lightnvm: NVM should depend on HAS_DMA
[deliverable/linux.git] / drivers / net / ethernet / cavium / liquidio / request_manager.c
1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2015 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more
17 * details.
18 *
19 * This file may also be available under a different license from Cavium.
20 * Contact Cavium, Inc. for more information
21 **********************************************************************/
22 #include <linux/pci.h>
23 #include <linux/netdevice.h>
24 #include <linux/vmalloc.h>
25 #include "liquidio_common.h"
26 #include "octeon_droq.h"
27 #include "octeon_iq.h"
28 #include "response_manager.h"
29 #include "octeon_device.h"
30 #include "octeon_main.h"
31 #include "octeon_network.h"
32 #include "cn66xx_device.h"
33
34 #define INCR_INSTRQUEUE_PKT_COUNT(octeon_dev_ptr, iq_no, field, count) \
35 (octeon_dev_ptr->instr_queue[iq_no]->stats.field += count)
36
37 struct iq_post_status {
38 int status;
39 int index;
40 };
41
42 static void check_db_timeout(struct work_struct *work);
43 static void __check_db_timeout(struct octeon_device *oct, u64 iq_no);
44
45 static void (*reqtype_free_fn[MAX_OCTEON_DEVICES][REQTYPE_LAST + 1]) (void *);
46
47 static inline int IQ_INSTR_MODE_64B(struct octeon_device *oct, int iq_no)
48 {
49 struct octeon_instr_queue *iq =
50 (struct octeon_instr_queue *)oct->instr_queue[iq_no];
51 return iq->iqcmd_64B;
52 }
53
54 #define IQ_INSTR_MODE_32B(oct, iq_no) (!IQ_INSTR_MODE_64B(oct, iq_no))
55
56 /* Define this to return the request status comaptible to old code */
57 /*#define OCTEON_USE_OLD_REQ_STATUS*/
58
59 /* Return 0 on success, 1 on failure */
60 int octeon_init_instr_queue(struct octeon_device *oct,
61 union oct_txpciq txpciq,
62 u32 num_descs)
63 {
64 struct octeon_instr_queue *iq;
65 struct octeon_iq_config *conf = NULL;
66 u32 iq_no = (u32)txpciq.s.q_no;
67 u32 q_size;
68 struct cavium_wq *db_wq;
69 int orig_node = dev_to_node(&oct->pci_dev->dev);
70 int numa_node = cpu_to_node(iq_no % num_online_cpus());
71
72 if (OCTEON_CN6XXX(oct))
73 conf = &(CFG_GET_IQ_CFG(CHIP_FIELD(oct, cn6xxx, conf)));
74
75 if (!conf) {
76 dev_err(&oct->pci_dev->dev, "Unsupported Chip %x\n",
77 oct->chip_id);
78 return 1;
79 }
80
81 if (num_descs & (num_descs - 1)) {
82 dev_err(&oct->pci_dev->dev,
83 "Number of descriptors for instr queue %d not in power of 2.\n",
84 iq_no);
85 return 1;
86 }
87
88 q_size = (u32)conf->instr_type * num_descs;
89
90 iq = oct->instr_queue[iq_no];
91 iq->oct_dev = oct;
92
93 set_dev_node(&oct->pci_dev->dev, numa_node);
94 iq->base_addr = lio_dma_alloc(oct, q_size,
95 (dma_addr_t *)&iq->base_addr_dma);
96 set_dev_node(&oct->pci_dev->dev, orig_node);
97 if (!iq->base_addr)
98 iq->base_addr = lio_dma_alloc(oct, q_size,
99 (dma_addr_t *)&iq->base_addr_dma);
100 if (!iq->base_addr) {
101 dev_err(&oct->pci_dev->dev, "Cannot allocate memory for instr queue %d\n",
102 iq_no);
103 return 1;
104 }
105
106 iq->max_count = num_descs;
107
108 /* Initialize a list to holds requests that have been posted to Octeon
109 * but has yet to be fetched by octeon
110 */
111 iq->request_list = vmalloc_node((sizeof(*iq->request_list) * num_descs),
112 numa_node);
113 if (!iq->request_list)
114 iq->request_list = vmalloc(sizeof(*iq->request_list) *
115 num_descs);
116 if (!iq->request_list) {
117 lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
118 dev_err(&oct->pci_dev->dev, "Alloc failed for IQ[%d] nr free list\n",
119 iq_no);
120 return 1;
121 }
122
123 memset(iq->request_list, 0, sizeof(*iq->request_list) * num_descs);
124
