Merge remote-tracking branch 'kspp/for-next/kspp'
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67 #include <linux/crash_dump.h>
68
69 #include "cxgb4.h"
70 #include "t4_regs.h"
71 #include "t4_values.h"
72 #include "t4_msg.h"
73 #include "t4fw_api.h"
74 #include "t4fw_version.h"
75 #include "cxgb4_dcb.h"
76 #include "cxgb4_debugfs.h"
77 #include "clip_tbl.h"
78 #include "l2t.h"
79 #include "sched.h"
80
81 char cxgb4_driver_name[] = KBUILD_MODNAME;
82
83 #ifdef DRV_VERSION
84 #undef DRV_VERSION
85 #endif
86 #define DRV_VERSION "2.0.0-ko"
87 const char cxgb4_driver_version[] = DRV_VERSION;
88 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
89
90 /* Host shadow copy of ingress filter entry. This is in host native format
91 * and doesn't match the ordering or bit order, etc. of the hardware of the
92 * firmware command. The use of bit-field structure elements is purely to
93 * remind ourselves of the field size limitations and save memory in the case
94 * where the filter table is large.
95 */
96 struct filter_entry {
97 /* Administrative fields for filter.
98 */
99 u32 valid:1; /* filter allocated and valid */
100 u32 locked:1; /* filter is administratively locked */
101
102 u32 pending:1; /* filter action is pending firmware reply */
103 u32 smtidx:8; /* Source MAC Table index for smac */
104 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
105
106 /* The filter itself. Most of this is a straight copy of information
107 * provided by the extended ioctl(). Some fields are translated to
108 * internal forms -- for instance the Ingress Queue ID passed in from
109 * the ioctl() is translated into the Absolute Ingress Queue ID.
110 */
111 struct ch_filter_specification fs;
112 };
113
114 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
115 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
116 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
117
118 /* Macros needed to support the PCI Device ID Table ...
119 */
120 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
121 static const struct pci_device_id cxgb4_pci_tbl[] = {
122 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
123
124 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
125 * called for both.
126 */
127 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
128
129 #define CH_PCI_ID_TABLE_ENTRY(devid) \
130 {PCI_VDEVICE(CHELSIO, (devid)), 4}
131
132 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
133 { 0, } \
134 }
135
136 #include "t4_pci_id_tbl.h"
137
138 #define FW4_FNAME "cxgb4/t4fw.bin"
139 #define FW5_FNAME "cxgb4/t5fw.bin"
140 #define FW6_FNAME "cxgb4/t6fw.bin"
141 #define FW4_CFNAME "cxgb4/t4-config.txt"
142 #define FW5_CFNAME "cxgb4/t5-config.txt"
143 #define FW6_CFNAME "cxgb4/t6-config.txt"
144 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
145 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
146 #define PHY_AQ1202_DEVICEID 0x4409
147 #define PHY_BCM84834_DEVICEID 0x4486
148
149 MODULE_DESCRIPTION(DRV_DESC);
150 MODULE_AUTHOR("Chelsio Communications");
151 MODULE_LICENSE("Dual BSD/GPL");
152 MODULE_VERSION(DRV_VERSION);
153 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
154 MODULE_FIRMWARE(FW4_FNAME);
155 MODULE_FIRMWARE(FW5_FNAME);
156 MODULE_FIRMWARE(FW6_FNAME);
157
158 /*
159 * Normally we're willing to become the firmware's Master PF but will be happy
160 * if another PF has already become the Master and initialized the adapter.
161 * Setting "force_init" will cause this driver to forcibly establish itself as
162 * the Master PF and initialize the adapter.
163 */
164 static uint force_init;
165
166 module_param(force_init, uint, 0644);
167 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
168 "deprecated parameter");
169
170 static int dflt_msg_enable = DFLT_MSG_ENABLE;
171
172 module_param(dflt_msg_enable, int, 0644);
173 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, "
174 "deprecated parameter");
175
176 /*
177 * The driver uses the best interrupt scheme available on a platform in the
178 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
179 * of these schemes the driver may consider as follows:
180 *
181 * msi = 2: choose from among all three options
182 * msi = 1: only consider MSI and INTx interrupts
183 * msi = 0: force INTx interrupts
184 */
185 static int msi = 2;
186
187 module_param(msi, int, 0644);
188 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
189
190 /*
191 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
192 * offset by 2 bytes in order to have the IP headers line up on 4-byte
193 * boundaries. This is a requirement for many architectures which will throw
194 * a machine check fault if an attempt is made to access one of the 4-byte IP
195 * header fields on a non-4-byte boundary. And it's a major performance issue
196 * even on some architectures which allow it like some implementations of the
197 * x86 ISA. However, some architectures don't mind this and for some very
198 * edge-case performance sensitive applications (like forwarding large volumes
199 * of small packets), setting this DMA offset to 0 will decrease the number of
200 * PCI-E Bus transfers enough to measurably affect performance.
201 */
202 static int rx_dma_offset = 2;
203
204 #ifdef CONFIG_PCI_IOV
205 /* Configure the number of PCI-E Virtual Function which are to be instantiated
206 * on SR-IOV Capable Physical Functions.
207 */
208 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
209
210 module_param_array(num_vf, uint, NULL, 0644);
211 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3, deprecated parameter - please use the pci sysfs interface.");
212 #endif
213
214 /* TX Queue select used to determine what algorithm to use for selecting TX
215 * queue. Select between the kernel provided function (select_queue=0) or user
216 * cxgb_select_queue function (select_queue=1)
217 *
218 * Default: select_queue=0
219 */
220 static int select_queue;
221 module_param(select_queue, int, 0644);
222 MODULE_PARM_DESC(select_queue,
223 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
224
225 static struct dentry *cxgb4_debugfs_root;
226
227 LIST_HEAD(adapter_list);
228 DEFINE_MUTEX(uld_mutex);
229 /* Adapter list to be accessed from atomic context */
230 static LIST_HEAD(adap_rcu_list);
231 static DEFINE_SPINLOCK(adap_rcu_lock);
232 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
233 static const char *const uld_str[] = { "RDMA", "iSCSI", "iSCSIT" };
234
235 static void link_report(struct net_device *dev)
236 {
237 if (!netif_carrier_ok(dev))
238 netdev_info(dev, "link down\n");
239 else {
240 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
241
242 const char *s;
243 const struct port_info *p = netdev_priv(dev);
244
245 switch (p->link_cfg.speed) {
246 case 10000:
247 s = "10Gbps";
248 break;
249 case 1000:
250 s = "1000Mbps";
251 break;
252 case 100:
253 s = "100Mbps";
254 break;
255 case 40000:
256 s = "40Gbps";
257 break;
258 default:
259 pr_info("%s: unsupported speed: %d\n",
260 dev->name, p->link_cfg.speed);
261 return;
262 }
263
264 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
265 fc[p->link_cfg.fc]);
266 }
267 }
268
269 #ifdef CONFIG_CHELSIO_T4_DCB
270 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
271 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
272 {
273 struct port_info *pi = netdev_priv(dev);
274 struct adapter *adap = pi->adapter;
275 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
276 int i;
277
278 /* We use a simple mapping of Port TX Queue Index to DCB
279 * Priority when we're enabling DCB.
280 */
281 for (i = 0; i < pi->nqsets; i++, txq++) {
282 u32 name, value;
283 int err;
284
285 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
286 FW_PARAMS_PARAM_X_V(
287 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
288 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
289 value = enable ? i : 0xffffffff;
290
291 /* Since we can be called while atomic (from "interrupt
292 * level") we need to issue the Set Parameters Commannd
293 * without sleeping (timeout < 0).
294 */
295 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
296 &name, &value,
297 -FW_CMD_MAX_TIMEOUT);
298
299 if (err)
300 dev_err(adap->pdev_dev,
301 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
302 enable ? "set" : "unset", pi->port_id, i, -err);
303 else
304 txq->dcb_prio = value;
305 }
306 }
307 #endif /* CONFIG_CHELSIO_T4_DCB */
308
309 int cxgb4_dcb_enabled(const struct net_device *dev)
310 {
311 #ifdef CONFIG_CHELSIO_T4_DCB
312 struct port_info *pi = netdev_priv(dev);
313
314 if (!pi->dcb.enabled)
315 return 0;
316
317 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
318 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
319 #else
320 return 0;
321 #endif
322 }
323 EXPORT_SYMBOL(cxgb4_dcb_enabled);
324
325 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
326 {
327 struct net_device *dev = adapter->port[port_id];
328
329 /* Skip changes from disabled ports. */
330 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
331 if (link_stat)
332 netif_carrier_on(dev);
333 else {
334 #ifdef CONFIG_CHELSIO_T4_DCB
335 if (cxgb4_dcb_enabled(dev)) {
336 cxgb4_dcb_state_init(dev);
337 dcb_tx_queue_prio_enable(dev, false);
338 }
339 #endif /* CONFIG_CHELSIO_T4_DCB */
340 netif_carrier_off(dev);
341 }
342
343 link_report(dev);
344 }
345 }
346
347 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
348 {
349 static const char *mod_str[] = {
350 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
351 };
352
353 const struct net_device *dev = adap->port[port_id];
354 const struct port_info *pi = netdev_priv(dev);
355
356 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
357 netdev_info(dev, "port module unplugged\n");
358 else if (pi->mod_type < ARRAY_SIZE(mod_str))
359 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
360 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
361 netdev_info(dev, "%s: unsupported port module inserted\n",
362 dev->name);
363 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
364 netdev_info(dev, "%s: unknown port module inserted\n",
365 dev->name);
366 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
367 netdev_info(dev, "%s: transceiver module error\n", dev->name);
368 else
369 netdev_info(dev, "%s: unknown module type %d inserted\n",
370 dev->name, pi->mod_type);
371 }
372
373 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
374 module_param(dbfifo_int_thresh, int, 0644);
375 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
376
377 /*
378 * usecs to sleep while draining the dbfifo
379 */
380 static int dbfifo_drain_delay = 1000;
381 module_param(dbfifo_drain_delay, int, 0644);
382 MODULE_PARM_DESC(dbfifo_drain_delay,
383 "usecs to sleep while draining the dbfifo");
384
385 static inline int cxgb4_set_addr_hash(struct port_info *pi)
386 {
387 struct adapter *adap = pi->adapter;
388 u64 vec = 0;
389 bool ucast = false;
390 struct hash_mac_addr *entry;
391
392 /* Calculate the hash vector for the updated list and program it */
393 list_for_each_entry(entry, &adap->mac_hlist, list) {
394 ucast |= is_unicast_ether_addr(entry->addr);
395 vec |= (1ULL << hash_mac_addr(entry->addr));
396 }
397 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
398 vec, false);
399 }
400
401 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
402 {
403 struct port_info *pi = netdev_priv(netdev);
404 struct adapter *adap = pi->adapter;
405 int ret;
406 u64 mhash = 0;
407 u64 uhash = 0;
408 bool free = false;
409 bool ucast = is_unicast_ether_addr(mac_addr);
410 const u8 *maclist[1] = {mac_addr};
411 struct hash_mac_addr *new_entry;
412
413 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
414 NULL, ucast ? &uhash : &mhash, false);
415 if (ret < 0)
416 goto out;
417 /* if hash != 0, then add the addr to hash addr list
418 * so on the end we will calculate the hash for the
419 * list and program it
420 */
421 if (uhash || mhash) {
422 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
423 if (!new_entry)
424 return -ENOMEM;
425 ether_addr_copy(new_entry->addr, mac_addr);
426 list_add_tail(&new_entry->list, &adap->mac_hlist);
427 ret = cxgb4_set_addr_hash(pi);
428 }
429 out:
430 return ret < 0 ? ret : 0;
431 }
432
433 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
434 {
435 struct port_info *pi = netdev_priv(netdev);
436 struct adapter *adap = pi->adapter;
437 int ret;
438 const u8 *maclist[1] = {mac_addr};
439 struct hash_mac_addr *entry, *tmp;
440
441 /* If the MAC address to be removed is in the hash addr
442 * list, delete it from the list and update hash vector
443 */
444 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
445 if (ether_addr_equal(entry->addr, mac_addr)) {
446 list_del(&entry->list);
447 kfree(entry);
448 return cxgb4_set_addr_hash(pi);
449 }
450 }
451
452 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
453 return ret < 0 ? -EINVAL : 0;
454 }
455
456 /*
457 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
458 * If @mtu is -1 it is left unchanged.
459 */
460 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
461 {
462 struct port_info *pi = netdev_priv(dev);
463 struct adapter *adapter = pi->adapter;
464
465 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
466 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
467
468 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
469 (dev->flags & IFF_PROMISC) ? 1 : 0,
470 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
471 sleep_ok);
472 }
473
474 /**
475 * link_start - enable a port
476 * @dev: the port to enable
477 *
478 * Performs the MAC and PHY actions needed to enable a port.
479 */
480 static int link_start(struct net_device *dev)
481 {
482 int ret;
483 struct port_info *pi = netdev_priv(dev);
484 unsigned int mb = pi->adapter->pf;
485
486 /*
487 * We do not set address filters and promiscuity here, the stack does
488 * that step explicitly.
489 */
490 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
491 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
492 if (ret == 0) {
493 ret = t4_change_mac(pi->adapter, mb, pi->viid,
494 pi->xact_addr_filt, dev->dev_addr, true,
495 true);
496 if (ret >= 0) {
497 pi->xact_addr_filt = ret;
498 ret = 0;
499 }
500 }
501 if (ret == 0)
502 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
503 &pi->link_cfg);
504 if (ret == 0) {
505 local_bh_disable();
506 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
507 true, CXGB4_DCB_ENABLED);
508 local_bh_enable();
509 }
510
511 return ret;
512 }
513
514 #ifdef CONFIG_CHELSIO_T4_DCB
515 /* Handle a Data Center Bridging update message from the firmware. */
516 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
517 {
518 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
519 struct net_device *dev = adap->port[adap->chan_map[port]];
520 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
521 int new_dcb_enabled;
522
523 cxgb4_dcb_handle_fw_update(adap, pcmd);
524 new_dcb_enabled = cxgb4_dcb_enabled(dev);
525
526 /* If the DCB has become enabled or disabled on the port then we're
527 * going to need to set up/tear down DCB Priority parameters for the
528 * TX Queues associated with the port.
529 */
530 if (new_dcb_enabled != old_dcb_enabled)
531 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
532 }
533 #endif /* CONFIG_CHELSIO_T4_DCB */
534
535 /* Clear a filter and release any of its resources that we own. This also
536 * clears the filter's "pending" status.
537 */
538 static void clear_filter(struct adapter *adap, struct filter_entry *f)
539 {
540 /* If the new or old filter have loopback rewriteing rules then we'll
541 * need to free any existing Layer Two Table (L2T) entries of the old
542 * filter rule. The firmware will handle freeing up any Source MAC
543 * Table (SMT) entries used for rewriting Source MAC Addresses in
544 * loopback rules.
545 */
546 if (f->l2t)
547 cxgb4_l2t_release(f->l2t);
548
549 /* The zeroing of the filter rule below clears the filter valid,
550 * pending, locked flags, l2t pointer, etc. so it's all we need for
551 * this operation.
552 */
553 memset(f, 0, sizeof(*f));
554 }
555
556 /* Handle a filter write/deletion reply.
557 */
558 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
559 {
560 unsigned int idx = GET_TID(rpl);
561 unsigned int nidx = idx - adap->tids.ftid_base;
562 unsigned int ret;
563 struct filter_entry *f;
564
565 if (idx >= adap->tids.ftid_base && nidx <
566 (adap->tids.nftids + adap->tids.nsftids)) {
567 idx = nidx;
568 ret = TCB_COOKIE_G(rpl->cookie);
569 f = &adap->tids.ftid_tab[idx];
570
571 if (ret == FW_FILTER_WR_FLT_DELETED) {
572 /* Clear the filter when we get confirmation from the
573 * hardware that the filter has been deleted.
574 */
575 clear_filter(adap, f);
576 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
577 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
578 idx);
579 clear_filter(adap, f);
580 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
581 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
582 f->pending = 0; /* asynchronous setup completed */
583 f->valid = 1;
584 } else {
585 /* Something went wrong. Issue a warning about the
586 * problem and clear everything out.
587 */
588 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
589 idx, ret);
590 clear_filter(adap, f);
591 }
592 }
593 }
594
595 /* Response queue handler for the FW event queue.
596 */
597 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
598 const struct pkt_gl *gl)
599 {
600 u8 opcode = ((const struct rss_header *)rsp)->opcode;
601
602 rsp++; /* skip RSS header */
603
604 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
605 */
606 if (unlikely(opcode == CPL_FW4_MSG &&
607 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
608 rsp++;
609 opcode = ((const struct rss_header *)rsp)->opcode;
610 rsp++;
611 if (opcode != CPL_SGE_EGR_UPDATE) {
612 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
613 , opcode);
614 goto out;
615 }
616 }
617
618 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
619 const struct cpl_sge_egr_update *p = (void *)rsp;
620 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
621 struct sge_txq *txq;
622
623 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
624 txq->restarts++;
625 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
626 struct sge_eth_txq *eq;
627
628 eq = container_of(txq, struct sge_eth_txq, q);
629 netif_tx_wake_queue(eq->txq);
630 } else {
631 struct sge_ofld_txq *oq;
632
633 oq = container_of(txq, struct sge_ofld_txq, q);
634 tasklet_schedule(&oq->qresume_tsk);
635 }
636 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
637 const struct cpl_fw6_msg *p = (void *)rsp;
638
639 #ifdef CONFIG_CHELSIO_T4_DCB
640 const struct fw_port_cmd *pcmd = (const void *)p->data;
641 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
642 unsigned int action =
643 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
644
645 if (cmd == FW_PORT_CMD &&
646 action == FW_PORT_ACTION_GET_PORT_INFO) {
647 int port = FW_PORT_CMD_PORTID_G(
648 be32_to_cpu(pcmd->op_to_portid));
649 struct net_device *dev =
650 q->adap->port[q->adap->chan_map[port]];
651 int state_input = ((pcmd->u.info.dcbxdis_pkd &
652 FW_PORT_CMD_DCBXDIS_F)
653 ? CXGB4_DCB_INPUT_FW_DISABLED
654 : CXGB4_DCB_INPUT_FW_ENABLED);
655
656 cxgb4_dcb_state_fsm(dev, state_input);
657 }
658
659 if (cmd == FW_PORT_CMD &&
660 action == FW_PORT_ACTION_L2_DCB_CFG)
661 dcb_rpl(q->adap, pcmd);
662 else
663 #endif
664 if (p->type == 0)
665 t4_handle_fw_rpl(q->adap, p->data);
666 } else if (opcode == CPL_L2T_WRITE_RPL) {
667 const struct cpl_l2t_write_rpl *p = (void *)rsp;
668
669 do_l2t_write_rpl(q->adap, p);
670 } else if (opcode == CPL_SET_TCB_RPL) {
671 const struct cpl_set_tcb_rpl *p = (void *)rsp;
672
673 filter_rpl(q->adap, p);
674 } else
675 dev_err(q->adap->pdev_dev,
676 "unexpected CPL %#x on FW event queue\n", opcode);
677 out:
678 return 0;
679 }
680
681 /* Flush the aggregated lro sessions */
682 static void uldrx_flush_handler(struct sge_rspq *q)
683 {
684 if (ulds[q->uld].lro_flush)
685 ulds[q->uld].lro_flush(&q->lro_mgr);
686 }
687
688 /**
689 * uldrx_handler - response queue handler for ULD queues
690 * @q: the response queue that received the packet
691 * @rsp: the response queue descriptor holding the offload message
692 * @gl: the gather list of packet fragments
693 *
694 * Deliver an ingress offload packet to a ULD. All processing is done by
695 * the ULD, we just maintain statistics.
696 */
697 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
698 const struct pkt_gl *gl)
699 {
700 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
701 int ret;
702
703 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
704 */
705 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
706 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
707 rsp += 2;
708
709 if (q->flush_handler)
710 ret = ulds[q->uld].lro_rx_handler(q->adap->uld_handle[q->uld],
711 rsp, gl, &q->lro_mgr,
712 &q->napi);
713 else
714 ret = ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld],
715 rsp, gl);
716
717 if (ret) {
718 rxq->stats.nomem++;
719 return -1;
720 }
721
722 if (gl == NULL)
723 rxq->stats.imm++;
724 else if (gl == CXGB4_MSG_AN)
725 rxq->stats.an++;
726 else
727 rxq->stats.pkts++;
728 return 0;
729 }
730
731 static void disable_msi(struct adapter *adapter)
732 {
733 if (adapter->flags & USING_MSIX) {
734 pci_disable_msix(adapter->pdev);
735 adapter->flags &= ~USING_MSIX;
736 } else if (adapter->flags & USING_MSI) {
737 pci_disable_msi(adapter->pdev);
738 adapter->flags &= ~USING_MSI;
739 }
740 }
741
742 /*
743 * Interrupt handler for non-data events used with MSI-X.
744 */
745 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
746 {
747 struct adapter *adap = cookie;
748 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
749
750 if (v & PFSW_F) {
751 adap->swintr = 1;
752 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
753 }
754 if (adap->flags & MASTER_PF)
755 t4_slow_intr_handler(adap);
756 return IRQ_HANDLED;
757 }
758
759 /*
760 * Name the MSI-X interrupts.
