247
248 } while (retry-- && pending_pkts);
249
250 return pkt_cnt;
251 }
252
253 /**
254 * \brief Forces all IO queues off on a given device
255 * @param oct Pointer to Octeon device
256 */
257 static void force_io_queues_off(struct octeon_device *oct)
258 {
259 if ((oct->chip_id == OCTEON_CN66XX) ||
260 (oct->chip_id == OCTEON_CN68XX)) {
261 /* Reset the Enable bits for Input Queues. */
262 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
263
264 /* Reset the Enable bits for Output Queues. */
265 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
266 }
267 }
268
269 /**
270 * \brief wait for all pending requests to complete
271 * @param oct Pointer to Octeon device
272 *
273 * Called during shutdown sequence
274 */
275 static int wait_for_pending_requests(struct octeon_device *oct)
276 {
277 int i, pcount = 0;
278
279 for (i = 0; i < 100; i++) {
280 pcount =
281 atomic_read(&oct->response_list
282 [OCTEON_ORDERED_SC_LIST].pending_req_count);
283 if (pcount)
284 schedule_timeout_uninterruptible(HZ / 10);
285 else
286 break;
287 }
288
289 if (pcount)
290 return 1;
291
292 return 0;
293 }
294
295 /**
296 * \brief Cause device to go quiet so it can be safely removed/reset/etc
297 * @param oct Pointer to Octeon device
298 */
299 static inline void pcierror_quiesce_device(struct octeon_device *oct)
300 {
301 int i;
302
303 /* Disable the input and output queues now. No more packets will
304 * arrive from Octeon, but we should wait for all packet processing
305 * to finish.
306 */
307 force_io_queues_off(oct);
308
309 /* To allow for in-flight requests */
310 schedule_timeout_uninterruptible(100);
311
312 if (wait_for_pending_requests(oct))
313 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
314
315 /* Force all requests waiting to be fetched by OCTEON to complete. */
316 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
317 struct octeon_instr_queue *iq;
318
319 if (!(oct->io_qmask.iq & (1ULL << i)))
320 continue;
321 iq = oct->instr_queue[i];
322
323 if (atomic_read(&iq->instr_pending)) {
324 spin_lock_bh(&iq->lock);
325 iq->fill_cnt = 0;
326 iq->octeon_read_index = iq->host_write_index;
327 iq->stats.instr_processed +=
328 atomic_read(&iq->instr_pending);
329 lio_process_iq_request_list(oct, iq, 0);
330 spin_unlock_bh(&iq->lock);
331 }
332 }
333
334 /* Force all pending ordered list requests to time out. */
335 lio_process_ordered_list(oct, 1);
336
337 /* We do not need to wait for output queue packets to be processed. */
338 }
339
340 /**
341 * \brief Cleanup PCI AER uncorrectable error status
342 * @param dev Pointer to PCI device
343 */
344 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
345 {
346 int pos = 0x100;
347 u32 status, mask;
348
349 pr_info("%s :\n", __func__);
350
351 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
352 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
353 if (dev->error_state == pci_channel_io_normal)
354 status &= ~mask; /* Clear corresponding nonfatal bits */
355 else
356 status &= mask; /* Clear corresponding fatal bits */
357 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
358 }
359
360 /**
361 * \brief Stop all PCI IO to a given device
362 * @param dev Pointer to Octeon device
363 */
364 static void stop_pci_io(struct octeon_device *oct)
365 {
366 /* No more instructions will be forwarded. */
367 atomic_set(&oct->status, OCT_DEV_IN_RESET);
368
369 pci_disable_device(oct->pci_dev);
370
371 /* Disable interrupts */
372 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
373
374 pcierror_quiesce_device(oct);
375
376 /* Release the interrupt line */
377 free_irq(oct->pci_dev->irq, oct);
378
379 if (oct->flags & LIO_FLAG_MSI_ENABLED)
380 pci_disable_msi(oct->pci_dev);
381
382 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
383 lio_get_state_string(&oct->status));
384
385 /* cn63xx_cleanup_aer_uncorrect_error_status(oct->pci_dev); */
386 /* making it a common function for all OCTEON models */
387 cleanup_aer_uncorrect_error_status(oct->pci_dev);
388 }
389
390 /**
391 * \brief called when PCI error is detected
392 * @param pdev Pointer to PCI device
393 * @param state The current pci connection state
394 *
395 * This function is called after a PCI bus error affecting
396 * this device has been detected.
397 */
398 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
399 pci_channel_state_t state)
400 {
401 struct octeon_device *oct = pci_get_drvdata(pdev);
402
403 /* Non-correctable Non-fatal errors */
404 if (state == pci_channel_io_normal) {
405 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
406 cleanup_aer_uncorrect_error_status(oct->pci_dev);
407 return PCI_ERS_RESULT_CAN_RECOVER;
408 }
409
410 /* Non-correctable Fatal errors */
411 dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
412 stop_pci_io(oct);
413
414 /* Always return a DISCONNECT. There is no support for recovery but only
415 * for a clean shutdown.
416 */
417 return PCI_ERS_RESULT_DISCONNECT;
418 }
419
420 /**
421 * \brief mmio handler
422 * @param pdev Pointer to PCI device
423 */
424 static pci_ers_result_t liquidio_pcie_mmio_enabled(
425 struct pci_dev *pdev __attribute__((unused)))
426 {
427 /* We should never hit this since we never ask for a reset for a Fatal
428 * Error. We always return DISCONNECT in io_error above.
429 * But play safe and return RECOVERED for now.
430 */
431 return PCI_ERS_RESULT_RECOVERED;
432 }
433
434 /**
435 * \brief called after the pci bus has been reset.
436 * @param pdev Pointer to PCI device
437 *
438 * Restart the card from scratch, as if from a cold-boot. Implementation
439 * resembles the first-half of the octeon_resume routine.
440 */
441 static pci_ers_result_t liquidio_pcie_slot_reset(
442 struct pci_dev *pdev __attribute__((unused)))
443 {
444 /* We should never hit this since we never ask for a reset for a Fatal
445 * Error. We always return DISCONNECT in io_error above.
446 * But play safe and return RECOVERED for now.
447 */
448 return PCI_ERS_RESULT_RECOVERED;
449 }
450
451 /**
452 * \brief called when traffic can start flowing again.
453 * @param pdev Pointer to PCI device
454 *
455 * This callback is called when the error recovery driver tells us that
456 * its OK to resume normal operation. Implementation resembles the
457 * second-half of the octeon_resume routine.
458 */
459 static void liquidio_pcie_resume(struct pci_dev *pdev __attribute__((unused)))
460 {
461 /* Nothing to be done here. */
462 }
463
464 #ifdef CONFIG_PM
465 /**
466 * \brief called when suspending
467 * @param pdev Pointer to PCI device
468 * @param state state to suspend to
469 */
470 static int liquidio_suspend(struct pci_dev *pdev __attribute__((unused)),
471 pm_message_t state __attribute__((unused)))
472 {
473 return 0;
474 }
475
476 /**
477 * \brief called when resuming
478 * @param pdev Pointer to PCI device
479 */
480 static int liquidio_resume(struct pci_dev *pdev __attribute__((unused)))
481 {
482 return 0;
483 }
484 #endif
485
486 /* For PCI-E Advanced Error Recovery (AER) Interface */
487 static const struct pci_error_handlers liquidio_err_handler = {
488 .error_detected = liquidio_pcie_error_detected,
489 .mmio_enabled = liquidio_pcie_mmio_enabled,
490 .slot_reset = liquidio_pcie_slot_reset,
491 .resume = liquidio_pcie_resume,
492 };
493
494 static const struct pci_device_id liquidio_pci_tbl[] = {
495 { /* 68xx */
496 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
497 },
498 { /* 66xx */
499 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
500 },
501 { /* 23xx pf */
502 PCI_VENDOR_ID_CAVIUM, 0x9702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
503 },
504 {
505 0, 0, 0, 0, 0, 0, 0
506 }
507 };
508 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl);
509
510 static struct pci_driver liquidio_pci_driver = {
511 .name = "LiquidIO",
512 .id_table = liquidio_pci_tbl,
513 .probe = liquidio_probe,
514 .remove = liquidio_remove,
515 .err_handler = &liquidio_err_handler, /* For AER */
516
517 #ifdef CONFIG_PM
518 .suspend = liquidio_suspend,
519 .resume = liquidio_resume,
520 #endif
521 };
522
523 /**
524 * \brief register PCI driver
525 */
526 static int liquidio_init_pci(void)
527 {
528 return pci_register_driver(&liquidio_pci_driver);
529 }
530
531 /**
532 * \brief unregister PCI driver
533 */
534 static void liquidio_deinit_pci(void)
535 {
536 pci_unregister_driver(&liquidio_pci_driver);
537 }
538
539 /**
540 * \brief check interface state
541 * @param lio per-network private data
542 * @param state_flag flag state to check
543 */
544 static inline int ifstate_check(struct lio *lio, int state_flag)
545 {
546 return atomic_read(&lio->ifstate) & state_flag;
547 }
548
549 /**
550 * \brief set interface state
551 * @param lio per-network private data
552 * @param state_flag flag state to set
553 */
554 static inline void ifstate_set(struct lio *lio, int state_flag)
555 {
556 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
557 }
558
559 /**
560 * \brief clear interface state
561 * @param lio per-network private data
562 * @param state_flag flag state to clear
563 */
564 static inline void ifstate_reset(struct lio *lio, int state_flag)
565 {
566 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
567 }
568
569 /**
570 * \brief Stop Tx queues
571 * @param netdev network device
572 */
573 static inline void txqs_stop(struct net_device *netdev)
574 {
575 if (netif_is_multiqueue(netdev)) {
576 int i;
577
578 for (i = 0; i < netdev->num_tx_queues; i++)
579 netif_stop_subqueue(netdev, i);
580 } else {
581 netif_stop_queue(netdev);
582 }
583 }
584
585 /**
586 * \brief Start Tx queues
587 * @param netdev network device
588 */
589 static inline void txqs_start(struct net_device *netdev)
590 {
591 if (netif_is_multiqueue(netdev)) {
592 int i;
593
594 for (i = 0; i < netdev->num_tx_queues; i++)
595 netif_start_subqueue(netdev, i);
596 } else {
597 netif_start_queue(netdev);
598 }
599 }
600
601 /**
602 * \brief Wake Tx queues
603 * @param netdev network device
604 */
605 static inline void txqs_wake(struct net_device *netdev)
606 {
607 struct lio *lio = GET_LIO(netdev);
608
609 if (netif_is_multiqueue(netdev)) {
610 int i;
611
612 for (i = 0; i < netdev->num_tx_queues; i++) {
613 int qno = lio->linfo.txpciq[i %
614 (lio->linfo.num_txpciq)].s.q_no;
615
616 if (__netif_subqueue_stopped(netdev, i)) {
617 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno,
618 tx_restart, 1);
619 netif_wake_subqueue(netdev, i);
620 }
621 }
622 } else {
623 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
624 tx_restart, 1);
625 netif_wake_queue(netdev);
626 }
627 }
628
629 /**
630 * \brief Stop Tx queue
631 * @param netdev network device
632 */
633 static void stop_txq(struct net_device *netdev)
634 {
635 txqs_stop(netdev);
636 }
637
638 /**
639 * \brief Start Tx queue
640 * @param netdev network device
641 */
642 static void start_txq(struct net_device *netdev)
643 {
644 struct lio *lio = GET_LIO(netdev);
645
646 if (lio->linfo.link.s.link_up) {
647 txqs_start(netdev);
648 return;
649 }
650 }
651
652 /**
653 * \brief Wake a queue
654 * @param netdev network device
655 * @param q which queue to wake
656 */
657 static inline void wake_q(struct net_device *netdev, int q)
658 {
659 if (netif_is_multiqueue(netdev))
660 netif_wake_subqueue(netdev, q);
661 else
662 netif_wake_queue(netdev);
663 }
664
665 /**
666 * \brief Stop a queue
667 * @param netdev network device
668 * @param q which queue to stop
669 */
670 static inline void stop_q(struct net_device *netdev, int q)
671 {
672 if (netif_is_multiqueue(netdev))
673 netif_stop_subqueue(netdev, q);
674 else
675 netif_stop_queue(netdev);
676 }
677
678 /**
679 * \brief Check Tx queue status, and take appropriate action
680 * @param lio per-network private data
681 * @returns 0 if full, number of queues woken up otherwise
682 */
683 static inline int check_txq_status(struct lio *lio)
684 {
685 int ret_val = 0;
686
687 if (netif_is_multiqueue(lio->netdev)) {
688 int numqs = lio->netdev->num_tx_queues;
689 int q, iq = 0;
690
691 /* check each sub-queue state */
692 for (q = 0; q < numqs; q++) {
693 iq = lio->linfo.txpciq[q %
694 (lio->linfo.num_txpciq)].s.q_no;
695 if (octnet_iq_is_full(lio->oct_dev, iq))
696 continue;
697 if (__netif_subqueue_stopped(lio->netdev, q)) {
698 wake_q(lio->netdev, q);
699 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq,
700 tx_restart, 1);
701 ret_val++;
702 }
703 }
704 } else {
705 if (octnet_iq_is_full(lio->oct_dev, lio->txq))
706 return 0;
707 wake_q(lio->netdev, lio->txq);
708 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
709 tx_restart, 1);
710 ret_val = 1;
711 }
712 return ret_val;
713 }
714
715 /**
716 * Remove the node at the head of the list. The list would be empty at
717 * the end of this call if there are no more nodes in the list.
718 */
719 static inline struct list_head *list_delete_head(struct list_head *root)
720 {
721 struct list_head *node;
722
723 if ((root->prev == root) && (root->next == root))
724 node = NULL;
725 else
726 node = root->next;
727
728 if (node)
729 list_del(node);
730
731 return node;
732 }
733
734 /**
735 * \brief Delete gather lists
736 * @param lio per-network private data
737 */
738 static void delete_glists(struct lio *lio)
739 {
740 struct octnic_gather *g;
741 int i;
742
743 if (!lio->glist)
744 return;
745
746 for (i = 0; i < lio->linfo.num_txpciq; i++) {
747 do {
748 g = (struct octnic_gather *)
749 list_delete_head(&lio->glist[i]);
750 if (g) {
751 if (g->sg) {
752 dma_unmap_single(&lio->oct_dev->
753 pci_dev->dev,
754 g->sg_dma_ptr,
755 g->sg_size,
756 DMA_TO_DEVICE);
757 kfree((void *)((unsigned long)g->sg -
758 g->adjust));
759 }
760 kfree(g);
761 }
762 } while (g);
763 }
764
765 kfree((void *)lio->glist);
766 }
767
768 /**
769 * \brief Setup gather lists
770 * @param lio per-network private data
771 */
772 static int setup_glists(struct octeon_device *oct, struct lio *lio, int num_iqs)
773 {
774 int i, j;
775 struct octnic_gather *g;
776
777 lio->glist_lock = kcalloc(num_iqs, sizeof(*lio->glist_lock),
778 GFP_KERNEL);
779 if (!lio->glist_lock)
780 return 1;
781
782 lio->glist = kcalloc(num_iqs, sizeof(*lio->glist),
783 GFP_KERNEL);
784 if (!lio->glist) {
785 kfree((void *)lio->glist_lock);
786 return 1;
787 }
788
789 for (i = 0; i < num_iqs; i++) {
790 int numa_node = cpu_to_node(i % num_online_cpus());
791
792 spin_lock_init(&lio->glist_lock[i]);
793
794 INIT_LIST_HEAD(&lio->glist[i]);
795
796 for (j = 0; j < lio->tx_qsize; j++) {
797 g = kzalloc_node(sizeof(*g), GFP_KERNEL,
798 numa_node);
799 if (!g)
800 g = kzalloc(sizeof(*g), GFP_KERNEL);
801 if (!g)
802 break;
803
804 g->sg_size = ((ROUNDUP4(OCTNIC_MAX_SG) >> 2) *
805 OCT_SG_ENTRY_SIZE);
806
807 g->sg = kmalloc_node(g->sg_size + 8,
808 GFP_KERNEL, numa_node);
809 if (!g->sg)
810 g->sg = kmalloc(g->sg_size + 8, GFP_KERNEL);
811 if (!g->sg) {
812 kfree(g);
813 break;
814 }
815
816 /* The gather component should be aligned on 64-bit
817 * boundary
818 */
819 if (((unsigned long)g->sg) & 7) {
820 g->adjust = 8 - (((unsigned long)g->sg) & 7);
821 g->sg = (struct octeon_sg_entry *)
822 ((unsigned long)g->sg + g->adjust);
823 }
824 g->sg_dma_ptr = dma_map_single(&oct->pci_dev->dev,
825 g->sg, g->sg_size,
826 DMA_TO_DEVICE);
827 if (dma_mapping_error(&oct->pci_dev->dev,
828 g->sg_dma_ptr)) {
829 kfree((void *)((unsigned long)g->sg -
830 g->adjust));
831 kfree(g);
832 break;
833 }
834
835 list_add_tail(&g->list, &lio->glist[i]);
836 }
837
838 if (j != lio->tx_qsize) {
839 delete_glists(lio);
840 return 1;
841 }
842 }
843
844 return 0;
845 }
846
847 /**
848 * \brief Print link information
849 * @param netdev network device
850 */
851 static void print_link_info(struct net_device *netdev)
852 {
853 struct lio *lio = GET_LIO(netdev);
854
855 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
856 struct oct_link_info *linfo = &lio->linfo;
857
858 if (linfo->link.s.link_up) {
859 netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
860 linfo->link.s.speed,
861 (linfo->link.s.duplex) ? "Full" : "Half");
862 } else {
863 netif_info(lio, link, lio->netdev, "Link Down\n");
864 }
865 }
866 }
867
868 /**
869 * \brief Routine to notify MTU change
870 * @param work work_struct data structure
871 */
872 static void octnet_link_status_change(struct work_struct *work)
873 {
874 struct cavium_wk *wk = (struct cavium_wk *)work;
875 struct lio *lio = (struct lio *)wk->ctxptr;
876
877 rtnl_lock();
878 call_netdevice_notifiers(NETDEV_CHANGEMTU, lio->netdev);
879 rtnl_unlock();
880 }
881
882 /**
883 * \brief Sets up the mtu status change work
884 * @param netdev network device
885 */
886 static inline int setup_link_status_change_wq(struct net_device *netdev)
887 {
888 struct lio *lio = GET_LIO(netdev);
889 struct octeon_device *oct = lio->oct_dev;
890
891 lio->link_status_wq.wq = alloc_workqueue("link-status",
892 WQ_MEM_RECLAIM, 0);
893 if (!lio->link_status_wq.wq) {
894 dev_err(&oct->pci_dev->dev, "unable to create cavium link status wq\n");
895 return -1;
896 }
897 INIT_DELAYED_WORK(&lio->link_status_wq.wk.work,
898 octnet_link_status_change);
899 lio->link_status_wq.wk.ctxptr = lio;
900
901 return 0;
902 }
903
904 static inline void cleanup_link_status_change_wq(struct net_device *netdev)
905 {
906 struct lio *lio = GET_LIO(netdev);
907
908 if (lio->link_status_wq.wq) {
909 cancel_delayed_work_sync(&lio->link_status_wq.wk.work);
910 destroy_workqueue(lio->link_status_wq.wq);
911 }
912 }
913
914 /**
915 * \brief Update link status
916 * @param netdev network device
917 * @param ls link status structure
918 *
919 * Called on receipt of a link status response from the core application to
920 * update each interface's link status.
