Merge remote-tracking branch 'battery/for-next'
[deliverable/linux.git] / drivers / net / ethernet / cavium / liquidio / octeon_device.c
1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2015 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more
17 * details.
18 *
19 * This file may also be available under a different license from Cavium.
20 * Contact Cavium, Inc. for more information
21 **********************************************************************/
22 #include <linux/pci.h>
23 #include <linux/netdevice.h>
24 #include <linux/vmalloc.h>
25 #include "liquidio_common.h"
26 #include "octeon_droq.h"
27 #include "octeon_iq.h"
28 #include "response_manager.h"
29 #include "octeon_device.h"
30 #include "octeon_main.h"
31 #include "octeon_network.h"
32 #include "cn66xx_regs.h"
33 #include "cn66xx_device.h"
34 #include "cn23xx_pf_device.h"
35
36 /** Default configuration
37 * for CN66XX OCTEON Models.
38 */
39 static struct octeon_config default_cn66xx_conf = {
40 .card_type = LIO_210SV,
41 .card_name = LIO_210SV_NAME,
42
43 /** IQ attributes */
44 .iq = {
45 .max_iqs = CN6XXX_CFG_IO_QUEUES,
46 .pending_list_size =
47 (CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
48 .instr_type = OCTEON_64BYTE_INSTR,
49 .db_min = CN6XXX_DB_MIN,
50 .db_timeout = CN6XXX_DB_TIMEOUT,
51 }
52 ,
53
54 /** OQ attributes */
55 .oq = {
56 .max_oqs = CN6XXX_CFG_IO_QUEUES,
57 .info_ptr = OCTEON_OQ_INFOPTR_MODE,
58 .refill_threshold = CN6XXX_OQ_REFIL_THRESHOLD,
59 .oq_intr_pkt = CN6XXX_OQ_INTR_PKT,
60 .oq_intr_time = CN6XXX_OQ_INTR_TIME,
61 .pkts_per_intr = CN6XXX_OQ_PKTSPER_INTR,
62 }
63 ,
64
65 .num_nic_ports = DEFAULT_NUM_NIC_PORTS_66XX,
66 .num_def_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
67 .num_def_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
68 .def_rx_buf_size = CN6XXX_OQ_BUF_SIZE,
69
70 /* For ethernet interface 0: Port cfg Attributes */
71 .nic_if_cfg[0] = {
72 /* Max Txqs: Half for each of the two ports :max_iq/2 */
73 .max_txqs = MAX_TXQS_PER_INTF,
74
75 /* Actual configured value. Range could be: 1...max_txqs */
76 .num_txqs = DEF_TXQS_PER_INTF,
77
78 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
79 .max_rxqs = MAX_RXQS_PER_INTF,
80
81 /* Actual configured value. Range could be: 1...max_rxqs */
82 .num_rxqs = DEF_RXQS_PER_INTF,
83
84 /* Num of desc for rx rings */
85 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
86
87 /* Num of desc for tx rings */
88 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
89
90 /* SKB size, We need not change buf size even for Jumbo frames.
91 * Octeon can send jumbo frames in 4 consecutive descriptors,
92 */
93 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
94
95 .base_queue = BASE_QUEUE_NOT_REQUESTED,
96
97 .gmx_port_id = 0,
98 },
99
100 .nic_if_cfg[1] = {
101 /* Max Txqs: Half for each of the two ports :max_iq/2 */
102 .max_txqs = MAX_TXQS_PER_INTF,
103
104 /* Actual configured value. Range could be: 1...max_txqs */
105 .num_txqs = DEF_TXQS_PER_INTF,
106
107 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
108 .max_rxqs = MAX_RXQS_PER_INTF,
109
110 /* Actual configured value. Range could be: 1...max_rxqs */
111 .num_rxqs = DEF_RXQS_PER_INTF,
112
113 /* Num of desc for rx rings */
114 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
115
116 /* Num of desc for tx rings */
117 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
118
119 /* SKB size, We need not change buf size even for Jumbo frames.
120 * Octeon can send jumbo frames in 4 consecutive descriptors,
121 */
122 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
123
124 .base_queue = BASE_QUEUE_NOT_REQUESTED,
125
126 .gmx_port_id = 1,
127 },
128
129 /** Miscellaneous attributes */
130 .misc = {
131 /* Host driver link query interval */
132 .oct_link_query_interval = 100,
133
134 /* Octeon link query interval */
135 .host_link_query_interval = 500,
136
137 .enable_sli_oq_bp = 0,
138
139 /* Control queue group */
140 .ctrlq_grp = 1,
141 }
142 ,
143 };
144
145 /** Default configuration
146 * for CN68XX OCTEON Model.
147 */
148
149 static struct octeon_config default_cn68xx_conf = {
150 .card_type = LIO_410NV,
151 .card_name = LIO_410NV_NAME,
152
153 /** IQ attributes */
154 .iq = {
155 .max_iqs = CN6XXX_CFG_IO_QUEUES,
156 .pending_list_size =
157 (CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
158 .instr_type = OCTEON_64BYTE_INSTR,
159 .db_min = CN6XXX_DB_MIN,
160 .db_timeout = CN6XXX_DB_TIMEOUT,
161 }
162 ,
163
164 /** OQ attributes */
165 .oq = {
166 .max_oqs = CN6XXX_CFG_IO_QUEUES,
167 .info_ptr = OCTEON_OQ_INFOPTR_MODE,
168 .refill_threshold = CN6XXX_OQ_REFIL_THRESHOLD,
169 .oq_intr_pkt = CN6XXX_OQ_INTR_PKT,
170 .oq_intr_time = CN6XXX_OQ_INTR_TIME,
171 .pkts_per_intr = CN6XXX_OQ_PKTSPER_INTR,
172 }
173 ,
174
175 .num_nic_ports = DEFAULT_NUM_NIC_PORTS_68XX,
176 .num_def_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
177 .num_def_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
178 .def_rx_buf_size = CN6XXX_OQ_BUF_SIZE,
179
180 .nic_if_cfg[0] = {
181 /* Max Txqs: Half for each of the two ports :max_iq/2 */
182 .max_txqs = MAX_TXQS_PER_INTF,
183
184 /* Actual configured value. Range could be: 1...max_txqs */
185 .num_txqs = DEF_TXQS_PER_INTF,
186
187 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
188 .max_rxqs = MAX_RXQS_PER_INTF,
189
190 /* Actual configured value. Range could be: 1...max_rxqs */
191 .num_rxqs = DEF_RXQS_PER_INTF,
192
193 /* Num of desc for rx rings */
194 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
195
196 /* Num of desc for tx rings */
197 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
198
199 /* SKB size, We need not change buf size even for Jumbo frames.
