Merge remote-tracking branch 'omap_dss2/for-next'
[deliverable/linux.git] / drivers / net / ethernet / davicom / dm9000.c
1 /*
2 * Davicom DM9000 Fast Ethernet driver for Linux.
3 * Copyright (C) 1997 Sten Wang
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16 *
17 * Additional updates, Copyright:
18 * Ben Dooks <ben@simtec.co.uk>
19 * Sascha Hauer <s.hauer@pengutronix.de>
20 */
21
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/interrupt.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/crc32.h>
30 #include <linux/mii.h>
31 #include <linux/of.h>
32 #include <linux/of_net.h>
33 #include <linux/ethtool.h>
34 #include <linux/dm9000.h>
35 #include <linux/delay.h>
36 #include <linux/platform_device.h>
37 #include <linux/irq.h>
38 #include <linux/slab.h>
39 #include <linux/regulator/consumer.h>
40 #include <linux/gpio.h>
41 #include <linux/of_gpio.h>
42
43 #include <asm/delay.h>
44 #include <asm/irq.h>
45 #include <asm/io.h>
46
47 #include "dm9000.h"
48
49 /* Board/System/Debug information/definition ---------------- */
50
51 #define DM9000_PHY 0x40 /* PHY address 0x01 */
52
53 #define CARDNAME "dm9000"
54 #define DRV_VERSION "1.31"
55
56 /*
57 * Transmit timeout, default 5 seconds.
58 */
59 static int watchdog = 5000;
60 module_param(watchdog, int, 0400);
61 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
62
63 /*
64 * Debug messages level
65 */
66 static int debug;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
69
70 /* DM9000 register address locking.
71 *
72 * The DM9000 uses an address register to control where data written
73 * to the data register goes. This means that the address register
74 * must be preserved over interrupts or similar calls.
75 *
76 * During interrupt and other critical calls, a spinlock is used to
77 * protect the system, but the calls themselves save the address
78 * in the address register in case they are interrupting another
79 * access to the device.
80 *
81 * For general accesses a lock is provided so that calls which are
82 * allowed to sleep are serialised so that the address register does
83 * not need to be saved. This lock also serves to serialise access
84 * to the EEPROM and PHY access registers which are shared between
85 * these two devices.
86 */
87
88 /* The driver supports the original DM9000E, and now the two newer
89 * devices, DM9000A and DM9000B.
90 */
91
92 enum dm9000_type {
93 TYPE_DM9000E, /* original DM9000 */
94 TYPE_DM9000A,
95 TYPE_DM9000B
96 };
97
98 /* Structure/enum declaration ------------------------------- */
99 struct board_info {
100
101 void __iomem *io_addr; /* Register I/O base address */
102 void __iomem *io_data; /* Data I/O address */
103 u16 irq; /* IRQ */
104
105 u16 tx_pkt_cnt;
106 u16 queue_pkt_len;
107 u16 queue_start_addr;
108 u16 queue_ip_summed;
109 u16 dbug_cnt;
110 u8 io_mode; /* 0:word, 2:byte */
111 u8 phy_addr;
112 u8 imr_all;
113
114 unsigned int flags;
115 unsigned int in_timeout:1;
116 unsigned int in_suspend:1;
117 unsigned int wake_supported:1;
118
119 enum dm9000_type type;
120
121 void (*inblk)(void __iomem *port, void *data, int length);
122 void (*outblk)(void __iomem *port, void *data, int length);
123 void (*dumpblk)(void __iomem *port, int length);
124
125 struct device *dev; /* parent device */
126
127 struct resource *addr_res; /* resources found */
128 struct resource *data_res;
129 struct resource *addr_req; /* resources requested */
130 struct resource *data_req;
131
132 int irq_wake;
133
134 struct mutex addr_lock; /* phy and eeprom access lock */
135
136 struct delayed_work phy_poll;
137 struct net_device *ndev;
138
139 spinlock_t lock;
140
141 struct mii_if_info mii;
142 u32 msg_enable;
143 u32 wake_state;
144
145 int ip_summed;
146 };
147
148 /* debug code */
149
150 #define dm9000_dbg(db, lev, msg...) do { \
151 if ((lev) < debug) { \
152 dev_dbg(db->dev, msg); \
153 } \
154 } while (0)
155
156 static inline struct board_info *to_dm9000_board(struct net_device *dev)
157 {
158 return netdev_priv(dev);
159 }
160
161 /* DM9000 network board routine ---------------------------- */
162
163 /*
164 * Read a byte from I/O port
165 */
166 static u8
167 ior(struct board_info *db, int reg)
168 {
169 writeb(reg, db->io_addr);
170 return readb(db->io_data);
171 }
172
173 /*
174 * Write a byte to I/O port
175 */
176
177 static void
178 iow(struct board_info *db, int reg, int value)
179 {
180 writeb(reg, db->io_addr);
181 writeb(value, db->io_data);
182 }
183
184 static void
185 dm9000_reset(struct board_info *db)
186 {
187 dev_dbg(db->dev, "resetting device\n");
188
189 /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
190 * The essential point is that we have to do a double reset, and the
191 * instruction is to set LBK into MAC internal loopback mode.
192 */
193 iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
194 udelay(100); /* Application note says at least 20 us */
195 if (ior(db, DM9000_NCR) & 1)
196 dev_err(db->dev, "dm9000 did not respond to first reset\n");
197
198 iow(db, DM9000_NCR, 0);
199 iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
200 udelay(100);
201 if (ior(db, DM9000_NCR) & 1)
202 dev_err(db->dev, "dm9000 did not respond to second reset\n");
203 }
204
205 /* routines for sending block to chip */
206
207 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
208 {
209 iowrite8_rep(reg, data, count);
210 }
211
212 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
213 {
214 iowrite16_rep(reg, data, (count+1) >> 1);
215 }
216
217 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
218 {
219 iowrite32_rep(reg, data, (count+3) >> 2);
220 }
221
222 /* input block from chip to memory */
223
224 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
225 {
226 ioread8_rep(reg, data, count);
227 }
228
229
230 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
231 {
232 ioread16_rep(reg, data, (count+1) >> 1);
233 }
234
235 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
236 {
237 ioread32_rep(reg, data, (count+3) >> 2);
238 }
239
240 /* dump block from chip to null */
241
242 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
243 {
244 int i;
245 int tmp;
246
247 for (i = 0; i < count; i++)
248 tmp = readb(reg);
249 }
250
251 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
252 {
253 int i;
254 int tmp;
255
256 count = (count + 1) >> 1;
257
258 for (i = 0; i < count; i++)
259 tmp = readw(reg);
260 }
261
262 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
263 {
264 int i;
265 int tmp;
266
267 count = (count + 3) >> 2;
268
269 for (i = 0; i < count; i++)
270 tmp = readl(reg);
271 }
272
273 /*
274 * Sleep, either by using msleep() or if we are suspending, then
275 * use mdelay() to sleep.
