Merge remote-tracking branch 'kspp/for-next/kspp'
[deliverable/linux.git] / drivers / net / ethernet / dec / tulip / de4x5.c
1 /* de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2 ethernet driver for Linux.
3
4 Copyright 1994, 1995 Digital Equipment Corporation.
5
6 Testing resources for this driver have been made available
7 in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
8
9 The author may be reached at davies@maniac.ultranet.com.
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License, or (at your
14 option) any later version.
15
16 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 You should have received a copy of the GNU General Public License along
28 with this program; if not, write to the Free Software Foundation, Inc.,
29 675 Mass Ave, Cambridge, MA 02139, USA.
30
31 Originally, this driver was written for the Digital Equipment
32 Corporation series of EtherWORKS ethernet cards:
33
34 DE425 TP/COAX EISA
35 DE434 TP PCI
36 DE435 TP/COAX/AUI PCI
37 DE450 TP/COAX/AUI PCI
38 DE500 10/100 PCI Fasternet
39
40 but it will now attempt to support all cards which conform to the
41 Digital Semiconductor SROM Specification. The driver currently
42 recognises the following chips:
43
44 DC21040 (no SROM)
45 DC21041[A]
46 DC21140[A]
47 DC21142
48 DC21143
49
50 So far the driver is known to work with the following cards:
51
52 KINGSTON
53 Linksys
54 ZNYX342
55 SMC8432
56 SMC9332 (w/new SROM)
57 ZNYX31[45]
58 ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
59
60 The driver has been tested on a relatively busy network using the DE425,
61 DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62 16M of data to a DECstation 5000/200 as follows:
63
64 TCP UDP
65 TX RX TX RX
66 DE425 1030k 997k 1170k 1128k
67 DE434 1063k 995k 1170k 1125k
68 DE435 1063k 995k 1170k 1125k
69 DE500 1063k 998k 1170k 1125k in 10Mb/s mode
70
71 All values are typical (in kBytes/sec) from a sample of 4 for each
72 measurement. Their error is +/-20k on a quiet (private) network and also
73 depend on what load the CPU has.
74
75 =========================================================================
76 This driver has been written substantially from scratch, although its
77 inheritance of style and stack interface from 'ewrk3.c' and in turn from
78 Donald Becker's 'lance.c' should be obvious. With the module autoload of
79 every usable DECchip board, I pinched Donald's 'next_module' field to
80 link my modules together.
81
82 Up to 15 EISA cards can be supported under this driver, limited primarily
83 by the available IRQ lines. I have checked different configurations of
84 multiple depca, EtherWORKS 3 cards and de4x5 cards and have not found a
85 problem yet (provided you have at least depca.c v0.38) ...
86
87 PCI support has been added to allow the driver to work with the DE434,
88 DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89 to the differences in the EISA and PCI CSR address offsets from the base
90 address.
91
92 The ability to load this driver as a loadable module has been included
93 and used extensively during the driver development (to save those long
94 reboot sequences). Loadable module support under PCI and EISA has been
95 achieved by letting the driver autoprobe as if it were compiled into the
96 kernel. Do make sure you're not sharing interrupts with anything that
97 cannot accommodate interrupt sharing!
98
99 To utilise this ability, you have to do 8 things:
100
101 0) have a copy of the loadable modules code installed on your system.
102 1) copy de4x5.c from the /linux/drivers/net directory to your favourite
103 temporary directory.
104 2) for fixed autoprobes (not recommended), edit the source code near
105 line 5594 to reflect the I/O address you're using, or assign these when
106 loading by:
107
108 insmod de4x5 io=0xghh where g = bus number
109 hh = device number
110
111 NB: autoprobing for modules is now supported by default. You may just
112 use:
113
114 insmod de4x5
115
116 to load all available boards. For a specific board, still use
117 the 'io=?' above.
118 3) compile de4x5.c, but include -DMODULE in the command line to ensure
119 that the correct bits are compiled (see end of source code).
120 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a
121 kernel with the de4x5 configuration turned off and reboot.
122 5) insmod de4x5 [io=0xghh]
123 6) run the net startup bits for your new eth?? interface(s) manually
124 (usually /etc/rc.inet[12] at boot time).
125 7) enjoy!
126
127 To unload a module, turn off the associated interface(s)
128 'ifconfig eth?? down' then 'rmmod de4x5'.
129
130 Automedia detection is included so that in principal you can disconnect
131 from, e.g. TP, reconnect to BNC and things will still work (after a
132 pause whilst the driver figures out where its media went). My tests
133 using ping showed that it appears to work....
134
135 By default, the driver will now autodetect any DECchip based card.
136 Should you have a need to restrict the driver to DIGITAL only cards, you
137 can compile with a DEC_ONLY define, or if loading as a module, use the
138 'dec_only=1' parameter.
139
140 I've changed the timing routines to use the kernel timer and scheduling
141 functions so that the hangs and other assorted problems that occurred
142 while autosensing the media should be gone. A bonus for the DC21040
143 auto media sense algorithm is that it can now use one that is more in
144 line with the rest (the DC21040 chip doesn't have a hardware timer).
145 The downside is the 1 'jiffies' (10ms) resolution.
146
147 IEEE 802.3u MII interface code has been added in anticipation that some
148 products may use it in the future.
149
150 The SMC9332 card has a non-compliant SROM which needs fixing - I have
151 patched this driver to detect it because the SROM format used complies
152 to a previous DEC-STD format.
153
154 I have removed the buffer copies needed for receive on Intels. I cannot
155 remove them for Alphas since the Tulip hardware only does longword
156 aligned DMA transfers and the Alphas get alignment traps with non
157 longword aligned data copies (which makes them really slow). No comment.
158
159 I have added SROM decoding routines to make this driver work with any
160 card that supports the Digital Semiconductor SROM spec. This will help
161 all cards running the dc2114x series chips in particular. Cards using
162 the dc2104x chips should run correctly with the basic driver. I'm in
163 debt to <mjacob@feral.com> for the testing and feedback that helped get
164 this feature working. So far we have tested KINGSTON, SMC8432, SMC9332
165 (with the latest SROM complying with the SROM spec V3: their first was
166 broken), ZNYX342 and LinkSys. ZYNX314 (dual 21041 MAC) and ZNYX 315
167 (quad 21041 MAC) cards also appear to work despite their incorrectly
168 wired IRQs.
169
170 I have added a temporary fix for interrupt problems when some SCSI cards
171 share the same interrupt as the DECchip based cards. The problem occurs
172 because the SCSI card wants to grab the interrupt as a fast interrupt
173 (runs the service routine with interrupts turned off) vs. this card
174 which really needs to run the service routine with interrupts turned on.
175 This driver will now add the interrupt service routine as a fast
176 interrupt if it is bounced from the slow interrupt. THIS IS NOT A
177 RECOMMENDED WAY TO RUN THE DRIVER and has been done for a limited time
178 until people sort out their compatibility issues and the kernel
179 interrupt service code is fixed. YOU SHOULD SEPARATE OUT THE FAST
180 INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181 run on the same interrupt. PCMCIA/CardBus is another can of worms...
182
183 Finally, I think I have really fixed the module loading problem with
184 more than one DECchip based card. As a side effect, I don't mess with
185 the device structure any more which means that if more than 1 card in
186 2.0.x is installed (4 in 2.1.x), the user will have to edit
187 linux/drivers/net/Space.c to make room for them. Hence, module loading
188 is the preferred way to use this driver, since it doesn't have this
189 limitation.
190
191 Where SROM media detection is used and full duplex is specified in the
192 SROM, the feature is ignored unless lp->params.fdx is set at compile
193 time OR during a module load (insmod de4x5 args='eth??:fdx' [see
194 below]). This is because there is no way to automatically detect full
195 duplex links except through autonegotiation. When I include the
196 autonegotiation feature in the SROM autoconf code, this detection will
197 occur automatically for that case.
198
199 Command line arguments are now allowed, similar to passing arguments
200 through LILO. This will allow a per adapter board set up of full duplex
201 and media. The only lexical constraints are: the board name (dev->name)
202 appears in the list before its parameters. The list of parameters ends
203 either at the end of the parameter list or with another board name. The
204 following parameters are allowed:
205
206 fdx for full duplex
207 autosense to set the media/speed; with the following
208 sub-parameters:
209 TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
210
211 Case sensitivity is important for the sub-parameters. They *must* be
212 upper case. Examples:
213
214 insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
215
216 For a compiled in driver, at or above line 548, place e.g.
217 #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
218
219 Yes, I know full duplex isn't permissible on BNC or AUI; they're just
220 examples. By default, full duplex is turned off and AUTO is the default
221 autosense setting. In reality, I expect only the full duplex option to
222 be used. Note the use of single quotes in the two examples above and the
223 lack of commas to separate items. ALSO, you must get the requested media
224 correct in relation to what the adapter SROM says it has. There's no way
225 to determine this in advance other than by trial and error and common
226 sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
227
228 Changed the bus probing. EISA used to be done first, followed by PCI.
229 Most people probably don't even know what a de425 is today and the EISA
230 probe has messed up some SCSI cards in the past, so now PCI is always
231 probed first followed by EISA if a) the architecture allows EISA and
232 either b) there have been no PCI cards detected or c) an EISA probe is
233 forced by the user. To force a probe include "force_eisa" in your
234 insmod "args" line; for built-in kernels either change the driver to do
235 this automatically or include #define DE4X5_FORCE_EISA on or before
236 line 1040 in the driver.
237
238 TO DO:
239 ------
240
241 Revision History
242 ----------------
243
244 Version Date Description
245
246 0.1 17-Nov-94 Initial writing. ALPHA code release.
247 0.2 13-Jan-95 Added PCI support for DE435's.
248 0.21 19-Jan-95 Added auto media detection.
249 0.22 10-Feb-95 Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250 Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251 Add request/release_region code.
252 Add loadable modules support for PCI.
253 Clean up loadable modules support.
254 0.23 28-Feb-95 Added DC21041 and DC21140 support.
255 Fix missed frame counter value and initialisation.
256 Fixed EISA probe.
257 0.24 11-Apr-95 Change delay routine to use <linux/udelay>.
258 Change TX_BUFFS_AVAIL macro.
259 Change media autodetection to allow manual setting.
260 Completed DE500 (DC21140) support.
261 0.241 18-Apr-95 Interim release without DE500 Autosense Algorithm.
262 0.242 10-May-95 Minor changes.
263 0.30 12-Jun-95 Timer fix for DC21140.
264 Portability changes.
265 Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266 Add DE500 semi automatic autosense.
267 Add Link Fail interrupt TP failure detection.
268 Add timer based link change detection.
269 Plugged a memory leak in de4x5_queue_pkt().
270 0.31 13-Jun-95 Fixed PCI stuff for 1.3.1.
271 0.32 26-Jun-95 Added verify_area() calls in de4x5_ioctl() from a
272 suggestion by <heiko@colossus.escape.de>.
273 0.33 8-Aug-95 Add shared interrupt support (not released yet).
274 0.331 21-Aug-95 Fix de4x5_open() with fast CPUs.
275 Fix de4x5_interrupt().
276 Fix dc21140_autoconf() mess.
277 No shared interrupt support.
278 0.332 11-Sep-95 Added MII management interface routines.
279 0.40 5-Mar-96 Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280 Add kernel timer code (h/w is too flaky).
281 Add MII based PHY autosense.
282 Add new multicasting code.
283 Add new autosense algorithms for media/mode
284 selection using kernel scheduling/timing.
285 Re-formatted.
286 Made changes suggested by <jeff@router.patch.net>:
287 Change driver to detect all DECchip based cards
288 with DEC_ONLY restriction a special case.
289 Changed driver to autoprobe as a module. No irq
290 checking is done now - assume BIOS is good!
291 Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292 0.41 21-Mar-96 Don't check for get_hw_addr checksum unless DEC card
293 only <niles@axp745gsfc.nasa.gov>
294 Fix for multiple PCI cards reported by <jos@xos.nl>
295 Duh, put the IRQF_SHARED flag into request_interrupt().
296 Fix SMC ethernet address in enet_det[].
297 Print chip name instead of "UNKNOWN" during boot.
298 0.42 26-Apr-96 Fix MII write TA bit error.
299 Fix bug in dc21040 and dc21041 autosense code.
300 Remove buffer copies on receive for Intels.
301 Change sk_buff handling during media disconnects to
302 eliminate DUP packets.
303 Add dynamic TX thresholding.
304 Change all chips to use perfect multicast filtering.
305 Fix alloc_device() bug <jari@markkus2.fimr.fi>
306 0.43 21-Jun-96 Fix unconnected media TX retry bug.
307 Add Accton to the list of broken cards.
308 Fix TX under-run bug for non DC21140 chips.
309 Fix boot command probe bug in alloc_device() as
310 reported by <koen.gadeyne@barco.com> and
311 <orava@nether.tky.hut.fi>.
312 Add cache locks to prevent a race condition as
313 reported by <csd@microplex.com> and
314 <baba@beckman.uiuc.edu>.
315 Upgraded alloc_device() code.
316 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion
317 with <csd@microplex.com>
318 0.44 13-Aug-96 Fix RX overflow bug in 2114[023] chips.
319 Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320 and <michael@compurex.com>.
321 0.441 9-Sep-96 Change dc21041_autoconf() to probe quiet BNC media
322 with a loopback packet.
323 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported
324 by <bhat@mundook.cs.mu.OZ.AU>
325 0.45 8-Dec-96 Include endian functions for PPC use, from work
326 by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327 0.451 28-Dec-96 Added fix to allow autoprobe for modules after
328 suggestion from <mjacob@feral.com>.
329 0.5 30-Jan-97 Added SROM decoding functions.
330 Updated debug flags.
331 Fix sleep/wakeup calls for PCI cards, bug reported
332 by <cross@gweep.lkg.dec.com>.
333 Added multi-MAC, one SROM feature from discussion
334 with <mjacob@feral.com>.
335 Added full module autoprobe capability.
336 Added attempt to use an SMC9332 with broken SROM.
337 Added fix for ZYNX multi-mac cards that didn't
338 get their IRQs wired correctly.
339 0.51 13-Feb-97 Added endian fixes for the SROM accesses from
340 <paubert@iram.es>
341 Fix init_connection() to remove extra device reset.
342 Fix MAC/PHY reset ordering in dc21140m_autoconf().
343 Fix initialisation problem with lp->timeout in
344 typeX_infoblock() from <paubert@iram.es>.
345 Fix MII PHY reset problem from work done by
346 <paubert@iram.es>.
347 0.52 26-Apr-97 Some changes may not credit the right people -
348 a disk crash meant I lost some mail.
349 Change RX interrupt routine to drop rather than
350 defer packets to avoid hang reported by
351 <g.thomas@opengroup.org>.
352 Fix srom_exec() to return for COMPACT and type 1
353 infoblocks.
354 Added DC21142 and DC21143 functions.
355 Added byte counters from <phil@tazenda.demon.co.uk>
356 Added IRQF_DISABLED temporary fix from
357 <mjacob@feral.com>.
358 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during
359 module load: bug reported by
360 <Piete.Brooks@cl.cam.ac.uk>
361 Fix multi-MAC, one SROM, to work with 2114x chips:
362 bug reported by <cmetz@inner.net>.
363 Make above search independent of BIOS device scan
364 direction.
365 Completed DC2114[23] autosense functions.
366 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
367 <robin@intercore.com
368 Fix type1_infoblock() bug introduced in 0.53, from
369 problem reports by
370 <parmee@postecss.ncrfran.france.ncr.com> and
371 <jo@ice.dillingen.baynet.de>.
372 Added argument list to set up each board from either
373 a module's command line or a compiled in #define.
374 Added generic MII PHY functionality to deal with
375 newer PHY chips.
376 Fix the mess in 2.1.67.
377 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
378 <redhat@cococo.net>.
379 Fix bug in pci_probe() for 64 bit systems reported
380 by <belliott@accessone.com>.
381 0.533 9-Jan-98 Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382 0.534 24-Jan-98 Fix last (?) endian bug from <geert@linux-m68k.org>
383 0.535 21-Feb-98 Fix Ethernet Address PROM reset bug for DC21040.
384 0.536 21-Mar-98 Change pci_probe() to use the pci_dev structure.
385 **Incompatible with 2.0.x from here.**
386 0.540 5-Jul-98 Atomicize assertion of dev->interrupt for SMP
387 from <lma@varesearch.com>
388 Add TP, AUI and BNC cases to 21140m_autoconf() for
389 case where a 21140 under SROM control uses, e.g. AUI
390 from problem report by <delchini@lpnp09.in2p3.fr>
391 Add MII parallel detection to 2114x_autoconf() for
392 case where no autonegotiation partner exists from
393 problem report by <mlapsley@ndirect.co.uk>.
394 Add ability to force connection type directly even
395 when using SROM control from problem report by
396 <earl@exis.net>.
397 Updated the PCI interface to conform with the latest
398 version. I hope nothing is broken...
399 Add TX done interrupt modification from suggestion
400 by <Austin.Donnelly@cl.cam.ac.uk>.
401 Fix is_anc_capable() bug reported by
402 <Austin.Donnelly@cl.cam.ac.uk>.
403 Fix type[13]_infoblock() bug: during MII search, PHY
404 lp->rst not run because lp->ibn not initialised -
405 from report & fix by <paubert@iram.es>.
406 Fix probe bug with EISA & PCI cards present from
407 report by <eirik@netcom.com>.
408 0.541 24-Aug-98 Fix compiler problems associated with i386-string
409 ops from multiple bug reports and temporary fix
410 from <paubert@iram.es>.
411 Fix pci_probe() to correctly emulate the old
412 pcibios_find_class() function.
413 Add an_exception() for old ZYNX346 and fix compile
414 warning on PPC & SPARC, from <ecd@skynet.be>.
415 Fix lastPCI to correctly work with compiled in
416 kernels and modules from bug report by
417 <Zlatko.Calusic@CARNet.hr> et al.
418 0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages
419 when media is unconnected.
420 Change dev->interrupt to lp->interrupt to ensure
421 alignment for Alpha's and avoid their unaligned
422 access traps. This flag is merely for log messages:
423 should do something more definitive though...
424 0.543 30-Dec-98 Add SMP spin locking.
425 0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using
426 a 21143 by <mmporter@home.com>.
427 Change PCI/EISA bus probing order.
428 0.545 28-Nov-99 Further Moto SROM bug fix from
429 <mporter@eng.mcd.mot.com>
430 Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 from report by <geert@linux-m68k.org>
432 0.546 22-Feb-01 Fixes Alpha XP1000 oops. The srom_search function
433 was causing a page fault when initializing the
434 variable 'pb', on a non de4x5 PCI device, in this
435 case a PCI bridge (DEC chip 21152). The value of
436 'pb' is now only initialized if a de4x5 chip is
437 present.
438 <france@handhelds.org>
439 0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com>
440 0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and
441 generic DMA APIs. Fixed DE425 support on Alpha.
442 <maz@wild-wind.fr.eu.org>
443 =========================================================================
444 */
445
446 #include <linux/module.h>
447 #include <linux/kernel.h>
448 #include <linux/string.h>
449 #include <linux/interrupt.h>
450 #include <linux/ptrace.h>
451 #include <linux/errno.h>
452 #include <linux/ioport.h>
453 #include <linux/pci.h>
454 #include <linux/eisa.h>
455 #include <linux/delay.h>
456 #include <linux/init.h>
457 #include <linux/spinlock.h>
458 #include <linux/crc32.h>
459 #include <linux/netdevice.h>
460 #include <linux/etherdevice.h>
461 #include <linux/skbuff.h>
462 #include <linux/time.h>
463 #include <linux/types.h>
464 #include <linux/unistd.h>
465 #include <linux/ctype.h>
466 #include <linux/dma-mapping.h>
467 #include <linux/moduleparam.h>
468 #include <linux/bitops.h>
469 #include <linux/gfp.h>
470
471 #include <asm/io.h>
472 #include <asm/dma.h>
473 #include <asm/byteorder.h>
474 #include <asm/unaligned.h>
475 #include <asm/uaccess.h>
476 #ifdef CONFIG_PPC_PMAC
477 #include <asm/machdep.h>
478 #endif /* CONFIG_PPC_PMAC */
479
480 #include "de4x5.h"
481
482 static const char version[] =
483 KERN_INFO "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
484
485 #define c_char const char
486
487 /*
488 ** MII Information
489 */
490 struct phy_table {
491 int reset; /* Hard reset required? */
492 int id; /* IEEE OUI */
493 int ta; /* One cycle TA time - 802.3u is confusing here */
494 struct { /* Non autonegotiation (parallel) speed det. */
495 int reg;
496 int mask;
497 int value;
498 } spd;
499 };
500
501 struct mii_phy {
502 int reset; /* Hard reset required? */
503 int id; /* IEEE OUI */
504 int ta; /* One cycle TA time */
505 struct { /* Non autonegotiation (parallel) speed det. */
506 int reg;
507 int mask;
508 int value;
509 } spd;
510 int addr; /* MII address for the PHY */
511 u_char *gep; /* Start of GEP sequence block in SROM */
512 u_char *rst; /* Start of reset sequence in SROM */
513 u_int mc; /* Media Capabilities */
514 u_int ana; /* NWay Advertisement */
515 u_int fdx; /* Full DupleX capabilities for each media */
516 u_int ttm; /* Transmit Threshold Mode for each media */
517 u_int mci; /* 21142 MII Connector Interrupt info */
518 };
519
520 #define DE4X5_MAX_PHY 8 /* Allow up to 8 attached PHY devices per board */
521
522 struct sia_phy {
523 u_char mc; /* Media Code */
524 u_char ext; /* csr13-15 valid when set */
525 int csr13; /* SIA Connectivity Register */
526 int csr14; /* SIA TX/RX Register */
527 int csr15; /* SIA General Register */
528 int gepc; /* SIA GEP Control Information */
529 int gep; /* SIA GEP Data */
530 };
531
532 /*
533 ** Define the know universe of PHY devices that can be
534 ** recognised by this driver.