761 */
762 static void name_msix_vecs(struct adapter *adap)
763 {
764 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
765
766 /* non-data interrupts */
767 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
768
769 /* FW events */
770 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
771 adap->port[0]->name);
772
773 /* Ethernet queues */
774 for_each_port(adap, j) {
775 struct net_device *d = adap->port[j];
776 const struct port_info *pi = netdev_priv(d);
777
778 for (i = 0; i < pi->nqsets; i++, msi_idx++)
779 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
780 d->name, i);
781 }
782
783 /* offload queues */
784 for_each_iscsirxq(&adap->sge, i)
785 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d",
786 adap->port[0]->name, i);
787
788 for_each_iscsitrxq(&adap->sge, i)
789 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iSCSIT%d",
790 adap->port[0]->name, i);
791
792 for_each_rdmarxq(&adap->sge, i)
793 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
794 adap->port[0]->name, i);
795
796 for_each_rdmaciq(&adap->sge, i)
797 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
798 adap->port[0]->name, i);
799 }
800
801 static int request_msix_queue_irqs(struct adapter *adap)
802 {
803 struct sge *s = &adap->sge;
804 int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
805 int iscsitqidx = 0;
806 int msi_index = 2;
807
808 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
809 adap->msix_info[1].desc, &s->fw_evtq);
810 if (err)
811 return err;
812
813 for_each_ethrxq(s, ethqidx) {
814 err = request_irq(adap->msix_info[msi_index].vec,
815 t4_sge_intr_msix, 0,
816 adap->msix_info[msi_index].desc,
817 &s->ethrxq[ethqidx].rspq);
818 if (err)
819 goto unwind;
820 msi_index++;
821 }
822 for_each_iscsirxq(s, iscsiqidx) {
823 err = request_irq(adap->msix_info[msi_index].vec,
824 t4_sge_intr_msix, 0,
825 adap->msix_info[msi_index].desc,
826 &s->iscsirxq[iscsiqidx].rspq);
827 if (err)
828 goto unwind;
829 msi_index++;
830 }
831 for_each_iscsitrxq(s, iscsitqidx) {
832 err = request_irq(adap->msix_info[msi_index].vec,
833 t4_sge_intr_msix, 0,
834 adap->msix_info[msi_index].desc,
835 &s->iscsitrxq[iscsitqidx].rspq);
836 if (err)
837 goto unwind;
838 msi_index++;
839 }
840 for_each_rdmarxq(s, rdmaqidx) {
841 err = request_irq(adap->msix_info[msi_index].vec,
842 t4_sge_intr_msix, 0,
843 adap->msix_info[msi_index].desc,
844 &s->rdmarxq[rdmaqidx].rspq);
845 if (err)
846 goto unwind;
847 msi_index++;
848 }
849 for_each_rdmaciq(s, rdmaciqqidx) {
850 err = request_irq(adap->msix_info[msi_index].vec,
851 t4_sge_intr_msix, 0,
852 adap->msix_info[msi_index].desc,
853 &s->rdmaciq[rdmaciqqidx].rspq);
854 if (err)
855 goto unwind;
856 msi_index++;
857 }
858 return 0;
859
860 unwind:
861 while (--rdmaciqqidx >= 0)
862 free_irq(adap->msix_info[--msi_index].vec,
863 &s->rdmaciq[rdmaciqqidx].rspq);
864 while (--rdmaqidx >= 0)
865 free_irq(adap->msix_info[--msi_index].vec,
866 &s->rdmarxq[rdmaqidx].rspq);
867 while (--iscsitqidx >= 0)
868 free_irq(adap->msix_info[--msi_index].vec,
869 &s->iscsitrxq[iscsitqidx].rspq);
870 while (--iscsiqidx >= 0)
871 free_irq(adap->msix_info[--msi_index].vec,
872 &s->iscsirxq[iscsiqidx].rspq);
873 while (--ethqidx >= 0)
874 free_irq(adap->msix_info[--msi_index].vec,
875 &s->ethrxq[ethqidx].rspq);
876 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
877 return err;
878 }
879
880 static void free_msix_queue_irqs(struct adapter *adap)
881 {
882 int i, msi_index = 2;
883 struct sge *s = &adap->sge;
884
885 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
886 for_each_ethrxq(s, i)
887 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
888 for_each_iscsirxq(s, i)
889 free_irq(adap->msix_info[msi_index++].vec,
890 &s->iscsirxq[i].rspq);
891 for_each_iscsitrxq(s, i)
892 free_irq(adap->msix_info[msi_index++].vec,
893 &s->iscsitrxq[i].rspq);
894 for_each_rdmarxq(s, i)
895 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
896 for_each_rdmaciq(s, i)
897 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
898 }
899
900 /**
901 * cxgb4_write_rss - write the RSS table for a given port
902 * @pi: the port
903 * @queues: array of queue indices for RSS
904 *
905 * Sets up the portion of the HW RSS table for the port's VI to distribute
906 * packets to the Rx queues in @queues.
907 * Should never be called before setting up sge eth rx queues
908 */
909 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
910 {
911 u16 *rss;
912 int i, err;
913 struct adapter *adapter = pi->adapter;
914 const struct sge_eth_rxq *rxq;
915
916 rxq = &adapter->sge.ethrxq[pi->first_qset];
917 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
918 if (!rss)
919 return -ENOMEM;
920
921 /* map the queue indices to queue ids */
922 for (i = 0; i < pi->rss_size; i++, queues++)
923 rss[i] = rxq[*queues].rspq.abs_id;
924
925 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
926 pi->rss_size, rss, pi->rss_size);
927 /* If Tunnel All Lookup isn't specified in the global RSS
928 * Configuration, then we need to specify a default Ingress
929 * Queue for any ingress packets which aren't hashed. We'll
930 * use our first ingress queue ...
931 */
932 if (!err)
933 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
934 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
935 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
936 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
937 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
938 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
939 rss[0]);
940 kfree(rss);
941 return err;
942 }
943
944 /**
945 * setup_rss - configure RSS
946 * @adap: the adapter
947 *
948 * Sets up RSS for each port.
949 */
950 static int setup_rss(struct adapter *adap)
951 {
952 int i, j, err;
953
954 for_each_port(adap, i) {
955 const struct port_info *pi = adap2pinfo(adap, i);
956
957 /* Fill default values with equal distribution */
958 for (j = 0; j < pi->rss_size; j++)
959 pi->rss[j] = j % pi->nqsets;
960
961 err = cxgb4_write_rss(pi, pi->rss);
962 if (err)
963 return err;
964 }
965 return 0;
966 }
967
968 /*
969 * Return the channel of the ingress queue with the given qid.
970 */
971 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
972 {
973 qid -= p->ingr_start;
974 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
975 }
976
977 /*
978 * Wait until all NAPI handlers are descheduled.
979 */
980 static void quiesce_rx(struct adapter *adap)
981 {
982 int i;
983
984 for (i = 0; i < adap->sge.ingr_sz; i++) {
985 struct sge_rspq *q = adap->sge.ingr_map[i];
986
987 if (q && q->handler) {
988 napi_disable(&q->napi);
989 local_bh_disable();
990 while (!cxgb_poll_lock_napi(q))
991 mdelay(1);
992 local_bh_enable();
993 }
994
995 }
996 }
997
998 /* Disable interrupt and napi handler */
999 static void disable_interrupts(struct adapter *adap)
1000 {
1001 if (adap->flags & FULL_INIT_DONE) {
1002 t4_intr_disable(adap);
1003 if (adap->flags & USING_MSIX) {
1004 free_msix_queue_irqs(adap);
1005 free_irq(adap->msix_info[0].vec, adap);
1006 } else {
1007 free_irq(adap->pdev->irq, adap);
1008 }
1009 quiesce_rx(adap);
1010 }
1011 }
1012
1013 /*
1014 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1015 */
1016 static void enable_rx(struct adapter *adap)
1017 {
1018 int i;
1019
1020 for (i = 0; i < adap->sge.ingr_sz; i++) {
1021 struct sge_rspq *q = adap->sge.ingr_map[i];
1022
1023 if (!q)
1024 continue;
1025 if (q->handler) {
1026 cxgb_busy_poll_init_lock(q);
1027 napi_enable(&q->napi);
1028 }
1029 /* 0-increment GTS to start the timer and enable interrupts */
1030 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
1031 SEINTARM_V(q->intr_params) |
1032 INGRESSQID_V(q->cntxt_id));
1033 }
1034 }
1035
1036 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1037 unsigned int nq, unsigned int per_chan, int msi_idx,
1038 u16 *ids, bool lro)
1039 {
1040 int i, err;
1041
1042 for (i = 0; i < nq; i++, q++) {
1043 if (msi_idx > 0)
1044 msi_idx++;
1045 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1046 adap->port[i / per_chan],
1047 msi_idx, q->fl.size ? &q->fl : NULL,
1048 uldrx_handler,
1049 lro ? uldrx_flush_handler : NULL,
1050 0);
1051 if (err)
1052 return err;
1053 memset(&q->stats, 0, sizeof(q->stats));
1054 if (ids)
1055 ids[i] = q->rspq.abs_id;
1056 }
1057 return 0;
1058 }
1059
1060 /**
1061 * setup_sge_queues - configure SGE Tx/Rx/response queues
1062 * @adap: the adapter
1063 *
1064 * Determines how many sets of SGE queues to use and initializes them.
1065 * We support multiple queue sets per port if we have MSI-X, otherwise
1066 * just one queue set per port.
1067 */
1068 static int setup_sge_queues(struct adapter *adap)
1069 {
1070 int err, i, j;
1071 struct sge *s = &adap->sge;
1072
1073 bitmap_zero(s->starving_fl, s->egr_sz);
1074 bitmap_zero(s->txq_maperr, s->egr_sz);
1075
1076 if (adap->flags & USING_MSIX)
1077 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */
1078 else {
1079 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1080 NULL, NULL, NULL, -1);
1081 if (err)
1082 return err;
1083 adap->msi_idx = -((int)s->intrq.abs_id + 1);
1084 }
1085
1086 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1087 * don't forget to update the following which need to be
1088 * synchronized to and changes here.
1089 *
1090 * 1. The calculations of MAX_INGQ in cxgb4.h.
1091 *
1092 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1093 * to accommodate any new/deleted Ingress Queues
1094 * which need MSI-X Vectors.
1095 *
1096 * 3. Update sge_qinfo_show() to include information on the
1097 * new/deleted queues.
1098 */
1099 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1100 adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
1101 if (err) {
1102 freeout: t4_free_sge_resources(adap);
1103 return err;
1104 }
1105
1106 for_each_port(adap, i) {
1107 struct net_device *dev = adap->port[i];
1108 struct port_info *pi = netdev_priv(dev);
1109 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1110 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1111
1112 for (j = 0; j < pi->nqsets; j++, q++) {
1113 if (adap->msi_idx > 0)
1114 adap->msi_idx++;
1115 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1116 adap->msi_idx, &q->fl,
1117 t4_ethrx_handler,
1118 NULL,
1119 t4_get_mps_bg_map(adap,
1120 pi->tx_chan));
1121 if (err)
1122 goto freeout;
1123 q->rspq.idx = j;
1124 memset(&q->stats, 0, sizeof(q->stats));
1125 }
1126 for (j = 0; j < pi->nqsets; j++, t++) {
1127 err = t4_sge_alloc_eth_txq(adap, t, dev,
1128 netdev_get_tx_queue(dev, j),
1129 s->fw_evtq.cntxt_id);
1130 if (err)
1131 goto freeout;
1132 }
1133 }
1134
1135 j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */
1136 for_each_iscsirxq(s, i) {
1137 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1138 adap->port[i / j],
1139 s->fw_evtq.cntxt_id);
1140 if (err)
1141 goto freeout;
1142 }
1143
1144 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids, lro) do { \
1145 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, adap->msi_idx, ids, lro); \
1146 if (err) \
1147 goto freeout; \
1148 if (adap->msi_idx > 0) \
1149 adap->msi_idx += nq; \
1150 } while (0)
1151
1152 ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq, false);
1153 ALLOC_OFLD_RXQS(s->iscsitrxq, s->niscsitq, j, s->iscsit_rxq, true);
1154 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq, false);
1155 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1156 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq, false);
1157
1158 #undef ALLOC_OFLD_RXQS
1159
1160 for_each_port(adap, i) {
1161 /*
1162 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1163 * have RDMA queues, and that's the right value.
1164 */
1165 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1166 s->fw_evtq.cntxt_id,
1167 s->rdmarxq[i].rspq.cntxt_id);
1168 if (err)
1169 goto freeout;
1170 }
1171
1172 t4_write_reg(adap, is_t4(adap->params.chip) ?
1173 MPS_TRC_RSS_CONTROL_A :
1174 MPS_T5_TRC_RSS_CONTROL_A,
1175 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1176 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1177 return 0;
1178 }
1179
1180 /*
1181 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1182 * The allocated memory is cleared.
1183 */
1184 void *t4_alloc_mem(size_t size)
1185 {
1186 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1187
1188 if (!p)
1189 p = vzalloc(size);
1190 return p;
1191 }
1192
1193 /*
1194 * Free memory allocated through alloc_mem().
1195 */
1196 void t4_free_mem(void *addr)
1197 {
1198 kvfree(addr);
1199 }
1200
1201 /* Send a Work Request to write the filter at a specified index. We construct
1202 * a Firmware Filter Work Request to have the work done and put the indicated
1203 * filter into "pending" mode which will prevent any further actions against
1204 * it till we get a reply from the firmware on the completion status of the
1205 * request.
1206 */
1207 static int set_filter_wr(struct adapter *adapter, int fidx)
1208 {
1209 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1210 struct sk_buff *skb;
1211 struct fw_filter_wr *fwr;
1212 unsigned int ftid;
1213
1214 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1215 if (!skb)
1216 return -ENOMEM;
1217
1218 /* If the new filter requires loopback Destination MAC and/or VLAN
1219 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1220 * the filter.
1221 */
1222 if (f->fs.newdmac || f->fs.newvlan) {
1223 /* allocate L2T entry for new filter */
1224 f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1225 f->fs.eport, f->fs.dmac);
1226 if (f->l2t == NULL) {
1227 kfree_skb(skb);
1228 return -ENOMEM;
1229 }
1230 }
1231
1232 ftid = adapter->tids.ftid_base + fidx;
1233
1234 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1235 memset(fwr, 0, sizeof(*fwr));
1236
1237 /* It would be nice to put most of the following in t4_hw.c but most
1238 * of the work is translating the cxgbtool ch_filter_specification
1239 * into the Work Request and the definition of that structure is
1240 * currently in cxgbtool.h which isn't appropriate to pull into the
1241 * common code. We may eventually try to come up with a more neutral
1242 * filter specification structure but for now it's easiest to simply
1243 * put this fairly direct code in line ...
1244 */
1245 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1246 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1247 fwr->tid_to_iq =
1248 htonl(FW_FILTER_WR_TID_V(ftid) |
1249 FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1250 FW_FILTER_WR_NOREPLY_V(0) |
1251 FW_FILTER_WR_IQ_V(f->fs.iq));
1252 fwr->del_filter_to_l2tix =
1253 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1254 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1255 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1256 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1257 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1258 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1259 FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1260 FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1261 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1262 f->fs.newvlan == VLAN_REWRITE) |
1263 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1264 f->fs.newvlan == VLAN_REWRITE) |
1265 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1266 FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1267 FW_FILTER_WR_PRIO_V(f->fs.prio) |
1268 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1269 fwr->ethtype = htons(f->fs.val.ethtype);
1270 fwr->ethtypem = htons(f->fs.mask.ethtype);
1271 fwr->frag_to_ovlan_vldm =
1272 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1273 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1274 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1275 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1276 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1277 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1278 fwr->smac_sel = 0;
1279 fwr->rx_chan_rx_rpl_iq =
1280 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1281 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1282 fwr->maci_to_matchtypem =
1283 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1284 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1285 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1286 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1287 FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1288 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1289 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1290 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1291 fwr->ptcl = f->fs.val.proto;
1292 fwr->ptclm = f->fs.mask.proto;
1293 fwr->ttyp = f->fs.val.tos;
1294 fwr->ttypm = f->fs.mask.tos;
1295 fwr->ivlan = htons(f->fs.val.ivlan);
1296 fwr->ivlanm = htons(f->fs.mask.ivlan);
1297 fwr->ovlan = htons(f->fs.val.ovlan);
1298 fwr->ovlanm = htons(f->fs.mask.ovlan);
1299 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1300 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1301 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1302 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1303 fwr->lp = htons(f->fs.val.lport);
1304 fwr->lpm = htons(f->fs.mask.lport);
1305 fwr->fp = htons(f->fs.val.fport);
1306 fwr->fpm = htons(f->fs.mask.fport);
1307 if (f->fs.newsmac)
1308 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1309
1310 /* Mark the filter as "pending" and ship off the Filter Work Request.
1311 * When we get the Work Request Reply we'll clear the pending status.
1312 */
1313 f->pending = 1;
1314 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1315 t4_ofld_send(adapter, skb);
1316 return 0;
1317 }
1318
1319 /* Delete the filter at a specified index.
1320 */
1321 static int del_filter_wr(struct adapter *adapter, int fidx)
1322 {
1323 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1324 struct sk_buff *skb;
1325 struct fw_filter_wr *fwr;
1326 unsigned int len, ftid;
1327
1328 len = sizeof(*fwr);
1329 ftid = adapter->tids.ftid_base + fidx;
1330
1331 skb = alloc_skb(len, GFP_KERNEL);
1332 if (!skb)
1333 return -ENOMEM;
1334
1335 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1336 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1337
1338 /* Mark the filter as "pending" and ship off the Filter Work Request.
1339 * When we get the Work Request Reply we'll clear the pending status.
1340 */
1341 f->pending = 1;
1342 t4_mgmt_tx(adapter, skb);
1343 return 0;
1344 }
1345
1346 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1347 void *accel_priv, select_queue_fallback_t fallback)
1348 {
1349 int txq;
1350
1351 #ifdef CONFIG_CHELSIO_T4_DCB
1352 /* If a Data Center Bridging has been successfully negotiated on this
1353 * link then we'll use the skb's priority to map it to a TX Queue.
1354 * The skb's priority is determined via the VLAN Tag Priority Code
1355 * Point field.
1356 */
1357 if (cxgb4_dcb_enabled(dev)) {
1358 u16 vlan_tci;
1359 int err;
1360
1361 err = vlan_get_tag(skb, &vlan_tci);
1362 if (unlikely(err)) {
1363 if (net_ratelimit())
1364 netdev_warn(dev,
1365 "TX Packet without VLAN Tag on DCB Link\n");
1366 txq = 0;
1367 } else {
1368 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1369 #ifdef CONFIG_CHELSIO_T4_FCOE
1370 if (skb->protocol == htons(ETH_P_FCOE))
1371 txq = skb->priority & 0x7;
1372 #endif /* CONFIG_CHELSIO_T4_FCOE */
1373 }
1374 return txq;
1375 }
1376 #endif /* CONFIG_CHELSIO_T4_DCB */
1377
1378 if (select_queue) {
1379 txq = (skb_rx_queue_recorded(skb)
1380 ? skb_get_rx_queue(skb)
1381 : smp_processor_id());
1382
1383 while (unlikely(txq >= dev->real_num_tx_queues))
1384 txq -= dev->real_num_tx_queues;
1385
1386 return txq;
1387 }
1388
1389 return fallback(dev, skb) % dev->real_num_tx_queues;
1390 }
1391
1392 static int closest_timer(const struct sge *s, int time)
1393 {
1394 int i, delta, match = 0, min_delta = INT_MAX;
1395
1396 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1397 delta = time - s->timer_val[i];
1398 if (delta < 0)
1399 delta = -delta;
1400 if (delta < min_delta) {
1401 min_delta = delta;
1402 match = i;
1403 }
1404 }
1405 return match;
1406 }
1407
1408 static int closest_thres(const struct sge *s, int thres)
1409 {
1410 int i, delta, match = 0, min_delta = INT_MAX;
1411
1412 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1413 delta = thres - s->counter_val[i];
1414 if (delta < 0)
1415 delta = -delta;
1416 if (delta < min_delta) {
1417 min_delta = delta;
1418 match = i;
1419 }
1420 }
1421 return match;
1422 }
1423
1424 /**
1425 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1426 * @q: the Rx queue
1427 * @us: the hold-off time in us, or 0 to disable timer
1428 * @cnt: the hold-off packet count, or 0 to disable counter
1429 *
1430 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1431 * one of the two needs to be enabled for the queue to generate interrupts.
1432 */
1433 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1434 unsigned int us, unsigned int cnt)
1435 {
1436 struct adapter *adap = q->adap;
1437
1438 if ((us | cnt) == 0)
1439 cnt = 1;
1440
1441 if (cnt) {
1442 int err;
1443 u32 v, new_idx;
1444
1445 new_idx = closest_thres(&adap->sge, cnt);
1446 if (q->desc && q->pktcnt_idx != new_idx) {
1447 /* the queue has already been created, update it */
1448 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1449 FW_PARAMS_PARAM_X_V(
1450 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1451 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1452 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1453 &v, &new_idx);
1454 if (err)
1455 return err;
1456 }
1457 q->pktcnt_idx = new_idx;
1458 }
1459
1460 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1461 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1462 return 0;
1463 }
1464
1465 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1466 {
1467 const struct port_info *pi = netdev_priv(dev);
1468 netdev_features_t changed = dev->features ^ features;
1469 int err;
1470
1471 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1472 return 0;
1473
1474 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1475 -1, -1, -1,
1476 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1477 if (unlikely(err))
1478 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1479 return err;
1480 }
1481
1482 static int setup_debugfs(struct adapter *adap)
1483 {
1484 if (IS_ERR_OR_NULL(adap->debugfs_root))
1485 return -1;
1486
1487 #ifdef CONFIG_DEBUG_FS
1488 t4_setup_debugfs(adap);
1489 #endif
1490 return 0;
1491 }
1492
1493 /*
1494 * upper-layer driver support
1495 */
1496
1497 /*
1498 * Allocate an active-open TID and set it to the supplied value.
1499 */
1500 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1501 {
1502 int atid = -1;
1503
1504 spin_lock_bh(&t->atid_lock);
1505 if (t->afree) {
1506 union aopen_entry *p = t->afree;
1507
1508 atid = (p - t->atid_tab) + t->atid_base;
1509 t->afree = p->next;
1510 p->data = data;
1511 t->atids_in_use++;
1512 }
1513 spin_unlock_bh(&t->atid_lock);
1514 return atid;
1515 }
1516 EXPORT_SYMBOL(cxgb4_alloc_atid);
1517
1518 /*
1519 * Release an active-open TID.