200 * Octeon can send jumbo frames in 4 consecutive descriptors,
201 */
202 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
203
204 .base_queue = BASE_QUEUE_NOT_REQUESTED,
205
206 .gmx_port_id = 0,
207 },
208
209 .nic_if_cfg[1] = {
210 /* Max Txqs: Half for each of the two ports :max_iq/2 */
211 .max_txqs = MAX_TXQS_PER_INTF,
212
213 /* Actual configured value. Range could be: 1...max_txqs */
214 .num_txqs = DEF_TXQS_PER_INTF,
215
216 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
217 .max_rxqs = MAX_RXQS_PER_INTF,
218
219 /* Actual configured value. Range could be: 1...max_rxqs */
220 .num_rxqs = DEF_RXQS_PER_INTF,
221
222 /* Num of desc for rx rings */
223 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
224
225 /* Num of desc for tx rings */
226 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
227
228 /* SKB size, We need not change buf size even for Jumbo frames.
229 * Octeon can send jumbo frames in 4 consecutive descriptors,
230 */
231 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
232
233 .base_queue = BASE_QUEUE_NOT_REQUESTED,
234
235 .gmx_port_id = 1,
236 },
237
238 .nic_if_cfg[2] = {
239 /* Max Txqs: Half for each of the two ports :max_iq/2 */
240 .max_txqs = MAX_TXQS_PER_INTF,
241
242 /* Actual configured value. Range could be: 1...max_txqs */
243 .num_txqs = DEF_TXQS_PER_INTF,
244
245 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
246 .max_rxqs = MAX_RXQS_PER_INTF,
247
248 /* Actual configured value. Range could be: 1...max_rxqs */
249 .num_rxqs = DEF_RXQS_PER_INTF,
250
251 /* Num of desc for rx rings */
252 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
253
254 /* Num of desc for tx rings */
255 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
256
257 /* SKB size, We need not change buf size even for Jumbo frames.
258 * Octeon can send jumbo frames in 4 consecutive descriptors,
259 */
260 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
261
262 .base_queue = BASE_QUEUE_NOT_REQUESTED,
263
264 .gmx_port_id = 2,
265 },
266
267 .nic_if_cfg[3] = {
268 /* Max Txqs: Half for each of the two ports :max_iq/2 */
269 .max_txqs = MAX_TXQS_PER_INTF,
270
271 /* Actual configured value. Range could be: 1...max_txqs */
272 .num_txqs = DEF_TXQS_PER_INTF,
273
274 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
275 .max_rxqs = MAX_RXQS_PER_INTF,
276
277 /* Actual configured value. Range could be: 1...max_rxqs */
278 .num_rxqs = DEF_RXQS_PER_INTF,
279
280 /* Num of desc for rx rings */
281 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
282
283 /* Num of desc for tx rings */
284 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
285
286 /* SKB size, We need not change buf size even for Jumbo frames.
287 * Octeon can send jumbo frames in 4 consecutive descriptors,
288 */
289 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
290
291 .base_queue = BASE_QUEUE_NOT_REQUESTED,
292
293 .gmx_port_id = 3,
294 },
295
296 /** Miscellaneous attributes */
297 .misc = {
298 /* Host driver link query interval */
299 .oct_link_query_interval = 100,
300
301 /* Octeon link query interval */
302 .host_link_query_interval = 500,
303
304 .enable_sli_oq_bp = 0,
305
306 /* Control queue group */
307 .ctrlq_grp = 1,
308 }
309 ,
310 };
311
312 /** Default configuration
313 * for CN68XX OCTEON Model.
314 */
315 static struct octeon_config default_cn68xx_210nv_conf = {
316 .card_type = LIO_210NV,
317 .card_name = LIO_210NV_NAME,
318
319 /** IQ attributes */
320
321 .iq = {
322 .max_iqs = CN6XXX_CFG_IO_QUEUES,
323 .pending_list_size =
324 (CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
325 .instr_type = OCTEON_64BYTE_INSTR,
326 .db_min = CN6XXX_DB_MIN,
327 .db_timeout = CN6XXX_DB_TIMEOUT,
328 }
329 ,
330
331 /** OQ attributes */
332 .oq = {
333 .max_oqs = CN6XXX_CFG_IO_QUEUES,
334 .info_ptr = OCTEON_OQ_INFOPTR_MODE,
335 .refill_threshold = CN6XXX_OQ_REFIL_THRESHOLD,
336 .oq_intr_pkt = CN6XXX_OQ_INTR_PKT,
337 .oq_intr_time = CN6XXX_OQ_INTR_TIME,
338 .pkts_per_intr = CN6XXX_OQ_PKTSPER_INTR,
339 }
340 ,
341
342 .num_nic_ports = DEFAULT_NUM_NIC_PORTS_68XX_210NV,
343 .num_def_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
344 .num_def_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
345 .def_rx_buf_size = CN6XXX_OQ_BUF_SIZE,
346
347 .nic_if_cfg[0] = {
348 /* Max Txqs: Half for each of the two ports :max_iq/2 */
349 .max_txqs = MAX_TXQS_PER_INTF,
350
351 /* Actual configured value. Range could be: 1...max_txqs */
352 .num_txqs = DEF_TXQS_PER_INTF,
353
354 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
355 .max_rxqs = MAX_RXQS_PER_INTF,
356
357 /* Actual configured value. Range could be: 1...max_rxqs */
358 .num_rxqs = DEF_RXQS_PER_INTF,
359
360 /* Num of desc for rx rings */
361 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
362
363 /* Num of desc for tx rings */
364 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
365
366 /* SKB size, We need not change buf size even for Jumbo frames.