125 dev_dbg(&oct->pci_dev->dev, "IQ[%d]: base: %p basedma: %llx count: %d\n",
126 iq_no, iq->base_addr, iq->base_addr_dma, iq->max_count);
127
128 iq->txpciq.u64 = txpciq.u64;
129 iq->fill_threshold = (u32)conf->db_min;
130 iq->fill_cnt = 0;
131 iq->host_write_index = 0;
132 iq->octeon_read_index = 0;
133 iq->flush_index = 0;
134 iq->last_db_time = 0;
135 iq->do_auto_flush = 1;
136 iq->db_timeout = (u32)conf->db_timeout;
137 atomic_set(&iq->instr_pending, 0);
138
139 /* Initialize the spinlock for this instruction queue */
140 spin_lock_init(&iq->lock);
141 spin_lock_init(&iq->post_lock);
142
143 spin_lock_init(&iq->iq_flush_running_lock);
144
145 oct->io_qmask.iq |= (1ULL << iq_no);
146
147 /* Set the 32B/64B mode for each input queue */
148 oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no);
149 iq->iqcmd_64B = (conf->instr_type == 64);
150
151 oct->fn_list.setup_iq_regs(oct, iq_no);
152
153 oct->check_db_wq[iq_no].wq = alloc_workqueue("check_iq_db",
154 WQ_MEM_RECLAIM,
155 0);
156 if (!oct->check_db_wq[iq_no].wq) {
157 lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
158 dev_err(&oct->pci_dev->dev, "check db wq create failed for iq %d\n",
159 iq_no);
160 return 1;
161 }
162
163 db_wq = &oct->check_db_wq[iq_no];
164
165 INIT_DELAYED_WORK(&db_wq->wk.work, check_db_timeout);
166 db_wq->wk.ctxptr = oct;
167 db_wq->wk.ctxul = iq_no;
168 queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1));
169
170 return 0;
171 }
172
173 int octeon_delete_instr_queue(struct octeon_device *oct, u32 iq_no)
174 {
175 u64 desc_size = 0, q_size;
176 struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
177
178 cancel_delayed_work_sync(&oct->check_db_wq[iq_no].wk.work);
179 destroy_workqueue(oct->check_db_wq[iq_no].wq);
180
181 if (OCTEON_CN6XXX(oct))
182 desc_size =
183 CFG_GET_IQ_INSTR_TYPE(CHIP_FIELD(oct, cn6xxx, conf));
184
185 vfree(iq->request_list);
186
187 if (iq->base_addr) {
188 q_size = iq->max_count * desc_size;
189 lio_dma_free(oct, (u32)q_size, iq->base_addr,
190 iq->base_addr_dma);
191 return 0;
192 }
193 return 1;
194 }
195
196 /* Return 0 on success, 1 on failure */
197 int octeon_setup_iq(struct octeon_device *oct,
198 int ifidx,
199 int q_index,
200 union oct_txpciq txpciq,
201 u32 num_descs,
202 void *app_ctx)
203 {
204 u32 iq_no = (u32)txpciq.s.q_no;
205 int numa_node = cpu_to_node(iq_no % num_online_cpus());
206
207 if (oct->instr_queue[iq_no]) {
208 dev_dbg(&oct->pci_dev->dev, "IQ is in use. Cannot create the IQ: %d again\n",
209 iq_no);
210 oct->instr_queue[iq_no]->txpciq.u64 = txpciq.u64;
211 oct->instr_queue[iq_no]->app_ctx = app_ctx;
212 return 0;
213 }
214 oct->instr_queue[iq_no] =
215 vmalloc_node(sizeof(struct octeon_instr_queue), numa_node);
216 if (!oct->instr_queue[iq_no])
217 oct->instr_queue[iq_no] =
218 vmalloc(sizeof(struct octeon_instr_queue));
219 if (!oct->instr_queue[iq_no])
220 return 1;
221
222 memset(oct->instr_queue[iq_no], 0,
223 sizeof(struct octeon_instr_queue));
224
225 oct->instr_queue[iq_no]->q_index = q_index;
226 oct->instr_queue[iq_no]->app_ctx = app_ctx;
227 oct->instr_queue[iq_no]->ifidx = ifidx;
228
229 if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
230 vfree(oct->instr_queue[iq_no]);
231 oct->instr_queue[iq_no] = NULL;
232 return 1;
233 }
234
235 oct->num_iqs++;
236 oct->fn_list.enable_io_queues(oct);
237 return 0;
238 }
239
240 int lio_wait_for_instr_fetch(struct octeon_device *oct)
241 {
242 int i, retry = 1000, pending, instr_cnt = 0;
243
244 do {
245 instr_cnt = 0;
246
247 /*for (i = 0; i < oct->num_iqs; i++) {*/
248 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
249 if (!(oct->io_qmask.iq & (1ULL << i)))
