cxgb4/cxgb4vf: Allocate more queues for 25G and 100G adapter
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4vf / t4vf_hw.c
1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/pci.h>
37
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
44
45 /*
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's). Return an error if it doesn't
48 * become ready ...
49 */
50 int t4vf_wait_dev_ready(struct adapter *adapter)
51 {
52 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53 const u32 notready1 = 0xffffffff;
54 const u32 notready2 = 0xeeeeeeee;
55 u32 val;
56
57 val = t4_read_reg(adapter, whoami);
58 if (val != notready1 && val != notready2)
59 return 0;
60 msleep(500);
61 val = t4_read_reg(adapter, whoami);
62 if (val != notready1 && val != notready2)
63 return 0;
64 else
65 return -EIO;
66 }
67
68 /*
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
71 */
72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73 u32 mbox_data)
74 {
75 for ( ; size; size -= 8, mbox_data += 8)
76 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77 }
78
79 /**
80 * t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81 * @adapter: the adapter
82 * @cmd: the Firmware Mailbox Command or Reply
83 * @size: command length in bytes
84 * @access: the time (ms) needed to access the Firmware Mailbox
85 * @execute: the time (ms) the command spent being executed
86 */
87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
88 int size, int access, int execute)
89 {
90 struct mbox_cmd_log *log = adapter->mbox_log;
91 struct mbox_cmd *entry;
92 int i;
93
94 entry = mbox_cmd_log_entry(log, log->cursor++);
95 if (log->cursor == log->size)
96 log->cursor = 0;
97
98 for (i = 0; i < size / 8; i++)
99 entry->cmd[i] = be64_to_cpu(cmd[i]);
100 while (i < MBOX_LEN / 8)
101 entry->cmd[i++] = 0;
102 entry->timestamp = jiffies;
103 entry->seqno = log->seqno++;
104 entry->access = access;
105 entry->execute = execute;
106 }
107
108 /**
109 * t4vf_wr_mbox_core - send a command to FW through the mailbox
110 * @adapter: the adapter
111 * @cmd: the command to write
112 * @size: command length in bytes
113 * @rpl: where to optionally store the reply
114 * @sleep_ok: if true we may sleep while awaiting command completion
115 *
116 * Sends the given command to FW through the mailbox and waits for the
117 * FW to execute the command. If @rpl is not %NULL it is used to store
118 * the FW's reply to the command. The command and its optional reply
119 * are of the same length. FW can take up to 500 ms to respond.
120 * @sleep_ok determines whether we may sleep while awaiting the response.
121 * If sleeping is allowed we use progressive backoff otherwise we spin.
122 *
123 * The return value is 0 on success or a negative errno on failure. A
124 * failure can happen either because we are not able to execute the
125 * command or FW executes it but signals an error. In the latter case
126 * the return value is the error code indicated by FW (negated).
127 */
128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
129 void *rpl, bool sleep_ok)
130 {
131 static const int delay[] = {
132 1, 1, 3, 5, 10, 10, 20, 50, 100
133 };
134
135 u16 access = 0, execute = 0;
136 u32 v, mbox_data;
137 int i, ms, delay_idx, ret;
138 const __be64 *p;
139 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
140 u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
141 __be64 cmd_rpl[MBOX_LEN / 8];
142 struct mbox_list entry;
143
144 /* In T6, mailbox size is changed to 128 bytes to avoid
145 * invalidating the entire prefetch buffer.
146 */
147 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
148 mbox_data = T4VF_MBDATA_BASE_ADDR;
149 else
150 mbox_data = T6VF_MBDATA_BASE_ADDR;
151
152 /*
153 * Commands must be multiples of 16 bytes in length and may not be
154 * larger than the size of the Mailbox Data register array.
155 */
156 if ((size % 16) != 0 ||
157 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
158 return -EINVAL;
159
160 /* Queue ourselves onto the mailbox access list. When our entry is at
161 * the front of the list, we have rights to access the mailbox. So we
162 * wait [for a while] till we're at the front [or bail out with an
163 * EBUSY] ...
164 */
165 spin_lock(&adapter->mbox_lock);
166 list_add_tail(&entry.list, &adapter->mlist.list);
167 spin_unlock(&adapter->mbox_lock);
168
169 delay_idx = 0;
170 ms = delay[0];
171
172 for (i = 0; ; i += ms) {
173 /* If we've waited too long, return a busy indication. This
174 * really ought to be based on our initial position in the
175 * mailbox access list but this is a start. We very rearely
176 * contend on access to the mailbox ...
177 */
178 if (i > FW_CMD_MAX_TIMEOUT) {
179 spin_lock(&adapter->mbox_lock);
180 list_del(&entry.list);
181 spin_unlock(&adapter->mbox_lock);
182 ret = -EBUSY;
183 t4vf_record_mbox(adapter, cmd, size, access, ret);
184 return ret;
185 }
186
187 /* If we're at the head, break out and start the mailbox
188 * protocol.
189 */
190 if (list_first_entry(&adapter->mlist.list, struct mbox_list,
191 list) == &entry)
192 break;
193
194 /* Delay for a bit before checking again ... */
195 if (sleep_ok) {
196 ms = delay[delay_idx]; /* last element may repeat */
197 if (delay_idx < ARRAY_SIZE(delay) - 1)
198 delay_idx++;
199 msleep(ms);
200 } else {
201 mdelay(ms);
202 }
203 }
204
205 /*
206 * Loop trying to get ownership of the mailbox. Return an error
207 * if we can't gain ownership.
208 */
209 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
210 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
211 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
212 if (v != MBOX_OWNER_DRV) {
213 spin_lock(&adapter->mbox_lock);
214 list_del(&entry.list);
215 spin_unlock(&adapter->mbox_lock);
216 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
217 t4vf_record_mbox(adapter, cmd, size, access, ret);
218 return ret;
219 }
220
221 /*
222 * Write the command array into the Mailbox Data register array and
223 * transfer ownership of the mailbox to the firmware.
224 *
225 * For the VFs, the Mailbox Data "registers" are actually backed by
226 * T4's "MA" interface rather than PL Registers (as is the case for
227 * the PFs). Because these are in different coherency domains, the
228 * write to the VF's PL-register-backed Mailbox Control can race in
229 * front of the writes to the MA-backed VF Mailbox Data "registers".
230 * So we need to do a read-back on at least one byte of the VF Mailbox
231 * Data registers before doing the write to the VF Mailbox Control
232 * register.
233 */
234 if (cmd_op != FW_VI_STATS_CMD)
235 t4vf_record_mbox(adapter, cmd, size, access, 0);
236 for (i = 0, p = cmd; i < size; i += 8)
237 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
238 t4_read_reg(adapter, mbox_data); /* flush write */
239
240 t4_write_reg(adapter, mbox_ctl,
241 MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
242 t4_read_reg(adapter, mbox_ctl); /* flush write */
243
244 /*
245 * Spin waiting for firmware to acknowledge processing our command.