921 */
922 static inline void update_link_status(struct net_device *netdev,
923 union oct_link_status *ls)
924 {
925 struct lio *lio = GET_LIO(netdev);
926 int changed = (lio->linfo.link.u64 != ls->u64);
927
928 lio->linfo.link.u64 = ls->u64;
929
930 if ((lio->intf_open) && (changed)) {
931 print_link_info(netdev);
932 lio->link_changes++;
933
934 if (lio->linfo.link.s.link_up) {
935 netif_carrier_on(netdev);
936 /* start_txq(netdev); */
937 txqs_wake(netdev);
938 } else {
939 netif_carrier_off(netdev);
940 stop_txq(netdev);
941 }
942 }
943 }
944
945 /* Runs in interrupt context. */
946 static void update_txq_status(struct octeon_device *oct, int iq_num)
947 {
948 struct net_device *netdev;
949 struct lio *lio;
950 struct octeon_instr_queue *iq = oct->instr_queue[iq_num];
951
952 netdev = oct->props[iq->ifidx].netdev;
953
954 /* This is needed because the first IQ does not have
955 * a netdev associated with it.
956 */
957 if (!netdev)
958 return;
959
960 lio = GET_LIO(netdev);
961 if (netif_is_multiqueue(netdev)) {
962 if (__netif_subqueue_stopped(netdev, iq->q_index) &&
963 lio->linfo.link.s.link_up &&
964 (!octnet_iq_is_full(oct, iq_num))) {
965 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq_num,
966 tx_restart, 1);
967 netif_wake_subqueue(netdev, iq->q_index);
968 } else {
969 if (!octnet_iq_is_full(oct, lio->txq)) {
970 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev,
971 lio->txq,
972 tx_restart, 1);
973 wake_q(netdev, lio->txq);
974 }
975 }
976 }
977 }
978
979 static
980 int liquidio_schedule_msix_droq_pkt_handler(struct octeon_droq *droq, u64 ret)
981 {
982 struct octeon_device *oct = droq->oct_dev;
983 struct octeon_device_priv *oct_priv =
984 (struct octeon_device_priv *)oct->priv;
985
986 if (droq->ops.poll_mode) {
987 droq->ops.napi_fn(droq);
988 } else {
989 if (ret & MSIX_PO_INT) {
990 tasklet_schedule(&oct_priv->droq_tasklet);
991 return 1;
992 }
993 /* this will be flushed periodically by check iq db */
994 if (ret & MSIX_PI_INT)
995 return 0;
996 }
997 return 0;
998 }
999
1000 /**
1001 * \brief Droq packet processor sceduler
1002 * @param oct octeon device
1003 */
1004 static void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
1005 {
1006 struct octeon_device_priv *oct_priv =
1007 (struct octeon_device_priv *)oct->priv;
1008 u64 oq_no;
1009 struct octeon_droq *droq;
1010
1011 if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
1012 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct);
1013 oq_no++) {
1014 if (!(oct->droq_intr & (1ULL << oq_no)))
1015 continue;
1016
1017 droq = oct->droq[oq_no];
1018
1019 if (droq->ops.poll_mode) {
1020 droq->ops.napi_fn(droq);
1021 oct_priv->napi_mask |= (1 << oq_no);
1022 } else {
1023 tasklet_schedule(&oct_priv->droq_tasklet);
1024 }
1025 }
1026 }
1027 }
1028
1029 static irqreturn_t
1030 liquidio_msix_intr_handler(int irq __attribute__((unused)), void *dev)
1031 {
1032 u64 ret;
1033 struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev;
1034 struct octeon_device *oct = ioq_vector->oct_dev;
1035 struct octeon_droq *droq = oct->droq[ioq_vector->droq_index];
1036
1037 ret = oct->fn_list.msix_interrupt_handler(ioq_vector);
1038
1039 if ((ret & MSIX_PO_INT) || (ret & MSIX_PI_INT))
1040 liquidio_schedule_msix_droq_pkt_handler(droq, ret);
1041
1042 return IRQ_HANDLED;
1043 }
1044
1045 /**
1046 * \brief Interrupt handler for octeon
1047 * @param irq unused
1048 * @param dev octeon device
1049 */
1050 static
1051 irqreturn_t liquidio_legacy_intr_handler(int irq __attribute__((unused)),
1052 void *dev)
1053 {
1054 struct octeon_device *oct = (struct octeon_device *)dev;
1055 irqreturn_t ret;
1056
1057 /* Disable our interrupts for the duration of ISR */
1058 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
1059
1060 ret = oct->fn_list.process_interrupt_regs(oct);
1061
1062 if (ret == IRQ_HANDLED)
1063 liquidio_schedule_droq_pkt_handlers(oct);
1064
1065 /* Re-enable our interrupts */
1066 if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
1067 oct->fn_list.enable_interrupt(oct, OCTEON_ALL_INTR);
1068
1069 return ret;
1070 }
1071
1072 /**
1073 * \brief Setup interrupt for octeon device
1074 * @param oct octeon device
1075 *
1076 * Enable interrupt in Octeon device as given in the PCI interrupt mask.
1077 */
1078 static int octeon_setup_interrupt(struct octeon_device *oct)
1079 {
1080 int irqret, err;
1081 struct msix_entry *msix_entries;
1082 int i;
1083 int num_ioq_vectors;
1084 int num_alloc_ioq_vectors;
1085
1086 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) {
1087 oct->num_msix_irqs = oct->sriov_info.num_pf_rings;
1088 /* one non ioq interrupt for handling sli_mac_pf_int_sum */
1089 oct->num_msix_irqs += 1;
1090
1091 oct->msix_entries = kcalloc(
1092 oct->num_msix_irqs, sizeof(struct msix_entry), GFP_KERNEL);
1093 if (!oct->msix_entries)
1094 return 1;
1095
1096 msix_entries = (struct msix_entry *)oct->msix_entries;
1097 /*Assumption is that pf msix vectors start from pf srn to pf to
1098 * trs and not from 0. if not change this code
1099 */
1100 for (i = 0; i < oct->num_msix_irqs - 1; i++)
1101 msix_entries[i].entry = oct->sriov_info.pf_srn + i;
1102 msix_entries[oct->num_msix_irqs - 1].entry =
1103 oct->sriov_info.trs;
1104 num_alloc_ioq_vectors = pci_enable_msix_range(
1105 oct->pci_dev, msix_entries,
1106 oct->num_msix_irqs,
1107 oct->num_msix_irqs);
1108 if (num_alloc_ioq_vectors < 0) {
1109 dev_err(&oct->pci_dev->dev, "unable to Allocate MSI-X interrupts\n");
1110 kfree(oct->msix_entries);
1111 oct->msix_entries = NULL;
1112 return 1;
1113 }
1114 dev_dbg(&oct->pci_dev->dev, "OCTEON: Enough MSI-X interrupts are allocated...\n");
1115
1116 num_ioq_vectors = oct->num_msix_irqs;
1117
1118 /** For PF, there is one non-ioq interrupt handler */
1119 num_ioq_vectors -= 1;
1120 irqret = request_irq(msix_entries[num_ioq_vectors].vector,
1121 liquidio_legacy_intr_handler, 0, "octeon",
1122 oct);
1123 if (irqret) {
1124 dev_err(&oct->pci_dev->dev,
1125 "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n",
1126 irqret);
1127 pci_disable_msix(oct->pci_dev);
1128 kfree(oct->msix_entries);
1129 oct->msix_entries = NULL;
1130 return 1;
1131 }
1132
1133 for (i = 0; i < num_ioq_vectors; i++) {
1134 irqret = request_irq(msix_entries[i].vector,
1135 liquidio_msix_intr_handler, 0,
1136 "octeon", &oct->ioq_vector[i]);
1137 if (irqret) {
1138 dev_err(&oct->pci_dev->dev,
1139 "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n",
1140 irqret);
1141 /** Freeing the non-ioq irq vector here . */
1142 free_irq(msix_entries[num_ioq_vectors].vector,
1143 oct);
1144
1145 while (i) {
1146 i--;
1147 /** clearing affinity mask. */
1148 irq_set_affinity_hint(
1149 msix_entries[i].vector, NULL);
1150 free_irq(msix_entries[i].vector,
1151 &oct->ioq_vector[i]);
1152 }
1153 pci_disable_msix(oct->pci_dev);
1154 kfree(oct->msix_entries);
1155 oct->msix_entries = NULL;
1156 return 1;
1157 }
1158 oct->ioq_vector[i].vector = msix_entries[i].vector;
1159 /* assign the cpu mask for this msix interrupt vector */
1160 irq_set_affinity_hint(
1161 msix_entries[i].vector,
1162 (&oct->ioq_vector[i].affinity_mask));
1163 }
1164 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: MSI-X enabled\n",
1165 oct->octeon_id);
1166 } else {
1167 err = pci_enable_msi(oct->pci_dev);
1168 if (err)
1169 dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
1170 err);
1171 else
1172 oct->flags |= LIO_FLAG_MSI_ENABLED;
1173
1174 irqret = request_irq(oct->pci_dev->irq,
1175 liquidio_legacy_intr_handler, IRQF_SHARED,
1176 "octeon", oct);
1177 if (irqret) {
1178 if (oct->flags & LIO_FLAG_MSI_ENABLED)
1179 pci_disable_msi(oct->pci_dev);
1180 dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
1181 irqret);
1182 return 1;
1183 }
1184 }
1185 return 0;
1186 }
1187
1188 static int liquidio_watchdog(void *param)
1189 {
1190 u64 wdog;
1191 u16 mask_of_stuck_cores = 0;
1192 u16 mask_of_crashed_cores = 0;
1193 int core_num;
1194 u8 core_is_stuck[LIO_MAX_CORES];
1195 u8 core_crashed[LIO_MAX_CORES];
1196 struct octeon_device *oct = param;
1197
1198 memset(core_is_stuck, 0, sizeof(core_is_stuck));
1199 memset(core_crashed, 0, sizeof(core_crashed));
1200
1201 while (!kthread_should_stop()) {
1202 mask_of_crashed_cores =
1203 (u16)octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2);
1204
1205 for (core_num = 0; core_num < LIO_MAX_CORES; core_num++) {
1206 if (!core_is_stuck[core_num]) {
1207 wdog = lio_pci_readq(oct, CIU3_WDOG(core_num));
1208
1209 /* look at watchdog state field */
1210 wdog &= CIU3_WDOG_MASK;
1211 if (wdog) {
1212 /* this watchdog timer has expired */
1213 core_is_stuck[core_num] =
1214 LIO_MONITOR_WDOG_EXPIRE;
1215 mask_of_stuck_cores |= (1 << core_num);
1216 }
1217 }
1218
1219 if (!core_crashed[core_num])
1220 core_crashed[core_num] =
1221 (mask_of_crashed_cores >> core_num) & 1;
1222 }
1223
1224 if (mask_of_stuck_cores) {
1225 for (core_num = 0; core_num < LIO_MAX_CORES;
1226 core_num++) {
1227 if (core_is_stuck[core_num] == 1) {
1228 dev_err(&oct->pci_dev->dev,
1229 "ERROR: Octeon core %d is stuck!\n",
1230 core_num);
1231 /* 2 means we have printk'd an error
1232 * so no need to repeat the same printk
1233 */
1234 core_is_stuck[core_num] =
1235 LIO_MONITOR_CORE_STUCK_MSGD;
1236 }
1237 }
1238 }
1239
1240 if (mask_of_crashed_cores) {
1241 for (core_num = 0; core_num < LIO_MAX_CORES;
1242 core_num++) {
1243 if (core_crashed[core_num] == 1) {
1244 dev_err(&oct->pci_dev->dev,
1245 "ERROR: Octeon core %d crashed! See oct-fwdump for details.\n",
1246 core_num);
1247 /* 2 means we have printk'd an error
1248 * so no need to repeat the same printk
1249 */
1250 core_crashed[core_num] =
1251 LIO_MONITOR_CORE_STUCK_MSGD;
1252 }
1253 }
1254 }
1255 #ifdef CONFIG_MODULE_UNLOAD
1256 if (mask_of_stuck_cores || mask_of_crashed_cores) {
1257 /* make module refcount=0 so that rmmod will work */
1258 long refcount;
1259
1260 refcount = module_refcount(THIS_MODULE);
1261
1262 while (refcount > 0) {
1263 module_put(THIS_MODULE);
1264 refcount = module_refcount(THIS_MODULE);
1265 }
1266
1267 /* compensate for and withstand an unlikely (but still
1268 * possible) race condition
1269 */
1270 while (refcount < 0) {
1271 try_module_get(THIS_MODULE);
1272 refcount = module_refcount(THIS_MODULE);
1273 }
1274 }
1275 #endif
1276 /* sleep for two seconds */
1277 set_current_state(TASK_INTERRUPTIBLE);
1278 schedule_timeout(2 * HZ);
1279 }
1280
1281 return 0;
1282 }
1283
1284 /**
1285 * \brief PCI probe handler
1286 * @param pdev PCI device structure
1287 * @param ent unused
1288 */
1289 static int
1290 liquidio_probe(struct pci_dev *pdev,
1291 const struct pci_device_id *ent __attribute__((unused)))
1292 {
1293 struct octeon_device *oct_dev = NULL;
1294 struct handshake *hs;
1295
1296 oct_dev = octeon_allocate_device(pdev->device,
1297 sizeof(struct octeon_device_priv));
1298 if (!oct_dev) {
1299 dev_err(&pdev->dev, "Unable to allocate device\n");
1300 return -ENOMEM;
1301 }
1302
1303 if (pdev->device == OCTEON_CN23XX_PF_VID)
1304 oct_dev->msix_on = LIO_FLAG_MSIX_ENABLED;
1305
1306 dev_info(&pdev->dev, "Initializing device %x:%x.\n",
1307 (u32)pdev->vendor, (u32)pdev->device);
1308
1309 /* Assign octeon_device for this device to the private data area. */
1310 pci_set_drvdata(pdev, oct_dev);
1311
1312 /* set linux specific device pointer */
1313 oct_dev->pci_dev = (void *)pdev;
1314
1315 hs = &handshake[oct_dev->octeon_id];
1316 init_completion(&hs->init);
1317 init_completion(&hs->started);
1318 hs->pci_dev = pdev;
1319
1320 if (oct_dev->octeon_id == 0)
1321 /* first LiquidIO NIC is detected */
1322 complete(&first_stage);
1323
1324 if (octeon_device_init(oct_dev)) {
1325 liquidio_remove(pdev);
1326 return -ENOMEM;
1327 }
1328
1329 if (OCTEON_CN23XX_PF(oct_dev)) {
1330 u64 scratch1;
1331 u8 bus, device, function;
1332
1333 scratch1 = octeon_read_csr64(oct_dev, CN23XX_SLI_SCRATCH1);
1334 if (!(scratch1 & 4ULL)) {
1335 /* Bit 2 of SLI_SCRATCH_1 is a flag that indicates that
1336 * the lio watchdog kernel thread is running for this
1337 * NIC. Each NIC gets one watchdog kernel thread.