250 continue;
251 pending =
252 atomic_read(&oct->
253 instr_queue[i]->instr_pending);
254 if (pending)
255 __check_db_timeout(oct, i);
256 instr_cnt += pending;
257 }
258
259 if (instr_cnt == 0)
260 break;
261
262 schedule_timeout_uninterruptible(1);
263
264 } while (retry-- && instr_cnt);
265
266 return instr_cnt;
267 }
268
269 static inline void
270 ring_doorbell(struct octeon_device *oct, struct octeon_instr_queue *iq)
271 {
272 if (atomic_read(&oct->status) == OCT_DEV_RUNNING) {
273 writel(iq->fill_cnt, iq->doorbell_reg);
274 /* make sure doorbell write goes through */
275 mmiowb();
276 iq->fill_cnt = 0;
277 iq->last_db_time = jiffies;
278 return;
279 }
280 }
281
282 static inline void __copy_cmd_into_iq(struct octeon_instr_queue *iq,
283 u8 *cmd)
284 {
285 u8 *iqptr, cmdsize;
286
287 cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
288 iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
289
290 memcpy(iqptr, cmd, cmdsize);
291 }
292
293 static inline struct iq_post_status
294 __post_command2(struct octeon_instr_queue *iq, u8 *cmd)
295 {
296 struct iq_post_status st;
297
298 st.status = IQ_SEND_OK;
299
300 /* This ensures that the read index does not wrap around to the same
301 * position if queue gets full before Octeon could fetch any instr.
302 */
303 if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1)) {
304 st.status = IQ_SEND_FAILED;
305 st.index = -1;
306 return st;
307 }
308
309 if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 2))
310 st.status = IQ_SEND_STOP;
311
312 __copy_cmd_into_iq(iq, cmd);
313
314 /* "index" is returned, host_write_index is modified. */
315 st.index = iq->host_write_index;
316 INCR_INDEX_BY1(iq->host_write_index, iq->max_count);
317 iq->fill_cnt++;
318
319 /* Flush the command into memory. We need to be sure the data is in
320 * memory before indicating that the instruction is pending.
321 */
322 wmb();
323
324 atomic_inc(&iq->instr_pending);
325
326 return st;
327 }
328
329 int
330 octeon_register_reqtype_free_fn(struct octeon_device *oct, int reqtype,
331 void (*fn)(void *))
332 {
333 if (reqtype > REQTYPE_LAST) {
334 dev_err(&oct->pci_dev->dev, "%s: Invalid reqtype: %d\n",
335 __func__, reqtype);
336 return -EINVAL;
337 }
338
339 reqtype_free_fn[oct->octeon_id][reqtype] = fn;
340
341 return 0;
342 }
343
344 static inline void
345 __add_to_request_list(struct octeon_instr_queue *iq,
346 int idx, void *buf, int reqtype)
347 {
348 iq->request_list[idx].buf = buf;
349 iq->request_list[idx].reqtype = reqtype;
350 }
351
352 /* Can only run in process context */
353 int
354 lio_process_iq_request_list(struct octeon_device *oct,
355 struct octeon_instr_queue *iq, u32 napi_budget)
356 {
357 int reqtype;
358 void *buf;
359 u32 old = iq->flush_index;
360 u32 inst_count = 0;
361 unsigned int pkts_compl = 0, bytes_compl = 0;
362 struct octeon_soft_command *sc;
363 struct octeon_instr_irh *irh;
364 unsigned long flags;
365
366 while (old != iq->octeon_read_index) {
367 reqtype = iq->request_list[old].reqtype;
368 buf = iq->request_list[old].buf;
369
370 if (reqtype == REQTYPE_NONE)
371 goto skip_this;
372
373 octeon_update_tx_completion_counters(buf, reqtype, &pkts_compl,
374 &bytes_compl);
375
376 switch (reqtype) {
377 case REQTYPE_NORESP_NET:
378 case REQTYPE_NORESP_NET_SG:
379 case REQTYPE_RESP_NET_SG:
380 reqtype_free_fn[oct->octeon_id][reqtype](buf);
381 break;
382 case REQTYPE_RESP_NET:
383 case REQTYPE_SOFT_COMMAND:
384 sc = buf;
385
386 irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
387 if (irh->rflag) {
388 /* We're expecting a response from Octeon.