535 */
536 static struct phy_table phy_info[] = {
537 {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}}, /* National TX */
538 {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}}, /* Broadcom T4 */
539 {0, SEEQ_T4 , 1, {0x12, 0x10, 0x10}}, /* SEEQ T4 */
540 {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}}, /* Cypress T4 */
541 {0, 0x7810 , 1, {0x14, 0x0800, 0x0800}} /* Level One LTX970 */
542 };
543
544 /*
545 ** These GENERIC values assumes that the PHY devices follow 802.3u and
546 ** allow parallel detection to set the link partner ability register.
547 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
548 */
549 #define GENERIC_REG 0x05 /* Autoneg. Link Partner Advertisement Reg. */
550 #define GENERIC_MASK MII_ANLPA_100M /* All 100Mb/s Technologies */
551 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4 */
552
553 /*
554 ** Define special SROM detection cases
555 */
556 static c_char enet_det[][ETH_ALEN] = {
557 {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
558 {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
559 };
560
561 #define SMC 1
562 #define ACCTON 2
563
564 /*
565 ** SROM Repair definitions. If a broken SROM is detected a card may
566 ** use this information to help figure out what to do. This is a
567 ** "stab in the dark" and so far for SMC9332's only.
568 */
569 static c_char srom_repair_info[][100] = {
570 {0x00,0x1e,0x00,0x00,0x00,0x08, /* SMC9332 */
571 0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
572 0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
573 0x00,0x18,}
574 };
575
576
577 #ifdef DE4X5_DEBUG
578 static int de4x5_debug = DE4X5_DEBUG;
579 #else
580 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
581 static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
582 #endif
583
584 /*
585 ** Allow per adapter set up. For modules this is simply a command line
586 ** parameter, e.g.:
587 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
588 **
589 ** For a compiled in driver, place e.g.
590 ** #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
591 ** here
592 */
593 #ifdef DE4X5_PARM
594 static char *args = DE4X5_PARM;
595 #else
596 static char *args;
597 #endif
598
599 struct parameters {
600 bool fdx;
601 int autosense;
602 };
603
604 #define DE4X5_AUTOSENSE_MS 250 /* msec autosense tick (DE500) */
605
606 #define DE4X5_NDA 0xffe0 /* No Device (I/O) Address */
607
608 /*
609 ** Ethernet PROM defines
610 */
611 #define PROBE_LENGTH 32
612 #define ETH_PROM_SIG 0xAA5500FFUL
613
614 /*
615 ** Ethernet Info
616 */
617 #define PKT_BUF_SZ 1536 /* Buffer size for each Tx/Rx buffer */
618 #define IEEE802_3_SZ 1518 /* Packet + CRC */
619 #define MAX_PKT_SZ 1514 /* Maximum ethernet packet length */
620 #define MAX_DAT_SZ 1500 /* Maximum ethernet data length */
621 #define MIN_DAT_SZ 1 /* Minimum ethernet data length */
622 #define PKT_HDR_LEN 14 /* Addresses and data length info */
623 #define FAKE_FRAME_LEN (MAX_PKT_SZ + 1)
624 #define QUEUE_PKT_TIMEOUT (3*HZ) /* 3 second timeout */
625
626
627 /*
628 ** EISA bus defines
629 */
630 #define DE4X5_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */
631 #define DE4X5_EISA_TOTAL_SIZE 0x100 /* I/O address extent */
632
633 #define EISA_ALLOWED_IRQ_LIST {5, 9, 10, 11}
634
635 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
636 #define DE4X5_NAME_LENGTH 8
637
638 static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
639
640 /*
641 ** Ethernet PROM defines for DC21040
642 */
643 #define PROBE_LENGTH 32
644 #define ETH_PROM_SIG 0xAA5500FFUL
645
646 /*
647 ** PCI Bus defines
648 */
649 #define PCI_MAX_BUS_NUM 8
650 #define DE4X5_PCI_TOTAL_SIZE 0x80 /* I/O address extent */
651 #define DE4X5_CLASS_CODE 0x00020000 /* Network controller, Ethernet */
652
653 /*
654 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
655 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
656 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
657 ** and hence the RX descriptor ring's first entry.
658 */
659 #define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */
660 #define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */
661 #define DE4X5_ALIGN16 ((u_long)16 - 1) /* 4 longword align */
662 #define DE4X5_ALIGN32 ((u_long)32 - 1) /* 8 longword align */
663 #define DE4X5_ALIGN64 ((u_long)64 - 1) /* 16 longword align */
664 #define DE4X5_ALIGN128 ((u_long)128 - 1) /* 32 longword align */
665
666 #define DE4X5_ALIGN DE4X5_ALIGN32 /* Keep the DC21040 happy... */
667 #define DE4X5_CACHE_ALIGN CAL_16LONG
668 #define DESC_SKIP_LEN DSL_0 /* Must agree with DESC_ALIGN */
669 /*#define DESC_ALIGN u32 dummy[4]; / * Must agree with DESC_SKIP_LEN */
670 #define DESC_ALIGN
671
672 #ifndef DEC_ONLY /* See README.de4x5 for using this */
673 static int dec_only;
674 #else
675 static int dec_only = 1;
676 #endif
677
678 /*
679 ** DE4X5 IRQ ENABLE/DISABLE
680 */
681 #define ENABLE_IRQs { \
682 imr |= lp->irq_en;\
683 outl(imr, DE4X5_IMR); /* Enable the IRQs */\
684 }
685
686 #define DISABLE_IRQs {\
687 imr = inl(DE4X5_IMR);\
688 imr &= ~lp->irq_en;\
689 outl(imr, DE4X5_IMR); /* Disable the IRQs */\
690 }
691
692 #define UNMASK_IRQs {\
693 imr |= lp->irq_mask;\
694 outl(imr, DE4X5_IMR); /* Unmask the IRQs */\
695 }
696
697 #define MASK_IRQs {\
698 imr = inl(DE4X5_IMR);\
699 imr &= ~lp->irq_mask;\
700 outl(imr, DE4X5_IMR); /* Mask the IRQs */\
701 }
702
703 /*
704 ** DE4X5 START/STOP
705 */
706 #define START_DE4X5 {\
707 omr = inl(DE4X5_OMR);\
708 omr |= OMR_ST | OMR_SR;\
709 outl(omr, DE4X5_OMR); /* Enable the TX and/or RX */\
710 }
711
712 #define STOP_DE4X5 {\
713 omr = inl(DE4X5_OMR);\
714 omr &= ~(OMR_ST|OMR_SR);\
715 outl(omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
716 }
717
718 /*
719 ** DE4X5 SIA RESET
720 */
721 #define RESET_SIA outl(0, DE4X5_SICR); /* Reset SIA connectivity regs */
722
723 /*
724 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
725 */
726 #define DE4X5_AUTOSENSE_MS 250
727
728 /*
729 ** SROM Structure
730 */
731 struct de4x5_srom {
732 char sub_vendor_id[2];
733 char sub_system_id[2];
734 char reserved[12];
735 char id_block_crc;
736 char reserved2;
737 char version;
738 char num_controllers;
739 char ieee_addr[6];
740 char info[100];
741 short chksum;
742 };
743 #define SUB_VENDOR_ID 0x500a
744
745 /*
746 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
747 ** and have sizes of both a power of 2 and a multiple of 4.
748 ** A size of 256 bytes for each buffer could be chosen because over 90% of
749 ** all packets in our network are <256 bytes long and 64 longword alignment
750 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
751 ** descriptors are needed for machines with an ALPHA CPU.
752 */
753 #define NUM_RX_DESC 8 /* Number of RX descriptors */
754 #define NUM_TX_DESC 32 /* Number of TX descriptors */
755 #define RX_BUFF_SZ 1536 /* Power of 2 for kmalloc and */
756 /* Multiple of 4 for DC21040 */
757 /* Allows 512 byte alignment */
758 struct de4x5_desc {
759 volatile __le32 status;
760 __le32 des1;
761 __le32 buf;
762 __le32 next;
763 DESC_ALIGN
764 };
765
766 /*
767 ** The DE4X5 private structure
768 */
769 #define DE4X5_PKT_STAT_SZ 16
770 #define DE4X5_PKT_BIN_SZ 128 /* Should be >=100 unless you
771 increase DE4X5_PKT_STAT_SZ */
772
773 struct pkt_stats {
774 u_int bins[DE4X5_PKT_STAT_SZ]; /* Private stats counters */
775 u_int unicast;
776 u_int multicast;
777 u_int broadcast;
778 u_int excessive_collisions;
779 u_int tx_underruns;
780 u_int excessive_underruns;
781 u_int rx_runt_frames;
782 u_int rx_collision;
783 u_int rx_dribble;
784 u_int rx_overflow;
785 };
786
787 struct de4x5_private {
788 char adapter_name[80]; /* Adapter name */
789 u_long interrupt; /* Aligned ISR flag */
790 struct de4x5_desc *rx_ring; /* RX descriptor ring */
791 struct de4x5_desc *tx_ring; /* TX descriptor ring */
792 struct sk_buff *tx_skb[NUM_TX_DESC]; /* TX skb for freeing when sent */
793 struct sk_buff *rx_skb[NUM_RX_DESC]; /* RX skb's */
794 int rx_new, rx_old; /* RX descriptor ring pointers */
795 int tx_new, tx_old; /* TX descriptor ring pointers */
796 char setup_frame[SETUP_FRAME_LEN]; /* Holds MCA and PA info. */
797 char frame[64]; /* Min sized packet for loopback*/
798 spinlock_t lock; /* Adapter specific spinlock */
799 struct net_device_stats stats; /* Public stats */
800 struct pkt_stats pktStats; /* Private stats counters */
801 char rxRingSize;
802 char txRingSize;
803 int bus; /* EISA or PCI */
804 int bus_num; /* PCI Bus number */
805 int device; /* Device number on PCI bus */
806 int state; /* Adapter OPENED or CLOSED */
807 int chipset; /* DC21040, DC21041 or DC21140 */
808 s32 irq_mask; /* Interrupt Mask (Enable) bits */
809 s32 irq_en; /* Summary interrupt bits */
810 int media; /* Media (eg TP), mode (eg 100B)*/
811 int c_media; /* Remember the last media conn */
812 bool fdx; /* media full duplex flag */
813 int linkOK; /* Link is OK */
814 int autosense; /* Allow/disallow autosensing */
815 bool tx_enable; /* Enable descriptor polling */
816 int setup_f; /* Setup frame filtering type */
817 int local_state; /* State within a 'media' state */
818 struct mii_phy phy[DE4X5_MAX_PHY]; /* List of attached PHY devices */
819 struct sia_phy sia; /* SIA PHY Information */
820 int active; /* Index to active PHY device */
821 int mii_cnt; /* Number of attached PHY's */
822 int timeout; /* Scheduling counter */
823 struct timer_list timer; /* Timer info for kernel */
824 int tmp; /* Temporary global per card */
825 struct {
826 u_long lock; /* Lock the cache accesses */
827 s32 csr0; /* Saved Bus Mode Register */
828 s32 csr6; /* Saved Operating Mode Reg. */
829 s32 csr7; /* Saved IRQ Mask Register */
830 s32 gep; /* Saved General Purpose Reg. */
831 s32 gepc; /* Control info for GEP */
832 s32 csr13; /* Saved SIA Connectivity Reg. */
833 s32 csr14; /* Saved SIA TX/RX Register */
834 s32 csr15; /* Saved SIA General Register */
835 int save_cnt; /* Flag if state already saved */
836 struct sk_buff_head queue; /* Save the (re-ordered) skb's */
837 } cache;
838 struct de4x5_srom srom; /* A copy of the SROM */
839 int cfrv; /* Card CFRV copy */
840 int rx_ovf; /* Check for 'RX overflow' tag */
841 bool useSROM; /* For non-DEC card use SROM */
842 bool useMII; /* Infoblock using the MII */
843 int asBitValid; /* Autosense bits in GEP? */
844 int asPolarity; /* 0 => asserted high */
845 int asBit; /* Autosense bit number in GEP */
846 int defMedium; /* SROM default medium */
847 int tcount; /* Last infoblock number */
848 int infoblock_init; /* Initialised this infoblock? */
849 int infoleaf_offset; /* SROM infoleaf for controller */
850 s32 infoblock_csr6; /* csr6 value in SROM infoblock */
851 int infoblock_media; /* infoblock media */
852 int (*infoleaf_fn)(struct net_device *); /* Pointer to infoleaf function */
853 u_char *rst; /* Pointer to Type 5 reset info */
854 u_char ibn; /* Infoblock number */
855 struct parameters params; /* Command line/ #defined params */
856 struct device *gendev; /* Generic device */
857 dma_addr_t dma_rings; /* DMA handle for rings */
858 int dma_size; /* Size of the DMA area */
859 char *rx_bufs; /* rx bufs on alpha, sparc, ... */
860 };
861
862 /*
863 ** To get around certain poxy cards that don't provide an SROM
864 ** for the second and more DECchip, I have to key off the first
865 ** chip's address. I'll assume there's not a bad SROM iff:
866 **
867 ** o the chipset is the same
868 ** o the bus number is the same and > 0
869 ** o the sum of all the returned hw address bytes is 0 or 0x5fa
870 **
871 ** Also have to save the irq for those cards whose hardware designers
872 ** can't follow the PCI to PCI Bridge Architecture spec.
873 */
874 static struct {
875 int chipset;
876 int bus;
877 int irq;
878 u_char addr[ETH_ALEN];
879 } last = {0,};
880
881 /*
882 ** The transmit ring full condition is described by the tx_old and tx_new
883 ** pointers by:
884 ** tx_old = tx_new Empty ring
885 ** tx_old = tx_new+1 Full ring
886 ** tx_old+txRingSize = tx_new+1 Full ring (wrapped condition)
887 */
888 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
889 lp->tx_old+lp->txRingSize-lp->tx_new-1:\
890 lp->tx_old -lp->tx_new-1)
891
892 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
893
894 /*
895 ** Public Functions
896 */
897 static int de4x5_open(struct net_device *dev);
898 static netdev_tx_t de4x5_queue_pkt(struct sk_buff *skb,
899 struct net_device *dev);
900 static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
901 static int de4x5_close(struct net_device *dev);
902 static struct net_device_stats *de4x5_get_stats(struct net_device *dev);
903 static void de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
904 static void set_multicast_list(struct net_device *dev);
905 static int de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
906
907 /*
908 ** Private functions
909 */
910 static int de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
911 static int de4x5_init(struct net_device *dev);
912 static int de4x5_sw_reset(struct net_device *dev);
913 static int de4x5_rx(struct net_device *dev);
914 static int de4x5_tx(struct net_device *dev);
915 static void de4x5_ast(struct net_device *dev);
916 static int de4x5_txur(struct net_device *dev);
917 static int de4x5_rx_ovfc(struct net_device *dev);
918
919 static int autoconf_media(struct net_device *dev);
920 static void create_packet(struct net_device *dev, char *frame, int len);
921 static void load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
922 static int dc21040_autoconf(struct net_device *dev);
923 static int dc21041_autoconf(struct net_device *dev);
924 static int dc21140m_autoconf(struct net_device *dev);
925 static int dc2114x_autoconf(struct net_device *dev);
926 static int srom_autoconf(struct net_device *dev);
927 static int de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
928 static int dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
929 static int test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
930 static int test_for_100Mb(struct net_device *dev, int msec);
931 static int wait_for_link(struct net_device *dev);
932 static int test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
933 static int is_spd_100(struct net_device *dev);
934 static int is_100_up(struct net_device *dev);
935 static int is_10_up(struct net_device *dev);
936 static int is_anc_capable(struct net_device *dev);
937 static int ping_media(struct net_device *dev, int msec);
938 static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
939 static void de4x5_free_rx_buffs(struct net_device *dev);
940 static void de4x5_free_tx_buffs(struct net_device *dev);
941 static void de4x5_save_skbs(struct net_device *dev);
942 static void de4x5_rst_desc_ring(struct net_device *dev);
943 static void de4x5_cache_state(struct net_device *dev, int flag);
944 static void de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
945 static void de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
946 static struct sk_buff *de4x5_get_cache(struct net_device *dev);
947 static void de4x5_setup_intr(struct net_device *dev);
948 static void de4x5_init_connection(struct net_device *dev);
949 static int de4x5_reset_phy(struct net_device *dev);
950 static void reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
951 static int test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
952 static int test_tp(struct net_device *dev, s32 msec);
953 static int EISA_signature(char *name, struct device *device);
954 static int PCI_signature(char *name, struct de4x5_private *lp);
955 static void DevicePresent(struct net_device *dev, u_long iobase);
956 static void enet_addr_rst(u_long aprom_addr);
957 static int de4x5_bad_srom(struct de4x5_private *lp);
958 static short srom_rd(u_long address, u_char offset);
959 static void srom_latch(u_int command, u_long address);
960 static void srom_command(u_int command, u_long address);
961 static void srom_address(u_int command, u_long address, u_char offset);
962 static short srom_data(u_int command, u_long address);
963 /*static void srom_busy(u_int command, u_long address);*/
964 static void sendto_srom(u_int command, u_long addr);
965 static int getfrom_srom(u_long addr);
966 static int srom_map_media(struct net_device *dev);
967 static int srom_infoleaf_info(struct net_device *dev);
968 static void srom_init(struct net_device *dev);
969 static void srom_exec(struct net_device *dev, u_char *p);
970 static int mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
971 static void mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
972 static int mii_rdata(u_long ioaddr);
973 static void mii_wdata(int data, int len, u_long ioaddr);
974 static void mii_ta(u_long rw, u_long ioaddr);
975 static int mii_swap(int data, int len);
976 static void mii_address(u_char addr, u_long ioaddr);
977 static void sendto_mii(u32 command, int data, u_long ioaddr);
978 static int getfrom_mii(u32 command, u_long ioaddr);
979 static int mii_get_oui(u_char phyaddr, u_long ioaddr);
980 static int mii_get_phy(struct net_device *dev);
981 static void SetMulticastFilter(struct net_device *dev);
982 static int get_hw_addr(struct net_device *dev);
983 static void srom_repair(struct net_device *dev, int card);
984 static int test_bad_enet(struct net_device *dev, int status);
985 static int an_exception(struct de4x5_private *lp);
986 static char *build_setup_frame(struct net_device *dev, int mode);
987 static void disable_ast(struct net_device *dev);
988 static long de4x5_switch_mac_port(struct net_device *dev);
989 static int gep_rd(struct net_device *dev);
990 static void gep_wr(s32 data, struct net_device *dev);
991 static void yawn(struct net_device *dev, int state);
992 static void de4x5_parse_params(struct net_device *dev);
993 static void de4x5_dbg_open(struct net_device *dev);
994 static void de4x5_dbg_mii(struct net_device *dev, int k);
995 static void de4x5_dbg_media(struct net_device *dev);
996 static void de4x5_dbg_srom(struct de4x5_srom *p);
997 static void de4x5_dbg_rx(struct sk_buff *skb, int len);
998 static int dc21041_infoleaf(struct net_device *dev);
999 static int dc21140_infoleaf(struct net_device *dev);
1000 static int dc21142_infoleaf(struct net_device *dev);
1001 static int dc21143_infoleaf(struct net_device *dev);
1002 static int type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1003 static int type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1004 static int type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1005 static int type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1006 static int type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1007 static int type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1008 static int compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1009
1010 /*
1011 ** Note now that module autoprobing is allowed under EISA and PCI. The
1012 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1013 ** to "do the right thing".
1014 */
1015
1016 static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED */
1017
1018 module_param(io, int, 0);
1019 module_param(de4x5_debug, int, 0);
1020 module_param(dec_only, int, 0);
1021 module_param(args, charp, 0);
1022
1023 MODULE_PARM_DESC(io, "de4x5 I/O base address");
1024 MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1025 MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1026 MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1027 MODULE_LICENSE("GPL");
1028
1029 /*
1030 ** List the SROM infoleaf functions and chipsets
1031 */
1032 struct InfoLeaf {
1033 int chipset;
1034 int (*fn)(struct net_device *);
1035 };
1036 static struct InfoLeaf infoleaf_array[] = {
1037 {DC21041, dc21041_infoleaf},
1038 {DC21140, dc21140_infoleaf},
1039 {DC21142, dc21142_infoleaf},
1040 {DC21143, dc21143_infoleaf}
1041 };
1042 #define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1043
1044 /*
1045 ** List the SROM info block functions
1046 */
1047 static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1048 type0_infoblock,
1049 type1_infoblock,
1050 type2_infoblock,
1051 type3_infoblock,
1052 type4_infoblock,
1053 type5_infoblock,
1054 compact_infoblock
1055 };
1056
1057 #define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1058
1059 /*
1060 ** Miscellaneous defines...
