mmc: sdhci-acpi: Set MMC_CAP_CMD_DURING_TFR for Intel eMMC controllers
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4vf / cxgb4vf_main.c
1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47 #include <linux/mdio.h>
48
49 #include "t4vf_common.h"
50 #include "t4vf_defs.h"
51
52 #include "../cxgb4/t4_regs.h"
53 #include "../cxgb4/t4_msg.h"
54
55 /*
56 * Generic information about the driver.
57 */
58 #define DRV_VERSION "2.0.0-ko"
59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
60
61 /*
62 * Module Parameters.
63 * ==================
64 */
65
66 /*
67 * Default ethtool "message level" for adapters.
68 */
69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
70 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
71 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
72
73 static int dflt_msg_enable = DFLT_MSG_ENABLE;
74
75 module_param(dflt_msg_enable, int, 0644);
76 MODULE_PARM_DESC(dflt_msg_enable,
77 "default adapter ethtool message level bitmap, "
78 "deprecated parameter");
79
80 /*
81 * The driver uses the best interrupt scheme available on a platform in the
82 * order MSI-X then MSI. This parameter determines which of these schemes the
83 * driver may consider as follows:
84 *
85 * msi = 2: choose from among MSI-X and MSI
86 * msi = 1: only consider MSI interrupts
87 *
88 * Note that unlike the Physical Function driver, this Virtual Function driver
89 * does _not_ support legacy INTx interrupts (this limitation is mandated by
90 * the PCI-E SR-IOV standard).
91 */
92 #define MSI_MSIX 2
93 #define MSI_MSI 1
94 #define MSI_DEFAULT MSI_MSIX
95
96 static int msi = MSI_DEFAULT;
97
98 module_param(msi, int, 0644);
99 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
100
101 /*
102 * Fundamental constants.
103 * ======================
104 */
105
106 enum {
107 MAX_TXQ_ENTRIES = 16384,
108 MAX_RSPQ_ENTRIES = 16384,
109 MAX_RX_BUFFERS = 16384,
110
111 MIN_TXQ_ENTRIES = 32,
112 MIN_RSPQ_ENTRIES = 128,
113 MIN_FL_ENTRIES = 16,
114
115 /*
116 * For purposes of manipulating the Free List size we need to
117 * recognize that Free Lists are actually Egress Queues (the host
118 * produces free buffers which the hardware consumes), Egress Queues
119 * indices are all in units of Egress Context Units bytes, and free
120 * list entries are 64-bit PCI DMA addresses. And since the state of
121 * the Producer Index == the Consumer Index implies an EMPTY list, we
122 * always have at least one Egress Unit's worth of Free List entries
123 * unused. See sge.c for more details ...
124 */
125 EQ_UNIT = SGE_EQ_IDXSIZE,
126 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
127 MIN_FL_RESID = FL_PER_EQ_UNIT,
128 };
129
130 /*
131 * Global driver state.
132 * ====================
133 */
134
135 static struct dentry *cxgb4vf_debugfs_root;
136
137 /*
138 * OS "Callback" functions.
139 * ========================
140 */
141
142 /*
143 * The link status has changed on the indicated "port" (Virtual Interface).
144 */
145 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
146 {
147 struct net_device *dev = adapter->port[pidx];
148
149 /*
150 * If the port is disabled or the current recorded "link up"
151 * status matches the new status, just return.
152 */
153 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
154 return;
155
156 /*
157 * Tell the OS that the link status has changed and print a short
158 * informative message on the console about the event.
159 */
160 if (link_ok) {
161 const char *s;
162 const char *fc;
163 const struct port_info *pi = netdev_priv(dev);
164
165 netif_carrier_on(dev);
166
167 switch (pi->link_cfg.speed) {
168 case 40000:
169 s = "40Gbps";
170 break;
171
172 case 10000:
173 s = "10Gbps";
174 break;
175
176 case 1000:
177 s = "1000Mbps";
178 break;
179
180 case 100:
181 s = "100Mbps";
182 break;
183
184 default:
185 s = "unknown";
186 break;
187 }
188
189 switch (pi->link_cfg.fc) {
190 case PAUSE_RX:
191 fc = "RX";
192 break;
193
194 case PAUSE_TX:
195 fc = "TX";
196 break;
197
198 case PAUSE_RX|PAUSE_TX:
199 fc = "RX/TX";
200 break;
201
202 default:
203 fc = "no";
204 break;
205 }
206
207 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
208 } else {
209 netif_carrier_off(dev);
210 netdev_info(dev, "link down\n");
211 }
212 }
213
214 /*
215 * THe port module type has changed on the indicated "port" (Virtual
216 * Interface).
217 */
218 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
219 {
220 static const char * const mod_str[] = {
221 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
222 };
223 const struct net_device *dev = adapter->port[pidx];
224 const struct port_info *pi = netdev_priv(dev);
225
226 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
227 dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
228 dev->name);
229 else if (pi->mod_type < ARRAY_SIZE(mod_str))
230 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
231 dev->name, mod_str[pi->mod_type]);
232 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
233 dev_info(adapter->pdev_dev, "%s: unsupported optical port "
234 "module inserted\n", dev->name);
235 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
236 dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
237 "forcing TWINAX\n", dev->name);
238 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
239 dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
240 dev->name);
241 else
242 dev_info(adapter->pdev_dev, "%s: unknown module type %d "
243 "inserted\n", dev->name, pi->mod_type);
244 }
245
246 /*
247 * Net device operations.
248 * ======================
249 */
250
251
252
253
254 /*
255 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
256 * Interface).
257 */
258 static int link_start(struct net_device *dev)
259 {
260 int ret;
261 struct port_info *pi = netdev_priv(dev);
262
263 /*
264 * We do not set address filters and promiscuity here, the stack does
265 * that step explicitly. Enable vlan accel.
266 */
267 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
268 true);
269 if (ret == 0) {
270 ret = t4vf_change_mac(pi->adapter, pi->viid,
271 pi->xact_addr_filt, dev->dev_addr, true);
272 if (ret >= 0) {
273 pi->xact_addr_filt = ret;
274 ret = 0;
275 }
276 }
277
278 /*
279 * We don't need to actually "start the link" itself since the
280 * firmware will do that for us when the first Virtual Interface
281 * is enabled on a port.
282 */
283 if (ret == 0)
284 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
285 return ret;
286 }
287
288 /*
289 * Name the MSI-X interrupts.
290 */
291 static void name_msix_vecs(struct adapter *adapter)
292 {
293 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
294 int pidx;
295
296 /*
297 * Firmware events.
298 */
299 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
300 "%s-FWeventq", adapter->name);
301 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
302
303 /*
304 * Ethernet queues.
305 */
306 for_each_port(adapter, pidx) {
307 struct net_device *dev = adapter->port[pidx];
308 const struct port_info *pi = netdev_priv(dev);
309 int qs, msi;
310
311 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
312 snprintf(adapter->msix_info[msi].desc, namelen,
313 "%s-%d", dev->name, qs);
314 adapter->msix_info[msi].desc[namelen] = 0;
315 }
316 }
317 }
318
319 /*
320 * Request all of our MSI-X resources.
321 */
322 static int request_msix_queue_irqs(struct adapter *adapter)
323 {
324 struct sge *s = &adapter->sge;
325 int rxq, msi, err;
326
327 /*
328 * Firmware events.
329 */
330 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
331 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
332 if (err)
333 return err;
334
335 /*
336 * Ethernet queues.
337 */
338 msi = MSIX_IQFLINT;
339 for_each_ethrxq(s, rxq) {
340 err = request_irq(adapter->msix_info[msi].vec,
341 t4vf_sge_intr_msix, 0,
342 adapter->msix_info[msi].desc,
343 &s->ethrxq[rxq].rspq);
344 if (err)
345 goto err_free_irqs;
346 msi++;
347 }
348 return 0;
349
350 err_free_irqs:
351 while (--rxq >= 0)
352 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
353 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
354 return err;
355 }
356
357 /*
358 * Free our MSI-X resources.
359 */
360 static void free_msix_queue_irqs(struct adapter *adapter)
361 {
362 struct sge *s = &adapter->sge;
363 int rxq, msi;
364
365 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
366 msi = MSIX_IQFLINT;
367 for_each_ethrxq(s, rxq)
368 free_irq(adapter->msix_info[msi++].vec,
369 &s->ethrxq[rxq].rspq);
370 }
371
372 /*
373 * Turn on NAPI and start up interrupts on a response queue.
374 */
375 static void qenable(struct sge_rspq *rspq)
376 {
377 napi_enable(&rspq->napi);
378
379 /*
380 * 0-increment the Going To Sleep register to start the timer and
381 * enable interrupts.
382 */
383 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
384 CIDXINC_V(0) |
385 SEINTARM_V(rspq->intr_params) |
386 INGRESSQID_V(rspq->cntxt_id));
387 }
388
389 /*
390 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
391 */
392 static void enable_rx(struct adapter *adapter)
393 {
394 int rxq;
395 struct sge *s = &adapter->sge;
396
397 for_each_ethrxq(s, rxq)
398 qenable(&s->ethrxq[rxq].rspq);
399 qenable(&s->fw_evtq);
400
401 /*
402 * The interrupt queue doesn't use NAPI so we do the 0-increment of
403 * its Going To Sleep register here to get it started.
404 */
405 if (adapter->flags & USING_MSI)
406 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
407 CIDXINC_V(0) |
408 SEINTARM_V(s->intrq.intr_params) |
409 INGRESSQID_V(s->intrq.cntxt_id));
410
411 }
412
413 /*
414 * Wait until all NAPI handlers are descheduled.
415 */
416 static void quiesce_rx(struct adapter *adapter)
417 {
418 struct sge *s = &adapter->sge;
419 int rxq;
420
421 for_each_ethrxq(s, rxq)
422 napi_disable(&s->ethrxq[rxq].rspq.napi);
423 napi_disable(&s->fw_evtq.napi);
424 }
425
426 /*
427 * Response queue handler for the firmware event queue.
428 */
429 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
430 const struct pkt_gl *gl)
431 {
432 /*
433 * Extract response opcode and get pointer to CPL message body.
434 */
435 struct adapter *adapter = rspq->adapter;
436 u8 opcode = ((const struct rss_header *)rsp)->opcode;
437 void *cpl = (void *)(rsp + 1);
438
439 switch (opcode) {
440 case CPL_FW6_MSG: {
441 /*
442 * We've received an asynchronous message from the firmware.
443 */
444 const struct cpl_fw6_msg *fw_msg = cpl;
445 if (fw_msg->type == FW6_TYPE_CMD_RPL)
446 t4vf_handle_fw_rpl(adapter, fw_msg->data);
447 break;
448 }
449
450 case CPL_FW4_MSG: {
451 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
452 */
453 const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
454 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
455 if (opcode != CPL_SGE_EGR_UPDATE) {
456 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
457 , opcode);
458 break;
459 }
460 cpl = (void *)p;
461 /*FALLTHROUGH*/
462 }
463
464 case CPL_SGE_EGR_UPDATE: {
465 /*
466 * We've received an Egress Queue Status Update message. We
467 * get these, if the SGE is configured to send these when the
468 * firmware passes certain points in processing our TX
469 * Ethernet Queue or if we make an explicit request for one.
470 * We use these updates to determine when we may need to
471 * restart a TX Ethernet Queue which was stopped for lack of
472 * free TX Queue Descriptors ...
473 */
474 const struct cpl_sge_egr_update *p = cpl;
475 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
476 struct sge *s = &adapter->sge;
477 struct sge_txq *tq;
478 struct sge_eth_txq *txq;
479 unsigned int eq_idx;
480
481 /*
482 * Perform sanity checking on the Queue ID to make sure it
483 * really refers to one of our TX Ethernet Egress Queues which
484 * is active and matches the queue's ID. None of these error
485 * conditions should ever happen so we may want to either make
486 * them fatal and/or conditionalized under DEBUG.
487 */
488 eq_idx = EQ_IDX(s, qid);
489 if (unlikely(eq_idx >= MAX_EGRQ)) {
490 dev_err(adapter->pdev_dev,
491 "Egress Update QID %d out of range\n", qid);
492 break;
493 }
494 tq = s->egr_map[eq_idx];
495 if (unlikely(tq == NULL)) {
496 dev_err(adapter->pdev_dev,
497 "Egress Update QID %d TXQ=NULL\n", qid);
498 break;
499 }
500 txq = container_of(tq, struct sge_eth_txq, q);
501 if (unlikely(tq->abs_id != qid)) {
502 dev_err(adapter->pdev_dev,
503 "Egress Update QID %d refers to TXQ %d\n",
504 qid, tq->abs_id);
505 break;
506 }
507
508 /*
509 * Restart a stopped TX Queue which has less than half of its
510 * TX ring in use ...