246 */
247 delay_idx = 0;
248 ms = delay[0];
249
250 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
251 if (sleep_ok) {
252 ms = delay[delay_idx];
253 if (delay_idx < ARRAY_SIZE(delay) - 1)
254 delay_idx++;
255 msleep(ms);
256 } else
257 mdelay(ms);
258
259 /*
260 * If we're the owner, see if this is the reply we wanted.
261 */
262 v = t4_read_reg(adapter, mbox_ctl);
263 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
264 /*
265 * If the Message Valid bit isn't on, revoke ownership
266 * of the mailbox and continue waiting for our reply.
267 */
268 if ((v & MBMSGVALID_F) == 0) {
269 t4_write_reg(adapter, mbox_ctl,
270 MBOWNER_V(MBOX_OWNER_NONE));
271 continue;
272 }
273
274 /*
275 * We now have our reply. Extract the command return
276 * value, copy the reply back to our caller's buffer
277 * (if specified) and revoke ownership of the mailbox.
278 * We return the (negated) firmware command return
279 * code (this depends on FW_SUCCESS == 0).
280 */
281 get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
282
283 /* return value in low-order little-endian word */
284 v = be64_to_cpu(cmd_rpl[0]);
285
286 if (rpl) {
287 /* request bit in high-order BE word */
288 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
289 & FW_CMD_REQUEST_F) == 0);
290 memcpy(rpl, cmd_rpl, size);
291 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
292 & FW_CMD_REQUEST_F) != 0);
293 }
294 t4_write_reg(adapter, mbox_ctl,
295 MBOWNER_V(MBOX_OWNER_NONE));
296 execute = i + ms;
297 if (cmd_op != FW_VI_STATS_CMD)
298 t4vf_record_mbox(adapter, cmd_rpl, size, access,
299 execute);
300 spin_lock(&adapter->mbox_lock);
301 list_del(&entry.list);
302 spin_unlock(&adapter->mbox_lock);
303 return -FW_CMD_RETVAL_G(v);
304 }
305 }
306
307 /* We timed out. Return the error ... */
308 ret = -ETIMEDOUT;
309 t4vf_record_mbox(adapter, cmd, size, access, ret);
310 spin_lock(&adapter->mbox_lock);
311 list_del(&entry.list);
312 spin_unlock(&adapter->mbox_lock);
313 return ret;
314 }
315
316 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
317 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
318 FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
319 FW_PORT_CAP_ANEG)
320
321 /**
322 * init_link_config - initialize a link's SW state
323 * @lc: structure holding the link state
324 * @caps: link capabilities
325 *
326 * Initializes the SW state maintained for each link, including the link's
327 * capabilities and default speed/flow-control/autonegotiation settings.
328 */
329 static void init_link_config(struct link_config *lc, unsigned int caps)
330 {
331 lc->supported = caps;
332 lc->lp_advertising = 0;
333 lc->requested_speed = 0;
334 lc->speed = 0;
335 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
336 if (lc->supported & FW_PORT_CAP_ANEG) {
337 lc->advertising = lc->supported & ADVERT_MASK;
338 lc->autoneg = AUTONEG_ENABLE;
339 lc->requested_fc |= PAUSE_AUTONEG;
340 } else {
341 lc->advertising = 0;
342 lc->autoneg = AUTONEG_DISABLE;
343 }
344 }
345
346 /**
347 * t4vf_port_init - initialize port hardware/software state
348 * @adapter: the adapter
349 * @pidx: the adapter port index
350 */
351 int t4vf_port_init(struct adapter *adapter, int pidx)
352 {
353 struct port_info *pi = adap2pinfo(adapter, pidx);
354 struct fw_vi_cmd vi_cmd, vi_rpl;
355 struct fw_port_cmd port_cmd, port_rpl;
356 int v;
357
358 /*
359 * Execute a VI Read command to get our Virtual Interface information
360 * like MAC address, etc.
361 */
362 memset(&vi_cmd, 0, sizeof(vi_cmd));
363 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
364 FW_CMD_REQUEST_F |
365 FW_CMD_READ_F);
366 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
367 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
368 v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
369 if (v)
370 return v;
371
372 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
373 pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
374 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
375
376 /*
377 * If we don't have read access to our port information, we're done
378 * now. Otherwise, execute a PORT Read command to get it ...
379 */
380 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
381 return 0;
382
383 memset(&port_cmd, 0, sizeof(port_cmd));
384 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
385 FW_CMD_REQUEST_F |
386 FW_CMD_READ_F |
387 FW_PORT_CMD_PORTID_V(pi->port_id));
388 port_cmd.action_to_len16 =
389 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
390 FW_LEN16(port_cmd));
391 v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
392 if (v)
393 return v;
394
395 v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
396 pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ?
397 FW_PORT_CMD_MDIOADDR_G(v) : -1;
398 pi->port_type = FW_PORT_CMD_PTYPE_G(v);
399 pi->mod_type = FW_PORT_MOD_TYPE_NA;
400
401 init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));
402
403 return 0;
404 }
405
406 /**
407 * t4vf_fw_reset - issue a reset to FW
408 * @adapter: the adapter
409 *
410 * Issues a reset command to FW. For a Physical Function this would
411 * result in the Firmware resetting all of its state. For a Virtual
412 * Function this just resets the state associated with the VF.
413 */
414 int t4vf_fw_reset(struct adapter *adapter)
415 {
416 struct fw_reset_cmd cmd;
417
418 memset(&cmd, 0, sizeof(cmd));
419 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
420 FW_CMD_WRITE_F);
421 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
422 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
423 }
424
425 /**
426 * t4vf_query_params - query FW or device parameters
427 * @adapter: the adapter
428 * @nparams: the number of parameters
429 * @params: the parameter names
430 * @vals: the parameter values
431 *
432 * Reads the values of firmware or device parameters. Up to 7 parameters
433 * can be queried at once.
434 */
435 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
436 const u32 *params, u32 *vals)
437 {
438 int i, ret;
439 struct fw_params_cmd cmd, rpl;
440 struct fw_params_param *p;
441 size_t len16;
442
443 if (nparams > 7)
444 return -EINVAL;
445
446 memset(&cmd, 0, sizeof(cmd));
447 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
448 FW_CMD_REQUEST_F |
449 FW_CMD_READ_F);
450 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
451 param[nparams].mnem), 16);
452 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
453 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
454 p->mnem = htonl(*params++);
455
456 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
457 if (ret == 0)
458 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
459 *vals++ = be32_to_cpu(p->val);
460 return ret;
461 }
462
463 /**
464 * t4vf_set_params - sets FW or device parameters
465 * @adapter: the adapter
466 * @nparams: the number of parameters
467 * @params: the parameter names
468 * @vals: the parameter values
469 *
470 * Sets the values of firmware or device parameters. Up to 7 parameters
471 * can be specified at once.