276 */
277 static void dm9000_msleep(struct board_info *db, unsigned int ms)
278 {
279 if (db->in_suspend || db->in_timeout)
280 mdelay(ms);
281 else
282 msleep(ms);
283 }
284
285 /* Read a word from phyxcer */
286 static int
287 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
288 {
289 struct board_info *db = netdev_priv(dev);
290 unsigned long flags;
291 unsigned int reg_save;
292 int ret;
293
294 mutex_lock(&db->addr_lock);
295
296 spin_lock_irqsave(&db->lock, flags);
297
298 /* Save previous register address */
299 reg_save = readb(db->io_addr);
300
301 /* Fill the phyxcer register into REG_0C */
302 iow(db, DM9000_EPAR, DM9000_PHY | reg);
303
304 /* Issue phyxcer read command */
305 iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
306
307 writeb(reg_save, db->io_addr);
308 spin_unlock_irqrestore(&db->lock, flags);
309
310 dm9000_msleep(db, 1); /* Wait read complete */
311
312 spin_lock_irqsave(&db->lock, flags);
313 reg_save = readb(db->io_addr);
314
315 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
316
317 /* The read data keeps on REG_0D & REG_0E */
318 ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
319
320 /* restore the previous address */
321 writeb(reg_save, db->io_addr);
322 spin_unlock_irqrestore(&db->lock, flags);
323
324 mutex_unlock(&db->addr_lock);
325
326 dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
327 return ret;
328 }
329
330 /* Write a word to phyxcer */
331 static void
332 dm9000_phy_write(struct net_device *dev,
333 int phyaddr_unused, int reg, int value)
334 {
335 struct board_info *db = netdev_priv(dev);
336 unsigned long flags;
337 unsigned long reg_save;
338
339 dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
340 if (!db->in_timeout)
341 mutex_lock(&db->addr_lock);
342
343 spin_lock_irqsave(&db->lock, flags);
344
345 /* Save previous register address */
346 reg_save = readb(db->io_addr);
347
348 /* Fill the phyxcer register into REG_0C */
349 iow(db, DM9000_EPAR, DM9000_PHY | reg);
350
351 /* Fill the written data into REG_0D & REG_0E */
352 iow(db, DM9000_EPDRL, value);
353 iow(db, DM9000_EPDRH, value >> 8);
354
355 /* Issue phyxcer write command */
356 iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
357
358 writeb(reg_save, db->io_addr);
359 spin_unlock_irqrestore(&db->lock, flags);
360
361 dm9000_msleep(db, 1); /* Wait write complete */
362
363 spin_lock_irqsave(&db->lock, flags);
364 reg_save = readb(db->io_addr);
365
366 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
367
368 /* restore the previous address */
369 writeb(reg_save, db->io_addr);
370
371 spin_unlock_irqrestore(&db->lock, flags);
372 if (!db->in_timeout)
373 mutex_unlock(&db->addr_lock);
374 }
375
376 /* dm9000_set_io
377 *
378 * select the specified set of io routines to use with the
379 * device
380 */
381
382 static void dm9000_set_io(struct board_info *db, int byte_width)
383 {
384 /* use the size of the data resource to work out what IO
385 * routines we want to use
386 */
387
388 switch (byte_width) {
389 case 1:
390 db->dumpblk = dm9000_dumpblk_8bit;
391 db->outblk = dm9000_outblk_8bit;
392 db->inblk = dm9000_inblk_8bit;
393 break;
394
395
396 case 3:
397 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
398 case 2:
399 db->dumpblk = dm9000_dumpblk_16bit;
400 db->outblk = dm9000_outblk_16bit;
401 db->inblk = dm9000_inblk_16bit;
402 break;
403
404 case 4:
405 default:
406 db->dumpblk = dm9000_dumpblk_32bit;
407 db->outblk = dm9000_outblk_32bit;
408 db->inblk = dm9000_inblk_32bit;
409 break;
410 }
411 }
412
413 static void dm9000_schedule_poll(struct board_info *db)
414 {
415 if (db->type == TYPE_DM9000E)
416 schedule_delayed_work(&db->phy_poll, HZ * 2);
417 }
418
419 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
420 {
421 struct board_info *dm = to_dm9000_board(dev);
422
423 if (!netif_running(dev))
424 return -EINVAL;
425
426 return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
427 }
428
429 static unsigned int
430 dm9000_read_locked(struct board_info *db, int reg)
431 {
432 unsigned long flags;
433 unsigned int ret;
434
435 spin_lock_irqsave(&db->lock, flags);
436 ret = ior(db, reg);
437 spin_unlock_irqrestore(&db->lock, flags);
438
439 return ret;
440 }
441
442 static int dm9000_wait_eeprom(struct board_info *db)
443 {
444 unsigned int status;
445 int timeout = 8; /* wait max 8msec */
446
447 /* The DM9000 data sheets say we should be able to
448 * poll the ERRE bit in EPCR to wait for the EEPROM
449 * operation. From testing several chips, this bit
450 * does not seem to work.
451 *
452 * We attempt to use the bit, but fall back to the
453 * timeout (which is why we do not return an error
454 * on expiry) to say that the EEPROM operation has
455 * completed.