1338 */
1339 scratch1 |= 4ULL;
1340 octeon_write_csr64(oct_dev, CN23XX_SLI_SCRATCH1,
1341 scratch1);
1342
1343 bus = pdev->bus->number;
1344 device = PCI_SLOT(pdev->devfn);
1345 function = PCI_FUNC(pdev->devfn);
1346 oct_dev->watchdog_task = kthread_create(
1347 liquidio_watchdog, oct_dev,
1348 "liowd/%02hhx:%02hhx.%hhx", bus, device, function);
1349 wake_up_process(oct_dev->watchdog_task);
1350 }
1351 }
1352
1353 oct_dev->rx_pause = 1;
1354 oct_dev->tx_pause = 1;
1355
1356 dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
1357
1358 return 0;
1359 }
1360
1361 /**
1362 *\brief Destroy resources associated with octeon device
1363 * @param pdev PCI device structure
1364 * @param ent unused
1365 */
1366 static void octeon_destroy_resources(struct octeon_device *oct)
1367 {
1368 int i;
1369 struct msix_entry *msix_entries;
1370 struct octeon_device_priv *oct_priv =
1371 (struct octeon_device_priv *)oct->priv;
1372
1373 struct handshake *hs;
1374
1375 switch (atomic_read(&oct->status)) {
1376 case OCT_DEV_RUNNING:
1377 case OCT_DEV_CORE_OK:
1378
1379 /* No more instructions will be forwarded. */
1380 atomic_set(&oct->status, OCT_DEV_IN_RESET);
1381
1382 oct->app_mode = CVM_DRV_INVALID_APP;
1383 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
1384 lio_get_state_string(&oct->status));
1385
1386 schedule_timeout_uninterruptible(HZ / 10);
1387
1388 /* fallthrough */
1389 case OCT_DEV_HOST_OK:
1390
1391 /* fallthrough */
1392 case OCT_DEV_CONSOLE_INIT_DONE:
1393 /* Remove any consoles */
1394 octeon_remove_consoles(oct);
1395
1396 /* fallthrough */
1397 case OCT_DEV_IO_QUEUES_DONE:
1398 if (wait_for_pending_requests(oct))
1399 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
1400
1401 if (lio_wait_for_instr_fetch(oct))
1402 dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
1403
1404 /* Disable the input and output queues now. No more packets will
1405 * arrive from Octeon, but we should wait for all packet
1406 * processing to finish.
1407 */
1408 oct->fn_list.disable_io_queues(oct);
1409
1410 if (lio_wait_for_oq_pkts(oct))
1411 dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
1412
1413 /* Disable interrupts */
1414 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
1415
1416 if (oct->msix_on) {
1417 msix_entries = (struct msix_entry *)oct->msix_entries;
1418 for (i = 0; i < oct->num_msix_irqs - 1; i++) {
1419 /* clear the affinity_cpumask */
1420 irq_set_affinity_hint(msix_entries[i].vector,
1421 NULL);
1422 free_irq(msix_entries[i].vector,
1423 &oct->ioq_vector[i]);
1424 }
1425 /* non-iov vector's argument is oct struct */
1426 free_irq(msix_entries[i].vector, oct);
1427
1428 pci_disable_msix(oct->pci_dev);
1429 kfree(oct->msix_entries);
1430 oct->msix_entries = NULL;
1431 } else {
1432 /* Release the interrupt line */
1433 free_irq(oct->pci_dev->irq, oct);
1434
1435 if (oct->flags & LIO_FLAG_MSI_ENABLED)
1436 pci_disable_msi(oct->pci_dev);
1437 }
1438
1439 if (OCTEON_CN23XX_PF(oct))
1440 octeon_free_ioq_vector(oct);
1441 /* fallthrough */
1442 case OCT_DEV_IN_RESET:
1443 case OCT_DEV_DROQ_INIT_DONE:
1444 /*atomic_set(&oct->status, OCT_DEV_DROQ_INIT_DONE);*/
1445 mdelay(100);
1446 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
1447 if (!(oct->io_qmask.oq & BIT_ULL(i)))
1448 continue;
1449 octeon_delete_droq(oct, i);
1450 }
1451
1452 /* Force any pending handshakes to complete */
1453 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
1454 hs = &handshake[i];
1455
1456 if (hs->pci_dev) {
1457 handshake[oct->octeon_id].init_ok = 0;
1458 complete(&handshake[oct->octeon_id].init);
1459 handshake[oct->octeon_id].started_ok = 0;
1460 complete(&handshake[oct->octeon_id].started);
1461 }
1462 }
1463
1464 /* fallthrough */
1465 case OCT_DEV_RESP_LIST_INIT_DONE:
1466 octeon_delete_response_list(oct);
1467
1468 /* fallthrough */
1469 case OCT_DEV_INSTR_QUEUE_INIT_DONE:
1470 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
1471 if (!(oct->io_qmask.iq & BIT_ULL(i)))
1472 continue;
1473 octeon_delete_instr_queue(oct, i);
1474 }
1475 /* fallthrough */
1476 case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
1477 octeon_free_sc_buffer_pool(oct);
1478
1479 /* fallthrough */
1480 case OCT_DEV_DISPATCH_INIT_DONE:
1481 octeon_delete_dispatch_list(oct);
1482 cancel_delayed_work_sync(&oct->nic_poll_work.work);
1483
1484 /* fallthrough */
1485 case OCT_DEV_PCI_MAP_DONE:
1486 /* Soft reset the octeon device before exiting */
1487 if ((!OCTEON_CN23XX_PF(oct)) || !oct->octeon_id)
1488 oct->fn_list.soft_reset(oct);
1489
1490 octeon_unmap_pci_barx(oct, 0);
1491 octeon_unmap_pci_barx(oct, 1);
1492
1493 /* fallthrough */
1494 case OCT_DEV_BEGIN_STATE:
1495 /* Disable the device, releasing the PCI INT */
1496 pci_disable_device(oct->pci_dev);
1497
1498 /* Nothing to be done here either */
1499 break;
1500 } /* end switch (oct->status) */
1501
1502 tasklet_kill(&oct_priv->droq_tasklet);
1503 }
1504
1505 /**
1506 * \brief Callback for rx ctrl
1507 * @param status status of request
1508 * @param buf pointer to resp structure
1509 */
1510 static void rx_ctl_callback(struct octeon_device *oct,
1511 u32 status,
1512 void *buf)
1513 {
1514 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1515 struct liquidio_rx_ctl_context *ctx;
1516
1517 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1518
1519 oct = lio_get_device(ctx->octeon_id);
1520 if (status)
1521 dev_err(&oct->pci_dev->dev, "rx ctl instruction failed. Status: %llx\n",
1522 CVM_CAST64(status));
1523 WRITE_ONCE(ctx->cond, 1);
1524
1525 /* This barrier is required to be sure that the response has been
1526 * written fully before waking up the handler
1527 */
1528 wmb();
1529
1530 wake_up_interruptible(&ctx->wc);
1531 }
1532
1533 /**
1534 * \brief Send Rx control command
1535 * @param lio per-network private data
1536 * @param start_stop whether to start or stop
1537 */
1538 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1539 {
1540 struct octeon_soft_command *sc;
1541 struct liquidio_rx_ctl_context *ctx;
1542 union octnet_cmd *ncmd;
1543 int ctx_size = sizeof(struct liquidio_rx_ctl_context);
1544 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1545 int retval;
1546
1547 if (oct->props[lio->ifidx].rx_on == start_stop)
1548 return;
1549
1550 sc = (struct octeon_soft_command *)
1551 octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE,
1552 16, ctx_size);
1553
1554 ncmd = (union octnet_cmd *)sc->virtdptr;
1555 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1556
1557 WRITE_ONCE(ctx->cond, 0);
1558 ctx->octeon_id = lio_get_device_id(oct);
1559 init_waitqueue_head(&ctx->wc);
1560
1561 ncmd->u64 = 0;
1562 ncmd->s.cmd = OCTNET_CMD_RX_CTL;
1563 ncmd->s.param1 = start_stop;
1564
1565 octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3));
1566
1567 sc->iq_no = lio->linfo.txpciq[0].s.q_no;
1568
1569 octeon_prepare_soft_command(oct, sc, OPCODE_NIC,
1570 OPCODE_NIC_CMD, 0, 0, 0);
1571
1572 sc->callback = rx_ctl_callback;
1573 sc->callback_arg = sc;
1574 sc->wait_time = 5000;
1575
1576 retval = octeon_send_soft_command(oct, sc);
1577 if (retval == IQ_SEND_FAILED) {
1578 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1579 } else {
1580 /* Sleep on a wait queue till the cond flag indicates that the
1581 * response arrived or timed-out.
1582 */
1583 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR)
1584 return;
1585 oct->props[lio->ifidx].rx_on = start_stop;
1586 }
1587
1588 octeon_free_soft_command(oct, sc);
1589 }
1590
1591 /**
1592 * \brief Destroy NIC device interface
1593 * @param oct octeon device
1594 * @param ifidx which interface to destroy
1595 *
1596 * Cleanup associated with each interface for an Octeon device when NIC
1597 * module is being unloaded or if initialization fails during load.
1598 */
1599 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1600 {
1601 struct net_device *netdev = oct->props[ifidx].netdev;
1602 struct lio *lio;
1603 struct napi_struct *napi, *n;
1604
1605 if (!netdev) {
1606 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1607 __func__, ifidx);
1608 return;
1609 }
1610
1611 lio = GET_LIO(netdev);
1612
1613 dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1614
1615 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1616 liquidio_stop(netdev);
1617
1618 if (oct->props[lio->ifidx].napi_enabled == 1) {
1619 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
1620 napi_disable(napi);
1621
1622 oct->props[lio->ifidx].napi_enabled = 0;
1623
1624 if (OCTEON_CN23XX_PF(oct))
1625 oct->droq[0]->ops.poll_mode = 0;
1626 }
1627
1628 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1629 unregister_netdev(netdev);
1630
1631 cleanup_link_status_change_wq(netdev);
1632
1633 delete_glists(lio);
1634
1635 free_netdev(netdev);
1636
1637 oct->props[ifidx].gmxport = -1;
1638
1639 oct->props[ifidx].netdev = NULL;
1640 }
1641
1642 /**
1643 * \brief Stop complete NIC functionality
1644 * @param oct octeon device
1645 */
1646 static int liquidio_stop_nic_module(struct octeon_device *oct)
1647 {
1648 int i, j;
1649 struct lio *lio;
1650
1651 dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1652 if (!oct->ifcount) {
1653 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1654 return 1;
1655 }
1656
1657 spin_lock_bh(&oct->cmd_resp_wqlock);
1658 oct->cmd_resp_state = OCT_DRV_OFFLINE;
1659 spin_unlock_bh(&oct->cmd_resp_wqlock);
1660
1661 for (i = 0; i < oct->ifcount; i++) {
1662 lio = GET_LIO(oct->props[i].netdev);
1663 for (j = 0; j < lio->linfo.num_rxpciq; j++)
1664 octeon_unregister_droq_ops(oct,
1665 lio->linfo.rxpciq[j].s.q_no);
1666 }
1667
1668 for (i = 0; i < oct->ifcount; i++)
1669 liquidio_destroy_nic_device(oct, i);
1670
1671 dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1672 return 0;
1673 }
1674
1675 /**
1676 * \brief Cleans up resources at unload time
1677 * @param pdev PCI device structure
1678 */
1679 static void liquidio_remove(struct pci_dev *pdev)
1680 {
1681 struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1682
1683 dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1684
1685 if (oct_dev->watchdog_task)
1686 kthread_stop(oct_dev->watchdog_task);
1687
1688 if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP))
1689 liquidio_stop_nic_module(oct_dev);
1690
1691 /* Reset the octeon device and cleanup all memory allocated for
1692 * the octeon device by driver.
1693 */
1694 octeon_destroy_resources(oct_dev);
1695
1696 dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1697
1698 /* This octeon device has been removed. Update the global
1699 * data structure to reflect this. Free the device structure.
1700 */
1701 octeon_free_device_mem(oct_dev);
1702 }
1703
1704 /**
1705 * \brief Identify the Octeon device and to map the BAR address space
1706 * @param oct octeon device
1707 */
1708 static int octeon_chip_specific_setup(struct octeon_device *oct)
1709 {
1710 u32 dev_id, rev_id;
1711 int ret = 1;
1712 char *s;
1713
1714 pci_read_config_dword(oct->pci_dev, 0, &dev_id);
1715 pci_read_config_dword(oct->pci_dev, 8, &rev_id);
1716 oct->rev_id = rev_id & 0xff;
1717
1718 switch (dev_id) {
1719 case OCTEON_CN68XX_PCIID:
1720 oct->chip_id = OCTEON_CN68XX;
1721 ret = lio_setup_cn68xx_octeon_device(oct);
1722 s = "CN68XX";
1723 break;
1724
1725 case OCTEON_CN66XX_PCIID:
1726 oct->chip_id = OCTEON_CN66XX;
1727 ret = lio_setup_cn66xx_octeon_device(oct);
1728 s = "CN66XX";
1729 break;
1730
1731 case OCTEON_CN23XX_PCIID_PF:
1732 oct->chip_id = OCTEON_CN23XX_PF_VID;
1733 ret = setup_cn23xx_octeon_pf_device(oct);
1734 s = "CN23XX";
1735 break;
1736
1737 default:
1738 s = "?";
1739 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n",
1740 dev_id);
1741 }
1742
1743 if (!ret)
1744 dev_info(&oct->pci_dev->dev, "%s PASS%d.%d %s Version: %s\n", s,
1745 OCTEON_MAJOR_REV(oct),
1746 OCTEON_MINOR_REV(oct),
1747 octeon_get_conf(oct)->card_name,
1748 LIQUIDIO_VERSION);
1749
1750 return ret;
1751 }
1752
1753 /**
1754 * \brief PCI initialization for each Octeon device.