472 */
473 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
474 const u32 *params, const u32 *vals)
475 {
476 int i;
477 struct fw_params_cmd cmd;
478 struct fw_params_param *p;
479 size_t len16;
480
481 if (nparams > 7)
482 return -EINVAL;
483
484 memset(&cmd, 0, sizeof(cmd));
485 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
486 FW_CMD_REQUEST_F |
487 FW_CMD_WRITE_F);
488 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
489 param[nparams]), 16);
490 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
491 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
492 p->mnem = cpu_to_be32(*params++);
493 p->val = cpu_to_be32(*vals++);
494 }
495
496 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
497 }
498
499 /**
500 * t4vf_fl_pkt_align - return the fl packet alignment
501 * @adapter: the adapter
502 *
503 * T4 has a single field to specify the packing and padding boundary.
504 * T5 onwards has separate fields for this and hence the alignment for
505 * next packet offset is maximum of these two. And T6 changes the
506 * Ingress Padding Boundary Shift, so it's all a mess and it's best
507 * if we put this in low-level Common Code ...
508 *
509 */
510 int t4vf_fl_pkt_align(struct adapter *adapter)
511 {
512 u32 sge_control, sge_control2;
513 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
514
515 sge_control = adapter->params.sge.sge_control;
516
517 /* T4 uses a single control field to specify both the PCIe Padding and
518 * Packing Boundary. T5 introduced the ability to specify these
519 * separately. The actual Ingress Packet Data alignment boundary
520 * within Packed Buffer Mode is the maximum of these two
521 * specifications. (Note that it makes no real practical sense to
522 * have the Pading Boudary be larger than the Packing Boundary but you
523 * could set the chip up that way and, in fact, legacy T4 code would
524 * end doing this because it would initialize the Padding Boundary and
525 * leave the Packing Boundary initialized to 0 (16 bytes).)
526 * Padding Boundary values in T6 starts from 8B,
527 * where as it is 32B for T4 and T5.
528 */
529 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
530 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
531 else
532 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
533
534 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
535
536 fl_align = ingpadboundary;
537 if (!is_t4(adapter->params.chip)) {
538 /* T5 has a different interpretation of one of the PCIe Packing
539 * Boundary values.
540 */
541 sge_control2 = adapter->params.sge.sge_control2;
542 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
543 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
544 ingpackboundary = 16;
545 else
546 ingpackboundary = 1 << (ingpackboundary +
547 INGPACKBOUNDARY_SHIFT_X);
548
549 fl_align = max(ingpadboundary, ingpackboundary);
550 }
551 return fl_align;
552 }
553
554 /**
555 * t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
556 * @adapter: the adapter
557 * @qid: the Queue ID
558 * @qtype: the Ingress or Egress type for @qid
559 * @pbar2_qoffset: BAR2 Queue Offset
560 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
561 *
562 * Returns the BAR2 SGE Queue Registers information associated with the
563 * indicated Absolute Queue ID. These are passed back in return value
564 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
565 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
566 *
567 * This may return an error which indicates that BAR2 SGE Queue
568 * registers aren't available. If an error is not returned, then the
569 * following values are returned:
570 *
571 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
572 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
573 *
574 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
575 * require the "Inferred Queue ID" ability may be used. E.g. the
576 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
577 * then these "Inferred Queue ID" register may not be used.
578 */
579 int t4vf_bar2_sge_qregs(struct adapter *adapter,
580 unsigned int qid,
581 enum t4_bar2_qtype qtype,
582 u64 *pbar2_qoffset,
583 unsigned int *pbar2_qid)
584 {
585 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
586 u64 bar2_page_offset, bar2_qoffset;
587 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
588
589 /* T4 doesn't support BAR2 SGE Queue registers.
590 */
591 if (is_t4(adapter->params.chip))
592 return -EINVAL;
593
594 /* Get our SGE Page Size parameters.
595 */
596 page_shift = adapter->params.sge.sge_vf_hps + 10;
597 page_size = 1 << page_shift;
598
599 /* Get the right Queues per Page parameters for our Queue.
600 */
601 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
602 ? adapter->params.sge.sge_vf_eq_qpp
603 : adapter->params.sge.sge_vf_iq_qpp);
604 qpp_mask = (1 << qpp_shift) - 1;
605
606 /* Calculate the basics of the BAR2 SGE Queue register area:
607 * o The BAR2 page the Queue registers will be in.
608 * o The BAR2 Queue ID.
609 * o The BAR2 Queue ID Offset into the BAR2 page.
610 */
611 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
612 bar2_qid = qid & qpp_mask;
613 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
614
615 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
616 * hardware will infer the Absolute Queue ID simply from the writes to
617 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
618 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
619 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
620 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
621 * from the BAR2 Page and BAR2 Queue ID.
622 *
623 * One important censequence of this is that some BAR2 SGE registers
624 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
625 * there. But other registers synthesize the SGE Queue ID purely
626 * from the writes to the registers -- the Write Combined Doorbell
627 * Buffer is a good example. These BAR2 SGE Registers are only
628 * available for those BAR2 SGE Register areas where the SGE Absolute
629 * Queue ID can be inferred from simple writes.
630 */
631 bar2_qoffset = bar2_page_offset;
632 bar2_qinferred = (bar2_qid_offset < page_size);
633 if (bar2_qinferred) {
634 bar2_qoffset += bar2_qid_offset;
635 bar2_qid = 0;
636 }
637
638 *pbar2_qoffset = bar2_qoffset;
639 *pbar2_qid = bar2_qid;
640 return 0;
641 }
642
643 /**
644 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
645 * @adapter: the adapter
646 *
647 * Retrieves various core SGE parameters in the form of hardware SGE
648 * register values. The caller is responsible for decoding these as
649 * needed. The SGE parameters are stored in @adapter->params.sge.
650 */
651 int t4vf_get_sge_params(struct adapter *adapter)
652 {
653 struct sge_params *sge_params = &adapter->params.sge;
654 u32 params[7], vals[7];
655 int v;
656
657 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
658 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
659 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
660 FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
661 params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
662 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
663 params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
664 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
665 params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
666 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
667 params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
668 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
669 params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
670 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
671 v = t4vf_query_params(adapter, 7, params, vals);
672 if (v)
673 return v;
674 sge_params->sge_control = vals[0];
675 sge_params->sge_host_page_size = vals[1];
676 sge_params->sge_fl_buffer_size[0] = vals[2];
677 sge_params->sge_fl_buffer_size[1] = vals[3];
678 sge_params->sge_timer_value_0_and_1 = vals[4];
679 sge_params->sge_timer_value_2_and_3 = vals[5];
680 sge_params->sge_timer_value_4_and_5 = vals[6];
681
682 /* T4 uses a single control field to specify both the PCIe Padding and
683 * Packing Boundary. T5 introduced the ability to specify these
684 * separately with the Padding Boundary in SGE_CONTROL and and Packing
685 * Boundary in SGE_CONTROL2. So for T5 and later we need to grab
686 * SGE_CONTROL in order to determine how ingress packet data will be
687 * laid out in Packed Buffer Mode. Unfortunately, older versions of
688 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
689 * failure grabbing it we throw an error since we can't figure out the
690 * right value.