511 */
512 txq->q.restarts++;
513 netif_tx_wake_queue(txq->txq);
514 break;
515 }
516
517 default:
518 dev_err(adapter->pdev_dev,
519 "unexpected CPL %#x on FW event queue\n", opcode);
520 }
521
522 return 0;
523 }
524
525 /*
526 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
527 * to use and initializes them. We support multiple "Queue Sets" per port if
528 * we have MSI-X, otherwise just one queue set per port.
529 */
530 static int setup_sge_queues(struct adapter *adapter)
531 {
532 struct sge *s = &adapter->sge;
533 int err, pidx, msix;
534
535 /*
536 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
537 * state.
538 */
539 bitmap_zero(s->starving_fl, MAX_EGRQ);
540
541 /*
542 * If we're using MSI interrupt mode we need to set up a "forwarded
543 * interrupt" queue which we'll set up with our MSI vector. The rest
544 * of the ingress queues will be set up to forward their interrupts to
545 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
546 * the intrq's queue ID as the interrupt forwarding queue for the
547 * subsequent calls ...
548 */
549 if (adapter->flags & USING_MSI) {
550 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
551 adapter->port[0], 0, NULL, NULL);
552 if (err)
553 goto err_free_queues;
554 }
555
556 /*
557 * Allocate our ingress queue for asynchronous firmware messages.
558 */
559 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
560 MSIX_FW, NULL, fwevtq_handler);
561 if (err)
562 goto err_free_queues;
563
564 /*
565 * Allocate each "port"'s initial Queue Sets. These can be changed
566 * later on ... up to the point where any interface on the adapter is
567 * brought up at which point lots of things get nailed down
568 * permanently ...
569 */
570 msix = MSIX_IQFLINT;
571 for_each_port(adapter, pidx) {
572 struct net_device *dev = adapter->port[pidx];
573 struct port_info *pi = netdev_priv(dev);
574 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
575 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
576 int qs;
577
578 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
579 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
580 dev, msix++,
581 &rxq->fl, t4vf_ethrx_handler);
582 if (err)
583 goto err_free_queues;
584
585 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
586 netdev_get_tx_queue(dev, qs),
587 s->fw_evtq.cntxt_id);
588 if (err)
589 goto err_free_queues;
590
591 rxq->rspq.idx = qs;
592 memset(&rxq->stats, 0, sizeof(rxq->stats));
593 }
594 }
595
596 /*
597 * Create the reverse mappings for the queues.
598 */
599 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
600 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
601 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
602 for_each_port(adapter, pidx) {
603 struct net_device *dev = adapter->port[pidx];
604 struct port_info *pi = netdev_priv(dev);
605 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
606 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
607 int qs;
608
609 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
610 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
611 EQ_MAP(s, txq->q.abs_id) = &txq->q;
612
613 /*
614 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
615 * for Free Lists but since all of the Egress Queues
616 * (including Free Lists) have Relative Queue IDs
617 * which are computed as Absolute - Base Queue ID, we
618 * can synthesize the Absolute Queue IDs for the Free
619 * Lists. This is useful for debugging purposes when
620 * we want to dump Queue Contexts via the PF Driver.
621 */
622 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
623 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
624 }
625 }
626 return 0;
627
628 err_free_queues:
629 t4vf_free_sge_resources(adapter);
630 return err;
631 }
632
633 /*
634 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
635 * queues. We configure the RSS CPU lookup table to distribute to the number
636 * of HW receive queues, and the response queue lookup table to narrow that
637 * down to the response queues actually configured for each "port" (Virtual
638 * Interface). We always configure the RSS mapping for all ports since the
639 * mapping table has plenty of entries.
640 */
641 static int setup_rss(struct adapter *adapter)
642 {
643 int pidx;
644
645 for_each_port(adapter, pidx) {
646 struct port_info *pi = adap2pinfo(adapter, pidx);
647 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
648 u16 rss[MAX_PORT_QSETS];
649 int qs, err;
650
651 for (qs = 0; qs < pi->nqsets; qs++)
652 rss[qs] = rxq[qs].rspq.abs_id;
653
654 err = t4vf_config_rss_range(adapter, pi->viid,
655 0, pi->rss_size, rss, pi->nqsets);
656 if (err)
657 return err;
658
659 /*
660 * Perform Global RSS Mode-specific initialization.
661 */
662 switch (adapter->params.rss.mode) {
663 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
664 /*
665 * If Tunnel All Lookup isn't specified in the global
666 * RSS Configuration, then we need to specify a
667 * default Ingress Queue for any ingress packets which
668 * aren't hashed. We'll use our first ingress queue
669 * ...
670 */
671 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
672 union rss_vi_config config;
673 err = t4vf_read_rss_vi_config(adapter,
674 pi->viid,
675 &config);
676 if (err)
677 return err;
678 config.basicvirtual.defaultq =
679 rxq[0].rspq.abs_id;
680 err = t4vf_write_rss_vi_config(adapter,
681 pi->viid,
682 &config);
683 if (err)
684 return err;
685 }
686 break;
687 }
688 }
689
690 return 0;
691 }
692
693 /*
694 * Bring the adapter up. Called whenever we go from no "ports" open to having
695 * one open. This function performs the actions necessary to make an adapter
696 * operational, such as completing the initialization of HW modules, and
697 * enabling interrupts. Must be called with the rtnl lock held. (Note that
698 * this is called "cxgb_up" in the PF Driver.)
699 */
700 static int adapter_up(struct adapter *adapter)
701 {
702 int err;
703
704 /*
705 * If this is the first time we've been called, perform basic
706 * adapter setup. Once we've done this, many of our adapter
707 * parameters can no longer be changed ...
708 */
709 if ((adapter->flags & FULL_INIT_DONE) == 0) {
710 err = setup_sge_queues(adapter);
711 if (err)
712 return err;
713 err = setup_rss(adapter);
714 if (err) {
715 t4vf_free_sge_resources(adapter);
716 return err;
717 }
718
719 if (adapter->flags & USING_MSIX)
720 name_msix_vecs(adapter);
721 adapter->flags |= FULL_INIT_DONE;
722 }
723
724 /*
725 * Acquire our interrupt resources. We only support MSI-X and MSI.
726 */
727 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
728 if (adapter->flags & USING_MSIX)
729 err = request_msix_queue_irqs(adapter);
730 else
731 err = request_irq(adapter->pdev->irq,
732 t4vf_intr_handler(adapter), 0,
733 adapter->name, adapter);
734 if (err) {
735 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
736 err);
737 return err;
738 }
739
740 /*
741 * Enable NAPI ingress processing and return success.
742 */
743 enable_rx(adapter);
744 t4vf_sge_start(adapter);
745
746 /* Initialize hash mac addr list*/
747 INIT_LIST_HEAD(&adapter->mac_hlist);
748 return 0;
749 }
750
751 /*
752 * Bring the adapter down. Called whenever the last "port" (Virtual
753 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
754 * Driver.)
755 */
756 static void adapter_down(struct adapter *adapter)
757 {
758 /*
759 * Free interrupt resources.
760 */
761 if (adapter->flags & USING_MSIX)
762 free_msix_queue_irqs(adapter);
763 else
764 free_irq(adapter->pdev->irq, adapter);
765
766 /*
767 * Wait for NAPI handlers to finish.
768 */
769 quiesce_rx(adapter);
770 }
771
772 /*
773 * Start up a net device.
774 */
775 static int cxgb4vf_open(struct net_device *dev)
776 {
777 int err;
778 struct port_info *pi = netdev_priv(dev);
779 struct adapter *adapter = pi->adapter;
780
781 /*
782 * If this is the first interface that we're opening on the "adapter",
783 * bring the "adapter" up now.
784 */
785 if (adapter->open_device_map == 0) {
786 err = adapter_up(adapter);
787 if (err)
788 return err;
789 }
790
791 /*
792 * Note that this interface is up and start everything up ...
793 */
794 err = link_start(dev);
795 if (err)
796 goto err_unwind;
797
798 netif_tx_start_all_queues(dev);
799 set_bit(pi->port_id, &adapter->open_device_map);
800 return 0;
801
802 err_unwind:
803 if (adapter->open_device_map == 0)
804 adapter_down(adapter);
805 return err;
806 }
807
808 /*
809 * Shut down a net device. This routine is called "cxgb_close" in the PF
810 * Driver ...
811 */
812 static int cxgb4vf_stop(struct net_device *dev)
813 {
814 struct port_info *pi = netdev_priv(dev);
815 struct adapter *adapter = pi->adapter;
816
817 netif_tx_stop_all_queues(dev);
818 netif_carrier_off(dev);
819 t4vf_enable_vi(adapter, pi->viid, false, false);
820 pi->link_cfg.link_ok = 0;
821
822 clear_bit(pi->port_id, &adapter->open_device_map);
823 if (adapter->open_device_map == 0)
824 adapter_down(adapter);
825 return 0;
826 }
827
828 /*
829 * Translate our basic statistics into the standard "ifconfig" statistics.
830 */
831 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
832 {
833 struct t4vf_port_stats stats;
834 struct port_info *pi = netdev2pinfo(dev);
835 struct adapter *adapter = pi->adapter;
836 struct net_device_stats *ns = &dev->stats;
837 int err;
838
839 spin_lock(&adapter->stats_lock);
840 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
841 spin_unlock(&adapter->stats_lock);
842
843 memset(ns, 0, sizeof(*ns));
844 if (err)
845 return ns;
846
847 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
848 stats.tx_ucast_bytes + stats.tx_offload_bytes);
849 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
850 stats.tx_ucast_frames + stats.tx_offload_frames);
851 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
852 stats.rx_ucast_bytes);
853 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
854 stats.rx_ucast_frames);
855 ns->multicast = stats.rx_mcast_frames;
856 ns->tx_errors = stats.tx_drop_frames;
857 ns->rx_errors = stats.rx_err_frames;
858
859 return ns;
860 }
861
862 static inline int cxgb4vf_set_addr_hash(struct port_info *pi)
863 {
864 struct adapter *adapter = pi->adapter;
865 u64 vec = 0;
866 bool ucast = false;
867 struct hash_mac_addr *entry;
868
869 /* Calculate the hash vector for the updated list and program it */
870 list_for_each_entry(entry, &adapter->mac_hlist, list) {
871 ucast |= is_unicast_ether_addr(entry->addr);
872 vec |= (1ULL << hash_mac_addr(entry->addr));
873 }
874 return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false);
875 }
876
877 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr)
878 {
879 struct port_info *pi = netdev_priv(netdev);
880 struct adapter *adapter = pi->adapter;
881 int ret;
882 u64 mhash = 0;
883 u64 uhash = 0;
884 bool free = false;
885 bool ucast = is_unicast_ether_addr(mac_addr);
886 const u8 *maclist[1] = {mac_addr};
887 struct hash_mac_addr *new_entry;
888
889 ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist,
890 NULL, ucast ? &uhash : &mhash, false);
891 if (ret < 0)
892 goto out;
893 /* if hash != 0, then add the addr to hash addr list
894 * so on the end we will calculate the hash for the
895 * list and program it
896 */
897 if (uhash || mhash) {
898 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
899 if (!new_entry)
900 return -ENOMEM;
901 ether_addr_copy(new_entry->addr, mac_addr);
902 list_add_tail(&new_entry->list, &adapter->mac_hlist);
903 ret = cxgb4vf_set_addr_hash(pi);
904 }
905 out:
906 return ret < 0 ? ret : 0;
907 }
908
909 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
910 {
911 struct port_info *pi = netdev_priv(netdev);
912 struct adapter *adapter = pi->adapter;
913 int ret;
914 const u8 *maclist[1] = {mac_addr};
915 struct hash_mac_addr *entry, *tmp;
916
917 /* If the MAC address to be removed is in the hash addr
918 * list, delete it from the list and update hash vector
919 */
920 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) {
921 if (ether_addr_equal(entry->addr, mac_addr)) {
922 list_del(&entry->list);
923 kfree(entry);
924 return cxgb4vf_set_addr_hash(pi);
925 }
926 }
927
928 ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false);
929 return ret < 0 ? -EINVAL : 0;
930 }
931
932 /*
933 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
934 * If @mtu is -1 it is left unchanged.