1520 */
1521 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1522 {
1523 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1524
1525 spin_lock_bh(&t->atid_lock);
1526 p->next = t->afree;
1527 t->afree = p;
1528 t->atids_in_use--;
1529 spin_unlock_bh(&t->atid_lock);
1530 }
1531 EXPORT_SYMBOL(cxgb4_free_atid);
1532
1533 /*
1534 * Allocate a server TID and set it to the supplied value.
1535 */
1536 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1537 {
1538 int stid;
1539
1540 spin_lock_bh(&t->stid_lock);
1541 if (family == PF_INET) {
1542 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1543 if (stid < t->nstids)
1544 __set_bit(stid, t->stid_bmap);
1545 else
1546 stid = -1;
1547 } else {
1548 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1549 if (stid < 0)
1550 stid = -1;
1551 }
1552 if (stid >= 0) {
1553 t->stid_tab[stid].data = data;
1554 stid += t->stid_base;
1555 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1556 * This is equivalent to 4 TIDs. With CLIP enabled it
1557 * needs 2 TIDs.
1558 */
1559 if (family == PF_INET)
1560 t->stids_in_use++;
1561 else
1562 t->stids_in_use += 2;
1563 }
1564 spin_unlock_bh(&t->stid_lock);
1565 return stid;
1566 }
1567 EXPORT_SYMBOL(cxgb4_alloc_stid);
1568
1569 /* Allocate a server filter TID and set it to the supplied value.
1570 */
1571 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1572 {
1573 int stid;
1574
1575 spin_lock_bh(&t->stid_lock);
1576 if (family == PF_INET) {
1577 stid = find_next_zero_bit(t->stid_bmap,
1578 t->nstids + t->nsftids, t->nstids);
1579 if (stid < (t->nstids + t->nsftids))
1580 __set_bit(stid, t->stid_bmap);
1581 else
1582 stid = -1;
1583 } else {
1584 stid = -1;
1585 }
1586 if (stid >= 0) {
1587 t->stid_tab[stid].data = data;
1588 stid -= t->nstids;
1589 stid += t->sftid_base;
1590 t->sftids_in_use++;
1591 }
1592 spin_unlock_bh(&t->stid_lock);
1593 return stid;
1594 }
1595 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1596
1597 /* Release a server TID.
1598 */
1599 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1600 {
1601 /* Is it a server filter TID? */
1602 if (t->nsftids && (stid >= t->sftid_base)) {
1603 stid -= t->sftid_base;
1604 stid += t->nstids;
1605 } else {
1606 stid -= t->stid_base;
1607 }
1608
1609 spin_lock_bh(&t->stid_lock);
1610 if (family == PF_INET)
1611 __clear_bit(stid, t->stid_bmap);
1612 else
1613 bitmap_release_region(t->stid_bmap, stid, 1);
1614 t->stid_tab[stid].data = NULL;
1615 if (stid < t->nstids) {
1616 if (family == PF_INET)
1617 t->stids_in_use--;
1618 else
1619 t->stids_in_use -= 2;
1620 } else {
1621 t->sftids_in_use--;
1622 }
1623 spin_unlock_bh(&t->stid_lock);
1624 }
1625 EXPORT_SYMBOL(cxgb4_free_stid);
1626
1627 /*
1628 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1629 */
1630 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1631 unsigned int tid)
1632 {
1633 struct cpl_tid_release *req;
1634
1635 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1636 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1637 INIT_TP_WR(req, tid);
1638 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1639 }
1640
1641 /*
1642 * Queue a TID release request and if necessary schedule a work queue to
1643 * process it.
1644 */
1645 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1646 unsigned int tid)
1647 {
1648 void **p = &t->tid_tab[tid];
1649 struct adapter *adap = container_of(t, struct adapter, tids);
1650
1651 spin_lock_bh(&adap->tid_release_lock);
1652 *p = adap->tid_release_head;
1653 /* Low 2 bits encode the Tx channel number */
1654 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1655 if (!adap->tid_release_task_busy) {
1656 adap->tid_release_task_busy = true;
1657 queue_work(adap->workq, &adap->tid_release_task);
1658 }
1659 spin_unlock_bh(&adap->tid_release_lock);
1660 }
1661
1662 /*
1663 * Process the list of pending TID release requests.
1664 */
1665 static void process_tid_release_list(struct work_struct *work)
1666 {
1667 struct sk_buff *skb;
1668 struct adapter *adap;
1669
1670 adap = container_of(work, struct adapter, tid_release_task);
1671
1672 spin_lock_bh(&adap->tid_release_lock);
1673 while (adap->tid_release_head) {
1674 void **p = adap->tid_release_head;
1675 unsigned int chan = (uintptr_t)p & 3;
1676 p = (void *)p - chan;
1677
1678 adap->tid_release_head = *p;
1679 *p = NULL;
1680 spin_unlock_bh(&adap->tid_release_lock);
1681
1682 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1683 GFP_KERNEL)))
1684 schedule_timeout_uninterruptible(1);
1685
1686 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1687 t4_ofld_send(adap, skb);
1688 spin_lock_bh(&adap->tid_release_lock);
1689 }
1690 adap->tid_release_task_busy = false;
1691 spin_unlock_bh(&adap->tid_release_lock);
1692 }
1693
1694 /*
1695 * Release a TID and inform HW. If we are unable to allocate the release
1696 * message we defer to a work queue.
1697 */
1698 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1699 {
1700 struct sk_buff *skb;
1701 struct adapter *adap = container_of(t, struct adapter, tids);
1702
1703 WARN_ON(tid >= t->ntids);
1704
1705 if (t->tid_tab[tid]) {
1706 t->tid_tab[tid] = NULL;
1707 if (t->hash_base && (tid >= t->hash_base))
1708 atomic_dec(&t->hash_tids_in_use);
1709 else
1710 atomic_dec(&t->tids_in_use);
1711 }
1712
1713 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1714 if (likely(skb)) {
1715 mk_tid_release(skb, chan, tid);
1716 t4_ofld_send(adap, skb);
1717 } else
1718 cxgb4_queue_tid_release(t, chan, tid);
1719 }
1720 EXPORT_SYMBOL(cxgb4_remove_tid);
1721
1722 /*
1723 * Allocate and initialize the TID tables. Returns 0 on success.
1724 */
1725 static int tid_init(struct tid_info *t)
1726 {
1727 size_t size;
1728 unsigned int stid_bmap_size;
1729 unsigned int natids = t->natids;
1730 struct adapter *adap = container_of(t, struct adapter, tids);
1731
1732 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1733 size = t->ntids * sizeof(*t->tid_tab) +
1734 natids * sizeof(*t->atid_tab) +
1735 t->nstids * sizeof(*t->stid_tab) +
1736 t->nsftids * sizeof(*t->stid_tab) +
1737 stid_bmap_size * sizeof(long) +
1738 t->nftids * sizeof(*t->ftid_tab) +
1739 t->nsftids * sizeof(*t->ftid_tab);
1740
1741 t->tid_tab = t4_alloc_mem(size);
1742 if (!t->tid_tab)
1743 return -ENOMEM;
1744
1745 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1746 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1747 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1748 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1749 spin_lock_init(&t->stid_lock);
1750 spin_lock_init(&t->atid_lock);
1751
1752 t->stids_in_use = 0;
1753 t->sftids_in_use = 0;
1754 t->afree = NULL;
1755 t->atids_in_use = 0;
1756 atomic_set(&t->tids_in_use, 0);
1757 atomic_set(&t->hash_tids_in_use, 0);
1758
1759 /* Setup the free list for atid_tab and clear the stid bitmap. */
1760 if (natids) {
1761 while (--natids)
1762 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1763 t->afree = t->atid_tab;
1764 }
1765 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1766 /* Reserve stid 0 for T4/T5 adapters */
1767 if (!t->stid_base &&
1768 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1769 __set_bit(0, t->stid_bmap);
1770
1771 return 0;
1772 }
1773
1774 /**
1775 * cxgb4_create_server - create an IP server
1776 * @dev: the device
1777 * @stid: the server TID
1778 * @sip: local IP address to bind server to
1779 * @sport: the server's TCP port
1780 * @queue: queue to direct messages from this server to
1781 *
1782 * Create an IP server for the given port and address.
1783 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1784 */
1785 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1786 __be32 sip, __be16 sport, __be16 vlan,
1787 unsigned int queue)
1788 {
1789 unsigned int chan;
1790 struct sk_buff *skb;
1791 struct adapter *adap;
1792 struct cpl_pass_open_req *req;
1793 int ret;
1794
1795 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1796 if (!skb)
1797 return -ENOMEM;
1798
1799 adap = netdev2adap(dev);
1800 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1801 INIT_TP_WR(req, 0);
1802 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1803 req->local_port = sport;
1804 req->peer_port = htons(0);
1805 req->local_ip = sip;
1806 req->peer_ip = htonl(0);
1807 chan = rxq_to_chan(&adap->sge, queue);
1808 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1809 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1810 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1811 ret = t4_mgmt_tx(adap, skb);
1812 return net_xmit_eval(ret);
1813 }
1814 EXPORT_SYMBOL(cxgb4_create_server);
1815
1816 /* cxgb4_create_server6 - create an IPv6 server
1817 * @dev: the device
1818 * @stid: the server TID
1819 * @sip: local IPv6 address to bind server to
1820 * @sport: the server's TCP port
1821 * @queue: queue to direct messages from this server to
1822 *
1823 * Create an IPv6 server for the given port and address.
1824 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1825 */
1826 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1827 const struct in6_addr *sip, __be16 sport,
1828 unsigned int queue)
1829 {
1830 unsigned int chan;
1831 struct sk_buff *skb;
1832 struct adapter *adap;
1833 struct cpl_pass_open_req6 *req;
1834 int ret;
1835
1836 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1837 if (!skb)
1838 return -ENOMEM;
1839
1840 adap = netdev2adap(dev);
1841 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1842 INIT_TP_WR(req, 0);
1843 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1844 req->local_port = sport;
1845 req->peer_port = htons(0);
1846 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1847 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1848 req->peer_ip_hi = cpu_to_be64(0);
1849 req->peer_ip_lo = cpu_to_be64(0);
1850 chan = rxq_to_chan(&adap->sge, queue);
1851 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1852 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1853 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1854 ret = t4_mgmt_tx(adap, skb);
1855 return net_xmit_eval(ret);
1856 }
1857 EXPORT_SYMBOL(cxgb4_create_server6);
1858
1859 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1860 unsigned int queue, bool ipv6)
1861 {
1862 struct sk_buff *skb;
1863 struct adapter *adap;
1864 struct cpl_close_listsvr_req *req;
1865 int ret;
1866
1867 adap = netdev2adap(dev);
1868
1869 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1870 if (!skb)
1871 return -ENOMEM;
1872
1873 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1874 INIT_TP_WR(req, 0);
1875 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1876 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1877 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1878 ret = t4_mgmt_tx(adap, skb);
1879 return net_xmit_eval(ret);
1880 }
1881 EXPORT_SYMBOL(cxgb4_remove_server);
1882
1883 /**
1884 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1885 * @mtus: the HW MTU table
1886 * @mtu: the target MTU
1887 * @idx: index of selected entry in the MTU table
1888 *
1889 * Returns the index and the value in the HW MTU table that is closest to
1890 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1891 * table, in which case that smallest available value is selected.
1892 */
1893 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1894 unsigned int *idx)
1895 {
1896 unsigned int i = 0;
1897
1898 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1899 ++i;
1900 if (idx)
1901 *idx = i;
1902 return mtus[i];
1903 }
1904 EXPORT_SYMBOL(cxgb4_best_mtu);
1905
1906 /**
1907 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1908 * @mtus: the HW MTU table
1909 * @header_size: Header Size
1910 * @data_size_max: maximum Data Segment Size
1911 * @data_size_align: desired Data Segment Size Alignment (2^N)
1912 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1913 *
1914 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1915 * MTU Table based solely on a Maximum MTU parameter, we break that
1916 * parameter up into a Header Size and Maximum Data Segment Size, and
1917 * provide a desired Data Segment Size Alignment. If we find an MTU in
1918 * the Hardware MTU Table which will result in a Data Segment Size with
1919 * the requested alignment _and_ that MTU isn't "too far" from the
1920 * closest MTU, then we'll return that rather than the closest MTU.
1921 */
1922 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1923 unsigned short header_size,
1924 unsigned short data_size_max,
1925 unsigned short data_size_align,
1926 unsigned int *mtu_idxp)
1927 {
1928 unsigned short max_mtu = header_size + data_size_max;
1929 unsigned short data_size_align_mask = data_size_align - 1;
1930 int mtu_idx, aligned_mtu_idx;
1931
1932 /* Scan the MTU Table till we find an MTU which is larger than our
1933 * Maximum MTU or we reach the end of the table. Along the way,
1934 * record the last MTU found, if any, which will result in a Data
1935 * Segment Length matching the requested alignment.
1936 */
1937 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1938 unsigned short data_size = mtus[mtu_idx] - header_size;
1939
1940 /* If this MTU minus the Header Size would result in a
1941 * Data Segment Size of the desired alignment, remember it.
1942 */
1943 if ((data_size & data_size_align_mask) == 0)
1944 aligned_mtu_idx = mtu_idx;
1945
1946 /* If we're not at the end of the Hardware MTU Table and the
1947 * next element is larger than our Maximum MTU, drop out of
1948 * the loop.
1949 */
1950 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1951 break;
1952 }
1953
1954 /* If we fell out of the loop because we ran to the end of the table,
1955 * then we just have to use the last [largest] entry.
1956 */
1957 if (mtu_idx == NMTUS)
1958 mtu_idx--;
1959
1960 /* If we found an MTU which resulted in the requested Data Segment
1961 * Length alignment and that's "not far" from the largest MTU which is
1962 * less than or equal to the maximum MTU, then use that.
1963 */
1964 if (aligned_mtu_idx >= 0 &&
1965 mtu_idx - aligned_mtu_idx <= 1)
1966 mtu_idx = aligned_mtu_idx;
1967
1968 /* If the caller has passed in an MTU Index pointer, pass the
1969 * MTU Index back. Return the MTU value.
1970 */
1971 if (mtu_idxp)
1972 *mtu_idxp = mtu_idx;
1973 return mtus[mtu_idx];
1974 }
1975 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1976
1977 /**
1978 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1979 * @chip: chip type
1980 * @viid: VI id of the given port
1981 *
1982 * Return the SMT index for this VI.
1983 */
1984 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1985 {
1986 /* In T4/T5, SMT contains 256 SMAC entries organized in
1987 * 128 rows of 2 entries each.
1988 * In T6, SMT contains 256 SMAC entries in 256 rows.
1989 * TODO: The below code needs to be updated when we add support
1990 * for 256 VFs.
1991 */
1992 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1993 return ((viid & 0x7f) << 1);
1994 else
1995 return (viid & 0x7f);
1996 }
1997 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1998
1999 /**
2000 * cxgb4_port_chan - get the HW channel of a port
2001 * @dev: the net device for the port
2002 *
2003 * Return the HW Tx channel of the given port.
2004 */
2005 unsigned int cxgb4_port_chan(const struct net_device *dev)
2006 {
2007 return netdev2pinfo(dev)->tx_chan;
2008 }
2009 EXPORT_SYMBOL(cxgb4_port_chan);
2010
2011 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2012 {
2013 struct adapter *adap = netdev2adap(dev);
2014 u32 v1, v2, lp_count, hp_count;
2015
2016 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2017 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2018 if (is_t4(adap->params.chip)) {
2019 lp_count = LP_COUNT_G(v1);
2020 hp_count = HP_COUNT_G(v1);
2021 } else {
2022 lp_count = LP_COUNT_T5_G(v1);
2023 hp_count = HP_COUNT_T5_G(v2);
2024 }
2025 return lpfifo ? lp_count : hp_count;
2026 }
2027 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2028
2029 /**
2030 * cxgb4_port_viid - get the VI id of a port
2031 * @dev: the net device for the port
2032 *
2033 * Return the VI id of the given port.
2034 */
2035 unsigned int cxgb4_port_viid(const struct net_device *dev)
2036 {
2037 return netdev2pinfo(dev)->viid;
2038 }
2039 EXPORT_SYMBOL(cxgb4_port_viid);
2040
2041 /**
2042 * cxgb4_port_idx - get the index of a port
2043 * @dev: the net device for the port
2044 *
2045 * Return the index of the given port.
2046 */
2047 unsigned int cxgb4_port_idx(const struct net_device *dev)
2048 {
2049 return netdev2pinfo(dev)->port_id;
2050 }
2051 EXPORT_SYMBOL(cxgb4_port_idx);
2052
2053 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2054 struct tp_tcp_stats *v6)
2055 {
2056 struct adapter *adap = pci_get_drvdata(pdev);
2057
2058 spin_lock(&adap->stats_lock);
2059 t4_tp_get_tcp_stats(adap, v4, v6);
2060 spin_unlock(&adap->stats_lock);
2061 }
2062 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2063
2064 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2065 const unsigned int *pgsz_order)
2066 {
2067 struct adapter *adap = netdev2adap(dev);
2068
2069 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2070 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2071 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2072 HPZ3_V(pgsz_order[3]));
2073 }
2074 EXPORT_SYMBOL(cxgb4_iscsi_init);
2075
2076 int cxgb4_flush_eq_cache(struct net_device *dev)
2077 {
2078 struct adapter *adap = netdev2adap(dev);
2079
2080 return t4_sge_ctxt_flush(adap, adap->mbox);
2081 }
2082 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2083
2084 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2085 {
2086 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2087 __be64 indices;
2088 int ret;
2089
2090 spin_lock(&adap->win0_lock);
2091 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2092 sizeof(indices), (__be32 *)&indices,
2093 T4_MEMORY_READ);
2094 spin_unlock(&adap->win0_lock);
2095 if (!ret) {
2096 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2097 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2098 }
2099 return ret;
2100 }
2101
2102 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2103 u16 size)
2104 {
2105 struct adapter *adap = netdev2adap(dev);
2106 u16 hw_pidx, hw_cidx;
2107 int ret;
2108
2109 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2110 if (ret)
2111 goto out;
2112
2113 if (pidx != hw_pidx) {
2114 u16 delta;
2115 u32 val;
2116
2117 if (pidx >= hw_pidx)
2118 delta = pidx - hw_pidx;
2119 else
2120 delta = size - hw_pidx + pidx;
2121
2122 if (is_t4(adap->params.chip))
2123 val = PIDX_V(delta);
2124 else
2125 val = PIDX_T5_V(delta);
2126 wmb();
2127 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2128 QID_V(qid) | val);
2129 }
2130 out:
2131 return ret;
2132 }
2133 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2134
2135 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2136 {
2137 struct adapter *adap;
2138 u32 offset, memtype, memaddr;
2139 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2140 u32 edc0_end, edc1_end, mc0_end, mc1_end;
2141 int ret;
2142
2143 adap = netdev2adap(dev);
2144
2145 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2146
2147 /* Figure out where the offset lands in the Memory Type/Address scheme.
2148 * This code assumes that the memory is laid out starting at offset 0
2149 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2150 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
2151 * MC0, and some have both MC0 and MC1.
2152 */
2153 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2154 edc0_size = EDRAM0_SIZE_G(size) << 20;
2155 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2156 edc1_size = EDRAM1_SIZE_G(size) << 20;
2157 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2158 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2159
2160 edc0_end = edc0_size;
2161 edc1_end = edc0_end + edc1_size;
2162 mc0_end = edc1_end + mc0_size;
2163
2164 if (offset < edc0_end) {
2165 memtype = MEM_EDC0;
2166 memaddr = offset;
2167 } else if (offset < edc1_end) {
2168 memtype = MEM_EDC1;
2169 memaddr = offset - edc0_end;
2170 } else {
2171 if (offset < mc0_end) {
2172 memtype = MEM_MC0;
2173 memaddr = offset - edc1_end;
2174 } else if (is_t5(adap->params.chip)) {
2175 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2176 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2177 mc1_end = mc0_end + mc1_size;
2178 if (offset < mc1_end) {
2179 memtype = MEM_MC1;
2180 memaddr = offset - mc0_end;
2181 } else {
2182 /* offset beyond the end of any memory */
2183 goto err;
2184 }
2185 } else {
2186 /* T4/T6 only has a single memory channel */
2187 goto err;
2188 }
2189 }
2190
2191 spin_lock(&adap->win0_lock);
2192 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2193 spin_unlock(&adap->win0_lock);
2194 return ret;
2195
2196 err:
2197 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2198 stag, offset);
2199 return -EINVAL;
2200 }
2201 EXPORT_SYMBOL(cxgb4_read_tpte);
2202
2203 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2204 {
2205 u32 hi, lo;
2206 struct adapter *adap;
2207
2208 adap = netdev2adap(dev);
2209 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2210 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2211
2212 return ((u64)hi << 32) | (u64)lo;
2213 }
2214 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2215
2216 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2217 unsigned int qid,
2218 enum cxgb4_bar2_qtype qtype,
2219 int user,
2220 u64 *pbar2_qoffset,
2221 unsigned int *pbar2_qid)
2222 {
2223 return t4_bar2_sge_qregs(netdev2adap(dev),
2224 qid,
2225 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2226 ? T4_BAR2_QTYPE_EGRESS
2227 : T4_BAR2_QTYPE_INGRESS),
2228 user,
2229 pbar2_qoffset,
2230 pbar2_qid);
2231 }
2232 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2233
2234 static struct pci_driver cxgb4_driver;
2235
2236 static void check_neigh_update(struct neighbour *neigh)
2237 {
2238 const struct device *parent;
2239 const struct net_device *netdev = neigh->dev;
2240
2241 if (netdev->priv_flags & IFF_802_1Q_VLAN)
2242 netdev = vlan_dev_real_dev(netdev);
2243 parent = netdev->dev.parent;
2244 if (parent && parent->driver == &cxgb4_driver.driver)
2245 t4_l2t_update(dev_get_drvdata(parent), neigh);
2246 }
2247
2248 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2249 void *data)
2250 {
2251 switch (event) {
2252 case NETEVENT_NEIGH_UPDATE:
2253 check_neigh_update(data);
2254 break;
2255 case NETEVENT_REDIRECT:
2256 default:
2257 break;
2258 }
2259 return 0;
2260 }
2261
2262 static bool netevent_registered;
2263 static struct notifier_block cxgb4_netevent_nb = {
2264 .notifier_call = netevent_cb
2265 };
2266
2267 static void drain_db_fifo(struct adapter *adap, int usecs)
2268 {
2269 u32 v1, v2, lp_count, hp_count;
2270
2271 do {
2272 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2273 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2274 if (is_t4(adap->params.chip)) {
2275 lp_count = LP_COUNT_G(v1);
2276 hp_count = HP_COUNT_G(v1);
2277 } else {
2278 lp_count = LP_COUNT_T5_G(v1);
2279 hp_count = HP_COUNT_T5_G(v2);
2280 }
2281
2282 if (lp_count == 0 && hp_count == 0)
2283 break;
2284 set_current_state(TASK_UNINTERRUPTIBLE);
2285 schedule_timeout(usecs_to_jiffies(usecs));
2286 } while (1);
2287 }
2288
2289 static void disable_txq_db(struct sge_txq *q)
2290 {
2291 unsigned long flags;
2292
2293 spin_lock_irqsave(&q->db_lock, flags);
2294 q->db_disabled = 1;
2295 spin_unlock_irqrestore(&q->db_lock, flags);
2296 }
2297
2298 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2299 {
2300 spin_lock_irq(&q->db_lock);
2301 if (q->db_pidx_inc) {
2302 /* Make sure that all writes to the TX descriptors
2303 * are committed before we tell HW about them.