691 */
692 if (!is_t4(adapter->params.chip)) {
693 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
694 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
695 v = t4vf_query_params(adapter, 1, params, vals);
696 if (v != FW_SUCCESS) {
697 dev_err(adapter->pdev_dev,
698 "Unable to get SGE Control2; "
699 "probably old firmware.\n");
700 return v;
701 }
702 sge_params->sge_control2 = vals[0];
703 }
704
705 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
706 FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
707 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
708 FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
709 v = t4vf_query_params(adapter, 2, params, vals);
710 if (v)
711 return v;
712 sge_params->sge_ingress_rx_threshold = vals[0];
713 sge_params->sge_congestion_control = vals[1];
714
715 /* For T5 and later we want to use the new BAR2 Doorbells.
716 * Unfortunately, older firmware didn't allow the this register to be
717 * read.
718 */
719 if (!is_t4(adapter->params.chip)) {
720 u32 whoami;
721 unsigned int pf, s_hps, s_qpp;
722
723 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
724 FW_PARAMS_PARAM_XYZ_V(
725 SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
726 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
727 FW_PARAMS_PARAM_XYZ_V(
728 SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
729 v = t4vf_query_params(adapter, 2, params, vals);
730 if (v != FW_SUCCESS) {
731 dev_warn(adapter->pdev_dev,
732 "Unable to get VF SGE Queues/Page; "
733 "probably old firmware.\n");
734 return v;
735 }
736 sge_params->sge_egress_queues_per_page = vals[0];
737 sge_params->sge_ingress_queues_per_page = vals[1];
738
739 /* We need the Queues/Page for our VF. This is based on the
740 * PF from which we're instantiated and is indexed in the
741 * register we just read. Do it once here so other code in
742 * the driver can just use it.
743 */
744 whoami = t4_read_reg(adapter,
745 T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
746 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
747 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
748
749 s_hps = (HOSTPAGESIZEPF0_S +
750 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
751 sge_params->sge_vf_hps =
752 ((sge_params->sge_host_page_size >> s_hps)
753 & HOSTPAGESIZEPF0_M);
754
755 s_qpp = (QUEUESPERPAGEPF0_S +
756 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
757 sge_params->sge_vf_eq_qpp =
758 ((sge_params->sge_egress_queues_per_page >> s_qpp)
759 & QUEUESPERPAGEPF0_M);
760 sge_params->sge_vf_iq_qpp =
761 ((sge_params->sge_ingress_queues_per_page >> s_qpp)
762 & QUEUESPERPAGEPF0_M);
763 }
764
765 return 0;
766 }
767
768 /**
769 * t4vf_get_vpd_params - retrieve device VPD paremeters
770 * @adapter: the adapter
771 *
772 * Retrives various device Vital Product Data parameters. The parameters
773 * are stored in @adapter->params.vpd.
774 */
775 int t4vf_get_vpd_params(struct adapter *adapter)
776 {
777 struct vpd_params *vpd_params = &adapter->params.vpd;
778 u32 params[7], vals[7];
779 int v;
780
781 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
782 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
783 v = t4vf_query_params(adapter, 1, params, vals);
784 if (v)
785 return v;
786 vpd_params->cclk = vals[0];
787
788 return 0;
789 }
790
791 /**
792 * t4vf_get_dev_params - retrieve device paremeters
793 * @adapter: the adapter
794 *
795 * Retrives various device parameters. The parameters are stored in
796 * @adapter->params.dev.
797 */
798 int t4vf_get_dev_params(struct adapter *adapter)
799 {
800 struct dev_params *dev_params = &adapter->params.dev;
801 u32 params[7], vals[7];
802 int v;
803
804 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
805 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
806 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
807 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
808 v = t4vf_query_params(adapter, 2, params, vals);
809 if (v)
810 return v;
811 dev_params->fwrev = vals[0];
812 dev_params->tprev = vals[1];
813
814 return 0;
815 }
816
817 /**
818 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
819 * @adapter: the adapter
820 *
821 * Retrieves global RSS mode and parameters with which we have to live
822 * and stores them in the @adapter's RSS parameters.
823 */
824 int t4vf_get_rss_glb_config(struct adapter *adapter)
825 {
826 struct rss_params *rss = &adapter->params.rss;
827 struct fw_rss_glb_config_cmd cmd, rpl;
828 int v;
829
830 /*
831 * Execute an RSS Global Configuration read command to retrieve
832 * our RSS configuration.
833 */
834 memset(&cmd, 0, sizeof(cmd));
835 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
836 FW_CMD_REQUEST_F |
837 FW_CMD_READ_F);
838 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
839 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
840 if (v)
841 return v;
842
843 /*
844 * Transate the big-endian RSS Global Configuration into our
845 * cpu-endian format based on the RSS mode. We also do first level
846 * filtering at this point to weed out modes which don't support
847 * VF Drivers ...
848 */
849 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
850 be32_to_cpu(rpl.u.manual.mode_pkd));
851 switch (rss->mode) {
852 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
853 u32 word = be32_to_cpu(
854 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
855
856 rss->u.basicvirtual.synmapen =
857 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
858 rss->u.basicvirtual.syn4tupenipv6 =
859 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
860 rss->u.basicvirtual.syn2tupenipv6 =
861 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
862 rss->u.basicvirtual.syn4tupenipv4 =
863 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
864 rss->u.basicvirtual.syn2tupenipv4 =
865 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
866
867 rss->u.basicvirtual.ofdmapen =
868 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
869
870 rss->u.basicvirtual.tnlmapen =
871 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
872 rss->u.basicvirtual.tnlalllookup =
873 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
874
875 rss->u.basicvirtual.hashtoeplitz =
876 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
877
878 /* we need at least Tunnel Map Enable to be set */
879 if (!rss->u.basicvirtual.tnlmapen)
880 return -EINVAL;
881 break;
882 }
883
884 default:
885 /* all unknown/unsupported RSS modes result in an error */
886 return -EINVAL;
887 }
888
889 return 0;
890 }
891
892 /**
893 * t4vf_get_vfres - retrieve VF resource limits
894 * @adapter: the adapter
895 *
896 * Retrieves configured resource limits and capabilities for a virtual
897 * function. The results are stored in @adapter->vfres.
898 */
899 int t4vf_get_vfres(struct adapter *adapter)
900 {
901 struct vf_resources *vfres = &adapter->params.vfres;
902 struct fw_pfvf_cmd cmd, rpl;
903 int v;
904 u32 word;
905
906 /*
907 * Execute PFVF Read command to get VF resource limits; bail out early
908 * with error on command failure.