389 * It's up to lio_process_ordered_list() to
390 * process sc. Add sc to the ordered soft
391 * command response list because we expect
392 * a response from Octeon.
393 */
394 spin_lock_irqsave
395 (&oct->response_list
396 [OCTEON_ORDERED_SC_LIST].lock,
397 flags);
398 atomic_inc(&oct->response_list
399 [OCTEON_ORDERED_SC_LIST].
400 pending_req_count);
401 list_add_tail(&sc->node, &oct->response_list
402 [OCTEON_ORDERED_SC_LIST].head);
403 spin_unlock_irqrestore
404 (&oct->response_list
405 [OCTEON_ORDERED_SC_LIST].lock,
406 flags);
407 } else {
408 if (sc->callback) {
409 /* This callback must not sleep */
410 sc->callback(oct, OCTEON_REQUEST_DONE,
411 sc->callback_arg);
412 }
413 }
414 break;
415 default:
416 dev_err(&oct->pci_dev->dev,
417 "%s Unknown reqtype: %d buf: %p at idx %d\n",
418 __func__, reqtype, buf, old);
419 }
420
421 iq->request_list[old].buf = NULL;
422 iq->request_list[old].reqtype = 0;
423
424 skip_this:
425 inst_count++;
426 INCR_INDEX_BY1(old, iq->max_count);
427
428 if ((napi_budget) && (inst_count >= napi_budget))
429 break;
430 }
431 if (bytes_compl)
432 octeon_report_tx_completion_to_bql(iq->app_ctx, pkts_compl,
433 bytes_compl);
434 iq->flush_index = old;
435
436 return inst_count;
437 }
438
439 /* Can only be called from process context */
440 int
441 octeon_flush_iq(struct octeon_device *oct, struct octeon_instr_queue *iq,
442 u32 pending_thresh, u32 napi_budget)
443 {
444 u32 inst_processed = 0;
445 u32 tot_inst_processed = 0;
446 int tx_done = 1;
447
448 if (!spin_trylock(&iq->iq_flush_running_lock))
449 return tx_done;
450
451 spin_lock_bh(&iq->lock);
452
453 iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq);
454
455 if (atomic_read(&iq->instr_pending) >= (s32)pending_thresh) {
456 do {
457 /* Process any outstanding IQ packets. */
458 if (iq->flush_index == iq->octeon_read_index)
459 break;
460
461 if (napi_budget)
462 inst_processed = lio_process_iq_request_list
463 (oct, iq,
464 napi_budget - tot_inst_processed);
465 else
466 inst_processed =
467 lio_process_iq_request_list(oct, iq, 0);
468
469 if (inst_processed) {
470 atomic_sub(inst_processed, &iq->instr_pending);
471 iq->stats.instr_processed += inst_processed;
472 }
473
474 tot_inst_processed += inst_processed;
475 inst_processed = 0;
476
477 } while (tot_inst_processed < napi_budget);
478
479 if (napi_budget && (tot_inst_processed >= napi_budget))
480 tx_done = 0;
481 }
482
483 iq->last_db_time = jiffies;
484
485 spin_unlock_bh(&iq->lock);
486
487 spin_unlock(&iq->iq_flush_running_lock);
488
489 return tx_done;
490 }
491
492 /* Process instruction queue after timeout.
493 * This routine gets called from a workqueue or when removing the module.
494 */
495 static void __check_db_timeout(struct octeon_device *oct, u64 iq_no)
496 {
497 struct octeon_instr_queue *iq;
498 u64 next_time;
499
500 if (!oct)
501 return;
502 iq = oct->instr_queue[iq_no];
503 if (!iq)
504 return;
505
506 /* return immediately, if no work pending */
507 if (!atomic_read(&iq->instr_pending))
508 return;
509 /* If jiffies - last_db_time < db_timeout do nothing */
510 next_time = iq->last_db_time + iq->db_timeout;
511 if (!time_after(jiffies, (unsigned long)next_time))
512 return;
513 iq->last_db_time = jiffies;
514
515 /* Flush the instruction queue */
516 octeon_flush_iq(oct, iq, 1, 0);
517 }
518
519 /* Called by the Poll thread at regular intervals to check the instruction
520 * queue for commands to be posted and for commands that were fetched by Octeon.