2304 */
2305 wmb();
2306 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2307 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2308 q->db_pidx_inc = 0;
2309 }
2310 q->db_disabled = 0;
2311 spin_unlock_irq(&q->db_lock);
2312 }
2313
2314 static void disable_dbs(struct adapter *adap)
2315 {
2316 int i;
2317
2318 for_each_ethrxq(&adap->sge, i)
2319 disable_txq_db(&adap->sge.ethtxq[i].q);
2320 for_each_iscsirxq(&adap->sge, i)
2321 disable_txq_db(&adap->sge.ofldtxq[i].q);
2322 for_each_port(adap, i)
2323 disable_txq_db(&adap->sge.ctrlq[i].q);
2324 }
2325
2326 static void enable_dbs(struct adapter *adap)
2327 {
2328 int i;
2329
2330 for_each_ethrxq(&adap->sge, i)
2331 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2332 for_each_iscsirxq(&adap->sge, i)
2333 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2334 for_each_port(adap, i)
2335 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2336 }
2337
2338 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2339 {
2340 if (adap->uld_handle[CXGB4_ULD_RDMA])
2341 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2342 cmd);
2343 }
2344
2345 static void process_db_full(struct work_struct *work)
2346 {
2347 struct adapter *adap;
2348
2349 adap = container_of(work, struct adapter, db_full_task);
2350
2351 drain_db_fifo(adap, dbfifo_drain_delay);
2352 enable_dbs(adap);
2353 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2354 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2355 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2356 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2357 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2358 else
2359 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2360 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2361 }
2362
2363 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2364 {
2365 u16 hw_pidx, hw_cidx;
2366 int ret;
2367
2368 spin_lock_irq(&q->db_lock);
2369 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2370 if (ret)
2371 goto out;
2372 if (q->db_pidx != hw_pidx) {
2373 u16 delta;
2374 u32 val;
2375
2376 if (q->db_pidx >= hw_pidx)
2377 delta = q->db_pidx - hw_pidx;
2378 else
2379 delta = q->size - hw_pidx + q->db_pidx;
2380
2381 if (is_t4(adap->params.chip))
2382 val = PIDX_V(delta);
2383 else
2384 val = PIDX_T5_V(delta);
2385 wmb();
2386 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2387 QID_V(q->cntxt_id) | val);
2388 }
2389 out:
2390 q->db_disabled = 0;
2391 q->db_pidx_inc = 0;
2392 spin_unlock_irq(&q->db_lock);
2393 if (ret)
2394 CH_WARN(adap, "DB drop recovery failed.\n");
2395 }
2396 static void recover_all_queues(struct adapter *adap)
2397 {
2398 int i;
2399
2400 for_each_ethrxq(&adap->sge, i)
2401 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2402 for_each_iscsirxq(&adap->sge, i)
2403 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2404 for_each_port(adap, i)
2405 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2406 }
2407
2408 static void process_db_drop(struct work_struct *work)
2409 {
2410 struct adapter *adap;
2411
2412 adap = container_of(work, struct adapter, db_drop_task);
2413
2414 if (is_t4(adap->params.chip)) {
2415 drain_db_fifo(adap, dbfifo_drain_delay);
2416 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2417 drain_db_fifo(adap, dbfifo_drain_delay);
2418 recover_all_queues(adap);
2419 drain_db_fifo(adap, dbfifo_drain_delay);
2420 enable_dbs(adap);
2421 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2422 } else if (is_t5(adap->params.chip)) {
2423 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2424 u16 qid = (dropped_db >> 15) & 0x1ffff;
2425 u16 pidx_inc = dropped_db & 0x1fff;
2426 u64 bar2_qoffset;
2427 unsigned int bar2_qid;
2428 int ret;
2429
2430 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2431 0, &bar2_qoffset, &bar2_qid);
2432 if (ret)
2433 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2434 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2435 else
2436 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2437 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2438
2439 /* Re-enable BAR2 WC */
2440 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2441 }
2442
2443 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2444 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2445 }
2446
2447 void t4_db_full(struct adapter *adap)
2448 {
2449 if (is_t4(adap->params.chip)) {
2450 disable_dbs(adap);
2451 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2452 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2453 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2454 queue_work(adap->workq, &adap->db_full_task);
2455 }
2456 }
2457
2458 void t4_db_dropped(struct adapter *adap)
2459 {
2460 if (is_t4(adap->params.chip)) {
2461 disable_dbs(adap);
2462 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2463 }
2464 queue_work(adap->workq, &adap->db_drop_task);
2465 }
2466
2467 static void uld_attach(struct adapter *adap, unsigned int uld)
2468 {
2469 void *handle;
2470 struct cxgb4_lld_info lli;
2471 unsigned short i;
2472
2473 lli.pdev = adap->pdev;
2474 lli.pf = adap->pf;
2475 lli.l2t = adap->l2t;
2476 lli.tids = &adap->tids;
2477 lli.ports = adap->port;
2478 lli.vr = &adap->vres;
2479 lli.mtus = adap->params.mtus;
2480 if (uld == CXGB4_ULD_RDMA) {
2481 lli.rxq_ids = adap->sge.rdma_rxq;
2482 lli.ciq_ids = adap->sge.rdma_ciq;
2483 lli.nrxq = adap->sge.rdmaqs;
2484 lli.nciq = adap->sge.rdmaciqs;
2485 } else if (uld == CXGB4_ULD_ISCSI) {
2486 lli.rxq_ids = adap->sge.iscsi_rxq;
2487 lli.nrxq = adap->sge.iscsiqsets;
2488 } else if (uld == CXGB4_ULD_ISCSIT) {
2489 lli.rxq_ids = adap->sge.iscsit_rxq;
2490 lli.nrxq = adap->sge.niscsitq;
2491 }
2492 lli.ntxq = adap->sge.iscsiqsets;
2493 lli.nchan = adap->params.nports;
2494 lli.nports = adap->params.nports;
2495 lli.wr_cred = adap->params.ofldq_wr_cred;
2496 lli.adapter_type = adap->params.chip;
2497 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2498 lli.iscsi_tagmask = t4_read_reg(adap, ULP_RX_ISCSI_TAGMASK_A);
2499 lli.iscsi_pgsz_order = t4_read_reg(adap, ULP_RX_ISCSI_PSZ_A);
2500 lli.iscsi_llimit = t4_read_reg(adap, ULP_RX_ISCSI_LLIMIT_A);
2501 lli.iscsi_ppm = &adap->iscsi_ppm;
2502 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2503 lli.udb_density = 1 << adap->params.sge.eq_qpp;
2504 lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2505 lli.filt_mode = adap->params.tp.vlan_pri_map;
2506 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2507 for (i = 0; i < NCHAN; i++)
2508 lli.tx_modq[i] = i;
2509 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2510 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2511 lli.fw_vers = adap->params.fw_vers;
2512 lli.dbfifo_int_thresh = dbfifo_int_thresh;
2513 lli.sge_ingpadboundary = adap->sge.fl_align;
2514 lli.sge_egrstatuspagesize = adap->sge.stat_len;
2515 lli.sge_pktshift = adap->sge.pktshift;
2516 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2517 lli.max_ordird_qp = adap->params.max_ordird_qp;
2518 lli.max_ird_adapter = adap->params.max_ird_adapter;
2519 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2520 lli.nodeid = dev_to_node(adap->pdev_dev);
2521
2522 handle = ulds[uld].add(&lli);
2523 if (IS_ERR(handle)) {
2524 dev_warn(adap->pdev_dev,
2525 "could not attach to the %s driver, error %ld\n",
2526 uld_str[uld], PTR_ERR(handle));
2527 return;
2528 }
2529
2530 adap->uld_handle[uld] = handle;
2531
2532 if (!netevent_registered) {
2533 register_netevent_notifier(&cxgb4_netevent_nb);
2534 netevent_registered = true;
2535 }
2536
2537 if (adap->flags & FULL_INIT_DONE)
2538 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2539 }
2540
2541 static void attach_ulds(struct adapter *adap)
2542 {
2543 unsigned int i;
2544
2545 spin_lock(&adap_rcu_lock);
2546 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2547 spin_unlock(&adap_rcu_lock);
2548
2549 mutex_lock(&uld_mutex);
2550 list_add_tail(&adap->list_node, &adapter_list);
2551 for (i = 0; i < CXGB4_ULD_MAX; i++)
2552 if (ulds[i].add)
2553 uld_attach(adap, i);
2554 mutex_unlock(&uld_mutex);
2555 }
2556
2557 static void detach_ulds(struct adapter *adap)
2558 {
2559 unsigned int i;
2560
2561 mutex_lock(&uld_mutex);
2562 list_del(&adap->list_node);
2563 for (i = 0; i < CXGB4_ULD_MAX; i++)
2564 if (adap->uld_handle[i]) {
2565 ulds[i].state_change(adap->uld_handle[i],
2566 CXGB4_STATE_DETACH);
2567 adap->uld_handle[i] = NULL;
2568 }
2569 for (i = 0; i < CXGB4_PCI_ULD_MAX; i++)
2570 if (adap->uld && adap->uld[i].handle) {
2571 adap->uld[i].state_change(adap->uld[i].handle,
2572 CXGB4_STATE_DETACH);
2573 adap->uld[i].handle = NULL;
2574 }
2575 if (netevent_registered && list_empty(&adapter_list)) {
2576 unregister_netevent_notifier(&cxgb4_netevent_nb);
2577 netevent_registered = false;
2578 }
2579 mutex_unlock(&uld_mutex);
2580
2581 spin_lock(&adap_rcu_lock);
2582 list_del_rcu(&adap->rcu_node);
2583 spin_unlock(&adap_rcu_lock);
2584 }
2585
2586 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2587 {
2588 unsigned int i;
2589
2590 mutex_lock(&uld_mutex);
2591 for (i = 0; i < CXGB4_ULD_MAX; i++)
2592 if (adap->uld_handle[i])
2593 ulds[i].state_change(adap->uld_handle[i], new_state);
2594 for (i = 0; i < CXGB4_PCI_ULD_MAX; i++)
2595 if (adap->uld && adap->uld[i].handle)
2596 adap->uld[i].state_change(adap->uld[i].handle,
2597 new_state);
2598 mutex_unlock(&uld_mutex);
2599 }
2600
2601 /**
2602 * cxgb4_register_uld - register an upper-layer driver
2603 * @type: the ULD type
2604 * @p: the ULD methods
2605 *
2606 * Registers an upper-layer driver with this driver and notifies the ULD
2607 * about any presently available devices that support its type. Returns
2608 * %-EBUSY if a ULD of the same type is already registered.
2609 */
2610 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2611 {
2612 int ret = 0;
2613 struct adapter *adap;
2614
2615 if (type >= CXGB4_ULD_MAX)
2616 return -EINVAL;
2617 mutex_lock(&uld_mutex);
2618 if (ulds[type].add) {
2619 ret = -EBUSY;
2620 goto out;
2621 }
2622 ulds[type] = *p;
2623 list_for_each_entry(adap, &adapter_list, list_node)
2624 uld_attach(adap, type);
2625 out: mutex_unlock(&uld_mutex);
2626 return ret;
2627 }
2628 EXPORT_SYMBOL(cxgb4_register_uld);
2629
2630 /**
2631 * cxgb4_unregister_uld - unregister an upper-layer driver
2632 * @type: the ULD type
2633 *
2634 * Unregisters an existing upper-layer driver.
2635 */
2636 int cxgb4_unregister_uld(enum cxgb4_uld type)
2637 {
2638 struct adapter *adap;
2639
2640 if (type >= CXGB4_ULD_MAX)
2641 return -EINVAL;
2642 mutex_lock(&uld_mutex);
2643 list_for_each_entry(adap, &adapter_list, list_node)
2644 adap->uld_handle[type] = NULL;
2645 ulds[type].add = NULL;
2646 mutex_unlock(&uld_mutex);
2647 return 0;
2648 }
2649 EXPORT_SYMBOL(cxgb4_unregister_uld);
2650
2651 #if IS_ENABLED(CONFIG_IPV6)
2652 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2653 unsigned long event, void *data)
2654 {
2655 struct inet6_ifaddr *ifa = data;
2656 struct net_device *event_dev = ifa->idev->dev;
2657 const struct device *parent = NULL;
2658 #if IS_ENABLED(CONFIG_BONDING)
2659 struct adapter *adap;
2660 #endif
2661 if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2662 event_dev = vlan_dev_real_dev(event_dev);
2663 #if IS_ENABLED(CONFIG_BONDING)
2664 if (event_dev->flags & IFF_MASTER) {
2665 list_for_each_entry(adap, &adapter_list, list_node) {
2666 switch (event) {
2667 case NETDEV_UP:
2668 cxgb4_clip_get(adap->port[0],
2669 (const u32 *)ifa, 1);
2670 break;
2671 case NETDEV_DOWN:
2672 cxgb4_clip_release(adap->port[0],
2673 (const u32 *)ifa, 1);
2674 break;
2675 default:
2676 break;
2677 }
2678 }
2679 return NOTIFY_OK;
2680 }
2681 #endif
2682
2683 if (event_dev)
2684 parent = event_dev->dev.parent;
2685
2686 if (parent && parent->driver == &cxgb4_driver.driver) {
2687 switch (event) {
2688 case NETDEV_UP:
2689 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2690 break;
2691 case NETDEV_DOWN:
2692 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2693 break;
2694 default:
2695 break;
2696 }
2697 }
2698 return NOTIFY_OK;
2699 }
2700
2701 static bool inet6addr_registered;
2702 static struct notifier_block cxgb4_inet6addr_notifier = {
2703 .notifier_call = cxgb4_inet6addr_handler
2704 };
2705
2706 static void update_clip(const struct adapter *adap)
2707 {
2708 int i;
2709 struct net_device *dev;
2710 int ret;
2711
2712 rcu_read_lock();
2713
2714 for (i = 0; i < MAX_NPORTS; i++) {
2715 dev = adap->port[i];
2716 ret = 0;
2717
2718 if (dev)
2719 ret = cxgb4_update_root_dev_clip(dev);
2720
2721 if (ret < 0)
2722 break;
2723 }
2724 rcu_read_unlock();
2725 }
2726 #endif /* IS_ENABLED(CONFIG_IPV6) */
2727
2728 /**
2729 * cxgb_up - enable the adapter
2730 * @adap: adapter being enabled
2731 *
2732 * Called when the first port is enabled, this function performs the
2733 * actions necessary to make an adapter operational, such as completing
2734 * the initialization of HW modules, and enabling interrupts.
2735 *
2736 * Must be called with the rtnl lock held.
2737 */
2738 static int cxgb_up(struct adapter *adap)
2739 {
2740 int err;
2741
2742 err = setup_sge_queues(adap);
2743 if (err)
2744 goto out;
2745 err = setup_rss(adap);
2746 if (err)
2747 goto freeq;
2748
2749 if (adap->flags & USING_MSIX) {
2750 name_msix_vecs(adap);
2751 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2752 adap->msix_info[0].desc, adap);
2753 if (err)
2754 goto irq_err;
2755
2756 err = request_msix_queue_irqs(adap);
2757 if (err) {
2758 free_irq(adap->msix_info[0].vec, adap);
2759 goto irq_err;
2760 }
2761 } else {
2762 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2763 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2764 adap->port[0]->name, adap);
2765 if (err)
2766 goto irq_err;
2767 }
2768 enable_rx(adap);
2769 t4_sge_start(adap);
2770 t4_intr_enable(adap);
2771 adap->flags |= FULL_INIT_DONE;
2772 notify_ulds(adap, CXGB4_STATE_UP);
2773 #if IS_ENABLED(CONFIG_IPV6)
2774 update_clip(adap);
2775 #endif
2776 /* Initialize hash mac addr list*/
2777 INIT_LIST_HEAD(&adap->mac_hlist);
2778 out:
2779 return err;
2780 irq_err:
2781 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2782 freeq:
2783 t4_free_sge_resources(adap);
2784 goto out;
2785 }
2786
2787 static void cxgb_down(struct adapter *adapter)
2788 {
2789 cancel_work_sync(&adapter->tid_release_task);
2790 cancel_work_sync(&adapter->db_full_task);
2791 cancel_work_sync(&adapter->db_drop_task);
2792 adapter->tid_release_task_busy = false;
2793 adapter->tid_release_head = NULL;
2794
2795 t4_sge_stop(adapter);
2796 t4_free_sge_resources(adapter);
2797 adapter->flags &= ~FULL_INIT_DONE;
2798 }
2799
2800 /*
2801 * net_device operations
2802 */
2803 static int cxgb_open(struct net_device *dev)
2804 {
2805 int err;
2806 struct port_info *pi = netdev_priv(dev);
2807 struct adapter *adapter = pi->adapter;
2808
2809 netif_carrier_off(dev);
2810
2811 if (!(adapter->flags & FULL_INIT_DONE)) {
2812 err = cxgb_up(adapter);
2813 if (err < 0)
2814 return err;
2815 }
2816
2817 err = link_start(dev);
2818 if (!err)
2819 netif_tx_start_all_queues(dev);
2820 return err;
2821 }
2822
2823 static int cxgb_close(struct net_device *dev)
2824 {
2825 struct port_info *pi = netdev_priv(dev);
2826 struct adapter *adapter = pi->adapter;
2827
2828 netif_tx_stop_all_queues(dev);
2829 netif_carrier_off(dev);
2830 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2831 }
2832
2833 /* Return an error number if the indicated filter isn't writable ...
2834 */
2835 static int writable_filter(struct filter_entry *f)
2836 {
2837 if (f->locked)
2838 return -EPERM;
2839 if (f->pending)
2840 return -EBUSY;
2841
2842 return 0;
2843 }
2844
2845 /* Delete the filter at the specified index (if valid). The checks for all
2846 * the common problems with doing this like the filter being locked, currently
2847 * pending in another operation, etc.
2848 */
2849 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2850 {
2851 struct filter_entry *f;
2852 int ret;
2853
2854 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2855 return -EINVAL;
2856
2857 f = &adapter->tids.ftid_tab[fidx];
2858 ret = writable_filter(f);
2859 if (ret)
2860 return ret;
2861 if (f->valid)
2862 return del_filter_wr(adapter, fidx);
2863
2864 return 0;
2865 }
2866
2867 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2868 __be32 sip, __be16 sport, __be16 vlan,
2869 unsigned int queue, unsigned char port, unsigned char mask)
2870 {
2871 int ret;
2872 struct filter_entry *f;
2873 struct adapter *adap;
2874 int i;
2875 u8 *val;
2876
2877 adap = netdev2adap(dev);
2878
2879 /* Adjust stid to correct filter index */
2880 stid -= adap->tids.sftid_base;
2881 stid += adap->tids.nftids;
2882
2883 /* Check to make sure the filter requested is writable ...
2884 */
2885 f = &adap->tids.ftid_tab[stid];
2886 ret = writable_filter(f);
2887 if (ret)
2888 return ret;
2889
2890 /* Clear out any old resources being used by the filter before
2891 * we start constructing the new filter.