456 */
457
458 while (1) {
459 status = dm9000_read_locked(db, DM9000_EPCR);
460
461 if ((status & EPCR_ERRE) == 0)
462 break;
463
464 msleep(1);
465
466 if (timeout-- < 0) {
467 dev_dbg(db->dev, "timeout waiting EEPROM\n");
468 break;
469 }
470 }
471
472 return 0;
473 }
474
475 /*
476 * Read a word data from EEPROM
477 */
478 static void
479 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
480 {
481 unsigned long flags;
482
483 if (db->flags & DM9000_PLATF_NO_EEPROM) {
484 to[0] = 0xff;
485 to[1] = 0xff;
486 return;
487 }
488
489 mutex_lock(&db->addr_lock);
490
491 spin_lock_irqsave(&db->lock, flags);
492
493 iow(db, DM9000_EPAR, offset);
494 iow(db, DM9000_EPCR, EPCR_ERPRR);
495
496 spin_unlock_irqrestore(&db->lock, flags);
497
498 dm9000_wait_eeprom(db);
499
500 /* delay for at-least 150uS */
501 msleep(1);
502
503 spin_lock_irqsave(&db->lock, flags);
504
505 iow(db, DM9000_EPCR, 0x0);
506
507 to[0] = ior(db, DM9000_EPDRL);
508 to[1] = ior(db, DM9000_EPDRH);
509
510 spin_unlock_irqrestore(&db->lock, flags);
511
512 mutex_unlock(&db->addr_lock);
513 }
514
515 /*
516 * Write a word data to SROM
517 */
518 static void
519 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
520 {
521 unsigned long flags;
522
523 if (db->flags & DM9000_PLATF_NO_EEPROM)
524 return;
525
526 mutex_lock(&db->addr_lock);
527
528 spin_lock_irqsave(&db->lock, flags);
529 iow(db, DM9000_EPAR, offset);
530 iow(db, DM9000_EPDRH, data[1]);
531 iow(db, DM9000_EPDRL, data[0]);
532 iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
533 spin_unlock_irqrestore(&db->lock, flags);
534
535 dm9000_wait_eeprom(db);
536
537 mdelay(1); /* wait at least 150uS to clear */
538
539 spin_lock_irqsave(&db->lock, flags);
540 iow(db, DM9000_EPCR, 0);
541 spin_unlock_irqrestore(&db->lock, flags);
542
543 mutex_unlock(&db->addr_lock);
544 }
545
546 /* ethtool ops */
547
548 static void dm9000_get_drvinfo(struct net_device *dev,
549 struct ethtool_drvinfo *info)
550 {
551 struct board_info *dm = to_dm9000_board(dev);
552
553 strlcpy(info->driver, CARDNAME, sizeof(info->driver));
554 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
555 strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
556 sizeof(info->bus_info));
557 }
558
559 static u32 dm9000_get_msglevel(struct net_device *dev)
560 {
561 struct board_info *dm = to_dm9000_board(dev);
562
563 return dm->msg_enable;
564 }
565
566 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
567 {
568 struct board_info *dm = to_dm9000_board(dev);
569
570 dm->msg_enable = value;
571 }
572
573 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
574 {
575 struct board_info *dm = to_dm9000_board(dev);
576
577 mii_ethtool_gset(&dm->mii, cmd);
578 return 0;
579 }
580
581 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
582 {
583 struct board_info *dm = to_dm9000_board(dev);
584
585 return mii_ethtool_sset(&dm->mii, cmd);
586 }
587
588 static int dm9000_nway_reset(struct net_device *dev)
589 {
590 struct board_info *dm = to_dm9000_board(dev);
591 return mii_nway_restart(&dm->mii);
592 }
593
594 static int dm9000_set_features(struct net_device *dev,
595 netdev_features_t features)
596 {
597 struct board_info *dm = to_dm9000_board(dev);
598 netdev_features_t changed = dev->features ^ features;
599 unsigned long flags;
600
601 if (!(changed & NETIF_F_RXCSUM))
602 return 0;
603
604 spin_lock_irqsave(&dm->lock, flags);
605 iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
606 spin_unlock_irqrestore(&dm->lock, flags);
607
608 return 0;
609 }
610
611 static u32 dm9000_get_link(struct net_device *dev)
612 {
613 struct board_info *dm = to_dm9000_board(dev);
614 u32 ret;
615
616 if (dm->flags & DM9000_PLATF_EXT_PHY)
617 ret = mii_link_ok(&dm->mii);
618 else
619 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
620
621 return ret;
622 }
623
624 #define DM_EEPROM_MAGIC (0x444D394B)
625
626 static int dm9000_get_eeprom_len(struct net_device *dev)
627 {
628 return 128;
629 }
630
631 static int dm9000_get_eeprom(struct net_device *dev,
632 struct ethtool_eeprom *ee, u8 *data)
633 {
634 struct board_info *dm = to_dm9000_board(dev);
635 int offset = ee->offset;
636 int len = ee->len;
637 int i;
638
639 /* EEPROM access is aligned to two bytes */
640
641 if ((len & 1) != 0 || (offset & 1) != 0)
642 return -EINVAL;
643
644 if (dm->flags & DM9000_PLATF_NO_EEPROM)
645 return -ENOENT;
646
647 ee->magic = DM_EEPROM_MAGIC;
648
649 for (i = 0; i < len; i += 2)
650 dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
651
652 return 0;
653 }
654
655 static int dm9000_set_eeprom(struct net_device *dev,
656 struct ethtool_eeprom *ee, u8 *data)
657 {
658 struct board_info *dm = to_dm9000_board(dev);
659 int offset = ee->offset;
660 int len = ee->len;
661 int done;
662
663 /* EEPROM access is aligned to two bytes */
664
665 if (dm->flags & DM9000_PLATF_NO_EEPROM)
666 return -ENOENT;
667
668 if (ee->magic != DM_EEPROM_MAGIC)
669 return -EINVAL;
670
671 while (len > 0) {
672 if (len & 1 || offset & 1) {
673 int which = offset & 1;
674 u8 tmp[2];
675
676 dm9000_read_eeprom(dm, offset / 2, tmp);
677 tmp[which] = *data;
678 dm9000_write_eeprom(dm, offset / 2, tmp);
679
680 done = 1;
681 } else {
682 dm9000_write_eeprom(dm, offset / 2, data);
683 done = 2;
684 }
685
686 data += done;
687 offset += done;
688 len -= done;
689 }
690
691 return 0;
692 }
693
694 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
695 {
696 struct board_info *dm = to_dm9000_board(dev);
697
698 memset(w, 0, sizeof(struct ethtool_wolinfo));
699
700 /* note, we could probably support wake-phy too */
701 w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
702 w->wolopts = dm->wake_state;
703 }
704
705 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
706 {
707 struct board_info *dm = to_dm9000_board(dev);
708 unsigned long flags;