1061 */
1062 #define RESET_DE4X5 {\
1063 int i;\
1064 i=inl(DE4X5_BMR);\
1065 mdelay(1);\
1066 outl(i | BMR_SWR, DE4X5_BMR);\
1067 mdelay(1);\
1068 outl(i, DE4X5_BMR);\
1069 mdelay(1);\
1070 for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1071 mdelay(1);\
1072 }
1073
1074 #define PHY_HARD_RESET {\
1075 outl(GEP_HRST, DE4X5_GEP); /* Hard RESET the PHY dev. */\
1076 mdelay(1); /* Assert for 1ms */\
1077 outl(0x00, DE4X5_GEP);\
1078 mdelay(2); /* Wait for 2ms */\
1079 }
1080
1081 static const struct net_device_ops de4x5_netdev_ops = {
1082 .ndo_open = de4x5_open,
1083 .ndo_stop = de4x5_close,
1084 .ndo_start_xmit = de4x5_queue_pkt,
1085 .ndo_get_stats = de4x5_get_stats,
1086 .ndo_set_rx_mode = set_multicast_list,
1087 .ndo_do_ioctl = de4x5_ioctl,
1088 .ndo_change_mtu = eth_change_mtu,
1089 .ndo_set_mac_address= eth_mac_addr,
1090 .ndo_validate_addr = eth_validate_addr,
1091 };
1092
1093
1094 static int
1095 de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1096 {
1097 char name[DE4X5_NAME_LENGTH + 1];
1098 struct de4x5_private *lp = netdev_priv(dev);
1099 struct pci_dev *pdev = NULL;
1100 int i, status=0;
1101
1102 dev_set_drvdata(gendev, dev);
1103
1104 /* Ensure we're not sleeping */
1105 if (lp->bus == EISA) {
1106 outb(WAKEUP, PCI_CFPM);
1107 } else {
1108 pdev = to_pci_dev (gendev);
1109 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1110 }
1111 mdelay(10);
1112
1113 RESET_DE4X5;
1114
1115 if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1116 return -ENXIO; /* Hardware could not reset */
1117 }
1118
1119 /*
1120 ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1121 */
1122 lp->useSROM = false;
1123 if (lp->bus == PCI) {
1124 PCI_signature(name, lp);
1125 } else {
1126 EISA_signature(name, gendev);
1127 }
1128
1129 if (*name == '\0') { /* Not found a board signature */
1130 return -ENXIO;
1131 }
1132
1133 dev->base_addr = iobase;
1134 printk ("%s: %s at 0x%04lx", dev_name(gendev), name, iobase);
1135
1136 status = get_hw_addr(dev);
1137 printk(", h/w address %pM\n", dev->dev_addr);
1138
1139 if (status != 0) {
1140 printk(" which has an Ethernet PROM CRC error.\n");
1141 return -ENXIO;
1142 } else {
1143 skb_queue_head_init(&lp->cache.queue);
1144 lp->cache.gepc = GEP_INIT;
1145 lp->asBit = GEP_SLNK;
1146 lp->asPolarity = GEP_SLNK;
1147 lp->asBitValid = ~0;
1148 lp->timeout = -1;
1149 lp->gendev = gendev;
1150 spin_lock_init(&lp->lock);
1151 init_timer(&lp->timer);
1152 lp->timer.function = (void (*)(unsigned long))de4x5_ast;
1153 lp->timer.data = (unsigned long)dev;
1154 de4x5_parse_params(dev);
1155
1156 /*
1157 ** Choose correct autosensing in case someone messed up
1158 */
1159 lp->autosense = lp->params.autosense;
1160 if (lp->chipset != DC21140) {
1161 if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1162 lp->params.autosense = TP;
1163 }
1164 if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1165 lp->params.autosense = BNC;
1166 }
1167 }
1168 lp->fdx = lp->params.fdx;
1169 sprintf(lp->adapter_name,"%s (%s)", name, dev_name(gendev));
1170
1171 lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1172 #if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1173 lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1174 #endif
1175 lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1176 &lp->dma_rings, GFP_ATOMIC);
1177 if (lp->rx_ring == NULL) {
1178 return -ENOMEM;
1179 }
1180
1181 lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1182
1183 /*
1184 ** Set up the RX descriptor ring (Intels)
1185 ** Allocate contiguous receive buffers, long word aligned (Alphas)
1186 */
1187 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1188 for (i=0; i<NUM_RX_DESC; i++) {
1189 lp->rx_ring[i].status = 0;
1190 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1191 lp->rx_ring[i].buf = 0;
1192 lp->rx_ring[i].next = 0;
1193 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1194 }
1195
1196 #else
1197 {
1198 dma_addr_t dma_rx_bufs;
1199
1200 dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1201 * sizeof(struct de4x5_desc);
1202 dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1203 lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1204 + NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1205 for (i=0; i<NUM_RX_DESC; i++) {
1206 lp->rx_ring[i].status = 0;
1207 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1208 lp->rx_ring[i].buf =
1209 cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1210 lp->rx_ring[i].next = 0;
1211 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1212 }
1213
1214 }
1215 #endif
1216
1217 barrier();
1218
1219 lp->rxRingSize = NUM_RX_DESC;
1220 lp->txRingSize = NUM_TX_DESC;
1221
1222 /* Write the end of list marker to the descriptor lists */
1223 lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1224 lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1225
1226 /* Tell the adapter where the TX/RX rings are located. */
1227 outl(lp->dma_rings, DE4X5_RRBA);
1228 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1229 DE4X5_TRBA);
1230
1231 /* Initialise the IRQ mask and Enable/Disable */
1232 lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1233 lp->irq_en = IMR_NIM | IMR_AIM;
1234
1235 /* Create a loopback packet frame for later media probing */
1236 create_packet(dev, lp->frame, sizeof(lp->frame));
1237
1238 /* Check if the RX overflow bug needs testing for */
1239 i = lp->cfrv & 0x000000fe;
1240 if ((lp->chipset == DC21140) && (i == 0x20)) {
1241 lp->rx_ovf = 1;
1242 }
1243
1244 /* Initialise the SROM pointers if possible */
1245 if (lp->useSROM) {
1246 lp->state = INITIALISED;
1247 if (srom_infoleaf_info(dev)) {
1248 dma_free_coherent (gendev, lp->dma_size,
1249 lp->rx_ring, lp->dma_rings);
1250 return -ENXIO;
1251 }
1252 srom_init(dev);
1253 }
1254
1255 lp->state = CLOSED;
1256
1257 /*
1258 ** Check for an MII interface
1259 */
1260 if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1261 mii_get_phy(dev);
1262 }
1263
1264 printk(" and requires IRQ%d (provided by %s).\n", dev->irq,
1265 ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1266 }
1267
1268 if (de4x5_debug & DEBUG_VERSION) {
1269 printk(version);
1270 }
1271
1272 /* The DE4X5-specific entries in the device structure. */
1273 SET_NETDEV_DEV(dev, gendev);
1274 dev->netdev_ops = &de4x5_netdev_ops;
1275 dev->mem_start = 0;
1276
1277 /* Fill in the generic fields of the device structure. */
1278 if ((status = register_netdev (dev))) {
1279 dma_free_coherent (gendev, lp->dma_size,
1280 lp->rx_ring, lp->dma_rings);
1281 return status;
1282 }
1283
1284 /* Let the adapter sleep to save power */
1285 yawn(dev, SLEEP);
1286
1287 return status;
1288 }
1289
1290
1291 static int
1292 de4x5_open(struct net_device *dev)
1293 {
1294 struct de4x5_private *lp = netdev_priv(dev);
1295 u_long iobase = dev->base_addr;
1296 int i, status = 0;
1297 s32 omr;
1298
1299 /* Allocate the RX buffers */
1300 for (i=0; i<lp->rxRingSize; i++) {
1301 if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1302 de4x5_free_rx_buffs(dev);
1303 return -EAGAIN;
1304 }
1305 }
1306
1307 /*
1308 ** Wake up the adapter
1309 */
1310 yawn(dev, WAKEUP);
1311
1312 /*
1313 ** Re-initialize the DE4X5...
1314 */
1315 status = de4x5_init(dev);
1316 spin_lock_init(&lp->lock);
1317 lp->state = OPEN;
1318 de4x5_dbg_open(dev);
1319
1320 if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1321 lp->adapter_name, dev)) {
1322 printk("de4x5_open(): Requested IRQ%d is busy - attempting FAST/SHARE...", dev->irq);
1323 if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1324 lp->adapter_name, dev)) {
1325 printk("\n Cannot get IRQ- reconfigure your hardware.\n");
1326 disable_ast(dev);
1327 de4x5_free_rx_buffs(dev);
1328 de4x5_free_tx_buffs(dev);
1329 yawn(dev, SLEEP);
1330 lp->state = CLOSED;
1331 return -EAGAIN;
1332 } else {
1333 printk("\n Succeeded, but you should reconfigure your hardware to avoid this.\n");
1334 printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1335 }
1336 }
1337
1338 lp->interrupt = UNMASK_INTERRUPTS;
1339 netif_trans_update(dev); /* prevent tx timeout */
1340
1341 START_DE4X5;
1342
1343 de4x5_setup_intr(dev);
1344
1345 if (de4x5_debug & DEBUG_OPEN) {
1346 printk("\tsts: 0x%08x\n", inl(DE4X5_STS));
1347 printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR));
1348 printk("\timr: 0x%08x\n", inl(DE4X5_IMR));
1349 printk("\tomr: 0x%08x\n", inl(DE4X5_OMR));
1350 printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1351 printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1352 printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1353 printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1354 }
1355
1356 return status;
1357 }
1358
1359 /*
1360 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1361 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1362 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1363 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1364 ** to be data corruption problems if it is larger (UDP errors seen from a
1365 ** ttcp source).
1366 */
1367 static int
1368 de4x5_init(struct net_device *dev)
1369 {
1370 /* Lock out other processes whilst setting up the hardware */
1371 netif_stop_queue(dev);
1372
1373 de4x5_sw_reset(dev);
1374
1375 /* Autoconfigure the connected port */
1376 autoconf_media(dev);
1377
1378 return 0;
1379 }
1380
1381 static int
1382 de4x5_sw_reset(struct net_device *dev)
1383 {
1384 struct de4x5_private *lp = netdev_priv(dev);
1385 u_long iobase = dev->base_addr;
1386 int i, j, status = 0;
1387 s32 bmr, omr;
1388
1389 /* Select the MII or SRL port now and RESET the MAC */
1390 if (!lp->useSROM) {
1391 if (lp->phy[lp->active].id != 0) {
1392 lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1393 } else {
1394 lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1395 }
1396 de4x5_switch_mac_port(dev);
1397 }
1398
1399 /*
1400 ** Set the programmable burst length to 8 longwords for all the DC21140
1401 ** Fasternet chips and 4 longwords for all others: DMA errors result
1402 ** without these values. Cache align 16 long.
1403 */
1404 bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1405 bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1406 outl(bmr, DE4X5_BMR);
1407
1408 omr = inl(DE4X5_OMR) & ~OMR_PR; /* Turn off promiscuous mode */
1409 if (lp->chipset == DC21140) {
1410 omr |= (OMR_SDP | OMR_SB);
1411 }
1412 lp->setup_f = PERFECT;
1413 outl(lp->dma_rings, DE4X5_RRBA);
1414 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1415 DE4X5_TRBA);
1416
1417 lp->rx_new = lp->rx_old = 0;
1418 lp->tx_new = lp->tx_old = 0;
1419
1420 for (i = 0; i < lp->rxRingSize; i++) {
1421 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1422 }
1423
1424 for (i = 0; i < lp->txRingSize; i++) {
1425 lp->tx_ring[i].status = cpu_to_le32(0);
1426 }
1427
1428 barrier();
1429
1430 /* Build the setup frame depending on filtering mode */
1431 SetMulticastFilter(dev);
1432
1433 load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1434 outl(omr|OMR_ST, DE4X5_OMR);
1435
1436 /* Poll for setup frame completion (adapter interrupts are disabled now) */
1437
1438 for (j=0, i=0;(i<500) && (j==0);i++) { /* Up to 500ms delay */
1439 mdelay(1);
1440 if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1441 }
1442 outl(omr, DE4X5_OMR); /* Stop everything! */
1443
1444 if (j == 0) {
1445 printk("%s: Setup frame timed out, status %08x\n", dev->name,
1446 inl(DE4X5_STS));
1447 status = -EIO;
1448 }
1449
1450 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1451 lp->tx_old = lp->tx_new;
1452
1453 return status;
1454 }
1455
1456 /*
1457 ** Writes a socket buffer address to the next available transmit descriptor.
1458 */
1459 static netdev_tx_t
1460 de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1461 {
1462 struct de4x5_private *lp = netdev_priv(dev);
1463 u_long iobase = dev->base_addr;
1464 u_long flags = 0;
1465
1466 netif_stop_queue(dev);
1467 if (!lp->tx_enable) /* Cannot send for now */
1468 goto tx_err;
1469
1470 /*
1471 ** Clean out the TX ring asynchronously to interrupts - sometimes the
1472 ** interrupts are lost by delayed descriptor status updates relative to
1473 ** the irq assertion, especially with a busy PCI bus.
1474 */
1475 spin_lock_irqsave(&lp->lock, flags);
1476 de4x5_tx(dev);
1477 spin_unlock_irqrestore(&lp->lock, flags);
1478
1479 /* Test if cache is already locked - requeue skb if so */
1480 if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1481 goto tx_err;
1482
1483 /* Transmit descriptor ring full or stale skb */
1484 if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1485 if (lp->interrupt) {
1486 de4x5_putb_cache(dev, skb); /* Requeue the buffer */
1487 } else {
1488 de4x5_put_cache(dev, skb);
1489 }
1490 if (de4x5_debug & DEBUG_TX) {
1491 printk("%s: transmit busy, lost media or stale skb found:\n STS:%08x\n tbusy:%d\n IMR:%08x\n OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1492 }
1493 } else if (skb->len > 0) {
1494 /* If we already have stuff queued locally, use that first */
1495 if (!skb_queue_empty(&lp->cache.queue) && !lp->interrupt) {
1496 de4x5_put_cache(dev, skb);
1497 skb = de4x5_get_cache(dev);
1498 }
1499
1500 while (skb && !netif_queue_stopped(dev) &&
1501 (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1502 spin_lock_irqsave(&lp->lock, flags);
1503 netif_stop_queue(dev);
1504 load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1505 lp->stats.tx_bytes += skb->len;
1506 outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1507
1508 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1509
1510 if (TX_BUFFS_AVAIL) {
1511 netif_start_queue(dev); /* Another pkt may be queued */
1512 }
1513 skb = de4x5_get_cache(dev);
1514 spin_unlock_irqrestore(&lp->lock, flags);
1515 }
1516 if (skb) de4x5_putb_cache(dev, skb);
1517 }
1518
1519 lp->cache.lock = 0;
1520
1521 return NETDEV_TX_OK;
1522 tx_err:
1523 dev_kfree_skb_any(skb);
1524 return NETDEV_TX_OK;
1525 }
1526
1527 /*
1528 ** The DE4X5 interrupt handler.
1529 **
1530 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1531 ** so that the asserted interrupt always has some real data to work with -
1532 ** if these I/O accesses are ever changed to memory accesses, ensure the
1533 ** STS write is read immediately to complete the transaction if the adapter
1534 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1535 ** is high and descriptor status bits cannot be set before the associated
1536 ** interrupt is asserted and this routine entered.
1537 */
1538 static irqreturn_t
1539 de4x5_interrupt(int irq, void *dev_id)
1540 {
1541 struct net_device *dev = dev_id;
1542 struct de4x5_private *lp;
1543 s32 imr, omr, sts, limit;
1544 u_long iobase;
1545 unsigned int handled = 0;
1546
1547 lp = netdev_priv(dev);
1548 spin_lock(&lp->lock);
1549 iobase = dev->base_addr;
1550
1551 DISABLE_IRQs; /* Ensure non re-entrancy */
1552
1553 if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1554 printk("%s: Re-entering the interrupt handler.\n", dev->name);
1555
1556 synchronize_irq(dev->irq);
1557
1558 for (limit=0; limit<8; limit++) {
1559 sts = inl(DE4X5_STS); /* Read IRQ status */
1560 outl(sts, DE4X5_STS); /* Reset the board interrupts */
1561
1562 if (!(sts & lp->irq_mask)) break;/* All done */
1563 handled = 1;
1564
1565 if (sts & (STS_RI | STS_RU)) /* Rx interrupt (packet[s] arrived) */
1566 de4x5_rx(dev);
1567
1568 if (sts & (STS_TI | STS_TU)) /* Tx interrupt (packet sent) */
1569 de4x5_tx(dev);
1570
1571 if (sts & STS_LNF) { /* TP Link has failed */
1572 lp->irq_mask &= ~IMR_LFM;
1573 }
1574
1575 if (sts & STS_UNF) { /* Transmit underrun */
1576 de4x5_txur(dev);
1577 }
1578
1579 if (sts & STS_SE) { /* Bus Error */
1580 STOP_DE4X5;
1581 printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1582 dev->name, sts);
1583 spin_unlock(&lp->lock);
1584 return IRQ_HANDLED;
1585 }
1586 }
1587
1588 /* Load the TX ring with any locally stored packets */
1589 if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1590 while (!skb_queue_empty(&lp->cache.queue) && !netif_queue_stopped(dev) && lp->tx_enable) {
1591 de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1592 }
1593 lp->cache.lock = 0;
1594 }
1595
1596 lp->interrupt = UNMASK_INTERRUPTS;
1597 ENABLE_IRQs;
1598 spin_unlock(&lp->lock);
1599
1600 return IRQ_RETVAL(handled);
1601 }
1602
1603 static int
1604 de4x5_rx(struct net_device *dev)
1605 {
1606 struct de4x5_private *lp = netdev_priv(dev);
1607 u_long iobase = dev->base_addr;
1608 int entry;
1609 s32 status;
1610
1611 for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1612 entry=lp->rx_new) {
1613 status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1614
1615 if (lp->rx_ovf) {
1616 if (inl(DE4X5_MFC) & MFC_FOCM) {
1617 de4x5_rx_ovfc(dev);
1618 break;
1619 }
1620 }
1621
1622 if (status & RD_FS) { /* Remember the start of frame */
1623 lp->rx_old = entry;
1624 }
1625
1626 if (status & RD_LS) { /* Valid frame status */
1627 if (lp->tx_enable) lp->linkOK++;
1628 if (status & RD_ES) { /* There was an error. */
1629 lp->stats.rx_errors++; /* Update the error stats. */
1630 if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1631 if (status & RD_CE) lp->stats.rx_crc_errors++;
1632 if (status & RD_OF) lp->stats.rx_fifo_errors++;
1633 if (status & RD_TL) lp->stats.rx_length_errors++;
1634 if (status & RD_RF) lp->pktStats.rx_runt_frames++;
1635 if (status & RD_CS) lp->pktStats.rx_collision++;
1636 if (status & RD_DB) lp->pktStats.rx_dribble++;
1637 if (status & RD_OF) lp->pktStats.rx_overflow++;
1638 } else { /* A valid frame received */
1639 struct sk_buff *skb;
1640 short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1641 >> 16) - 4;
1642
1643 if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1644 printk("%s: Insufficient memory; nuking packet.\n",
1645 dev->name);
1646 lp->stats.rx_dropped++;
1647 } else {
1648 de4x5_dbg_rx(skb, pkt_len);
1649
1650 /* Push up the protocol stack */
1651 skb->protocol=eth_type_trans(skb,dev);
1652 de4x5_local_stats(dev, skb->data, pkt_len);
1653 netif_rx(skb);
1654
1655 /* Update stats */
1656 lp->stats.rx_packets++;
1657 lp->stats.rx_bytes += pkt_len;
1658 }
1659 }
1660
1661 /* Change buffer ownership for this frame, back to the adapter */
1662 for (;lp->rx_old!=entry;lp->rx_old=(lp->rx_old + 1)%lp->rxRingSize) {
1663 lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1664 barrier();
1665 }
1666 lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1667 barrier();
1668 }
1669
1670 /*
1671 ** Update entry information
1672 */
1673 lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1674 }
1675
1676 return 0;
1677 }
1678
1679 static inline void
1680 de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1681 {
1682 dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1683 le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1684 DMA_TO_DEVICE);
1685 if ((u_long) lp->tx_skb[entry] > 1)
1686 dev_kfree_skb_irq(lp->tx_skb[entry]);
1687 lp->tx_skb[entry] = NULL;
1688 }
1689
1690 /*
1691 ** Buffer sent - check for TX buffer errors.