367 * Octeon can send jumbo frames in 4 consecutive descriptors,
368 */
369 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
370
371 .base_queue = BASE_QUEUE_NOT_REQUESTED,
372
373 .gmx_port_id = 0,
374 },
375
376 .nic_if_cfg[1] = {
377 /* Max Txqs: Half for each of the two ports :max_iq/2 */
378 .max_txqs = MAX_TXQS_PER_INTF,
379
380 /* Actual configured value. Range could be: 1...max_txqs */
381 .num_txqs = DEF_TXQS_PER_INTF,
382
383 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
384 .max_rxqs = MAX_RXQS_PER_INTF,
385
386 /* Actual configured value. Range could be: 1...max_rxqs */
387 .num_rxqs = DEF_RXQS_PER_INTF,
388
389 /* Num of desc for rx rings */
390 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
391
392 /* Num of desc for tx rings */
393 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
394
395 /* SKB size, We need not change buf size even for Jumbo frames.
396 * Octeon can send jumbo frames in 4 consecutive descriptors,
397 */
398 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
399
400 .base_queue = BASE_QUEUE_NOT_REQUESTED,
401
402 .gmx_port_id = 1,
403 },
404
405 /** Miscellaneous attributes */
406 .misc = {
407 /* Host driver link query interval */
408 .oct_link_query_interval = 100,
409
410 /* Octeon link query interval */
411 .host_link_query_interval = 500,
412
413 .enable_sli_oq_bp = 0,
414
415 /* Control queue group */
416 .ctrlq_grp = 1,
417 }
418 ,
419 };
420
421 static struct octeon_config default_cn23xx_conf = {
422 .card_type = LIO_23XX,
423 .card_name = LIO_23XX_NAME,
424 /** IQ attributes */
425 .iq = {
426 .max_iqs = CN23XX_CFG_IO_QUEUES,
427 .pending_list_size = (CN23XX_MAX_IQ_DESCRIPTORS *
428 CN23XX_CFG_IO_QUEUES),
429 .instr_type = OCTEON_64BYTE_INSTR,
430 .db_min = CN23XX_DB_MIN,
431 .db_timeout = CN23XX_DB_TIMEOUT,
432 .iq_intr_pkt = CN23XX_DEF_IQ_INTR_THRESHOLD,
433 },
434
435 /** OQ attributes */
436 .oq = {
437 .max_oqs = CN23XX_CFG_IO_QUEUES,
438 .info_ptr = OCTEON_OQ_INFOPTR_MODE,
439 .pkts_per_intr = CN23XX_OQ_PKTSPER_INTR,
440 .refill_threshold = CN23XX_OQ_REFIL_THRESHOLD,
441 .oq_intr_pkt = CN23XX_OQ_INTR_PKT,
442 .oq_intr_time = CN23XX_OQ_INTR_TIME,
443 },
444
445 .num_nic_ports = DEFAULT_NUM_NIC_PORTS_23XX,
446 .num_def_rx_descs = CN23XX_MAX_OQ_DESCRIPTORS,
447 .num_def_tx_descs = CN23XX_MAX_IQ_DESCRIPTORS,
448 .def_rx_buf_size = CN23XX_OQ_BUF_SIZE,
449
450 /* For ethernet interface 0: Port cfg Attributes */
451 .nic_if_cfg[0] = {
452 /* Max Txqs: Half for each of the two ports :max_iq/2 */
453 .max_txqs = MAX_TXQS_PER_INTF,
454
455 /* Actual configured value. Range could be: 1...max_txqs */
456 .num_txqs = DEF_TXQS_PER_INTF,
457
458 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
459 .max_rxqs = MAX_RXQS_PER_INTF,
460
461 /* Actual configured value. Range could be: 1...max_rxqs */
462 .num_rxqs = DEF_RXQS_PER_INTF,
463
464 /* Num of desc for rx rings */
465 .num_rx_descs = CN23XX_MAX_OQ_DESCRIPTORS,
466
467 /* Num of desc for tx rings */
468 .num_tx_descs = CN23XX_MAX_IQ_DESCRIPTORS,
469
470 /* SKB size, We need not change buf size even for Jumbo frames.
471 * Octeon can send jumbo frames in 4 consecutive descriptors,
472 */
473 .rx_buf_size = CN23XX_OQ_BUF_SIZE,
474
475 .base_queue = BASE_QUEUE_NOT_REQUESTED,
476
477 .gmx_port_id = 0,
478 },
479
480 .nic_if_cfg[1] = {
481 /* Max Txqs: Half for each of the two ports :max_iq/2 */
482 .max_txqs = MAX_TXQS_PER_INTF,
483
484 /* Actual configured value. Range could be: 1...max_txqs */
485 .num_txqs = DEF_TXQS_PER_INTF,
486
487 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
488 .max_rxqs = MAX_RXQS_PER_INTF,
489
490 /* Actual configured value. Range could be: 1...max_rxqs */
491 .num_rxqs = DEF_RXQS_PER_INTF,
492
493 /* Num of desc for rx rings */
494 .num_rx_descs = CN23XX_MAX_OQ_DESCRIPTORS,
495
496 /* Num of desc for tx rings */
497 .num_tx_descs = CN23XX_MAX_IQ_DESCRIPTORS,
498
499 /* SKB size, We need not change buf size even for Jumbo frames.