1755 * @param oct octeon device
1756 */
1757 static int octeon_pci_os_setup(struct octeon_device *oct)
1758 {
1759 /* setup PCI stuff first */
1760 if (pci_enable_device(oct->pci_dev)) {
1761 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1762 return 1;
1763 }
1764
1765 if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1766 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1767 return 1;
1768 }
1769
1770 /* Enable PCI DMA Master. */
1771 pci_set_master(oct->pci_dev);
1772
1773 return 0;
1774 }
1775
1776 static inline int skb_iq(struct lio *lio, struct sk_buff *skb)
1777 {
1778 int q = 0;
1779
1780 if (netif_is_multiqueue(lio->netdev))
1781 q = skb->queue_mapping % lio->linfo.num_txpciq;
1782
1783 return q;
1784 }
1785
1786 /**
1787 * \brief Check Tx queue state for a given network buffer
1788 * @param lio per-network private data
1789 * @param skb network buffer
1790 */
1791 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb)
1792 {
1793 int q = 0, iq = 0;
1794
1795 if (netif_is_multiqueue(lio->netdev)) {
1796 q = skb->queue_mapping;
1797 iq = lio->linfo.txpciq[(q % (lio->linfo.num_txpciq))].s.q_no;
1798 } else {
1799 iq = lio->txq;
1800 q = iq;
1801 }
1802
1803 if (octnet_iq_is_full(lio->oct_dev, iq))
1804 return 0;
1805
1806 if (__netif_subqueue_stopped(lio->netdev, q)) {
1807 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, tx_restart, 1);
1808 wake_q(lio->netdev, q);
1809 }
1810 return 1;
1811 }
1812
1813 /**
1814 * \brief Unmap and free network buffer
1815 * @param buf buffer
1816 */
1817 static void free_netbuf(void *buf)
1818 {
1819 struct sk_buff *skb;
1820 struct octnet_buf_free_info *finfo;
1821 struct lio *lio;
1822
1823 finfo = (struct octnet_buf_free_info *)buf;
1824 skb = finfo->skb;
1825 lio = finfo->lio;
1826
1827 dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1828 DMA_TO_DEVICE);
1829
1830 check_txq_state(lio, skb);
1831
1832 tx_buffer_free(skb);
1833 }
1834
1835 /**
1836 * \brief Unmap and free gather buffer
1837 * @param buf buffer
1838 */
1839 static void free_netsgbuf(void *buf)
1840 {
1841 struct octnet_buf_free_info *finfo;
1842 struct sk_buff *skb;
1843 struct lio *lio;
1844 struct octnic_gather *g;
1845 int i, frags, iq;
1846
1847 finfo = (struct octnet_buf_free_info *)buf;
1848 skb = finfo->skb;
1849 lio = finfo->lio;
1850 g = finfo->g;
1851 frags = skb_shinfo(skb)->nr_frags;
1852
1853 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1854 g->sg[0].ptr[0], (skb->len - skb->data_len),
1855 DMA_TO_DEVICE);
1856
1857 i = 1;
1858 while (frags--) {
1859 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1860
1861 pci_unmap_page((lio->oct_dev)->pci_dev,
1862 g->sg[(i >> 2)].ptr[(i & 3)],
1863 frag->size, DMA_TO_DEVICE);
1864 i++;
1865 }
1866
1867 dma_sync_single_for_cpu(&lio->oct_dev->pci_dev->dev,
1868 g->sg_dma_ptr, g->sg_size, DMA_TO_DEVICE);
1869
1870 iq = skb_iq(lio, skb);
1871 spin_lock(&lio->glist_lock[iq]);
1872 list_add_tail(&g->list, &lio->glist[iq]);
1873 spin_unlock(&lio->glist_lock[iq]);
1874
1875 check_txq_state(lio, skb); /* mq support: sub-queue state check */
1876
1877 tx_buffer_free(skb);
1878 }
1879
1880 /**
1881 * \brief Unmap and free gather buffer with response
1882 * @param buf buffer
1883 */
1884 static void free_netsgbuf_with_resp(void *buf)
1885 {
1886 struct octeon_soft_command *sc;
1887 struct octnet_buf_free_info *finfo;
1888 struct sk_buff *skb;
1889 struct lio *lio;
1890 struct octnic_gather *g;
1891 int i, frags, iq;
1892
1893 sc = (struct octeon_soft_command *)buf;
1894 skb = (struct sk_buff *)sc->callback_arg;
1895 finfo = (struct octnet_buf_free_info *)&skb->cb;
1896
1897 lio = finfo->lio;
1898 g = finfo->g;
1899 frags = skb_shinfo(skb)->nr_frags;
1900
1901 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1902 g->sg[0].ptr[0], (skb->len - skb->data_len),
1903 DMA_TO_DEVICE);
1904
1905 i = 1;
1906 while (frags--) {
1907 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1908
1909 pci_unmap_page((lio->oct_dev)->pci_dev,
1910 g->sg[(i >> 2)].ptr[(i & 3)],
1911 frag->size, DMA_TO_DEVICE);
1912 i++;
1913 }
1914
1915 dma_sync_single_for_cpu(&lio->oct_dev->pci_dev->dev,
1916 g->sg_dma_ptr, g->sg_size, DMA_TO_DEVICE);
1917
1918 iq = skb_iq(lio, skb);
1919
1920 spin_lock(&lio->glist_lock[iq]);
1921 list_add_tail(&g->list, &lio->glist[iq]);
1922 spin_unlock(&lio->glist_lock[iq]);
1923
1924 /* Don't free the skb yet */
1925
1926 check_txq_state(lio, skb);
1927 }
1928
1929 /**
1930 * \brief Adjust ptp frequency
1931 * @param ptp PTP clock info
1932 * @param ppb how much to adjust by, in parts-per-billion
1933 */
1934 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
1935 {
1936 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1937 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1938 u64 comp, delta;
1939 unsigned long flags;
1940 bool neg_adj = false;
1941
1942 if (ppb < 0) {
1943 neg_adj = true;
1944 ppb = -ppb;
1945 }
1946
1947 /* The hardware adds the clock compensation value to the
1948 * PTP clock on every coprocessor clock cycle, so we
1949 * compute the delta in terms of coprocessor clocks.
1950 */
1951 delta = (u64)ppb << 32;
1952 do_div(delta, oct->coproc_clock_rate);
1953
1954 spin_lock_irqsave(&lio->ptp_lock, flags);
1955 comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP);
1956 if (neg_adj)
1957 comp -= delta;
1958 else
1959 comp += delta;
1960 lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1961 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1962
1963 return 0;
1964 }
1965
1966 /**
1967 * \brief Adjust ptp time
1968 * @param ptp PTP clock info
1969 * @param delta how much to adjust by, in nanosecs
1970 */
1971 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
1972 {
1973 unsigned long flags;
1974 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1975
1976 spin_lock_irqsave(&lio->ptp_lock, flags);
1977 lio->ptp_adjust += delta;
1978 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1979
1980 return 0;
1981 }
1982
1983 /**
1984 * \brief Get hardware clock time, including any adjustment
1985 * @param ptp PTP clock info
1986 * @param ts timespec
1987 */
1988 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp,
1989 struct timespec64 *ts)
1990 {
1991 u64 ns;
1992 unsigned long flags;
1993 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1994 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1995
1996 spin_lock_irqsave(&lio->ptp_lock, flags);
1997 ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI);
1998 ns += lio->ptp_adjust;
1999 spin_unlock_irqrestore(&lio->ptp_lock, flags);
2000
2001 *ts = ns_to_timespec64(ns);
2002
2003 return 0;
2004 }
2005
2006 /**
2007 * \brief Set hardware clock time. Reset adjustment
2008 * @param ptp PTP clock info
2009 * @param ts timespec
2010 */
2011 static int liquidio_ptp_settime(struct ptp_clock_info *ptp,
2012 const struct timespec64 *ts)
2013 {
2014 u64 ns;
2015 unsigned long flags;
2016 struct lio *lio = container_of(ptp, struct lio, ptp_info);
2017 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2018
2019 ns = timespec_to_ns(ts);
2020
2021 spin_lock_irqsave(&lio->ptp_lock, flags);
2022 lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI);
2023 lio->ptp_adjust = 0;
2024 spin_unlock_irqrestore(&lio->ptp_lock, flags);
2025
2026 return 0;
2027 }
2028
2029 /**
2030 * \brief Check if PTP is enabled
2031 * @param ptp PTP clock info
2032 * @param rq request
2033 * @param on is it on
2034 */
2035 static int
2036 liquidio_ptp_enable(struct ptp_clock_info *ptp __attribute__((unused)),
2037 struct ptp_clock_request *rq __attribute__((unused)),
2038 int on __attribute__((unused)))
2039 {
2040 return -EOPNOTSUPP;
2041 }
2042
2043 /**
2044 * \brief Open PTP clock source
2045 * @param netdev network device
2046 */
2047 static void oct_ptp_open(struct net_device *netdev)
2048 {
2049 struct lio *lio = GET_LIO(netdev);
2050 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2051
2052 spin_lock_init(&lio->ptp_lock);
2053
2054 snprintf(lio->ptp_info.name, 16, "%s", netdev->name);
2055 lio->ptp_info.owner = THIS_MODULE;
2056 lio->ptp_info.max_adj = 250000000;
2057 lio->ptp_info.n_alarm = 0;
2058 lio->ptp_info.n_ext_ts = 0;
2059 lio->ptp_info.n_per_out = 0;
2060 lio->ptp_info.pps = 0;
2061 lio->ptp_info.adjfreq = liquidio_ptp_adjfreq;
2062 lio->ptp_info.adjtime = liquidio_ptp_adjtime;
2063 lio->ptp_info.gettime64 = liquidio_ptp_gettime;
2064 lio->ptp_info.settime64 = liquidio_ptp_settime;
2065 lio->ptp_info.enable = liquidio_ptp_enable;
2066
2067 lio->ptp_adjust = 0;
2068
2069 lio->ptp_clock = ptp_clock_register(&lio->ptp_info,
2070 &oct->pci_dev->dev);
2071
2072 if (IS_ERR(lio->ptp_clock))
2073 lio->ptp_clock = NULL;
2074 }
2075
2076 /**
2077 * \brief Init PTP clock
2078 * @param oct octeon device
2079 */
2080 static void liquidio_ptp_init(struct octeon_device *oct)
2081 {
2082 u64 clock_comp, cfg;
2083
2084 clock_comp = (u64)NSEC_PER_SEC << 32;
2085 do_div(clock_comp, oct->coproc_clock_rate);
2086 lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP);
2087
2088 /* Enable */
2089 cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG);
2090 lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG);
2091 }
2092
2093 /**
2094 * \brief Load firmware to device
2095 * @param oct octeon device
2096 *
2097 * Maps device to firmware filename, requests firmware, and downloads it
2098 */
2099 static int load_firmware(struct octeon_device *oct)
2100 {
2101 int ret = 0;
2102 const struct firmware *fw;
2103 char fw_name[LIO_MAX_FW_FILENAME_LEN];
2104 char *tmp_fw_type;
2105
2106 if (strncmp(fw_type, LIO_FW_NAME_TYPE_NONE,
2107 sizeof(LIO_FW_NAME_TYPE_NONE)) == 0) {
2108 dev_info(&oct->pci_dev->dev, "Skipping firmware load\n");
2109 return ret;
2110 }
2111
2112 if (fw_type[0] == '\0')
2113 tmp_fw_type = LIO_FW_NAME_TYPE_NIC;
2114 else
2115 tmp_fw_type = fw_type;
2116
2117 sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME,
2118 octeon_get_conf(oct)->card_name, tmp_fw_type,
2119 LIO_FW_NAME_SUFFIX);
2120
2121 ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev);
2122 if (ret) {
2123 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.",
2124 fw_name);
2125 release_firmware(fw);
2126 return ret;
2127 }
2128
2129 ret = octeon_download_firmware(oct, fw->data, fw->size);
2130
2131 release_firmware(fw);
2132
2133 return ret;
2134 }
2135
2136 /**
2137 * \brief Setup output queue
2138 * @param oct octeon device
2139 * @param q_no which queue
2140 * @param num_descs how many descriptors
2141 * @param desc_size size of each descriptor
2142 * @param app_ctx application context
2143 */
2144 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
2145 int desc_size, void *app_ctx)
2146 {
2147 int ret_val = 0;
2148
2149 dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
2150 /* droq creation and local register settings. */
2151 ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
2152 if (ret_val < 0)
2153 return ret_val;
2154
2155 if (ret_val == 1) {
2156 dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
2157 return 0;
2158 }
2159 /* tasklet creation for the droq */
2160
2161 /* Enable the droq queues */
2162 octeon_set_droq_pkt_op(oct, q_no, 1);
2163
2164 /* Send Credit for Octeon Output queues. Credits are always
2165 * sent after the output queue is enabled.
2166 */
2167 writel(oct->droq[q_no]->max_count,
2168 oct->droq[q_no]->pkts_credit_reg);
2169
2170 return ret_val;
2171 }
2172
2173 /**
2174 * \brief Callback for getting interface configuration
2175 * @param status status of request
2176 * @param buf pointer to resp structure
2177 */
2178 static void if_cfg_callback(struct octeon_device *oct,
2179 u32 status __attribute__((unused)),
2180 void *buf)
2181 {
2182 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
2183 struct liquidio_if_cfg_resp *resp;
2184 struct liquidio_if_cfg_context *ctx;
2185
2186 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
2187 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
2188
2189 oct = lio_get_device(ctx->octeon_id);
2190 if (resp->status)
2191 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
2192 CVM_CAST64(resp->status));
2193 WRITE_ONCE(ctx->cond, 1);
2194
2195 snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s",
2196 resp->cfg_info.liquidio_firmware_version);
2197
2198 /* This barrier is required to be sure that the response has been
2199 * written fully before waking up the handler
2200 */
2201 wmb();
2202
2203 wake_up_interruptible(&ctx->wc);
2204 }
2205
2206 /**
2207 * \brief Select queue based on hash
2208 * @param dev Net device
2209 * @param skb sk_buff structure
2210 * @returns selected queue number
2211 */
2212 static u16 select_q(struct net_device *dev, struct sk_buff *skb,
2213 void *accel_priv __attribute__((unused)),
2214 select_queue_fallback_t fallback __attribute__((unused)))
2215 {
2216 u32 qindex = 0;
2217 struct lio *lio;
2218
2219 lio = GET_LIO(dev);
2220 qindex = skb_tx_hash(dev, skb);
2221
2222 return (u16)(qindex % (lio->linfo.num_txpciq));
2223 }
2224
2225 /** Routine to push packets arriving on Octeon interface upto network layer.
2226 * @param oct_id - octeon device id.
2227 * @param skbuff - skbuff struct to be passed to network layer.
2228 * @param len - size of total data received.
2229 * @param rh - Control header associated with the packet
2230 * @param param - additional control data with the packet
2231 * @param arg - farg registered in droq_ops
2232 */
2233 static void
2234 liquidio_push_packet(u32 octeon_id __attribute__((unused)),
2235 void *skbuff,
2236 u32 len,
2237 union octeon_rh *rh,
2238 void *param,
2239 void *arg)
2240 {
2241 struct napi_struct *napi = param;
2242 struct sk_buff *skb = (struct sk_buff *)skbuff;
2243 struct skb_shared_hwtstamps *shhwtstamps;
2244 u64 ns;
2245 u16 vtag = 0;
2246 struct net_device *netdev = (struct net_device *)arg;
2247 struct octeon_droq *droq = container_of(param, struct octeon_droq,
2248 napi);
2249 if (netdev) {
2250 int packet_was_received;
2251 struct lio *lio = GET_LIO(netdev);
2252 struct octeon_device *oct = lio->oct_dev;
2253
2254 /* Do not proceed if the interface is not in RUNNING state. */
2255 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
2256 recv_buffer_free(skb);
2257 droq->stats.rx_dropped++;
2258 return;
2259 }
2260
2261 skb->dev = netdev;
2262
2263 skb_record_rx_queue(skb, droq->q_no);
2264 if (likely(len > MIN_SKB_SIZE)) {
2265 struct octeon_skb_page_info *pg_info;
2266 unsigned char *va;
2267
2268 pg_info = ((struct octeon_skb_page_info *)(skb->cb));
2269 if (pg_info->page) {
2270 /* For Paged allocation use the frags */
2271 va = page_address(pg_info->page) +
2272 pg_info->page_offset;
2273 memcpy(skb->data, va, MIN_SKB_SIZE);
2274 skb_put(skb, MIN_SKB_SIZE);
2275 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2276 pg_info->page,
2277 pg_info->page_offset +
2278 MIN_SKB_SIZE,
2279 len - MIN_SKB_SIZE,
2280 LIO_RXBUFFER_SZ);
2281 }
2282 } else {
2283 struct octeon_skb_page_info *pg_info =
2284 ((struct octeon_skb_page_info *)(skb->cb));
2285 skb_copy_to_linear_data(skb, page_address(pg_info->page)
2286 + pg_info->page_offset, len);
2287 skb_put(skb, len);
2288 put_page(pg_info->page);
2289 }
2290
2291 if (((oct->chip_id == OCTEON_CN66XX) ||
2292 (oct->chip_id == OCTEON_CN68XX)) &&
2293 ptp_enable) {
2294 if (rh->r_dh.has_hwtstamp) {
2295 /* timestamp is included from the hardware at
2296 * the beginning of the packet.
2297 */
2298 if (ifstate_check
2299 (lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
2300 /* Nanoseconds are in the first 64-bits
2301 * of the packet.
2302 */
2303 memcpy(&ns, (skb->data), sizeof(ns));
2304 shhwtstamps = skb_hwtstamps(skb);
2305 shhwtstamps->hwtstamp =
2306 ns_to_ktime(ns +
2307 lio->ptp_adjust);
2308 }
2309 skb_pull(skb, sizeof(ns));
2310 }
2311 }
2312
2313 skb->protocol = eth_type_trans(skb, skb->dev);
2314 if ((netdev->features & NETIF_F_RXCSUM) &&
2315 (((rh->r_dh.encap_on) &&
2316 (rh->r_dh.csum_verified & CNNIC_TUN_CSUM_VERIFIED)) ||
2317 (!(rh->r_dh.encap_on) &&
2318 (rh->r_dh.csum_verified & CNNIC_CSUM_VERIFIED))))
2319 /* checksum has already been verified */
2320 skb->ip_summed = CHECKSUM_UNNECESSARY;
2321 else
2322 skb->ip_summed = CHECKSUM_NONE;
2323
2324 /* Setting Encapsulation field on basis of status received
2325 * from the firmware
2326 */
2327 if (rh->r_dh.encap_on) {
2328 skb->encapsulation = 1;
2329 skb->csum_level = 1;
2330 droq->stats.rx_vxlan++;
2331 }
2332
2333 /* inbound VLAN tag */
2334 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
2335 (rh->r_dh.vlan != 0)) {
2336 u16 vid = rh->r_dh.vlan;
2337 u16 priority = rh->r_dh.priority;
2338
2339 vtag = priority << 13 | vid;
2340 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
2341 }
2342
2343 packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP;
2344
2345 if (packet_was_received) {
2346 droq->stats.rx_bytes_received += len;
2347 droq->stats.rx_pkts_received++;
2348 netdev->last_rx = jiffies;
2349 } else {
2350 droq->stats.rx_dropped++;
2351 netif_info(lio, rx_err, lio->netdev,
2352 "droq:%d error rx_dropped:%llu\n",
2353 droq->q_no, droq->stats.rx_dropped);
2354 }
2355
2356 } else {
2357 recv_buffer_free(skb);
2358 }
2359 }
2360
2361 /**
2362 * \brief wrapper for calling napi_schedule
2363 * @param param parameters to pass to napi_schedule
2364 *
2365 * Used when scheduling on different CPUs
2366 */
2367 static void napi_schedule_wrapper(void *param)
2368 {
2369 struct napi_struct *napi = param;
2370
2371 napi_schedule(napi);
2372 }
2373
2374 /**
2375 * \brief callback when receive interrupt occurs and we are in NAPI mode
2376 * @param arg pointer to octeon output queue
2377 */
2378 static void liquidio_napi_drv_callback(void *arg)
2379 {
2380 struct octeon_device *oct;
2381 struct octeon_droq *droq = arg;
2382 int this_cpu = smp_processor_id();
2383
2384 oct = droq->oct_dev;
2385
2386 if (OCTEON_CN23XX_PF(oct) || droq->cpu_id == this_cpu) {
2387 napi_schedule_irqoff(&droq->napi);
2388 } else {
2389 struct call_single_data *csd = &droq->csd;
2390
2391 csd->func = napi_schedule_wrapper;
2392 csd->info = &droq->napi;
2393 csd->flags = 0;
2394
2395 smp_call_function_single_async(droq->cpu_id, csd);
2396 }
2397 }
2398
2399 /**
2400 * \brief Entry point for NAPI polling
2401 * @param napi NAPI structure
2402 * @param budget maximum number of items to process
2403 */
2404 static int liquidio_napi_poll(struct napi_struct *napi, int budget)
2405 {
2406 struct octeon_droq *droq;
2407 int work_done;
2408 int tx_done = 0, iq_no;
2409 struct octeon_instr_queue *iq;
2410 struct octeon_device *oct;
2411
2412 droq = container_of(napi, struct octeon_droq, napi);
2413 oct = droq->oct_dev;
2414 iq_no = droq->q_no;
2415 /* Handle Droq descriptors */
2416 work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
2417 POLL_EVENT_PROCESS_PKTS,
2418 budget);
2419
2420 /* Flush the instruction queue */
2421 iq = oct->instr_queue[iq_no];
2422 if (iq) {
2423 /* Process iq buffers with in the budget limits */
2424 tx_done = octeon_flush_iq(oct, iq, 1, budget);
2425 /* Update iq read-index rather than waiting for next interrupt.