1692 */
1693 static int
1694 de4x5_tx(struct net_device *dev)
1695 {
1696 struct de4x5_private *lp = netdev_priv(dev);
1697 u_long iobase = dev->base_addr;
1698 int entry;
1699 s32 status;
1700
1701 for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1702 status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1703 if (status < 0) { /* Buffer not sent yet */
1704 break;
1705 } else if (status != 0x7fffffff) { /* Not setup frame */
1706 if (status & TD_ES) { /* An error happened */
1707 lp->stats.tx_errors++;
1708 if (status & TD_NC) lp->stats.tx_carrier_errors++;
1709 if (status & TD_LC) lp->stats.tx_window_errors++;
1710 if (status & TD_UF) lp->stats.tx_fifo_errors++;
1711 if (status & TD_EC) lp->pktStats.excessive_collisions++;
1712 if (status & TD_DE) lp->stats.tx_aborted_errors++;
1713
1714 if (TX_PKT_PENDING) {
1715 outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1716 }
1717 } else { /* Packet sent */
1718 lp->stats.tx_packets++;
1719 if (lp->tx_enable) lp->linkOK++;
1720 }
1721 /* Update the collision counter */
1722 lp->stats.collisions += ((status & TD_EC) ? 16 :
1723 ((status & TD_CC) >> 3));
1724
1725 /* Free the buffer. */
1726 if (lp->tx_skb[entry] != NULL)
1727 de4x5_free_tx_buff(lp, entry);
1728 }
1729
1730 /* Update all the pointers */
1731 lp->tx_old = (lp->tx_old + 1) % lp->txRingSize;
1732 }
1733
1734 /* Any resources available? */
1735 if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1736 if (lp->interrupt)
1737 netif_wake_queue(dev);
1738 else
1739 netif_start_queue(dev);
1740 }
1741
1742 return 0;
1743 }
1744
1745 static void
1746 de4x5_ast(struct net_device *dev)
1747 {
1748 struct de4x5_private *lp = netdev_priv(dev);
1749 int next_tick = DE4X5_AUTOSENSE_MS;
1750 int dt;
1751
1752 if (lp->useSROM)
1753 next_tick = srom_autoconf(dev);
1754 else if (lp->chipset == DC21140)
1755 next_tick = dc21140m_autoconf(dev);
1756 else if (lp->chipset == DC21041)
1757 next_tick = dc21041_autoconf(dev);
1758 else if (lp->chipset == DC21040)
1759 next_tick = dc21040_autoconf(dev);
1760 lp->linkOK = 0;
1761
1762 dt = (next_tick * HZ) / 1000;
1763
1764 if (!dt)
1765 dt = 1;
1766
1767 mod_timer(&lp->timer, jiffies + dt);
1768 }
1769
1770 static int
1771 de4x5_txur(struct net_device *dev)
1772 {
1773 struct de4x5_private *lp = netdev_priv(dev);
1774 u_long iobase = dev->base_addr;
1775 int omr;
1776
1777 omr = inl(DE4X5_OMR);
1778 if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1779 omr &= ~(OMR_ST|OMR_SR);
1780 outl(omr, DE4X5_OMR);
1781 while (inl(DE4X5_STS) & STS_TS);
1782 if ((omr & OMR_TR) < OMR_TR) {
1783 omr += 0x4000;
1784 } else {
1785 omr |= OMR_SF;
1786 }
1787 outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1788 }
1789
1790 return 0;
1791 }
1792
1793 static int
1794 de4x5_rx_ovfc(struct net_device *dev)
1795 {
1796 struct de4x5_private *lp = netdev_priv(dev);
1797 u_long iobase = dev->base_addr;
1798 int omr;
1799
1800 omr = inl(DE4X5_OMR);
1801 outl(omr & ~OMR_SR, DE4X5_OMR);
1802 while (inl(DE4X5_STS) & STS_RS);
1803
1804 for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1805 lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1806 lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1807 }
1808
1809 outl(omr, DE4X5_OMR);
1810
1811 return 0;
1812 }
1813
1814 static int
1815 de4x5_close(struct net_device *dev)
1816 {
1817 struct de4x5_private *lp = netdev_priv(dev);
1818 u_long iobase = dev->base_addr;
1819 s32 imr, omr;
1820
1821 disable_ast(dev);
1822
1823 netif_stop_queue(dev);
1824
1825 if (de4x5_debug & DEBUG_CLOSE) {
1826 printk("%s: Shutting down ethercard, status was %8.8x.\n",
1827 dev->name, inl(DE4X5_STS));
1828 }
1829
1830 /*
1831 ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1832 */
1833 DISABLE_IRQs;
1834 STOP_DE4X5;
1835
1836 /* Free the associated irq */
1837 free_irq(dev->irq, dev);
1838 lp->state = CLOSED;
1839
1840 /* Free any socket buffers */
1841 de4x5_free_rx_buffs(dev);
1842 de4x5_free_tx_buffs(dev);
1843
1844 /* Put the adapter to sleep to save power */
1845 yawn(dev, SLEEP);
1846
1847 return 0;
1848 }
1849
1850 static struct net_device_stats *
1851 de4x5_get_stats(struct net_device *dev)
1852 {
1853 struct de4x5_private *lp = netdev_priv(dev);
1854 u_long iobase = dev->base_addr;
1855
1856 lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1857
1858 return &lp->stats;
1859 }
1860
1861 static void
1862 de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1863 {
1864 struct de4x5_private *lp = netdev_priv(dev);
1865 int i;
1866
1867 for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1868 if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1869 lp->pktStats.bins[i]++;
1870 i = DE4X5_PKT_STAT_SZ;
1871 }
1872 }
1873 if (is_multicast_ether_addr(buf)) {
1874 if (is_broadcast_ether_addr(buf)) {
1875 lp->pktStats.broadcast++;
1876 } else {
1877 lp->pktStats.multicast++;
1878 }
1879 } else if (ether_addr_equal(buf, dev->dev_addr)) {
1880 lp->pktStats.unicast++;
1881 }
1882
1883 lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */
1884 if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1885 memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1886 }
1887 }
1888
1889 /*
1890 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1891 ** If the flag is changed on a descriptor that is being read by the hardware,
1892 ** I assume PCI transaction ordering will mean you are either successful or
1893 ** just miss asserting the change to the hardware. Anyway you're messing with
1894 ** a descriptor you don't own, but this shouldn't kill the chip provided
1895 ** the descriptor register is read only to the hardware.
1896 */
1897 static void
1898 load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1899 {
1900 struct de4x5_private *lp = netdev_priv(dev);
1901 int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1902 dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1903
1904 lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1905 lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1906 lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1907 lp->tx_skb[lp->tx_new] = skb;
1908 lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1909 barrier();
1910
1911 lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1912 barrier();
1913 }
1914
1915 /*
1916 ** Set or clear the multicast filter for this adaptor.
1917 */
1918 static void
1919 set_multicast_list(struct net_device *dev)
1920 {
1921 struct de4x5_private *lp = netdev_priv(dev);
1922 u_long iobase = dev->base_addr;
1923
1924 /* First, double check that the adapter is open */
1925 if (lp->state == OPEN) {
1926 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
1927 u32 omr;
1928 omr = inl(DE4X5_OMR);
1929 omr |= OMR_PR;
1930 outl(omr, DE4X5_OMR);
1931 } else {
1932 SetMulticastFilter(dev);
1933 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1934 SETUP_FRAME_LEN, (struct sk_buff *)1);
1935
1936 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1937 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
1938 netif_trans_update(dev); /* prevent tx timeout */
1939 }
1940 }
1941 }
1942
1943 /*
1944 ** Calculate the hash code and update the logical address filter
1945 ** from a list of ethernet multicast addresses.
1946 ** Little endian crc one liner from Matt Thomas, DEC.
1947 */
1948 static void
1949 SetMulticastFilter(struct net_device *dev)
1950 {
1951 struct de4x5_private *lp = netdev_priv(dev);
1952 struct netdev_hw_addr *ha;
1953 u_long iobase = dev->base_addr;
1954 int i, bit, byte;
1955 u16 hashcode;
1956 u32 omr, crc;
1957 char *pa;
1958 unsigned char *addrs;
1959
1960 omr = inl(DE4X5_OMR);
1961 omr &= ~(OMR_PR | OMR_PM);
1962 pa = build_setup_frame(dev, ALL); /* Build the basic frame */
1963
1964 if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 14)) {
1965 omr |= OMR_PM; /* Pass all multicasts */
1966 } else if (lp->setup_f == HASH_PERF) { /* Hash Filtering */
1967 netdev_for_each_mc_addr(ha, dev) {
1968 crc = ether_crc_le(ETH_ALEN, ha->addr);
1969 hashcode = crc & DE4X5_HASH_BITS; /* hashcode is 9 LSb of CRC */
1970
1971 byte = hashcode >> 3; /* bit[3-8] -> byte in filter */
1972 bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1973
1974 byte <<= 1; /* calc offset into setup frame */
1975 if (byte & 0x02) {
1976 byte -= 1;
1977 }
1978 lp->setup_frame[byte] |= bit;
1979 }
1980 } else { /* Perfect filtering */
1981 netdev_for_each_mc_addr(ha, dev) {
1982 addrs = ha->addr;
1983 for (i=0; i<ETH_ALEN; i++) {
1984 *(pa + (i&1)) = *addrs++;
1985 if (i & 0x01) pa += 4;
1986 }
1987 }
1988 }
1989 outl(omr, DE4X5_OMR);
1990 }
1991
1992 #ifdef CONFIG_EISA
1993
1994 static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
1995
1996 static int de4x5_eisa_probe(struct device *gendev)
1997 {
1998 struct eisa_device *edev;
1999 u_long iobase;
2000 u_char irq, regval;
2001 u_short vendor;
2002 u32 cfid;
2003 int status, device;
2004 struct net_device *dev;
2005 struct de4x5_private *lp;
2006
2007 edev = to_eisa_device (gendev);
2008 iobase = edev->base_addr;
2009
2010 if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2011 return -EBUSY;
2012
2013 if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2014 DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2015 status = -EBUSY;
2016 goto release_reg_1;
2017 }
2018
2019 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2020 status = -ENOMEM;
2021 goto release_reg_2;
2022 }
2023 lp = netdev_priv(dev);
2024
2025 cfid = (u32) inl(PCI_CFID);
2026 lp->cfrv = (u_short) inl(PCI_CFRV);
2027 device = (cfid >> 8) & 0x00ffff00;
2028 vendor = (u_short) cfid;
2029
2030 /* Read the EISA Configuration Registers */
2031 regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2032 #ifdef CONFIG_ALPHA
2033 /* Looks like the Jensen firmware (rev 2.2) doesn't really
2034 * care about the EISA configuration, and thus doesn't
2035 * configure the PLX bridge properly. Oh well... Simply mimic
2036 * the EISA config file to sort it out. */
2037
2038 /* EISA REG1: Assert DecChip 21040 HW Reset */
2039 outb (ER1_IAM | 1, EISA_REG1);
2040 mdelay (1);
2041
2042 /* EISA REG1: Deassert DecChip 21040 HW Reset */
2043 outb (ER1_IAM, EISA_REG1);
2044 mdelay (1);
2045
2046 /* EISA REG3: R/W Burst Transfer Enable */
2047 outb (ER3_BWE | ER3_BRE, EISA_REG3);
2048
2049 /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2050 outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2051 #endif
2052 irq = de4x5_irq[(regval >> 1) & 0x03];
2053
2054 if (is_DC2114x) {
2055 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2056 }
2057 lp->chipset = device;
2058 lp->bus = EISA;
2059
2060 /* Write the PCI Configuration Registers */
2061 outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2062 outl(0x00006000, PCI_CFLT);
2063 outl(iobase, PCI_CBIO);
2064
2065 DevicePresent(dev, EISA_APROM);
2066
2067 dev->irq = irq;
2068
2069 if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2070 return 0;
2071 }
2072
2073 free_netdev (dev);
2074 release_reg_2:
2075 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2076 release_reg_1:
2077 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2078
2079 return status;
2080 }
2081
2082 static int de4x5_eisa_remove(struct device *device)
2083 {
2084 struct net_device *dev;
2085 u_long iobase;
2086
2087 dev = dev_get_drvdata(device);
2088 iobase = dev->base_addr;
2089
2090 unregister_netdev (dev);
2091 free_netdev (dev);
2092 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2093 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2094
2095 return 0;
2096 }
2097
2098 static struct eisa_device_id de4x5_eisa_ids[] = {
2099 { "DEC4250", 0 }, /* 0 is the board name index... */
2100 { "" }
2101 };
2102 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2103
2104 static struct eisa_driver de4x5_eisa_driver = {
2105 .id_table = de4x5_eisa_ids,
2106 .driver = {
2107 .name = "de4x5",
2108 .probe = de4x5_eisa_probe,
2109 .remove = de4x5_eisa_remove,
2110 }
2111 };
2112 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2113 #endif
2114
2115 #ifdef CONFIG_PCI
2116
2117 /*
2118 ** This function searches the current bus (which is >0) for a DECchip with an
2119 ** SROM, so that in multiport cards that have one SROM shared between multiple
2120 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2121 ** For single port cards this is a time waster...
2122 */
2123 static void
2124 srom_search(struct net_device *dev, struct pci_dev *pdev)
2125 {
2126 u_char pb;
2127 u_short vendor, status;
2128 u_int irq = 0, device;
2129 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2130 int i, j;
2131 struct de4x5_private *lp = netdev_priv(dev);
2132 struct pci_dev *this_dev;
2133
2134 list_for_each_entry(this_dev, &pdev->bus->devices, bus_list) {
2135 vendor = this_dev->vendor;
2136 device = this_dev->device << 8;
2137 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2138
2139 /* Get the chip configuration revision register */
2140 pb = this_dev->bus->number;
2141
2142 /* Set the device number information */
2143 lp->device = PCI_SLOT(this_dev->devfn);
2144 lp->bus_num = pb;
2145
2146 /* Set the chipset information */
2147 if (is_DC2114x) {
2148 device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2149 ? DC21142 : DC21143);
2150 }
2151 lp->chipset = device;
2152
2153 /* Get the board I/O address (64 bits on sparc64) */
2154 iobase = pci_resource_start(this_dev, 0);
2155
2156 /* Fetch the IRQ to be used */
2157 irq = this_dev->irq;
2158 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2159
2160 /* Check if I/O accesses are enabled */
2161 pci_read_config_word(this_dev, PCI_COMMAND, &status);
2162 if (!(status & PCI_COMMAND_IO)) continue;
2163
2164 /* Search for a valid SROM attached to this DECchip */
2165 DevicePresent(dev, DE4X5_APROM);
2166 for (j=0, i=0; i<ETH_ALEN; i++) {
2167 j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2168 }
2169 if (j != 0 && j != 6 * 0xff) {
2170 last.chipset = device;
2171 last.bus = pb;
2172 last.irq = irq;
2173 for (i=0; i<ETH_ALEN; i++) {
2174 last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2175 }
2176 return;
2177 }
2178 }
2179 }
2180
2181 /*
2182 ** PCI bus I/O device probe
2183 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2184 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2185 ** enabled by the user first in the set up utility. Hence we just check for
2186 ** enabled features and silently ignore the card if they're not.
2187 **
2188 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2189 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2190 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2191 ** PC doesn't conform to the PCI standard)!
2192 **
2193 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2194 ** kernels use the V0.535[n] drivers.
2195 */
2196
2197 static int de4x5_pci_probe(struct pci_dev *pdev,
2198 const struct pci_device_id *ent)
2199 {
2200 u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2201 u_short vendor, status;
2202 u_int irq = 0, device;
2203 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2204 int error;
2205 struct net_device *dev;
2206 struct de4x5_private *lp;
2207
2208 dev_num = PCI_SLOT(pdev->devfn);
2209 pb = pdev->bus->number;
2210
2211 if (io) { /* probe a single PCI device */
2212 pbus = (u_short)(io >> 8);
2213 dnum = (u_short)(io & 0xff);
2214 if ((pbus != pb) || (dnum != dev_num))
2215 return -ENODEV;
2216 }
2217
2218 vendor = pdev->vendor;
2219 device = pdev->device << 8;
2220 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2221 return -ENODEV;
2222
2223 /* Ok, the device seems to be for us. */
2224 if ((error = pci_enable_device (pdev)))
2225 return error;
2226
2227 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2228 error = -ENOMEM;
2229 goto disable_dev;
2230 }
2231
2232 lp = netdev_priv(dev);
2233 lp->bus = PCI;
2234 lp->bus_num = 0;
2235
2236 /* Search for an SROM on this bus */
2237 if (lp->bus_num != pb) {
2238 lp->bus_num = pb;
2239 srom_search(dev, pdev);
2240 }
2241
2242 /* Get the chip configuration revision register */
2243 lp->cfrv = pdev->revision;
2244
2245 /* Set the device number information */
2246 lp->device = dev_num;
2247 lp->bus_num = pb;
2248
2249 /* Set the chipset information */
2250 if (is_DC2114x) {
2251 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2252 }
2253 lp->chipset = device;
2254
2255 /* Get the board I/O address (64 bits on sparc64) */
2256 iobase = pci_resource_start(pdev, 0);
2257
2258 /* Fetch the IRQ to be used */
2259 irq = pdev->irq;
2260 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2261 error = -ENODEV;
2262 goto free_dev;
2263 }
2264
2265 /* Check if I/O accesses and Bus Mastering are enabled */
2266 pci_read_config_word(pdev, PCI_COMMAND, &status);
2267 #ifdef __powerpc__
2268 if (!(status & PCI_COMMAND_IO)) {
2269 status |= PCI_COMMAND_IO;
2270 pci_write_config_word(pdev, PCI_COMMAND, status);
2271 pci_read_config_word(pdev, PCI_COMMAND, &status);
2272 }
2273 #endif /* __powerpc__ */
2274 if (!(status & PCI_COMMAND_IO)) {
2275 error = -ENODEV;
2276 goto free_dev;
2277 }
2278
2279 if (!(status & PCI_COMMAND_MASTER)) {
2280 status |= PCI_COMMAND_MASTER;
2281 pci_write_config_word(pdev, PCI_COMMAND, status);
2282 pci_read_config_word(pdev, PCI_COMMAND, &status);
2283 }
2284 if (!(status & PCI_COMMAND_MASTER)) {
2285 error = -ENODEV;
2286 goto free_dev;
2287 }
2288
2289 /* Check the latency timer for values >= 0x60 */
2290 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2291 if (timer < 0x60) {
2292 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2293 }
2294
2295 DevicePresent(dev, DE4X5_APROM);
2296
2297 if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2298 error = -EBUSY;
2299 goto free_dev;
2300 }
2301
2302 dev->irq = irq;
2303
2304 if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2305 goto release;
2306 }
2307
2308 return 0;
2309
2310 release:
2311 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2312 free_dev:
2313 free_netdev (dev);
2314 disable_dev:
2315 pci_disable_device (pdev);
2316 return error;
2317 }
2318
2319 static void de4x5_pci_remove(struct pci_dev *pdev)
2320 {
2321 struct net_device *dev;
2322 u_long iobase;
2323
2324 dev = pci_get_drvdata(pdev);
2325 iobase = dev->base_addr;
2326
2327 unregister_netdev (dev);
2328 free_netdev (dev);
2329 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2330 pci_disable_device (pdev);
2331 }
2332
2333 static const struct pci_device_id de4x5_pci_tbl[] = {
2334 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2335 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2336 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2337 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2338 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2339 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2340 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2341 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2342 { },
2343 };
2344
2345 static struct pci_driver de4x5_pci_driver = {
2346 .name = "de4x5",
2347 .id_table = de4x5_pci_tbl,
2348 .probe = de4x5_pci_probe,
2349 .remove = de4x5_pci_remove,
2350 };
2351
2352 #endif
2353
2354 /*
2355 ** Auto configure the media here rather than setting the port at compile
2356 ** time. This routine is called by de4x5_init() and when a loss of media is
2357 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2358 ** [TP] or no recent receive activity) to check whether the user has been
2359 ** sneaky and changed the port on us.
2360 */
2361 static int
2362 autoconf_media(struct net_device *dev)
2363 {
2364 struct de4x5_private *lp = netdev_priv(dev);
2365 u_long iobase = dev->base_addr;
2366
2367 disable_ast(dev);
2368
2369 lp->c_media = AUTO; /* Bogus last media */
2370 inl(DE4X5_MFC); /* Zero the lost frames counter */
2371 lp->media = INIT;
2372 lp->tcount = 0;
2373
2374 de4x5_ast(dev);
2375
2376 return lp->media;
2377 }
2378
2379 /*
2380 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2381 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2382 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2383 ** The only way to test for that is to place a loopback packet onto the
2384 ** network and watch for errors. Since we're messing with the interrupt mask
2385 ** register, disable the board interrupts and do not allow any more packets to
2386 ** be queued to the hardware. Re-enable everything only when the media is
2387 ** found.
2388 ** I may have to "age out" locally queued packets so that the higher layer
2389 ** timeouts don't effectively duplicate packets on the network.
2390 */
2391 static int
2392 dc21040_autoconf(struct net_device *dev)
2393 {
2394 struct de4x5_private *lp = netdev_priv(dev);
2395 u_long iobase = dev->base_addr;
2396 int next_tick = DE4X5_AUTOSENSE_MS;
2397 s32 imr;
2398
2399 switch (lp->media) {
2400 case INIT:
2401 DISABLE_IRQs;
2402 lp->tx_enable = false;
2403 lp->timeout = -1;
2404 de4x5_save_skbs(dev);
2405 if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2406 lp->media = TP;
2407 } else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2408 lp->media = BNC_AUI;
2409 } else if (lp->autosense == EXT_SIA) {
2410 lp->media = EXT_SIA;
2411 } else {
2412 lp->media = NC;
2413 }
2414 lp->local_state = 0;
2415 next_tick = dc21040_autoconf(dev);
2416 break;
2417
2418 case TP:
2419 next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2420 TP_SUSPECT, test_tp);
2421 break;
2422
2423 case TP_SUSPECT:
2424 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2425 break;
2426
2427 case BNC:
2428 case AUI:
2429 case BNC_AUI:
2430 next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2431 BNC_AUI_SUSPECT, ping_media);
2432 break;
2433
2434 case BNC_AUI_SUSPECT:
2435 next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2436 break;
2437
2438 case EXT_SIA:
2439 next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2440 NC, EXT_SIA_SUSPECT, ping_media);
2441 break;
2442
2443 case EXT_SIA_SUSPECT:
2444 next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2445 break;
2446
2447 case NC:
2448 /* default to TP for all */
2449 reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2450 if (lp->media != lp->c_media) {
2451 de4x5_dbg_media(dev);
2452 lp->c_media = lp->media;
2453 }
2454 lp->media = INIT;
2455 lp->tx_enable = false;
2456 break;
2457 }
2458
2459 return next_tick;
2460 }
2461
2462 static int
2463 dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2464 int next_state, int suspect_state,
2465 int (*fn)(struct net_device *, int))
2466 {
2467 struct de4x5_private *lp = netdev_priv(dev);
2468 int next_tick = DE4X5_AUTOSENSE_MS;
2469 int linkBad;
2470
2471 switch (lp->local_state) {
2472 case 0:
2473 reset_init_sia(dev, csr13, csr14, csr15);
2474 lp->local_state++;
2475 next_tick = 500;
2476 break;
2477
2478 case 1:
2479 if (!lp->tx_enable) {
2480 linkBad = fn(dev, timeout);
2481 if (linkBad < 0) {
2482 next_tick = linkBad & ~TIMER_CB;
2483 } else {
2484 if (linkBad && (lp->autosense == AUTO)) {
2485 lp->local_state = 0;
2486 lp->media = next_state;
2487 } else {
2488 de4x5_init_connection(dev);
2489 }
2490 }
2491 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2492 lp->media = suspect_state;
2493 next_tick = 3000;
2494 }
2495 break;
2496 }
2497
2498 return next_tick;
2499 }
2500
2501 static int
2502 de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2503 int (*fn)(struct net_device *, int),
2504 int (*asfn)(struct net_device *))
2505 {
2506 struct de4x5_private *lp = netdev_priv(dev);
2507 int next_tick = DE4X5_AUTOSENSE_MS;
2508 int linkBad;
2509
2510 switch (lp->local_state) {
2511 case 1:
2512 if (lp->linkOK) {
2513 lp->media = prev_state;
2514 } else {
2515 lp->local_state++;
2516 next_tick = asfn(dev);
2517 }
2518 break;
2519
2520 case 2:
2521 linkBad = fn(dev, timeout);
2522 if (linkBad < 0) {
2523 next_tick = linkBad & ~TIMER_CB;
2524 } else if (!linkBad) {
2525 lp->local_state--;
2526 lp->media = prev_state;
2527 } else {
2528 lp->media = INIT;
2529 lp->tcount++;
2530 }
2531 }
2532
2533 return next_tick;
2534 }
2535
2536 /*
2537 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2538 ** before BNC, because the BNC port will indicate activity if it's not
2539 ** terminated correctly. The only way to test for that is to place a loopback
2540 ** packet onto the network and watch for errors. Since we're messing with
2541 ** the interrupt mask register, disable the board interrupts and do not allow
2542 ** any more packets to be queued to the hardware. Re-enable everything only
2543 ** when the media is found.