709 u32 opts = w->wolopts;
710 u32 wcr = 0;
711
712 if (!dm->wake_supported)
713 return -EOPNOTSUPP;
714
715 if (opts & ~WAKE_MAGIC)
716 return -EINVAL;
717
718 if (opts & WAKE_MAGIC)
719 wcr |= WCR_MAGICEN;
720
721 mutex_lock(&dm->addr_lock);
722
723 spin_lock_irqsave(&dm->lock, flags);
724 iow(dm, DM9000_WCR, wcr);
725 spin_unlock_irqrestore(&dm->lock, flags);
726
727 mutex_unlock(&dm->addr_lock);
728
729 if (dm->wake_state != opts) {
730 /* change in wol state, update IRQ state */
731
732 if (!dm->wake_state)
733 irq_set_irq_wake(dm->irq_wake, 1);
734 else if (dm->wake_state && !opts)
735 irq_set_irq_wake(dm->irq_wake, 0);
736 }
737
738 dm->wake_state = opts;
739 return 0;
740 }
741
742 static const struct ethtool_ops dm9000_ethtool_ops = {
743 .get_drvinfo = dm9000_get_drvinfo,
744 .get_settings = dm9000_get_settings,
745 .set_settings = dm9000_set_settings,
746 .get_msglevel = dm9000_get_msglevel,
747 .set_msglevel = dm9000_set_msglevel,
748 .nway_reset = dm9000_nway_reset,
749 .get_link = dm9000_get_link,
750 .get_wol = dm9000_get_wol,
751 .set_wol = dm9000_set_wol,
752 .get_eeprom_len = dm9000_get_eeprom_len,
753 .get_eeprom = dm9000_get_eeprom,
754 .set_eeprom = dm9000_set_eeprom,
755 };
756
757 static void dm9000_show_carrier(struct board_info *db,
758 unsigned carrier, unsigned nsr)
759 {
760 int lpa;
761 struct net_device *ndev = db->ndev;
762 struct mii_if_info *mii = &db->mii;
763 unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
764
765 if (carrier) {
766 lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
767 dev_info(db->dev,
768 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
769 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
770 (ncr & NCR_FDX) ? "full" : "half", lpa);
771 } else {
772 dev_info(db->dev, "%s: link down\n", ndev->name);
773 }
774 }
775
776 static void
777 dm9000_poll_work(struct work_struct *w)
778 {
779 struct delayed_work *dw = to_delayed_work(w);
780 struct board_info *db = container_of(dw, struct board_info, phy_poll);
781 struct net_device *ndev = db->ndev;
782
783 if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
784 !(db->flags & DM9000_PLATF_EXT_PHY)) {
785 unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
786 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
787 unsigned new_carrier;
788
789 new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
790
791 if (old_carrier != new_carrier) {
792 if (netif_msg_link(db))
793 dm9000_show_carrier(db, new_carrier, nsr);
794
795 if (!new_carrier)
796 netif_carrier_off(ndev);
797 else
798 netif_carrier_on(ndev);
799 }
800 } else
801 mii_check_media(&db->mii, netif_msg_link(db), 0);
802
803 if (netif_running(ndev))
804 dm9000_schedule_poll(db);
805 }
806
807 /* dm9000_release_board
808 *
809 * release a board, and any mapped resources
810 */
811
812 static void
813 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
814 {
815 /* unmap our resources */
816
817 iounmap(db->io_addr);
818 iounmap(db->io_data);
819
820 /* release the resources */
821
822 if (db->data_req)
823 release_resource(db->data_req);
824 kfree(db->data_req);
825
826 if (db->addr_req)
827 release_resource(db->addr_req);
828 kfree(db->addr_req);
829 }
830
831 static unsigned char dm9000_type_to_char(enum dm9000_type type)
832 {
833 switch (type) {
834 case TYPE_DM9000E: return 'e';
835 case TYPE_DM9000A: return 'a';
836 case TYPE_DM9000B: return 'b';
837 }
838
839 return '?';
840 }
841
842 /*
843 * Set DM9000 multicast address
844 */
845 static void
846 dm9000_hash_table_unlocked(struct net_device *dev)
847 {
848 struct board_info *db = netdev_priv(dev);
849 struct netdev_hw_addr *ha;
850 int i, oft;
851 u32 hash_val;
852 u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
853 u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
854
855 dm9000_dbg(db, 1, "entering %s\n", __func__);
856
857 for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
858 iow(db, oft, dev->dev_addr[i]);
859
860 if (dev->flags & IFF_PROMISC)
861 rcr |= RCR_PRMSC;
862
863 if (dev->flags & IFF_ALLMULTI)
864 rcr |= RCR_ALL;
865
866 /* the multicast address in Hash Table : 64 bits */
867 netdev_for_each_mc_addr(ha, dev) {
868 hash_val = ether_crc_le(6, ha->addr) & 0x3f;
869 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
870 }
871
872 /* Write the hash table to MAC MD table */
873 for (i = 0, oft = DM9000_MAR; i < 4; i++) {
874 iow(db, oft++, hash_table[i]);
875 iow(db, oft++, hash_table[i] >> 8);
876 }
877
878 iow(db, DM9000_RCR, rcr);
879 }
880
881 static void
882 dm9000_hash_table(struct net_device *dev)
883 {
884 struct board_info *db = netdev_priv(dev);
885 unsigned long flags;
886
887 spin_lock_irqsave(&db->lock, flags);
888 dm9000_hash_table_unlocked(dev);
889 spin_unlock_irqrestore(&db->lock, flags);
890 }
891
892 static void
893 dm9000_mask_interrupts(struct board_info *db)
894 {
895 iow(db, DM9000_IMR, IMR_PAR);
896 }
897
898 static void
899 dm9000_unmask_interrupts(struct board_info *db)
900 {
901 iow(db, DM9000_IMR, db->imr_all);
902 }
903
904 /*
905 * Initialize dm9000 board
906 */
907 static void
908 dm9000_init_dm9000(struct net_device *dev)
909 {
910 struct board_info *db = netdev_priv(dev);
911 unsigned int imr;
912 unsigned int ncr;
913
914 dm9000_dbg(db, 1, "entering %s\n", __func__);
915
916 dm9000_reset(db);
917 dm9000_mask_interrupts(db);
918
919 /* I/O mode */
920 db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
921
922 /* Checksum mode */
923 if (dev->hw_features & NETIF_F_RXCSUM)
924 iow(db, DM9000_RCSR,
925 (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
926
927 iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
928 iow(db, DM9000_GPR, 0);
929
930 /* If we are dealing with DM9000B, some extra steps are required: a
931 * manual phy reset, and setting init params.