500 * Octeon can send jumbo frames in 4 consecutive descriptors,
501 */
502 .rx_buf_size = CN23XX_OQ_BUF_SIZE,
503
504 .base_queue = BASE_QUEUE_NOT_REQUESTED,
505
506 .gmx_port_id = 1,
507 },
508
509 .misc = {
510 /* Host driver link query interval */
511 .oct_link_query_interval = 100,
512
513 /* Octeon link query interval */
514 .host_link_query_interval = 500,
515
516 .enable_sli_oq_bp = 0,
517
518 /* Control queue group */
519 .ctrlq_grp = 1,
520 }
521 };
522
523 enum {
524 OCTEON_CONFIG_TYPE_DEFAULT = 0,
525 NUM_OCTEON_CONFS,
526 };
527
528 static struct octeon_config_ptr {
529 u32 conf_type;
530 } oct_conf_info[MAX_OCTEON_DEVICES] = {
531 {
532 OCTEON_CONFIG_TYPE_DEFAULT,
533 }, {
534 OCTEON_CONFIG_TYPE_DEFAULT,
535 }, {
536 OCTEON_CONFIG_TYPE_DEFAULT,
537 }, {
538 OCTEON_CONFIG_TYPE_DEFAULT,
539 },
540 };
541
542 static char oct_dev_state_str[OCT_DEV_STATES + 1][32] = {
543 "BEGIN", "PCI-MAP-DONE", "DISPATCH-INIT-DONE",
544 "IQ-INIT-DONE", "SCBUFF-POOL-INIT-DONE", "RESPLIST-INIT-DONE",
545 "DROQ-INIT-DONE", "IO-QUEUES-INIT-DONE", "CONSOLE-INIT-DONE",
546 "HOST-READY", "CORE-READY", "RUNNING", "IN-RESET",
547 "INVALID"
548 };
549
550 static char oct_dev_app_str[CVM_DRV_APP_COUNT + 1][32] = {
551 "BASE", "NIC", "UNKNOWN"};
552
553 static struct octeon_device *octeon_device[MAX_OCTEON_DEVICES];
554 static u32 octeon_device_count;
555
556 static struct octeon_core_setup core_setup[MAX_OCTEON_DEVICES];
557
558 static void oct_set_config_info(int oct_id, int conf_type)
559 {
560 if (conf_type < 0 || conf_type > (NUM_OCTEON_CONFS - 1))
561 conf_type = OCTEON_CONFIG_TYPE_DEFAULT;
562 oct_conf_info[oct_id].conf_type = conf_type;
563 }
564
565 void octeon_init_device_list(int conf_type)
566 {
567 int i;
568
569 memset(octeon_device, 0, (sizeof(void *) * MAX_OCTEON_DEVICES));
570 for (i = 0; i < MAX_OCTEON_DEVICES; i++)
571 oct_set_config_info(i, conf_type);
572 }
573
574 static void *__retrieve_octeon_config_info(struct octeon_device *oct,
575 u16 card_type)
576 {
577 u32 oct_id = oct->octeon_id;
578 void *ret = NULL;
579
580 switch (oct_conf_info[oct_id].conf_type) {
581 case OCTEON_CONFIG_TYPE_DEFAULT:
582 if (oct->chip_id == OCTEON_CN66XX) {
583 ret = (void *)&default_cn66xx_conf;
584 } else if ((oct->chip_id == OCTEON_CN68XX) &&
585 (card_type == LIO_210NV)) {
586 ret = (void *)&default_cn68xx_210nv_conf;
587 } else if ((oct->chip_id == OCTEON_CN68XX) &&
588 (card_type == LIO_410NV)) {
589 ret = (void *)&default_cn68xx_conf;
590 } else if (oct->chip_id == OCTEON_CN23XX_PF_VID) {
591 ret = (void *)&default_cn23xx_conf;
592 }
593 break;
594 default:
595 break;
596 }
597 return ret;
598 }
599
600 static int __verify_octeon_config_info(struct octeon_device *oct, void *conf)
601 {
602 switch (oct->chip_id) {
603 case OCTEON_CN66XX:
604 case OCTEON_CN68XX:
605 return lio_validate_cn6xxx_config_info(oct, conf);
606 case OCTEON_CN23XX_PF_VID:
607 return 0;
608 default:
609 break;
610 }
611
612 return 1;
613 }
614
615 void *oct_get_config_info(struct octeon_device *oct, u16 card_type)
616 {
617 void *conf = NULL;
618
619 conf = __retrieve_octeon_config_info(oct, card_type);
620 if (!conf)
621 return NULL;
622
623 if (__verify_octeon_config_info(oct, conf)) {
624 dev_err(&oct->pci_dev->dev, "Configuration verification failed\n");
625 return NULL;
626 }
627
628 return conf;
629 }
630
631 char *lio_get_state_string(atomic_t *state_ptr)
632 {
633 s32 istate = (s32)atomic_read(state_ptr);
634
635 if (istate > OCT_DEV_STATES || istate < 0)
636 return oct_dev_state_str[OCT_DEV_STATE_INVALID];
637 return oct_dev_state_str[istate];
638 }
639
640 static char *get_oct_app_string(u32 app_mode)
641 {
642 if (app_mode <= CVM_DRV_APP_END)
643 return oct_dev_app_str[app_mode - CVM_DRV_APP_START];
644 return oct_dev_app_str[CVM_DRV_INVALID_APP - CVM_DRV_APP_START];
645 }
646
647 void octeon_free_device_mem(struct octeon_device *oct)
648 {
649 int i;
650
651 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
652 if (oct->io_qmask.oq & (1ULL << i))
653 vfree(oct->droq[i]);
654 }
655
656 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
657 if (oct->io_qmask.iq & (1ULL << i))
658 vfree(oct->instr_queue[i]);
659 }
660
661 i = oct->octeon_id;
662 vfree(oct);
663
664 octeon_device[i] = NULL;
665 octeon_device_count--;
666 }
667
668 static struct octeon_device *octeon_allocate_device_mem(u32 pci_id,
669 u32 priv_size)
670 {
671 struct octeon_device *oct;
672 u8 *buf = NULL;
673 u32 octdevsize = 0, configsize = 0, size;
674
675 switch (pci_id) {
676 case OCTEON_CN68XX:
677 case OCTEON_CN66XX:
678 configsize = sizeof(struct octeon_cn6xxx);
679 break;
680
681 case OCTEON_CN23XX_PF_VID:
682 configsize = sizeof(struct octeon_cn23xx_pf);
683 break;
684 default:
685 pr_err("%s: Unknown PCI Device: 0x%x\n",
686 __func__,
687 pci_id);
688 return NULL;
689 }
690