909 */
910 memset(&cmd, 0, sizeof(cmd));
911 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
912 FW_CMD_REQUEST_F |
913 FW_CMD_READ_F);
914 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
915 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
916 if (v)
917 return v;
918
919 /*
920 * Extract VF resource limits and return success.
921 */
922 word = be32_to_cpu(rpl.niqflint_niq);
923 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
924 vfres->niq = FW_PFVF_CMD_NIQ_G(word);
925
926 word = be32_to_cpu(rpl.type_to_neq);
927 vfres->neq = FW_PFVF_CMD_NEQ_G(word);
928 vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
929
930 word = be32_to_cpu(rpl.tc_to_nexactf);
931 vfres->tc = FW_PFVF_CMD_TC_G(word);
932 vfres->nvi = FW_PFVF_CMD_NVI_G(word);
933 vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
934
935 word = be32_to_cpu(rpl.r_caps_to_nethctrl);
936 vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
937 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
938 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
939
940 return 0;
941 }
942
943 /**
944 * t4vf_read_rss_vi_config - read a VI's RSS configuration
945 * @adapter: the adapter
946 * @viid: Virtual Interface ID
947 * @config: pointer to host-native VI RSS Configuration buffer
948 *
949 * Reads the Virtual Interface's RSS configuration information and
950 * translates it into CPU-native format.
951 */
952 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
953 union rss_vi_config *config)
954 {
955 struct fw_rss_vi_config_cmd cmd, rpl;
956 int v;
957
958 memset(&cmd, 0, sizeof(cmd));
959 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
960 FW_CMD_REQUEST_F |
961 FW_CMD_READ_F |
962 FW_RSS_VI_CONFIG_CMD_VIID(viid));
963 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
964 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
965 if (v)
966 return v;
967
968 switch (adapter->params.rss.mode) {
969 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
970 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
971
972 config->basicvirtual.ip6fourtupen =
973 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
974 config->basicvirtual.ip6twotupen =
975 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
976 config->basicvirtual.ip4fourtupen =
977 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
978 config->basicvirtual.ip4twotupen =
979 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
980 config->basicvirtual.udpen =
981 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
982 config->basicvirtual.defaultq =
983 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
984 break;
985 }
986
987 default:
988 return -EINVAL;
989 }
990
991 return 0;
992 }
993
994 /**
995 * t4vf_write_rss_vi_config - write a VI's RSS configuration
996 * @adapter: the adapter
997 * @viid: Virtual Interface ID
998 * @config: pointer to host-native VI RSS Configuration buffer
999 *
1000 * Write the Virtual Interface's RSS configuration information
1001 * (translating it into firmware-native format before writing).
1002 */
1003 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1004 union rss_vi_config *config)
1005 {
1006 struct fw_rss_vi_config_cmd cmd, rpl;
1007
1008 memset(&cmd, 0, sizeof(cmd));
1009 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1010 FW_CMD_REQUEST_F |
1011 FW_CMD_WRITE_F |
1012 FW_RSS_VI_CONFIG_CMD_VIID(viid));
1013 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1014 switch (adapter->params.rss.mode) {
1015 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1016 u32 word = 0;
1017
1018 if (config->basicvirtual.ip6fourtupen)
1019 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1020 if (config->basicvirtual.ip6twotupen)
1021 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1022 if (config->basicvirtual.ip4fourtupen)
1023 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1024 if (config->basicvirtual.ip4twotupen)
1025 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1026 if (config->basicvirtual.udpen)
1027 word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1028 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1029 config->basicvirtual.defaultq);
1030 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1031 break;
1032 }
1033
1034 default:
1035 return -EINVAL;
1036 }
1037
1038 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1039 }
1040
1041 /**
1042 * t4vf_config_rss_range - configure a portion of the RSS mapping table
1043 * @adapter: the adapter
1044 * @viid: Virtual Interface of RSS Table Slice
1045 * @start: starting entry in the table to write
1046 * @n: how many table entries to write
1047 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1048 * @nrspq: number of values in @rspq
1049 *
1050 * Programs the selected part of the VI's RSS mapping table with the
1051 * provided values. If @nrspq < @n the supplied values are used repeatedly
1052 * until the full table range is populated.
1053 *
1054 * The caller must ensure the values in @rspq are in the range 0..1023.
1055 */
1056 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1057 int start, int n, const u16 *rspq, int nrspq)
1058 {
1059 const u16 *rsp = rspq;
1060 const u16 *rsp_end = rspq+nrspq;
1061 struct fw_rss_ind_tbl_cmd cmd;
1062
1063 /*
1064 * Initialize firmware command template to write the RSS table.
1065 */
1066 memset(&cmd, 0, sizeof(cmd));
1067 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1068 FW_CMD_REQUEST_F |
1069 FW_CMD_WRITE_F |
1070 FW_RSS_IND_TBL_CMD_VIID_V(viid));
1071 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1072
1073 /*
1074 * Each firmware RSS command can accommodate up to 32 RSS Ingress
1075 * Queue Identifiers. These Ingress Queue IDs are packed three to
1076 * a 32-bit word as 10-bit values with the upper remaining 2 bits
1077 * reserved.
1078 */
1079 while (n > 0) {
1080 __be32 *qp = &cmd.iq0_to_iq2;
1081 int nq = min(n, 32);
1082 int ret;
1083
1084 /*
1085 * Set up the firmware RSS command header to send the next
1086 * "nq" Ingress Queue IDs to the firmware.
1087 */
1088 cmd.niqid = cpu_to_be16(nq);
1089 cmd.startidx = cpu_to_be16(start);
1090
1091 /*
1092 * "nq" more done for the start of the next loop.
1093 */
1094 start += nq;
1095 n -= nq;
1096
1097 /*
1098 * While there are still Ingress Queue IDs to stuff into the
1099 * current firmware RSS command, retrieve them from the
1100 * Ingress Queue ID array and insert them into the command.
1101 */
1102 while (nq > 0) {
1103 /*
1104 * Grab up to the next 3 Ingress Queue IDs (wrapping
1105 * around the Ingress Queue ID array if necessary) and
1106 * insert them into the firmware RSS command at the
1107 * current 3-tuple position within the commad.
1108 */
1109 u16 qbuf[3];
1110 u16 *qbp = qbuf;
1111 int nqbuf = min(3, nq);
1112
1113 nq -= nqbuf;
1114 qbuf[0] = qbuf[1] = qbuf[2] = 0;
1115 while (nqbuf) {
1116 nqbuf--;
1117 *qbp++ = *rsp++;
1118 if (rsp >= rsp_end)
1119 rsp = rspq;
1120 }
1121 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1122 FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1123 FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1124 }
1125
1126 /*
1127 * Send this portion of the RRS table update to the firmware;
1128 * bail out on any errors.