2426 * Return back if tx_done is false.
2427 */
2428 update_txq_status(oct, iq_no);
2429 /*tx_done = (iq->flush_index == iq->octeon_read_index);*/
2430 } else {
2431 dev_err(&oct->pci_dev->dev, "%s: iq (%d) num invalid\n",
2432 __func__, iq_no);
2433 }
2434
2435 if ((work_done < budget) && (tx_done)) {
2436 napi_complete(napi);
2437 octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
2438 POLL_EVENT_ENABLE_INTR, 0);
2439 return 0;
2440 }
2441
2442 return (!tx_done) ? (budget) : (work_done);
2443 }
2444
2445 /**
2446 * \brief Setup input and output queues
2447 * @param octeon_dev octeon device
2448 * @param ifidx Interface Index
2449 *
2450 * Note: Queues are with respect to the octeon device. Thus
2451 * an input queue is for egress packets, and output queues
2452 * are for ingress packets.
2453 */
2454 static inline int setup_io_queues(struct octeon_device *octeon_dev,
2455 int ifidx)
2456 {
2457 struct octeon_droq_ops droq_ops;
2458 struct net_device *netdev;
2459 static int cpu_id;
2460 static int cpu_id_modulus;
2461 struct octeon_droq *droq;
2462 struct napi_struct *napi;
2463 int q, q_no, retval = 0;
2464 struct lio *lio;
2465 int num_tx_descs;
2466
2467 netdev = octeon_dev->props[ifidx].netdev;
2468
2469 lio = GET_LIO(netdev);
2470
2471 memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
2472
2473 droq_ops.fptr = liquidio_push_packet;
2474 droq_ops.farg = (void *)netdev;
2475
2476 droq_ops.poll_mode = 1;
2477 droq_ops.napi_fn = liquidio_napi_drv_callback;
2478 cpu_id = 0;
2479 cpu_id_modulus = num_present_cpus();
2480
2481 /* set up DROQs. */
2482 for (q = 0; q < lio->linfo.num_rxpciq; q++) {
2483 q_no = lio->linfo.rxpciq[q].s.q_no;
2484 dev_dbg(&octeon_dev->pci_dev->dev,
2485 "setup_io_queues index:%d linfo.rxpciq.s.q_no:%d\n",
2486 q, q_no);
2487 retval = octeon_setup_droq(octeon_dev, q_no,
2488 CFG_GET_NUM_RX_DESCS_NIC_IF
2489 (octeon_get_conf(octeon_dev),
2490 lio->ifidx),
2491 CFG_GET_NUM_RX_BUF_SIZE_NIC_IF
2492 (octeon_get_conf(octeon_dev),
2493 lio->ifidx), NULL);
2494 if (retval) {
2495 dev_err(&octeon_dev->pci_dev->dev,
2496 "%s : Runtime DROQ(RxQ) creation failed.\n",
2497 __func__);
2498 return 1;
2499 }
2500
2501 droq = octeon_dev->droq[q_no];
2502 napi = &droq->napi;
2503 dev_dbg(&octeon_dev->pci_dev->dev, "netif_napi_add netdev:%llx oct:%llx pf_num:%d\n",
2504 (u64)netdev, (u64)octeon_dev, octeon_dev->pf_num);
2505 netif_napi_add(netdev, napi, liquidio_napi_poll, 64);
2506
2507 /* designate a CPU for this droq */
2508 droq->cpu_id = cpu_id;
2509 cpu_id++;
2510 if (cpu_id >= cpu_id_modulus)
2511 cpu_id = 0;
2512
2513 octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
2514 }
2515
2516 if (OCTEON_CN23XX_PF(octeon_dev)) {
2517 /* 23XX PF can receive control messages (via the first PF-owned
2518 * droq) from the firmware even if the ethX interface is down,
2519 * so that's why poll_mode must be off for the first droq.
2520 */
2521 octeon_dev->droq[0]->ops.poll_mode = 0;
2522 }
2523
2524 /* set up IQs. */
2525 for (q = 0; q < lio->linfo.num_txpciq; q++) {
2526 num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf
2527 (octeon_dev),
2528 lio->ifidx);
2529 retval = octeon_setup_iq(octeon_dev, ifidx, q,
2530 lio->linfo.txpciq[q], num_tx_descs,
2531 netdev_get_tx_queue(netdev, q));
2532 if (retval) {
2533 dev_err(&octeon_dev->pci_dev->dev,
2534 " %s : Runtime IQ(TxQ) creation failed.\n",
2535 __func__);
2536 return 1;
2537 }
2538 }
2539
2540 return 0;
2541 }
2542
2543 /**
2544 * \brief Poll routine for checking transmit queue status
2545 * @param work work_struct data structure
2546 */
2547 static void octnet_poll_check_txq_status(struct work_struct *work)
2548 {
2549 struct cavium_wk *wk = (struct cavium_wk *)work;
2550 struct lio *lio = (struct lio *)wk->ctxptr;
2551
2552 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING))
2553 return;
2554
2555 check_txq_status(lio);
2556 queue_delayed_work(lio->txq_status_wq.wq,
2557 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2558 }
2559
2560 /**
2561 * \brief Sets up the txq poll check
2562 * @param netdev network device
2563 */
2564 static inline int setup_tx_poll_fn(struct net_device *netdev)
2565 {
2566 struct lio *lio = GET_LIO(netdev);
2567 struct octeon_device *oct = lio->oct_dev;
2568
2569 lio->txq_status_wq.wq = alloc_workqueue("txq-status",
2570 WQ_MEM_RECLAIM, 0);
2571 if (!lio->txq_status_wq.wq) {
2572 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n");
2573 return -1;
2574 }
2575 INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work,
2576 octnet_poll_check_txq_status);
2577 lio->txq_status_wq.wk.ctxptr = lio;
2578 queue_delayed_work(lio->txq_status_wq.wq,
2579 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2580 return 0;
2581 }
2582
2583 static inline void cleanup_tx_poll_fn(struct net_device *netdev)
2584 {
2585 struct lio *lio = GET_LIO(netdev);
2586
2587 if (lio->txq_status_wq.wq) {
2588 cancel_delayed_work_sync(&lio->txq_status_wq.wk.work);
2589 destroy_workqueue(lio->txq_status_wq.wq);
2590 }
2591 }
2592
2593 /**
2594 * \brief Net device open for LiquidIO
2595 * @param netdev network device
2596 */
2597 static int liquidio_open(struct net_device *netdev)
2598 {
2599 struct lio *lio = GET_LIO(netdev);
2600 struct octeon_device *oct = lio->oct_dev;
2601 struct napi_struct *napi, *n;
2602
2603 if (oct->props[lio->ifidx].napi_enabled == 0) {
2604 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2605 napi_enable(napi);
2606
2607 oct->props[lio->ifidx].napi_enabled = 1;
2608
2609 if (OCTEON_CN23XX_PF(oct))
2610 oct->droq[0]->ops.poll_mode = 1;
2611 }
2612
2613 oct_ptp_open(netdev);
2614
2615 ifstate_set(lio, LIO_IFSTATE_RUNNING);
2616
2617 /* Ready for link status updates */
2618 lio->intf_open = 1;
2619
2620 netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
2621
2622 if (OCTEON_CN23XX_PF(oct)) {
2623 if (!oct->msix_on)
2624 if (setup_tx_poll_fn(netdev))
2625 return -1;
2626 } else {
2627 if (setup_tx_poll_fn(netdev))
2628 return -1;
2629 }
2630
2631 start_txq(netdev);
2632
2633 /* tell Octeon to start forwarding packets to host */
2634 send_rx_ctrl_cmd(lio, 1);
2635
2636 dev_info(&oct->pci_dev->dev, "%s interface is opened\n",
2637 netdev->name);
2638
2639 return 0;
2640 }
2641
2642 /**
2643 * \brief Net device stop for LiquidIO
2644 * @param netdev network device
2645 */
2646 static int liquidio_stop(struct net_device *netdev)
2647 {
2648 struct lio *lio = GET_LIO(netdev);
2649 struct octeon_device *oct = lio->oct_dev;
2650
2651 ifstate_reset(lio, LIO_IFSTATE_RUNNING);
2652
2653 netif_tx_disable(netdev);
2654
2655 /* Inform that netif carrier is down */
2656 netif_carrier_off(netdev);
2657 lio->intf_open = 0;
2658 lio->linfo.link.s.link_up = 0;
2659 lio->link_changes++;
2660
2661 /* Pause for a moment and wait for Octeon to flush out (to the wire) any
2662 * egress packets that are in-flight.
2663 */
2664 set_current_state(TASK_INTERRUPTIBLE);
2665 schedule_timeout(msecs_to_jiffies(100));
2666
2667 /* Now it should be safe to tell Octeon that nic interface is down. */
2668 send_rx_ctrl_cmd(lio, 0);
2669
2670 if (OCTEON_CN23XX_PF(oct)) {
2671 if (!oct->msix_on)
2672 cleanup_tx_poll_fn(netdev);
2673 } else {
2674 cleanup_tx_poll_fn(netdev);
2675 }
2676
2677 if (lio->ptp_clock) {
2678 ptp_clock_unregister(lio->ptp_clock);
2679 lio->ptp_clock = NULL;
2680 }
2681
2682 dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
2683
2684 return 0;
2685 }
2686
2687 /**
2688 * \brief Converts a mask based on net device flags
2689 * @param netdev network device
2690 *
2691 * This routine generates a octnet_ifflags mask from the net device flags
2692 * received from the OS.
2693 */
2694 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev)
2695 {
2696 enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
2697
2698 if (netdev->flags & IFF_PROMISC)
2699 f |= OCTNET_IFFLAG_PROMISC;
2700
2701 if (netdev->flags & IFF_ALLMULTI)
2702 f |= OCTNET_IFFLAG_ALLMULTI;
2703
2704 if (netdev->flags & IFF_MULTICAST) {
2705 f |= OCTNET_IFFLAG_MULTICAST;
2706
2707 /* Accept all multicast addresses if there are more than we
2708 * can handle
2709 */
2710 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
2711 f |= OCTNET_IFFLAG_ALLMULTI;
2712 }
2713
2714 if (netdev->flags & IFF_BROADCAST)
2715 f |= OCTNET_IFFLAG_BROADCAST;
2716
2717 return f;
2718 }
2719
2720 /**
2721 * \brief Net device set_multicast_list
2722 * @param netdev network device
2723 */
2724 static void liquidio_set_mcast_list(struct net_device *netdev)
2725 {
2726 struct lio *lio = GET_LIO(netdev);
2727 struct octeon_device *oct = lio->oct_dev;
2728 struct octnic_ctrl_pkt nctrl;
2729 struct netdev_hw_addr *ha;
2730 u64 *mc;
2731 int ret;
2732 int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
2733
2734 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2735
2736 /* Create a ctrl pkt command to be sent to core app. */
2737 nctrl.ncmd.u64 = 0;
2738 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
2739 nctrl.ncmd.s.param1 = get_new_flags(netdev);
2740 nctrl.ncmd.s.param2 = mc_count;
2741 nctrl.ncmd.s.more = mc_count;
2742 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2743 nctrl.netpndev = (u64)netdev;
2744 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2745
2746 /* copy all the addresses into the udd */
2747 mc = &nctrl.udd[0];
2748 netdev_for_each_mc_addr(ha, netdev) {
2749 *mc = 0;
2750 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN);
2751 /* no need to swap bytes */
2752
2753 if (++mc > &nctrl.udd[mc_count])
2754 break;
2755 }
2756
2757 /* Apparently, any activity in this call from the kernel has to
2758 * be atomic. So we won't wait for response.