691 if (configsize & 0x7)
692 configsize += (8 - (configsize & 0x7));
693
694 octdevsize = sizeof(struct octeon_device);
695 if (octdevsize & 0x7)
696 octdevsize += (8 - (octdevsize & 0x7));
697
698 if (priv_size & 0x7)
699 priv_size += (8 - (priv_size & 0x7));
700
701 size = octdevsize + priv_size + configsize +
702 (sizeof(struct octeon_dispatch) * DISPATCH_LIST_SIZE);
703
704 buf = vmalloc(size);
705 if (!buf)
706 return NULL;
707
708 memset(buf, 0, size);
709
710 oct = (struct octeon_device *)buf;
711 oct->priv = (void *)(buf + octdevsize);
712 oct->chip = (void *)(buf + octdevsize + priv_size);
713 oct->dispatch.dlist = (struct octeon_dispatch *)
714 (buf + octdevsize + priv_size + configsize);
715
716 return oct;
717 }
718
719 struct octeon_device *octeon_allocate_device(u32 pci_id,
720 u32 priv_size)
721 {
722 u32 oct_idx = 0;
723 struct octeon_device *oct = NULL;
724
725 for (oct_idx = 0; oct_idx < MAX_OCTEON_DEVICES; oct_idx++)
726 if (!octeon_device[oct_idx])
727 break;
728
729 if (oct_idx == MAX_OCTEON_DEVICES)
730 return NULL;
731
732 oct = octeon_allocate_device_mem(pci_id, priv_size);
733 if (!oct)
734 return NULL;
735
736 spin_lock_init(&oct->pci_win_lock);
737 spin_lock_init(&oct->mem_access_lock);
738
739 octeon_device_count++;
740 octeon_device[oct_idx] = oct;
741
742 oct->octeon_id = oct_idx;
743 snprintf(oct->device_name, sizeof(oct->device_name),
744 "LiquidIO%d", (oct->octeon_id));
745
746 return oct;
747 }
748
749 int
750 octeon_allocate_ioq_vector(struct octeon_device *oct)
751 {
752 int i, num_ioqs = 0;
753 struct octeon_ioq_vector *ioq_vector;
754 int cpu_num;
755 int size;
756
757 if (OCTEON_CN23XX_PF(oct))
758 num_ioqs = oct->sriov_info.num_pf_rings;
759 size = sizeof(struct octeon_ioq_vector) * num_ioqs;
760
761 oct->ioq_vector = vmalloc(size);
762 if (!oct->ioq_vector)
763 return 1;
764 memset(oct->ioq_vector, 0, size);
765 for (i = 0; i < num_ioqs; i++) {
766 ioq_vector = &oct->ioq_vector[i];
767 ioq_vector->oct_dev = oct;
768 ioq_vector->iq_index = i;
769 ioq_vector->droq_index = i;
770
771 cpu_num = i % num_online_cpus();
772 cpumask_set_cpu(cpu_num, &ioq_vector->affinity_mask);
773
774 if (oct->chip_id == OCTEON_CN23XX_PF_VID)
775 ioq_vector->ioq_num = i + oct->sriov_info.pf_srn;
776 else
777 ioq_vector->ioq_num = i;
778 }
779 return 0;
780 }
781
782 void
783 octeon_free_ioq_vector(struct octeon_device *oct)
784 {
785 vfree(oct->ioq_vector);
786 }
787
788 /* this function is only for setting up the first queue */
789 int octeon_setup_instr_queues(struct octeon_device *oct)
790 {
791 u32 num_descs = 0;
792 u32 iq_no = 0;
793 union oct_txpciq txpciq;
794 int numa_node = cpu_to_node(iq_no % num_online_cpus());
795
796 if (OCTEON_CN6XXX(oct))
797 num_descs =
798 CFG_GET_NUM_DEF_TX_DESCS(CHIP_FIELD(oct, cn6xxx, conf));
799 else if (OCTEON_CN23XX_PF(oct))
800 num_descs = CFG_GET_NUM_DEF_TX_DESCS(CHIP_FIELD(oct, cn23xx_pf,
801 conf));
802
803 oct->num_iqs = 0;
804
805 oct->instr_queue[0] = vmalloc_node(sizeof(*oct->instr_queue[0]),
806 numa_node);
807 if (!oct->instr_queue[0])
808 oct->instr_queue[0] =
809 vmalloc(sizeof(struct octeon_instr_queue));
810 if (!oct->instr_queue[0])
811 return 1;
812 memset(oct->instr_queue[0], 0, sizeof(struct octeon_instr_queue));
813 oct->instr_queue[0]->q_index = 0;
814 oct->instr_queue[0]->app_ctx = (void *)(size_t)0;
815 oct->instr_queue[0]->ifidx = 0;
816 txpciq.u64 = 0;
817 txpciq.s.q_no = iq_no;
818 txpciq.s.pkind = oct->pfvf_hsword.pkind;
819 txpciq.s.use_qpg = 0;
820 txpciq.s.qpg = 0;
821 if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
822 /* prevent memory leak */
823 vfree(oct->instr_queue[0]);
824 return 1;
825 }
826
827 oct->num_iqs++;
828 return 0;
829 }
830
831 int octeon_setup_output_queues(struct octeon_device *oct)
832 {
833 u32 num_descs = 0;
834 u32 desc_size = 0;
835 u32 oq_no = 0;
836 int numa_node = cpu_to_node(oq_no % num_online_cpus());
837
838 if (OCTEON_CN6XXX(oct)) {
839 num_descs =
840 CFG_GET_NUM_DEF_RX_DESCS(CHIP_FIELD(oct, cn6xxx, conf));
841 desc_size =
842 CFG_GET_DEF_RX_BUF_SIZE(CHIP_FIELD(oct, cn6xxx, conf));
843 } else if (OCTEON_CN23XX_PF(oct)) {
844 num_descs = CFG_GET_NUM_DEF_RX_DESCS(CHIP_FIELD(oct, cn23xx_pf,
845 conf));
846 desc_size = CFG_GET_DEF_RX_BUF_SIZE(CHIP_FIELD(oct, cn23xx_pf,
847 conf));
848 }
849 oct->num_oqs = 0;
850 oct->droq[0] = vmalloc_node(sizeof(*oct->droq[0]), numa_node);
851 if (!oct->droq[0])
852 oct->droq[0] = vmalloc(sizeof(*oct->droq[0]));
853 if (!oct->droq[0])
854 return 1;
855
856 if (octeon_init_droq(oct, oq_no, num_descs, desc_size, NULL))
857 return 1;
858 oct->num_oqs++;
859
860 return 0;
861 }
862
863 void octeon_set_io_queues_off(struct octeon_device *oct)
864 {
865 if (OCTEON_CN6XXX(oct)) {
866 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
867 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
