chelsio: Move the Chelsio drivers
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4vf / adapter.h
1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 /*
37 * This file should not be included directly. Include t4vf_common.h instead.
38 */
39
40 #ifndef __CXGB4VF_ADAPTER_H__
41 #define __CXGB4VF_ADAPTER_H__
42
43 #include <linux/interrupt.h>
44 #include <linux/pci.h>
45 #include <linux/spinlock.h>
46 #include <linux/skbuff.h>
47 #include <linux/if_ether.h>
48 #include <linux/netdevice.h>
49
50 #include "../cxgb4/t4_hw.h"
51
52 /*
53 * Constants of the implementation.
54 */
55 enum {
56 MAX_NPORTS = 1, /* max # of "ports" */
57 MAX_PORT_QSETS = 8, /* max # of Queue Sets / "port" */
58 MAX_ETH_QSETS = MAX_NPORTS*MAX_PORT_QSETS,
59
60 /*
61 * MSI-X interrupt index usage.
62 */
63 MSIX_FW = 0, /* MSI-X index for firmware Q */
64 MSIX_IQFLINT = 1, /* MSI-X index base for Ingress Qs */
65 MSIX_EXTRAS = 1,
66 MSIX_ENTRIES = MAX_ETH_QSETS + MSIX_EXTRAS,
67
68 /*
69 * The maximum number of Ingress and Egress Queues is determined by
70 * the maximum number of "Queue Sets" which we support plus any
71 * ancillary queues. Each "Queue Set" requires one Ingress Queue
72 * for RX Packet Ingress Event notifications and two Egress Queues for
73 * a Free List and an Ethernet TX list.
74 */
75 INGQ_EXTRAS = 2, /* firmware event queue and */
76 /* forwarded interrupts */
77 MAX_INGQ = MAX_ETH_QSETS+INGQ_EXTRAS,
78 MAX_EGRQ = MAX_ETH_QSETS*2,
79 };
80
81 /*
82 * Forward structure definition references.
83 */
84 struct adapter;
85 struct sge_eth_rxq;
86 struct sge_rspq;
87
88 /*
89 * Per-"port" information. This is really per-Virtual Interface information
90 * but the use of the "port" nomanclature makes it easier to go back and forth
91 * between the PF and VF drivers ...
92 */
93 struct port_info {
94 struct adapter *adapter; /* our adapter */
95 u16 viid; /* virtual interface ID */
96 s16 xact_addr_filt; /* index of our MAC address filter */
97 u16 rss_size; /* size of VI's RSS table slice */
98 u8 pidx; /* index into adapter port[] */
99 u8 port_id; /* physical port ID */
100 u8 nqsets; /* # of "Queue Sets" */
101 u8 first_qset; /* index of first "Queue Set" */
102 struct link_config link_cfg; /* physical port configuration */
103 };
104
105 /*
106 * Scatter Gather Engine resources for the "adapter". Our ingress and egress
107 * queues are organized into "Queue Sets" with one ingress and one egress
108 * queue per Queue Set. These Queue Sets are aportionable between the "ports"
109 * (Virtual Interfaces). One extra ingress queue is used to receive
110 * asynchronous messages from the firmware. Note that the "Queue IDs" that we
111 * use here are really "Relative Queue IDs" which are returned as part of the
112 * firmware command to allocate queues. These queue IDs are relative to the
113 * absolute Queue ID base of the section of the Queue ID space allocated to
114 * the PF/VF.
115 */
116
117 /*
118 * SGE free-list queue state.
119 */
120 struct rx_sw_desc;
121 struct sge_fl {
122 unsigned int avail; /* # of available RX buffers */
123 unsigned int pend_cred; /* new buffers since last FL DB ring */
124 unsigned int cidx; /* consumer index */
125 unsigned int pidx; /* producer index */
126 unsigned long alloc_failed; /* # of buffer allocation failures */
127 unsigned long large_alloc_failed;
128 unsigned long starving; /* # of times FL was found starving */
129
130 /*
131 * Write-once/infrequently fields.
132 * -------------------------------
133 */
134
135 unsigned int cntxt_id; /* SGE relative QID for the free list */
136 unsigned int abs_id; /* SGE absolute QID for the free list */
137 unsigned int size; /* capacity of free list */
138 struct rx_sw_desc *sdesc; /* address of SW RX descriptor ring */
139 __be64 *desc; /* address of HW RX descriptor ring */
140 dma_addr_t addr; /* PCI bus address of hardware ring */
141 };
142
143 /*
144 * An ingress packet gather list.