2759 */
2760 nctrl.wait_time = 0;
2761
2762 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2763 if (ret < 0) {
2764 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
2765 ret);
2766 }
2767 }
2768
2769 /**
2770 * \brief Net device set_mac_address
2771 * @param netdev network device
2772 */
2773 static int liquidio_set_mac(struct net_device *netdev, void *p)
2774 {
2775 int ret = 0;
2776 struct lio *lio = GET_LIO(netdev);
2777 struct octeon_device *oct = lio->oct_dev;
2778 struct sockaddr *addr = (struct sockaddr *)p;
2779 struct octnic_ctrl_pkt nctrl;
2780
2781 if (!is_valid_ether_addr(addr->sa_data))
2782 return -EADDRNOTAVAIL;
2783
2784 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2785
2786 nctrl.ncmd.u64 = 0;
2787 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
2788 nctrl.ncmd.s.param1 = 0;
2789 nctrl.ncmd.s.more = 1;
2790 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2791 nctrl.netpndev = (u64)netdev;
2792 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2793 nctrl.wait_time = 100;
2794
2795 nctrl.udd[0] = 0;
2796 /* The MAC Address is presented in network byte order. */
2797 memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN);
2798
2799 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2800 if (ret < 0) {
2801 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
2802 return -ENOMEM;
2803 }
2804 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2805 memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN);
2806
2807 return 0;
2808 }
2809
2810 /**
2811 * \brief Net device get_stats
2812 * @param netdev network device
2813 */
2814 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
2815 {
2816 struct lio *lio = GET_LIO(netdev);
2817 struct net_device_stats *stats = &netdev->stats;
2818 struct octeon_device *oct;
2819 u64 pkts = 0, drop = 0, bytes = 0;
2820 struct oct_droq_stats *oq_stats;
2821 struct oct_iq_stats *iq_stats;
2822 int i, iq_no, oq_no;
2823
2824 oct = lio->oct_dev;
2825
2826 for (i = 0; i < lio->linfo.num_txpciq; i++) {
2827 iq_no = lio->linfo.txpciq[i].s.q_no;
2828 iq_stats = &oct->instr_queue[iq_no]->stats;
2829 pkts += iq_stats->tx_done;
2830 drop += iq_stats->tx_dropped;
2831 bytes += iq_stats->tx_tot_bytes;
2832 }
2833
2834 stats->tx_packets = pkts;
2835 stats->tx_bytes = bytes;
2836 stats->tx_dropped = drop;
2837
2838 pkts = 0;
2839 drop = 0;
2840 bytes = 0;
2841
2842 for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2843 oq_no = lio->linfo.rxpciq[i].s.q_no;
2844 oq_stats = &oct->droq[oq_no]->stats;
2845 pkts += oq_stats->rx_pkts_received;
2846 drop += (oq_stats->rx_dropped +
2847 oq_stats->dropped_nodispatch +
2848 oq_stats->dropped_toomany +
2849 oq_stats->dropped_nomem);
2850 bytes += oq_stats->rx_bytes_received;
2851 }
2852
2853 stats->rx_bytes = bytes;
2854 stats->rx_packets = pkts;
2855 stats->rx_dropped = drop;
2856
2857 return stats;
2858 }
2859
2860 /**
2861 * \brief Net device change_mtu
2862 * @param netdev network device
2863 */
2864 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2865 {
2866 struct lio *lio = GET_LIO(netdev);
2867 struct octeon_device *oct = lio->oct_dev;
2868 struct octnic_ctrl_pkt nctrl;
2869 int ret = 0;
2870
2871 /* Limit the MTU to make sure the ethernet packets are between 68 bytes
2872 * and 16000 bytes
2873 */
2874 if ((new_mtu < LIO_MIN_MTU_SIZE) ||
2875 (new_mtu > LIO_MAX_MTU_SIZE)) {
2876 dev_err(&oct->pci_dev->dev, "Invalid MTU: %d\n", new_mtu);
2877 dev_err(&oct->pci_dev->dev, "Valid range %d and %d\n",
2878 LIO_MIN_MTU_SIZE, LIO_MAX_MTU_SIZE);
2879 return -EINVAL;
2880 }
2881
2882 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2883
2884 nctrl.ncmd.u64 = 0;
2885 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU;
2886 nctrl.ncmd.s.param1 = new_mtu;
2887 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2888 nctrl.wait_time = 100;
2889 nctrl.netpndev = (u64)netdev;
2890 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2891
2892 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2893 if (ret < 0) {
2894 dev_err(&oct->pci_dev->dev, "Failed to set MTU\n");
2895 return -1;
2896 }
2897
2898 lio->mtu = new_mtu;
2899
2900 return 0;
2901 }
2902
2903 /**
2904 * \brief Handler for SIOCSHWTSTAMP ioctl
2905 * @param netdev network device
2906 * @param ifr interface request
2907 * @param cmd command
2908 */
2909 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
2910 {
2911 struct hwtstamp_config conf;
2912 struct lio *lio = GET_LIO(netdev);
2913
2914 if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2915 return -EFAULT;
2916
2917 if (conf.flags)
2918 return -EINVAL;
2919
2920 switch (conf.tx_type) {
2921 case HWTSTAMP_TX_ON:
2922 case HWTSTAMP_TX_OFF:
2923 break;
2924 default:
2925 return -ERANGE;
2926 }
2927
2928 switch (conf.rx_filter) {
2929 case HWTSTAMP_FILTER_NONE:
2930 break;
2931 case HWTSTAMP_FILTER_ALL:
2932 case HWTSTAMP_FILTER_SOME:
2933 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2934 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2935 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2936 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2937 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2938 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2939 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2940 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2941 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2942 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2943 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2944 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2945 conf.rx_filter = HWTSTAMP_FILTER_ALL;
2946 break;
2947 default:
2948 return -ERANGE;
2949 }
2950
2951 if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
2952 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2953
2954 else
2955 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2956
2957 return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
2958 }
2959
2960 /**
2961 * \brief ioctl handler
2962 * @param netdev network device
2963 * @param ifr interface request
2964 * @param cmd command
2965 */
2966 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2967 {
2968 switch (cmd) {
2969 case SIOCSHWTSTAMP:
2970 return hwtstamp_ioctl(netdev, ifr);
2971 default:
2972 return -EOPNOTSUPP;
2973 }
2974 }
2975
2976 /**
2977 * \brief handle a Tx timestamp response
2978 * @param status response status
2979 * @param buf pointer to skb
2980 */
2981 static void handle_timestamp(struct octeon_device *oct,
2982 u32 status,
2983 void *buf)
2984 {
2985 struct octnet_buf_free_info *finfo;
2986 struct octeon_soft_command *sc;
2987 struct oct_timestamp_resp *resp;
2988 struct lio *lio;
2989 struct sk_buff *skb = (struct sk_buff *)buf;
2990
2991 finfo = (struct octnet_buf_free_info *)skb->cb;
2992 lio = finfo->lio;
2993 sc = finfo->sc;
2994 oct = lio->oct_dev;
2995 resp = (struct oct_timestamp_resp *)sc->virtrptr;
2996
2997 if (status != OCTEON_REQUEST_DONE) {
2998 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
2999 CVM_CAST64(status));
3000 resp->timestamp = 0;
3001 }
3002
3003 octeon_swap_8B_data(&resp->timestamp, 1);
3004
3005 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) != 0)) {
3006 struct skb_shared_hwtstamps ts;
3007 u64 ns = resp->timestamp;
3008
3009 netif_info(lio, tx_done, lio->netdev,
3010 "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
3011 skb, (unsigned long long)ns);
3012 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
3013 skb_tstamp_tx(skb, &ts);
3014 }
3015
3016 octeon_free_soft_command(oct, sc);
3017 tx_buffer_free(skb);
3018 }
3019
3020 /* \brief Send a data packet that will be timestamped
3021 * @param oct octeon device
3022 * @param ndata pointer to network data
3023 * @param finfo pointer to private network data
3024 */
3025 static inline int send_nic_timestamp_pkt(struct octeon_device *oct,
3026 struct octnic_data_pkt *ndata,
3027 struct octnet_buf_free_info *finfo)
3028 {
3029 int retval;
3030 struct octeon_soft_command *sc;
3031 struct lio *lio;
3032 int ring_doorbell;
3033 u32 len;
3034
3035 lio = finfo->lio;
3036
3037 sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
3038 sizeof(struct oct_timestamp_resp));
3039 finfo->sc = sc;
3040
3041 if (!sc) {
3042 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
3043 return IQ_SEND_FAILED;
3044 }
3045
3046 if (ndata->reqtype == REQTYPE_NORESP_NET)
3047 ndata->reqtype = REQTYPE_RESP_NET;
3048 else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
3049 ndata->reqtype = REQTYPE_RESP_NET_SG;
3050
3051 sc->callback = handle_timestamp;
3052 sc->callback_arg = finfo->skb;
3053 sc->iq_no = ndata->q_no;
3054
3055 if (OCTEON_CN23XX_PF(oct))
3056 len = (u32)((struct octeon_instr_ih3 *)
3057 (&sc->cmd.cmd3.ih3))->dlengsz;
3058 else
3059 len = (u32)((struct octeon_instr_ih2 *)
3060 (&sc->cmd.cmd2.ih2))->dlengsz;
3061
3062 ring_doorbell = 1;
3063
3064 retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
3065 sc, len, ndata->reqtype);
3066
3067 if (retval == IQ_SEND_FAILED) {
3068 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
3069 retval);
3070 octeon_free_soft_command(oct, sc);
3071 } else {
3072 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
3073 }
3074
3075 return retval;
3076 }
3077
3078 /** \brief Transmit networks packets to the Octeon interface
3079 * @param skbuff skbuff struct to be passed to network layer.
3080 * @param netdev pointer to network device
3081 * @returns whether the packet was transmitted to the device okay or not
3082 * (NETDEV_TX_OK or NETDEV_TX_BUSY)
3083 */
3084 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
3085 {
3086 struct lio *lio;
3087 struct octnet_buf_free_info *finfo;
3088 union octnic_cmd_setup cmdsetup;
3089 struct octnic_data_pkt ndata;
3090 struct octeon_device *oct;
3091 struct oct_iq_stats *stats;
3092 struct octeon_instr_irh *irh;
3093 union tx_info *tx_info;
3094 int status = 0;
3095 int q_idx = 0, iq_no = 0;
3096 int j;
3097 u64 dptr = 0;
3098 u32 tag = 0;
3099
3100 lio = GET_LIO(netdev);
3101 oct = lio->oct_dev;
3102
3103 if (netif_is_multiqueue(netdev)) {
3104 q_idx = skb->queue_mapping;
3105 q_idx = (q_idx % (lio->linfo.num_txpciq));
3106 tag = q_idx;
3107 iq_no = lio->linfo.txpciq[q_idx].s.q_no;
3108 } else {
3109 iq_no = lio->txq;
3110 }
3111
3112 stats = &oct->instr_queue[iq_no]->stats;
3113
3114 /* Check for all conditions in which the current packet cannot be
3115 * transmitted.
3116 */
3117 if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
3118 (!lio->linfo.link.s.link_up) ||
3119 (skb->len <= 0)) {
3120 netif_info(lio, tx_err, lio->netdev,
3121 "Transmit failed link_status : %d\n",
3122 lio->linfo.link.s.link_up);
3123 goto lio_xmit_failed;
3124 }
3125
3126 /* Use space in skb->cb to store info used to unmap and
3127 * free the buffers.
3128 */
3129 finfo = (struct octnet_buf_free_info *)skb->cb;
3130 finfo->lio = lio;
3131 finfo->skb = skb;
3132 finfo->sc = NULL;
3133
3134 /* Prepare the attributes for the data to be passed to OSI. */
3135 memset(&ndata, 0, sizeof(struct octnic_data_pkt));
3136
3137 ndata.buf = (void *)finfo;
3138
3139 ndata.q_no = iq_no;
3140
3141 if (netif_is_multiqueue(netdev)) {
3142 if (octnet_iq_is_full(oct, ndata.q_no)) {
3143 /* defer sending if queue is full */
3144 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
3145 ndata.q_no);
3146 stats->tx_iq_busy++;
3147 return NETDEV_TX_BUSY;
3148 }
3149 } else {
3150 if (octnet_iq_is_full(oct, lio->txq)) {
3151 /* defer sending if queue is full */
3152 stats->tx_iq_busy++;
3153 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
3154 lio->txq);
3155 return NETDEV_TX_BUSY;
3156 }
3157 }
3158 /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu: %d, q_no:%d\n",
3159 * lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no);
3160 */
3161
3162 ndata.datasize = skb->len;
3163
3164 cmdsetup.u64 = 0;
3165 cmdsetup.s.iq_no = iq_no;
3166
3167 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3168 if (skb->encapsulation) {
3169 cmdsetup.s.tnl_csum = 1;
3170 stats->tx_vxlan++;
3171 } else {
3172 cmdsetup.s.transport_csum = 1;
3173 }
3174 }
3175 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3176 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3177 cmdsetup.s.timestamp = 1;
3178 }
3179
3180 if (skb_shinfo(skb)->nr_frags == 0) {
3181 cmdsetup.s.u.datasize = skb->len;
3182 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
3183
3184 /* Offload checksum calculation for TCP/UDP packets */
3185 dptr = dma_map_single(&oct->pci_dev->dev,
3186 skb->data,
3187 skb->len,
3188 DMA_TO_DEVICE);
3189 if (dma_mapping_error(&oct->pci_dev->dev, dptr)) {
3190 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
3191 __func__);
3192 return NETDEV_TX_BUSY;
3193 }
3194
3195 if (OCTEON_CN23XX_PF(oct))
3196 ndata.cmd.cmd3.dptr = dptr;
3197 else
3198 ndata.cmd.cmd2.dptr = dptr;
3199 finfo->dptr = dptr;
3200 ndata.reqtype = REQTYPE_NORESP_NET;
3201
3202 } else {
3203 int i, frags;
3204 struct skb_frag_struct *frag;
3205 struct octnic_gather *g;
3206
3207 spin_lock(&lio->glist_lock[q_idx]);
3208 g = (struct octnic_gather *)
3209 list_delete_head(&lio->glist[q_idx]);
3210 spin_unlock(&lio->glist_lock[q_idx]);
3211
3212 if (!g) {
3213 netif_info(lio, tx_err, lio->netdev,
3214 "Transmit scatter gather: glist null!\n");
3215 goto lio_xmit_failed;
3216 }
3217
3218 cmdsetup.s.gather = 1;
3219 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
3220 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
3221
3222 memset(g->sg, 0, g->sg_size);
3223
3224 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
3225 skb->data,
3226 (skb->len - skb->data_len),
3227 DMA_TO_DEVICE);
3228 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
3229 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
3230 __func__);
3231 return NETDEV_TX_BUSY;
3232 }
3233 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
3234
3235 frags = skb_shinfo(skb)->nr_frags;
3236 i = 1;
3237 while (frags--) {
3238 frag = &skb_shinfo(skb)->frags[i - 1];
3239
3240 g->sg[(i >> 2)].ptr[(i & 3)] =
3241 dma_map_page(&oct->pci_dev->dev,
3242 frag->page.p,
3243 frag->page_offset,
3244 frag->size,
3245 DMA_TO_DEVICE);
3246
3247 if (dma_mapping_error(&oct->pci_dev->dev,
3248 g->sg[i >> 2].ptr[i & 3])) {
3249 dma_unmap_single(&oct->pci_dev->dev,
3250 g->sg[0].ptr[0],
3251 skb->len - skb->data_len,
3252 DMA_TO_DEVICE);
3253 for (j = 1; j < i; j++) {
3254 frag = &skb_shinfo(skb)->frags[j - 1];
3255 dma_unmap_page(&oct->pci_dev->dev,
3256 g->sg[j >> 2].ptr[j & 3],
3257 frag->size,
3258 DMA_TO_DEVICE);
3259 }
3260 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
3261 __func__);
3262 return NETDEV_TX_BUSY;
3263 }
3264
3265 add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
3266 i++;
3267 }
3268
3269 dma_sync_single_for_device(&oct->pci_dev->dev, g->sg_dma_ptr,
3270 g->sg_size, DMA_TO_DEVICE);
3271 dptr = g->sg_dma_ptr;
3272
3273 if (OCTEON_CN23XX_PF(oct))
3274 ndata.cmd.cmd3.dptr = dptr;
3275 else
3276 ndata.cmd.cmd2.dptr = dptr;
3277 finfo->dptr = dptr;
3278 finfo->g = g;
3279
3280 ndata.reqtype = REQTYPE_NORESP_NET_SG;
3281 }
3282
3283 if (OCTEON_CN23XX_PF(oct)) {
3284 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd3.irh;
3285 tx_info = (union tx_info *)&ndata.cmd.cmd3.ossp[0];
3286 } else {
3287 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd2.irh;
3288 tx_info = (union tx_info *)&ndata.cmd.cmd2.ossp[0];
3289 }
3290
3291 if (skb_shinfo(skb)->gso_size) {
3292 tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
3293 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
3294 stats->tx_gso++;
3295 }
3296
3297 /* HW insert VLAN tag */
3298 if (skb_vlan_tag_present(skb)) {
3299 irh->priority = skb_vlan_tag_get(skb) >> 13;
3300 irh->vlan = skb_vlan_tag_get(skb) & 0xfff;
3301 }
3302
3303 if (unlikely(cmdsetup.s.timestamp))
3304 status = send_nic_timestamp_pkt(oct, &ndata, finfo);
3305 else
3306 status = octnet_send_nic_data_pkt(oct, &ndata);
3307 if (status == IQ_SEND_FAILED)
3308 goto lio_xmit_failed;
3309
3310 netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
3311
3312 if (status == IQ_SEND_STOP)
3313 stop_q(lio->netdev, q_idx);
3314
3315 netif_trans_update(netdev);
3316
3317 if (skb_shinfo(skb)->gso_size)
3318 stats->tx_done += skb_shinfo(skb)->gso_segs;
3319 else
3320 stats->tx_done++;
3321 stats->tx_tot_bytes += skb->len;
3322
3323 return NETDEV_TX_OK;
3324
3325 lio_xmit_failed:
3326 stats->tx_dropped++;
3327 netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
3328 iq_no, stats->tx_dropped);
3329 if (dptr)
3330 dma_unmap_single(&oct->pci_dev->dev, dptr,
3331 ndata.datasize, DMA_TO_DEVICE);
3332 tx_buffer_free(skb);
3333 return NETDEV_TX_OK;
3334 }
3335
3336 /** \brief Network device Tx timeout
3337 * @param netdev pointer to network device
3338 */
3339 static void liquidio_tx_timeout(struct net_device *netdev)
3340 {
3341 struct lio *lio;
3342
3343 lio = GET_LIO(netdev);
3344
3345 netif_info(lio, tx_err, lio->netdev,
3346 "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
3347 netdev->stats.tx_dropped);
3348 netif_trans_update(netdev);
3349 txqs_wake(netdev);
3350 }
3351
3352 static int liquidio_vlan_rx_add_vid(struct net_device *netdev,
3353 __be16 proto __attribute__((unused)),