868 }
869 }
870
871 void octeon_set_droq_pkt_op(struct octeon_device *oct,
872 u32 q_no,
873 u32 enable)
874 {
875 u32 reg_val = 0;
876
877 /* Disable the i/p and o/p queues for this Octeon. */
878 if (OCTEON_CN6XXX(oct)) {
879 reg_val = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
880
881 if (enable)
882 reg_val = reg_val | (1 << q_no);
883 else
884 reg_val = reg_val & (~(1 << q_no));
885
886 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, reg_val);
887 }
888 }
889
890 int octeon_init_dispatch_list(struct octeon_device *oct)
891 {
892 u32 i;
893
894 oct->dispatch.count = 0;
895
896 for (i = 0; i < DISPATCH_LIST_SIZE; i++) {
897 oct->dispatch.dlist[i].opcode = 0;
898 INIT_LIST_HEAD(&oct->dispatch.dlist[i].list);
899 }
900
901 for (i = 0; i <= REQTYPE_LAST; i++)
902 octeon_register_reqtype_free_fn(oct, i, NULL);
903
904 spin_lock_init(&oct->dispatch.lock);
905
906 return 0;
907 }
908
909 void octeon_delete_dispatch_list(struct octeon_device *oct)
910 {
911 u32 i;
912 struct list_head freelist, *temp, *tmp2;
913
914 INIT_LIST_HEAD(&freelist);
915
916 spin_lock_bh(&oct->dispatch.lock);
917
918 for (i = 0; i < DISPATCH_LIST_SIZE; i++) {
919 struct list_head *dispatch;
920
921 dispatch = &oct->dispatch.dlist[i].list;
922 while (dispatch->next != dispatch) {
923 temp = dispatch->next;
924 list_del(temp);
925 list_add_tail(temp, &freelist);
926 }
927
928 oct->dispatch.dlist[i].opcode = 0;
929 }
930
931 oct->dispatch.count = 0;
932
933 spin_unlock_bh(&oct->dispatch.lock);
934
935 list_for_each_safe(temp, tmp2, &freelist) {
936 list_del(temp);
937 vfree(temp);
938 }
939 }
940
941 octeon_dispatch_fn_t
942 octeon_get_dispatch(struct octeon_device *octeon_dev, u16 opcode,
943 u16 subcode)
944 {
945 u32 idx;
946 struct list_head *dispatch;
947 octeon_dispatch_fn_t fn = NULL;
948 u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode);
949
950 idx = combined_opcode & OCTEON_OPCODE_MASK;
951
952 spin_lock_bh(&octeon_dev->dispatch.lock);
953
954 if (octeon_dev->dispatch.count == 0) {
955 spin_unlock_bh(&octeon_dev->dispatch.lock);
956 return NULL;
957 }
958
959 if (!(octeon_dev->dispatch.dlist[idx].opcode)) {
960 spin_unlock_bh(&octeon_dev->dispatch.lock);
961 return NULL;
962 }
963
964 if (octeon_dev->dispatch.dlist[idx].opcode == combined_opcode) {
965 fn = octeon_dev->dispatch.dlist[idx].dispatch_fn;
966 } else {
967 list_for_each(dispatch,
968 &octeon_dev->dispatch.dlist[idx].list) {
969 if (((struct octeon_dispatch *)dispatch)->opcode ==
970 combined_opcode) {
971 fn = ((struct octeon_dispatch *)
972 dispatch)->dispatch_fn;
973 break;
974 }
975 }
976 }
977
978 spin_unlock_bh(&octeon_dev->dispatch.lock);
979 return fn;
980 }
981
982 /* octeon_register_dispatch_fn
983 * Parameters:
984 * octeon_id - id of the octeon device.
985 * opcode - opcode for which driver should call the registered function
986 * subcode - subcode for which driver should call the registered function
987 * fn - The function to call when a packet with "opcode" arrives in
988 * octeon output queues.
989 * fn_arg - The argument to be passed when calling function "fn".
990 * Description:
991 * Registers a function and its argument to be called when a packet
992 * arrives in Octeon output queues with "opcode".
993 * Returns:
994 * Success: 0
995 * Failure: 1
996 * Locks:
997 * No locks are held.
998 */
999 int
1000 octeon_register_dispatch_fn(struct octeon_device *oct,
1001 u16 opcode,
1002 u16 subcode,
1003 octeon_dispatch_fn_t fn, void *fn_arg)
1004 {
1005 u32 idx;
1006 octeon_dispatch_fn_t pfn;
1007 u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode);
1008
1009 idx = combined_opcode & OCTEON_OPCODE_MASK;
1010
1011 spin_lock_bh(&oct->dispatch.lock);
1012 /* Add dispatch function to first level of lookup table */
1013 if (oct->dispatch.dlist[idx].opcode == 0) {
1014 oct->dispatch.dlist[idx].opcode = combined_opcode;
1015 oct->dispatch.dlist[idx].dispatch_fn = fn;
1016 oct->dispatch.dlist[idx].arg = fn_arg;
1017 oct->dispatch.count++;
1018 spin_unlock_bh(&oct->dispatch.lock);
1019 return 0;
1020 }
1021
1022 spin_unlock_bh(&oct->dispatch.lock);
1023
1024 /* Check if there was a function already registered for this
1025 * opcode/subcode.
1026 */
1027 pfn = octeon_get_dispatch(oct, opcode, subcode);
1028 if (!pfn) {
1029 struct octeon_dispatch *dispatch;
1030
1031 dev_dbg(&oct->pci_dev->dev,
1032 "Adding opcode to dispatch list linked list\n");
1033 dispatch = (struct octeon_dispatch *)
1034 vmalloc(sizeof(struct octeon_dispatch));
1035 if (!dispatch) {
1036 dev_err(&oct->pci_dev->dev,
1037 "No memory to add dispatch function\n");
1038 return 1;
1039 }
1040 dispatch->opcode = combined_opcode;
1041 dispatch->dispatch_fn = fn;
1042 dispatch->arg = fn_arg;
1043
1044 /* Add dispatch function to linked list of fn ptrs
1045 * at the hashed index.