2892 */
2893 if (f->valid)
2894 clear_filter(adap, f);
2895
2896 /* Clear out filter specifications */
2897 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2898 f->fs.val.lport = cpu_to_be16(sport);
2899 f->fs.mask.lport = ~0;
2900 val = (u8 *)&sip;
2901 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2902 for (i = 0; i < 4; i++) {
2903 f->fs.val.lip[i] = val[i];
2904 f->fs.mask.lip[i] = ~0;
2905 }
2906 if (adap->params.tp.vlan_pri_map & PORT_F) {
2907 f->fs.val.iport = port;
2908 f->fs.mask.iport = mask;
2909 }
2910 }
2911
2912 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2913 f->fs.val.proto = IPPROTO_TCP;
2914 f->fs.mask.proto = ~0;
2915 }
2916
2917 f->fs.dirsteer = 1;
2918 f->fs.iq = queue;
2919 /* Mark filter as locked */
2920 f->locked = 1;
2921 f->fs.rpttid = 1;
2922
2923 ret = set_filter_wr(adap, stid);
2924 if (ret) {
2925 clear_filter(adap, f);
2926 return ret;
2927 }
2928
2929 return 0;
2930 }
2931 EXPORT_SYMBOL(cxgb4_create_server_filter);
2932
2933 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2934 unsigned int queue, bool ipv6)
2935 {
2936 struct filter_entry *f;
2937 struct adapter *adap;
2938
2939 adap = netdev2adap(dev);
2940
2941 /* Adjust stid to correct filter index */
2942 stid -= adap->tids.sftid_base;
2943 stid += adap->tids.nftids;
2944
2945 f = &adap->tids.ftid_tab[stid];
2946 /* Unlock the filter */
2947 f->locked = 0;
2948
2949 return delete_filter(adap, stid);
2950 }
2951 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2952
2953 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2954 struct rtnl_link_stats64 *ns)
2955 {
2956 struct port_stats stats;
2957 struct port_info *p = netdev_priv(dev);
2958 struct adapter *adapter = p->adapter;
2959
2960 /* Block retrieving statistics during EEH error
2961 * recovery. Otherwise, the recovery might fail
2962 * and the PCI device will be removed permanently
2963 */
2964 spin_lock(&adapter->stats_lock);
2965 if (!netif_device_present(dev)) {
2966 spin_unlock(&adapter->stats_lock);
2967 return ns;
2968 }
2969 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2970 &p->stats_base);
2971 spin_unlock(&adapter->stats_lock);
2972
2973 ns->tx_bytes = stats.tx_octets;
2974 ns->tx_packets = stats.tx_frames;
2975 ns->rx_bytes = stats.rx_octets;
2976 ns->rx_packets = stats.rx_frames;
2977 ns->multicast = stats.rx_mcast_frames;
2978
2979 /* detailed rx_errors */
2980 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2981 stats.rx_runt;
2982 ns->rx_over_errors = 0;
2983 ns->rx_crc_errors = stats.rx_fcs_err;
2984 ns->rx_frame_errors = stats.rx_symbol_err;
2985 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
2986 stats.rx_ovflow2 + stats.rx_ovflow3 +
2987 stats.rx_trunc0 + stats.rx_trunc1 +
2988 stats.rx_trunc2 + stats.rx_trunc3;
2989 ns->rx_missed_errors = 0;
2990
2991 /* detailed tx_errors */
2992 ns->tx_aborted_errors = 0;
2993 ns->tx_carrier_errors = 0;
2994 ns->tx_fifo_errors = 0;
2995 ns->tx_heartbeat_errors = 0;
2996 ns->tx_window_errors = 0;
2997
2998 ns->tx_errors = stats.tx_error_frames;
2999 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3000 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3001 return ns;
3002 }
3003
3004 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3005 {
3006 unsigned int mbox;
3007 int ret = 0, prtad, devad;
3008 struct port_info *pi = netdev_priv(dev);
3009 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3010
3011 switch (cmd) {
3012 case SIOCGMIIPHY:
3013 if (pi->mdio_addr < 0)
3014 return -EOPNOTSUPP;
3015 data->phy_id = pi->mdio_addr;
3016 break;
3017 case SIOCGMIIREG:
3018 case SIOCSMIIREG:
3019 if (mdio_phy_id_is_c45(data->phy_id)) {
3020 prtad = mdio_phy_id_prtad(data->phy_id);
3021 devad = mdio_phy_id_devad(data->phy_id);
3022 } else if (data->phy_id < 32) {
3023 prtad = data->phy_id;
3024 devad = 0;
3025 data->reg_num &= 0x1f;
3026 } else
3027 return -EINVAL;
3028
3029 mbox = pi->adapter->pf;
3030 if (cmd == SIOCGMIIREG)
3031 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3032 data->reg_num, &data->val_out);
3033 else
3034 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3035 data->reg_num, data->val_in);
3036 break;
3037 case SIOCGHWTSTAMP:
3038 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3039 sizeof(pi->tstamp_config)) ?
3040 -EFAULT : 0;
3041 case SIOCSHWTSTAMP:
3042 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3043 sizeof(pi->tstamp_config)))
3044 return -EFAULT;
3045
3046 switch (pi->tstamp_config.rx_filter) {
3047 case HWTSTAMP_FILTER_NONE:
3048 pi->rxtstamp = false;
3049 break;
3050 case HWTSTAMP_FILTER_ALL:
3051 pi->rxtstamp = true;
3052 break;
3053 default:
3054 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3055 return -ERANGE;
3056 }
3057
3058 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3059 sizeof(pi->tstamp_config)) ?
3060 -EFAULT : 0;
3061 default:
3062 return -EOPNOTSUPP;
3063 }
3064 return ret;
3065 }
3066
3067 static void cxgb_set_rxmode(struct net_device *dev)
3068 {
3069 /* unfortunately we can't return errors to the stack */
3070 set_rxmode(dev, -1, false);
3071 }
3072
3073 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3074 {
3075 int ret;
3076 struct port_info *pi = netdev_priv(dev);
3077
3078 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
3079 return -EINVAL;
3080 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3081 -1, -1, -1, true);
3082 if (!ret)
3083 dev->mtu = new_mtu;
3084 return ret;
3085 }
3086
3087 #ifdef CONFIG_PCI_IOV
3088 static int dummy_open(struct net_device *dev)
3089 {
3090 /* Turn carrier off since we don't have to transmit anything on this
3091 * interface.
3092 */
3093 netif_carrier_off(dev);
3094 return 0;
3095 }
3096
3097 /* Fill MAC address that will be assigned by the FW */
3098 static void fill_vf_station_mac_addr(struct adapter *adap)
3099 {
3100 unsigned int i;
3101 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
3102 int err;
3103 u8 *na;
3104 u16 a, b;
3105
3106 err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
3107 if (!err) {
3108 na = adap->params.vpd.na;
3109 for (i = 0; i < ETH_ALEN; i++)
3110 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
3111 hex2val(na[2 * i + 1]));
3112 a = (hw_addr[0] << 8) | hw_addr[1];
3113 b = (hw_addr[1] << 8) | hw_addr[2];
3114 a ^= b;
3115 a |= 0x0200; /* locally assigned Ethernet MAC address */
3116 a &= ~0x0100; /* not a multicast Ethernet MAC address */
3117 macaddr[0] = a >> 8;
3118 macaddr[1] = a & 0xff;
3119
3120 for (i = 2; i < 5; i++)
3121 macaddr[i] = hw_addr[i + 1];
3122
3123 for (i = 0; i < adap->num_vfs; i++) {
3124 macaddr[5] = adap->pf * 16 + i;
3125 ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
3126 }
3127 }
3128 }
3129
3130 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3131 {
3132 struct port_info *pi = netdev_priv(dev);
3133 struct adapter *adap = pi->adapter;
3134 int ret;
3135
3136 /* verify MAC addr is valid */
3137 if (!is_valid_ether_addr(mac)) {
3138 dev_err(pi->adapter->pdev_dev,
3139 "Invalid Ethernet address %pM for VF %d\n",
3140 mac, vf);
3141 return -EINVAL;
3142 }
3143
3144 dev_info(pi->adapter->pdev_dev,
3145 "Setting MAC %pM on VF %d\n", mac, vf);
3146 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
3147 if (!ret)
3148 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
3149 return ret;
3150 }
3151
3152 static int cxgb_get_vf_config(struct net_device *dev,
3153 int vf, struct ifla_vf_info *ivi)
3154 {
3155 struct port_info *pi = netdev_priv(dev);
3156 struct adapter *adap = pi->adapter;
3157
3158 if (vf >= adap->num_vfs)
3159 return -EINVAL;
3160 ivi->vf = vf;
3161 ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
3162 return 0;
3163 }
3164 #endif
3165
3166 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3167 {
3168 int ret;
3169 struct sockaddr *addr = p;
3170 struct port_info *pi = netdev_priv(dev);
3171
3172 if (!is_valid_ether_addr(addr->sa_data))
3173 return -EADDRNOTAVAIL;
3174
3175 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3176 pi->xact_addr_filt, addr->sa_data, true, true);
3177 if (ret < 0)
3178 return ret;
3179
3180 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3181 pi->xact_addr_filt = ret;
3182 return 0;
3183 }
3184
3185 #ifdef CONFIG_NET_POLL_CONTROLLER
3186 static void cxgb_netpoll(struct net_device *dev)
3187 {
3188 struct port_info *pi = netdev_priv(dev);
3189 struct adapter *adap = pi->adapter;
3190
3191 if (adap->flags & USING_MSIX) {
3192 int i;
3193 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3194
3195 for (i = pi->nqsets; i; i--, rx++)
3196 t4_sge_intr_msix(0, &rx->rspq);
3197 } else
3198 t4_intr_handler(adap)(0, adap);
3199 }
3200 #endif
3201
3202 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3203 {
3204 struct port_info *pi = netdev_priv(dev);
3205 struct adapter *adap = pi->adapter;
3206 struct sched_class *e;
3207 struct ch_sched_params p;
3208 struct ch_sched_queue qe;
3209 u32 req_rate;
3210 int err = 0;
3211
3212 if (!can_sched(dev))
3213 return -ENOTSUPP;
3214
3215 if (index < 0 || index > pi->nqsets - 1)
3216 return -EINVAL;
3217
3218 if (!(adap->flags & FULL_INIT_DONE)) {
3219 dev_err(adap->pdev_dev,
3220 "Failed to rate limit on queue %d. Link Down?\n",
3221 index);
3222 return -EINVAL;
3223 }
3224
3225 /* Convert from Mbps to Kbps */
3226 req_rate = rate << 10;
3227
3228 /* Max rate is 10 Gbps */
3229 if (req_rate >= SCHED_MAX_RATE_KBPS) {
3230 dev_err(adap->pdev_dev,
3231 "Invalid rate %u Mbps, Max rate is %u Gbps\n",
3232 rate, SCHED_MAX_RATE_KBPS);
3233 return -ERANGE;
3234 }
3235
3236 /* First unbind the queue from any existing class */
3237 memset(&qe, 0, sizeof(qe));
3238 qe.queue = index;
3239 qe.class = SCHED_CLS_NONE;
3240
3241 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3242 if (err) {
3243 dev_err(adap->pdev_dev,
3244 "Unbinding Queue %d on port %d fail. Err: %d\n",
3245 index, pi->port_id, err);
3246 return err;
3247 }
3248
3249 /* Queue already unbound */
3250 if (!req_rate)
3251 return 0;
3252
3253 /* Fetch any available unused or matching scheduling class */
3254 memset(&p, 0, sizeof(p));
3255 p.type = SCHED_CLASS_TYPE_PACKET;
3256 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
3257 p.u.params.mode = SCHED_CLASS_MODE_CLASS;
3258 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3259 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3260 p.u.params.channel = pi->tx_chan;
3261 p.u.params.class = SCHED_CLS_NONE;
3262 p.u.params.minrate = 0;
3263 p.u.params.maxrate = req_rate;
3264 p.u.params.weight = 0;
3265 p.u.params.pktsize = dev->mtu;
3266
3267 e = cxgb4_sched_class_alloc(dev, &p);
3268 if (!e)
3269 return -ENOMEM;
3270
3271 /* Bind the queue to a scheduling class */
3272 memset(&qe, 0, sizeof(qe));
3273 qe.queue = index;
3274 qe.class = e->idx;
3275
3276 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3277 if (err)
3278 dev_err(adap->pdev_dev,
3279 "Queue rate limiting failed. Err: %d\n", err);
3280 return err;
3281 }
3282
3283 static const struct net_device_ops cxgb4_netdev_ops = {
3284 .ndo_open = cxgb_open,
3285 .ndo_stop = cxgb_close,
3286 .ndo_start_xmit = t4_eth_xmit,
3287 .ndo_select_queue = cxgb_select_queue,
3288 .ndo_get_stats64 = cxgb_get_stats,
3289 .ndo_set_rx_mode = cxgb_set_rxmode,
3290 .ndo_set_mac_address = cxgb_set_mac_addr,
3291 .ndo_set_features = cxgb_set_features,
3292 .ndo_validate_addr = eth_validate_addr,
3293 .ndo_do_ioctl = cxgb_ioctl,
3294 .ndo_change_mtu = cxgb_change_mtu,
3295 #ifdef CONFIG_NET_POLL_CONTROLLER
3296 .ndo_poll_controller = cxgb_netpoll,
3297 #endif
3298 #ifdef CONFIG_CHELSIO_T4_FCOE
3299 .ndo_fcoe_enable = cxgb_fcoe_enable,
3300 .ndo_fcoe_disable = cxgb_fcoe_disable,
3301 #endif /* CONFIG_CHELSIO_T4_FCOE */
3302 #ifdef CONFIG_NET_RX_BUSY_POLL
3303 .ndo_busy_poll = cxgb_busy_poll,
3304 #endif
3305 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
3306 };
3307
3308 #ifdef CONFIG_PCI_IOV
3309 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3310 .ndo_open = dummy_open,
3311 .ndo_set_vf_mac = cxgb_set_vf_mac,
3312 .ndo_get_vf_config = cxgb_get_vf_config,
3313 };
3314 #endif
3315
3316 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3317 {
3318 struct adapter *adapter = netdev2adap(dev);
3319
3320 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3321 strlcpy(info->version, cxgb4_driver_version,
3322 sizeof(info->version));
3323 strlcpy(info->bus_info, pci_name(adapter->pdev),
3324 sizeof(info->bus_info));
3325 }
3326
3327 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3328 .get_drvinfo = get_drvinfo,
3329 };
3330
3331 void t4_fatal_err(struct adapter *adap)
3332 {
3333 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3334 t4_intr_disable(adap);
3335 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3336 }
3337
3338 static void setup_memwin(struct adapter *adap)
3339 {
3340 u32 nic_win_base = t4_get_util_window(adap);
3341
3342 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3343 }
3344
3345 static void setup_memwin_rdma(struct adapter *adap)
3346 {
3347 if (adap->vres.ocq.size) {
3348 u32 start;
3349 unsigned int sz_kb;
3350
3351 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3352 start &= PCI_BASE_ADDRESS_MEM_MASK;
3353 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3354 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3355 t4_write_reg(adap,
3356 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3357 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3358 t4_write_reg(adap,
3359 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3360 adap->vres.ocq.start);
3361 t4_read_reg(adap,
3362 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3363 }
3364 }
3365
3366 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3367 {
3368 u32 v;
3369 int ret;
3370
3371 /* get device capabilities */
3372 memset(c, 0, sizeof(*c));
3373 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3374 FW_CMD_REQUEST_F | FW_CMD_READ_F);
3375 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3376 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3377 if (ret < 0)
3378 return ret;
3379
3380 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3381 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3382 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3383 if (ret < 0)
3384 return ret;
3385
3386 ret = t4_config_glbl_rss(adap, adap->pf,
3387 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3388 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3389 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3390 if (ret < 0)
3391 return ret;
3392
3393 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3394 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3395 FW_CMD_CAP_PF);
3396 if (ret < 0)
3397 return ret;
3398
3399 t4_sge_init(adap);
3400
3401 /* tweak some settings */
3402 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3403 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3404 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3405 v = t4_read_reg(adap, TP_PIO_DATA_A);
3406 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3407
3408 /* first 4 Tx modulation queues point to consecutive Tx channels */
3409 adap->params.tp.tx_modq_map = 0xE4;
3410 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3411 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3412
3413 /* associate each Tx modulation queue with consecutive Tx channels */
3414 v = 0x84218421;
3415 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3416 &v, 1, TP_TX_SCHED_HDR_A);
3417 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3418 &v, 1, TP_TX_SCHED_FIFO_A);
3419 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3420 &v, 1, TP_TX_SCHED_PCMD_A);
3421
3422 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3423 if (is_offload(adap)) {
3424 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3425 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3426 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3427 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3428 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3429 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3430 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3431 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3432 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3433 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3434 }
3435
3436 /* get basic stuff going */
3437 return t4_early_init(adap, adap->pf);
3438 }
3439
3440 /*
3441 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3442 */
3443 #define MAX_ATIDS 8192U
3444
3445 /*
3446 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3447 *
3448 * If the firmware we're dealing with has Configuration File support, then
3449 * we use that to perform all configuration
3450 */
3451
3452 /*
3453 * Tweak configuration based on module parameters, etc. Most of these have
3454 * defaults assigned to them by Firmware Configuration Files (if we're using
3455 * them) but need to be explicitly set if we're using hard-coded
3456 * initialization. But even in the case of using Firmware Configuration
3457 * Files, we'd like to expose the ability to change these via module
3458 * parameters so these are essentially common tweaks/settings for
3459 * Configuration Files and hard-coded initialization ...
3460 */
3461 static int adap_init0_tweaks(struct adapter *adapter)
3462 {
3463 /*
3464 * Fix up various Host-Dependent Parameters like Page Size, Cache
3465 * Line Size, etc. The firmware default is for a 4KB Page Size and
3466 * 64B Cache Line Size ...
3467 */
3468 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3469
3470 /*
3471 * Process module parameters which affect early initialization.
3472 */
3473 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3474 dev_err(&adapter->pdev->dev,
3475 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3476 rx_dma_offset);
3477 rx_dma_offset = 2;
3478 }
3479 t4_set_reg_field(adapter, SGE_CONTROL_A,
3480 PKTSHIFT_V(PKTSHIFT_M),
3481 PKTSHIFT_V(rx_dma_offset));
3482
3483 /*
3484 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3485 * adds the pseudo header itself.
3486 */
3487 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3488 CSUM_HAS_PSEUDO_HDR_F, 0);
3489
3490 return 0;
3491 }
3492
3493 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3494 * unto themselves and they contain their own firmware to perform their
3495 * tasks ...
3496 */
3497 static int phy_aq1202_version(const u8 *phy_fw_data,
3498 size_t phy_fw_size)
3499 {
3500 int offset;
3501
3502 /* At offset 0x8 you're looking for the primary image's
3503 * starting offset which is 3 Bytes wide
3504 *
3505 * At offset 0xa of the primary image, you look for the offset
3506 * of the DRAM segment which is 3 Bytes wide.
3507 *
3508 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3509 * wide
3510 */
3511 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3512 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3513 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3514
3515 offset = le24(phy_fw_data + 0x8) << 12;
3516 offset = le24(phy_fw_data + offset + 0xa);
3517 return be16(phy_fw_data + offset + 0x27e);
3518
3519 #undef be16
3520 #undef le16
3521 #undef le24
3522 }
3523
3524 static struct info_10gbt_phy_fw {
3525 unsigned int phy_fw_id; /* PCI Device ID */
3526 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3527 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3528 int phy_flash; /* Has FLASH for PHY Firmware */
3529 } phy_info_array[] = {
3530 {
3531 PHY_AQ1202_DEVICEID,
3532 PHY_AQ1202_FIRMWARE,
3533 phy_aq1202_version,
3534 1,
3535 },
3536 {
3537 PHY_BCM84834_DEVICEID,
3538 PHY_BCM84834_FIRMWARE,
3539 NULL,
3540 0,
3541 },
3542 { 0, NULL, NULL },
3543 };
3544
3545 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3546 {
3547 int i;
3548
3549 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3550 if (phy_info_array[i].phy_fw_id == devid)
3551 return &phy_info_array[i];
3552 }
3553 return NULL;
3554 }
3555
3556 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3557 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3558 * we return a negative error number. If we transfer new firmware we return 1
3559 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3560 */
3561 static int adap_init0_phy(struct adapter *adap)
3562 {
3563 const struct firmware *phyf;
3564 int ret;
3565 struct info_10gbt_phy_fw *phy_info;
3566
3567 /* Use the device ID to determine which PHY file to flash.
3568 */
3569 phy_info = find_phy_info(adap->pdev->device);
3570 if (!phy_info) {
3571 dev_warn(adap->pdev_dev,
3572 "No PHY Firmware file found for this PHY\n");
3573 return -EOPNOTSUPP;
3574 }
3575
3576 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3577 * use that. The adapter firmware provides us with a memory buffer
3578 * where we can load a PHY firmware file from the host if we want to
3579 * override the PHY firmware File in flash.
3580 */
3581 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3582 adap->pdev_dev);
3583 if (ret < 0) {
3584 /* For adapters without FLASH attached to PHY for their
3585 * firmware, it's obviously a fatal error if we can't get the
3586 * firmware to the adapter. For adapters with PHY firmware
3587 * FLASH storage, it's worth a warning if we can't find the
3588 * PHY Firmware but we'll neuter the error ...
3589 */
3590 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3591 "/lib/firmware/%s, error %d\n",
3592 phy_info->phy_fw_file, -ret);
3593 if (phy_info->phy_flash) {
3594 int cur_phy_fw_ver = 0;
3595
3596 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3597 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3598 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3599 ret = 0;
3600 }
3601
3602 return ret;
3603 }
3604
3605 /* Load PHY Firmware onto adapter.
3606 */
3607 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3608 phy_info->phy_fw_version,
3609 (u8 *)phyf->data, phyf->size);
3610 if (ret < 0)
3611 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3612 -ret);
3613 else if (ret > 0) {
3614 int new_phy_fw_ver = 0;
3615
3616 if (phy_info->phy_fw_version)
3617 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3618 phyf->size);
3619 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3620 "Firmware /lib/firmware/%s, version %#x\n",
3621 phy_info->phy_fw_file, new_phy_fw_ver);
3622 }
3623
3624 release_firmware(phyf);
3625
3626 return ret;
3627 }
3628
3629 /*
3630 * Attempt to initialize the adapter via a Firmware Configuration File.
3631 */
3632 static int adap_init0_config(struct adapter *adapter, int reset)
3633 {
3634 struct fw_caps_config_cmd caps_cmd;
3635 const struct firmware *cf;
3636 unsigned long mtype = 0, maddr = 0;
3637 u32 finiver, finicsum, cfcsum;
3638 int ret;
3639 int config_issued = 0;
3640 char *fw_config_file, fw_config_file_path[256];
3641 char *config_name = NULL;
3642
3643 /*
3644 * Reset device if necessary.
3645 */
3646 if (reset) {
3647 ret = t4_fw_reset(adapter, adapter->mbox,
3648 PIORSTMODE_F | PIORST_F);
3649 if (ret < 0)
3650 goto bye;
3651 }
3652
3653 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3654 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3655 * to be performed after any global adapter RESET above since some
3656 * PHYs only have local RAM copies of the PHY firmware.
3657 */
3658 if (is_10gbt_device(adapter->pdev->device)) {
3659 ret = adap_init0_phy(adapter);
3660 if (ret < 0)
3661 goto bye;
3662 }
3663 /*
3664 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3665 * then use that. Otherwise, use the configuration file stored
3666 * in the adapter flash ...