935 */
936 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
937 {
938 struct port_info *pi = netdev_priv(dev);
939
940 __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
941 __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
942 return t4vf_set_rxmode(pi->adapter, pi->viid, -1,
943 (dev->flags & IFF_PROMISC) != 0,
944 (dev->flags & IFF_ALLMULTI) != 0,
945 1, -1, sleep_ok);
946 }
947
948 /*
949 * Set the current receive modes on the device.
950 */
951 static void cxgb4vf_set_rxmode(struct net_device *dev)
952 {
953 /* unfortunately we can't return errors to the stack */
954 set_rxmode(dev, -1, false);
955 }
956
957 /*
958 * Find the entry in the interrupt holdoff timer value array which comes
959 * closest to the specified interrupt holdoff value.
960 */
961 static int closest_timer(const struct sge *s, int us)
962 {
963 int i, timer_idx = 0, min_delta = INT_MAX;
964
965 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
966 int delta = us - s->timer_val[i];
967 if (delta < 0)
968 delta = -delta;
969 if (delta < min_delta) {
970 min_delta = delta;
971 timer_idx = i;
972 }
973 }
974 return timer_idx;
975 }
976
977 static int closest_thres(const struct sge *s, int thres)
978 {
979 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
980
981 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
982 delta = thres - s->counter_val[i];
983 if (delta < 0)
984 delta = -delta;
985 if (delta < min_delta) {
986 min_delta = delta;
987 pktcnt_idx = i;
988 }
989 }
990 return pktcnt_idx;
991 }
992
993 /*
994 * Return a queue's interrupt hold-off time in us. 0 means no timer.
995 */
996 static unsigned int qtimer_val(const struct adapter *adapter,
997 const struct sge_rspq *rspq)
998 {
999 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
1000
1001 return timer_idx < SGE_NTIMERS
1002 ? adapter->sge.timer_val[timer_idx]
1003 : 0;
1004 }
1005
1006 /**
1007 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
1008 * @adapter: the adapter
1009 * @rspq: the RX response queue
1010 * @us: the hold-off time in us, or 0 to disable timer
1011 * @cnt: the hold-off packet count, or 0 to disable counter
1012 *
1013 * Sets an RX response queue's interrupt hold-off time and packet count.
1014 * At least one of the two needs to be enabled for the queue to generate
1015 * interrupts.
1016 */
1017 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1018 unsigned int us, unsigned int cnt)
1019 {
1020 unsigned int timer_idx;
1021
1022 /*
1023 * If both the interrupt holdoff timer and count are specified as
1024 * zero, default to a holdoff count of 1 ...
1025 */
1026 if ((us | cnt) == 0)
1027 cnt = 1;
1028
1029 /*
1030 * If an interrupt holdoff count has been specified, then find the
1031 * closest configured holdoff count and use that. If the response
1032 * queue has already been created, then update its queue context
1033 * parameters ...
1034 */
1035 if (cnt) {
1036 int err;
1037 u32 v, pktcnt_idx;
1038
1039 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1040 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1041 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1042 FW_PARAMS_PARAM_X_V(
1043 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1044 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1045 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1046 if (err)
1047 return err;
1048 }
1049 rspq->pktcnt_idx = pktcnt_idx;
1050 }
1051
1052 /*
1053 * Compute the closest holdoff timer index from the supplied holdoff
1054 * timer value.
1055 */
1056 timer_idx = (us == 0
1057 ? SGE_TIMER_RSTRT_CNTR
1058 : closest_timer(&adapter->sge, us));
1059
1060 /*
1061 * Update the response queue's interrupt coalescing parameters and
1062 * return success.
1063 */
1064 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1065 QINTR_CNT_EN_V(cnt > 0));
1066 return 0;
1067 }
1068
1069 /*
1070 * Return a version number to identify the type of adapter. The scheme is:
1071 * - bits 0..9: chip version
1072 * - bits 10..15: chip revision
1073 */
1074 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1075 {
1076 /*
1077 * Chip version 4, revision 0x3f (cxgb4vf).
1078 */
1079 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1080 }
1081
1082 /*
1083 * Execute the specified ioctl command.
1084 */
1085 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1086 {
1087 int ret = 0;
1088
1089 switch (cmd) {
1090 /*
1091 * The VF Driver doesn't have access to any of the other
1092 * common Ethernet device ioctl()'s (like reading/writing
1093 * PHY registers, etc.
1094 */
1095
1096 default:
1097 ret = -EOPNOTSUPP;
1098 break;
1099 }
1100 return ret;
1101 }
1102
1103 /*
1104 * Change the device's MTU.
1105 */
1106 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1107 {
1108 int ret;
1109 struct port_info *pi = netdev_priv(dev);
1110
1111 /* accommodate SACK */
1112 if (new_mtu < 81)
1113 return -EINVAL;
1114
1115 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1116 -1, -1, -1, -1, true);
1117 if (!ret)
1118 dev->mtu = new_mtu;
1119 return ret;
1120 }
1121
1122 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1123 netdev_features_t features)
1124 {
1125 /*
1126 * Since there is no support for separate rx/tx vlan accel
1127 * enable/disable make sure tx flag is always in same state as rx.
1128 */
1129 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1130 features |= NETIF_F_HW_VLAN_CTAG_TX;
1131 else
1132 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1133
1134 return features;
1135 }
1136
1137 static int cxgb4vf_set_features(struct net_device *dev,
1138 netdev_features_t features)
1139 {
1140 struct port_info *pi = netdev_priv(dev);
1141 netdev_features_t changed = dev->features ^ features;
1142
1143 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1144 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1145 features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1146
1147 return 0;
1148 }
1149
1150 /*
1151 * Change the devices MAC address.
1152 */
1153 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1154 {
1155 int ret;
1156 struct sockaddr *addr = _addr;
1157 struct port_info *pi = netdev_priv(dev);
1158
1159 if (!is_valid_ether_addr(addr->sa_data))
1160 return -EADDRNOTAVAIL;
1161
1162 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1163 addr->sa_data, true);
1164 if (ret < 0)
1165 return ret;
1166
1167 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1168 pi->xact_addr_filt = ret;
1169 return 0;
1170 }
1171
1172 #ifdef CONFIG_NET_POLL_CONTROLLER
1173 /*
1174 * Poll all of our receive queues. This is called outside of normal interrupt
1175 * context.
1176 */
1177 static void cxgb4vf_poll_controller(struct net_device *dev)
1178 {
1179 struct port_info *pi = netdev_priv(dev);
1180 struct adapter *adapter = pi->adapter;
1181
1182 if (adapter->flags & USING_MSIX) {
1183 struct sge_eth_rxq *rxq;
1184 int nqsets;
1185
1186 rxq = &adapter->sge.ethrxq[pi->first_qset];
1187 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1188 t4vf_sge_intr_msix(0, &rxq->rspq);
1189 rxq++;
1190 }
1191 } else
1192 t4vf_intr_handler(adapter)(0, adapter);
1193 }
1194 #endif
1195
1196 /*
1197 * Ethtool operations.
1198 * ===================
1199 *
1200 * Note that we don't support any ethtool operations which change the physical
1201 * state of the port to which we're linked.
1202 */
1203
1204 /**
1205 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1206 * @port_type: Firmware Port Type
1207 * @mod_type: Firmware Module Type
1208 *
1209 * Translate Firmware Port/Module type to Ethtool Port Type.
1210 */
1211 static int from_fw_port_mod_type(enum fw_port_type port_type,
1212 enum fw_port_module_type mod_type)
1213 {
1214 if (port_type == FW_PORT_TYPE_BT_SGMII ||
1215 port_type == FW_PORT_TYPE_BT_XFI ||
1216 port_type == FW_PORT_TYPE_BT_XAUI) {
1217 return PORT_TP;
1218 } else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
1219 port_type == FW_PORT_TYPE_FIBER_XAUI) {
1220 return PORT_FIBRE;
1221 } else if (port_type == FW_PORT_TYPE_SFP ||
1222 port_type == FW_PORT_TYPE_QSFP_10G ||
1223 port_type == FW_PORT_TYPE_QSA ||
1224 port_type == FW_PORT_TYPE_QSFP) {
1225 if (mod_type == FW_PORT_MOD_TYPE_LR ||
1226 mod_type == FW_PORT_MOD_TYPE_SR ||
1227 mod_type == FW_PORT_MOD_TYPE_ER ||
1228 mod_type == FW_PORT_MOD_TYPE_LRM)
1229 return PORT_FIBRE;
1230 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1231 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1232 return PORT_DA;
1233 else
1234 return PORT_OTHER;
1235 }
1236
1237 return PORT_OTHER;
1238 }
1239
1240 /**
1241 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1242 * @port_type: Firmware Port Type
1243 * @fw_caps: Firmware Port Capabilities
1244 * @link_mode_mask: ethtool Link Mode Mask
1245 *
1246 * Translate a Firmware Port Capabilities specification to an ethtool
1247 * Link Mode Mask.
1248 */
1249 static void fw_caps_to_lmm(enum fw_port_type port_type,
1250 unsigned int fw_caps,
1251 unsigned long *link_mode_mask)
1252 {
1253 #define SET_LMM(__lmm_name) __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name\
1254 ## _BIT, link_mode_mask)
1255
1256 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1257 do { \
1258 if (fw_caps & FW_PORT_CAP_ ## __fw_name) \
1259 SET_LMM(__lmm_name); \
1260 } while (0)
1261
1262 switch (port_type) {
1263 case FW_PORT_TYPE_BT_SGMII:
1264 case FW_PORT_TYPE_BT_XFI:
1265 case FW_PORT_TYPE_BT_XAUI:
1266 SET_LMM(TP);
1267 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
1268 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1269 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1270 break;
1271
1272 case FW_PORT_TYPE_KX4:
1273 case FW_PORT_TYPE_KX:
1274 SET_LMM(Backplane);
1275 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1276 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1277 break;
1278
1279 case FW_PORT_TYPE_KR:
1280 SET_LMM(Backplane);
1281 SET_LMM(10000baseKR_Full);
1282 break;
1283
1284 case FW_PORT_TYPE_BP_AP:
1285 SET_LMM(Backplane);
1286 SET_LMM(10000baseR_FEC);
1287 SET_LMM(10000baseKR_Full);
1288 SET_LMM(1000baseKX_Full);
1289 break;
1290
1291 case FW_PORT_TYPE_BP4_AP:
1292 SET_LMM(Backplane);
1293 SET_LMM(10000baseR_FEC);
1294 SET_LMM(10000baseKR_Full);
1295 SET_LMM(1000baseKX_Full);
1296 SET_LMM(10000baseKX4_Full);
1297 break;
1298
1299 case FW_PORT_TYPE_FIBER_XFI:
1300 case FW_PORT_TYPE_FIBER_XAUI:
1301 case FW_PORT_TYPE_SFP:
1302 case FW_PORT_TYPE_QSFP_10G:
1303 case FW_PORT_TYPE_QSA:
1304 SET_LMM(FIBRE);
1305 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1306 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1307 break;
1308
1309 case FW_PORT_TYPE_BP40_BA:
1310 case FW_PORT_TYPE_QSFP:
1311 SET_LMM(FIBRE);
1312 SET_LMM(40000baseSR4_Full);
1313 break;
1314
1315 case FW_PORT_TYPE_CR_QSFP:
1316 case FW_PORT_TYPE_SFP28:
1317 SET_LMM(FIBRE);
1318 SET_LMM(25000baseCR_Full);
1319 break;
1320
1321 case FW_PORT_TYPE_KR4_100G:
1322 case FW_PORT_TYPE_CR4_QSFP:
1323 SET_LMM(FIBRE);
1324 SET_LMM(100000baseCR4_Full);
1325 break;
1326
1327 default:
1328 break;
1329 }
1330
1331 FW_CAPS_TO_LMM(ANEG, Autoneg);
1332 FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
1333 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
1334
1335 #undef FW_CAPS_TO_LMM
1336 #undef SET_LMM
1337 }
1338
1339 static int cxgb4vf_get_link_ksettings(struct net_device *dev,
1340 struct ethtool_link_ksettings
1341 *link_ksettings)
1342 {
1343 const struct port_info *pi = netdev_priv(dev);
1344 struct ethtool_link_settings *base = &link_ksettings->base;
1345
1346 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
1347 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
1348 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
1349
1350 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
1351
1352 if (pi->mdio_addr >= 0) {
1353 base->phy_address = pi->mdio_addr;
1354 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
1355 ? ETH_MDIO_SUPPORTS_C22
1356 : ETH_MDIO_SUPPORTS_C45);
1357 } else {
1358 base->phy_address = 255;
1359 base->mdio_support = 0;
1360 }
1361
1362 fw_caps_to_lmm(pi->port_type, pi->link_cfg.supported,
1363 link_ksettings->link_modes.supported);
1364 fw_caps_to_lmm(pi->port_type, pi->link_cfg.advertising,
1365 link_ksettings->link_modes.advertising);
1366 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lp_advertising,
1367 link_ksettings->link_modes.lp_advertising);
1368
1369 if (netif_carrier_ok(dev)) {
1370 base->speed = pi->link_cfg.speed;
1371 base->duplex = DUPLEX_FULL;
1372 } else {
1373 base->speed = SPEED_UNKNOWN;
1374 base->duplex = DUPLEX_UNKNOWN;
1375 }
1376
1377 base->autoneg = pi->link_cfg.autoneg;
1378 if (pi->link_cfg.supported & FW_PORT_CAP_ANEG)
1379 ethtool_link_ksettings_add_link_mode(link_ksettings,
1380 supported, Autoneg);
1381 if (pi->link_cfg.autoneg)
1382 ethtool_link_ksettings_add_link_mode(link_ksettings,
1383 advertising, Autoneg);
1384
1385 return 0;
1386 }
1387
1388 /*
1389 * Return our driver information.