145 */
146 struct pkt_gl {
147 skb_frag_t frags[MAX_SKB_FRAGS];
148 void *va; /* virtual address of first byte */
149 unsigned int nfrags; /* # of fragments */
150 unsigned int tot_len; /* total length of fragments */
151 };
152
153 typedef int (*rspq_handler_t)(struct sge_rspq *, const __be64 *,
154 const struct pkt_gl *);
155
156 /*
157 * State for an SGE Response Queue.
158 */
159 struct sge_rspq {
160 struct napi_struct napi; /* NAPI scheduling control */
161 const __be64 *cur_desc; /* current descriptor in queue */
162 unsigned int cidx; /* consumer index */
163 u8 gen; /* current generation bit */
164 u8 next_intr_params; /* holdoff params for next interrupt */
165 int offset; /* offset into current FL buffer */
166
167 unsigned int unhandled_irqs; /* bogus interrupts */
168
169 /*
170 * Write-once/infrequently fields.
171 * -------------------------------
172 */
173
174 u8 intr_params; /* interrupt holdoff parameters */
175 u8 pktcnt_idx; /* interrupt packet threshold */
176 u8 idx; /* queue index within its group */
177 u16 cntxt_id; /* SGE rel QID for the response Q */
178 u16 abs_id; /* SGE abs QID for the response Q */
179 __be64 *desc; /* address of hardware response ring */
180 dma_addr_t phys_addr; /* PCI bus address of ring */
181 unsigned int iqe_len; /* entry size */
182 unsigned int size; /* capcity of response Q */
183 struct adapter *adapter; /* our adapter */
184 struct net_device *netdev; /* associated net device */
185 rspq_handler_t handler; /* the handler for this response Q */
186 };
187
188 /*
189 * Ethernet queue statistics
190 */
191 struct sge_eth_stats {
192 unsigned long pkts; /* # of ethernet packets */
193 unsigned long lro_pkts; /* # of LRO super packets */
194 unsigned long lro_merged; /* # of wire packets merged by LRO */
195 unsigned long rx_cso; /* # of Rx checksum offloads */
196 unsigned long vlan_ex; /* # of Rx VLAN extractions */
197 unsigned long rx_drops; /* # of packets dropped due to no mem */
198 };
199
200 /*
201 * State for an Ethernet Receive Queue.
202 */
203 struct sge_eth_rxq {
204 struct sge_rspq rspq; /* Response Queue */
205 struct sge_fl fl; /* Free List */
206 struct sge_eth_stats stats; /* receive statistics */
207 };
208
209 /*
210 * SGE Transmit Queue state. This contains all of the resources associated
211 * with the hardware status of a TX Queue which is a circular ring of hardware
212 * TX Descriptors. For convenience, it also contains a pointer to a parallel
213 * "Software Descriptor" array but we don't know anything about it here other
214 * than its type name.
215 */
216 struct tx_desc {
217 /*
218 * Egress Queues are measured in units of SGE_EQ_IDXSIZE by the
219 * hardware: Sizes, Producer and Consumer indices, etc.
220 */
221 __be64 flit[SGE_EQ_IDXSIZE/sizeof(__be64)];
222 };
223 struct tx_sw_desc;
224 struct sge_txq {
225 unsigned int in_use; /* # of in-use TX descriptors */
226 unsigned int size; /* # of descriptors */
227 unsigned int cidx; /* SW consumer index */
228 unsigned int pidx; /* producer index */
229 unsigned long stops; /* # of times queue has been stopped */
230 unsigned long restarts; /* # of queue restarts */
231
232 /*
233 * Write-once/infrequently fields.
234 * -------------------------------
235 */
236
237 unsigned int cntxt_id; /* SGE relative QID for the TX Q */
238 unsigned int abs_id; /* SGE absolute QID for the TX Q */
239 struct tx_desc *desc; /* address of HW TX descriptor ring */
240 struct tx_sw_desc *sdesc; /* address of SW TX descriptor ring */
241 struct sge_qstat *stat; /* queue status entry */
242 dma_addr_t phys_addr; /* PCI bus address of hardware ring */
243 };
244
245 /*
246 * State for an Ethernet Transmit Queue.
247 */
248 struct sge_eth_txq {
249 struct sge_txq q; /* SGE TX Queue */
250 struct netdev_queue *txq; /* associated netdev TX queue */
251 unsigned long tso; /* # of TSO requests */
252 unsigned long tx_cso; /* # of TX checksum offloads */
253 unsigned long vlan_ins; /* # of TX VLAN insertions */
254 unsigned long mapping_err; /* # of I/O MMU packet mapping errors */
255 };
256
257 /*
258 * The complete set of Scatter/Gather Engine resources.
259 */
260 struct sge {
261 /*
262 * Our "Queue Sets" ...