1046 */
1047 spin_lock_bh(&oct->dispatch.lock);
1048 list_add(&dispatch->list, &oct->dispatch.dlist[idx].list);
1049 oct->dispatch.count++;
1050 spin_unlock_bh(&oct->dispatch.lock);
1051
1052 } else {
1053 dev_err(&oct->pci_dev->dev,
1054 "Found previously registered dispatch fn for opcode/subcode: %x/%x\n",
1055 opcode, subcode);
1056 return 1;
1057 }
1058
1059 return 0;
1060 }
1061
1062 int octeon_core_drv_init(struct octeon_recv_info *recv_info, void *buf)
1063 {
1064 u32 i;
1065 char app_name[16];
1066 struct octeon_device *oct = (struct octeon_device *)buf;
1067 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
1068 struct octeon_core_setup *cs = NULL;
1069 u32 num_nic_ports = 0;
1070
1071 if (OCTEON_CN6XXX(oct))
1072 num_nic_ports =
1073 CFG_GET_NUM_NIC_PORTS(CHIP_FIELD(oct, cn6xxx, conf));
1074 else if (OCTEON_CN23XX_PF(oct))
1075 num_nic_ports =
1076 CFG_GET_NUM_NIC_PORTS(CHIP_FIELD(oct, cn23xx_pf, conf));
1077
1078 if (atomic_read(&oct->status) >= OCT_DEV_RUNNING) {
1079 dev_err(&oct->pci_dev->dev, "Received CORE OK when device state is 0x%x\n",
1080 atomic_read(&oct->status));
1081 goto core_drv_init_err;
1082 }
1083
1084 strncpy(app_name,
1085 get_oct_app_string(
1086 (u32)recv_pkt->rh.r_core_drv_init.app_mode),
1087 sizeof(app_name) - 1);
1088 oct->app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
1089 if (recv_pkt->rh.r_core_drv_init.app_mode == CVM_DRV_NIC_APP) {
1090 oct->fw_info.max_nic_ports =
1091 (u32)recv_pkt->rh.r_core_drv_init.max_nic_ports;
1092 oct->fw_info.num_gmx_ports =
1093 (u32)recv_pkt->rh.r_core_drv_init.num_gmx_ports;
1094 }
1095
1096 if (oct->fw_info.max_nic_ports < num_nic_ports) {
1097 dev_err(&oct->pci_dev->dev,
1098 "Config has more ports than firmware allows (%d > %d).\n",
1099 num_nic_ports, oct->fw_info.max_nic_ports);
1100 goto core_drv_init_err;
1101 }
1102 oct->fw_info.app_cap_flags = recv_pkt->rh.r_core_drv_init.app_cap_flags;
1103 oct->fw_info.app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
1104 oct->pfvf_hsword.app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
1105
1106 oct->pfvf_hsword.pkind = recv_pkt->rh.r_core_drv_init.pkind;
1107
1108 for (i = 0; i < oct->num_iqs; i++)
1109 oct->instr_queue[i]->txpciq.s.pkind = oct->pfvf_hsword.pkind;
1110
1111 atomic_set(&oct->status, OCT_DEV_CORE_OK);
1112
1113 cs = &core_setup[oct->octeon_id];
1114
1115 if (recv_pkt->buffer_size[0] != sizeof(*cs)) {
1116 dev_dbg(&oct->pci_dev->dev, "Core setup bytes expected %u found %d\n",
1117 (u32)sizeof(*cs),
1118 recv_pkt->buffer_size[0]);
1119 }
1120
1121 memcpy(cs, get_rbd(recv_pkt->buffer_ptr[0]), sizeof(*cs));
1122 strncpy(oct->boardinfo.name, cs->boardname, OCT_BOARD_NAME);
1123 strncpy(oct->boardinfo.serial_number, cs->board_serial_number,
1124 OCT_SERIAL_LEN);
1125
1126 octeon_swap_8B_data((u64 *)cs, (sizeof(*cs) >> 3));
1127
1128 oct->boardinfo.major = cs->board_rev_major;
1129 oct->boardinfo.minor = cs->board_rev_minor;
1130
1131 dev_info(&oct->pci_dev->dev,
1132 "Running %s (%llu Hz)\n",
1133 app_name, CVM_CAST64(cs->corefreq));
1134
1135 core_drv_init_err:
1136 for (i = 0; i < recv_pkt->buffer_count; i++)
1137 recv_buffer_free(recv_pkt->buffer_ptr[i]);
1138 octeon_free_recv_info(recv_info);
1139 return 0;
1140 }
1141
1142 int octeon_get_tx_qsize(struct octeon_device *oct, u32 q_no)
1143
1144 {
1145 if (oct && (q_no < MAX_OCTEON_INSTR_QUEUES(oct)) &&
1146 (oct->io_qmask.iq & (1ULL << q_no)))
1147 return oct->instr_queue[q_no]->max_count;
1148
1149 return -1;
1150 }
1151
1152 int octeon_get_rx_qsize(struct octeon_device *oct, u32 q_no)
1153 {
1154 if (oct && (q_no < MAX_OCTEON_OUTPUT_QUEUES(oct)) &&
1155 (oct->io_qmask.oq & (1ULL << q_no)))
1156 return oct->droq[q_no]->max_count;
1157 return -1;
1158 }
1159
1160 /* Retruns the host firmware handshake OCTEON specific configuration */
1161 struct octeon_config *octeon_get_conf(struct octeon_device *oct)
1162 {
1163 struct octeon_config *default_oct_conf = NULL;
1164
1165 /* check the OCTEON Device model & return the corresponding octeon
1166 * configuration
1167 */
1168
1169 if (OCTEON_CN6XXX(oct)) {
1170 default_oct_conf =
1171 (struct octeon_config *)(CHIP_FIELD(oct, cn6xxx, conf));
1172 } else if (OCTEON_CN23XX_PF(oct)) {
1173 default_oct_conf = (struct octeon_config *)
1174 (CHIP_FIELD(oct, cn23xx_pf, conf));
1175 }
1176 return default_oct_conf;
1177 }
1178
1179 /* scratch register address is same in all the OCT-II and CN70XX models */
1180 #define CNXX_SLI_SCRATCH1 0x3C0
1181
1182 /** Get the octeon device pointer.
1183 * @param octeon_id - The id for which the octeon device pointer is required.
1184 * @return Success: Octeon device pointer.