3667 */
3668 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3669 case CHELSIO_T4:
3670 fw_config_file = FW4_CFNAME;
3671 break;
3672 case CHELSIO_T5:
3673 fw_config_file = FW5_CFNAME;
3674 break;
3675 case CHELSIO_T6:
3676 fw_config_file = FW6_CFNAME;
3677 break;
3678 default:
3679 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3680 adapter->pdev->device);
3681 ret = -EINVAL;
3682 goto bye;
3683 }
3684
3685 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3686 if (ret < 0) {
3687 config_name = "On FLASH";
3688 mtype = FW_MEMTYPE_CF_FLASH;
3689 maddr = t4_flash_cfg_addr(adapter);
3690 } else {
3691 u32 params[7], val[7];
3692
3693 sprintf(fw_config_file_path,
3694 "/lib/firmware/%s", fw_config_file);
3695 config_name = fw_config_file_path;
3696
3697 if (cf->size >= FLASH_CFG_MAX_SIZE)
3698 ret = -ENOMEM;
3699 else {
3700 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3701 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3702 ret = t4_query_params(adapter, adapter->mbox,
3703 adapter->pf, 0, 1, params, val);
3704 if (ret == 0) {
3705 /*
3706 * For t4_memory_rw() below addresses and
3707 * sizes have to be in terms of multiples of 4
3708 * bytes. So, if the Configuration File isn't
3709 * a multiple of 4 bytes in length we'll have
3710 * to write that out separately since we can't
3711 * guarantee that the bytes following the
3712 * residual byte in the buffer returned by
3713 * request_firmware() are zeroed out ...
3714 */
3715 size_t resid = cf->size & 0x3;
3716 size_t size = cf->size & ~0x3;
3717 __be32 *data = (__be32 *)cf->data;
3718
3719 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3720 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3721
3722 spin_lock(&adapter->win0_lock);
3723 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3724 size, data, T4_MEMORY_WRITE);
3725 if (ret == 0 && resid != 0) {
3726 union {
3727 __be32 word;
3728 char buf[4];
3729 } last;
3730 int i;
3731
3732 last.word = data[size >> 2];
3733 for (i = resid; i < 4; i++)
3734 last.buf[i] = 0;
3735 ret = t4_memory_rw(adapter, 0, mtype,
3736 maddr + size,
3737 4, &last.word,
3738 T4_MEMORY_WRITE);
3739 }
3740 spin_unlock(&adapter->win0_lock);
3741 }
3742 }
3743
3744 release_firmware(cf);
3745 if (ret)
3746 goto bye;
3747 }
3748
3749 /*
3750 * Issue a Capability Configuration command to the firmware to get it
3751 * to parse the Configuration File. We don't use t4_fw_config_file()
3752 * because we want the ability to modify various features after we've
3753 * processed the configuration file ...
3754 */
3755 memset(&caps_cmd, 0, sizeof(caps_cmd));
3756 caps_cmd.op_to_write =
3757 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3758 FW_CMD_REQUEST_F |
3759 FW_CMD_READ_F);
3760 caps_cmd.cfvalid_to_len16 =
3761 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3762 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3763 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3764 FW_LEN16(caps_cmd));
3765 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3766 &caps_cmd);
3767
3768 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3769 * Configuration File in FLASH), our last gasp effort is to use the
3770 * Firmware Configuration File which is embedded in the firmware. A
3771 * very few early versions of the firmware didn't have one embedded
3772 * but we can ignore those.
3773 */
3774 if (ret == -ENOENT) {
3775 memset(&caps_cmd, 0, sizeof(caps_cmd));
3776 caps_cmd.op_to_write =
3777 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3778 FW_CMD_REQUEST_F |
3779 FW_CMD_READ_F);
3780 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3781 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3782 sizeof(caps_cmd), &caps_cmd);
3783 config_name = "Firmware Default";
3784 }
3785
3786 config_issued = 1;
3787 if (ret < 0)
3788 goto bye;
3789
3790 finiver = ntohl(caps_cmd.finiver);
3791 finicsum = ntohl(caps_cmd.finicsum);
3792 cfcsum = ntohl(caps_cmd.cfcsum);
3793 if (finicsum != cfcsum)
3794 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3795 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3796 finicsum, cfcsum);
3797
3798 /*
3799 * And now tell the firmware to use the configuration we just loaded.
3800 */
3801 caps_cmd.op_to_write =
3802 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3803 FW_CMD_REQUEST_F |
3804 FW_CMD_WRITE_F);
3805 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3806 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3807 NULL);
3808 if (ret < 0)
3809 goto bye;
3810
3811 /*
3812 * Tweak configuration based on system architecture, module
3813 * parameters, etc.
3814 */
3815 ret = adap_init0_tweaks(adapter);
3816 if (ret < 0)
3817 goto bye;
3818
3819 /*
3820 * And finally tell the firmware to initialize itself using the
3821 * parameters from the Configuration File.
3822 */
3823 ret = t4_fw_initialize(adapter, adapter->mbox);
3824 if (ret < 0)
3825 goto bye;
3826
3827 /* Emit Firmware Configuration File information and return
3828 * successfully.
3829 */
3830 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3831 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3832 config_name, finiver, cfcsum);
3833 return 0;
3834
3835 /*
3836 * Something bad happened. Return the error ... (If the "error"
3837 * is that there's no Configuration File on the adapter we don't
3838 * want to issue a warning since this is fairly common.)
3839 */
3840 bye:
3841 if (config_issued && ret != -ENOENT)
3842 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3843 config_name, -ret);
3844 return ret;
3845 }
3846
3847 static struct fw_info fw_info_array[] = {
3848 {
3849 .chip = CHELSIO_T4,
3850 .fs_name = FW4_CFNAME,
3851 .fw_mod_name = FW4_FNAME,
3852 .fw_hdr = {
3853 .chip = FW_HDR_CHIP_T4,
3854 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3855 .intfver_nic = FW_INTFVER(T4, NIC),
3856 .intfver_vnic = FW_INTFVER(T4, VNIC),
3857 .intfver_ri = FW_INTFVER(T4, RI),
3858 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3859 .intfver_fcoe = FW_INTFVER(T4, FCOE),
3860 },
3861 }, {
3862 .chip = CHELSIO_T5,
3863 .fs_name = FW5_CFNAME,
3864 .fw_mod_name = FW5_FNAME,
3865 .fw_hdr = {
3866 .chip = FW_HDR_CHIP_T5,
3867 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3868 .intfver_nic = FW_INTFVER(T5, NIC),
3869 .intfver_vnic = FW_INTFVER(T5, VNIC),
3870 .intfver_ri = FW_INTFVER(T5, RI),
3871 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3872 .intfver_fcoe = FW_INTFVER(T5, FCOE),
3873 },
3874 }, {
3875 .chip = CHELSIO_T6,
3876 .fs_name = FW6_CFNAME,
3877 .fw_mod_name = FW6_FNAME,
3878 .fw_hdr = {
3879 .chip = FW_HDR_CHIP_T6,
3880 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3881 .intfver_nic = FW_INTFVER(T6, NIC),
3882 .intfver_vnic = FW_INTFVER(T6, VNIC),
3883 .intfver_ofld = FW_INTFVER(T6, OFLD),
3884 .intfver_ri = FW_INTFVER(T6, RI),
3885 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3886 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3887 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3888 .intfver_fcoe = FW_INTFVER(T6, FCOE),
3889 },
3890 }
3891
3892 };
3893
3894 static struct fw_info *find_fw_info(int chip)
3895 {
3896 int i;
3897
3898 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3899 if (fw_info_array[i].chip == chip)
3900 return &fw_info_array[i];
3901 }
3902 return NULL;
3903 }
3904
3905 /*
3906 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3907 */
3908 static int adap_init0(struct adapter *adap)
3909 {
3910 int ret;
3911 u32 v, port_vec;
3912 enum dev_state state;
3913 u32 params[7], val[7];
3914 struct fw_caps_config_cmd caps_cmd;
3915 int reset = 1;
3916
3917 /* Grab Firmware Device Log parameters as early as possible so we have
3918 * access to it for debugging, etc.
3919 */
3920 ret = t4_init_devlog_params(adap);
3921 if (ret < 0)
3922 return ret;
3923
3924 /* Contact FW, advertising Master capability */
3925 ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3926 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3927 if (ret < 0) {
3928 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3929 ret);
3930 return ret;
3931 }
3932 if (ret == adap->mbox)
3933 adap->flags |= MASTER_PF;
3934
3935 /*
3936 * If we're the Master PF Driver and the device is uninitialized,
3937 * then let's consider upgrading the firmware ... (We always want
3938 * to check the firmware version number in order to A. get it for
3939 * later reporting and B. to warn if the currently loaded firmware
3940 * is excessively mismatched relative to the driver.)
3941 */
3942 t4_get_fw_version(adap, &adap->params.fw_vers);
3943 t4_get_bs_version(adap, &adap->params.bs_vers);
3944 t4_get_tp_version(adap, &adap->params.tp_vers);
3945 t4_get_exprom_version(adap, &adap->params.er_vers);
3946
3947 ret = t4_check_fw_version(adap);
3948 /* If firmware is too old (not supported by driver) force an update. */
3949 if (ret)
3950 state = DEV_STATE_UNINIT;
3951 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3952 struct fw_info *fw_info;
3953 struct fw_hdr *card_fw;
3954 const struct firmware *fw;
3955 const u8 *fw_data = NULL;
3956 unsigned int fw_size = 0;
3957
3958 /* This is the firmware whose headers the driver was compiled
3959 * against
3960 */
3961 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3962 if (fw_info == NULL) {
3963 dev_err(adap->pdev_dev,
3964 "unable to get firmware info for chip %d.\n",
3965 CHELSIO_CHIP_VERSION(adap->params.chip));
3966 return -EINVAL;
3967 }
3968
3969 /* allocate memory to read the header of the firmware on the
3970 * card
3971 */
3972 card_fw = t4_alloc_mem(sizeof(*card_fw));
3973
3974 /* Get FW from from /lib/firmware/ */
3975 ret = request_firmware(&fw, fw_info->fw_mod_name,
3976 adap->pdev_dev);
3977 if (ret < 0) {
3978 dev_err(adap->pdev_dev,
3979 "unable to load firmware image %s, error %d\n",
3980 fw_info->fw_mod_name, ret);
3981 } else {
3982 fw_data = fw->data;
3983 fw_size = fw->size;
3984 }
3985
3986 /* upgrade FW logic */
3987 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3988 state, &reset);
3989
3990 /* Cleaning up */
3991 release_firmware(fw);
3992 t4_free_mem(card_fw);
3993
3994 if (ret < 0)
3995 goto bye;
3996 }
3997
3998 /*
3999 * Grab VPD parameters. This should be done after we establish a
4000 * connection to the firmware since some of the VPD parameters
4001 * (notably the Core Clock frequency) are retrieved via requests to
4002 * the firmware. On the other hand, we need these fairly early on
4003 * so we do this right after getting ahold of the firmware.
4004 */
4005 ret = t4_get_vpd_params(adap, &adap->params.vpd);
4006 if (ret < 0)
4007 goto bye;
4008
4009 /*
4010 * Find out what ports are available to us. Note that we need to do
4011 * this before calling adap_init0_no_config() since it needs nports
4012 * and portvec ...
4013 */
4014 v =
4015 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4016 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4017 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4018 if (ret < 0)
4019 goto bye;
4020
4021 adap->params.nports = hweight32(port_vec);
4022 adap->params.portvec = port_vec;
4023
4024 /* If the firmware is initialized already, emit a simply note to that
4025 * effect. Otherwise, it's time to try initializing the adapter.
4026 */
4027 if (state == DEV_STATE_INIT) {
4028 dev_info(adap->pdev_dev, "Coming up as %s: "\
4029 "Adapter already initialized\n",
4030 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
4031 } else {
4032 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4033 "Initializing adapter\n");
4034
4035 /* Find out whether we're dealing with a version of the
4036 * firmware which has configuration file support.
4037 */
4038 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4039 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4040 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4041 params, val);
4042
4043 /* If the firmware doesn't support Configuration Files,
4044 * return an error.
4045 */
4046 if (ret < 0) {
4047 dev_err(adap->pdev_dev, "firmware doesn't support "
4048 "Firmware Configuration Files\n");
4049 goto bye;
4050 }
4051
4052 /* The firmware provides us with a memory buffer where we can
4053 * load a Configuration File from the host if we want to
4054 * override the Configuration File in flash.
4055 */
4056 ret = adap_init0_config(adap, reset);
4057 if (ret == -ENOENT) {
4058 dev_err(adap->pdev_dev, "no Configuration File "
4059 "present on adapter.\n");
4060 goto bye;
4061 }
4062 if (ret < 0) {
4063 dev_err(adap->pdev_dev, "could not initialize "
4064 "adapter, error %d\n", -ret);
4065 goto bye;
4066 }
4067 }
4068
4069 /* Give the SGE code a chance to pull in anything that it needs ...
4070 * Note that this must be called after we retrieve our VPD parameters
4071 * in order to know how to convert core ticks to seconds, etc.
4072 */
4073 ret = t4_sge_init(adap);
4074 if (ret < 0)
4075 goto bye;
4076
4077 if (is_bypass_device(adap->pdev->device))
4078 adap->params.bypass = 1;
4079
4080 /*
4081 * Grab some of our basic fundamental operating parameters.
4082 */
4083 #define FW_PARAM_DEV(param) \
4084 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4085 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4086
4087 #define FW_PARAM_PFVF(param) \
4088 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4089 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
4090 FW_PARAMS_PARAM_Y_V(0) | \
4091 FW_PARAMS_PARAM_Z_V(0)
4092
4093 params[0] = FW_PARAM_PFVF(EQ_START);
4094 params[1] = FW_PARAM_PFVF(L2T_START);
4095 params[2] = FW_PARAM_PFVF(L2T_END);
4096 params[3] = FW_PARAM_PFVF(FILTER_START);
4097 params[4] = FW_PARAM_PFVF(FILTER_END);
4098 params[5] = FW_PARAM_PFVF(IQFLINT_START);
4099 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4100 if (ret < 0)
4101 goto bye;
4102 adap->sge.egr_start = val[0];
4103 adap->l2t_start = val[1];
4104 adap->l2t_end = val[2];
4105 adap->tids.ftid_base = val[3];
4106 adap->tids.nftids = val[4] - val[3] + 1;
4107 adap->sge.ingr_start = val[5];
4108
4109 /* qids (ingress/egress) returned from firmware can be anywhere
4110 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4111 * Hence driver needs to allocate memory for this range to
4112 * store the queue info. Get the highest IQFLINT/EQ index returned
4113 * in FW_EQ_*_CMD.alloc command.
4114 */
4115 params[0] = FW_PARAM_PFVF(EQ_END);
4116 params[1] = FW_PARAM_PFVF(IQFLINT_END);
4117 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4118 if (ret < 0)
4119 goto bye;
4120 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4121 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4122
4123 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4124 sizeof(*adap->sge.egr_map), GFP_KERNEL);
4125 if (!adap->sge.egr_map) {
4126 ret = -ENOMEM;
4127 goto bye;
4128 }
4129
4130 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4131 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4132 if (!adap->sge.ingr_map) {
4133 ret = -ENOMEM;
4134 goto bye;
4135 }
4136
4137 /* Allocate the memory for the vaious egress queue bitmaps
4138 * ie starving_fl, txq_maperr and blocked_fl.
4139 */
4140 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4141 sizeof(long), GFP_KERNEL);
4142 if (!adap->sge.starving_fl) {
4143 ret = -ENOMEM;
4144 goto bye;
4145 }
4146
4147 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4148 sizeof(long), GFP_KERNEL);
4149 if (!adap->sge.txq_maperr) {
4150 ret = -ENOMEM;
4151 goto bye;
4152 }
4153
4154 #ifdef CONFIG_DEBUG_FS
4155 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4156 sizeof(long), GFP_KERNEL);
4157 if (!adap->sge.blocked_fl) {
4158 ret = -ENOMEM;
4159 goto bye;
4160 }
4161 #endif
4162
4163 params[0] = FW_PARAM_PFVF(CLIP_START);
4164 params[1] = FW_PARAM_PFVF(CLIP_END);
4165 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4166 if (ret < 0)
4167 goto bye;
4168 adap->clipt_start = val[0];
4169 adap->clipt_end = val[1];
4170
4171 /* We don't yet have a PARAMs calls to retrieve the number of Traffic
4172 * Classes supported by the hardware/firmware so we hard code it here
4173 * for now.
4174 */
4175 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4176
4177 /* query params related to active filter region */
4178 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4179 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4180 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4181 /* If Active filter size is set we enable establishing
4182 * offload connection through firmware work request
4183 */
4184 if ((val[0] != val[1]) && (ret >= 0)) {
4185 adap->flags |= FW_OFLD_CONN;
4186 adap->tids.aftid_base = val[0];
4187 adap->tids.aftid_end = val[1];
4188 }
4189
4190 /* If we're running on newer firmware, let it know that we're
4191 * prepared to deal with encapsulated CPL messages. Older
4192 * firmware won't understand this and we'll just get
4193 * unencapsulated messages ...
4194 */
4195 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4196 val[0] = 1;
4197 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4198
4199 /*
4200 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4201 * capability. Earlier versions of the firmware didn't have the
4202 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4203 * permission to use ULPTX MEMWRITE DSGL.
4204 */
4205 if (is_t4(adap->params.chip)) {
4206 adap->params.ulptx_memwrite_dsgl = false;
4207 } else {
4208 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4209 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4210 1, params, val);
4211 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4212 }
4213
4214 /*
4215 * Get device capabilities so we can determine what resources we need
4216 * to manage.
4217 */
4218 memset(&caps_cmd, 0, sizeof(caps_cmd));
4219 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4220 FW_CMD_REQUEST_F | FW_CMD_READ_F);
4221 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4222 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4223 &caps_cmd);
4224 if (ret < 0)
4225 goto bye;
4226
4227 if (caps_cmd.ofldcaps) {
4228 /* query offload-related parameters */
4229 params[0] = FW_PARAM_DEV(NTID);
4230 params[1] = FW_PARAM_PFVF(SERVER_START);
4231 params[2] = FW_PARAM_PFVF(SERVER_END);
4232 params[3] = FW_PARAM_PFVF(TDDP_START);
4233 params[4] = FW_PARAM_PFVF(TDDP_END);
4234 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4235 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4236 params, val);
4237 if (ret < 0)
4238 goto bye;
4239 adap->tids.ntids = val[0];
4240 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4241 adap->tids.stid_base = val[1];
4242 adap->tids.nstids = val[2] - val[1] + 1;
4243 /*
4244 * Setup server filter region. Divide the available filter
4245 * region into two parts. Regular filters get 1/3rd and server
4246 * filters get 2/3rd part. This is only enabled if workarond
4247 * path is enabled.
4248 * 1. For regular filters.
4249 * 2. Server filter: This are special filters which are used
4250 * to redirect SYN packets to offload queue.
4251 */
4252 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4253 adap->tids.sftid_base = adap->tids.ftid_base +
4254 DIV_ROUND_UP(adap->tids.nftids, 3);
4255 adap->tids.nsftids = adap->tids.nftids -
4256 DIV_ROUND_UP(adap->tids.nftids, 3);
4257 adap->tids.nftids = adap->tids.sftid_base -
4258 adap->tids.ftid_base;
4259 }
4260 adap->vres.ddp.start = val[3];
4261 adap->vres.ddp.size = val[4] - val[3] + 1;
4262 adap->params.ofldq_wr_cred = val[5];
4263
4264 adap->params.offload = 1;
4265 }
4266 if (caps_cmd.rdmacaps) {
4267 params[0] = FW_PARAM_PFVF(STAG_START);
4268 params[1] = FW_PARAM_PFVF(STAG_END);
4269 params[2] = FW_PARAM_PFVF(RQ_START);
4270 params[3] = FW_PARAM_PFVF(RQ_END);
4271 params[4] = FW_PARAM_PFVF(PBL_START);
4272 params[5] = FW_PARAM_PFVF(PBL_END);
4273 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4274 params, val);
4275 if (ret < 0)
4276 goto bye;
4277 adap->vres.stag.start = val[0];
4278 adap->vres.stag.size = val[1] - val[0] + 1;
4279 adap->vres.rq.start = val[2];
4280 adap->vres.rq.size = val[3] - val[2] + 1;
4281 adap->vres.pbl.start = val[4];
4282 adap->vres.pbl.size = val[5] - val[4] + 1;
4283
4284 params[0] = FW_PARAM_PFVF(SQRQ_START);
4285 params[1] = FW_PARAM_PFVF(SQRQ_END);
4286 params[2] = FW_PARAM_PFVF(CQ_START);
4287 params[3] = FW_PARAM_PFVF(CQ_END);
4288 params[4] = FW_PARAM_PFVF(OCQ_START);
4289 params[5] = FW_PARAM_PFVF(OCQ_END);
4290 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4291 val);
4292 if (ret < 0)
4293 goto bye;
4294 adap->vres.qp.start = val[0];
4295 adap->vres.qp.size = val[1] - val[0] + 1;
4296 adap->vres.cq.start = val[2];
4297 adap->vres.cq.size = val[3] - val[2] + 1;
4298 adap->vres.ocq.start = val[4];
4299 adap->vres.ocq.size = val[5] - val[4] + 1;
4300
4301 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4302 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4303 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4304 val);
4305 if (ret < 0) {
4306 adap->params.max_ordird_qp = 8;
4307 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4308 ret = 0;
4309 } else {
4310 adap->params.max_ordird_qp = val[0];
4311 adap->params.max_ird_adapter = val[1];
4312 }
4313 dev_info(adap->pdev_dev,
4314 "max_ordird_qp %d max_ird_adapter %d\n",
4315 adap->params.max_ordird_qp,
4316 adap->params.max_ird_adapter);
4317 }
4318 if (caps_cmd.iscsicaps) {
4319 params[0] = FW_PARAM_PFVF(ISCSI_START);
4320 params[1] = FW_PARAM_PFVF(ISCSI_END);
4321 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4322 params, val);
4323 if (ret < 0)
4324 goto bye;
4325 adap->vres.iscsi.start = val[0];
4326 adap->vres.iscsi.size = val[1] - val[0] + 1;
4327 }
4328 if (caps_cmd.cryptocaps) {
4329 /* Should query params here...TODO */
4330 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
4331 adap->num_uld += 1;
4332 }
4333 #undef FW_PARAM_PFVF
4334 #undef FW_PARAM_DEV
4335
4336 /* The MTU/MSS Table is initialized by now, so load their values. If
4337 * we're initializing the adapter, then we'll make any modifications
4338 * we want to the MTU/MSS Table and also initialize the congestion
4339 * parameters.