521 */
522 static void check_db_timeout(struct work_struct *work)
523 {
524 struct cavium_wk *wk = (struct cavium_wk *)work;
525 struct octeon_device *oct = (struct octeon_device *)wk->ctxptr;
526 u64 iq_no = wk->ctxul;
527 struct cavium_wq *db_wq = &oct->check_db_wq[iq_no];
528 u32 delay = 10;
529
530 __check_db_timeout(oct, iq_no);
531 queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(delay));
532 }
533
534 int
535 octeon_send_command(struct octeon_device *oct, u32 iq_no,
536 u32 force_db, void *cmd, void *buf,
537 u32 datasize, u32 reqtype)
538 {
539 struct iq_post_status st;
540 struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
541
542 /* Get the lock and prevent other tasks and tx interrupt handler from
543 * running.
544 */
545 spin_lock_bh(&iq->post_lock);
546
547 st = __post_command2(iq, cmd);
548
549 if (st.status != IQ_SEND_FAILED) {
550 octeon_report_sent_bytes_to_bql(buf, reqtype);
551 __add_to_request_list(iq, st.index, buf, reqtype);
552 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize);
553 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1);
554
555 if (force_db)
556 ring_doorbell(oct, iq);
557 } else {
558 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1);
559 }
560
561 spin_unlock_bh(&iq->post_lock);
562
563 /* This is only done here to expedite packets being flushed
564 * for cases where there are no IQ completion interrupts.
565 */
566 /*if (iq->do_auto_flush)*/
567 /* octeon_flush_iq(oct, iq, 2, 0);*/
568
569 return st.status;
570 }
571
572 void
573 octeon_prepare_soft_command(struct octeon_device *oct,
574 struct octeon_soft_command *sc,
575 u8 opcode,
576 u8 subcode,
577 u32 irh_ossp,
578 u64 ossp0,
579 u64 ossp1)
580 {
581 struct octeon_config *oct_cfg;
582 struct octeon_instr_ih2 *ih2;
583 struct octeon_instr_irh *irh;
584 struct octeon_instr_rdp *rdp;
585
586 WARN_ON(opcode > 15);
587 WARN_ON(subcode > 127);
588
589 oct_cfg = octeon_get_conf(oct);
590
591 ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
592 ih2->tagtype = ATOMIC_TAG;
593 ih2->tag = LIO_CONTROL;
594 ih2->raw = 1;
595 ih2->grp = CFG_GET_CTRL_Q_GRP(oct_cfg);
596
597 if (sc->datasize) {
598 ih2->dlengsz = sc->datasize;
599 ih2->rs = 1;
600 }
601
602 irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
603 irh->opcode = opcode;
604 irh->subcode = subcode;
605
606 /* opcode/subcode specific parameters (ossp) */
607 irh->ossp = irh_ossp;
608 sc->cmd.cmd2.ossp[0] = ossp0;
609 sc->cmd.cmd2.ossp[1] = ossp1;
610
611 if (sc->rdatasize) {
612 rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd2.rdp;
613 rdp->pcie_port = oct->pcie_port;
614 rdp->rlen = sc->rdatasize;
615
616 irh->rflag = 1;
617 ih2->fsz = 40; /* irh+ossp[0]+ossp[1]+rdp+rptr = 40 bytes */
618 } else {
619 irh->rflag = 0;
620 ih2->fsz = 24; /* irh + ossp[0] + ossp[1] = 24 bytes */
621 }
622 }
623
624 int octeon_send_soft_command(struct octeon_device *oct,
625 struct octeon_soft_command *sc)
626 {
627 struct octeon_instr_ih2 *ih2;
628 struct octeon_instr_irh *irh;
629 u32 len;
630
631 ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
632 if (ih2->dlengsz) {
633 WARN_ON(!sc->dmadptr);
634 sc->cmd.cmd2.dptr = sc->dmadptr;
635 }
636 irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
637 if (irh->rflag) {
638 WARN_ON(!sc->dmarptr);
639 WARN_ON(!sc->status_word);
640 *sc->status_word = COMPLETION_WORD_INIT;
641
642 sc->cmd.cmd2.rptr = sc->dmarptr;