1129 */
1130 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1131 if (ret)
1132 return ret;
1133 }
1134 return 0;
1135 }
1136
1137 /**
1138 * t4vf_alloc_vi - allocate a virtual interface on a port
1139 * @adapter: the adapter
1140 * @port_id: physical port associated with the VI
1141 *
1142 * Allocate a new Virtual Interface and bind it to the indicated
1143 * physical port. Return the new Virtual Interface Identifier on
1144 * success, or a [negative] error number on failure.
1145 */
1146 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1147 {
1148 struct fw_vi_cmd cmd, rpl;
1149 int v;
1150
1151 /*
1152 * Execute a VI command to allocate Virtual Interface and return its
1153 * VIID.
1154 */
1155 memset(&cmd, 0, sizeof(cmd));
1156 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1157 FW_CMD_REQUEST_F |
1158 FW_CMD_WRITE_F |
1159 FW_CMD_EXEC_F);
1160 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1161 FW_VI_CMD_ALLOC_F);
1162 cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1163 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1164 if (v)
1165 return v;
1166
1167 return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1168 }
1169
1170 /**
1171 * t4vf_free_vi -- free a virtual interface
1172 * @adapter: the adapter
1173 * @viid: the virtual interface identifier
1174 *
1175 * Free a previously allocated Virtual Interface. Return an error on
1176 * failure.
1177 */
1178 int t4vf_free_vi(struct adapter *adapter, int viid)
1179 {
1180 struct fw_vi_cmd cmd;
1181
1182 /*
1183 * Execute a VI command to free the Virtual Interface.
1184 */
1185 memset(&cmd, 0, sizeof(cmd));
1186 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1187 FW_CMD_REQUEST_F |
1188 FW_CMD_EXEC_F);
1189 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1190 FW_VI_CMD_FREE_F);
1191 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1192 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1193 }
1194
1195 /**
1196 * t4vf_enable_vi - enable/disable a virtual interface
1197 * @adapter: the adapter
1198 * @viid: the Virtual Interface ID
1199 * @rx_en: 1=enable Rx, 0=disable Rx
1200 * @tx_en: 1=enable Tx, 0=disable Tx
1201 *
1202 * Enables/disables a virtual interface.
1203 */
1204 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1205 bool rx_en, bool tx_en)
1206 {
1207 struct fw_vi_enable_cmd cmd;
1208
1209 memset(&cmd, 0, sizeof(cmd));
1210 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1211 FW_CMD_REQUEST_F |
1212 FW_CMD_EXEC_F |
1213 FW_VI_ENABLE_CMD_VIID_V(viid));
1214 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1215 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1216 FW_LEN16(cmd));
1217 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1218 }
1219
1220 /**
1221 * t4vf_identify_port - identify a VI's port by blinking its LED
1222 * @adapter: the adapter
1223 * @viid: the Virtual Interface ID
1224 * @nblinks: how many times to blink LED at 2.5 Hz
1225 *
1226 * Identifies a VI's port by blinking its LED.
1227 */
1228 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1229 unsigned int nblinks)
1230 {
1231 struct fw_vi_enable_cmd cmd;
1232
1233 memset(&cmd, 0, sizeof(cmd));
1234 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1235 FW_CMD_REQUEST_F |
1236 FW_CMD_EXEC_F |
1237 FW_VI_ENABLE_CMD_VIID_V(viid));
1238 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1239 FW_LEN16(cmd));
1240 cmd.blinkdur = cpu_to_be16(nblinks);
1241 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1242 }
1243
1244 /**
1245 * t4vf_set_rxmode - set Rx properties of a virtual interface
1246 * @adapter: the adapter
1247 * @viid: the VI id
1248 * @mtu: the new MTU or -1 for no change
1249 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1250 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1251 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1252 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1253 * -1 no change
1254 *
1255 * Sets Rx properties of a virtual interface.
1256 */
1257 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1258 int mtu, int promisc, int all_multi, int bcast, int vlanex,
1259 bool sleep_ok)
1260 {
1261 struct fw_vi_rxmode_cmd cmd;
1262
1263 /* convert to FW values */
1264 if (mtu < 0)
1265 mtu = FW_VI_RXMODE_CMD_MTU_M;
1266 if (promisc < 0)
1267 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1268 if (all_multi < 0)
1269 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1270 if (bcast < 0)
1271 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1272 if (vlanex < 0)
1273 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1274
1275 memset(&cmd, 0, sizeof(cmd));
1276 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1277 FW_CMD_REQUEST_F |
1278 FW_CMD_WRITE_F |
1279 FW_VI_RXMODE_CMD_VIID_V(viid));
1280 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1281 cmd.mtu_to_vlanexen =
1282 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1283 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1284 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1285 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1286 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1287 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1288 }
1289
1290 /**
1291 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1292 * @adapter: the adapter
1293 * @viid: the Virtual Interface Identifier
1294 * @free: if true any existing filters for this VI id are first removed
1295 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1296 * @addr: the MAC address(es)
1297 * @idx: where to store the index of each allocated filter
1298 * @hash: pointer to hash address filter bitmap
1299 * @sleep_ok: call is allowed to sleep
1300 *
1301 * Allocates an exact-match filter for each of the supplied addresses and
1302 * sets it to the corresponding address. If @idx is not %NULL it should
1303 * have at least @naddr entries, each of which will be set to the index of
1304 * the filter allocated for the corresponding MAC address. If a filter
1305 * could not be allocated for an address its index is set to 0xffff.
1306 * If @hash is not %NULL addresses that fail to allocate an exact filter
1307 * are hashed and update the hash filter bitmap pointed at by @hash.
1308 *
1309 * Returns a negative error number or the number of filters allocated.
1310 */
1311 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1312 unsigned int naddr, const u8 **addr, u16 *idx,
1313 u64 *hash, bool sleep_ok)
1314 {
1315 int offset, ret = 0;
1316 unsigned nfilters = 0;
1317 unsigned int rem = naddr;
1318 struct fw_vi_mac_cmd cmd, rpl;
1319 unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1320
1321 if (naddr > max_naddr)
1322 return -EINVAL;
1323
1324 for (offset = 0; offset < naddr; /**/) {
1325 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1326 ? rem
1327 : ARRAY_SIZE(cmd.u.exact));
1328 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1329 u.exact[fw_naddr]), 16);
1330 struct fw_vi_mac_exact *p;
1331 int i;
1332
1333 memset(&cmd, 0, sizeof(cmd));
1334 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1335 FW_CMD_REQUEST_F |
1336 FW_CMD_WRITE_F |
1337 (free ? FW_CMD_EXEC_F : 0) |
1338 FW_VI_MAC_CMD_VIID_V(viid));
1339 cmd.freemacs_to_len16 =
1340 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1341 FW_CMD_LEN16_V(len16));
1342
1343 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1344 p->valid_to_idx = cpu_to_be16(
1345 FW_VI_MAC_CMD_VALID_F |
1346 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1347 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1348 }
1349
1350
1351 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1352 sleep_ok);
1353 if (ret && ret != -ENOMEM)
1354 break;
1355
1356 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1357 u16 index = FW_VI_MAC_CMD_IDX_G(
1358 be16_to_cpu(p->valid_to_idx));
1359
1360 if (idx)
1361 idx[offset+i] =
1362 (index >= max_naddr
1363 ? 0xffff
1364 : index);
1365 if (index < max_naddr)
1366 nfilters++;
1367 else if (hash)
1368 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1369 }
1370
1371 free = false;
1372 offset += fw_naddr;
1373 rem -= fw_naddr;
1374 }
1375
1376 /*
1377 * If there were no errors or we merely ran out of room in our MAC
1378 * address arena, return the number of filters actually written.