4340 */
4341 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4342 if (state != DEV_STATE_INIT) {
4343 int i;
4344
4345 /* The default MTU Table contains values 1492 and 1500.
4346 * However, for TCP, it's better to have two values which are
4347 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4348 * This allows us to have a TCP Data Payload which is a
4349 * multiple of 8 regardless of what combination of TCP Options
4350 * are in use (always a multiple of 4 bytes) which is
4351 * important for performance reasons. For instance, if no
4352 * options are in use, then we have a 20-byte IP header and a
4353 * 20-byte TCP header. In this case, a 1500-byte MSS would
4354 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4355 * which is not a multiple of 8. So using an MSS of 1488 in
4356 * this case results in a TCP Data Payload of 1448 bytes which
4357 * is a multiple of 8. On the other hand, if 12-byte TCP Time
4358 * Stamps have been negotiated, then an MTU of 1500 bytes
4359 * results in a TCP Data Payload of 1448 bytes which, as
4360 * above, is a multiple of 8 bytes ...
4361 */
4362 for (i = 0; i < NMTUS; i++)
4363 if (adap->params.mtus[i] == 1492) {
4364 adap->params.mtus[i] = 1488;
4365 break;
4366 }
4367
4368 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4369 adap->params.b_wnd);
4370 }
4371 t4_init_sge_params(adap);
4372 adap->flags |= FW_OK;
4373 t4_init_tp_params(adap);
4374 return 0;
4375
4376 /*
4377 * Something bad happened. If a command timed out or failed with EIO
4378 * FW does not operate within its spec or something catastrophic
4379 * happened to HW/FW, stop issuing commands.
4380 */
4381 bye:
4382 kfree(adap->sge.egr_map);
4383 kfree(adap->sge.ingr_map);
4384 kfree(adap->sge.starving_fl);
4385 kfree(adap->sge.txq_maperr);
4386 #ifdef CONFIG_DEBUG_FS
4387 kfree(adap->sge.blocked_fl);
4388 #endif
4389 if (ret != -ETIMEDOUT && ret != -EIO)
4390 t4_fw_bye(adap, adap->mbox);
4391 return ret;
4392 }
4393
4394 /* EEH callbacks */
4395
4396 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4397 pci_channel_state_t state)
4398 {
4399 int i;
4400 struct adapter *adap = pci_get_drvdata(pdev);
4401
4402 if (!adap)
4403 goto out;
4404
4405 rtnl_lock();
4406 adap->flags &= ~FW_OK;
4407 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4408 spin_lock(&adap->stats_lock);
4409 for_each_port(adap, i) {
4410 struct net_device *dev = adap->port[i];
4411
4412 netif_device_detach(dev);
4413 netif_carrier_off(dev);
4414 }
4415 spin_unlock(&adap->stats_lock);
4416 disable_interrupts(adap);
4417 if (adap->flags & FULL_INIT_DONE)
4418 cxgb_down(adap);
4419 rtnl_unlock();
4420 if ((adap->flags & DEV_ENABLED)) {
4421 pci_disable_device(pdev);
4422 adap->flags &= ~DEV_ENABLED;
4423 }
4424 out: return state == pci_channel_io_perm_failure ?
4425 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4426 }
4427
4428 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4429 {
4430 int i, ret;
4431 struct fw_caps_config_cmd c;
4432 struct adapter *adap = pci_get_drvdata(pdev);
4433
4434 if (!adap) {
4435 pci_restore_state(pdev);
4436 pci_save_state(pdev);
4437 return PCI_ERS_RESULT_RECOVERED;
4438 }
4439
4440 if (!(adap->flags & DEV_ENABLED)) {
4441 if (pci_enable_device(pdev)) {
4442 dev_err(&pdev->dev, "Cannot reenable PCI "
4443 "device after reset\n");
4444 return PCI_ERS_RESULT_DISCONNECT;
4445 }
4446 adap->flags |= DEV_ENABLED;
4447 }
4448
4449 pci_set_master(pdev);
4450 pci_restore_state(pdev);
4451 pci_save_state(pdev);
4452 pci_cleanup_aer_uncorrect_error_status(pdev);
4453
4454 if (t4_wait_dev_ready(adap->regs) < 0)
4455 return PCI_ERS_RESULT_DISCONNECT;
4456 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4457 return PCI_ERS_RESULT_DISCONNECT;
4458 adap->flags |= FW_OK;
4459 if (adap_init1(adap, &c))
4460 return PCI_ERS_RESULT_DISCONNECT;
4461
4462 for_each_port(adap, i) {
4463 struct port_info *p = adap2pinfo(adap, i);
4464
4465 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4466 NULL, NULL);
4467 if (ret < 0)
4468 return PCI_ERS_RESULT_DISCONNECT;
4469 p->viid = ret;
4470 p->xact_addr_filt = -1;
4471 }
4472
4473 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4474 adap->params.b_wnd);
4475 setup_memwin(adap);
4476 if (cxgb_up(adap))
4477 return PCI_ERS_RESULT_DISCONNECT;
4478 return PCI_ERS_RESULT_RECOVERED;
4479 }
4480
4481 static void eeh_resume(struct pci_dev *pdev)
4482 {
4483 int i;
4484 struct adapter *adap = pci_get_drvdata(pdev);
4485
4486 if (!adap)
4487 return;
4488
4489 rtnl_lock();
4490 for_each_port(adap, i) {
4491 struct net_device *dev = adap->port[i];
4492
4493 if (netif_running(dev)) {
4494 link_start(dev);
4495 cxgb_set_rxmode(dev);
4496 }
4497 netif_device_attach(dev);
4498 }
4499 rtnl_unlock();
4500 }
4501
4502 static const struct pci_error_handlers cxgb4_eeh = {
4503 .error_detected = eeh_err_detected,
4504 .slot_reset = eeh_slot_reset,
4505 .resume = eeh_resume,
4506 };
4507
4508 static inline bool is_x_10g_port(const struct link_config *lc)
4509 {
4510 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4511 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4512 }
4513
4514 /*
4515 * Perform default configuration of DMA queues depending on the number and type
4516 * of ports we found and the number of available CPUs. Most settings can be
4517 * modified by the admin prior to actual use.
4518 */
4519 static void cfg_queues(struct adapter *adap)
4520 {
4521 struct sge *s = &adap->sge;
4522 int i, n10g = 0, qidx = 0;
4523 #ifndef CONFIG_CHELSIO_T4_DCB
4524 int q10g = 0;
4525 #endif
4526 int ciq_size;
4527
4528 /* Reduce memory usage in kdump environment, disable all offload.
4529 */
4530 if (is_kdump_kernel()) {
4531 adap->params.offload = 0;
4532 adap->params.crypto = 0;
4533 } else if (adap->num_uld && uld_mem_alloc(adap)) {
4534 adap->params.crypto = 0;
4535 }
4536
4537 for_each_port(adap, i)
4538 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4539 #ifdef CONFIG_CHELSIO_T4_DCB
4540 /* For Data Center Bridging support we need to be able to support up
4541 * to 8 Traffic Priorities; each of which will be assigned to its
4542 * own TX Queue in order to prevent Head-Of-Line Blocking.
4543 */
4544 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4545 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4546 MAX_ETH_QSETS, adap->params.nports * 8);
4547 BUG_ON(1);
4548 }
4549
4550 for_each_port(adap, i) {
4551 struct port_info *pi = adap2pinfo(adap, i);
4552
4553 pi->first_qset = qidx;
4554 pi->nqsets = 8;
4555 qidx += pi->nqsets;
4556 }
4557 #else /* !CONFIG_CHELSIO_T4_DCB */
4558 /*
4559 * We default to 1 queue per non-10G port and up to # of cores queues
4560 * per 10G port.
4561 */
4562 if (n10g)
4563 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4564 if (q10g > netif_get_num_default_rss_queues())
4565 q10g = netif_get_num_default_rss_queues();
4566
4567 for_each_port(adap, i) {
4568 struct port_info *pi = adap2pinfo(adap, i);
4569
4570 pi->first_qset = qidx;
4571 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4572 qidx += pi->nqsets;
4573 }
4574 #endif /* !CONFIG_CHELSIO_T4_DCB */
4575
4576 s->ethqsets = qidx;
4577 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4578
4579 if (is_offload(adap)) {
4580 /*
4581 * For offload we use 1 queue/channel if all ports are up to 1G,
4582 * otherwise we divide all available queues amongst the channels
4583 * capped by the number of available cores.
4584 */
4585 if (n10g) {
4586 i = min_t(int, ARRAY_SIZE(s->iscsirxq),
4587 num_online_cpus());
4588 s->iscsiqsets = roundup(i, adap->params.nports);
4589 } else
4590 s->iscsiqsets = adap->params.nports;
4591 /* For RDMA one Rx queue per channel suffices */
4592 s->rdmaqs = adap->params.nports;
4593 /* Try and allow at least 1 CIQ per cpu rounding down
4594 * to the number of ports, with a minimum of 1 per port.
4595 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4596 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4597 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4598 */
4599 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4600 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4601 adap->params.nports;
4602 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4603
4604 if (!is_t4(adap->params.chip))
4605 s->niscsitq = s->iscsiqsets;
4606 }
4607
4608 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4609 struct sge_eth_rxq *r = &s->ethrxq[i];
4610
4611 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4612 r->fl.size = 72;
4613 }
4614
4615 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4616 s->ethtxq[i].q.size = 1024;
4617
4618 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4619 s->ctrlq[i].q.size = 512;
4620
4621 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4622 s->ofldtxq[i].q.size = 1024;
4623
4624 for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) {
4625 struct sge_ofld_rxq *r = &s->iscsirxq[i];
4626
4627 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4628 r->rspq.uld = CXGB4_ULD_ISCSI;
4629 r->fl.size = 72;
4630 }
4631
4632 if (!is_t4(adap->params.chip)) {
4633 for (i = 0; i < ARRAY_SIZE(s->iscsitrxq); i++) {
4634 struct sge_ofld_rxq *r = &s->iscsitrxq[i];
4635
4636 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4637 r->rspq.uld = CXGB4_ULD_ISCSIT;
4638 r->fl.size = 72;
4639 }
4640 }
4641
4642 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4643 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4644
4645 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4646 r->rspq.uld = CXGB4_ULD_RDMA;
4647 r->fl.size = 72;
4648 }
4649
4650 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4651 if (ciq_size > SGE_MAX_IQ_SIZE) {
4652 CH_WARN(adap, "CIQ size too small for available IQs\n");
4653 ciq_size = SGE_MAX_IQ_SIZE;
4654 }
4655
4656 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4657 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4658
4659 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4660 r->rspq.uld = CXGB4_ULD_RDMA;
4661 }
4662
4663 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4664 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4665 }
4666
4667 /*
4668 * Reduce the number of Ethernet queues across all ports to at most n.
4669 * n provides at least one queue per port.
4670 */
4671 static void reduce_ethqs(struct adapter *adap, int n)
4672 {
4673 int i;
4674 struct port_info *pi;
4675
4676 while (n < adap->sge.ethqsets)
4677 for_each_port(adap, i) {
4678 pi = adap2pinfo(adap, i);
4679 if (pi->nqsets > 1) {
4680 pi->nqsets--;
4681 adap->sge.ethqsets--;
4682 if (adap->sge.ethqsets <= n)
4683 break;
4684 }
4685 }
4686
4687 n = 0;
4688 for_each_port(adap, i) {
4689 pi = adap2pinfo(adap, i);
4690 pi->first_qset = n;
4691 n += pi->nqsets;
4692 }
4693 }
4694
4695 static int get_msix_info(struct adapter *adap)
4696 {
4697 struct uld_msix_info *msix_info;
4698 int max_ingq = (MAX_OFLD_QSETS * adap->num_uld);
4699
4700 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4701 if (!msix_info)
4702 return -ENOMEM;
4703
4704 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4705 sizeof(long), GFP_KERNEL);
4706 if (!adap->msix_bmap_ulds.msix_bmap) {
4707 kfree(msix_info);
4708 return -ENOMEM;
4709 }
4710 spin_lock_init(&adap->msix_bmap_ulds.lock);
4711 adap->msix_info_ulds = msix_info;
4712 return 0;
4713 }
4714
4715 static void free_msix_info(struct adapter *adap)
4716 {
4717 if (!adap->num_uld)
4718 return;
4719
4720 kfree(adap->msix_info_ulds);
4721 kfree(adap->msix_bmap_ulds.msix_bmap);
4722 }
4723
4724 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4725 #define EXTRA_VECS 2
4726
4727 static int enable_msix(struct adapter *adap)
4728 {
4729 int ofld_need = 0, uld_need = 0;
4730 int i, j, want, need, allocated;
4731 struct sge *s = &adap->sge;
4732 unsigned int nchan = adap->params.nports;
4733 struct msix_entry *entries;
4734 int max_ingq = MAX_INGQ;
4735
4736 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4737 entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4738 GFP_KERNEL);
4739 if (!entries)
4740 return -ENOMEM;
4741
4742 /* map for msix */
4743 if (is_pci_uld(adap) && get_msix_info(adap))
4744 adap->params.crypto = 0;
4745
4746 for (i = 0; i < max_ingq + 1; ++i)
4747 entries[i].entry = i;
4748
4749 want = s->max_ethqsets + EXTRA_VECS;
4750 if (is_offload(adap)) {
4751 want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets +
4752 s->niscsitq;
4753 /* need nchan for each possible ULD */
4754 if (is_t4(adap->params.chip))
4755 ofld_need = 3 * nchan;
4756 else
4757 ofld_need = 4 * nchan;
4758 }
4759 if (is_pci_uld(adap)) {
4760 want += netif_get_num_default_rss_queues() * nchan;
4761 uld_need = nchan;
4762 }
4763 #ifdef CONFIG_CHELSIO_T4_DCB
4764 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4765 * each port.
4766 */
4767 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4768 #else
4769 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4770 #endif
4771 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4772 if (allocated < 0) {
4773 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4774 " not using MSI-X\n");
4775 kfree(entries);
4776 return allocated;
4777 }
4778
4779 /* Distribute available vectors to the various queue groups.
4780 * Every group gets its minimum requirement and NIC gets top
4781 * priority for leftovers.
4782 */
4783 i = allocated - EXTRA_VECS - ofld_need - uld_need;
4784 if (i < s->max_ethqsets) {
4785 s->max_ethqsets = i;
4786 if (i < s->ethqsets)
4787 reduce_ethqs(adap, i);
4788 }
4789 if (is_pci_uld(adap)) {
4790 if (allocated < want)
4791 s->nqs_per_uld = nchan;
4792 else
4793 s->nqs_per_uld = netif_get_num_default_rss_queues() *
4794 nchan;
4795 }
4796
4797 if (is_offload(adap)) {
4798 if (allocated < want) {
4799 s->rdmaqs = nchan;
4800 s->rdmaciqs = nchan;
4801
4802 if (!is_t4(adap->params.chip))
4803 s->niscsitq = nchan;
4804 }
4805
4806 /* leftovers go to OFLD */
4807 i = allocated - EXTRA_VECS - s->max_ethqsets -
4808 s->rdmaqs - s->rdmaciqs - s->niscsitq;
4809 if (is_pci_uld(adap))
4810 i -= s->nqs_per_uld * adap->num_uld;
4811 s->iscsiqsets = (i / nchan) * nchan; /* round down */
4812
4813 }
4814
4815 for (i = 0; i < (allocated - (s->nqs_per_uld * adap->num_uld)); ++i)
4816 adap->msix_info[i].vec = entries[i].vector;
4817 if (is_pci_uld(adap)) {
4818 for (j = 0 ; i < allocated; ++i, j++)
4819 adap->msix_info_ulds[j].vec = entries[i].vector;
4820 adap->msix_bmap_ulds.mapsize = j;
4821 }
4822 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4823 "nic %d iscsi %d rdma cpl %d rdma ciq %d uld %d\n",
4824 allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs,
4825 s->rdmaciqs, s->nqs_per_uld);
4826
4827 kfree(entries);
4828 return 0;
4829 }
4830
4831 #undef EXTRA_VECS
4832
4833 static int init_rss(struct adapter *adap)
4834 {
4835 unsigned int i;
4836 int err;
4837
4838 err = t4_init_rss_mode(adap, adap->mbox);
4839 if (err)
4840 return err;
4841
4842 for_each_port(adap, i) {
4843 struct port_info *pi = adap2pinfo(adap, i);
4844
4845 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4846 if (!pi->rss)
4847 return -ENOMEM;
4848 }
4849 return 0;
4850 }
4851
4852 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4853 enum pci_bus_speed *speed,
4854 enum pcie_link_width *width)
4855 {
4856 u32 lnkcap1, lnkcap2;
4857 int err1, err2;
4858
4859 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */
4860
4861 *speed = PCI_SPEED_UNKNOWN;
4862 *width = PCIE_LNK_WIDTH_UNKNOWN;
4863
4864 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4865 &lnkcap1);
4866 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4867 &lnkcap2);
4868 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4869 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4870 *speed = PCIE_SPEED_8_0GT;
4871 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4872 *speed = PCIE_SPEED_5_0GT;
4873 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4874 *speed = PCIE_SPEED_2_5GT;
4875 }
4876 if (!err1) {
4877 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4878 if (!lnkcap2) { /* pre-r3.0 */
4879 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4880 *speed = PCIE_SPEED_5_0GT;
4881 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4882 *speed = PCIE_SPEED_2_5GT;
4883 }
4884 }
4885
4886 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4887 return err1 ? err1 : err2 ? err2 : -EINVAL;
4888 return 0;
4889 }
4890
4891 static void cxgb4_check_pcie_caps(struct adapter *adap)
4892 {
4893 enum pcie_link_width width, width_cap;
4894 enum pci_bus_speed speed, speed_cap;
4895
4896 #define PCIE_SPEED_STR(speed) \
4897 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4898 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4899 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4900 "Unknown")
4901
4902 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4903 dev_warn(adap->pdev_dev,
4904 "Unable to determine PCIe device BW capabilities\n");
4905 return;
4906 }
4907
4908 if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4909 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4910 dev_warn(adap->pdev_dev,
4911 "Unable to determine PCI Express bandwidth.\n");
4912 return;
4913 }
4914
4915 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4916 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4917 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4918 width, width_cap);
4919 if (speed < speed_cap || width < width_cap)
4920 dev_info(adap->pdev_dev,
4921 "A slot with more lanes and/or higher speed is "
4922 "suggested for optimal performance.\n");
4923 }
4924
4925 /* Dump basic information about the adapter */
4926 static void print_adapter_info(struct adapter *adapter)
4927 {
4928 /* Device information */
4929 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4930 adapter->params.vpd.id,
4931 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4932 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4933 adapter->params.vpd.sn, adapter->params.vpd.pn);
4934
4935 /* Firmware Version */
4936 if (!adapter->params.fw_vers)
4937 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4938 else
4939 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4940 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4941 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4942 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4943 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4944
4945 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4946 * Firmware, so dev_info() is more appropriate here.)