263 */
264 struct sge_eth_txq ethtxq[MAX_ETH_QSETS];
265 struct sge_eth_rxq ethrxq[MAX_ETH_QSETS];
266
267 /*
268 * Extra ingress queues for asynchronous firmware events and
269 * forwarded interrupts (when in MSI mode).
270 */
271 struct sge_rspq fw_evtq ____cacheline_aligned_in_smp;
272
273 struct sge_rspq intrq ____cacheline_aligned_in_smp;
274 spinlock_t intrq_lock;
275
276 /*
277 * State for managing "starving Free Lists" -- Free Lists which have
278 * fallen below a certain threshold of buffers available to the
279 * hardware and attempts to refill them up to that threshold have
280 * failed. We have a regular "slow tick" timer process which will
281 * make periodic attempts to refill these starving Free Lists ...
282 */
283 DECLARE_BITMAP(starving_fl, MAX_EGRQ);
284 struct timer_list rx_timer;
285
286 /*
287 * State for cleaning up completed TX descriptors.
288 */
289 struct timer_list tx_timer;
290
291 /*
292 * Write-once/infrequently fields.
293 * -------------------------------
294 */
295
296 u16 max_ethqsets; /* # of available Ethernet queue sets */
297 u16 ethqsets; /* # of active Ethernet queue sets */
298 u16 ethtxq_rover; /* Tx queue to clean up next */
299 u16 timer_val[SGE_NTIMERS]; /* interrupt holdoff timer array */
300 u8 counter_val[SGE_NCOUNTERS]; /* interrupt RX threshold array */
301
302 /*
303 * Reverse maps from Absolute Queue IDs to associated queue pointers.
304 * The absolute Queue IDs are in a compact range which start at a
305 * [potentially large] Base Queue ID. We perform the reverse map by
306 * first converting the Absolute Queue ID into a Relative Queue ID by
307 * subtracting off the Base Queue ID and then use a Relative Queue ID
308 * indexed table to get the pointer to the corresponding software
309 * queue structure.
310 */
311 unsigned int egr_base;
312 unsigned int ingr_base;
313 void *egr_map[MAX_EGRQ];
314 struct sge_rspq *ingr_map[MAX_INGQ];
315 };
316
317 /*
318 * Utility macros to convert Absolute- to Relative-Queue indices and Egress-
319 * and Ingress-Queues. The EQ_MAP() and IQ_MAP() macros which provide
320 * pointers to Ingress- and Egress-Queues can be used as both L- and R-values
321 */
322 #define EQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->egr_base))
323 #define IQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->ingr_base))
324
325 #define EQ_MAP(s, abs_id) ((s)->egr_map[EQ_IDX(s, abs_id)])
326 #define IQ_MAP(s, abs_id) ((s)->ingr_map[IQ_IDX(s, abs_id)])
327
328 /*
329 * Macro to iterate across Queue Sets ("rxq" is a historic misnomer).
330 */
331 #define for_each_ethrxq(sge, iter) \
332 for (iter = 0; iter < (sge)->ethqsets; iter++)
333
334 /*
335 * Per-"adapter" (Virtual Function) information.
336 */
337 struct adapter {
338 /* PCI resources */
339 void __iomem *regs;
340 struct pci_dev *pdev;
341 struct device *pdev_dev;
342
343 /* "adapter" resources */
344 unsigned long registered_device_map;
345 unsigned long open_device_map;
346 unsigned long flags;
347 struct adapter_params params;
348
349 /* queue and interrupt resources */
350 struct {
351 unsigned short vec;
352 char desc[22];
353 } msix_info[MSIX_ENTRIES];
354 struct sge sge;
355
356 /* Linux network device resources */
357 struct net_device *port[MAX_NPORTS];
358 const char *name;
359 unsigned int msg_enable;
360
361 /* debugfs resources */
362 struct dentry *debugfs_root;
363
364 /* various locks */
365 spinlock_t stats_lock;
366 };
367
368 enum { /* adapter flags */
369 FULL_INIT_DONE = (1UL << 0),
370 USING_MSI = (1UL << 1),
371 USING_MSIX = (1UL << 2),
372 QUEUES_BOUND = (1UL << 3),
373 };
374
375 /*
376 * The following register read/write routine definitions are required by
377 * the common code.
378 */
379
380 /**
381 * t4_read_reg - read a HW register
382 * @adapter: the adapter
383 * @reg_addr: the register address
384 *
385 * Returns the 32-bit value of the given HW register.
386 */
387 static inline u32 t4_read_reg(struct adapter *adapter, u32 reg_addr)
388 {
389 return readl(adapter->regs + reg_addr);
390 }
391
392 /**
393 * t4_write_reg - write a HW register
394 * @adapter: the adapter
395 * @reg_addr: the register address
396 * @val: the value to write
397 *
398 * Write a 32-bit value into the given HW register.