932 */
933 if (db->type == TYPE_DM9000B) {
934 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
935 dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
936 }
937
938 ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
939
940 /* if wol is needed, then always set NCR_WAKEEN otherwise we end
941 * up dumping the wake events if we disable this. There is already
942 * a wake-mask in DM9000_WCR */
943 if (db->wake_supported)
944 ncr |= NCR_WAKEEN;
945
946 iow(db, DM9000_NCR, ncr);
947
948 /* Program operating register */
949 iow(db, DM9000_TCR, 0); /* TX Polling clear */
950 iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
951 iow(db, DM9000_FCR, 0xff); /* Flow Control */
952 iow(db, DM9000_SMCR, 0); /* Special Mode */
953 /* clear TX status */
954 iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
955 iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
956
957 /* Set address filter table */
958 dm9000_hash_table_unlocked(dev);
959
960 imr = IMR_PAR | IMR_PTM | IMR_PRM;
961 if (db->type != TYPE_DM9000E)
962 imr |= IMR_LNKCHNG;
963
964 db->imr_all = imr;
965
966 /* Init Driver variable */
967 db->tx_pkt_cnt = 0;
968 db->queue_pkt_len = 0;
969 netif_trans_update(dev);
970 }
971
972 /* Our watchdog timed out. Called by the networking layer */
973 static void dm9000_timeout(struct net_device *dev)
974 {
975 struct board_info *db = netdev_priv(dev);
976 u8 reg_save;
977 unsigned long flags;
978
979 /* Save previous register address */
980 spin_lock_irqsave(&db->lock, flags);
981 db->in_timeout = 1;
982 reg_save = readb(db->io_addr);
983
984 netif_stop_queue(dev);
985 dm9000_init_dm9000(dev);
986 dm9000_unmask_interrupts(db);
987 /* We can accept TX packets again */
988 netif_trans_update(dev); /* prevent tx timeout */
989 netif_wake_queue(dev);
990
991 /* Restore previous register address */
992 writeb(reg_save, db->io_addr);
993 db->in_timeout = 0;
994 spin_unlock_irqrestore(&db->lock, flags);
995 }
996
997 static void dm9000_send_packet(struct net_device *dev,
998 int ip_summed,
999 u16 pkt_len)
1000 {
1001 struct board_info *dm = to_dm9000_board(dev);
1002
1003 /* The DM9000 is not smart enough to leave fragmented packets alone. */
1004 if (dm->ip_summed != ip_summed) {
1005 if (ip_summed == CHECKSUM_NONE)
1006 iow(dm, DM9000_TCCR, 0);
1007 else
1008 iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1009 dm->ip_summed = ip_summed;
1010 }
1011
1012 /* Set TX length to DM9000 */
1013 iow(dm, DM9000_TXPLL, pkt_len);
1014 iow(dm, DM9000_TXPLH, pkt_len >> 8);
1015
1016 /* Issue TX polling command */
1017 iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
1018 }
1019
1020 /*
1021 * Hardware start transmission.
1022 * Send a packet to media from the upper layer.
1023 */
1024 static int
1025 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1026 {
1027 unsigned long flags;
1028 struct board_info *db = netdev_priv(dev);
1029
1030 dm9000_dbg(db, 3, "%s:\n", __func__);
1031
1032 if (db->tx_pkt_cnt > 1)
1033 return NETDEV_TX_BUSY;
1034
1035 spin_lock_irqsave(&db->lock, flags);
1036
1037 /* Move data to DM9000 TX RAM */
1038 writeb(DM9000_MWCMD, db->io_addr);
1039
1040 (db->outblk)(db->io_data, skb->data, skb->len);
1041 dev->stats.tx_bytes += skb->len;
1042
1043 db->tx_pkt_cnt++;
1044 /* TX control: First packet immediately send, second packet queue */
1045 if (db->tx_pkt_cnt == 1) {
1046 dm9000_send_packet(dev, skb->ip_summed, skb->len);
1047 } else {
1048 /* Second packet */
1049 db->queue_pkt_len = skb->len;
1050 db->queue_ip_summed = skb->ip_summed;
1051 netif_stop_queue(dev);
1052 }
1053
1054 spin_unlock_irqrestore(&db->lock, flags);
1055
1056 /* free this SKB */
1057 dev_consume_skb_any(skb);
1058
1059 return NETDEV_TX_OK;
1060 }
1061
1062 /*
1063 * DM9000 interrupt handler
1064 * receive the packet to upper layer, free the transmitted packet
1065 */
1066
1067 static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1068 {
1069 int tx_status = ior(db, DM9000_NSR); /* Got TX status */
1070
1071 if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1072 /* One packet sent complete */
1073 db->tx_pkt_cnt--;
1074 dev->stats.tx_packets++;
1075
1076 if (netif_msg_tx_done(db))
1077 dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1078
1079 /* Queue packet check & send */
1080 if (db->tx_pkt_cnt > 0)
1081 dm9000_send_packet(dev, db->queue_ip_summed,
1082 db->queue_pkt_len);
1083 netif_wake_queue(dev);
1084 }
1085 }
1086
1087 struct dm9000_rxhdr {
1088 u8 RxPktReady;
1089 u8 RxStatus;
1090 __le16 RxLen;
1091 } __packed;
1092
1093 /*
1094 * Received a packet and pass to upper layer
1095 */
1096 static void
1097 dm9000_rx(struct net_device *dev)
1098 {
1099 struct board_info *db = netdev_priv(dev);
1100 struct dm9000_rxhdr rxhdr;
1101 struct sk_buff *skb;
1102 u8 rxbyte, *rdptr;
1103 bool GoodPacket;
1104 int RxLen;
1105
1106 /* Check packet ready or not */
1107 do {
1108 ior(db, DM9000_MRCMDX); /* Dummy read */
1109
1110 /* Get most updated data */
1111 rxbyte = readb(db->io_data);
1112
1113 /* Status check: this byte must be 0 or 1 */
1114 if (rxbyte & DM9000_PKT_ERR) {
1115 dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1116 iow(db, DM9000_RCR, 0x00); /* Stop Device */
1117 return;
1118 }
1119
1120 if (!(rxbyte & DM9000_PKT_RDY))
1121 return;
1122
1123 /* A packet ready now & Get status/length */
1124 GoodPacket = true;
1125 writeb(DM9000_MRCMD, db->io_addr);
1126
1127 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1128
1129 RxLen = le16_to_cpu(rxhdr.RxLen);
1130
1131 if (netif_msg_rx_status(db))
1132 dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1133 rxhdr.RxStatus, RxLen);
1134
1135 /* Packet Status check */
1136 if (RxLen < 0x40) {
1137 GoodPacket = false;
1138 if (netif_msg_rx_err(db))
1139 dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1140 }
1141
1142 if (RxLen > DM9000_PKT_MAX) {
1143 dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1144 }
1145