4947 */
4948 if (!adapter->params.bs_vers)
4949 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4950 else
4951 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4952 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4953 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4954 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4955 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4956
4957 /* TP Microcode Version */
4958 if (!adapter->params.tp_vers)
4959 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4960 else
4961 dev_info(adapter->pdev_dev,
4962 "TP Microcode version: %u.%u.%u.%u\n",
4963 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4964 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4965 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4966 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4967
4968 /* Expansion ROM version */
4969 if (!adapter->params.er_vers)
4970 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4971 else
4972 dev_info(adapter->pdev_dev,
4973 "Expansion ROM version: %u.%u.%u.%u\n",
4974 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4975 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4976 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4977 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4978
4979 /* Software/Hardware configuration */
4980 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4981 is_offload(adapter) ? "R" : "",
4982 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4983 (adapter->flags & USING_MSI) ? "MSI" : ""),
4984 is_offload(adapter) ? "Offload" : "non-Offload");
4985 }
4986
4987 static void print_port_info(const struct net_device *dev)
4988 {
4989 char buf[80];
4990 char *bufp = buf;
4991 const char *spd = "";
4992 const struct port_info *pi = netdev_priv(dev);
4993 const struct adapter *adap = pi->adapter;
4994
4995 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4996 spd = " 2.5 GT/s";
4997 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4998 spd = " 5 GT/s";
4999 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
5000 spd = " 8 GT/s";
5001
5002 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
5003 bufp += sprintf(bufp, "100/");
5004 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
5005 bufp += sprintf(bufp, "1000/");
5006 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
5007 bufp += sprintf(bufp, "10G/");
5008 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
5009 bufp += sprintf(bufp, "40G/");
5010 if (bufp != buf)
5011 --bufp;
5012 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5013
5014 netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5015 dev->name, adap->params.vpd.id, adap->name, buf);
5016 }
5017
5018 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
5019 {
5020 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
5021 }
5022
5023 /*
5024 * Free the following resources:
5025 * - memory used for tables
5026 * - MSI/MSI-X
5027 * - net devices
5028 * - resources FW is holding for us
5029 */
5030 static void free_some_resources(struct adapter *adapter)
5031 {
5032 unsigned int i;
5033
5034 t4_free_mem(adapter->l2t);
5035 t4_cleanup_sched(adapter);
5036 t4_free_mem(adapter->tids.tid_tab);
5037 kfree(adapter->sge.egr_map);
5038 kfree(adapter->sge.ingr_map);
5039 kfree(adapter->sge.starving_fl);
5040 kfree(adapter->sge.txq_maperr);
5041 #ifdef CONFIG_DEBUG_FS
5042 kfree(adapter->sge.blocked_fl);
5043 #endif
5044 disable_msi(adapter);
5045
5046 for_each_port(adapter, i)
5047 if (adapter->port[i]) {
5048 struct port_info *pi = adap2pinfo(adapter, i);
5049
5050 if (pi->viid != 0)
5051 t4_free_vi(adapter, adapter->mbox, adapter->pf,
5052 0, pi->viid);
5053 kfree(adap2pinfo(adapter, i)->rss);
5054 free_netdev(adapter->port[i]);
5055 }
5056 if (adapter->flags & FW_OK)
5057 t4_fw_bye(adapter, adapter->pf);
5058 }
5059
5060 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5061 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5062 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5063 #define SEGMENT_SIZE 128
5064
5065 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
5066 {
5067 u16 device_id;
5068
5069 /* Retrieve adapter's device ID */
5070 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
5071
5072 switch (device_id >> 12) {
5073 case CHELSIO_T4:
5074 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5075 case CHELSIO_T5:
5076 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5077 case CHELSIO_T6:
5078 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5079 default:
5080 dev_err(&pdev->dev, "Device %d is not supported\n",
5081 device_id);
5082 }
5083 return -EINVAL;
5084 }
5085
5086 #ifdef CONFIG_PCI_IOV
5087 static void dummy_setup(struct net_device *dev)
5088 {
5089 dev->type = ARPHRD_NONE;
5090 dev->mtu = 0;
5091 dev->hard_header_len = 0;
5092 dev->addr_len = 0;
5093 dev->tx_queue_len = 0;
5094 dev->flags |= IFF_NOARP;
5095 dev->priv_flags |= IFF_NO_QUEUE;
5096
5097 /* Initialize the device structure. */
5098 dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5099 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5100 dev->destructor = free_netdev;
5101 }
5102
5103 static int config_mgmt_dev(struct pci_dev *pdev)
5104 {
5105 struct adapter *adap = pci_get_drvdata(pdev);
5106 struct net_device *netdev;
5107 struct port_info *pi;
5108 char name[IFNAMSIZ];
5109 int err;
5110
5111 snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
5112 netdev = alloc_netdev(0, name, NET_NAME_UNKNOWN, dummy_setup);
5113 if (!netdev)
5114 return -ENOMEM;
5115
5116 pi = netdev_priv(netdev);
5117 pi->adapter = adap;
5118 SET_NETDEV_DEV(netdev, &pdev->dev);
5119
5120 adap->port[0] = netdev;
5121
5122 err = register_netdev(adap->port[0]);
5123 if (err) {
5124 pr_info("Unable to register VF mgmt netdev %s\n", name);
5125 free_netdev(adap->port[0]);
5126 adap->port[0] = NULL;
5127 return err;
5128 }
5129 return 0;
5130 }
5131
5132 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5133 {
5134 struct adapter *adap = pci_get_drvdata(pdev);
5135 int err = 0;
5136 int current_vfs = pci_num_vf(pdev);
5137 u32 pcie_fw;
5138
5139 pcie_fw = readl(adap->regs + PCIE_FW_A);
5140 /* Check if cxgb4 is the MASTER and fw is initialized */
5141 if (!(pcie_fw & PCIE_FW_INIT_F) ||
5142 !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
5143 PCIE_FW_MASTER_G(pcie_fw) != 4) {
5144 dev_warn(&pdev->dev,
5145 "cxgb4 driver needs to be MASTER to support SRIOV\n");
5146 return -EOPNOTSUPP;
5147 }
5148
5149 /* If any of the VF's is already assigned to Guest OS, then
5150 * SRIOV for the same cannot be modified
5151 */
5152 if (current_vfs && pci_vfs_assigned(pdev)) {
5153 dev_err(&pdev->dev,
5154 "Cannot modify SR-IOV while VFs are assigned\n");
5155 num_vfs = current_vfs;
5156 return num_vfs;
5157 }
5158
5159 /* Disable SRIOV when zero is passed.
5160 * One needs to disable SRIOV before modifying it, else
5161 * stack throws the below warning:
5162 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
5163 */
5164 if (!num_vfs) {
5165 pci_disable_sriov(pdev);
5166 if (adap->port[0]) {
5167 unregister_netdev(adap->port[0]);
5168 adap->port[0] = NULL;
5169 }
5170 /* free VF resources */
5171 kfree(adap->vfinfo);
5172 adap->vfinfo = NULL;
5173 adap->num_vfs = 0;
5174 return num_vfs;
5175 }
5176
5177 if (num_vfs != current_vfs) {
5178 err = pci_enable_sriov(pdev, num_vfs);
5179 if (err)
5180 return err;
5181
5182 adap->num_vfs = num_vfs;
5183 err = config_mgmt_dev(pdev);
5184 if (err)
5185 return err;
5186 }
5187
5188 adap->vfinfo = kcalloc(adap->num_vfs,
5189 sizeof(struct vf_info), GFP_KERNEL);
5190 if (adap->vfinfo)
5191 fill_vf_station_mac_addr(adap);
5192 return num_vfs;
5193 }
5194 #endif
5195
5196 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5197 {
5198 int func, i, err, s_qpp, qpp, num_seg;
5199 struct port_info *pi;
5200 bool highdma = false;
5201 struct adapter *adapter = NULL;
5202 struct net_device *netdev;
5203 void __iomem *regs;
5204 u32 whoami, pl_rev;
5205 enum chip_type chip;
5206 static int adap_idx = 1;
5207
5208 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5209
5210 err = pci_request_regions(pdev, KBUILD_MODNAME);
5211 if (err) {
5212 /* Just info, some other driver may have claimed the device. */
5213 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5214 return err;
5215 }
5216
5217 err = pci_enable_device(pdev);
5218 if (err) {
5219 dev_err(&pdev->dev, "cannot enable PCI device\n");
5220 goto out_release_regions;
5221 }
5222
5223 regs = pci_ioremap_bar(pdev, 0);
5224 if (!regs) {
5225 dev_err(&pdev->dev, "cannot map device registers\n");
5226 err = -ENOMEM;
5227 goto out_disable_device;
5228 }
5229
5230 err = t4_wait_dev_ready(regs);
5231 if (err < 0)
5232 goto out_unmap_bar0;
5233
5234 /* We control everything through one PF */
5235 whoami = readl(regs + PL_WHOAMI_A);
5236 pl_rev = REV_G(readl(regs + PL_REV_A));
5237 chip = get_chip_type(pdev, pl_rev);
5238 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
5239 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5240 if (func != ent->driver_data) {
5241 #ifndef CONFIG_PCI_IOV
5242 iounmap(regs);
5243 #endif
5244 pci_disable_device(pdev);
5245 pci_save_state(pdev); /* to restore SR-IOV later */
5246 goto sriov;
5247 }
5248
5249 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5250 highdma = true;
5251 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5252 if (err) {
5253 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5254 "coherent allocations\n");
5255 goto out_unmap_bar0;
5256 }
5257 } else {
5258 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5259 if (err) {
5260 dev_err(&pdev->dev, "no usable DMA configuration\n");
5261 goto out_unmap_bar0;
5262 }
5263 }
5264
5265 pci_enable_pcie_error_reporting(pdev);
5266 enable_pcie_relaxed_ordering(pdev);
5267 pci_set_master(pdev);
5268 pci_save_state(pdev);
5269
5270 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5271 if (!adapter) {
5272 err = -ENOMEM;
5273 goto out_unmap_bar0;
5274 }
5275 adap_idx++;
5276
5277 adapter->workq = create_singlethread_workqueue("cxgb4");
5278 if (!adapter->workq) {
5279 err = -ENOMEM;
5280 goto out_free_adapter;
5281 }
5282
5283 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5284 (sizeof(struct mbox_cmd) *
5285 T4_OS_LOG_MBOX_CMDS),
5286 GFP_KERNEL);
5287 if (!adapter->mbox_log) {
5288 err = -ENOMEM;
5289 goto out_free_adapter;
5290 }
5291 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5292
5293 /* PCI device has been enabled */
5294 adapter->flags |= DEV_ENABLED;
5295
5296 adapter->regs = regs;
5297 adapter->pdev = pdev;
5298 adapter->pdev_dev = &pdev->dev;
5299 adapter->name = pci_name(pdev);
5300 adapter->mbox = func;
5301 adapter->pf = func;
5302 adapter->msg_enable = dflt_msg_enable;
5303 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5304
5305 spin_lock_init(&adapter->stats_lock);
5306 spin_lock_init(&adapter->tid_release_lock);
5307 spin_lock_init(&adapter->win0_lock);
5308
5309 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5310 INIT_WORK(&adapter->db_full_task, process_db_full);
5311 INIT_WORK(&adapter->db_drop_task, process_db_drop);
5312
5313 err = t4_prep_adapter(adapter);
5314 if (err)
5315 goto out_free_adapter;
5316
5317
5318 if (!is_t4(adapter->params.chip)) {
5319 s_qpp = (QUEUESPERPAGEPF0_S +
5320 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5321 adapter->pf);
5322 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5323 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5324 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5325
5326 /* Each segment size is 128B. Write coalescing is enabled only
5327 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5328 * queue is less no of segments that can be accommodated in
5329 * a page size.
5330 */
5331 if (qpp > num_seg) {
5332 dev_err(&pdev->dev,
5333 "Incorrect number of egress queues per page\n");
5334 err = -EINVAL;
5335 goto out_free_adapter;
5336 }
5337 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5338 pci_resource_len(pdev, 2));
5339 if (!adapter->bar2) {
5340 dev_err(&pdev->dev, "cannot map device bar2 region\n");
5341 err = -ENOMEM;
5342 goto out_free_adapter;
5343 }
5344 }
5345
5346 setup_memwin(adapter);
5347 err = adap_init0(adapter);
5348 #ifdef CONFIG_DEBUG_FS
5349 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5350 #endif
5351 setup_memwin_rdma(adapter);
5352 if (err)
5353 goto out_unmap_bar;
5354
5355 /* configure SGE_STAT_CFG_A to read WC stats */
5356 if (!is_t4(adapter->params.chip))
5357 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5358 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5359 T6_STATMODE_V(0)));
5360
5361 for_each_port(adapter, i) {
5362 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5363 MAX_ETH_QSETS);
5364 if (!netdev) {
5365 err = -ENOMEM;
5366 goto out_free_dev;
5367 }
5368
5369 SET_NETDEV_DEV(netdev, &pdev->dev);
5370
5371 adapter->port[i] = netdev;
5372 pi = netdev_priv(netdev);
5373 pi->adapter = adapter;
5374 pi->xact_addr_filt = -1;
5375 pi->port_id = i;
5376 netdev->irq = pdev->irq;
5377
5378 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5379 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5380 NETIF_F_RXCSUM | NETIF_F_RXHASH |
5381 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
5382 if (highdma)
5383 netdev->hw_features |= NETIF_F_HIGHDMA;
5384 netdev->features |= netdev->hw_features;
5385 netdev->vlan_features = netdev->features & VLAN_FEAT;
5386
5387 netdev->priv_flags |= IFF_UNICAST_FLT;
5388
5389 netdev->netdev_ops = &cxgb4_netdev_ops;
5390 #ifdef CONFIG_CHELSIO_T4_DCB
5391 netdev->dcbnl_ops = &cxgb4_dcb_ops;
5392 cxgb4_dcb_state_init(netdev);
5393 #endif
5394 cxgb4_set_ethtool_ops(netdev);
5395 }
5396
5397 pci_set_drvdata(pdev, adapter);
5398
5399 if (adapter->flags & FW_OK) {
5400 err = t4_port_init(adapter, func, func, 0);
5401 if (err)
5402 goto out_free_dev;
5403 } else if (adapter->params.nports == 1) {
5404 /* If we don't have a connection to the firmware -- possibly
5405 * because of an error -- grab the raw VPD parameters so we
5406 * can set the proper MAC Address on the debug network
5407 * interface that we've created.
5408 */
5409 u8 hw_addr[ETH_ALEN];
5410 u8 *na = adapter->params.vpd.na;
5411
5412 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5413 if (!err) {
5414 for (i = 0; i < ETH_ALEN; i++)
5415 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5416 hex2val(na[2 * i + 1]));
5417 t4_set_hw_addr(adapter, 0, hw_addr);
5418 }
5419 }
5420
5421 /* Configure queues and allocate tables now, they can be needed as
5422 * soon as the first register_netdev completes.
5423 */
5424 cfg_queues(adapter);
5425
5426 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5427 if (!adapter->l2t) {
5428 /* We tolerate a lack of L2T, giving up some functionality */
5429 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5430 adapter->params.offload = 0;
5431 }
5432
5433 #if IS_ENABLED(CONFIG_IPV6)
5434 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5435 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5436 /* CLIP functionality is not present in hardware,
5437 * hence disable all offload features
5438 */
5439 dev_warn(&pdev->dev,
5440 "CLIP not enabled in hardware, continuing\n");
5441 adapter->params.offload = 0;
5442 } else {
5443 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5444 adapter->clipt_end);
5445 if (!adapter->clipt) {
5446 /* We tolerate a lack of clip_table, giving up
5447 * some functionality
5448 */
5449 dev_warn(&pdev->dev,
5450 "could not allocate Clip table, continuing\n");
5451 adapter->params.offload = 0;
5452 }
5453 }
5454 #endif
5455
5456 for_each_port(adapter, i) {
5457 pi = adap2pinfo(adapter, i);
5458 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5459 if (!pi->sched_tbl)
5460 dev_warn(&pdev->dev,
5461 "could not activate scheduling on port %d\n",
5462 i);
5463 }
5464
5465 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
5466 dev_warn(&pdev->dev, "could not allocate TID table, "
5467 "continuing\n");
5468 adapter->params.offload = 0;
5469 }
5470
5471 if (is_offload(adapter)) {
5472 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5473 u32 hash_base, hash_reg;
5474
5475 if (chip <= CHELSIO_T5) {
5476 hash_reg = LE_DB_TID_HASHBASE_A;
5477 hash_base = t4_read_reg(adapter, hash_reg);
5478 adapter->tids.hash_base = hash_base / 4;
5479 } else {
5480 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5481 hash_base = t4_read_reg(adapter, hash_reg);
5482 adapter->tids.hash_base = hash_base;
5483 }
5484 }
5485 }
5486
5487 /* See what interrupts we'll be using */
5488 if (msi > 1 && enable_msix(adapter) == 0)
5489 adapter->flags |= USING_MSIX;
5490 else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5491 adapter->flags |= USING_MSI;
5492 if (msi > 1)
5493 free_msix_info(adapter);
5494 }
5495
5496 /* check for PCI Express bandwidth capabiltites */
5497 cxgb4_check_pcie_caps(adapter);
5498
5499 err = init_rss(adapter);
5500 if (err)
5501 goto out_free_dev;
5502
5503 /*
5504 * The card is now ready to go. If any errors occur during device
5505 * registration we do not fail the whole card but rather proceed only
5506 * with the ports we manage to register successfully. However we must
5507 * register at least one net device.
5508 */
5509 for_each_port(adapter, i) {
5510 pi = adap2pinfo(adapter, i);
5511 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5512 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5513
5514 err = register_netdev(adapter->port[i]);
5515 if (err)
5516 break;
5517 adapter->chan_map[pi->tx_chan] = i;
5518 print_port_info(adapter->port[i]);
5519 }
5520 if (i == 0) {
5521 dev_err(&pdev->dev, "could not register any net devices\n");
5522 goto out_free_dev;
5523 }
5524 if (err) {
5525 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5526 err = 0;
5527 }
5528
5529 if (cxgb4_debugfs_root) {
5530 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5531 cxgb4_debugfs_root);
5532 setup_debugfs(adapter);
5533 }
5534
5535 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5536 pdev->needs_freset = 1;
5537
5538 if (is_offload(adapter))
5539 attach_ulds(adapter);
5540
5541 print_adapter_info(adapter);
5542 return 0;
5543
5544 sriov:
5545 #ifdef CONFIG_PCI_IOV
5546 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) {
5547 dev_warn(&pdev->dev,
5548 "Enabling SR-IOV VFs using the num_vf module "
5549 "parameter is deprecated - please use the pci sysfs "
5550 "interface instead.\n");
5551 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5552 dev_info(&pdev->dev,
5553 "instantiated %u virtual functions\n",
5554 num_vf[func]);
5555 }
5556
5557 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5558 if (!adapter) {
5559 err = -ENOMEM;
5560 goto free_pci_region;
5561 }
5562
5563 adapter->pdev = pdev;
5564 adapter->pdev_dev = &pdev->dev;
5565 adapter->name = pci_name(pdev);
5566 adapter->mbox = func;
5567 adapter->pf = func;
5568 adapter->regs = regs;
5569 adapter->adap_idx = adap_idx;
5570 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5571 (sizeof(struct mbox_cmd) *
5572 T4_OS_LOG_MBOX_CMDS),
5573 GFP_KERNEL);
5574 if (!adapter->mbox_log) {
5575 err = -ENOMEM;
5576 goto free_adapter;
5577 }
5578 pci_set_drvdata(pdev, adapter);
5579 return 0;
5580
5581 free_adapter:
5582 kfree(adapter);
5583 free_pci_region:
5584 iounmap(regs);
5585 pci_disable_sriov(pdev);
5586 pci_release_regions(pdev);
5587 return err;
5588 #else
5589 return 0;
5590 #endif
5591
5592 out_free_dev:
5593 free_some_resources(adapter);
5594 if (adapter->flags & USING_MSIX)
5595 free_msix_info(adapter);
5596 if (adapter->num_uld)
5597 uld_mem_free(adapter);
5598 out_unmap_bar:
5599 if (!is_t4(adapter->params.chip))
5600 iounmap(adapter->bar2);
5601 out_free_adapter:
5602 if (adapter->workq)
5603 destroy_workqueue(adapter->workq);
5604
5605 kfree(adapter->mbox_log);
5606 kfree(adapter);
5607 out_unmap_bar0:
5608 iounmap(regs);
5609 out_disable_device:
5610 pci_disable_pcie_error_reporting(pdev);
5611 pci_disable_device(pdev);
5612 out_release_regions:
5613 pci_release_regions(pdev);
5614 return err;
5615 }
5616
5617 static void remove_one(struct pci_dev *pdev)
5618 {
5619 struct adapter *adapter = pci_get_drvdata(pdev);
5620
5621 if (!adapter) {
5622 pci_release_regions(pdev);
5623 return;
5624 }
5625
5626 if (adapter->pf == 4) {
5627 int i;
5628
5629 /* Tear down per-adapter Work Queue first since it can contain
5630 * references to our adapter data structure.
5631 */
5632 destroy_workqueue(adapter->workq);
5633
5634 if (is_offload(adapter))
5635 detach_ulds(adapter);
5636
5637 disable_interrupts(adapter);
5638
5639 for_each_port(adapter, i)
5640 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5641 unregister_netdev(adapter->port[i]);
5642
5643 debugfs_remove_recursive(adapter->debugfs_root);
5644
5645 /* If we allocated filters, free up state associated with any
5646 * valid filters ...
5647 */
5648 if (adapter->tids.ftid_tab) {
5649 struct filter_entry *f = &adapter->tids.ftid_tab[0];
5650 for (i = 0; i < (adapter->tids.nftids +
5651 adapter->tids.nsftids); i++, f++)
5652 if (f->valid)
5653 clear_filter(adapter, f);
5654 }
5655
5656 if (adapter->flags & FULL_INIT_DONE)
5657 cxgb_down(adapter);
5658
5659 if (adapter->flags & USING_MSIX)
5660 free_msix_info(adapter);
5661 if (adapter->num_uld)
5662 uld_mem_free(adapter);
5663 free_some_resources(adapter);
5664 #if IS_ENABLED(CONFIG_IPV6)
5665 t4_cleanup_clip_tbl(adapter);
5666 #endif
5667 iounmap(adapter->regs);
5668 if (!is_t4(adapter->params.chip))
5669 iounmap(adapter->bar2);
5670 pci_disable_pcie_error_reporting(pdev);
5671 if ((adapter->flags & DEV_ENABLED)) {
5672 pci_disable_device(pdev);
5673 adapter->flags &= ~DEV_ENABLED;
5674 }
5675 pci_release_regions(pdev);
5676 kfree(adapter->mbox_log);
5677 synchronize_rcu();
5678 kfree(adapter);
5679 }
5680 #ifdef CONFIG_PCI_IOV
5681 else {
5682 if (adapter->port[0])
5683 unregister_netdev(adapter->port[0]);
5684 iounmap(adapter->regs);
5685 kfree(adapter->vfinfo);
5686 kfree(adapter);
5687 pci_disable_sriov(pdev);
5688 pci_release_regions(pdev);
5689 }
5690 #endif
5691 }
5692
5693 static struct pci_driver cxgb4_driver = {
5694 .name = KBUILD_MODNAME,
5695 .id_table = cxgb4_pci_tbl,
5696 .probe = init_one,
5697 .remove = remove_one,
5698 .shutdown = remove_one,
5699 #ifdef CONFIG_PCI_IOV
5700 .sriov_configure = cxgb4_iov_configure,
5701 #endif
5702 .err_handler = &cxgb4_eeh,
5703 };
5704
5705 static int __init cxgb4_init_module(void)
5706 {
5707 int ret;
5708
5709 /* Debugfs support is optional, just warn if this fails */
5710 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5711 if (!cxgb4_debugfs_root)
5712 pr_warn("could not create debugfs entry, continuing\n");
5713
5714 ret = pci_register_driver(&cxgb4_driver);
5715 if (ret < 0)
5716 debugfs_remove(cxgb4_debugfs_root);
5717
5718 #if IS_ENABLED(CONFIG_IPV6)
5719 if (!inet6addr_registered) {
5720 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5721 inet6addr_registered = true;
5722 }
5723 #endif
5724
5725 return ret;
5726 }
5727
5728 static void __exit cxgb4_cleanup_module(void)
5729 {
5730 #if IS_ENABLED(CONFIG_IPV6)
5731 if (inet6addr_registered) {
5732 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5733 inet6addr_registered = false;
5734 }
5735 #endif
5736 pci_unregister_driver(&cxgb4_driver);
5737 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
5738 }
5739
5740 module_init(cxgb4_init_module);
5741 module_exit(cxgb4_cleanup_module);
This page took 0.278522 seconds and 5 git commands to generate.