2544 */
2545 static int
2546 dc21041_autoconf(struct net_device *dev)
2547 {
2548 struct de4x5_private *lp = netdev_priv(dev);
2549 u_long iobase = dev->base_addr;
2550 s32 sts, irqs, irq_mask, imr, omr;
2551 int next_tick = DE4X5_AUTOSENSE_MS;
2552
2553 switch (lp->media) {
2554 case INIT:
2555 DISABLE_IRQs;
2556 lp->tx_enable = false;
2557 lp->timeout = -1;
2558 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2559 if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2560 lp->media = TP; /* On chip auto negotiation is broken */
2561 } else if (lp->autosense == TP) {
2562 lp->media = TP;
2563 } else if (lp->autosense == BNC) {
2564 lp->media = BNC;
2565 } else if (lp->autosense == AUI) {
2566 lp->media = AUI;
2567 } else {
2568 lp->media = NC;
2569 }
2570 lp->local_state = 0;
2571 next_tick = dc21041_autoconf(dev);
2572 break;
2573
2574 case TP_NW:
2575 if (lp->timeout < 0) {
2576 omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2577 outl(omr | OMR_FDX, DE4X5_OMR);
2578 }
2579 irqs = STS_LNF | STS_LNP;
2580 irq_mask = IMR_LFM | IMR_LPM;
2581 sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2582 if (sts < 0) {
2583 next_tick = sts & ~TIMER_CB;
2584 } else {
2585 if (sts & STS_LNP) {
2586 lp->media = ANS;
2587 } else {
2588 lp->media = AUI;
2589 }
2590 next_tick = dc21041_autoconf(dev);
2591 }
2592 break;
2593
2594 case ANS:
2595 if (!lp->tx_enable) {
2596 irqs = STS_LNP;
2597 irq_mask = IMR_LPM;
2598 sts = test_ans(dev, irqs, irq_mask, 3000);
2599 if (sts < 0) {
2600 next_tick = sts & ~TIMER_CB;
2601 } else {
2602 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2603 lp->media = TP;
2604 next_tick = dc21041_autoconf(dev);
2605 } else {
2606 lp->local_state = 1;
2607 de4x5_init_connection(dev);
2608 }
2609 }
2610 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2611 lp->media = ANS_SUSPECT;
2612 next_tick = 3000;
2613 }
2614 break;
2615
2616 case ANS_SUSPECT:
2617 next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2618 break;
2619
2620 case TP:
2621 if (!lp->tx_enable) {
2622 if (lp->timeout < 0) {
2623 omr = inl(DE4X5_OMR); /* Set up half duplex for TP */
2624 outl(omr & ~OMR_FDX, DE4X5_OMR);
2625 }
2626 irqs = STS_LNF | STS_LNP;
2627 irq_mask = IMR_LFM | IMR_LPM;
2628 sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2629 if (sts < 0) {
2630 next_tick = sts & ~TIMER_CB;
2631 } else {
2632 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2633 if (inl(DE4X5_SISR) & SISR_NRA) {
2634 lp->media = AUI; /* Non selected port activity */
2635 } else {
2636 lp->media = BNC;
2637 }
2638 next_tick = dc21041_autoconf(dev);
2639 } else {
2640 lp->local_state = 1;
2641 de4x5_init_connection(dev);
2642 }
2643 }
2644 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2645 lp->media = TP_SUSPECT;
2646 next_tick = 3000;
2647 }
2648 break;
2649
2650 case TP_SUSPECT:
2651 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2652 break;
2653
2654 case AUI:
2655 if (!lp->tx_enable) {
2656 if (lp->timeout < 0) {
2657 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
2658 outl(omr & ~OMR_FDX, DE4X5_OMR);
2659 }
2660 irqs = 0;
2661 irq_mask = 0;
2662 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2663 if (sts < 0) {
2664 next_tick = sts & ~TIMER_CB;
2665 } else {
2666 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2667 lp->media = BNC;
2668 next_tick = dc21041_autoconf(dev);
2669 } else {
2670 lp->local_state = 1;
2671 de4x5_init_connection(dev);
2672 }
2673 }
2674 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2675 lp->media = AUI_SUSPECT;
2676 next_tick = 3000;
2677 }
2678 break;
2679
2680 case AUI_SUSPECT:
2681 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2682 break;
2683
2684 case BNC:
2685 switch (lp->local_state) {
2686 case 0:
2687 if (lp->timeout < 0) {
2688 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
2689 outl(omr & ~OMR_FDX, DE4X5_OMR);
2690 }
2691 irqs = 0;
2692 irq_mask = 0;
2693 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2694 if (sts < 0) {
2695 next_tick = sts & ~TIMER_CB;
2696 } else {
2697 lp->local_state++; /* Ensure media connected */
2698 next_tick = dc21041_autoconf(dev);
2699 }
2700 break;
2701
2702 case 1:
2703 if (!lp->tx_enable) {
2704 if ((sts = ping_media(dev, 3000)) < 0) {
2705 next_tick = sts & ~TIMER_CB;
2706 } else {
2707 if (sts) {
2708 lp->local_state = 0;
2709 lp->media = NC;
2710 } else {
2711 de4x5_init_connection(dev);
2712 }
2713 }
2714 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2715 lp->media = BNC_SUSPECT;
2716 next_tick = 3000;
2717 }
2718 break;
2719 }
2720 break;
2721
2722 case BNC_SUSPECT:
2723 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2724 break;
2725
2726 case NC:
2727 omr = inl(DE4X5_OMR); /* Set up full duplex for the autonegotiate */
2728 outl(omr | OMR_FDX, DE4X5_OMR);
2729 reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2730 if (lp->media != lp->c_media) {
2731 de4x5_dbg_media(dev);
2732 lp->c_media = lp->media;
2733 }
2734 lp->media = INIT;
2735 lp->tx_enable = false;
2736 break;
2737 }
2738
2739 return next_tick;
2740 }
2741
2742 /*
2743 ** Some autonegotiation chips are broken in that they do not return the
2744 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2745 ** register, except at the first power up negotiation.
2746 */
2747 static int
2748 dc21140m_autoconf(struct net_device *dev)
2749 {
2750 struct de4x5_private *lp = netdev_priv(dev);
2751 int ana, anlpa, cap, cr, slnk, sr;
2752 int next_tick = DE4X5_AUTOSENSE_MS;
2753 u_long imr, omr, iobase = dev->base_addr;
2754
2755 switch(lp->media) {
2756 case INIT:
2757 if (lp->timeout < 0) {
2758 DISABLE_IRQs;
2759 lp->tx_enable = false;
2760 lp->linkOK = 0;
2761 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2762 }
2763 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2764 next_tick &= ~TIMER_CB;
2765 } else {
2766 if (lp->useSROM) {
2767 if (srom_map_media(dev) < 0) {
2768 lp->tcount++;
2769 return next_tick;
2770 }
2771 srom_exec(dev, lp->phy[lp->active].gep);
2772 if (lp->infoblock_media == ANS) {
2773 ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2774 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2775 }
2776 } else {
2777 lp->tmp = MII_SR_ASSC; /* Fake out the MII speed set */
2778 SET_10Mb;
2779 if (lp->autosense == _100Mb) {
2780 lp->media = _100Mb;
2781 } else if (lp->autosense == _10Mb) {
2782 lp->media = _10Mb;
2783 } else if ((lp->autosense == AUTO) &&
2784 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2785 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2786 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2787 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2788 lp->media = ANS;
2789 } else if (lp->autosense == AUTO) {
2790 lp->media = SPD_DET;
2791 } else if (is_spd_100(dev) && is_100_up(dev)) {
2792 lp->media = _100Mb;
2793 } else {
2794 lp->media = NC;
2795 }
2796 }
2797 lp->local_state = 0;
2798 next_tick = dc21140m_autoconf(dev);
2799 }
2800 break;
2801
2802 case ANS:
2803 switch (lp->local_state) {
2804 case 0:
2805 if (lp->timeout < 0) {
2806 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2807 }
2808 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2809 if (cr < 0) {
2810 next_tick = cr & ~TIMER_CB;
2811 } else {
2812 if (cr) {
2813 lp->local_state = 0;
2814 lp->media = SPD_DET;
2815 } else {
2816 lp->local_state++;
2817 }
2818 next_tick = dc21140m_autoconf(dev);
2819 }
2820 break;
2821
2822 case 1:
2823 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2824 next_tick = sr & ~TIMER_CB;
2825 } else {
2826 lp->media = SPD_DET;
2827 lp->local_state = 0;
2828 if (sr) { /* Success! */
2829 lp->tmp = MII_SR_ASSC;
2830 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2831 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2832 if (!(anlpa & MII_ANLPA_RF) &&
2833 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2834 if (cap & MII_ANA_100M) {
2835 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2836 lp->media = _100Mb;
2837 } else if (cap & MII_ANA_10M) {
2838 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2839
2840 lp->media = _10Mb;
2841 }
2842 }
2843 } /* Auto Negotiation failed to finish */
2844 next_tick = dc21140m_autoconf(dev);
2845 } /* Auto Negotiation failed to start */
2846 break;
2847 }
2848 break;
2849
2850 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
2851 if (lp->timeout < 0) {
2852 lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2853 (~gep_rd(dev) & GEP_LNP));
2854 SET_100Mb_PDET;
2855 }
2856 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2857 next_tick = slnk & ~TIMER_CB;
2858 } else {
2859 if (is_spd_100(dev) && is_100_up(dev)) {
2860 lp->media = _100Mb;
2861 } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2862 lp->media = _10Mb;
2863 } else {
2864 lp->media = NC;
2865 }
2866 next_tick = dc21140m_autoconf(dev);
2867 }
2868 break;
2869
2870 case _100Mb: /* Set 100Mb/s */
2871 next_tick = 3000;
2872 if (!lp->tx_enable) {
2873 SET_100Mb;
2874 de4x5_init_connection(dev);
2875 } else {
2876 if (!lp->linkOK && (lp->autosense == AUTO)) {
2877 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2878 lp->media = INIT;
2879 lp->tcount++;
2880 next_tick = DE4X5_AUTOSENSE_MS;
2881 }
2882 }
2883 }
2884 break;
2885
2886 case BNC:
2887 case AUI:
2888 case _10Mb: /* Set 10Mb/s */
2889 next_tick = 3000;
2890 if (!lp->tx_enable) {
2891 SET_10Mb;
2892 de4x5_init_connection(dev);
2893 } else {
2894 if (!lp->linkOK && (lp->autosense == AUTO)) {
2895 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2896 lp->media = INIT;
2897 lp->tcount++;
2898 next_tick = DE4X5_AUTOSENSE_MS;
2899 }
2900 }
2901 }
2902 break;
2903
2904 case NC:
2905 if (lp->media != lp->c_media) {
2906 de4x5_dbg_media(dev);
2907 lp->c_media = lp->media;
2908 }
2909 lp->media = INIT;
2910 lp->tx_enable = false;
2911 break;
2912 }
2913
2914 return next_tick;
2915 }
2916
2917 /*
2918 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2919 ** changing how I figure out the media - but trying to keep it backwards
2920 ** compatible with the de500-xa and de500-aa.
2921 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2922 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2923 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2924 ** active.
2925 ** When autonegotiation is working, the ANS part searches the SROM for
2926 ** the highest common speed (TP) link that both can run and if that can
2927 ** be full duplex. That infoblock is executed and then the link speed set.
2928 **
2929 ** Only _10Mb and _100Mb are tested here.
2930 */
2931 static int
2932 dc2114x_autoconf(struct net_device *dev)
2933 {
2934 struct de4x5_private *lp = netdev_priv(dev);
2935 u_long iobase = dev->base_addr;
2936 s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2937 int next_tick = DE4X5_AUTOSENSE_MS;
2938
2939 switch (lp->media) {
2940 case INIT:
2941 if (lp->timeout < 0) {
2942 DISABLE_IRQs;
2943 lp->tx_enable = false;
2944 lp->linkOK = 0;
2945 lp->timeout = -1;
2946 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2947 if (lp->params.autosense & ~AUTO) {
2948 srom_map_media(dev); /* Fixed media requested */
2949 if (lp->media != lp->params.autosense) {
2950 lp->tcount++;
2951 lp->media = INIT;
2952 return next_tick;
2953 }
2954 lp->media = INIT;
2955 }
2956 }
2957 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2958 next_tick &= ~TIMER_CB;
2959 } else {
2960 if (lp->autosense == _100Mb) {
2961 lp->media = _100Mb;
2962 } else if (lp->autosense == _10Mb) {
2963 lp->media = _10Mb;
2964 } else if (lp->autosense == TP) {
2965 lp->media = TP;
2966 } else if (lp->autosense == BNC) {
2967 lp->media = BNC;
2968 } else if (lp->autosense == AUI) {
2969 lp->media = AUI;
2970 } else {
2971 lp->media = SPD_DET;
2972 if ((lp->infoblock_media == ANS) &&
2973 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2974 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2975 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2976 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2977 lp->media = ANS;
2978 }
2979 }
2980 lp->local_state = 0;
2981 next_tick = dc2114x_autoconf(dev);
2982 }
2983 break;
2984
2985 case ANS:
2986 switch (lp->local_state) {
2987 case 0:
2988 if (lp->timeout < 0) {
2989 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2990 }
2991 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2992 if (cr < 0) {
2993 next_tick = cr & ~TIMER_CB;
2994 } else {
2995 if (cr) {
2996 lp->local_state = 0;
2997 lp->media = SPD_DET;
2998 } else {
2999 lp->local_state++;
3000 }
3001 next_tick = dc2114x_autoconf(dev);
3002 }
3003 break;
3004
3005 case 1:
3006 sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3007 if (sr < 0) {
3008 next_tick = sr & ~TIMER_CB;
3009 } else {
3010 lp->media = SPD_DET;
3011 lp->local_state = 0;
3012 if (sr) { /* Success! */
3013 lp->tmp = MII_SR_ASSC;
3014 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3015 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3016 if (!(anlpa & MII_ANLPA_RF) &&
3017 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3018 if (cap & MII_ANA_100M) {
3019 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3020 lp->media = _100Mb;
3021 } else if (cap & MII_ANA_10M) {
3022 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3023 lp->media = _10Mb;
3024 }
3025 }
3026 } /* Auto Negotiation failed to finish */
3027 next_tick = dc2114x_autoconf(dev);
3028 } /* Auto Negotiation failed to start */
3029 break;
3030 }
3031 break;
3032
3033 case AUI:
3034 if (!lp->tx_enable) {
3035 if (lp->timeout < 0) {
3036 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
3037 outl(omr & ~OMR_FDX, DE4X5_OMR);
3038 }
3039 irqs = 0;
3040 irq_mask = 0;
3041 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3042 if (sts < 0) {
3043 next_tick = sts & ~TIMER_CB;
3044 } else {
3045 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3046 lp->media = BNC;
3047 next_tick = dc2114x_autoconf(dev);
3048 } else {
3049 lp->local_state = 1;
3050 de4x5_init_connection(dev);
3051 }
3052 }
3053 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3054 lp->media = AUI_SUSPECT;
3055 next_tick = 3000;
3056 }
3057 break;
3058
3059 case AUI_SUSPECT:
3060 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3061 break;
3062
3063 case BNC:
3064 switch (lp->local_state) {
3065 case 0:
3066 if (lp->timeout < 0) {
3067 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
3068 outl(omr & ~OMR_FDX, DE4X5_OMR);
3069 }
3070 irqs = 0;
3071 irq_mask = 0;
3072 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3073 if (sts < 0) {
3074 next_tick = sts & ~TIMER_CB;
3075 } else {
3076 lp->local_state++; /* Ensure media connected */
3077 next_tick = dc2114x_autoconf(dev);
3078 }
3079 break;
3080
3081 case 1:
3082 if (!lp->tx_enable) {
3083 if ((sts = ping_media(dev, 3000)) < 0) {
3084 next_tick = sts & ~TIMER_CB;
3085 } else {
3086 if (sts) {
3087 lp->local_state = 0;
3088 lp->tcount++;
3089 lp->media = INIT;
3090 } else {
3091 de4x5_init_connection(dev);
3092 }
3093 }
3094 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3095 lp->media = BNC_SUSPECT;
3096 next_tick = 3000;
3097 }
3098 break;
3099 }
3100 break;
3101
3102 case BNC_SUSPECT:
3103 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3104 break;
3105
3106 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
3107 if (srom_map_media(dev) < 0) {
3108 lp->tcount++;
3109 lp->media = INIT;
3110 return next_tick;
3111 }
3112 if (lp->media == _100Mb) {
3113 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3114 lp->media = SPD_DET;
3115 return slnk & ~TIMER_CB;
3116 }
3117 } else {
3118 if (wait_for_link(dev) < 0) {
3119 lp->media = SPD_DET;
3120 return PDET_LINK_WAIT;
3121 }
3122 }
3123 if (lp->media == ANS) { /* Do MII parallel detection */
3124 if (is_spd_100(dev)) {
3125 lp->media = _100Mb;
3126 } else {
3127 lp->media = _10Mb;
3128 }
3129 next_tick = dc2114x_autoconf(dev);
3130 } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3131 (((lp->media == _10Mb) || (lp->media == TP) ||
3132 (lp->media == BNC) || (lp->media == AUI)) &&
3133 is_10_up(dev))) {
3134 next_tick = dc2114x_autoconf(dev);
3135 } else {
3136 lp->tcount++;
3137 lp->media = INIT;
3138 }
3139 break;
3140
3141 case _10Mb:
3142 next_tick = 3000;
3143 if (!lp->tx_enable) {
3144 SET_10Mb;
3145 de4x5_init_connection(dev);
3146 } else {
3147 if (!lp->linkOK && (lp->autosense == AUTO)) {
3148 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3149 lp->media = INIT;
3150 lp->tcount++;
3151 next_tick = DE4X5_AUTOSENSE_MS;
3152 }
3153 }
3154 }
3155 break;
3156
3157 case _100Mb:
3158 next_tick = 3000;
3159 if (!lp->tx_enable) {
3160 SET_100Mb;
3161 de4x5_init_connection(dev);
3162 } else {
3163 if (!lp->linkOK && (lp->autosense == AUTO)) {
3164 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3165 lp->media = INIT;
3166 lp->tcount++;
3167 next_tick = DE4X5_AUTOSENSE_MS;
3168 }
3169 }
3170 }
3171 break;
3172
3173 default:
3174 lp->tcount++;
3175 printk("Huh?: media:%02x\n", lp->media);
3176 lp->media = INIT;
3177 break;
3178 }
3179
3180 return next_tick;
3181 }
3182
3183 static int
3184 srom_autoconf(struct net_device *dev)
3185 {
3186 struct de4x5_private *lp = netdev_priv(dev);
3187
3188 return lp->infoleaf_fn(dev);
3189 }
3190
3191 /*
3192 ** This mapping keeps the original media codes and FDX flag unchanged.
3193 ** While it isn't strictly necessary, it helps me for the moment...
3194 ** The early return avoids a media state / SROM media space clash.
3195 */
3196 static int
3197 srom_map_media(struct net_device *dev)
3198 {
3199 struct de4x5_private *lp = netdev_priv(dev);
3200
3201 lp->fdx = false;
3202 if (lp->infoblock_media == lp->media)
3203 return 0;
3204
3205 switch(lp->infoblock_media) {
3206 case SROM_10BASETF:
3207 if (!lp->params.fdx) return -1;
3208 lp->fdx = true;
3209 case SROM_10BASET:
3210 if (lp->params.fdx && !lp->fdx) return -1;
3211 if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3212 lp->media = _10Mb;
3213 } else {
3214 lp->media = TP;
3215 }
3216 break;
3217
3218 case SROM_10BASE2:
3219 lp->media = BNC;
3220 break;
3221
3222 case SROM_10BASE5:
3223 lp->media = AUI;
3224 break;
3225
3226 case SROM_100BASETF:
3227 if (!lp->params.fdx) return -1;
3228 lp->fdx = true;
3229 case SROM_100BASET:
3230 if (lp->params.fdx && !lp->fdx) return -1;
3231 lp->media = _100Mb;
3232 break;
3233
3234 case SROM_100BASET4:
3235 lp->media = _100Mb;
3236 break;
3237
3238 case SROM_100BASEFF:
3239 if (!lp->params.fdx) return -1;
3240 lp->fdx = true;
3241 case SROM_100BASEF:
3242 if (lp->params.fdx && !lp->fdx) return -1;
3243 lp->media = _100Mb;
3244 break;
3245
3246 case ANS:
3247 lp->media = ANS;
3248 lp->fdx = lp->params.fdx;
3249 break;
3250
3251 default:
3252 printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3253 lp->infoblock_media);
3254 return -1;
3255 }
3256
3257 return 0;
3258 }
3259
3260 static void
3261 de4x5_init_connection(struct net_device *dev)
3262 {
3263 struct de4x5_private *lp = netdev_priv(dev);
3264 u_long iobase = dev->base_addr;
3265 u_long flags = 0;
3266
3267 if (lp->media != lp->c_media) {
3268 de4x5_dbg_media(dev);
3269 lp->c_media = lp->media; /* Stop scrolling media messages */
3270 }
3271
3272 spin_lock_irqsave(&lp->lock, flags);
3273 de4x5_rst_desc_ring(dev);
3274 de4x5_setup_intr(dev);
3275 lp->tx_enable = true;
3276 spin_unlock_irqrestore(&lp->lock, flags);
3277 outl(POLL_DEMAND, DE4X5_TPD);
3278
3279 netif_wake_queue(dev);
3280 }
3281
3282 /*
3283 ** General PHY reset function. Some MII devices don't reset correctly
3284 ** since their MII address pins can float at voltages that are dependent
3285 ** on the signal pin use. Do a double reset to ensure a reset.