1379 */
1380 if (ret == 0 || ret == -ENOMEM)
1381 ret = nfilters;
1382 return ret;
1383 }
1384
1385 /**
1386 * t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1387 * @adapter: the adapter
1388 * @viid: the VI id
1389 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1390 * @addr: the MAC address(es)
1391 * @sleep_ok: call is allowed to sleep
1392 *
1393 * Frees the exact-match filter for each of the supplied addresses
1394 *
1395 * Returns a negative error number or the number of filters freed.
1396 */
1397 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1398 unsigned int naddr, const u8 **addr, bool sleep_ok)
1399 {
1400 int offset, ret = 0;
1401 struct fw_vi_mac_cmd cmd;
1402 unsigned int nfilters = 0;
1403 unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1404 unsigned int rem = naddr;
1405
1406 if (naddr > max_naddr)
1407 return -EINVAL;
1408
1409 for (offset = 0; offset < (int)naddr ; /**/) {
1410 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1411 rem : ARRAY_SIZE(cmd.u.exact));
1412 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1413 u.exact[fw_naddr]), 16);
1414 struct fw_vi_mac_exact *p;
1415 int i;
1416
1417 memset(&cmd, 0, sizeof(cmd));
1418 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1419 FW_CMD_REQUEST_F |
1420 FW_CMD_WRITE_F |
1421 FW_CMD_EXEC_V(0) |
1422 FW_VI_MAC_CMD_VIID_V(viid));
1423 cmd.freemacs_to_len16 =
1424 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1425 FW_CMD_LEN16_V(len16));
1426
1427 for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1428 p->valid_to_idx = cpu_to_be16(
1429 FW_VI_MAC_CMD_VALID_F |
1430 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1431 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1432 }
1433
1434 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1435 sleep_ok);
1436 if (ret)
1437 break;
1438
1439 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1440 u16 index = FW_VI_MAC_CMD_IDX_G(
1441 be16_to_cpu(p->valid_to_idx));
1442
1443 if (index < max_naddr)
1444 nfilters++;
1445 }
1446
1447 offset += fw_naddr;
1448 rem -= fw_naddr;
1449 }
1450
1451 if (ret == 0)
1452 ret = nfilters;
1453 return ret;
1454 }
1455
1456 /**
1457 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1458 * @adapter: the adapter
1459 * @viid: the Virtual Interface ID
1460 * @idx: index of existing filter for old value of MAC address, or -1
1461 * @addr: the new MAC address value
1462 * @persist: if idx < 0, the new MAC allocation should be persistent
1463 *
1464 * Modifies an exact-match filter and sets it to the new MAC address.
1465 * Note that in general it is not possible to modify the value of a given
1466 * filter so the generic way to modify an address filter is to free the
1467 * one being used by the old address value and allocate a new filter for
1468 * the new address value. @idx can be -1 if the address is a new
1469 * addition.
1470 *
1471 * Returns a negative error number or the index of the filter with the new
1472 * MAC value.
1473 */
1474 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1475 int idx, const u8 *addr, bool persist)
1476 {
1477 int ret;
1478 struct fw_vi_mac_cmd cmd, rpl;
1479 struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1480 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1481 u.exact[1]), 16);
1482 unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1483
1484 /*
1485 * If this is a new allocation, determine whether it should be
1486 * persistent (across a "freemacs" operation) or not.
1487 */
1488 if (idx < 0)
1489 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1490
1491 memset(&cmd, 0, sizeof(cmd));
1492 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1493 FW_CMD_REQUEST_F |
1494 FW_CMD_WRITE_F |
1495 FW_VI_MAC_CMD_VIID_V(viid));
1496 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1497 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1498 FW_VI_MAC_CMD_IDX_V(idx));
1499 memcpy(p->macaddr, addr, sizeof(p->macaddr));
1500
1501 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1502 if (ret == 0) {
1503 p = &rpl.u.exact[0];
1504 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1505 if (ret >= max_mac_addr)
1506 ret = -ENOMEM;
1507 }
1508 return ret;
1509 }
1510
1511 /**
1512 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1513 * @adapter: the adapter
1514 * @viid: the Virtual Interface Identifier
1515 * @ucast: whether the hash filter should also match unicast addresses
1516 * @vec: the value to be written to the hash filter
1517 * @sleep_ok: call is allowed to sleep
1518 *
1519 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1520 */
1521 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1522 bool ucast, u64 vec, bool sleep_ok)
1523 {
1524 struct fw_vi_mac_cmd cmd;
1525 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1526 u.exact[0]), 16);
1527
1528 memset(&cmd, 0, sizeof(cmd));
1529 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1530 FW_CMD_REQUEST_F |
1531 FW_CMD_WRITE_F |
1532 FW_VI_ENABLE_CMD_VIID_V(viid));
1533 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1534 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1535 FW_CMD_LEN16_V(len16));
1536 cmd.u.hash.hashvec = cpu_to_be64(vec);
1537 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1538 }
1539
1540 /**
1541 * t4vf_get_port_stats - collect "port" statistics
1542 * @adapter: the adapter
1543 * @pidx: the port index
1544 * @s: the stats structure to fill
1545 *
1546 * Collect statistics for the "port"'s Virtual Interface.
1547 */
1548 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1549 struct t4vf_port_stats *s)
1550 {
1551 struct port_info *pi = adap2pinfo(adapter, pidx);
1552 struct fw_vi_stats_vf fwstats;
1553 unsigned int rem = VI_VF_NUM_STATS;
1554 __be64 *fwsp = (__be64 *)&fwstats;
1555
1556 /*
1557 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1558 * commands. We could use a Work Request and get all of them at once
1559 * but that's an asynchronous interface which is awkward to use.