1390 */
1391 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1392 struct ethtool_drvinfo *drvinfo)
1393 {
1394 struct adapter *adapter = netdev2adap(dev);
1395
1396 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1397 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1398 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1399 sizeof(drvinfo->bus_info));
1400 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1401 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1402 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1403 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1404 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1405 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1406 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1407 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1408 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1409 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1410 }
1411
1412 /*
1413 * Return current adapter message level.
1414 */
1415 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1416 {
1417 return netdev2adap(dev)->msg_enable;
1418 }
1419
1420 /*
1421 * Set current adapter message level.
1422 */
1423 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1424 {
1425 netdev2adap(dev)->msg_enable = msglevel;
1426 }
1427
1428 /*
1429 * Return the device's current Queue Set ring size parameters along with the
1430 * allowed maximum values. Since ethtool doesn't understand the concept of
1431 * multi-queue devices, we just return the current values associated with the
1432 * first Queue Set.
1433 */
1434 static void cxgb4vf_get_ringparam(struct net_device *dev,
1435 struct ethtool_ringparam *rp)
1436 {
1437 const struct port_info *pi = netdev_priv(dev);
1438 const struct sge *s = &pi->adapter->sge;
1439
1440 rp->rx_max_pending = MAX_RX_BUFFERS;
1441 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1442 rp->rx_jumbo_max_pending = 0;
1443 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1444
1445 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1446 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1447 rp->rx_jumbo_pending = 0;
1448 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1449 }
1450
1451 /*
1452 * Set the Queue Set ring size parameters for the device. Again, since
1453 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1454 * apply these new values across all of the Queue Sets associated with the
1455 * device -- after vetting them of course!
1456 */
1457 static int cxgb4vf_set_ringparam(struct net_device *dev,
1458 struct ethtool_ringparam *rp)
1459 {
1460 const struct port_info *pi = netdev_priv(dev);
1461 struct adapter *adapter = pi->adapter;
1462 struct sge *s = &adapter->sge;
1463 int qs;
1464
1465 if (rp->rx_pending > MAX_RX_BUFFERS ||
1466 rp->rx_jumbo_pending ||
1467 rp->tx_pending > MAX_TXQ_ENTRIES ||
1468 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1469 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1470 rp->rx_pending < MIN_FL_ENTRIES ||
1471 rp->tx_pending < MIN_TXQ_ENTRIES)
1472 return -EINVAL;
1473
1474 if (adapter->flags & FULL_INIT_DONE)
1475 return -EBUSY;
1476
1477 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1478 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1479 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1480 s->ethtxq[qs].q.size = rp->tx_pending;
1481 }
1482 return 0;
1483 }
1484
1485 /*
1486 * Return the interrupt holdoff timer and count for the first Queue Set on the
1487 * device. Our extension ioctl() (the cxgbtool interface) allows the
1488 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1489 */
1490 static int cxgb4vf_get_coalesce(struct net_device *dev,
1491 struct ethtool_coalesce *coalesce)
1492 {
1493 const struct port_info *pi = netdev_priv(dev);
1494 const struct adapter *adapter = pi->adapter;
1495 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1496
1497 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1498 coalesce->rx_max_coalesced_frames =
1499 ((rspq->intr_params & QINTR_CNT_EN_F)
1500 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1501 : 0);
1502 return 0;
1503 }
1504
1505 /*
1506 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1507 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1508 * the interrupt holdoff timer on any of the device's Queue Sets.
1509 */
1510 static int cxgb4vf_set_coalesce(struct net_device *dev,
1511 struct ethtool_coalesce *coalesce)
1512 {
1513 const struct port_info *pi = netdev_priv(dev);
1514 struct adapter *adapter = pi->adapter;
1515
1516 return set_rxq_intr_params(adapter,
1517 &adapter->sge.ethrxq[pi->first_qset].rspq,
1518 coalesce->rx_coalesce_usecs,
1519 coalesce->rx_max_coalesced_frames);
1520 }
1521
1522 /*
1523 * Report current port link pause parameter settings.
1524 */
1525 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1526 struct ethtool_pauseparam *pauseparam)
1527 {
1528 struct port_info *pi = netdev_priv(dev);
1529
1530 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1531 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1532 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1533 }
1534
1535 /*
1536 * Identify the port by blinking the port's LED.
1537 */
1538 static int cxgb4vf_phys_id(struct net_device *dev,
1539 enum ethtool_phys_id_state state)
1540 {
1541 unsigned int val;
1542 struct port_info *pi = netdev_priv(dev);
1543
1544 if (state == ETHTOOL_ID_ACTIVE)
1545 val = 0xffff;
1546 else if (state == ETHTOOL_ID_INACTIVE)
1547 val = 0;
1548 else
1549 return -EINVAL;
1550
1551 return t4vf_identify_port(pi->adapter, pi->viid, val);
1552 }
1553
1554 /*
1555 * Port stats maintained per queue of the port.
1556 */
1557 struct queue_port_stats {
1558 u64 tso;
1559 u64 tx_csum;
1560 u64 rx_csum;
1561 u64 vlan_ex;
1562 u64 vlan_ins;
1563 u64 lro_pkts;
1564 u64 lro_merged;
1565 };
1566
1567 /*
1568 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1569 * these need to match the order of statistics returned by
1570 * t4vf_get_port_stats().
1571 */
1572 static const char stats_strings[][ETH_GSTRING_LEN] = {
1573 /*
1574 * These must match the layout of the t4vf_port_stats structure.
1575 */
1576 "TxBroadcastBytes ",
1577 "TxBroadcastFrames ",
1578 "TxMulticastBytes ",
1579 "TxMulticastFrames ",
1580 "TxUnicastBytes ",
1581 "TxUnicastFrames ",
1582 "TxDroppedFrames ",
1583 "TxOffloadBytes ",
1584 "TxOffloadFrames ",
1585 "RxBroadcastBytes ",
1586 "RxBroadcastFrames ",
1587 "RxMulticastBytes ",
1588 "RxMulticastFrames ",
1589 "RxUnicastBytes ",
1590 "RxUnicastFrames ",
1591 "RxErrorFrames ",
1592
1593 /*
1594 * These are accumulated per-queue statistics and must match the
1595 * order of the fields in the queue_port_stats structure.
1596 */
1597 "TSO ",
1598 "TxCsumOffload ",
1599 "RxCsumGood ",
1600 "VLANextractions ",
1601 "VLANinsertions ",
1602 "GROPackets ",
1603 "GROMerged ",
1604 };
1605
1606 /*
1607 * Return the number of statistics in the specified statistics set.
1608 */
1609 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1610 {
1611 switch (sset) {
1612 case ETH_SS_STATS:
1613 return ARRAY_SIZE(stats_strings);
1614 default:
1615 return -EOPNOTSUPP;
1616 }
1617 /*NOTREACHED*/
1618 }
1619
1620 /*
1621 * Return the strings for the specified statistics set.
1622 */
1623 static void cxgb4vf_get_strings(struct net_device *dev,
1624 u32 sset,
1625 u8 *data)
1626 {
1627 switch (sset) {
1628 case ETH_SS_STATS:
1629 memcpy(data, stats_strings, sizeof(stats_strings));
1630 break;
1631 }
1632 }
1633
1634 /*
1635 * Small utility routine to accumulate queue statistics across the queues of
1636 * a "port".
1637 */
1638 static void collect_sge_port_stats(const struct adapter *adapter,
1639 const struct port_info *pi,
1640 struct queue_port_stats *stats)
1641 {
1642 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1643 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1644 int qs;
1645
1646 memset(stats, 0, sizeof(*stats));
1647 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1648 stats->tso += txq->tso;
1649 stats->tx_csum += txq->tx_cso;
1650 stats->rx_csum += rxq->stats.rx_cso;
1651 stats->vlan_ex += rxq->stats.vlan_ex;
1652 stats->vlan_ins += txq->vlan_ins;
1653 stats->lro_pkts += rxq->stats.lro_pkts;
1654 stats->lro_merged += rxq->stats.lro_merged;
1655 }
1656 }
1657
1658 /*
1659 * Return the ETH_SS_STATS statistics set.
1660 */
1661 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1662 struct ethtool_stats *stats,
1663 u64 *data)
1664 {
1665 struct port_info *pi = netdev2pinfo(dev);
1666 struct adapter *adapter = pi->adapter;
1667 int err = t4vf_get_port_stats(adapter, pi->pidx,
1668 (struct t4vf_port_stats *)data);
1669 if (err)
1670 memset(data, 0, sizeof(struct t4vf_port_stats));
1671
1672 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1673 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1674 }
1675
1676 /*
1677 * Return the size of our register map.
1678 */
1679 static int cxgb4vf_get_regs_len(struct net_device *dev)
1680 {
1681 return T4VF_REGMAP_SIZE;
1682 }
1683
1684 /*
1685 * Dump a block of registers, start to end inclusive, into a buffer.
1686 */
1687 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1688 unsigned int start, unsigned int end)
1689 {
1690 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1691
1692 for ( ; start <= end; start += sizeof(u32)) {
1693 /*
1694 * Avoid reading the Mailbox Control register since that
1695 * can trigger a Mailbox Ownership Arbitration cycle and
1696 * interfere with communication with the firmware.
1697 */
1698 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1699 *bp++ = 0xffff;
1700 else
1701 *bp++ = t4_read_reg(adapter, start);
1702 }
1703 }
1704
1705 /*
1706 * Copy our entire register map into the provided buffer.
1707 */
1708 static void cxgb4vf_get_regs(struct net_device *dev,
1709 struct ethtool_regs *regs,
1710 void *regbuf)
1711 {
1712 struct adapter *adapter = netdev2adap(dev);
1713
1714 regs->version = mk_adap_vers(adapter);
1715
1716 /*
1717 * Fill in register buffer with our register map.
1718 */
1719 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1720
1721 reg_block_dump(adapter, regbuf,
1722 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1723 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1724 reg_block_dump(adapter, regbuf,
1725 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1726 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1727
1728 /* T5 adds new registers in the PL Register map.
1729 */
1730 reg_block_dump(adapter, regbuf,
1731 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1732 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1733 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
1734 reg_block_dump(adapter, regbuf,
1735 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1736 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1737
1738 reg_block_dump(adapter, regbuf,
1739 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1740 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1741 }
1742
1743 /*
1744 * Report current Wake On LAN settings.
1745 */
1746 static void cxgb4vf_get_wol(struct net_device *dev,
1747 struct ethtool_wolinfo *wol)
1748 {
1749 wol->supported = 0;
1750 wol->wolopts = 0;
1751 memset(&wol->sopass, 0, sizeof(wol->sopass));
1752 }
1753
1754 /*
1755 * TCP Segmentation Offload flags which we support.