3286 */
3287 static int
3288 de4x5_reset_phy(struct net_device *dev)
3289 {
3290 struct de4x5_private *lp = netdev_priv(dev);
3291 u_long iobase = dev->base_addr;
3292 int next_tick = 0;
3293
3294 if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3295 if (lp->timeout < 0) {
3296 if (lp->useSROM) {
3297 if (lp->phy[lp->active].rst) {
3298 srom_exec(dev, lp->phy[lp->active].rst);
3299 srom_exec(dev, lp->phy[lp->active].rst);
3300 } else if (lp->rst) { /* Type 5 infoblock reset */
3301 srom_exec(dev, lp->rst);
3302 srom_exec(dev, lp->rst);
3303 }
3304 } else {
3305 PHY_HARD_RESET;
3306 }
3307 if (lp->useMII) {
3308 mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3309 }
3310 }
3311 if (lp->useMII) {
3312 next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3313 }
3314 } else if (lp->chipset == DC21140) {
3315 PHY_HARD_RESET;
3316 }
3317
3318 return next_tick;
3319 }
3320
3321 static int
3322 test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3323 {
3324 struct de4x5_private *lp = netdev_priv(dev);
3325 u_long iobase = dev->base_addr;
3326 s32 sts, csr12;
3327
3328 if (lp->timeout < 0) {
3329 lp->timeout = msec/100;
3330 if (!lp->useSROM) { /* Already done if by SROM, else dc2104[01] */
3331 reset_init_sia(dev, csr13, csr14, csr15);
3332 }
3333
3334 /* set up the interrupt mask */
3335 outl(irq_mask, DE4X5_IMR);
3336
3337 /* clear all pending interrupts */
3338 sts = inl(DE4X5_STS);
3339 outl(sts, DE4X5_STS);
3340
3341 /* clear csr12 NRA and SRA bits */
3342 if ((lp->chipset == DC21041) || lp->useSROM) {
3343 csr12 = inl(DE4X5_SISR);
3344 outl(csr12, DE4X5_SISR);
3345 }
3346 }
3347
3348 sts = inl(DE4X5_STS) & ~TIMER_CB;
3349
3350 if (!(sts & irqs) && --lp->timeout) {
3351 sts = 100 | TIMER_CB;
3352 } else {
3353 lp->timeout = -1;
3354 }
3355
3356 return sts;
3357 }
3358
3359 static int
3360 test_tp(struct net_device *dev, s32 msec)
3361 {
3362 struct de4x5_private *lp = netdev_priv(dev);
3363 u_long iobase = dev->base_addr;
3364 int sisr;
3365
3366 if (lp->timeout < 0) {
3367 lp->timeout = msec/100;
3368 }
3369
3370 sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3371
3372 if (sisr && --lp->timeout) {
3373 sisr = 100 | TIMER_CB;
3374 } else {
3375 lp->timeout = -1;
3376 }
3377
3378 return sisr;
3379 }
3380
3381 /*
3382 ** Samples the 100Mb Link State Signal. The sample interval is important
3383 ** because too fast a rate can give erroneous results and confuse the
3384 ** speed sense algorithm.
3385 */
3386 #define SAMPLE_INTERVAL 500 /* ms */
3387 #define SAMPLE_DELAY 2000 /* ms */
3388 static int
3389 test_for_100Mb(struct net_device *dev, int msec)
3390 {
3391 struct de4x5_private *lp = netdev_priv(dev);
3392 int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3393
3394 if (lp->timeout < 0) {
3395 if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3396 if (msec > SAMPLE_DELAY) {
3397 lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3398 gep = SAMPLE_DELAY | TIMER_CB;
3399 return gep;
3400 } else {
3401 lp->timeout = msec/SAMPLE_INTERVAL;
3402 }
3403 }
3404
3405 if (lp->phy[lp->active].id || lp->useSROM) {
3406 gep = is_100_up(dev) | is_spd_100(dev);
3407 } else {
3408 gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3409 }
3410 if (!(gep & ret) && --lp->timeout) {
3411 gep = SAMPLE_INTERVAL | TIMER_CB;
3412 } else {
3413 lp->timeout = -1;
3414 }
3415
3416 return gep;
3417 }
3418
3419 static int
3420 wait_for_link(struct net_device *dev)
3421 {
3422 struct de4x5_private *lp = netdev_priv(dev);
3423
3424 if (lp->timeout < 0) {
3425 lp->timeout = 1;
3426 }
3427
3428 if (lp->timeout--) {
3429 return TIMER_CB;
3430 } else {
3431 lp->timeout = -1;
3432 }
3433
3434 return 0;
3435 }
3436
3437 /*
3438 **
3439 **
3440 */
3441 static int
3442 test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3443 {
3444 struct de4x5_private *lp = netdev_priv(dev);
3445 int test;
3446 u_long iobase = dev->base_addr;
3447
3448 if (lp->timeout < 0) {
3449 lp->timeout = msec/100;
3450 }
3451
3452 reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3453 test = (reg ^ (pol ? ~0 : 0)) & mask;
3454
3455 if (test && --lp->timeout) {
3456 reg = 100 | TIMER_CB;
3457 } else {
3458 lp->timeout = -1;
3459 }
3460
3461 return reg;
3462 }
3463
3464 static int
3465 is_spd_100(struct net_device *dev)
3466 {
3467 struct de4x5_private *lp = netdev_priv(dev);
3468 u_long iobase = dev->base_addr;
3469 int spd;
3470
3471 if (lp->useMII) {
3472 spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3473 spd = ~(spd ^ lp->phy[lp->active].spd.value);
3474 spd &= lp->phy[lp->active].spd.mask;
3475 } else if (!lp->useSROM) { /* de500-xa */
3476 spd = ((~gep_rd(dev)) & GEP_SLNK);
3477 } else {
3478 if ((lp->ibn == 2) || !lp->asBitValid)
3479 return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3480
3481 spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3482 (lp->linkOK & ~lp->asBitValid);
3483 }
3484
3485 return spd;
3486 }
3487
3488 static int
3489 is_100_up(struct net_device *dev)
3490 {
3491 struct de4x5_private *lp = netdev_priv(dev);
3492 u_long iobase = dev->base_addr;
3493
3494 if (lp->useMII) {
3495 /* Double read for sticky bits & temporary drops */
3496 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3497 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3498 } else if (!lp->useSROM) { /* de500-xa */
3499 return (~gep_rd(dev)) & GEP_SLNK;
3500 } else {
3501 if ((lp->ibn == 2) || !lp->asBitValid)
3502 return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3503
3504 return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3505 (lp->linkOK & ~lp->asBitValid);
3506 }
3507 }
3508
3509 static int
3510 is_10_up(struct net_device *dev)
3511 {
3512 struct de4x5_private *lp = netdev_priv(dev);
3513 u_long iobase = dev->base_addr;
3514
3515 if (lp->useMII) {
3516 /* Double read for sticky bits & temporary drops */
3517 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3518 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3519 } else if (!lp->useSROM) { /* de500-xa */
3520 return (~gep_rd(dev)) & GEP_LNP;
3521 } else {
3522 if ((lp->ibn == 2) || !lp->asBitValid)
3523 return ((lp->chipset & ~0x00ff) == DC2114x) ?
3524 (~inl(DE4X5_SISR)&SISR_LS10):
3525 0;
3526
3527 return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3528 (lp->linkOK & ~lp->asBitValid);
3529 }
3530 }
3531
3532 static int
3533 is_anc_capable(struct net_device *dev)
3534 {
3535 struct de4x5_private *lp = netdev_priv(dev);
3536 u_long iobase = dev->base_addr;
3537
3538 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3539 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3540 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3541 return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3542 } else {
3543 return 0;
3544 }
3545 }
3546
3547 /*
3548 ** Send a packet onto the media and watch for send errors that indicate the
3549 ** media is bad or unconnected.
3550 */
3551 static int
3552 ping_media(struct net_device *dev, int msec)
3553 {
3554 struct de4x5_private *lp = netdev_priv(dev);
3555 u_long iobase = dev->base_addr;
3556 int sisr;
3557
3558 if (lp->timeout < 0) {
3559 lp->timeout = msec/100;
3560
3561 lp->tmp = lp->tx_new; /* Remember the ring position */
3562 load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3563 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
3564 outl(POLL_DEMAND, DE4X5_TPD);
3565 }
3566
3567 sisr = inl(DE4X5_SISR);
3568
3569 if ((!(sisr & SISR_NCR)) &&
3570 ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3571 (--lp->timeout)) {
3572 sisr = 100 | TIMER_CB;
3573 } else {
3574 if ((!(sisr & SISR_NCR)) &&
3575 !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3576 lp->timeout) {
3577 sisr = 0;
3578 } else {
3579 sisr = 1;
3580 }
3581 lp->timeout = -1;
3582 }
3583
3584 return sisr;
3585 }
3586
3587 /*
3588 ** This function does 2 things: on Intels it kmalloc's another buffer to
3589 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3590 ** into which the packet is copied.
3591 */
3592 static struct sk_buff *
3593 de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3594 {
3595 struct de4x5_private *lp = netdev_priv(dev);
3596 struct sk_buff *p;
3597
3598 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3599 struct sk_buff *ret;
3600 u_long i=0, tmp;
3601
3602 p = netdev_alloc_skb(dev, IEEE802_3_SZ + DE4X5_ALIGN + 2);
3603 if (!p) return NULL;
3604
3605 tmp = virt_to_bus(p->data);
3606 i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3607 skb_reserve(p, i);
3608 lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3609
3610 ret = lp->rx_skb[index];
3611 lp->rx_skb[index] = p;
3612
3613 if ((u_long) ret > 1) {
3614 skb_put(ret, len);
3615 }
3616
3617 return ret;
3618
3619 #else
3620 if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3621
3622 p = netdev_alloc_skb(dev, len + 2);
3623 if (!p) return NULL;
3624
3625 skb_reserve(p, 2); /* Align */
3626 if (index < lp->rx_old) { /* Wrapped buffer */
3627 short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3628 memcpy(skb_put(p,tlen),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,tlen);
3629 memcpy(skb_put(p,len-tlen),lp->rx_bufs,len-tlen);
3630 } else { /* Linear buffer */
3631 memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len);
3632 }
3633
3634 return p;
3635 #endif
3636 }
3637
3638 static void
3639 de4x5_free_rx_buffs(struct net_device *dev)
3640 {
3641 struct de4x5_private *lp = netdev_priv(dev);
3642 int i;
3643
3644 for (i=0; i<lp->rxRingSize; i++) {
3645 if ((u_long) lp->rx_skb[i] > 1) {
3646 dev_kfree_skb(lp->rx_skb[i]);
3647 }
3648 lp->rx_ring[i].status = 0;
3649 lp->rx_skb[i] = (struct sk_buff *)1; /* Dummy entry */
3650 }
3651 }
3652
3653 static void
3654 de4x5_free_tx_buffs(struct net_device *dev)
3655 {
3656 struct de4x5_private *lp = netdev_priv(dev);
3657 int i;
3658
3659 for (i=0; i<lp->txRingSize; i++) {
3660 if (lp->tx_skb[i])
3661 de4x5_free_tx_buff(lp, i);
3662 lp->tx_ring[i].status = 0;
3663 }
3664
3665 /* Unload the locally queued packets */
3666 __skb_queue_purge(&lp->cache.queue);
3667 }
3668
3669 /*
3670 ** When a user pulls a connection, the DECchip can end up in a
3671 ** 'running - waiting for end of transmission' state. This means that we
3672 ** have to perform a chip soft reset to ensure that we can synchronize
3673 ** the hardware and software and make any media probes using a loopback
3674 ** packet meaningful.
3675 */
3676 static void
3677 de4x5_save_skbs(struct net_device *dev)
3678 {
3679 struct de4x5_private *lp = netdev_priv(dev);
3680 u_long iobase = dev->base_addr;
3681 s32 omr;
3682
3683 if (!lp->cache.save_cnt) {
3684 STOP_DE4X5;
3685 de4x5_tx(dev); /* Flush any sent skb's */
3686 de4x5_free_tx_buffs(dev);
3687 de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3688 de4x5_sw_reset(dev);
3689 de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3690 lp->cache.save_cnt++;
3691 START_DE4X5;
3692 }
3693 }
3694
3695 static void
3696 de4x5_rst_desc_ring(struct net_device *dev)
3697 {
3698 struct de4x5_private *lp = netdev_priv(dev);
3699 u_long iobase = dev->base_addr;
3700 int i;
3701 s32 omr;
3702
3703 if (lp->cache.save_cnt) {
3704 STOP_DE4X5;
3705 outl(lp->dma_rings, DE4X5_RRBA);
3706 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3707 DE4X5_TRBA);
3708
3709 lp->rx_new = lp->rx_old = 0;
3710 lp->tx_new = lp->tx_old = 0;
3711
3712 for (i = 0; i < lp->rxRingSize; i++) {
3713 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3714 }
3715
3716 for (i = 0; i < lp->txRingSize; i++) {
3717 lp->tx_ring[i].status = cpu_to_le32(0);
3718 }
3719
3720 barrier();
3721 lp->cache.save_cnt--;
3722 START_DE4X5;
3723 }
3724 }
3725
3726 static void
3727 de4x5_cache_state(struct net_device *dev, int flag)
3728 {
3729 struct de4x5_private *lp = netdev_priv(dev);
3730 u_long iobase = dev->base_addr;
3731
3732 switch(flag) {
3733 case DE4X5_SAVE_STATE:
3734 lp->cache.csr0 = inl(DE4X5_BMR);
3735 lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3736 lp->cache.csr7 = inl(DE4X5_IMR);
3737 break;
3738
3739 case DE4X5_RESTORE_STATE:
3740 outl(lp->cache.csr0, DE4X5_BMR);
3741 outl(lp->cache.csr6, DE4X5_OMR);
3742 outl(lp->cache.csr7, DE4X5_IMR);
3743 if (lp->chipset == DC21140) {
3744 gep_wr(lp->cache.gepc, dev);
3745 gep_wr(lp->cache.gep, dev);
3746 } else {
3747 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3748 lp->cache.csr15);
3749 }
3750 break;
3751 }
3752 }
3753
3754 static void
3755 de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3756 {
3757 struct de4x5_private *lp = netdev_priv(dev);
3758
3759 __skb_queue_tail(&lp->cache.queue, skb);
3760 }
3761
3762 static void
3763 de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3764 {
3765 struct de4x5_private *lp = netdev_priv(dev);
3766
3767 __skb_queue_head(&lp->cache.queue, skb);
3768 }
3769
3770 static struct sk_buff *
3771 de4x5_get_cache(struct net_device *dev)
3772 {
3773 struct de4x5_private *lp = netdev_priv(dev);
3774
3775 return __skb_dequeue(&lp->cache.queue);
3776 }
3777
3778 /*
3779 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3780 ** is received and the auto-negotiation status is NWAY OK.
3781 */
3782 static int
3783 test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3784 {
3785 struct de4x5_private *lp = netdev_priv(dev);
3786 u_long iobase = dev->base_addr;
3787 s32 sts, ans;
3788
3789 if (lp->timeout < 0) {
3790 lp->timeout = msec/100;
3791 outl(irq_mask, DE4X5_IMR);
3792
3793 /* clear all pending interrupts */
3794 sts = inl(DE4X5_STS);
3795 outl(sts, DE4X5_STS);
3796 }
3797
3798 ans = inl(DE4X5_SISR) & SISR_ANS;
3799 sts = inl(DE4X5_STS) & ~TIMER_CB;
3800
3801 if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3802 sts = 100 | TIMER_CB;
3803 } else {
3804 lp->timeout = -1;
3805 }
3806
3807 return sts;
3808 }
3809
3810 static void
3811 de4x5_setup_intr(struct net_device *dev)
3812 {
3813 struct de4x5_private *lp = netdev_priv(dev);
3814 u_long iobase = dev->base_addr;
3815 s32 imr, sts;
3816
3817 if (inl(DE4X5_OMR) & OMR_SR) { /* Only unmask if TX/RX is enabled */
3818 imr = 0;
3819 UNMASK_IRQs;
3820 sts = inl(DE4X5_STS); /* Reset any pending (stale) interrupts */
3821 outl(sts, DE4X5_STS);
3822 ENABLE_IRQs;
3823 }
3824 }
3825
3826 /*
3827 **
3828 */
3829 static void
3830 reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3831 {
3832 struct de4x5_private *lp = netdev_priv(dev);
3833 u_long iobase = dev->base_addr;
3834
3835 RESET_SIA;
3836 if (lp->useSROM) {
3837 if (lp->ibn == 3) {
3838 srom_exec(dev, lp->phy[lp->active].rst);
3839 srom_exec(dev, lp->phy[lp->active].gep);
3840 outl(1, DE4X5_SICR);
3841 return;
3842 } else {
3843 csr15 = lp->cache.csr15;
3844 csr14 = lp->cache.csr14;
3845 csr13 = lp->cache.csr13;
3846 outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3847 outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3848 }
3849 } else {
3850 outl(csr15, DE4X5_SIGR);
3851 }
3852 outl(csr14, DE4X5_STRR);
3853 outl(csr13, DE4X5_SICR);
3854
3855 mdelay(10);
3856 }
3857
3858 /*
3859 ** Create a loopback ethernet packet
3860 */
3861 static void
3862 create_packet(struct net_device *dev, char *frame, int len)
3863 {
3864 int i;
3865 char *buf = frame;
3866
3867 for (i=0; i<ETH_ALEN; i++) { /* Use this source address */
3868 *buf++ = dev->dev_addr[i];
3869 }
3870 for (i=0; i<ETH_ALEN; i++) { /* Use this destination address */
3871 *buf++ = dev->dev_addr[i];
3872 }
3873
3874 *buf++ = 0; /* Packet length (2 bytes) */
3875 *buf++ = 1;
3876 }
3877
3878 /*
3879 ** Look for a particular board name in the EISA configuration space
3880 */
3881 static int
3882 EISA_signature(char *name, struct device *device)
3883 {
3884 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3885 struct eisa_device *edev;
3886
3887 *name = '\0';
3888 edev = to_eisa_device (device);
3889 i = edev->id.driver_data;
3890
3891 if (i >= 0 && i < siglen) {
3892 strcpy (name, de4x5_signatures[i]);
3893 status = 1;
3894 }
3895
3896 return status; /* return the device name string */
3897 }
3898
3899 /*
3900 ** Look for a particular board name in the PCI configuration space
3901 */
3902 static int
3903 PCI_signature(char *name, struct de4x5_private *lp)
3904 {
3905 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3906
3907 if (lp->chipset == DC21040) {
3908 strcpy(name, "DE434/5");
3909 return status;
3910 } else { /* Search for a DEC name in the SROM */
3911 int tmp = *((char *)&lp->srom + 19) * 3;
3912 strncpy(name, (char *)&lp->srom + 26 + tmp, 8);
3913 }
3914 name[8] = '\0';
3915 for (i=0; i<siglen; i++) {
3916 if (strstr(name,de4x5_signatures[i])!=NULL) break;
3917 }
3918 if (i == siglen) {
3919 if (dec_only) {
3920 *name = '\0';
3921 } else { /* Use chip name to avoid confusion */
3922 strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3923 ((lp->chipset == DC21041) ? "DC21041" :
3924 ((lp->chipset == DC21140) ? "DC21140" :
3925 ((lp->chipset == DC21142) ? "DC21142" :
3926 ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3927 )))))));
3928 }
3929 if (lp->chipset != DC21041) {
3930 lp->useSROM = true; /* card is not recognisably DEC */
3931 }
3932 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3933 lp->useSROM = true;
3934 }
3935
3936 return status;
3937 }
3938
3939 /*
3940 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
3941 ** the DC21040, else read the SROM for the other chips.
3942 ** The SROM may not be present in a multi-MAC card, so first read the
3943 ** MAC address and check for a bad address. If there is a bad one then exit
3944 ** immediately with the prior srom contents intact (the h/w address will
3945 ** be fixed up later).
3946 */
3947 static void
3948 DevicePresent(struct net_device *dev, u_long aprom_addr)
3949 {
3950 int i, j=0;
3951 struct de4x5_private *lp = netdev_priv(dev);
3952
3953 if (lp->chipset == DC21040) {
3954 if (lp->bus == EISA) {
3955 enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
3956 } else {
3957 outl(0, aprom_addr); /* Reset Ethernet Address ROM Pointer */
3958 }
3959 } else { /* Read new srom */
3960 u_short tmp;
3961 __le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
3962 for (i=0; i<(ETH_ALEN>>1); i++) {
3963 tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
3964 j += tmp; /* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3965 *p = cpu_to_le16(tmp);
3966 }
3967 if (j == 0 || j == 3 * 0xffff) {
3968 /* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
3969 return;
3970 }
3971
3972 p = (__le16 *)&lp->srom;
3973 for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
3974 tmp = srom_rd(aprom_addr, i);
3975 *p++ = cpu_to_le16(tmp);
3976 }
3977 de4x5_dbg_srom(&lp->srom);
3978 }
3979 }
3980
3981 /*
3982 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
3983 ** pointer correctly (at least on my DE425 EISA card), this routine should do
3984 ** it...from depca.c.
3985 */
3986 static void
3987 enet_addr_rst(u_long aprom_addr)
3988 {
3989 union {
3990 struct {
3991 u32 a;
3992 u32 b;
3993 } llsig;
3994 char Sig[sizeof(u32) << 1];
3995 } dev;
3996 short sigLength=0;
3997 s8 data;
3998 int i, j;
3999
4000 dev.llsig.a = ETH_PROM_SIG;
4001 dev.llsig.b = ETH_PROM_SIG;
4002 sigLength = sizeof(u32) << 1;
4003
4004 for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4005 data = inb(aprom_addr);
4006 if (dev.Sig[j] == data) { /* track signature */
4007 j++;
4008 } else { /* lost signature; begin search again */
4009 if (data == dev.Sig[0]) { /* rare case.... */
4010 j=1;
4011 } else {
4012 j=0;
4013 }
4014 }
4015 }
4016 }
4017
4018 /*
4019 ** For the bad status case and no SROM, then add one to the previous
4020 ** address. However, need to add one backwards in case we have 0xff
4021 ** as one or more of the bytes. Only the last 3 bytes should be checked
4022 ** as the first three are invariant - assigned to an organisation.