1146 /* rxhdr.RxStatus is identical to RSR register. */
1147 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1148 RSR_PLE | RSR_RWTO |
1149 RSR_LCS | RSR_RF)) {
1150 GoodPacket = false;
1151 if (rxhdr.RxStatus & RSR_FOE) {
1152 if (netif_msg_rx_err(db))
1153 dev_dbg(db->dev, "fifo error\n");
1154 dev->stats.rx_fifo_errors++;
1155 }
1156 if (rxhdr.RxStatus & RSR_CE) {
1157 if (netif_msg_rx_err(db))
1158 dev_dbg(db->dev, "crc error\n");
1159 dev->stats.rx_crc_errors++;
1160 }
1161 if (rxhdr.RxStatus & RSR_RF) {
1162 if (netif_msg_rx_err(db))
1163 dev_dbg(db->dev, "length error\n");
1164 dev->stats.rx_length_errors++;
1165 }
1166 }
1167
1168 /* Move data from DM9000 */
1169 if (GoodPacket &&
1170 ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1171 skb_reserve(skb, 2);
1172 rdptr = (u8 *) skb_put(skb, RxLen - 4);
1173
1174 /* Read received packet from RX SRAM */
1175
1176 (db->inblk)(db->io_data, rdptr, RxLen);
1177 dev->stats.rx_bytes += RxLen;
1178
1179 /* Pass to upper layer */
1180 skb->protocol = eth_type_trans(skb, dev);
1181 if (dev->features & NETIF_F_RXCSUM) {
1182 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1183 skb->ip_summed = CHECKSUM_UNNECESSARY;
1184 else
1185 skb_checksum_none_assert(skb);
1186 }
1187 netif_rx(skb);
1188 dev->stats.rx_packets++;
1189
1190 } else {
1191 /* need to dump the packet's data */
1192
1193 (db->dumpblk)(db->io_data, RxLen);
1194 }
1195 } while (rxbyte & DM9000_PKT_RDY);
1196 }
1197
1198 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1199 {
1200 struct net_device *dev = dev_id;
1201 struct board_info *db = netdev_priv(dev);
1202 int int_status;
1203 unsigned long flags;
1204 u8 reg_save;
1205
1206 dm9000_dbg(db, 3, "entering %s\n", __func__);
1207
1208 /* A real interrupt coming */
1209
1210 /* holders of db->lock must always block IRQs */
1211 spin_lock_irqsave(&db->lock, flags);
1212
1213 /* Save previous register address */
1214 reg_save = readb(db->io_addr);
1215
1216 dm9000_mask_interrupts(db);
1217 /* Got DM9000 interrupt status */
1218 int_status = ior(db, DM9000_ISR); /* Got ISR */
1219 iow(db, DM9000_ISR, int_status); /* Clear ISR status */
1220
1221 if (netif_msg_intr(db))
1222 dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1223
1224 /* Received the coming packet */
1225 if (int_status & ISR_PRS)
1226 dm9000_rx(dev);
1227
1228 /* Transmit Interrupt check */
1229 if (int_status & ISR_PTS)
1230 dm9000_tx_done(dev, db);
1231
1232 if (db->type != TYPE_DM9000E) {
1233 if (int_status & ISR_LNKCHNG) {
1234 /* fire a link-change request */
1235 schedule_delayed_work(&db->phy_poll, 1);
1236 }
1237 }
1238
1239 dm9000_unmask_interrupts(db);
1240 /* Restore previous register address */
1241 writeb(reg_save, db->io_addr);
1242
1243 spin_unlock_irqrestore(&db->lock, flags);
1244
1245 return IRQ_HANDLED;
1246 }
1247
1248 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1249 {
1250 struct net_device *dev = dev_id;
1251 struct board_info *db = netdev_priv(dev);
1252 unsigned long flags;
1253 unsigned nsr, wcr;
1254
1255 spin_lock_irqsave(&db->lock, flags);
1256
1257 nsr = ior(db, DM9000_NSR);
1258 wcr = ior(db, DM9000_WCR);
1259
1260 dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1261
1262 if (nsr & NSR_WAKEST) {
1263 /* clear, so we can avoid */
1264 iow(db, DM9000_NSR, NSR_WAKEST);
1265
1266 if (wcr & WCR_LINKST)
1267 dev_info(db->dev, "wake by link status change\n");
1268 if (wcr & WCR_SAMPLEST)
1269 dev_info(db->dev, "wake by sample packet\n");
1270 if (wcr & WCR_MAGICST)
1271 dev_info(db->dev, "wake by magic packet\n");
1272 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1273 dev_err(db->dev, "wake signalled with no reason? "
1274 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1275 }
1276
1277 spin_unlock_irqrestore(&db->lock, flags);
1278
1279 return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1280 }
1281
1282 #ifdef CONFIG_NET_POLL_CONTROLLER
1283 /*
1284 *Used by netconsole
1285 */
1286 static void dm9000_poll_controller(struct net_device *dev)
1287 {
1288 disable_irq(dev->irq);
1289 dm9000_interrupt(dev->irq, dev);
1290 enable_irq(dev->irq);
1291 }
1292 #endif
1293
1294 /*
1295 * Open the interface.
1296 * The interface is opened whenever "ifconfig" actives it.
1297 */
1298 static int
1299 dm9000_open(struct net_device *dev)
1300 {
1301 struct board_info *db = netdev_priv(dev);
1302 unsigned int irq_flags = irq_get_trigger_type(dev->irq);
1303
1304 if (netif_msg_ifup(db))
1305 dev_dbg(db->dev, "enabling %s\n", dev->name);
1306
1307 /* If there is no IRQ type specified, tell the user that this is a
1308 * problem
1309 */
1310 if (irq_flags == IRQF_TRIGGER_NONE)
1311 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1312
1313 irq_flags |= IRQF_SHARED;
1314
1315 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1316 iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1317 mdelay(1); /* delay needs by DM9000B */
1318
1319 /* Initialize DM9000 board */
1320 dm9000_init_dm9000(dev);
1321
1322 if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
1323 return -EAGAIN;
1324 /* Now that we have an interrupt handler hooked up we can unmask
1325 * our interrupts
1326 */
1327 dm9000_unmask_interrupts(db);
1328
1329 /* Init driver variable */
1330 db->dbug_cnt = 0;
1331
1332 mii_check_media(&db->mii, netif_msg_link(db), 1);
1333 netif_start_queue(dev);
1334
1335 /* Poll initial link status */
1336 schedule_delayed_work(&db->phy_poll, 1);
1337
1338 return 0;
1339 }
1340
1341 static void
1342 dm9000_shutdown(struct net_device *dev)
1343 {
1344 struct board_info *db = netdev_priv(dev);
1345
1346 /* RESET device */
1347 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1348 iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
1349 dm9000_mask_interrupts(db);
1350 iow(db, DM9000_RCR, 0x00); /* Disable RX */
1351 }
1352
1353 /*
1354 * Stop the interface.
1355 * The interface is stopped when it is brought.