1756 */
1757 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1758
1759 static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1760 .get_link_ksettings = cxgb4vf_get_link_ksettings,
1761 .get_drvinfo = cxgb4vf_get_drvinfo,
1762 .get_msglevel = cxgb4vf_get_msglevel,
1763 .set_msglevel = cxgb4vf_set_msglevel,
1764 .get_ringparam = cxgb4vf_get_ringparam,
1765 .set_ringparam = cxgb4vf_set_ringparam,
1766 .get_coalesce = cxgb4vf_get_coalesce,
1767 .set_coalesce = cxgb4vf_set_coalesce,
1768 .get_pauseparam = cxgb4vf_get_pauseparam,
1769 .get_link = ethtool_op_get_link,
1770 .get_strings = cxgb4vf_get_strings,
1771 .set_phys_id = cxgb4vf_phys_id,
1772 .get_sset_count = cxgb4vf_get_sset_count,
1773 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1774 .get_regs_len = cxgb4vf_get_regs_len,
1775 .get_regs = cxgb4vf_get_regs,
1776 .get_wol = cxgb4vf_get_wol,
1777 };
1778
1779 /*
1780 * /sys/kernel/debug/cxgb4vf support code and data.
1781 * ================================================
1782 */
1783
1784 /*
1785 * Show Firmware Mailbox Command/Reply Log
1786 *
1787 * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1788 * it's possible that we can catch things during a log update and therefore
1789 * see partially corrupted log entries. But i9t's probably Good Enough(tm).
1790 * If we ever decide that we want to make sure that we're dumping a coherent
1791 * log, we'd need to perform locking in the mailbox logging and in
1792 * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1793 * like we do for the Firmware Device Log. But as stated above, meh ...
1794 */
1795 static int mboxlog_show(struct seq_file *seq, void *v)
1796 {
1797 struct adapter *adapter = seq->private;
1798 struct mbox_cmd_log *log = adapter->mbox_log;
1799 struct mbox_cmd *entry;
1800 int entry_idx, i;
1801
1802 if (v == SEQ_START_TOKEN) {
1803 seq_printf(seq,
1804 "%10s %15s %5s %5s %s\n",
1805 "Seq#", "Tstamp", "Atime", "Etime",
1806 "Command/Reply");
1807 return 0;
1808 }
1809
1810 entry_idx = log->cursor + ((uintptr_t)v - 2);
1811 if (entry_idx >= log->size)
1812 entry_idx -= log->size;
1813 entry = mbox_cmd_log_entry(log, entry_idx);
1814
1815 /* skip over unused entries */
1816 if (entry->timestamp == 0)
1817 return 0;
1818
1819 seq_printf(seq, "%10u %15llu %5d %5d",
1820 entry->seqno, entry->timestamp,
1821 entry->access, entry->execute);
1822 for (i = 0; i < MBOX_LEN / 8; i++) {
1823 u64 flit = entry->cmd[i];
1824 u32 hi = (u32)(flit >> 32);
1825 u32 lo = (u32)flit;
1826
1827 seq_printf(seq, " %08x %08x", hi, lo);
1828 }
1829 seq_puts(seq, "\n");
1830 return 0;
1831 }
1832
1833 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
1834 {
1835 struct adapter *adapter = seq->private;
1836 struct mbox_cmd_log *log = adapter->mbox_log;
1837
1838 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
1839 }
1840
1841 static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
1842 {
1843 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
1844 }
1845
1846 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
1847 {
1848 ++*pos;
1849 return mboxlog_get_idx(seq, *pos);
1850 }
1851
1852 static void mboxlog_stop(struct seq_file *seq, void *v)
1853 {
1854 }
1855
1856 static const struct seq_operations mboxlog_seq_ops = {
1857 .start = mboxlog_start,
1858 .next = mboxlog_next,
1859 .stop = mboxlog_stop,
1860 .show = mboxlog_show
1861 };
1862
1863 static int mboxlog_open(struct inode *inode, struct file *file)
1864 {
1865 int res = seq_open(file, &mboxlog_seq_ops);
1866
1867 if (!res) {
1868 struct seq_file *seq = file->private_data;
1869
1870 seq->private = inode->i_private;
1871 }
1872 return res;
1873 }
1874
1875 static const struct file_operations mboxlog_fops = {
1876 .owner = THIS_MODULE,
1877 .open = mboxlog_open,
1878 .read = seq_read,
1879 .llseek = seq_lseek,
1880 .release = seq_release,
1881 };
1882
1883 /*
1884 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1885 */
1886 #define QPL 4
1887
1888 static int sge_qinfo_show(struct seq_file *seq, void *v)
1889 {
1890 struct adapter *adapter = seq->private;
1891 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1892 int qs, r = (uintptr_t)v - 1;
1893
1894 if (r)
1895 seq_putc(seq, '\n');
1896
1897 #define S3(fmt_spec, s, v) \
1898 do {\
1899 seq_printf(seq, "%-12s", s); \
1900 for (qs = 0; qs < n; ++qs) \
1901 seq_printf(seq, " %16" fmt_spec, v); \
1902 seq_putc(seq, '\n'); \
1903 } while (0)
1904 #define S(s, v) S3("s", s, v)
1905 #define T(s, v) S3("u", s, txq[qs].v)
1906 #define R(s, v) S3("u", s, rxq[qs].v)
1907
1908 if (r < eth_entries) {
1909 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1910 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1911 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1912
1913 S("QType:", "Ethernet");
1914 S("Interface:",
1915 (rxq[qs].rspq.netdev
1916 ? rxq[qs].rspq.netdev->name
1917 : "N/A"));
1918 S3("d", "Port:",
1919 (rxq[qs].rspq.netdev
1920 ? ((struct port_info *)
1921 netdev_priv(rxq[qs].rspq.netdev))->port_id
1922 : -1));
1923 T("TxQ ID:", q.abs_id);
1924 T("TxQ size:", q.size);
1925 T("TxQ inuse:", q.in_use);
1926 T("TxQ PIdx:", q.pidx);
1927 T("TxQ CIdx:", q.cidx);
1928 R("RspQ ID:", rspq.abs_id);
1929 R("RspQ size:", rspq.size);
1930 R("RspQE size:", rspq.iqe_len);
1931 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1932 S3("u", "Intr pktcnt:",
1933 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1934 R("RspQ CIdx:", rspq.cidx);
1935 R("RspQ Gen:", rspq.gen);
1936 R("FL ID:", fl.abs_id);
1937 R("FL size:", fl.size - MIN_FL_RESID);
1938 R("FL avail:", fl.avail);
1939 R("FL PIdx:", fl.pidx);
1940 R("FL CIdx:", fl.cidx);
1941 return 0;
1942 }
1943
1944 r -= eth_entries;
1945 if (r == 0) {
1946 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1947
1948 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1949 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1950 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1951 qtimer_val(adapter, evtq));
1952 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1953 adapter->sge.counter_val[evtq->pktcnt_idx]);
1954 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1955 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1956 } else if (r == 1) {
1957 const struct sge_rspq *intrq = &adapter->sge.intrq;
1958
1959 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1960 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1961 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1962 qtimer_val(adapter, intrq));
1963 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1964 adapter->sge.counter_val[intrq->pktcnt_idx]);
1965 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1966 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1967 }
1968
1969 #undef R
1970 #undef T
1971 #undef S
1972 #undef S3
1973
1974 return 0;
1975 }
1976
1977 /*
1978 * Return the number of "entries" in our "file". We group the multi-Queue
1979 * sections with QPL Queue Sets per "entry". The sections of the output are:
1980 *
1981 * Ethernet RX/TX Queue Sets
1982 * Firmware Event Queue
1983 * Forwarded Interrupt Queue (if in MSI mode)
1984 */
1985 static int sge_queue_entries(const struct adapter *adapter)
1986 {
1987 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1988 ((adapter->flags & USING_MSI) != 0);
1989 }
1990
1991 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1992 {
1993 int entries = sge_queue_entries(seq->private);
1994
1995 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1996 }
1997
1998 static void sge_queue_stop(struct seq_file *seq, void *v)
1999 {
2000 }
2001
2002 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2003 {
2004 int entries = sge_queue_entries(seq->private);
2005
2006 ++*pos;
2007 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2008 }
2009
2010 static const struct seq_operations sge_qinfo_seq_ops = {
2011 .start = sge_queue_start,
2012 .next = sge_queue_next,
2013 .stop = sge_queue_stop,
2014 .show = sge_qinfo_show
2015 };
2016
2017 static int sge_qinfo_open(struct inode *inode, struct file *file)
2018 {
2019 int res = seq_open(file, &sge_qinfo_seq_ops);
2020
2021 if (!res) {
2022 struct seq_file *seq = file->private_data;
2023 seq->private = inode->i_private;
2024 }
2025 return res;
2026 }
2027
2028 static const struct file_operations sge_qinfo_debugfs_fops = {
2029 .owner = THIS_MODULE,
2030 .open = sge_qinfo_open,
2031 .read = seq_read,
2032 .llseek = seq_lseek,
2033 .release = seq_release,
2034 };
2035
2036 /*
2037 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
2038 */
2039 #define QPL 4
2040
2041 static int sge_qstats_show(struct seq_file *seq, void *v)
2042 {
2043 struct adapter *adapter = seq->private;
2044 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2045 int qs, r = (uintptr_t)v - 1;
2046
2047 if (r)
2048 seq_putc(seq, '\n');
2049
2050 #define S3(fmt, s, v) \
2051 do { \
2052 seq_printf(seq, "%-16s", s); \
2053 for (qs = 0; qs < n; ++qs) \
2054 seq_printf(seq, " %8" fmt, v); \
2055 seq_putc(seq, '\n'); \
2056 } while (0)
2057 #define S(s, v) S3("s", s, v)
2058
2059 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
2060 #define T(s, v) T3("lu", s, v)
2061
2062 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
2063 #define R(s, v) R3("lu", s, v)
2064
2065 if (r < eth_entries) {
2066 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2067 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2068 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2069
2070 S("QType:", "Ethernet");
2071 S("Interface:",
2072 (rxq[qs].rspq.netdev
2073 ? rxq[qs].rspq.netdev->name
2074 : "N/A"));
2075 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
2076 R("RxPackets:", stats.pkts);
2077 R("RxCSO:", stats.rx_cso);
2078 R("VLANxtract:", stats.vlan_ex);
2079 R("LROmerged:", stats.lro_merged);
2080 R("LROpackets:", stats.lro_pkts);
2081 R("RxDrops:", stats.rx_drops);
2082 T("TSO:", tso);
2083 T("TxCSO:", tx_cso);
2084 T("VLANins:", vlan_ins);
2085 T("TxQFull:", q.stops);
2086 T("TxQRestarts:", q.restarts);
2087 T("TxMapErr:", mapping_err);
2088 R("FLAllocErr:", fl.alloc_failed);
2089 R("FLLrgAlcErr:", fl.large_alloc_failed);
2090 R("FLStarving:", fl.starving);
2091 return 0;
2092 }
2093
2094 r -= eth_entries;
2095 if (r == 0) {
2096 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2097
2098 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
2099 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2100 evtq->unhandled_irqs);
2101 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
2102 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
2103 } else if (r == 1) {
2104 const struct sge_rspq *intrq = &adapter->sge.intrq;
2105
2106 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
2107 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2108 intrq->unhandled_irqs);
2109 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
2110 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
2111 }
2112
2113 #undef R
2114 #undef T
2115 #undef S
2116 #undef R3
2117 #undef T3
2118 #undef S3
2119
2120 return 0;
2121 }
2122
2123 /*
2124 * Return the number of "entries" in our "file". We group the multi-Queue
2125 * sections with QPL Queue Sets per "entry". The sections of the output are:
2126 *
2127 * Ethernet RX/TX Queue Sets
2128 * Firmware Event Queue
2129 * Forwarded Interrupt Queue (if in MSI mode)
2130 */
2131 static int sge_qstats_entries(const struct adapter *adapter)
2132 {
2133 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2134 ((adapter->flags & USING_MSI) != 0);
2135 }
2136
2137 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
2138 {
2139 int entries = sge_qstats_entries(seq->private);
2140
2141 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2142 }
2143
2144 static void sge_qstats_stop(struct seq_file *seq, void *v)
2145 {
2146 }
2147
2148 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
2149 {
2150 int entries = sge_qstats_entries(seq->private);
2151
2152 (*pos)++;
2153 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2154 }
2155
2156 static const struct seq_operations sge_qstats_seq_ops = {
2157 .start = sge_qstats_start,
2158 .next = sge_qstats_next,
2159 .stop = sge_qstats_stop,
2160 .show = sge_qstats_show
2161 };
2162
2163 static int sge_qstats_open(struct inode *inode, struct file *file)
2164 {
2165 int res = seq_open(file, &sge_qstats_seq_ops);
2166
2167 if (res == 0) {
2168 struct seq_file *seq = file->private_data;
2169 seq->private = inode->i_private;
2170 }
2171 return res;
2172 }
2173
2174 static const struct file_operations sge_qstats_proc_fops = {
2175 .owner = THIS_MODULE,
2176 .open = sge_qstats_open,
2177 .read = seq_read,
2178 .llseek = seq_lseek,
2179 .release = seq_release,
2180 };
2181
2182 /*
2183 * Show PCI-E SR-IOV Virtual Function Resource Limits.