3354 u16 vid)
3355 {
3356 struct lio *lio = GET_LIO(netdev);
3357 struct octeon_device *oct = lio->oct_dev;
3358 struct octnic_ctrl_pkt nctrl;
3359 int ret = 0;
3360
3361 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3362
3363 nctrl.ncmd.u64 = 0;
3364 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER;
3365 nctrl.ncmd.s.param1 = vid;
3366 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3367 nctrl.wait_time = 100;
3368 nctrl.netpndev = (u64)netdev;
3369 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3370
3371 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3372 if (ret < 0) {
3373 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3374 ret);
3375 }
3376
3377 return ret;
3378 }
3379
3380 static int liquidio_vlan_rx_kill_vid(struct net_device *netdev,
3381 __be16 proto __attribute__((unused)),
3382 u16 vid)
3383 {
3384 struct lio *lio = GET_LIO(netdev);
3385 struct octeon_device *oct = lio->oct_dev;
3386 struct octnic_ctrl_pkt nctrl;
3387 int ret = 0;
3388
3389 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3390
3391 nctrl.ncmd.u64 = 0;
3392 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER;
3393 nctrl.ncmd.s.param1 = vid;
3394 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3395 nctrl.wait_time = 100;
3396 nctrl.netpndev = (u64)netdev;
3397 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3398
3399 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3400 if (ret < 0) {
3401 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3402 ret);
3403 }
3404 return ret;
3405 }
3406
3407 /** Sending command to enable/disable RX checksum offload
3408 * @param netdev pointer to network device
3409 * @param command OCTNET_CMD_TNL_RX_CSUM_CTL
3410 * @param rx_cmd_bit OCTNET_CMD_RXCSUM_ENABLE/
3411 * OCTNET_CMD_RXCSUM_DISABLE
3412 * @returns SUCCESS or FAILURE
3413 */
3414 static int liquidio_set_rxcsum_command(struct net_device *netdev, int command,
3415 u8 rx_cmd)
3416 {
3417 struct lio *lio = GET_LIO(netdev);
3418 struct octeon_device *oct = lio->oct_dev;
3419 struct octnic_ctrl_pkt nctrl;
3420 int ret = 0;
3421
3422 nctrl.ncmd.u64 = 0;
3423 nctrl.ncmd.s.cmd = command;
3424 nctrl.ncmd.s.param1 = rx_cmd;
3425 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3426 nctrl.wait_time = 100;
3427 nctrl.netpndev = (u64)netdev;
3428 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3429
3430 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3431 if (ret < 0) {
3432 dev_err(&oct->pci_dev->dev,
3433 "DEVFLAGS RXCSUM change failed in core(ret:0x%x)\n",
3434 ret);
3435 }
3436 return ret;
3437 }
3438
3439 /** Sending command to add/delete VxLAN UDP port to firmware
3440 * @param netdev pointer to network device
3441 * @param command OCTNET_CMD_VXLAN_PORT_CONFIG
3442 * @param vxlan_port VxLAN port to be added or deleted
3443 * @param vxlan_cmd_bit OCTNET_CMD_VXLAN_PORT_ADD,
3444 * OCTNET_CMD_VXLAN_PORT_DEL
3445 * @returns SUCCESS or FAILURE
3446 */
3447 static int liquidio_vxlan_port_command(struct net_device *netdev, int command,
3448 u16 vxlan_port, u8 vxlan_cmd_bit)
3449 {
3450 struct lio *lio = GET_LIO(netdev);
3451 struct octeon_device *oct = lio->oct_dev;
3452 struct octnic_ctrl_pkt nctrl;
3453 int ret = 0;
3454
3455 nctrl.ncmd.u64 = 0;
3456 nctrl.ncmd.s.cmd = command;
3457 nctrl.ncmd.s.more = vxlan_cmd_bit;
3458 nctrl.ncmd.s.param1 = vxlan_port;
3459 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3460 nctrl.wait_time = 100;
3461 nctrl.netpndev = (u64)netdev;
3462 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3463
3464 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3465 if (ret < 0) {
3466 dev_err(&oct->pci_dev->dev,
3467 "VxLAN port add/delete failed in core (ret:0x%x)\n",
3468 ret);
3469 }
3470 return ret;
3471 }
3472
3473 /** \brief Net device fix features
3474 * @param netdev pointer to network device
3475 * @param request features requested
3476 * @returns updated features list
3477 */
3478 static netdev_features_t liquidio_fix_features(struct net_device *netdev,
3479 netdev_features_t request)
3480 {
3481 struct lio *lio = netdev_priv(netdev);
3482
3483 if ((request & NETIF_F_RXCSUM) &&
3484 !(lio->dev_capability & NETIF_F_RXCSUM))
3485 request &= ~NETIF_F_RXCSUM;
3486
3487 if ((request & NETIF_F_HW_CSUM) &&
3488 !(lio->dev_capability & NETIF_F_HW_CSUM))
3489 request &= ~NETIF_F_HW_CSUM;
3490
3491 if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
3492 request &= ~NETIF_F_TSO;
3493
3494 if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
3495 request &= ~NETIF_F_TSO6;
3496
3497 if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
3498 request &= ~NETIF_F_LRO;
3499
3500 /*Disable LRO if RXCSUM is off */
3501 if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
3502 (lio->dev_capability & NETIF_F_LRO))
3503 request &= ~NETIF_F_LRO;
3504
3505 return request;
3506 }
3507
3508 /** \brief Net device set features
3509 * @param netdev pointer to network device
3510 * @param features features to enable/disable
3511 */
3512 static int liquidio_set_features(struct net_device *netdev,
3513 netdev_features_t features)
3514 {
3515 struct lio *lio = netdev_priv(netdev);
3516
3517 if (!((netdev->features ^ features) & NETIF_F_LRO))
3518 return 0;
3519
3520 if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
3521 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
3522 OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3523 else if (!(features & NETIF_F_LRO) &&
3524 (lio->dev_capability & NETIF_F_LRO))
3525 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE,
3526 OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3527
3528 /* Sending command to firmware to enable/disable RX checksum
3529 * offload settings using ethtool
3530 */
3531 if (!(netdev->features & NETIF_F_RXCSUM) &&
3532 (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3533 (features & NETIF_F_RXCSUM))
3534 liquidio_set_rxcsum_command(netdev,
3535 OCTNET_CMD_TNL_RX_CSUM_CTL,
3536 OCTNET_CMD_RXCSUM_ENABLE);
3537 else if ((netdev->features & NETIF_F_RXCSUM) &&
3538 (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3539 !(features & NETIF_F_RXCSUM))
3540 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3541 OCTNET_CMD_RXCSUM_DISABLE);
3542
3543 return 0;
3544 }
3545
3546 static void liquidio_add_vxlan_port(struct net_device *netdev,
3547 struct udp_tunnel_info *ti)
3548 {
3549 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3550 return;
3551
3552 liquidio_vxlan_port_command(netdev,
3553 OCTNET_CMD_VXLAN_PORT_CONFIG,
3554 htons(ti->port),
3555 OCTNET_CMD_VXLAN_PORT_ADD);
3556 }
3557
3558 static void liquidio_del_vxlan_port(struct net_device *netdev,
3559 struct udp_tunnel_info *ti)
3560 {
3561 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3562 return;
3563
3564 liquidio_vxlan_port_command(netdev,
3565 OCTNET_CMD_VXLAN_PORT_CONFIG,
3566 htons(ti->port),
3567 OCTNET_CMD_VXLAN_PORT_DEL);
3568 }
3569
3570 static struct net_device_ops lionetdevops = {
3571 .ndo_open = liquidio_open,
3572 .ndo_stop = liquidio_stop,
3573 .ndo_start_xmit = liquidio_xmit,
3574 .ndo_get_stats = liquidio_get_stats,
3575 .ndo_set_mac_address = liquidio_set_mac,
3576 .ndo_set_rx_mode = liquidio_set_mcast_list,
3577 .ndo_tx_timeout = liquidio_tx_timeout,
3578
3579 .ndo_vlan_rx_add_vid = liquidio_vlan_rx_add_vid,
3580 .ndo_vlan_rx_kill_vid = liquidio_vlan_rx_kill_vid,
3581 .ndo_change_mtu = liquidio_change_mtu,
3582 .ndo_do_ioctl = liquidio_ioctl,
3583 .ndo_fix_features = liquidio_fix_features,
3584 .ndo_set_features = liquidio_set_features,
3585 .ndo_udp_tunnel_add = liquidio_add_vxlan_port,
3586 .ndo_udp_tunnel_del = liquidio_del_vxlan_port,
3587 };
3588
3589 /** \brief Entry point for the liquidio module
3590 */
3591 static int __init liquidio_init(void)
3592 {
3593 int i;
3594 struct handshake *hs;
3595
3596 init_completion(&first_stage);
3597
3598 octeon_init_device_list(conf_type);
3599
3600 if (liquidio_init_pci())
3601 return -EINVAL;
3602
3603 wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000));
3604
3605 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3606 hs = &handshake[i];
3607 if (hs->pci_dev) {
3608 wait_for_completion(&hs->init);
3609 if (!hs->init_ok) {
3610 /* init handshake failed */
3611 dev_err(&hs->pci_dev->dev,
3612 "Failed to init device\n");
3613 liquidio_deinit_pci();
3614 return -EIO;
3615 }
3616 }
3617 }
3618
3619 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3620 hs = &handshake[i];
3621 if (hs->pci_dev) {
3622 wait_for_completion_timeout(&hs->started,
3623 msecs_to_jiffies(30000));
3624 if (!hs->started_ok) {
3625 /* starter handshake failed */
3626 dev_err(&hs->pci_dev->dev,
3627 "Firmware failed to start\n");
3628 liquidio_deinit_pci();
3629 return -EIO;
3630 }
3631 }
3632 }
3633
3634 return 0;
3635 }
3636
3637 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
3638 {
3639 struct octeon_device *oct = (struct octeon_device *)buf;
3640 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
3641 int gmxport = 0;
3642 union oct_link_status *ls;
3643 int i;
3644
3645 if (recv_pkt->buffer_size[0] != sizeof(*ls)) {
3646 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
3647 recv_pkt->buffer_size[0],
3648 recv_pkt->rh.r_nic_info.gmxport);
3649 goto nic_info_err;
3650 }
3651
3652 gmxport = recv_pkt->rh.r_nic_info.gmxport;
3653 ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
3654
3655 octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
3656 for (i = 0; i < oct->ifcount; i++) {
3657 if (oct->props[i].gmxport == gmxport) {
3658 update_link_status(oct->props[i].netdev, ls);
3659 break;
3660 }
3661 }
3662
3663 nic_info_err:
3664 for (i = 0; i < recv_pkt->buffer_count; i++)
3665 recv_buffer_free(recv_pkt->buffer_ptr[i]);
3666 octeon_free_recv_info(recv_info);
3667 return 0;
3668 }
3669
3670 /**
3671 * \brief Setup network interfaces
3672 * @param octeon_dev octeon device
3673 *
3674 * Called during init time for each device. It assumes the NIC
3675 * is already up and running. The link information for each
3676 * interface is passed in link_info.
3677 */
3678 static int setup_nic_devices(struct octeon_device *octeon_dev)
3679 {
3680 struct lio *lio = NULL;
3681 struct net_device *netdev;
3682 u8 mac[6], i, j;
3683 struct octeon_soft_command *sc;
3684 struct liquidio_if_cfg_context *ctx;
3685 struct liquidio_if_cfg_resp *resp;
3686 struct octdev_props *props;
3687 int retval, num_iqueues, num_oqueues;
3688 union oct_nic_if_cfg if_cfg;
3689 unsigned int base_queue;
3690 unsigned int gmx_port_id;
3691 u32 resp_size, ctx_size, data_size;
3692 u32 ifidx_or_pfnum;
3693 struct lio_version *vdata;
3694
3695 /* This is to handle link status changes */
3696 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3697 OPCODE_NIC_INFO,
3698 lio_nic_info, octeon_dev);
3699
3700 /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
3701 * They are handled directly.
3702 */
3703 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
3704 free_netbuf);
3705
3706 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
3707 free_netsgbuf);
3708
3709 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
3710 free_netsgbuf_with_resp);
3711
3712 for (i = 0; i < octeon_dev->ifcount; i++) {
3713 resp_size = sizeof(struct liquidio_if_cfg_resp);
3714 ctx_size = sizeof(struct liquidio_if_cfg_context);
3715 data_size = sizeof(struct lio_version);
3716 sc = (struct octeon_soft_command *)
3717 octeon_alloc_soft_command(octeon_dev, data_size,
3718 resp_size, ctx_size);
3719 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
3720 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
3721 vdata = (struct lio_version *)sc->virtdptr;
3722
3723 *((u64 *)vdata) = 0;
3724 vdata->major = cpu_to_be16(LIQUIDIO_BASE_MAJOR_VERSION);
3725 vdata->minor = cpu_to_be16(LIQUIDIO_BASE_MINOR_VERSION);
3726 vdata->micro = cpu_to_be16(LIQUIDIO_BASE_MICRO_VERSION);
3727
3728 if (OCTEON_CN23XX_PF(octeon_dev)) {
3729 num_iqueues = octeon_dev->sriov_info.num_pf_rings;
3730 num_oqueues = octeon_dev->sriov_info.num_pf_rings;
3731 base_queue = octeon_dev->sriov_info.pf_srn;
3732
3733 gmx_port_id = octeon_dev->pf_num;
3734 ifidx_or_pfnum = octeon_dev->pf_num;
3735 } else {
3736 num_iqueues = CFG_GET_NUM_TXQS_NIC_IF(
3737 octeon_get_conf(octeon_dev), i);
3738 num_oqueues = CFG_GET_NUM_RXQS_NIC_IF(
3739 octeon_get_conf(octeon_dev), i);
3740 base_queue = CFG_GET_BASE_QUE_NIC_IF(
3741 octeon_get_conf(octeon_dev), i);
3742 gmx_port_id = CFG_GET_GMXID_NIC_IF(
3743 octeon_get_conf(octeon_dev), i);
3744 ifidx_or_pfnum = i;
3745 }
3746
3747 dev_dbg(&octeon_dev->pci_dev->dev,
3748 "requesting config for interface %d, iqs %d, oqs %d\n",
3749 ifidx_or_pfnum, num_iqueues, num_oqueues);
3750 WRITE_ONCE(ctx->cond, 0);
3751 ctx->octeon_id = lio_get_device_id(octeon_dev);
3752 init_waitqueue_head(&ctx->wc);
3753
3754 if_cfg.u64 = 0;
3755 if_cfg.s.num_iqueues = num_iqueues;
3756 if_cfg.s.num_oqueues = num_oqueues;
3757 if_cfg.s.base_queue = base_queue;
3758 if_cfg.s.gmx_port_id = gmx_port_id;
3759
3760 sc->iq_no = 0;
3761
3762 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
3763 OPCODE_NIC_IF_CFG, 0,
3764 if_cfg.u64, 0);
3765
3766 sc->callback = if_cfg_callback;
3767 sc->callback_arg = sc;
3768 sc->wait_time = 3000;
3769
3770 retval = octeon_send_soft_command(octeon_dev, sc);
3771 if (retval == IQ_SEND_FAILED) {
3772 dev_err(&octeon_dev->pci_dev->dev,
3773 "iq/oq config failed status: %x\n",
3774 retval);
3775 /* Soft instr is freed by driver in case of failure. */
3776 goto setup_nic_dev_fail;
3777 }
3778
3779 /* Sleep on a wait queue till the cond flag indicates that the
3780 * response arrived or timed-out.
3781 */
3782 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) {
3783 dev_err(&octeon_dev->pci_dev->dev, "Wait interrupted\n");
3784 goto setup_nic_wait_intr;
3785 }
3786
3787 retval = resp->status;
3788 if (retval) {
3789 dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
3790 goto setup_nic_dev_fail;
3791 }
3792
3793 octeon_swap_8B_data((u64 *)(&resp->cfg_info),
3794 (sizeof(struct liquidio_if_cfg_info)) >> 3);
3795
3796 num_iqueues = hweight64(resp->cfg_info.iqmask);
3797 num_oqueues = hweight64(resp->cfg_info.oqmask);
3798
3799 if (!(num_iqueues) || !(num_oqueues)) {
3800 dev_err(&octeon_dev->pci_dev->dev,
3801 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
3802 resp->cfg_info.iqmask,
3803 resp->cfg_info.oqmask);
3804 goto setup_nic_dev_fail;
3805 }
3806 dev_dbg(&octeon_dev->pci_dev->dev,
3807 "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
3808 i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
3809 num_iqueues, num_oqueues);
3810 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
3811
3812 if (!netdev) {
3813 dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
3814 goto setup_nic_dev_fail;
3815 }
3816
3817 SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev);
3818
3819 if (num_iqueues > 1)
3820 lionetdevops.ndo_select_queue = select_q;
3821
3822 /* Associate the routines that will handle different
3823 * netdev tasks.
3824 */
3825 netdev->netdev_ops = &lionetdevops;
3826
3827 lio = GET_LIO(netdev);
3828
3829 memset(lio, 0, sizeof(struct lio));
3830
3831 lio->ifidx = ifidx_or_pfnum;
3832
3833 props = &octeon_dev->props[i];
3834 props->gmxport = resp->cfg_info.linfo.gmxport;
3835 props->netdev = netdev;
3836
3837 lio->linfo.num_rxpciq = num_oqueues;
3838 lio->linfo.num_txpciq = num_iqueues;
3839 for (j = 0; j < num_oqueues; j++) {
3840 lio->linfo.rxpciq[j].u64 =
3841 resp->cfg_info.linfo.rxpciq[j].u64;
3842 }
3843 for (j = 0; j < num_iqueues; j++) {
3844 lio->linfo.txpciq[j].u64 =
3845 resp->cfg_info.linfo.txpciq[j].u64;
3846 }
3847 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
3848 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
3849 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
3850
3851 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3852
3853 if (OCTEON_CN23XX_PF(octeon_dev) ||
3854 OCTEON_CN6XXX(octeon_dev)) {
3855 lio->dev_capability = NETIF_F_HIGHDMA
3856 | NETIF_F_IP_CSUM
3857 | NETIF_F_IPV6_CSUM
3858 | NETIF_F_SG | NETIF_F_RXCSUM
3859 | NETIF_F_GRO
3860 | NETIF_F_TSO | NETIF_F_TSO6
3861 | NETIF_F_LRO;
3862 }
3863 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
3864
3865 /* Copy of transmit encapsulation capabilities:
3866 * TSO, TSO6, Checksums for this device
3867 */
3868 lio->enc_dev_capability = NETIF_F_IP_CSUM
3869 | NETIF_F_IPV6_CSUM
3870 | NETIF_F_GSO_UDP_TUNNEL
3871 | NETIF_F_HW_CSUM | NETIF_F_SG
3872 | NETIF_F_RXCSUM
3873 | NETIF_F_TSO | NETIF_F_TSO6
3874 | NETIF_F_LRO;
3875
3876 netdev->hw_enc_features = (lio->enc_dev_capability &
3877 ~NETIF_F_LRO);
3878
3879 lio->dev_capability |= NETIF_F_GSO_UDP_TUNNEL;
3880
3881 netdev->vlan_features = lio->dev_capability;
3882 /* Add any unchangeable hw features */
3883 lio->dev_capability |= NETIF_F_HW_VLAN_CTAG_FILTER |
3884 NETIF_F_HW_VLAN_CTAG_RX |
3885 NETIF_F_HW_VLAN_CTAG_TX;
3886
3887 netdev->features = (lio->dev_capability & ~NETIF_F_LRO);
3888
3889 netdev->hw_features = lio->dev_capability;
3890 /*HW_VLAN_RX and HW_VLAN_FILTER is always on*/
3891 netdev->hw_features = netdev->hw_features &
3892 ~NETIF_F_HW_VLAN_CTAG_RX;
3893
3894 /* Point to the properties for octeon device to which this
3895 * interface belongs.