1356 */
1357 static int
1358 dm9000_stop(struct net_device *ndev)
1359 {
1360 struct board_info *db = netdev_priv(ndev);
1361
1362 if (netif_msg_ifdown(db))
1363 dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1364
1365 cancel_delayed_work_sync(&db->phy_poll);
1366
1367 netif_stop_queue(ndev);
1368 netif_carrier_off(ndev);
1369
1370 /* free interrupt */
1371 free_irq(ndev->irq, ndev);
1372
1373 dm9000_shutdown(ndev);
1374
1375 return 0;
1376 }
1377
1378 static const struct net_device_ops dm9000_netdev_ops = {
1379 .ndo_open = dm9000_open,
1380 .ndo_stop = dm9000_stop,
1381 .ndo_start_xmit = dm9000_start_xmit,
1382 .ndo_tx_timeout = dm9000_timeout,
1383 .ndo_set_rx_mode = dm9000_hash_table,
1384 .ndo_do_ioctl = dm9000_ioctl,
1385 .ndo_change_mtu = eth_change_mtu,
1386 .ndo_set_features = dm9000_set_features,
1387 .ndo_validate_addr = eth_validate_addr,
1388 .ndo_set_mac_address = eth_mac_addr,
1389 #ifdef CONFIG_NET_POLL_CONTROLLER
1390 .ndo_poll_controller = dm9000_poll_controller,
1391 #endif
1392 };
1393
1394 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1395 {
1396 struct dm9000_plat_data *pdata;
1397 struct device_node *np = dev->of_node;
1398 const void *mac_addr;
1399
1400 if (!IS_ENABLED(CONFIG_OF) || !np)
1401 return ERR_PTR(-ENXIO);
1402
1403 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1404 if (!pdata)
1405 return ERR_PTR(-ENOMEM);
1406
1407 if (of_find_property(np, "davicom,ext-phy", NULL))
1408 pdata->flags |= DM9000_PLATF_EXT_PHY;
1409 if (of_find_property(np, "davicom,no-eeprom", NULL))
1410 pdata->flags |= DM9000_PLATF_NO_EEPROM;
1411
1412 mac_addr = of_get_mac_address(np);
1413 if (mac_addr)
1414 memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
1415
1416 return pdata;
1417 }
1418
1419 /*
1420 * Search DM9000 board, allocate space and register it
1421 */
1422 static int
1423 dm9000_probe(struct platform_device *pdev)
1424 {
1425 struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1426 struct board_info *db; /* Point a board information structure */
1427 struct net_device *ndev;
1428 struct device *dev = &pdev->dev;
1429 const unsigned char *mac_src;
1430 int ret = 0;
1431 int iosize;
1432 int i;
1433 u32 id_val;
1434 int reset_gpios;
1435 enum of_gpio_flags flags;
1436 struct regulator *power;
1437 bool inv_mac_addr = false;
1438
1439 power = devm_regulator_get(dev, "vcc");
1440 if (IS_ERR(power)) {
1441 if (PTR_ERR(power) == -EPROBE_DEFER)
1442 return -EPROBE_DEFER;
1443 dev_dbg(dev, "no regulator provided\n");
1444 } else {
1445 ret = regulator_enable(power);
1446 if (ret != 0) {
1447 dev_err(dev,
1448 "Failed to enable power regulator: %d\n", ret);
1449 return ret;
1450 }
1451 dev_dbg(dev, "regulator enabled\n");
1452 }
1453
1454 reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1455 &flags);
1456 if (gpio_is_valid(reset_gpios)) {
1457 ret = devm_gpio_request_one(dev, reset_gpios, flags,
1458 "dm9000_reset");
1459 if (ret) {
1460 dev_err(dev, "failed to request reset gpio %d: %d\n",
1461 reset_gpios, ret);
1462 return -ENODEV;
1463 }
1464
1465 /* According to manual PWRST# Low Period Min 1ms */
1466 msleep(2);
1467 gpio_set_value(reset_gpios, 1);
1468 /* Needs 3ms to read eeprom when PWRST is deasserted */
1469 msleep(4);
1470 }
1471
1472 if (!pdata) {
1473 pdata = dm9000_parse_dt(&pdev->dev);
1474 if (IS_ERR(pdata))
1475 return PTR_ERR(pdata);
1476 }
1477
1478 /* Init network device */
1479 ndev = alloc_etherdev(sizeof(struct board_info));
1480 if (!ndev)
1481 return -ENOMEM;
1482
1483 SET_NETDEV_DEV(ndev, &pdev->dev);
1484
1485 dev_dbg(&pdev->dev, "dm9000_probe()\n");
1486
1487 /* setup board info structure */
1488 db = netdev_priv(ndev);
1489
1490 db->dev = &pdev->dev;
1491 db->ndev = ndev;
1492
1493 spin_lock_init(&db->lock);
1494 mutex_init(&db->addr_lock);
1495
1496 INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1497
1498 db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1499 db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1500
1501 if (!db->addr_res || !db->data_res) {
1502 dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1503 db->addr_res, db->data_res);
1504 ret = -ENOENT;
1505 goto out;
1506 }
1507
1508 ndev->irq = platform_get_irq(pdev, 0);
1509 if (ndev->irq < 0) {
1510 dev_err(db->dev, "interrupt resource unavailable: %d\n",
1511 ndev->irq);
1512 ret = ndev->irq;
1513 goto out;
1514 }
1515
1516 db->irq_wake = platform_get_irq(pdev, 1);
1517 if (db->irq_wake >= 0) {
1518 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1519
1520 ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1521 IRQF_SHARED, dev_name(db->dev), ndev);
1522 if (ret) {
1523 dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1524 } else {
1525
1526 /* test to see if irq is really wakeup capable */
1527 ret = irq_set_irq_wake(db->irq_wake, 1);
1528 if (ret) {
1529 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1530 db->irq_wake, ret);
1531 ret = 0;
1532 } else {
1533 irq_set_irq_wake(db->irq_wake, 0);
1534 db->wake_supported = 1;
1535 }
1536 }
1537 }
1538
1539 iosize = resource_size(db->addr_res);
1540 db->addr_req = request_mem_region(db->addr_res->start, iosize,
1541 pdev->name);
1542
1543 if (db->addr_req == NULL) {
1544 dev_err(db->dev, "cannot claim address reg area\n");
1545 ret = -EIO;
1546 goto out;
1547 }
1548
1549 db->io_addr = ioremap(db->addr_res->start, iosize);
1550
1551 if (db->io_addr == NULL) {
1552 dev_err(db->dev, "failed to ioremap address reg\n");
1553 ret = -EINVAL;
1554 goto out;
1555 }
1556
1557 iosize = resource_size(db->data_res);
1558 db->data_req = request_mem_region(db->data_res->start, iosize,
1559 pdev->name);
1560
1561 if (db->data_req == NULL) {
1562 dev_err(db->dev, "cannot claim data reg area\n");
1563 ret = -EIO;
1564 goto out;
1565 }
1566
1567 db->io_data = ioremap(db->data_res->start, iosize);
1568
1569 if (db->io_data == NULL) {
1570 dev_err(db->dev, "failed to ioremap data reg\n");
1571 ret = -EINVAL;
1572 goto out;
1573 }
1574
1575 /* fill in parameters for net-dev structure */
1576 ndev->base_addr = (unsigned long)db->io_addr;
1577
1578 /* ensure at least we have a default set of IO routines */
1579 dm9000_set_io(db, iosize);
1580
1581 /* check to see if anything is being over-ridden */
1582 if (pdata != NULL) {