2184 */
2185 static int resources_show(struct seq_file *seq, void *v)
2186 {
2187 struct adapter *adapter = seq->private;
2188 struct vf_resources *vfres = &adapter->params.vfres;
2189
2190 #define S(desc, fmt, var) \
2191 seq_printf(seq, "%-60s " fmt "\n", \
2192 desc " (" #var "):", vfres->var)
2193
2194 S("Virtual Interfaces", "%d", nvi);
2195 S("Egress Queues", "%d", neq);
2196 S("Ethernet Control", "%d", nethctrl);
2197 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2198 S("Ingress Queues", "%d", niq);
2199 S("Traffic Class", "%d", tc);
2200 S("Port Access Rights Mask", "%#x", pmask);
2201 S("MAC Address Filters", "%d", nexactf);
2202 S("Firmware Command Read Capabilities", "%#x", r_caps);
2203 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2204
2205 #undef S
2206
2207 return 0;
2208 }
2209
2210 static int resources_open(struct inode *inode, struct file *file)
2211 {
2212 return single_open(file, resources_show, inode->i_private);
2213 }
2214
2215 static const struct file_operations resources_proc_fops = {
2216 .owner = THIS_MODULE,
2217 .open = resources_open,
2218 .read = seq_read,
2219 .llseek = seq_lseek,
2220 .release = single_release,
2221 };
2222
2223 /*
2224 * Show Virtual Interfaces.
2225 */
2226 static int interfaces_show(struct seq_file *seq, void *v)
2227 {
2228 if (v == SEQ_START_TOKEN) {
2229 seq_puts(seq, "Interface Port VIID\n");
2230 } else {
2231 struct adapter *adapter = seq->private;
2232 int pidx = (uintptr_t)v - 2;
2233 struct net_device *dev = adapter->port[pidx];
2234 struct port_info *pi = netdev_priv(dev);
2235
2236 seq_printf(seq, "%9s %4d %#5x\n",
2237 dev->name, pi->port_id, pi->viid);
2238 }
2239 return 0;
2240 }
2241
2242 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2243 {
2244 return pos <= adapter->params.nports
2245 ? (void *)(uintptr_t)(pos + 1)
2246 : NULL;
2247 }
2248
2249 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2250 {
2251 return *pos
2252 ? interfaces_get_idx(seq->private, *pos)
2253 : SEQ_START_TOKEN;
2254 }
2255
2256 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2257 {
2258 (*pos)++;
2259 return interfaces_get_idx(seq->private, *pos);
2260 }
2261
2262 static void interfaces_stop(struct seq_file *seq, void *v)
2263 {
2264 }
2265
2266 static const struct seq_operations interfaces_seq_ops = {
2267 .start = interfaces_start,
2268 .next = interfaces_next,
2269 .stop = interfaces_stop,
2270 .show = interfaces_show
2271 };
2272
2273 static int interfaces_open(struct inode *inode, struct file *file)
2274 {
2275 int res = seq_open(file, &interfaces_seq_ops);
2276
2277 if (res == 0) {
2278 struct seq_file *seq = file->private_data;
2279 seq->private = inode->i_private;
2280 }
2281 return res;
2282 }
2283
2284 static const struct file_operations interfaces_proc_fops = {
2285 .owner = THIS_MODULE,
2286 .open = interfaces_open,
2287 .read = seq_read,
2288 .llseek = seq_lseek,
2289 .release = seq_release,
2290 };
2291
2292 /*
2293 * /sys/kernel/debugfs/cxgb4vf/ files list.
2294 */
2295 struct cxgb4vf_debugfs_entry {
2296 const char *name; /* name of debugfs node */
2297 umode_t mode; /* file system mode */
2298 const struct file_operations *fops;
2299 };
2300
2301 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2302 { "mboxlog", S_IRUGO, &mboxlog_fops },
2303 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
2304 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2305 { "resources", S_IRUGO, &resources_proc_fops },
2306 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2307 };
2308
2309 /*
2310 * Module and device initialization and cleanup code.
2311 * ==================================================
2312 */
2313
2314 /*
2315 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2316 * directory (debugfs_root) has already been set up.
2317 */
2318 static int setup_debugfs(struct adapter *adapter)
2319 {
2320 int i;
2321
2322 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2323
2324 /*
2325 * Debugfs support is best effort.
2326 */
2327 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2328 (void)debugfs_create_file(debugfs_files[i].name,
2329 debugfs_files[i].mode,
2330 adapter->debugfs_root,
2331 (void *)adapter,
2332 debugfs_files[i].fops);
2333
2334 return 0;
2335 }
2336
2337 /*
2338 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2339 * it to our caller to tear down the directory (debugfs_root).
2340 */
2341 static void cleanup_debugfs(struct adapter *adapter)
2342 {
2343 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2344
2345 /*
2346 * Unlike our sister routine cleanup_proc(), we don't need to remove
2347 * individual entries because a call will be made to
2348 * debugfs_remove_recursive(). We just need to clean up any ancillary
2349 * persistent state.
2350 */
2351 /* nothing to do */
2352 }
2353
2354 /* Figure out how many Ports and Queue Sets we can support. This depends on
2355 * knowing our Virtual Function Resources and may be called a second time if
2356 * we fall back from MSI-X to MSI Interrupt Mode.
2357 */
2358 static void size_nports_qsets(struct adapter *adapter)
2359 {
2360 struct vf_resources *vfres = &adapter->params.vfres;
2361 unsigned int ethqsets, pmask_nports;
2362
2363 /* The number of "ports" which we support is equal to the number of
2364 * Virtual Interfaces with which we've been provisioned.
2365 */
2366 adapter->params.nports = vfres->nvi;
2367 if (adapter->params.nports > MAX_NPORTS) {
2368 dev_warn(adapter->pdev_dev, "only using %d of %d maximum"
2369 " allowed virtual interfaces\n", MAX_NPORTS,
2370 adapter->params.nports);
2371 adapter->params.nports = MAX_NPORTS;
2372 }
2373
2374 /* We may have been provisioned with more VIs than the number of
2375 * ports we're allowed to access (our Port Access Rights Mask).
2376 * This is obviously a configuration conflict but we don't want to
2377 * crash the kernel or anything silly just because of that.
2378 */
2379 pmask_nports = hweight32(adapter->params.vfres.pmask);
2380 if (pmask_nports < adapter->params.nports) {
2381 dev_warn(adapter->pdev_dev, "only using %d of %d provissioned"
2382 " virtual interfaces; limited by Port Access Rights"
2383 " mask %#x\n", pmask_nports, adapter->params.nports,
2384 adapter->params.vfres.pmask);
2385 adapter->params.nports = pmask_nports;
2386 }
2387
2388 /* We need to reserve an Ingress Queue for the Asynchronous Firmware
2389 * Event Queue. And if we're using MSI Interrupts, we'll also need to
2390 * reserve an Ingress Queue for a Forwarded Interrupts.
2391 *
2392 * The rest of the FL/Intr-capable ingress queues will be matched up
2393 * one-for-one with Ethernet/Control egress queues in order to form
2394 * "Queue Sets" which will be aportioned between the "ports". For
2395 * each Queue Set, we'll need the ability to allocate two Egress
2396 * Contexts -- one for the Ingress Queue Free List and one for the TX
2397 * Ethernet Queue.
2398 *
2399 * Note that even if we're currently configured to use MSI-X
2400 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2401 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that
2402 * happens we'll need to adjust things later.
2403 */
2404 ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI);
2405 if (vfres->nethctrl != ethqsets)
2406 ethqsets = min(vfres->nethctrl, ethqsets);
2407 if (vfres->neq < ethqsets*2)
2408 ethqsets = vfres->neq/2;
2409 if (ethqsets > MAX_ETH_QSETS)
2410 ethqsets = MAX_ETH_QSETS;
2411 adapter->sge.max_ethqsets = ethqsets;
2412
2413 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2414 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2415 " virtual interfaces (too few Queue Sets)\n",
2416 adapter->sge.max_ethqsets, adapter->params.nports);
2417 adapter->params.nports = adapter->sge.max_ethqsets;
2418 }
2419 }
2420
2421 /*
2422 * Perform early "adapter" initialization. This is where we discover what
2423 * adapter parameters we're going to be using and initialize basic adapter
2424 * hardware support.
2425 */
2426 static int adap_init0(struct adapter *adapter)
2427 {
2428 struct sge_params *sge_params = &adapter->params.sge;
2429 struct sge *s = &adapter->sge;
2430 int err;
2431 u32 param, val = 0;
2432
2433 /*
2434 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2435 * 2.6.31 and later we can't call pci_reset_function() in order to
2436 * issue an FLR because of a self- deadlock on the device semaphore.
2437 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2438 * cases where they're needed -- for instance, some versions of KVM
2439 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2440 * use the firmware based reset in order to reset any per function
2441 * state.
2442 */
2443 err = t4vf_fw_reset(adapter);
2444 if (err < 0) {
2445 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2446 return err;
2447 }
2448
2449 /*
2450 * Grab basic operational parameters. These will predominantly have
2451 * been set up by the Physical Function Driver or will be hard coded
2452 * into the adapter. We just have to live with them ... Note that
2453 * we _must_ get our VPD parameters before our SGE parameters because
2454 * we need to know the adapter's core clock from the VPD in order to
2455 * properly decode the SGE Timer Values.
2456 */
2457 err = t4vf_get_dev_params(adapter);
2458 if (err) {
2459 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2460 " device parameters: err=%d\n", err);
2461 return err;
2462 }
2463 err = t4vf_get_vpd_params(adapter);
2464 if (err) {
2465 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2466 " VPD parameters: err=%d\n", err);
2467 return err;
2468 }
2469 err = t4vf_get_sge_params(adapter);
2470 if (err) {
2471 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2472 " SGE parameters: err=%d\n", err);
2473 return err;
2474 }
2475 err = t4vf_get_rss_glb_config(adapter);
2476 if (err) {
2477 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2478 " RSS parameters: err=%d\n", err);
2479 return err;
2480 }
2481 if (adapter->params.rss.mode !=
2482 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2483 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2484 " mode %d\n", adapter->params.rss.mode);
2485 return -EINVAL;
2486 }
2487 err = t4vf_sge_init(adapter);
2488 if (err) {
2489 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2490 " err=%d\n", err);
2491 return err;
2492 }
2493
2494 /* If we're running on newer firmware, let it know that we're
2495 * prepared to deal with encapsulated CPL messages. Older
2496 * firmware won't understand this and we'll just get
2497 * unencapsulated messages ...
2498 */
2499 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2500 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2501 val = 1;
2502 (void) t4vf_set_params(adapter, 1, &param, &val);
2503
2504 /*
2505 * Retrieve our RX interrupt holdoff timer values and counter
2506 * threshold values from the SGE parameters.
2507 */
2508 s->timer_val[0] = core_ticks_to_us(adapter,
2509 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
2510 s->timer_val[1] = core_ticks_to_us(adapter,
2511 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
2512 s->timer_val[2] = core_ticks_to_us(adapter,
2513 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
2514 s->timer_val[3] = core_ticks_to_us(adapter,
2515 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
2516 s->timer_val[4] = core_ticks_to_us(adapter,
2517 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
2518 s->timer_val[5] = core_ticks_to_us(adapter,
2519 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
2520
2521 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2522 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2523 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2524 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
2525
2526 /*
2527 * Grab our Virtual Interface resource allocation, extract the
2528 * features that we're interested in and do a bit of sanity testing on
2529 * what we discover.