4023 */
4024 static int
4025 get_hw_addr(struct net_device *dev)
4026 {
4027 u_long iobase = dev->base_addr;
4028 int broken, i, k, tmp, status = 0;
4029 u_short j,chksum;
4030 struct de4x5_private *lp = netdev_priv(dev);
4031
4032 broken = de4x5_bad_srom(lp);
4033
4034 for (i=0,k=0,j=0;j<3;j++) {
4035 k <<= 1;
4036 if (k > 0xffff) k-=0xffff;
4037
4038 if (lp->bus == PCI) {
4039 if (lp->chipset == DC21040) {
4040 while ((tmp = inl(DE4X5_APROM)) < 0);
4041 k += (u_char) tmp;
4042 dev->dev_addr[i++] = (u_char) tmp;
4043 while ((tmp = inl(DE4X5_APROM)) < 0);
4044 k += (u_short) (tmp << 8);
4045 dev->dev_addr[i++] = (u_char) tmp;
4046 } else if (!broken) {
4047 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4048 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4049 } else if ((broken == SMC) || (broken == ACCTON)) {
4050 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4051 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4052 }
4053 } else {
4054 k += (u_char) (tmp = inb(EISA_APROM));
4055 dev->dev_addr[i++] = (u_char) tmp;
4056 k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4057 dev->dev_addr[i++] = (u_char) tmp;
4058 }
4059
4060 if (k > 0xffff) k-=0xffff;
4061 }
4062 if (k == 0xffff) k=0;
4063
4064 if (lp->bus == PCI) {
4065 if (lp->chipset == DC21040) {
4066 while ((tmp = inl(DE4X5_APROM)) < 0);
4067 chksum = (u_char) tmp;
4068 while ((tmp = inl(DE4X5_APROM)) < 0);
4069 chksum |= (u_short) (tmp << 8);
4070 if ((k != chksum) && (dec_only)) status = -1;
4071 }
4072 } else {
4073 chksum = (u_char) inb(EISA_APROM);
4074 chksum |= (u_short) (inb(EISA_APROM) << 8);
4075 if ((k != chksum) && (dec_only)) status = -1;
4076 }
4077
4078 /* If possible, try to fix a broken card - SMC only so far */
4079 srom_repair(dev, broken);
4080
4081 #ifdef CONFIG_PPC_PMAC
4082 /*
4083 ** If the address starts with 00 a0, we have to bit-reverse
4084 ** each byte of the address.
4085 */
4086 if ( machine_is(powermac) &&
4087 (dev->dev_addr[0] == 0) &&
4088 (dev->dev_addr[1] == 0xa0) )
4089 {
4090 for (i = 0; i < ETH_ALEN; ++i)
4091 {
4092 int x = dev->dev_addr[i];
4093 x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4094 x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4095 dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4096 }
4097 }
4098 #endif /* CONFIG_PPC_PMAC */
4099
4100 /* Test for a bad enet address */
4101 status = test_bad_enet(dev, status);
4102
4103 return status;
4104 }
4105
4106 /*
4107 ** Test for enet addresses in the first 32 bytes.
4108 */
4109 static int
4110 de4x5_bad_srom(struct de4x5_private *lp)
4111 {
4112 int i, status = 0;
4113
4114 for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4115 if (!memcmp(&lp->srom, &enet_det[i], 3) &&
4116 !memcmp((char *)&lp->srom+0x10, &enet_det[i], 3)) {
4117 if (i == 0) {
4118 status = SMC;
4119 } else if (i == 1) {
4120 status = ACCTON;
4121 }
4122 break;
4123 }
4124 }
4125
4126 return status;
4127 }
4128
4129 static void
4130 srom_repair(struct net_device *dev, int card)
4131 {
4132 struct de4x5_private *lp = netdev_priv(dev);
4133
4134 switch(card) {
4135 case SMC:
4136 memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4137 memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4138 memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4139 lp->useSROM = true;
4140 break;
4141 }
4142 }
4143
4144 /*
4145 ** Assume that the irq's do not follow the PCI spec - this is seems
4146 ** to be true so far (2 for 2).
4147 */
4148 static int
4149 test_bad_enet(struct net_device *dev, int status)
4150 {
4151 struct de4x5_private *lp = netdev_priv(dev);
4152 int i, tmp;
4153
4154 for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4155 if ((tmp == 0) || (tmp == 0x5fa)) {
4156 if ((lp->chipset == last.chipset) &&
4157 (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4158 for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4159 for (i=ETH_ALEN-1; i>2; --i) {
4160 dev->dev_addr[i] += 1;
4161 if (dev->dev_addr[i] != 0) break;
4162 }
4163 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4164 if (!an_exception(lp)) {
4165 dev->irq = last.irq;
4166 }
4167
4168 status = 0;
4169 }
4170 } else if (!status) {
4171 last.chipset = lp->chipset;
4172 last.bus = lp->bus_num;
4173 last.irq = dev->irq;
4174 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4175 }
4176
4177 return status;
4178 }
4179
4180 /*
4181 ** List of board exceptions with correctly wired IRQs
4182 */
4183 static int
4184 an_exception(struct de4x5_private *lp)
4185 {
4186 if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4187 (*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4188 return -1;
4189 }
4190
4191 return 0;
4192 }
4193
4194 /*
4195 ** SROM Read
4196 */
4197 static short
4198 srom_rd(u_long addr, u_char offset)
4199 {
4200 sendto_srom(SROM_RD | SROM_SR, addr);
4201
4202 srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4203 srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4204 srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4205
4206 return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4207 }
4208
4209 static void
4210 srom_latch(u_int command, u_long addr)
4211 {
4212 sendto_srom(command, addr);
4213 sendto_srom(command | DT_CLK, addr);
4214 sendto_srom(command, addr);
4215 }
4216
4217 static void
4218 srom_command(u_int command, u_long addr)
4219 {
4220 srom_latch(command, addr);
4221 srom_latch(command, addr);
4222 srom_latch((command & 0x0000ff00) | DT_CS, addr);
4223 }
4224
4225 static void
4226 srom_address(u_int command, u_long addr, u_char offset)
4227 {
4228 int i, a;
4229
4230 a = offset << 2;
4231 for (i=0; i<6; i++, a <<= 1) {
4232 srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4233 }
4234 udelay(1);
4235
4236 i = (getfrom_srom(addr) >> 3) & 0x01;
4237 }
4238
4239 static short
4240 srom_data(u_int command, u_long addr)
4241 {
4242 int i;
4243 short word = 0;
4244 s32 tmp;
4245
4246 for (i=0; i<16; i++) {
4247 sendto_srom(command | DT_CLK, addr);
4248 tmp = getfrom_srom(addr);
4249 sendto_srom(command, addr);
4250
4251 word = (word << 1) | ((tmp >> 3) & 0x01);
4252 }
4253
4254 sendto_srom(command & 0x0000ff00, addr);
4255
4256 return word;
4257 }
4258
4259 /*
4260 static void
4261 srom_busy(u_int command, u_long addr)
4262 {
4263 sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4264
4265 while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4266 mdelay(1);
4267 }
4268
4269 sendto_srom(command & 0x0000ff00, addr);
4270 }
4271 */
4272
4273 static void
4274 sendto_srom(u_int command, u_long addr)
4275 {
4276 outl(command, addr);
4277 udelay(1);
4278 }
4279
4280 static int
4281 getfrom_srom(u_long addr)
4282 {
4283 s32 tmp;
4284
4285 tmp = inl(addr);
4286 udelay(1);
4287
4288 return tmp;
4289 }
4290
4291 static int
4292 srom_infoleaf_info(struct net_device *dev)
4293 {
4294 struct de4x5_private *lp = netdev_priv(dev);
4295 int i, count;
4296 u_char *p;
4297
4298 /* Find the infoleaf decoder function that matches this chipset */
4299 for (i=0; i<INFOLEAF_SIZE; i++) {
4300 if (lp->chipset == infoleaf_array[i].chipset) break;
4301 }
4302 if (i == INFOLEAF_SIZE) {
4303 lp->useSROM = false;
4304 printk("%s: Cannot find correct chipset for SROM decoding!\n",
4305 dev->name);
4306 return -ENXIO;
4307 }
4308
4309 lp->infoleaf_fn = infoleaf_array[i].fn;
4310
4311 /* Find the information offset that this function should use */
4312 count = *((u_char *)&lp->srom + 19);
4313 p = (u_char *)&lp->srom + 26;
4314
4315 if (count > 1) {
4316 for (i=count; i; --i, p+=3) {
4317 if (lp->device == *p) break;
4318 }
4319 if (i == 0) {
4320 lp->useSROM = false;
4321 printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4322 dev->name, lp->device);
4323 return -ENXIO;
4324 }
4325 }
4326
4327 lp->infoleaf_offset = get_unaligned_le16(p + 1);
4328
4329 return 0;
4330 }
4331
4332 /*
4333 ** This routine loads any type 1 or 3 MII info into the mii device
4334 ** struct and executes any type 5 code to reset PHY devices for this
4335 ** controller.
4336 ** The info for the MII devices will be valid since the index used
4337 ** will follow the discovery process from MII address 1-31 then 0.
4338 */
4339 static void
4340 srom_init(struct net_device *dev)
4341 {
4342 struct de4x5_private *lp = netdev_priv(dev);
4343 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4344 u_char count;
4345
4346 p+=2;
4347 if (lp->chipset == DC21140) {
4348 lp->cache.gepc = (*p++ | GEP_CTRL);
4349 gep_wr(lp->cache.gepc, dev);
4350 }
4351
4352 /* Block count */
4353 count = *p++;
4354
4355 /* Jump the infoblocks to find types */
4356 for (;count; --count) {
4357 if (*p < 128) {
4358 p += COMPACT_LEN;
4359 } else if (*(p+1) == 5) {
4360 type5_infoblock(dev, 1, p);
4361 p += ((*p & BLOCK_LEN) + 1);
4362 } else if (*(p+1) == 4) {
4363 p += ((*p & BLOCK_LEN) + 1);
4364 } else if (*(p+1) == 3) {
4365 type3_infoblock(dev, 1, p);
4366 p += ((*p & BLOCK_LEN) + 1);
4367 } else if (*(p+1) == 2) {
4368 p += ((*p & BLOCK_LEN) + 1);
4369 } else if (*(p+1) == 1) {
4370 type1_infoblock(dev, 1, p);
4371 p += ((*p & BLOCK_LEN) + 1);
4372 } else {
4373 p += ((*p & BLOCK_LEN) + 1);
4374 }
4375 }
4376 }
4377
4378 /*
4379 ** A generic routine that writes GEP control, data and reset information
4380 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4381 */
4382 static void
4383 srom_exec(struct net_device *dev, u_char *p)
4384 {
4385 struct de4x5_private *lp = netdev_priv(dev);
4386 u_long iobase = dev->base_addr;
4387 u_char count = (p ? *p++ : 0);
4388 u_short *w = (u_short *)p;
4389
4390 if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4391
4392 if (lp->chipset != DC21140) RESET_SIA;
4393
4394 while (count--) {
4395 gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4396 *p++ : get_unaligned_le16(w++)), dev);
4397 mdelay(2); /* 2ms per action */
4398 }
4399
4400 if (lp->chipset != DC21140) {
4401 outl(lp->cache.csr14, DE4X5_STRR);
4402 outl(lp->cache.csr13, DE4X5_SICR);
4403 }
4404 }
4405
4406 /*
4407 ** Basically this function is a NOP since it will never be called,
4408 ** unless I implement the DC21041 SROM functions. There's no need
4409 ** since the existing code will be satisfactory for all boards.
4410 */
4411 static int
4412 dc21041_infoleaf(struct net_device *dev)
4413 {
4414 return DE4X5_AUTOSENSE_MS;
4415 }
4416
4417 static int
4418 dc21140_infoleaf(struct net_device *dev)
4419 {
4420 struct de4x5_private *lp = netdev_priv(dev);
4421 u_char count = 0;
4422 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4423 int next_tick = DE4X5_AUTOSENSE_MS;
4424
4425 /* Read the connection type */
4426 p+=2;
4427
4428 /* GEP control */
4429 lp->cache.gepc = (*p++ | GEP_CTRL);
4430
4431 /* Block count */
4432 count = *p++;
4433
4434 /* Recursively figure out the info blocks */
4435 if (*p < 128) {
4436 next_tick = dc_infoblock[COMPACT](dev, count, p);
4437 } else {
4438 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4439 }
4440
4441 if (lp->tcount == count) {
4442 lp->media = NC;
4443 if (lp->media != lp->c_media) {
4444 de4x5_dbg_media(dev);
4445 lp->c_media = lp->media;
4446 }
4447 lp->media = INIT;
4448 lp->tcount = 0;
4449 lp->tx_enable = false;
4450 }
4451
4452 return next_tick & ~TIMER_CB;
4453 }
4454
4455 static int
4456 dc21142_infoleaf(struct net_device *dev)
4457 {
4458 struct de4x5_private *lp = netdev_priv(dev);
4459 u_char count = 0;
4460 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4461 int next_tick = DE4X5_AUTOSENSE_MS;
4462
4463 /* Read the connection type */
4464 p+=2;
4465
4466 /* Block count */
4467 count = *p++;
4468
4469 /* Recursively figure out the info blocks */
4470 if (*p < 128) {
4471 next_tick = dc_infoblock[COMPACT](dev, count, p);
4472 } else {
4473 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4474 }
4475
4476 if (lp->tcount == count) {
4477 lp->media = NC;
4478 if (lp->media != lp->c_media) {
4479 de4x5_dbg_media(dev);
4480 lp->c_media = lp->media;
4481 }
4482 lp->media = INIT;
4483 lp->tcount = 0;
4484 lp->tx_enable = false;
4485 }
4486
4487 return next_tick & ~TIMER_CB;
4488 }
4489
4490 static int
4491 dc21143_infoleaf(struct net_device *dev)
4492 {
4493 struct de4x5_private *lp = netdev_priv(dev);
4494 u_char count = 0;
4495 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4496 int next_tick = DE4X5_AUTOSENSE_MS;
4497
4498 /* Read the connection type */
4499 p+=2;
4500
4501 /* Block count */
4502 count = *p++;
4503
4504 /* Recursively figure out the info blocks */
4505 if (*p < 128) {
4506 next_tick = dc_infoblock[COMPACT](dev, count, p);
4507 } else {
4508 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4509 }
4510 if (lp->tcount == count) {
4511 lp->media = NC;
4512 if (lp->media != lp->c_media) {
4513 de4x5_dbg_media(dev);
4514 lp->c_media = lp->media;
4515 }
4516 lp->media = INIT;
4517 lp->tcount = 0;
4518 lp->tx_enable = false;
4519 }
4520
4521 return next_tick & ~TIMER_CB;
4522 }
4523
4524 /*
4525 ** The compact infoblock is only designed for DC21140[A] chips, so
4526 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4527 */
4528 static int
4529 compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4530 {
4531 struct de4x5_private *lp = netdev_priv(dev);
4532 u_char flags, csr6;
4533
4534 /* Recursively figure out the info blocks */
4535 if (--count > lp->tcount) {
4536 if (*(p+COMPACT_LEN) < 128) {
4537 return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4538 } else {
4539 return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4540 }
4541 }
4542
4543 if ((lp->media == INIT) && (lp->timeout < 0)) {
4544 lp->ibn = COMPACT;
4545 lp->active = 0;
4546 gep_wr(lp->cache.gepc, dev);
4547 lp->infoblock_media = (*p++) & COMPACT_MC;
4548 lp->cache.gep = *p++;
4549 csr6 = *p++;
4550 flags = *p++;
4551
4552 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4553 lp->defMedium = (flags & 0x40) ? -1 : 0;
4554 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4555 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4556 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4557 lp->useMII = false;
4558
4559 de4x5_switch_mac_port(dev);
4560 }
4561
4562 return dc21140m_autoconf(dev);
4563 }
4564
4565 /*
4566 ** This block describes non MII media for the DC21140[A] only.
4567 */
4568 static int
4569 type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4570 {
4571 struct de4x5_private *lp = netdev_priv(dev);
4572 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4573
4574 /* Recursively figure out the info blocks */
4575 if (--count > lp->tcount) {
4576 if (*(p+len) < 128) {
4577 return dc_infoblock[COMPACT](dev, count, p+len);
4578 } else {
4579 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4580 }
4581 }
4582
4583 if ((lp->media == INIT) && (lp->timeout < 0)) {
4584 lp->ibn = 0;
4585 lp->active = 0;
4586 gep_wr(lp->cache.gepc, dev);
4587 p+=2;
4588 lp->infoblock_media = (*p++) & BLOCK0_MC;
4589 lp->cache.gep = *p++;
4590 csr6 = *p++;
4591 flags = *p++;
4592
4593 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4594 lp->defMedium = (flags & 0x40) ? -1 : 0;
4595 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4596 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4597 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4598 lp->useMII = false;
4599
4600 de4x5_switch_mac_port(dev);
4601 }
4602
4603 return dc21140m_autoconf(dev);
4604 }
4605
4606 /* These functions are under construction! */
4607
4608 static int
4609 type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4610 {
4611 struct de4x5_private *lp = netdev_priv(dev);
4612 u_char len = (*p & BLOCK_LEN)+1;
4613
4614 /* Recursively figure out the info blocks */
4615 if (--count > lp->tcount) {
4616 if (*(p+len) < 128) {
4617 return dc_infoblock[COMPACT](dev, count, p+len);
4618 } else {
4619 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4620 }
4621 }
4622
4623 p += 2;
4624 if (lp->state == INITIALISED) {
4625 lp->ibn = 1;
4626 lp->active = *p++;
4627 lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4628 lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4629 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4630 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4631 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4632 lp->phy[lp->active].ttm = get_unaligned_le16(p);
4633 return 0;
4634 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4635 lp->ibn = 1;
4636 lp->active = *p;
4637 lp->infoblock_csr6 = OMR_MII_100;
4638 lp->useMII = true;
4639 lp->infoblock_media = ANS;
4640
4641 de4x5_switch_mac_port(dev);
4642 }
4643
4644 return dc21140m_autoconf(dev);
4645 }
4646
4647 static int
4648 type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4649 {
4650 struct de4x5_private *lp = netdev_priv(dev);
4651 u_char len = (*p & BLOCK_LEN)+1;
4652
4653 /* Recursively figure out the info blocks */
4654 if (--count > lp->tcount) {
4655 if (*(p+len) < 128) {
4656 return dc_infoblock[COMPACT](dev, count, p+len);
4657 } else {
4658 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4659 }
4660 }
4661
4662 if ((lp->media == INIT) && (lp->timeout < 0)) {
4663 lp->ibn = 2;
4664 lp->active = 0;
4665 p += 2;
4666 lp->infoblock_media = (*p) & MEDIA_CODE;
4667
4668 if ((*p++) & EXT_FIELD) {
4669 lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4670 lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4671 lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4672 } else {
4673 lp->cache.csr13 = CSR13;
4674 lp->cache.csr14 = CSR14;
4675 lp->cache.csr15 = CSR15;
4676 }
4677 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4678 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16);
4679 lp->infoblock_csr6 = OMR_SIA;
4680 lp->useMII = false;
4681
4682 de4x5_switch_mac_port(dev);
4683 }
4684
4685 return dc2114x_autoconf(dev);
4686 }
4687
4688 static int
4689 type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4690 {
4691 struct de4x5_private *lp = netdev_priv(dev);
4692 u_char len = (*p & BLOCK_LEN)+1;
4693
4694 /* Recursively figure out the info blocks */
4695 if (--count > lp->tcount) {
4696 if (*(p+len) < 128) {
4697 return dc_infoblock[COMPACT](dev, count, p+len);
4698 } else {
4699 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4700 }
4701 }
4702
4703 p += 2;
4704 if (lp->state == INITIALISED) {
4705 lp->ibn = 3;
4706 lp->active = *p++;
4707 if (MOTO_SROM_BUG) lp->active = 0;
4708 lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4709 lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4710 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4711 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4712 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4713 lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4714 lp->phy[lp->active].mci = *p;
4715 return 0;
4716 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4717 lp->ibn = 3;
4718 lp->active = *p;
4719 if (MOTO_SROM_BUG) lp->active = 0;
4720 lp->infoblock_csr6 = OMR_MII_100;
4721 lp->useMII = true;
4722 lp->infoblock_media = ANS;
4723
4724 de4x5_switch_mac_port(dev);
4725 }
4726
4727 return dc2114x_autoconf(dev);
4728 }
4729
4730 static int
4731 type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4732 {
4733 struct de4x5_private *lp = netdev_priv(dev);
4734 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4735
4736 /* Recursively figure out the info blocks */
4737 if (--count > lp->tcount) {
4738 if (*(p+len) < 128) {
4739 return dc_infoblock[COMPACT](dev, count, p+len);
4740 } else {
4741 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4742 }
4743 }
4744
4745 if ((lp->media == INIT) && (lp->timeout < 0)) {
4746 lp->ibn = 4;
4747 lp->active = 0;
4748 p+=2;
4749 lp->infoblock_media = (*p++) & MEDIA_CODE;
4750 lp->cache.csr13 = CSR13; /* Hard coded defaults */
4751 lp->cache.csr14 = CSR14;
4752 lp->cache.csr15 = CSR15;
4753 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4754 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4755 csr6 = *p++;
4756 flags = *p++;
4757
4758 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4759 lp->defMedium = (flags & 0x40) ? -1 : 0;
4760 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4761 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4762 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4763 lp->useMII = false;
4764
4765 de4x5_switch_mac_port(dev);
4766 }
4767
4768 return dc2114x_autoconf(dev);
4769 }
4770
4771 /*
4772 ** This block type provides information for resetting external devices
4773 ** (chips) through the General Purpose Register.