1583 /* check to see if the driver wants to over-ride the
1584 * default IO width */
1585
1586 if (pdata->flags & DM9000_PLATF_8BITONLY)
1587 dm9000_set_io(db, 1);
1588
1589 if (pdata->flags & DM9000_PLATF_16BITONLY)
1590 dm9000_set_io(db, 2);
1591
1592 if (pdata->flags & DM9000_PLATF_32BITONLY)
1593 dm9000_set_io(db, 4);
1594
1595 /* check to see if there are any IO routine
1596 * over-rides */
1597
1598 if (pdata->inblk != NULL)
1599 db->inblk = pdata->inblk;
1600
1601 if (pdata->outblk != NULL)
1602 db->outblk = pdata->outblk;
1603
1604 if (pdata->dumpblk != NULL)
1605 db->dumpblk = pdata->dumpblk;
1606
1607 db->flags = pdata->flags;
1608 }
1609
1610 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1611 db->flags |= DM9000_PLATF_SIMPLE_PHY;
1612 #endif
1613
1614 dm9000_reset(db);
1615
1616 /* try multiple times, DM9000 sometimes gets the read wrong */
1617 for (i = 0; i < 8; i++) {
1618 id_val = ior(db, DM9000_VIDL);
1619 id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1620 id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1621 id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1622
1623 if (id_val == DM9000_ID)
1624 break;
1625 dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1626 }
1627
1628 if (id_val != DM9000_ID) {
1629 dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1630 ret = -ENODEV;
1631 goto out;
1632 }
1633
1634 /* Identify what type of DM9000 we are working on */
1635
1636 id_val = ior(db, DM9000_CHIPR);
1637 dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1638
1639 switch (id_val) {
1640 case CHIPR_DM9000A:
1641 db->type = TYPE_DM9000A;
1642 break;
1643 case CHIPR_DM9000B:
1644 db->type = TYPE_DM9000B;
1645 break;
1646 default:
1647 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1648 db->type = TYPE_DM9000E;
1649 }
1650
1651 /* dm9000a/b are capable of hardware checksum offload */
1652 if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1653 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1654 ndev->features |= ndev->hw_features;
1655 }
1656
1657 /* from this point we assume that we have found a DM9000 */
1658
1659 ndev->netdev_ops = &dm9000_netdev_ops;
1660 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1661 ndev->ethtool_ops = &dm9000_ethtool_ops;
1662
1663 db->msg_enable = NETIF_MSG_LINK;
1664 db->mii.phy_id_mask = 0x1f;
1665 db->mii.reg_num_mask = 0x1f;
1666 db->mii.force_media = 0;
1667 db->mii.full_duplex = 0;
1668 db->mii.dev = ndev;
1669 db->mii.mdio_read = dm9000_phy_read;
1670 db->mii.mdio_write = dm9000_phy_write;
1671
1672 mac_src = "eeprom";
1673
1674 /* try reading the node address from the attached EEPROM */
1675 for (i = 0; i < 6; i += 2)
1676 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1677
1678 if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1679 mac_src = "platform data";
1680 memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1681 }
1682
1683 if (!is_valid_ether_addr(ndev->dev_addr)) {
1684 /* try reading from mac */
1685
1686 mac_src = "chip";
1687 for (i = 0; i < 6; i++)
1688 ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1689 }
1690
1691 if (!is_valid_ether_addr(ndev->dev_addr)) {
1692 inv_mac_addr = true;
1693 eth_hw_addr_random(ndev);
1694 mac_src = "random";
1695 }
1696
1697
1698 platform_set_drvdata(pdev, ndev);
1699 ret = register_netdev(ndev);
1700
1701 if (ret == 0) {
1702 if (inv_mac_addr)
1703 dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1704 ndev->name);
1705 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1706 ndev->name, dm9000_type_to_char(db->type),
1707 db->io_addr, db->io_data, ndev->irq,
1708 ndev->dev_addr, mac_src);
1709 }
1710 return 0;
1711
1712 out:
1713 dev_err(db->dev, "not found (%d).\n", ret);
1714
1715 dm9000_release_board(pdev, db);
1716 free_netdev(ndev);
1717
1718 return ret;
1719 }
1720
1721 static int
1722 dm9000_drv_suspend(struct device *dev)
1723 {
1724 struct platform_device *pdev = to_platform_device(dev);
1725 struct net_device *ndev = platform_get_drvdata(pdev);
1726 struct board_info *db;
1727
1728 if (ndev) {
1729 db = netdev_priv(ndev);
1730 db->in_suspend = 1;
1731
1732 if (!netif_running(ndev))
1733 return 0;
1734
1735 netif_device_detach(ndev);
1736
1737 /* only shutdown if not using WoL */
1738 if (!db->wake_state)
1739 dm9000_shutdown(ndev);
1740 }
1741 return 0;
1742 }
1743
1744 static int
1745 dm9000_drv_resume(struct device *dev)
1746 {
1747 struct platform_device *pdev = to_platform_device(dev);
1748 struct net_device *ndev = platform_get_drvdata(pdev);
1749 struct board_info *db = netdev_priv(ndev);
1750
1751 if (ndev) {
1752 if (netif_running(ndev)) {
1753 /* reset if we were not in wake mode to ensure if
1754 * the device was powered off it is in a known state */
1755 if (!db->wake_state) {
1756 dm9000_init_dm9000(ndev);
1757 dm9000_unmask_interrupts(db);
1758 }
1759
1760 netif_device_attach(ndev);
1761 }
1762
1763 db->in_suspend = 0;
1764 }
1765 return 0;
1766 }
1767
1768 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1769 .suspend = dm9000_drv_suspend,
1770 .resume = dm9000_drv_resume,
1771 };
1772
1773 static int
1774 dm9000_drv_remove(struct platform_device *pdev)
1775 {
1776 struct net_device *ndev = platform_get_drvdata(pdev);
1777
1778 unregister_netdev(ndev);
1779 dm9000_release_board(pdev, netdev_priv(ndev));
1780 free_netdev(ndev); /* free device structure */
1781
1782 dev_dbg(&pdev->dev, "released and freed device\n");
1783 return 0;
1784 }
1785
1786 #ifdef CONFIG_OF
1787 static const struct of_device_id dm9000_of_matches[] = {
1788 { .compatible = "davicom,dm9000", },
1789 { /* sentinel */ }
1790 };
1791 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1792 #endif
1793
1794 static struct platform_driver dm9000_driver = {
1795 .driver = {
1796 .name = "dm9000",
1797 .pm = &dm9000_drv_pm_ops,
1798 .of_match_table = of_match_ptr(dm9000_of_matches),
1799 },
1800 .probe = dm9000_probe,
1801 .remove = dm9000_drv_remove,
1802 };
1803
1804 module_platform_driver(dm9000_driver);
1805
1806 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1807 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1808 MODULE_LICENSE("GPL");
1809 MODULE_ALIAS("platform:dm9000");
This page took 0.067758 seconds and 5 git commands to generate.