1560 */
1561 while (rem) {
1562 unsigned int ix = VI_VF_NUM_STATS - rem;
1563 unsigned int nstats = min(6U, rem);
1564 struct fw_vi_stats_cmd cmd, rpl;
1565 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1566 sizeof(struct fw_vi_stats_ctl));
1567 size_t len16 = DIV_ROUND_UP(len, 16);
1568 int ret;
1569
1570 memset(&cmd, 0, sizeof(cmd));
1571 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1572 FW_VI_STATS_CMD_VIID_V(pi->viid) |
1573 FW_CMD_REQUEST_F |
1574 FW_CMD_READ_F);
1575 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1576 cmd.u.ctl.nstats_ix =
1577 cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1578 FW_VI_STATS_CMD_NSTATS_V(nstats));
1579 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1580 if (ret)
1581 return ret;
1582
1583 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1584
1585 rem -= nstats;
1586 fwsp += nstats;
1587 }
1588
1589 /*
1590 * Translate firmware statistics into host native statistics.
1591 */
1592 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1593 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1594 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1595 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1596 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1597 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1598 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1599 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1600 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1601
1602 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1603 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1604 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1605 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1606 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1607 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1608
1609 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1610
1611 return 0;
1612 }
1613
1614 /**
1615 * t4vf_iq_free - free an ingress queue and its free lists
1616 * @adapter: the adapter
1617 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1618 * @iqid: ingress queue ID
1619 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1620 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1621 *
1622 * Frees an ingress queue and its associated free lists, if any.
1623 */
1624 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1625 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1626 {
1627 struct fw_iq_cmd cmd;
1628
1629 memset(&cmd, 0, sizeof(cmd));
1630 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1631 FW_CMD_REQUEST_F |
1632 FW_CMD_EXEC_F);
1633 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1634 FW_LEN16(cmd));
1635 cmd.type_to_iqandstindex =
1636 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1637
1638 cmd.iqid = cpu_to_be16(iqid);
1639 cmd.fl0id = cpu_to_be16(fl0id);
1640 cmd.fl1id = cpu_to_be16(fl1id);
1641 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1642 }
1643
1644 /**
1645 * t4vf_eth_eq_free - free an Ethernet egress queue
1646 * @adapter: the adapter
1647 * @eqid: egress queue ID
1648 *
1649 * Frees an Ethernet egress queue.
1650 */
1651 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1652 {
1653 struct fw_eq_eth_cmd cmd;
1654
1655 memset(&cmd, 0, sizeof(cmd));
1656 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1657 FW_CMD_REQUEST_F |
1658 FW_CMD_EXEC_F);
1659 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1660 FW_LEN16(cmd));
1661 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1662 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1663 }
1664
1665 /**
1666 * t4vf_handle_fw_rpl - process a firmware reply message
1667 * @adapter: the adapter
1668 * @rpl: start of the firmware message
1669 *
1670 * Processes a firmware message, such as link state change messages.
1671 */
1672 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1673 {
1674 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1675 u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
1676
1677 switch (opcode) {
1678 case FW_PORT_CMD: {
1679 /*
1680 * Link/module state change message.
1681 */
1682 const struct fw_port_cmd *port_cmd =
1683 (const struct fw_port_cmd *)rpl;
1684 u32 stat, mod;
1685 int action, port_id, link_ok, speed, fc, pidx;
1686
1687 /*
1688 * Extract various fields from port status change message.
1689 */
1690 action = FW_PORT_CMD_ACTION_G(
1691 be32_to_cpu(port_cmd->action_to_len16));
1692 if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1693 dev_err(adapter->pdev_dev,
1694 "Unknown firmware PORT reply action %x\n",
1695 action);
1696 break;
1697 }
1698
1699 port_id = FW_PORT_CMD_PORTID_G(
1700 be32_to_cpu(port_cmd->op_to_portid));
1701
1702 stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1703 link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
1704 speed = 0;
1705 fc = 0;
1706 if (stat & FW_PORT_CMD_RXPAUSE_F)
1707 fc |= PAUSE_RX;
1708 if (stat & FW_PORT_CMD_TXPAUSE_F)
1709 fc |= PAUSE_TX;
1710 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1711 speed = 100;
1712 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1713 speed = 1000;
1714 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1715 speed = 10000;
1716 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1717 speed = 25000;
1718 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1719 speed = 40000;
1720 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1721 speed = 100000;
1722
1723 /*
1724 * Scan all of our "ports" (Virtual Interfaces) looking for
1725 * those bound to the physical port which has changed. If
1726 * our recorded state doesn't match the current state,
1727 * signal that change to the OS code.
1728 */
1729 for_each_port(adapter, pidx) {
1730 struct port_info *pi = adap2pinfo(adapter, pidx);
1731 struct link_config *lc;
1732
1733 if (pi->port_id != port_id)
1734 continue;
1735
1736 lc = &pi->link_cfg;
1737
1738 mod = FW_PORT_CMD_MODTYPE_G(stat);
1739 if (mod != pi->mod_type) {
1740 pi->mod_type = mod;
1741 t4vf_os_portmod_changed(adapter, pidx);
1742 }
1743
1744 if (link_ok != lc->link_ok || speed != lc->speed ||
1745 fc != lc->fc) {
1746 /* something changed */
1747 lc->link_ok = link_ok;
1748 lc->speed = speed;
1749 lc->fc = fc;
1750 lc->supported =
1751 be16_to_cpu(port_cmd->u.info.pcap);
1752 lc->lp_advertising =
1753 be16_to_cpu(port_cmd->u.info.lpacap);
1754 t4vf_os_link_changed(adapter, pidx, link_ok);
1755 }
1756 }
1757 break;
1758 }
1759
1760 default:
1761 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1762 opcode);
1763 }
1764 return 0;
1765 }
1766
1767 /**
1768 */
1769 int t4vf_prep_adapter(struct adapter *adapter)
1770 {
1771 int err;
1772 unsigned int chipid;
1773
1774 /* Wait for the device to become ready before proceeding ...
1775 */
1776 err = t4vf_wait_dev_ready(adapter);
1777 if (err)
1778 return err;
1779
1780 /* Default port and clock for debugging in case we can't reach
1781 * firmware.
1782 */
1783 adapter->params.nports = 1;
1784 adapter->params.vfres.pmask = 1;
1785 adapter->params.vpd.cclk = 50000;
1786
1787 adapter->params.chip = 0;
1788 switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
1789 case CHELSIO_T4:
1790 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
1791 adapter->params.arch.sge_fl_db = DBPRIO_F;
1792 adapter->params.arch.mps_tcam_size =
1793 NUM_MPS_CLS_SRAM_L_INSTANCES;
1794 break;
1795
1796 case CHELSIO_T5:
1797 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1798 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
1799 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
1800 adapter->params.arch.mps_tcam_size =
1801 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1802 break;
1803
1804 case CHELSIO_T6:
1805 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1806 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
1807 adapter->params.arch.sge_fl_db = 0;
1808 adapter->params.arch.mps_tcam_size =
1809 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1810 break;
1811 }
1812
1813 return 0;
1814 }
This page took 0.071575 seconds and 5 git commands to generate.