2530 */
2531 err = t4vf_get_vfres(adapter);
2532 if (err) {
2533 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2534 " resources: err=%d\n", err);
2535 return err;
2536 }
2537
2538 /* Check for various parameter sanity issues */
2539 if (adapter->params.vfres.pmask == 0) {
2540 dev_err(adapter->pdev_dev, "no port access configured\n"
2541 "usable!\n");
2542 return -EINVAL;
2543 }
2544 if (adapter->params.vfres.nvi == 0) {
2545 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2546 "usable!\n");
2547 return -EINVAL;
2548 }
2549
2550 /* Initialize nports and max_ethqsets now that we have our Virtual
2551 * Function Resources.
2552 */
2553 size_nports_qsets(adapter);
2554
2555 return 0;
2556 }
2557
2558 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2559 u8 pkt_cnt_idx, unsigned int size,
2560 unsigned int iqe_size)
2561 {
2562 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2563 (pkt_cnt_idx < SGE_NCOUNTERS ?
2564 QINTR_CNT_EN_F : 0));
2565 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2566 ? pkt_cnt_idx
2567 : 0);
2568 rspq->iqe_len = iqe_size;
2569 rspq->size = size;
2570 }
2571
2572 /*
2573 * Perform default configuration of DMA queues depending on the number and
2574 * type of ports we found and the number of available CPUs. Most settings can
2575 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2576 * being brought up for the first time.
2577 */
2578 static void cfg_queues(struct adapter *adapter)
2579 {
2580 struct sge *s = &adapter->sge;
2581 int q10g, n10g, qidx, pidx, qs;
2582 size_t iqe_size;
2583
2584 /*
2585 * We should not be called till we know how many Queue Sets we can
2586 * support. In particular, this means that we need to know what kind
2587 * of interrupts we'll be using ...
2588 */
2589 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2590
2591 /*
2592 * Count the number of 10GbE Virtual Interfaces that we have.
2593 */
2594 n10g = 0;
2595 for_each_port(adapter, pidx)
2596 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2597
2598 /*
2599 * We default to 1 queue per non-10G port and up to # of cores queues
2600 * per 10G port.
2601 */
2602 if (n10g == 0)
2603 q10g = 0;
2604 else {
2605 int n1g = (adapter->params.nports - n10g);
2606 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2607 if (q10g > num_online_cpus())
2608 q10g = num_online_cpus();
2609 }
2610
2611 /*
2612 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2613 * The layout will be established in setup_sge_queues() when the
2614 * adapter is brough up for the first time.
2615 */
2616 qidx = 0;
2617 for_each_port(adapter, pidx) {
2618 struct port_info *pi = adap2pinfo(adapter, pidx);
2619
2620 pi->first_qset = qidx;
2621 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2622 qidx += pi->nqsets;
2623 }
2624 s->ethqsets = qidx;
2625
2626 /*
2627 * The Ingress Queue Entry Size for our various Response Queues needs
2628 * to be big enough to accommodate the largest message we can receive
2629 * from the chip/firmware; which is 64 bytes ...
2630 */
2631 iqe_size = 64;
2632
2633 /*
2634 * Set up default Queue Set parameters ... Start off with the
2635 * shortest interrupt holdoff timer.
2636 */
2637 for (qs = 0; qs < s->max_ethqsets; qs++) {
2638 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2639 struct sge_eth_txq *txq = &s->ethtxq[qs];
2640
2641 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2642 rxq->fl.size = 72;
2643 txq->q.size = 1024;
2644 }
2645
2646 /*
2647 * The firmware event queue is used for link state changes and
2648 * notifications of TX DMA completions.
2649 */
2650 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2651
2652 /*
2653 * The forwarded interrupt queue is used when we're in MSI interrupt
2654 * mode. In this mode all interrupts associated with RX queues will
2655 * be forwarded to a single queue which we'll associate with our MSI
2656 * interrupt vector. The messages dropped in the forwarded interrupt
2657 * queue will indicate which ingress queue needs servicing ... This
2658 * queue needs to be large enough to accommodate all of the ingress
2659 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2660 * from equalling the CIDX if every ingress queue has an outstanding
2661 * interrupt). The queue doesn't need to be any larger because no
2662 * ingress queue will ever have more than one outstanding interrupt at
2663 * any time ...
2664 */
2665 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2666 iqe_size);
2667 }
2668
2669 /*
2670 * Reduce the number of Ethernet queues across all ports to at most n.
2671 * n provides at least one queue per port.
2672 */
2673 static void reduce_ethqs(struct adapter *adapter, int n)
2674 {
2675 int i;
2676 struct port_info *pi;
2677
2678 /*
2679 * While we have too many active Ether Queue Sets, interate across the
2680 * "ports" and reduce their individual Queue Set allocations.
2681 */
2682 BUG_ON(n < adapter->params.nports);
2683 while (n < adapter->sge.ethqsets)
2684 for_each_port(adapter, i) {
2685 pi = adap2pinfo(adapter, i);
2686 if (pi->nqsets > 1) {
2687 pi->nqsets--;
2688 adapter->sge.ethqsets--;
2689 if (adapter->sge.ethqsets <= n)
2690 break;
2691 }
2692 }
2693
2694 /*
2695 * Reassign the starting Queue Sets for each of the "ports" ...
2696 */
2697 n = 0;
2698 for_each_port(adapter, i) {
2699 pi = adap2pinfo(adapter, i);
2700 pi->first_qset = n;
2701 n += pi->nqsets;
2702 }
2703 }
2704
2705 /*
2706 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2707 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2708 * need. Minimally we need one for every Virtual Interface plus those needed
2709 * for our "extras". Note that this process may lower the maximum number of
2710 * allowed Queue Sets ...
2711 */
2712 static int enable_msix(struct adapter *adapter)
2713 {
2714 int i, want, need, nqsets;
2715 struct msix_entry entries[MSIX_ENTRIES];
2716 struct sge *s = &adapter->sge;
2717
2718 for (i = 0; i < MSIX_ENTRIES; ++i)
2719 entries[i].entry = i;
2720
2721 /*
2722 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2723 * plus those needed for our "extras" (for example, the firmware
2724 * message queue). We _need_ at least one "Queue Set" per Virtual
2725 * Interface plus those needed for our "extras". So now we get to see
2726 * if the song is right ...
2727 */
2728 want = s->max_ethqsets + MSIX_EXTRAS;
2729 need = adapter->params.nports + MSIX_EXTRAS;
2730
2731 want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2732 if (want < 0)
2733 return want;
2734
2735 nqsets = want - MSIX_EXTRAS;
2736 if (nqsets < s->max_ethqsets) {
2737 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2738 " for %d Queue Sets\n", nqsets);
2739 s->max_ethqsets = nqsets;
2740 if (nqsets < s->ethqsets)
2741 reduce_ethqs(adapter, nqsets);
2742 }
2743 for (i = 0; i < want; ++i)
2744 adapter->msix_info[i].vec = entries[i].vector;
2745
2746 return 0;
2747 }
2748
2749 static const struct net_device_ops cxgb4vf_netdev_ops = {
2750 .ndo_open = cxgb4vf_open,
2751 .ndo_stop = cxgb4vf_stop,
2752 .ndo_start_xmit = t4vf_eth_xmit,
2753 .ndo_get_stats = cxgb4vf_get_stats,
2754 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2755 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
2756 .ndo_validate_addr = eth_validate_addr,
2757 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2758 .ndo_change_mtu = cxgb4vf_change_mtu,
2759 .ndo_fix_features = cxgb4vf_fix_features,
2760 .ndo_set_features = cxgb4vf_set_features,
2761 #ifdef CONFIG_NET_POLL_CONTROLLER
2762 .ndo_poll_controller = cxgb4vf_poll_controller,
2763 #endif
2764 };
2765
2766 /*
2767 * "Probe" a device: initialize a device and construct all kernel and driver
2768 * state needed to manage the device. This routine is called "init_one" in
2769 * the PF Driver ...
2770 */
2771 static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2772 const struct pci_device_id *ent)
2773 {
2774 int pci_using_dac;
2775 int err, pidx;
2776 unsigned int pmask;
2777 struct adapter *adapter;
2778 struct port_info *pi;
2779 struct net_device *netdev;
2780
2781 /*
2782 * Print our driver banner the first time we're called to initialize a
2783 * device.
2784 */
2785 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
2786
2787 /*
2788 * Initialize generic PCI device state.
2789 */
2790 err = pci_enable_device(pdev);
2791 if (err) {
2792 dev_err(&pdev->dev, "cannot enable PCI device\n");
2793 return err;
2794 }
2795
2796 /*
2797 * Reserve PCI resources for the device. If we can't get them some
2798 * other driver may have already claimed the device ...
2799 */
2800 err = pci_request_regions(pdev, KBUILD_MODNAME);
2801 if (err) {
2802 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2803 goto err_disable_device;
2804 }
2805
2806 /*
2807 * Set up our DMA mask: try for 64-bit address masking first and
2808 * fall back to 32-bit if we can't get 64 bits ...
2809 */
2810 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2811 if (err == 0) {
2812 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2813 if (err) {
2814 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2815 " coherent allocations\n");
2816 goto err_release_regions;
2817 }
2818 pci_using_dac = 1;
2819 } else {
2820 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2821 if (err != 0) {
2822 dev_err(&pdev->dev, "no usable DMA configuration\n");
2823 goto err_release_regions;
2824 }
2825 pci_using_dac = 0;
2826 }
2827
2828 /*
2829 * Enable bus mastering for the device ...
2830 */
2831 pci_set_master(pdev);
2832
2833 /*
2834 * Allocate our adapter data structure and attach it to the device.
2835 */
2836 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2837 if (!adapter) {
2838 err = -ENOMEM;
2839 goto err_release_regions;
2840 }
2841 pci_set_drvdata(pdev, adapter);
2842 adapter->pdev = pdev;
2843 adapter->pdev_dev = &pdev->dev;
2844
2845 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
2846 (sizeof(struct mbox_cmd) *
2847 T4VF_OS_LOG_MBOX_CMDS),
2848 GFP_KERNEL);
2849 if (!adapter->mbox_log) {
2850 err = -ENOMEM;
2851 goto err_free_adapter;
2852 }
2853 adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS;
2854
2855 /*
2856 * Initialize SMP data synchronization resources.
2857 */
2858 spin_lock_init(&adapter->stats_lock);
2859 spin_lock_init(&adapter->mbox_lock);
2860 INIT_LIST_HEAD(&adapter->mlist.list);
2861
2862 /*
2863 * Map our I/O registers in BAR0.
2864 */
2865 adapter->regs = pci_ioremap_bar(pdev, 0);
2866 if (!adapter->regs) {
2867 dev_err(&pdev->dev, "cannot map device registers\n");
2868 err = -ENOMEM;
2869 goto err_free_adapter;
2870 }
2871
2872 /* Wait for the device to become ready before proceeding ...
2873 */
2874 err = t4vf_prep_adapter(adapter);
2875 if (err) {
2876 dev_err(adapter->pdev_dev, "device didn't become ready:"
2877 " err=%d\n", err);
2878 goto err_unmap_bar0;
2879 }
2880
2881 /* For T5 and later we want to use the new BAR-based User Doorbells,
2882 * so we need to map BAR2 here ...
2883 */
2884 if (!is_t4(adapter->params.chip)) {
2885 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
2886 pci_resource_len(pdev, 2));
2887 if (!adapter->bar2) {
2888 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
2889 err = -ENOMEM;
2890 goto err_unmap_bar0;
2891 }
2892 }
2893 /*
2894 * Initialize adapter level features.
2895 */
2896 adapter->name = pci_name(pdev);
2897 adapter->msg_enable = dflt_msg_enable;
2898 err = adap_init0(adapter);
2899 if (err)
2900 goto err_unmap_bar;
2901
2902 /*
2903 * Allocate our "adapter ports" and stitch everything together.
2904 */
2905 pmask = adapter->params.vfres.pmask;
2906 for_each_port(adapter, pidx) {
2907 int port_id, viid;
2908
2909 /*
2910 * We simplistically allocate our virtual interfaces
2911 * sequentially across the port numbers to which we have
2912 * access rights. This should be configurable in some manner
2913 * ...