3896 */
3897 lio->oct_dev = octeon_dev;
3898 lio->octprops = props;
3899 lio->netdev = netdev;
3900
3901 dev_dbg(&octeon_dev->pci_dev->dev,
3902 "if%d gmx: %d hw_addr: 0x%llx\n", i,
3903 lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
3904
3905 /* 64-bit swap required on LE machines */
3906 octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
3907 for (j = 0; j < 6; j++)
3908 mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
3909
3910 /* Copy MAC Address to OS network device structure */
3911
3912 ether_addr_copy(netdev->dev_addr, mac);
3913
3914 /* By default all interfaces on a single Octeon uses the same
3915 * tx and rx queues
3916 */
3917 lio->txq = lio->linfo.txpciq[0].s.q_no;
3918 lio->rxq = lio->linfo.rxpciq[0].s.q_no;
3919 if (setup_io_queues(octeon_dev, i)) {
3920 dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
3921 goto setup_nic_dev_fail;
3922 }
3923
3924 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
3925
3926 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
3927 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
3928
3929 if (setup_glists(octeon_dev, lio, num_iqueues)) {
3930 dev_err(&octeon_dev->pci_dev->dev,
3931 "Gather list allocation failed\n");
3932 goto setup_nic_dev_fail;
3933 }
3934
3935 /* Register ethtool support */
3936 liquidio_set_ethtool_ops(netdev);
3937 if (lio->oct_dev->chip_id == OCTEON_CN23XX_PF_VID)
3938 octeon_dev->priv_flags = OCT_PRIV_FLAG_DEFAULT;
3939 else
3940 octeon_dev->priv_flags = 0x0;
3941
3942 if (netdev->features & NETIF_F_LRO)
3943 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
3944 OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3945
3946 liquidio_set_feature(netdev, OCTNET_CMD_ENABLE_VLAN_FILTER, 0);
3947
3948 if ((debug != -1) && (debug & NETIF_MSG_HW))
3949 liquidio_set_feature(netdev,
3950 OCTNET_CMD_VERBOSE_ENABLE, 0);
3951
3952 if (setup_link_status_change_wq(netdev))
3953 goto setup_nic_dev_fail;
3954
3955 /* Register the network device with the OS */
3956 if (register_netdev(netdev)) {
3957 dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
3958 goto setup_nic_dev_fail;
3959 }
3960
3961 dev_dbg(&octeon_dev->pci_dev->dev,
3962 "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
3963 i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
3964 netif_carrier_off(netdev);
3965 lio->link_changes++;
3966
3967 ifstate_set(lio, LIO_IFSTATE_REGISTERED);
3968
3969 /* Sending command to firmware to enable Rx checksum offload
3970 * by default at the time of setup of Liquidio driver for
3971 * this device
3972 */
3973 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3974 OCTNET_CMD_RXCSUM_ENABLE);
3975 liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL,
3976 OCTNET_CMD_TXCSUM_ENABLE);
3977
3978 dev_dbg(&octeon_dev->pci_dev->dev,
3979 "NIC ifidx:%d Setup successful\n", i);
3980
3981 octeon_free_soft_command(octeon_dev, sc);
3982 }
3983
3984 return 0;
3985
3986 setup_nic_dev_fail:
3987
3988 octeon_free_soft_command(octeon_dev, sc);
3989
3990 setup_nic_wait_intr:
3991
3992 while (i--) {
3993 dev_err(&octeon_dev->pci_dev->dev,
3994 "NIC ifidx:%d Setup failed\n", i);
3995 liquidio_destroy_nic_device(octeon_dev, i);
3996 }
3997 return -ENODEV;
3998 }
3999
4000 /**
4001 * \brief initialize the NIC
4002 * @param oct octeon device
4003 *
4004 * This initialization routine is called once the Octeon device application is
4005 * up and running
4006 */
4007 static int liquidio_init_nic_module(struct octeon_device *oct)
4008 {
4009 struct oct_intrmod_cfg *intrmod_cfg;
4010 int i, retval = 0;
4011 int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct));
4012
4013 dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
4014
4015 /* only default iq and oq were initialized
4016 * initialize the rest as well
4017 */
4018 /* run port_config command for each port */
4019 oct->ifcount = num_nic_ports;
4020
4021 memset(oct->props, 0, sizeof(struct octdev_props) * num_nic_ports);
4022
4023 for (i = 0; i < MAX_OCTEON_LINKS; i++)
4024 oct->props[i].gmxport = -1;
4025
4026 retval = setup_nic_devices(oct);
4027 if (retval) {
4028 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
4029 goto octnet_init_failure;
4030 }
4031
4032 liquidio_ptp_init(oct);
4033
4034 /* Initialize interrupt moderation params */
4035 intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
4036 intrmod_cfg->rx_enable = 1;
4037 intrmod_cfg->check_intrvl = LIO_INTRMOD_CHECK_INTERVAL;
4038 intrmod_cfg->maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
4039 intrmod_cfg->minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
4040 intrmod_cfg->rx_maxcnt_trigger = LIO_INTRMOD_RXMAXCNT_TRIGGER;
4041 intrmod_cfg->rx_maxtmr_trigger = LIO_INTRMOD_RXMAXTMR_TRIGGER;
4042 intrmod_cfg->rx_mintmr_trigger = LIO_INTRMOD_RXMINTMR_TRIGGER;
4043 intrmod_cfg->rx_mincnt_trigger = LIO_INTRMOD_RXMINCNT_TRIGGER;
4044 intrmod_cfg->tx_enable = 1;
4045 intrmod_cfg->tx_maxcnt_trigger = LIO_INTRMOD_TXMAXCNT_TRIGGER;
4046 intrmod_cfg->tx_mincnt_trigger = LIO_INTRMOD_TXMINCNT_TRIGGER;
4047 intrmod_cfg->rx_frames = CFG_GET_OQ_INTR_PKT(octeon_get_conf(oct));
4048 intrmod_cfg->rx_usecs = CFG_GET_OQ_INTR_TIME(octeon_get_conf(oct));
4049 intrmod_cfg->tx_frames = CFG_GET_IQ_INTR_PKT(octeon_get_conf(oct));
4050 dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
4051
4052 return retval;
4053
4054 octnet_init_failure:
4055
4056 oct->ifcount = 0;
4057
4058 return retval;
4059 }
4060
4061 /**
4062 * \brief starter callback that invokes the remaining initialization work after
4063 * the NIC is up and running.
4064 * @param octptr work struct work_struct
4065 */
4066 static void nic_starter(struct work_struct *work)
4067 {
4068 struct octeon_device *oct;
4069 struct cavium_wk *wk = (struct cavium_wk *)work;
4070
4071 oct = (struct octeon_device *)wk->ctxptr;
4072
4073 if (atomic_read(&oct->status) == OCT_DEV_RUNNING)
4074 return;
4075
4076 /* If the status of the device is CORE_OK, the core
4077 * application has reported its application type. Call
4078 * any registered handlers now and move to the RUNNING
4079 * state.
4080 */
4081 if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) {
4082 schedule_delayed_work(&oct->nic_poll_work.work,
4083 LIQUIDIO_STARTER_POLL_INTERVAL_MS);
4084 return;
4085 }
4086
4087 atomic_set(&oct->status, OCT_DEV_RUNNING);
4088
4089 if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) {
4090 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n");
4091
4092 if (liquidio_init_nic_module(oct))
4093 dev_err(&oct->pci_dev->dev, "NIC initialization failed\n");
4094 else
4095 handshake[oct->octeon_id].started_ok = 1;
4096 } else {
4097 dev_err(&oct->pci_dev->dev,
4098 "Unexpected application running on NIC (%d). Check firmware.\n",
4099 oct->app_mode);
4100 }
4101
4102 complete(&handshake[oct->octeon_id].started);
4103 }
4104
4105 /**
4106 * \brief Device initialization for each Octeon device that is probed
4107 * @param octeon_dev octeon device
4108 */
4109 static int octeon_device_init(struct octeon_device *octeon_dev)
4110 {
4111 int j, ret;
4112 int fw_loaded = 0;
4113 char bootcmd[] = "\n";
4114 struct octeon_device_priv *oct_priv =
4115 (struct octeon_device_priv *)octeon_dev->priv;
4116 atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE);
4117
4118 /* Enable access to the octeon device and make its DMA capability
4119 * known to the OS.
4120 */
4121 if (octeon_pci_os_setup(octeon_dev))
4122 return 1;
4123
4124 /* Identify the Octeon type and map the BAR address space. */
4125 if (octeon_chip_specific_setup(octeon_dev)) {
4126 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n");
4127 return 1;
4128 }
4129
4130 atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE);
4131
4132 octeon_dev->app_mode = CVM_DRV_INVALID_APP;
4133
4134 if (OCTEON_CN23XX_PF(octeon_dev)) {
4135 if (!cn23xx_fw_loaded(octeon_dev)) {
4136 fw_loaded = 0;
4137 /* Do a soft reset of the Octeon device. */
4138 if (octeon_dev->fn_list.soft_reset(octeon_dev))
4139 return 1;
4140 /* things might have changed */
4141 if (!cn23xx_fw_loaded(octeon_dev))
4142 fw_loaded = 0;
4143 else
4144 fw_loaded = 1;
4145 } else {
4146 fw_loaded = 1;
4147 }
4148 } else if (octeon_dev->fn_list.soft_reset(octeon_dev)) {
4149 return 1;
4150 }
4151
4152 /* Initialize the dispatch mechanism used to push packets arriving on
4153 * Octeon Output queues.
4154 */
4155 if (octeon_init_dispatch_list(octeon_dev))
4156 return 1;
4157
4158 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
4159 OPCODE_NIC_CORE_DRV_ACTIVE,
4160 octeon_core_drv_init,
4161 octeon_dev);
4162
4163 INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter);
4164 octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev;
4165 schedule_delayed_work(&octeon_dev->nic_poll_work.work,
4166 LIQUIDIO_STARTER_POLL_INTERVAL_MS);
4167
4168 atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE);
4169
4170 octeon_set_io_queues_off(octeon_dev);
4171
4172 if (OCTEON_CN23XX_PF(octeon_dev)) {
4173 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
4174 if (ret) {
4175 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Failed to configure device registers\n");
4176 return ret;
4177 }
4178 }
4179
4180 /* Initialize soft command buffer pool
4181 */
4182 if (octeon_setup_sc_buffer_pool(octeon_dev)) {
4183 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n");
4184 return 1;
4185 }
4186 atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
4187
4188 /* Setup the data structures that manage this Octeon's Input queues. */
4189 if (octeon_setup_instr_queues(octeon_dev)) {
4190 dev_err(&octeon_dev->pci_dev->dev,
4191 "instruction queue initialization failed\n");
4192 /* On error, release any previously allocated queues */
4193 for (j = 0; j < octeon_dev->num_iqs; j++)
4194 octeon_delete_instr_queue(octeon_dev, j);
4195 return 1;
4196 }
4197 atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
4198
4199 /* Initialize lists to manage the requests of different types that
4200 * arrive from user & kernel applications for this octeon device.
4201 */
4202 if (octeon_setup_response_list(octeon_dev)) {
4203 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n");
4204 return 1;
4205 }
4206 atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE);
4207
4208 if (octeon_setup_output_queues(octeon_dev)) {
4209 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n");
4210 /* Release any previously allocated queues */
4211 for (j = 0; j < octeon_dev->num_oqs; j++)
4212 octeon_delete_droq(octeon_dev, j);
4213 return 1;
4214 }
4215
4216 atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE);
4217
4218 if (OCTEON_CN23XX_PF(octeon_dev)) {
4219 if (octeon_allocate_ioq_vector(octeon_dev)) {
4220 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: ioq vector allocation failed\n");
4221 return 1;
4222 }
4223
4224 } else {
4225 /* The input and output queue registers were setup earlier (the
4226 * queues were not enabled). Any additional registers
4227 * that need to be programmed should be done now.
4228 */
4229 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
4230 if (ret) {
4231 dev_err(&octeon_dev->pci_dev->dev,
4232 "Failed to configure device registers\n");
4233 return ret;
4234 }
4235 }
4236
4237 /* Initialize the tasklet that handles output queue packet processing.*/
4238 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n");
4239 tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh,
4240 (unsigned long)octeon_dev);
4241
4242 /* Setup the interrupt handler and record the INT SUM register address
4243 */
4244 if (octeon_setup_interrupt(octeon_dev))
4245 return 1;
4246
4247 /* Enable Octeon device interrupts */
4248 octeon_dev->fn_list.enable_interrupt(octeon_dev, OCTEON_ALL_INTR);
4249
4250 /* Enable the input and output queues for this Octeon device */
4251 ret = octeon_dev->fn_list.enable_io_queues(octeon_dev);
4252 if (ret) {
4253 dev_err(&octeon_dev->pci_dev->dev, "Failed to enable input/output queues");
4254 return ret;
4255 }
4256
4257 atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE);
4258
4259 if ((!OCTEON_CN23XX_PF(octeon_dev)) || !fw_loaded) {
4260 dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n");
4261 if (!ddr_timeout) {
4262 dev_info(&octeon_dev->pci_dev->dev,
4263 "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n");
4264 }
4265
4266 schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS);
4267
4268 /* Wait for the octeon to initialize DDR after the soft-reset.*/
4269 while (!ddr_timeout) {
4270 set_current_state(TASK_INTERRUPTIBLE);
4271 if (schedule_timeout(HZ / 10)) {
4272 /* user probably pressed Control-C */
4273 return 1;
4274 }
4275 }
4276 ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout);
4277 if (ret) {
4278 dev_err(&octeon_dev->pci_dev->dev,
4279 "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n",
4280 ret);
4281 return 1;
4282 }
4283
4284 if (octeon_wait_for_bootloader(octeon_dev, 1000)) {
4285 dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n");
4286 return 1;
4287 }
4288
4289 /* Divert uboot to take commands from host instead. */
4290 ret = octeon_console_send_cmd(octeon_dev, bootcmd, 50);
4291
4292 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n");
4293 ret = octeon_init_consoles(octeon_dev);
4294 if (ret) {
4295 dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n");
4296 return 1;
4297 }
4298 ret = octeon_add_console(octeon_dev, 0);
4299 if (ret) {
4300 dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n");
4301 return 1;
4302 }
4303
4304 atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE);
4305
4306 dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n");
4307 ret = load_firmware(octeon_dev);
4308 if (ret) {
4309 dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n");
4310 return 1;
4311 }
4312 /* set bit 1 of SLI_SCRATCH_1 to indicate that firmware is
4313 * loaded
4314 */
4315 if (OCTEON_CN23XX_PF(octeon_dev))
4316 octeon_write_csr64(octeon_dev, CN23XX_SLI_SCRATCH1,
4317 2ULL);
4318 }
4319
4320 handshake[octeon_dev->octeon_id].init_ok = 1;
4321 complete(&handshake[octeon_dev->octeon_id].init);
4322
4323 atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK);
4324
4325 /* Send Credit for Octeon Output queues. Credits are always sent after
4326 * the output queue is enabled.
4327 */
4328 for (j = 0; j < octeon_dev->num_oqs; j++)
4329 writel(octeon_dev->droq[j]->max_count,
4330 octeon_dev->droq[j]->pkts_credit_reg);
4331
4332 /* Packets can start arriving on the output queues from this point. */
4333 return 0;
4334 }
4335
4336 /**
4337 * \brief Exits the module
4338 */
4339 static void __exit liquidio_exit(void)
4340 {
4341 liquidio_deinit_pci();
4342
4343 pr_info("LiquidIO network module is now unloaded\n");
4344 }
4345
4346 module_init(liquidio_init);
4347 module_exit(liquidio_exit);
This page took 0.140569 seconds and 5 git commands to generate.