1185 * @return Failure: NULL.
1186 */
1187 struct octeon_device *lio_get_device(u32 octeon_id)
1188 {
1189 if (octeon_id >= MAX_OCTEON_DEVICES)
1190 return NULL;
1191 else
1192 return octeon_device[octeon_id];
1193 }
1194
1195 u64 lio_pci_readq(struct octeon_device *oct, u64 addr)
1196 {
1197 u64 val64;
1198 unsigned long flags;
1199 u32 val32, addrhi;
1200
1201 spin_lock_irqsave(&oct->pci_win_lock, flags);
1202
1203 /* The windowed read happens when the LSB of the addr is written.
1204 * So write MSB first
1205 */
1206 addrhi = (addr >> 32);
1207 if ((oct->chip_id == OCTEON_CN66XX) ||
1208 (oct->chip_id == OCTEON_CN68XX) ||
1209 (oct->chip_id == OCTEON_CN23XX_PF_VID))
1210 addrhi |= 0x00060000;
1211 writel(addrhi, oct->reg_list.pci_win_rd_addr_hi);
1212
1213 /* Read back to preserve ordering of writes */
1214 val32 = readl(oct->reg_list.pci_win_rd_addr_hi);
1215
1216 writel(addr & 0xffffffff, oct->reg_list.pci_win_rd_addr_lo);
1217 val32 = readl(oct->reg_list.pci_win_rd_addr_lo);
1218
1219 val64 = readq(oct->reg_list.pci_win_rd_data);
1220
1221 spin_unlock_irqrestore(&oct->pci_win_lock, flags);
1222
1223 return val64;
1224 }
1225
1226 void lio_pci_writeq(struct octeon_device *oct,
1227 u64 val,
1228 u64 addr)
1229 {
1230 u32 val32;
1231 unsigned long flags;
1232
1233 spin_lock_irqsave(&oct->pci_win_lock, flags);
1234
1235 writeq(addr, oct->reg_list.pci_win_wr_addr);
1236
1237 /* The write happens when the LSB is written. So write MSB first. */
1238 writel(val >> 32, oct->reg_list.pci_win_wr_data_hi);
1239 /* Read the MSB to ensure ordering of writes. */
1240 val32 = readl(oct->reg_list.pci_win_wr_data_hi);
1241
1242 writel(val & 0xffffffff, oct->reg_list.pci_win_wr_data_lo);
1243
1244 spin_unlock_irqrestore(&oct->pci_win_lock, flags);
1245 }
1246
1247 int octeon_mem_access_ok(struct octeon_device *oct)
1248 {
1249 u64 access_okay = 0;
1250 u64 lmc0_reset_ctl;
1251
1252 /* Check to make sure a DDR interface is enabled */
1253 if (OCTEON_CN23XX_PF(oct)) {
1254 lmc0_reset_ctl = lio_pci_readq(oct, CN23XX_LMC0_RESET_CTL);
1255 access_okay =
1256 (lmc0_reset_ctl & CN23XX_LMC0_RESET_CTL_DDR3RST_MASK);
1257 } else {
1258 lmc0_reset_ctl = lio_pci_readq(oct, CN6XXX_LMC0_RESET_CTL);
1259 access_okay =
1260 (lmc0_reset_ctl & CN6XXX_LMC0_RESET_CTL_DDR3RST_MASK);
1261 }
1262
1263 return access_okay ? 0 : 1;
1264 }
1265
1266 int octeon_wait_for_ddr_init(struct octeon_device *oct, u32 *timeout)
1267 {
1268 int ret = 1;
1269 u32 ms;
1270
1271 if (!timeout)
1272 return ret;
1273
1274 for (ms = 0; (ret != 0) && ((*timeout == 0) || (ms <= *timeout));
1275 ms += HZ / 10) {
1276 ret = octeon_mem_access_ok(oct);
1277
1278 /* wait 100 ms */
1279 if (ret)
1280 schedule_timeout_uninterruptible(HZ / 10);
1281 }
1282
1283 return ret;
1284 }
1285
1286 /** Get the octeon id assigned to the octeon device passed as argument.
1287 * This function is exported to other modules.
1288 * @param dev - octeon device pointer passed as a void *.
1289 * @return octeon device id
1290 */
1291 int lio_get_device_id(void *dev)
1292 {
1293 struct octeon_device *octeon_dev = (struct octeon_device *)dev;
1294 u32 i;
1295
1296 for (i = 0; i < MAX_OCTEON_DEVICES; i++)
1297 if (octeon_device[i] == octeon_dev)
1298 return octeon_dev->octeon_id;
1299 return -1;
1300 }
1301
1302 void lio_enable_irq(struct octeon_droq *droq, struct octeon_instr_queue *iq)
1303 {
1304 u64 instr_cnt;
1305 struct octeon_device *oct = NULL;
1306
1307 /* the whole thing needs to be atomic, ideally */
1308 if (droq) {
1309 spin_lock_bh(&droq->lock);
1310 writel(droq->pkt_count, droq->pkts_sent_reg);
1311 droq->pkt_count = 0;
1312 spin_unlock_bh(&droq->lock);
1313 oct = droq->oct_dev;
1314 }
1315 if (iq) {
1316 spin_lock_bh(&iq->lock);
1317 writel(iq->pkt_in_done, iq->inst_cnt_reg);
1318 iq->pkt_in_done = 0;
1319 spin_unlock_bh(&iq->lock);
1320 oct = iq->oct_dev;
1321 }
1322 /*write resend. Writing RESEND in SLI_PKTX_CNTS should be enough
1323 *to trigger tx interrupts as well, if they are pending.
1324 */
1325 if (oct && OCTEON_CN23XX_PF(oct)) {
1326 if (droq)
1327 writeq(CN23XX_INTR_RESEND, droq->pkts_sent_reg);
1328 /*we race with firmrware here. read and write the IN_DONE_CNTS*/
1329 else if (iq) {
1330 instr_cnt = readq(iq->inst_cnt_reg);
1331 writeq(((instr_cnt & 0xFFFFFFFF00000000ULL) |
1332 CN23XX_INTR_RESEND),
1333 iq->inst_cnt_reg);
1334 }
1335 }
1336 }
This page took 0.098101 seconds and 5 git commands to generate.