2914 */
2915 if (pmask == 0)
2916 break;
2917 port_id = ffs(pmask) - 1;
2918 pmask &= ~(1 << port_id);
2919 viid = t4vf_alloc_vi(adapter, port_id);
2920 if (viid < 0) {
2921 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2922 " err=%d\n", port_id, viid);
2923 err = viid;
2924 goto err_free_dev;
2925 }
2926
2927 /*
2928 * Allocate our network device and stitch things together.
2929 */
2930 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2931 MAX_PORT_QSETS);
2932 if (netdev == NULL) {
2933 t4vf_free_vi(adapter, viid);
2934 err = -ENOMEM;
2935 goto err_free_dev;
2936 }
2937 adapter->port[pidx] = netdev;
2938 SET_NETDEV_DEV(netdev, &pdev->dev);
2939 pi = netdev_priv(netdev);
2940 pi->adapter = adapter;
2941 pi->pidx = pidx;
2942 pi->port_id = port_id;
2943 pi->viid = viid;
2944
2945 /*
2946 * Initialize the starting state of our "port" and register
2947 * it.
2948 */
2949 pi->xact_addr_filt = -1;
2950 netif_carrier_off(netdev);
2951 netdev->irq = pdev->irq;
2952
2953 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
2954 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2955 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM;
2956 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
2957 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2958 NETIF_F_HIGHDMA;
2959 netdev->features = netdev->hw_features |
2960 NETIF_F_HW_VLAN_CTAG_TX;
2961 if (pci_using_dac)
2962 netdev->features |= NETIF_F_HIGHDMA;
2963
2964 netdev->priv_flags |= IFF_UNICAST_FLT;
2965
2966 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2967 netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
2968
2969 /*
2970 * Initialize the hardware/software state for the port.
2971 */
2972 err = t4vf_port_init(adapter, pidx);
2973 if (err) {
2974 dev_err(&pdev->dev, "cannot initialize port %d\n",
2975 pidx);
2976 goto err_free_dev;
2977 }
2978 }
2979
2980 /* See what interrupts we'll be using. If we've been configured to
2981 * use MSI-X interrupts, try to enable them but fall back to using
2982 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2983 * get MSI interrupts we bail with the error.
2984 */
2985 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2986 adapter->flags |= USING_MSIX;
2987 else {
2988 if (msi == MSI_MSIX) {
2989 dev_info(adapter->pdev_dev,
2990 "Unable to use MSI-X Interrupts; falling "
2991 "back to MSI Interrupts\n");
2992
2993 /* We're going to need a Forwarded Interrupt Queue so
2994 * that may cut into how many Queue Sets we can
2995 * support.
2996 */
2997 msi = MSI_MSI;
2998 size_nports_qsets(adapter);
2999 }
3000 err = pci_enable_msi(pdev);
3001 if (err) {
3002 dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;"
3003 " err=%d\n", err);
3004 goto err_free_dev;
3005 }
3006 adapter->flags |= USING_MSI;
3007 }
3008
3009 /* Now that we know how many "ports" we have and what interrupt
3010 * mechanism we're going to use, we can configure our queue resources.
3011 */
3012 cfg_queues(adapter);
3013
3014 /*
3015 * The "card" is now ready to go. If any errors occur during device
3016 * registration we do not fail the whole "card" but rather proceed
3017 * only with the ports we manage to register successfully. However we
3018 * must register at least one net device.
3019 */
3020 for_each_port(adapter, pidx) {
3021 struct port_info *pi = netdev_priv(adapter->port[pidx]);
3022 netdev = adapter->port[pidx];
3023 if (netdev == NULL)
3024 continue;
3025
3026 netif_set_real_num_tx_queues(netdev, pi->nqsets);
3027 netif_set_real_num_rx_queues(netdev, pi->nqsets);
3028
3029 err = register_netdev(netdev);
3030 if (err) {
3031 dev_warn(&pdev->dev, "cannot register net device %s,"
3032 " skipping\n", netdev->name);
3033 continue;
3034 }
3035
3036 set_bit(pidx, &adapter->registered_device_map);
3037 }
3038 if (adapter->registered_device_map == 0) {
3039 dev_err(&pdev->dev, "could not register any net devices\n");
3040 goto err_disable_interrupts;
3041 }
3042
3043 /*
3044 * Set up our debugfs entries.
3045 */
3046 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
3047 adapter->debugfs_root =
3048 debugfs_create_dir(pci_name(pdev),
3049 cxgb4vf_debugfs_root);
3050 if (IS_ERR_OR_NULL(adapter->debugfs_root))
3051 dev_warn(&pdev->dev, "could not create debugfs"
3052 " directory");
3053 else
3054 setup_debugfs(adapter);
3055 }
3056
3057 /*
3058 * Print a short notice on the existence and configuration of the new
3059 * VF network device ...
3060 */
3061 for_each_port(adapter, pidx) {
3062 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
3063 adapter->port[pidx]->name,
3064 (adapter->flags & USING_MSIX) ? "MSI-X" :
3065 (adapter->flags & USING_MSI) ? "MSI" : "");
3066 }
3067
3068 /*
3069 * Return success!
3070 */
3071 return 0;
3072
3073 /*
3074 * Error recovery and exit code. Unwind state that's been created
3075 * so far and return the error.
3076 */
3077 err_disable_interrupts:
3078 if (adapter->flags & USING_MSIX) {
3079 pci_disable_msix(adapter->pdev);
3080 adapter->flags &= ~USING_MSIX;
3081 } else if (adapter->flags & USING_MSI) {
3082 pci_disable_msi(adapter->pdev);
3083 adapter->flags &= ~USING_MSI;
3084 }
3085
3086 err_free_dev:
3087 for_each_port(adapter, pidx) {
3088 netdev = adapter->port[pidx];
3089 if (netdev == NULL)
3090 continue;
3091 pi = netdev_priv(netdev);
3092 t4vf_free_vi(adapter, pi->viid);
3093 if (test_bit(pidx, &adapter->registered_device_map))
3094 unregister_netdev(netdev);
3095 free_netdev(netdev);
3096 }
3097
3098 err_unmap_bar:
3099 if (!is_t4(adapter->params.chip))
3100 iounmap(adapter->bar2);
3101
3102 err_unmap_bar0:
3103 iounmap(adapter->regs);
3104
3105 err_free_adapter:
3106 kfree(adapter->mbox_log);
3107 kfree(adapter);
3108
3109 err_release_regions:
3110 pci_release_regions(pdev);
3111 pci_clear_master(pdev);
3112
3113 err_disable_device:
3114 pci_disable_device(pdev);
3115
3116 return err;
3117 }
3118
3119 /*
3120 * "Remove" a device: tear down all kernel and driver state created in the
3121 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
3122 * that this is called "remove_one" in the PF Driver.)
3123 */
3124 static void cxgb4vf_pci_remove(struct pci_dev *pdev)
3125 {
3126 struct adapter *adapter = pci_get_drvdata(pdev);
3127
3128 /*
3129 * Tear down driver state associated with device.
3130 */
3131 if (adapter) {
3132 int pidx;
3133
3134 /*
3135 * Stop all of our activity. Unregister network port,
3136 * disable interrupts, etc.
3137 */
3138 for_each_port(adapter, pidx)
3139 if (test_bit(pidx, &adapter->registered_device_map))
3140 unregister_netdev(adapter->port[pidx]);
3141 t4vf_sge_stop(adapter);
3142 if (adapter->flags & USING_MSIX) {
3143 pci_disable_msix(adapter->pdev);
3144 adapter->flags &= ~USING_MSIX;
3145 } else if (adapter->flags & USING_MSI) {
3146 pci_disable_msi(adapter->pdev);
3147 adapter->flags &= ~USING_MSI;
3148 }
3149
3150 /*
3151 * Tear down our debugfs entries.
3152 */
3153 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
3154 cleanup_debugfs(adapter);
3155 debugfs_remove_recursive(adapter->debugfs_root);
3156 }
3157
3158 /*
3159 * Free all of the various resources which we've acquired ...
3160 */
3161 t4vf_free_sge_resources(adapter);
3162 for_each_port(adapter, pidx) {
3163 struct net_device *netdev = adapter->port[pidx];
3164 struct port_info *pi;
3165
3166 if (netdev == NULL)
3167 continue;
3168
3169 pi = netdev_priv(netdev);
3170 t4vf_free_vi(adapter, pi->viid);
3171 free_netdev(netdev);
3172 }
3173 iounmap(adapter->regs);
3174 if (!is_t4(adapter->params.chip))
3175 iounmap(adapter->bar2);
3176 kfree(adapter->mbox_log);
3177 kfree(adapter);
3178 }
3179
3180 /*
3181 * Disable the device and release its PCI resources.
3182 */
3183 pci_disable_device(pdev);
3184 pci_clear_master(pdev);
3185 pci_release_regions(pdev);
3186 }
3187
3188 /*
3189 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3190 * delivery.
3191 */
3192 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3193 {
3194 struct adapter *adapter;
3195 int pidx;
3196
3197 adapter = pci_get_drvdata(pdev);
3198 if (!adapter)
3199 return;
3200
3201 /* Disable all Virtual Interfaces. This will shut down the
3202 * delivery of all ingress packets into the chip for these
3203 * Virtual Interfaces.
3204 */
3205 for_each_port(adapter, pidx)
3206 if (test_bit(pidx, &adapter->registered_device_map))
3207 unregister_netdev(adapter->port[pidx]);
3208
3209 /* Free up all Queues which will prevent further DMA and
3210 * Interrupts allowing various internal pathways to drain.
3211 */
3212 t4vf_sge_stop(adapter);
3213 if (adapter->flags & USING_MSIX) {
3214 pci_disable_msix(adapter->pdev);
3215 adapter->flags &= ~USING_MSIX;
3216 } else if (adapter->flags & USING_MSI) {
3217 pci_disable_msi(adapter->pdev);
3218 adapter->flags &= ~USING_MSI;
3219 }
3220
3221 /*
3222 * Free up all Queues which will prevent further DMA and
3223 * Interrupts allowing various internal pathways to drain.
3224 */
3225 t4vf_free_sge_resources(adapter);
3226 pci_set_drvdata(pdev, NULL);
3227 }
3228
3229 /* Macros needed to support the PCI Device ID Table ...
3230 */
3231 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3232 static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3233 #define CH_PCI_DEVICE_ID_FUNCTION 0x8
3234
3235 #define CH_PCI_ID_TABLE_ENTRY(devid) \
3236 { PCI_VDEVICE(CHELSIO, (devid)), 0 }
3237
3238 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3239
3240 #include "../cxgb4/t4_pci_id_tbl.h"
3241
3242 MODULE_DESCRIPTION(DRV_DESC);
3243 MODULE_AUTHOR("Chelsio Communications");
3244 MODULE_LICENSE("Dual BSD/GPL");
3245 MODULE_VERSION(DRV_VERSION);
3246 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3247
3248 static struct pci_driver cxgb4vf_driver = {
3249 .name = KBUILD_MODNAME,
3250 .id_table = cxgb4vf_pci_tbl,
3251 .probe = cxgb4vf_pci_probe,
3252 .remove = cxgb4vf_pci_remove,
3253 .shutdown = cxgb4vf_pci_shutdown,
3254 };
3255
3256 /*
3257 * Initialize global driver state.
3258 */
3259 static int __init cxgb4vf_module_init(void)
3260 {
3261 int ret;
3262
3263 /*
3264 * Vet our module parameters.
3265 */
3266 if (msi != MSI_MSIX && msi != MSI_MSI) {
3267 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3268 msi, MSI_MSIX, MSI_MSI);
3269 return -EINVAL;
3270 }
3271
3272 /* Debugfs support is optional, just warn if this fails */
3273 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3274 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3275 pr_warn("could not create debugfs entry, continuing\n");
3276
3277 ret = pci_register_driver(&cxgb4vf_driver);
3278 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3279 debugfs_remove(cxgb4vf_debugfs_root);
3280 return ret;
3281 }
3282
3283 /*
3284 * Tear down global driver state.
3285 */
3286 static void __exit cxgb4vf_module_exit(void)
3287 {
3288 pci_unregister_driver(&cxgb4vf_driver);
3289 debugfs_remove(cxgb4vf_debugfs_root);
3290 }
3291
3292 module_init(cxgb4vf_module_init);
3293 module_exit(cxgb4vf_module_exit);
This page took 0.105926 seconds and 5 git commands to generate.