643 }
644 len = (u32)ih2->dlengsz;
645
646 if (sc->wait_time)
647 sc->timeout = jiffies + sc->wait_time;
648
649 return (octeon_send_command(oct, sc->iq_no, 1, &sc->cmd, sc,
650 len, REQTYPE_SOFT_COMMAND));
651 }
652
653 int octeon_setup_sc_buffer_pool(struct octeon_device *oct)
654 {
655 int i;
656 u64 dma_addr;
657 struct octeon_soft_command *sc;
658
659 INIT_LIST_HEAD(&oct->sc_buf_pool.head);
660 spin_lock_init(&oct->sc_buf_pool.lock);
661 atomic_set(&oct->sc_buf_pool.alloc_buf_count, 0);
662
663 for (i = 0; i < MAX_SOFT_COMMAND_BUFFERS; i++) {
664 sc = (struct octeon_soft_command *)
665 lio_dma_alloc(oct,
666 SOFT_COMMAND_BUFFER_SIZE,
667 (dma_addr_t *)&dma_addr);
668 if (!sc)
669 return 1;
670
671 sc->dma_addr = dma_addr;
672 sc->size = SOFT_COMMAND_BUFFER_SIZE;
673
674 list_add_tail(&sc->node, &oct->sc_buf_pool.head);
675 }
676
677 return 0;
678 }
679
680 int octeon_free_sc_buffer_pool(struct octeon_device *oct)
681 {
682 struct list_head *tmp, *tmp2;
683 struct octeon_soft_command *sc;
684
685 spin_lock_bh(&oct->sc_buf_pool.lock);
686
687 list_for_each_safe(tmp, tmp2, &oct->sc_buf_pool.head) {
688 list_del(tmp);
689
690 sc = (struct octeon_soft_command *)tmp;
691
692 lio_dma_free(oct, sc->size, sc, sc->dma_addr);
693 }
694
695 INIT_LIST_HEAD(&oct->sc_buf_pool.head);
696
697 spin_unlock_bh(&oct->sc_buf_pool.lock);
698
699 return 0;
700 }
701
702 struct octeon_soft_command *octeon_alloc_soft_command(struct octeon_device *oct,
703 u32 datasize,
704 u32 rdatasize,
705 u32 ctxsize)
706 {
707 u64 dma_addr;
708 u32 size;
709 u32 offset = sizeof(struct octeon_soft_command);
710 struct octeon_soft_command *sc = NULL;
711 struct list_head *tmp;
712
713 WARN_ON((offset + datasize + rdatasize + ctxsize) >
714 SOFT_COMMAND_BUFFER_SIZE);
715
716 spin_lock_bh(&oct->sc_buf_pool.lock);
717
718 if (list_empty(&oct->sc_buf_pool.head)) {
719 spin_unlock_bh(&oct->sc_buf_pool.lock);
720 return NULL;
721 }
722
723 list_for_each(tmp, &oct->sc_buf_pool.head)
724 break;
725
726 list_del(tmp);
727
728 atomic_inc(&oct->sc_buf_pool.alloc_buf_count);
729
730 spin_unlock_bh(&oct->sc_buf_pool.lock);
731
732 sc = (struct octeon_soft_command *)tmp;
733
734 dma_addr = sc->dma_addr;
735 size = sc->size;
736
737 memset(sc, 0, sc->size);
738
739 sc->dma_addr = dma_addr;
740 sc->size = size;
741
742 if (ctxsize) {
743 sc->ctxptr = (u8 *)sc + offset;
744 sc->ctxsize = ctxsize;
745 }
746
747 /* Start data at 128 byte boundary */
748 offset = (offset + ctxsize + 127) & 0xffffff80;
749
750 if (datasize) {
751 sc->virtdptr = (u8 *)sc + offset;
752 sc->dmadptr = dma_addr + offset;
753 sc->datasize = datasize;
754 }
755
756 /* Start rdata at 128 byte boundary */
757 offset = (offset + datasize + 127) & 0xffffff80;
758
759 if (rdatasize) {
760 WARN_ON(rdatasize < 16);
761 sc->virtrptr = (u8 *)sc + offset;
762 sc->dmarptr = dma_addr + offset;
763 sc->rdatasize = rdatasize;
764 sc->status_word = (u64 *)((u8 *)(sc->virtrptr) + rdatasize - 8);
765 }
766
767 return sc;
768 }
769
770 void octeon_free_soft_command(struct octeon_device *oct,
771 struct octeon_soft_command *sc)
772 {
773 spin_lock_bh(&oct->sc_buf_pool.lock);
774
775 list_add_tail(&sc->node, &oct->sc_buf_pool.head);
776
777 atomic_dec(&oct->sc_buf_pool.alloc_buf_count);
778
779 spin_unlock_bh(&oct->sc_buf_pool.lock);
780 }
This page took 0.062745 seconds and 5 git commands to generate.