399 */
400 static inline void t4_write_reg(struct adapter *adapter, u32 reg_addr, u32 val)
401 {
402 writel(val, adapter->regs + reg_addr);
403 }
404
405 #ifndef readq
406 static inline u64 readq(const volatile void __iomem *addr)
407 {
408 return readl(addr) + ((u64)readl(addr + 4) << 32);
409 }
410
411 static inline void writeq(u64 val, volatile void __iomem *addr)
412 {
413 writel(val, addr);
414 writel(val >> 32, addr + 4);
415 }
416 #endif
417
418 /**
419 * t4_read_reg64 - read a 64-bit HW register
420 * @adapter: the adapter
421 * @reg_addr: the register address
422 *
423 * Returns the 64-bit value of the given HW register.
424 */
425 static inline u64 t4_read_reg64(struct adapter *adapter, u32 reg_addr)
426 {
427 return readq(adapter->regs + reg_addr);
428 }
429
430 /**
431 * t4_write_reg64 - write a 64-bit HW register
432 * @adapter: the adapter
433 * @reg_addr: the register address
434 * @val: the value to write
435 *
436 * Write a 64-bit value into the given HW register.
437 */
438 static inline void t4_write_reg64(struct adapter *adapter, u32 reg_addr,
439 u64 val)
440 {
441 writeq(val, adapter->regs + reg_addr);
442 }
443
444 /**
445 * port_name - return the string name of a port
446 * @adapter: the adapter
447 * @pidx: the port index
448 *
449 * Return the string name of the selected port.
450 */
451 static inline const char *port_name(struct adapter *adapter, int pidx)
452 {
453 return adapter->port[pidx]->name;
454 }
455
456 /**
457 * t4_os_set_hw_addr - store a port's MAC address in SW
458 * @adapter: the adapter
459 * @pidx: the port index
460 * @hw_addr: the Ethernet address
461 *
462 * Store the Ethernet address of the given port in SW. Called by the common
463 * code when it retrieves a port's Ethernet address from EEPROM.
464 */
465 static inline void t4_os_set_hw_addr(struct adapter *adapter, int pidx,
466 u8 hw_addr[])
467 {
468 memcpy(adapter->port[pidx]->dev_addr, hw_addr, ETH_ALEN);
469 memcpy(adapter->port[pidx]->perm_addr, hw_addr, ETH_ALEN);
470 }
471
472 /**
473 * netdev2pinfo - return the port_info structure associated with a net_device
474 * @dev: the netdev
475 *
476 * Return the struct port_info associated with a net_device
477 */
478 static inline struct port_info *netdev2pinfo(const struct net_device *dev)
479 {
480 return netdev_priv(dev);
481 }
482
483 /**
484 * adap2pinfo - return the port_info of a port
485 * @adap: the adapter
486 * @pidx: the port index
487 *
488 * Return the port_info structure for the adapter.
489 */
490 static inline struct port_info *adap2pinfo(struct adapter *adapter, int pidx)
491 {
492 return netdev_priv(adapter->port[pidx]);
493 }
494
495 /**
496 * netdev2adap - return the adapter structure associated with a net_device
497 * @dev: the netdev
498 *
499 * Return the struct adapter associated with a net_device
500 */
501 static inline struct adapter *netdev2adap(const struct net_device *dev)
502 {
503 return netdev2pinfo(dev)->adapter;
504 }
505
506 /*
507 * OS "Callback" function declarations. These are functions that the OS code
508 * is "contracted" to provide for the common code.
509 */
510 void t4vf_os_link_changed(struct adapter *, int, int);
511
512 /*
513 * SGE function prototype declarations.
514 */
515 int t4vf_sge_alloc_rxq(struct adapter *, struct sge_rspq *, bool,
516 struct net_device *, int,
517 struct sge_fl *, rspq_handler_t);
518 int t4vf_sge_alloc_eth_txq(struct adapter *, struct sge_eth_txq *,
519 struct net_device *, struct netdev_queue *,
520 unsigned int);
521 void t4vf_free_sge_resources(struct adapter *);
522
523 int t4vf_eth_xmit(struct sk_buff *, struct net_device *);
524 int t4vf_ethrx_handler(struct sge_rspq *, const __be64 *,
525 const struct pkt_gl *);
526
527 irq_handler_t t4vf_intr_handler(struct adapter *);
528 irqreturn_t t4vf_sge_intr_msix(int, void *);
529
530 int t4vf_sge_init(struct adapter *);
531 void t4vf_sge_start(struct adapter *);
532 void t4vf_sge_stop(struct adapter *);
533
534 #endif /* __CXGB4VF_ADAPTER_H__ */
This page took 0.044769 seconds and 5 git commands to generate.