4774 */
4775 static int
4776 type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4777 {
4778 struct de4x5_private *lp = netdev_priv(dev);
4779 u_char len = (*p & BLOCK_LEN)+1;
4780
4781 /* Recursively figure out the info blocks */
4782 if (--count > lp->tcount) {
4783 if (*(p+len) < 128) {
4784 return dc_infoblock[COMPACT](dev, count, p+len);
4785 } else {
4786 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4787 }
4788 }
4789
4790 /* Must be initializing to run this code */
4791 if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4792 p+=2;
4793 lp->rst = p;
4794 srom_exec(dev, lp->rst);
4795 }
4796
4797 return DE4X5_AUTOSENSE_MS;
4798 }
4799
4800 /*
4801 ** MII Read/Write
4802 */
4803
4804 static int
4805 mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4806 {
4807 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4808 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4809 mii_wdata(MII_STRD, 4, ioaddr); /* SFD and Read operation */
4810 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4811 mii_address(phyreg, ioaddr); /* PHY Register to read */
4812 mii_ta(MII_STRD, ioaddr); /* Turn around time - 2 MDC */
4813
4814 return mii_rdata(ioaddr); /* Read data */
4815 }
4816
4817 static void
4818 mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4819 {
4820 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4821 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4822 mii_wdata(MII_STWR, 4, ioaddr); /* SFD and Write operation */
4823 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4824 mii_address(phyreg, ioaddr); /* PHY Register to write */
4825 mii_ta(MII_STWR, ioaddr); /* Turn around time - 2 MDC */
4826 data = mii_swap(data, 16); /* Swap data bit ordering */
4827 mii_wdata(data, 16, ioaddr); /* Write data */
4828 }
4829
4830 static int
4831 mii_rdata(u_long ioaddr)
4832 {
4833 int i;
4834 s32 tmp = 0;
4835
4836 for (i=0; i<16; i++) {
4837 tmp <<= 1;
4838 tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4839 }
4840
4841 return tmp;
4842 }
4843
4844 static void
4845 mii_wdata(int data, int len, u_long ioaddr)
4846 {
4847 int i;
4848
4849 for (i=0; i<len; i++) {
4850 sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4851 data >>= 1;
4852 }
4853 }
4854
4855 static void
4856 mii_address(u_char addr, u_long ioaddr)
4857 {
4858 int i;
4859
4860 addr = mii_swap(addr, 5);
4861 for (i=0; i<5; i++) {
4862 sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4863 addr >>= 1;
4864 }
4865 }
4866
4867 static void
4868 mii_ta(u_long rw, u_long ioaddr)
4869 {
4870 if (rw == MII_STWR) {
4871 sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4872 sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4873 } else {
4874 getfrom_mii(MII_MRD | MII_RD, ioaddr); /* Tri-state MDIO */
4875 }
4876 }
4877
4878 static int
4879 mii_swap(int data, int len)
4880 {
4881 int i, tmp = 0;
4882
4883 for (i=0; i<len; i++) {
4884 tmp <<= 1;
4885 tmp |= (data & 1);
4886 data >>= 1;
4887 }
4888
4889 return tmp;
4890 }
4891
4892 static void
4893 sendto_mii(u32 command, int data, u_long ioaddr)
4894 {
4895 u32 j;
4896
4897 j = (data & 1) << 17;
4898 outl(command | j, ioaddr);
4899 udelay(1);
4900 outl(command | MII_MDC | j, ioaddr);
4901 udelay(1);
4902 }
4903
4904 static int
4905 getfrom_mii(u32 command, u_long ioaddr)
4906 {
4907 outl(command, ioaddr);
4908 udelay(1);
4909 outl(command | MII_MDC, ioaddr);
4910 udelay(1);
4911
4912 return (inl(ioaddr) >> 19) & 1;
4913 }
4914
4915 /*
4916 ** Here's 3 ways to calculate the OUI from the ID registers.
4917 */
4918 static int
4919 mii_get_oui(u_char phyaddr, u_long ioaddr)
4920 {
4921 /*
4922 union {
4923 u_short reg;
4924 u_char breg[2];
4925 } a;
4926 int i, r2, r3, ret=0;*/
4927 int r2, r3;
4928
4929 /* Read r2 and r3 */
4930 r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
4931 r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
4932 /* SEEQ and Cypress way * /
4933 / * Shuffle r2 and r3 * /
4934 a.reg=0;
4935 r3 = ((r3>>10)|(r2<<6))&0x0ff;
4936 r2 = ((r2>>2)&0x3fff);
4937
4938 / * Bit reverse r3 * /
4939 for (i=0;i<8;i++) {
4940 ret<<=1;
4941 ret |= (r3&1);
4942 r3>>=1;
4943 }
4944
4945 / * Bit reverse r2 * /
4946 for (i=0;i<16;i++) {
4947 a.reg<<=1;
4948 a.reg |= (r2&1);
4949 r2>>=1;
4950 }
4951
4952 / * Swap r2 bytes * /
4953 i=a.breg[0];
4954 a.breg[0]=a.breg[1];
4955 a.breg[1]=i;
4956
4957 return (a.reg<<8)|ret; */ /* SEEQ and Cypress way */
4958 /* return (r2<<6)|(u_int)(r3>>10); */ /* NATIONAL and BROADCOM way */
4959 return r2; /* (I did it) My way */
4960 }
4961
4962 /*
4963 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
4964 */
4965 static int
4966 mii_get_phy(struct net_device *dev)
4967 {
4968 struct de4x5_private *lp = netdev_priv(dev);
4969 u_long iobase = dev->base_addr;
4970 int i, j, k, n, limit=ARRAY_SIZE(phy_info);
4971 int id;
4972
4973 lp->active = 0;
4974 lp->useMII = true;
4975
4976 /* Search the MII address space for possible PHY devices */
4977 for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
4978 lp->phy[lp->active].addr = i;
4979 if (i==0) n++; /* Count cycles */
4980 while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
4981 id = mii_get_oui(i, DE4X5_MII);
4982 if ((id == 0) || (id == 65535)) continue; /* Valid ID? */
4983 for (j=0; j<limit; j++) { /* Search PHY table */
4984 if (id != phy_info[j].id) continue; /* ID match? */
4985 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4986 if (k < DE4X5_MAX_PHY) {
4987 memcpy((char *)&lp->phy[k],
4988 (char *)&phy_info[j], sizeof(struct phy_table));
4989 lp->phy[k].addr = i;
4990 lp->mii_cnt++;
4991 lp->active++;
4992 } else {
4993 goto purgatory; /* Stop the search */
4994 }
4995 break;
4996 }
4997 if ((j == limit) && (i < DE4X5_MAX_MII)) {
4998 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4999 lp->phy[k].addr = i;
5000 lp->phy[k].id = id;
5001 lp->phy[k].spd.reg = GENERIC_REG; /* ANLPA register */
5002 lp->phy[k].spd.mask = GENERIC_MASK; /* 100Mb/s technologies */
5003 lp->phy[k].spd.value = GENERIC_VALUE; /* TX & T4, H/F Duplex */
5004 lp->mii_cnt++;
5005 lp->active++;
5006 printk("%s: Using generic MII device control. If the board doesn't operate,\nplease mail the following dump to the author:\n", dev->name);
5007 j = de4x5_debug;
5008 de4x5_debug |= DEBUG_MII;
5009 de4x5_dbg_mii(dev, k);
5010 de4x5_debug = j;
5011 printk("\n");
5012 }
5013 }
5014 purgatory:
5015 lp->active = 0;
5016 if (lp->phy[0].id) { /* Reset the PHY devices */
5017 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++) { /*For each PHY*/
5018 mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5019 while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5020
5021 de4x5_dbg_mii(dev, k);
5022 }
5023 }
5024 if (!lp->mii_cnt) lp->useMII = false;
5025
5026 return lp->mii_cnt;
5027 }
5028
5029 static char *
5030 build_setup_frame(struct net_device *dev, int mode)
5031 {
5032 struct de4x5_private *lp = netdev_priv(dev);
5033 int i;
5034 char *pa = lp->setup_frame;
5035
5036 /* Initialise the setup frame */
5037 if (mode == ALL) {
5038 memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5039 }
5040
5041 if (lp->setup_f == HASH_PERF) {
5042 for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5043 *(pa + i) = dev->dev_addr[i]; /* Host address */
5044 if (i & 0x01) pa += 2;
5045 }
5046 *(lp->setup_frame + (DE4X5_HASH_TABLE_LEN >> 3) - 3) = 0x80;
5047 } else {
5048 for (i=0; i<ETH_ALEN; i++) { /* Host address */
5049 *(pa + (i&1)) = dev->dev_addr[i];
5050 if (i & 0x01) pa += 4;
5051 }
5052 for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5053 *(pa + (i&1)) = (char) 0xff;
5054 if (i & 0x01) pa += 4;
5055 }
5056 }
5057
5058 return pa; /* Points to the next entry */
5059 }
5060
5061 static void
5062 disable_ast(struct net_device *dev)
5063 {
5064 struct de4x5_private *lp = netdev_priv(dev);
5065 del_timer_sync(&lp->timer);
5066 }
5067
5068 static long
5069 de4x5_switch_mac_port(struct net_device *dev)
5070 {
5071 struct de4x5_private *lp = netdev_priv(dev);
5072 u_long iobase = dev->base_addr;
5073 s32 omr;
5074
5075 STOP_DE4X5;
5076
5077 /* Assert the OMR_PS bit in CSR6 */
5078 omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5079 OMR_FDX));
5080 omr |= lp->infoblock_csr6;
5081 if (omr & OMR_PS) omr |= OMR_HBD;
5082 outl(omr, DE4X5_OMR);
5083
5084 /* Soft Reset */
5085 RESET_DE4X5;
5086
5087 /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5088 if (lp->chipset == DC21140) {
5089 gep_wr(lp->cache.gepc, dev);
5090 gep_wr(lp->cache.gep, dev);
5091 } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5092 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5093 }
5094
5095 /* Restore CSR6 */
5096 outl(omr, DE4X5_OMR);
5097
5098 /* Reset CSR8 */
5099 inl(DE4X5_MFC);
5100
5101 return omr;
5102 }
5103
5104 static void
5105 gep_wr(s32 data, struct net_device *dev)
5106 {
5107 struct de4x5_private *lp = netdev_priv(dev);
5108 u_long iobase = dev->base_addr;
5109
5110 if (lp->chipset == DC21140) {
5111 outl(data, DE4X5_GEP);
5112 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5113 outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5114 }
5115 }
5116
5117 static int
5118 gep_rd(struct net_device *dev)
5119 {
5120 struct de4x5_private *lp = netdev_priv(dev);
5121 u_long iobase = dev->base_addr;
5122
5123 if (lp->chipset == DC21140) {
5124 return inl(DE4X5_GEP);
5125 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5126 return inl(DE4X5_SIGR) & 0x000fffff;
5127 }
5128
5129 return 0;
5130 }
5131
5132 static void
5133 yawn(struct net_device *dev, int state)
5134 {
5135 struct de4x5_private *lp = netdev_priv(dev);
5136 u_long iobase = dev->base_addr;
5137
5138 if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5139
5140 if(lp->bus == EISA) {
5141 switch(state) {
5142 case WAKEUP:
5143 outb(WAKEUP, PCI_CFPM);
5144 mdelay(10);
5145 break;
5146
5147 case SNOOZE:
5148 outb(SNOOZE, PCI_CFPM);
5149 break;
5150
5151 case SLEEP:
5152 outl(0, DE4X5_SICR);
5153 outb(SLEEP, PCI_CFPM);
5154 break;
5155 }
5156 } else {
5157 struct pci_dev *pdev = to_pci_dev (lp->gendev);
5158 switch(state) {
5159 case WAKEUP:
5160 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5161 mdelay(10);
5162 break;
5163
5164 case SNOOZE:
5165 pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5166 break;
5167
5168 case SLEEP:
5169 outl(0, DE4X5_SICR);
5170 pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5171 break;
5172 }
5173 }
5174 }
5175
5176 static void
5177 de4x5_parse_params(struct net_device *dev)
5178 {
5179 struct de4x5_private *lp = netdev_priv(dev);
5180 char *p, *q, t;
5181
5182 lp->params.fdx = false;
5183 lp->params.autosense = AUTO;
5184
5185 if (args == NULL) return;
5186
5187 if ((p = strstr(args, dev->name))) {
5188 if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5189 t = *q;
5190 *q = '\0';
5191
5192 if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = true;
5193
5194 if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5195 if (strstr(p, "TP_NW")) {
5196 lp->params.autosense = TP_NW;
5197 } else if (strstr(p, "TP")) {
5198 lp->params.autosense = TP;
5199 } else if (strstr(p, "BNC_AUI")) {
5200 lp->params.autosense = BNC;
5201 } else if (strstr(p, "BNC")) {
5202 lp->params.autosense = BNC;
5203 } else if (strstr(p, "AUI")) {
5204 lp->params.autosense = AUI;
5205 } else if (strstr(p, "10Mb")) {
5206 lp->params.autosense = _10Mb;
5207 } else if (strstr(p, "100Mb")) {
5208 lp->params.autosense = _100Mb;
5209 } else if (strstr(p, "AUTO")) {
5210 lp->params.autosense = AUTO;
5211 }
5212 }
5213 *q = t;
5214 }
5215 }
5216
5217 static void
5218 de4x5_dbg_open(struct net_device *dev)
5219 {
5220 struct de4x5_private *lp = netdev_priv(dev);
5221 int i;
5222
5223 if (de4x5_debug & DEBUG_OPEN) {
5224 printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5225 printk("\tphysical address: %pM\n", dev->dev_addr);
5226 printk("Descriptor head addresses:\n");
5227 printk("\t0x%8.8lx 0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5228 printk("Descriptor addresses:\nRX: ");
5229 for (i=0;i<lp->rxRingSize-1;i++){
5230 if (i < 3) {
5231 printk("0x%8.8lx ",(u_long)&lp->rx_ring[i].status);
5232 }
5233 }
5234 printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5235 printk("TX: ");
5236 for (i=0;i<lp->txRingSize-1;i++){
5237 if (i < 3) {
5238 printk("0x%8.8lx ", (u_long)&lp->tx_ring[i].status);
5239 }
5240 }
5241 printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5242 printk("Descriptor buffers:\nRX: ");
5243 for (i=0;i<lp->rxRingSize-1;i++){
5244 if (i < 3) {
5245 printk("0x%8.8x ",le32_to_cpu(lp->rx_ring[i].buf));
5246 }
5247 }
5248 printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5249 printk("TX: ");
5250 for (i=0;i<lp->txRingSize-1;i++){
5251 if (i < 3) {
5252 printk("0x%8.8x ", le32_to_cpu(lp->tx_ring[i].buf));
5253 }
5254 }
5255 printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5256 printk("Ring size:\nRX: %d\nTX: %d\n",
5257 (short)lp->rxRingSize,
5258 (short)lp->txRingSize);
5259 }
5260 }
5261
5262 static void
5263 de4x5_dbg_mii(struct net_device *dev, int k)
5264 {
5265 struct de4x5_private *lp = netdev_priv(dev);
5266 u_long iobase = dev->base_addr;
5267
5268 if (de4x5_debug & DEBUG_MII) {
5269 printk("\nMII device address: %d\n", lp->phy[k].addr);
5270 printk("MII CR: %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5271 printk("MII SR: %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5272 printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5273 printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5274 if (lp->phy[k].id != BROADCOM_T4) {
5275 printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5276 printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5277 }
5278 printk("MII 16: %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5279 if (lp->phy[k].id != BROADCOM_T4) {
5280 printk("MII 17: %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5281 printk("MII 18: %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5282 } else {
5283 printk("MII 20: %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5284 }
5285 }
5286 }
5287
5288 static void
5289 de4x5_dbg_media(struct net_device *dev)
5290 {
5291 struct de4x5_private *lp = netdev_priv(dev);
5292
5293 if (lp->media != lp->c_media) {
5294 if (de4x5_debug & DEBUG_MEDIA) {
5295 printk("%s: media is %s%s\n", dev->name,
5296 (lp->media == NC ? "unconnected, link down or incompatible connection" :
5297 (lp->media == TP ? "TP" :
5298 (lp->media == ANS ? "TP/Nway" :
5299 (lp->media == BNC ? "BNC" :
5300 (lp->media == AUI ? "AUI" :
5301 (lp->media == BNC_AUI ? "BNC/AUI" :
5302 (lp->media == EXT_SIA ? "EXT SIA" :
5303 (lp->media == _100Mb ? "100Mb/s" :
5304 (lp->media == _10Mb ? "10Mb/s" :
5305 "???"
5306 ))))))))), (lp->fdx?" full duplex.":"."));
5307 }
5308 lp->c_media = lp->media;
5309 }
5310 }
5311
5312 static void
5313 de4x5_dbg_srom(struct de4x5_srom *p)
5314 {
5315 int i;
5316
5317 if (de4x5_debug & DEBUG_SROM) {
5318 printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5319 printk("Sub-system ID: %04x\n", *((u_short *)p->sub_system_id));
5320 printk("ID Block CRC: %02x\n", (u_char)(p->id_block_crc));
5321 printk("SROM version: %02x\n", (u_char)(p->version));
5322 printk("# controllers: %02x\n", (u_char)(p->num_controllers));
5323
5324 printk("Hardware Address: %pM\n", p->ieee_addr);
5325 printk("CRC checksum: %04x\n", (u_short)(p->chksum));
5326 for (i=0; i<64; i++) {
5327 printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5328 }
5329 }
5330 }
5331
5332 static void
5333 de4x5_dbg_rx(struct sk_buff *skb, int len)
5334 {
5335 int i, j;
5336
5337 if (de4x5_debug & DEBUG_RX) {
5338 printk("R: %pM <- %pM len/SAP:%02x%02x [%d]\n",
5339 skb->data, &skb->data[6],
5340 (u_char)skb->data[12],
5341 (u_char)skb->data[13],
5342 len);
5343 for (j=0; len>0;j+=16, len-=16) {
5344 printk(" %03x: ",j);
5345 for (i=0; i<16 && i<len; i++) {
5346 printk("%02x ",(u_char)skb->data[i+j]);
5347 }
5348 printk("\n");
5349 }
5350 }
5351 }
5352
5353 /*
5354 ** Perform IOCTL call functions here. Some are privileged operations and the
5355 ** effective uid is checked in those cases. In the normal course of events
5356 ** this function is only used for my testing.
5357 */
5358 static int
5359 de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5360 {
5361 struct de4x5_private *lp = netdev_priv(dev);
5362 struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5363 u_long iobase = dev->base_addr;
5364 int i, j, status = 0;
5365 s32 omr;
5366 union {
5367 u8 addr[144];
5368 u16 sval[72];
5369 u32 lval[36];
5370 } tmp;
5371 u_long flags = 0;
5372
5373 switch(ioc->cmd) {
5374 case DE4X5_GET_HWADDR: /* Get the hardware address */
5375 ioc->len = ETH_ALEN;
5376 for (i=0; i<ETH_ALEN; i++) {
5377 tmp.addr[i] = dev->dev_addr[i];
5378 }
5379 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5380 break;
5381
5382 case DE4X5_SET_HWADDR: /* Set the hardware address */
5383 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5384 if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5385 if (netif_queue_stopped(dev))
5386 return -EBUSY;
5387 netif_stop_queue(dev);
5388 for (i=0; i<ETH_ALEN; i++) {
5389 dev->dev_addr[i] = tmp.addr[i];
5390 }
5391 build_setup_frame(dev, PHYS_ADDR_ONLY);
5392 /* Set up the descriptor and give ownership to the card */
5393 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5394 SETUP_FRAME_LEN, (struct sk_buff *)1);
5395 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
5396 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
5397 netif_wake_queue(dev); /* Unlock the TX ring */
5398 break;
5399
5400 case DE4X5_SAY_BOO: /* Say "Boo!" to the kernel log file */
5401 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5402 printk("%s: Boo!\n", dev->name);
5403 break;
5404
5405 case DE4X5_MCA_EN: /* Enable pass all multicast addressing */
5406 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5407 omr = inl(DE4X5_OMR);
5408 omr |= OMR_PM;
5409 outl(omr, DE4X5_OMR);
5410 break;
5411
5412 case DE4X5_GET_STATS: /* Get the driver statistics */
5413 {
5414 struct pkt_stats statbuf;
5415 ioc->len = sizeof(statbuf);
5416 spin_lock_irqsave(&lp->lock, flags);
5417 memcpy(&statbuf, &lp->pktStats, ioc->len);
5418 spin_unlock_irqrestore(&lp->lock, flags);
5419 if (copy_to_user(ioc->data, &statbuf, ioc->len))
5420 return -EFAULT;
5421 break;
5422 }
5423 case DE4X5_CLR_STATS: /* Zero out the driver statistics */
5424 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5425 spin_lock_irqsave(&lp->lock, flags);
5426 memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5427 spin_unlock_irqrestore(&lp->lock, flags);
5428 break;
5429
5430 case DE4X5_GET_OMR: /* Get the OMR Register contents */
5431 tmp.addr[0] = inl(DE4X5_OMR);
5432 if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5433 break;
5434
5435 case DE4X5_SET_OMR: /* Set the OMR Register contents */
5436 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5437 if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5438 outl(tmp.addr[0], DE4X5_OMR);
5439 break;
5440
5441 case DE4X5_GET_REG: /* Get the DE4X5 Registers */
5442 j = 0;
5443 tmp.lval[0] = inl(DE4X5_STS); j+=4;
5444 tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5445 tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5446 tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5447 tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5448 tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5449 tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5450 tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5451 ioc->len = j;
5452 if (copy_to_user(ioc->data, tmp.lval, ioc->len))
5453 return -EFAULT;
5454 break;
5455
5456 #define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */
5457 /*
5458 case DE4X5_DUMP:
5459 j = 0;
5460 tmp.addr[j++] = dev->irq;
5461 for (i=0; i<ETH_ALEN; i++) {
5462 tmp.addr[j++] = dev->dev_addr[i];
5463 }
5464 tmp.addr[j++] = lp->rxRingSize;
5465 tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5466 tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5467
5468 for (i=0;i<lp->rxRingSize-1;i++){
5469 if (i < 3) {
5470 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5471 }
5472 }
5473 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5474 for (i=0;i<lp->txRingSize-1;i++){
5475 if (i < 3) {
5476 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5477 }
5478 }
5479 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5480
5481 for (i=0;i<lp->rxRingSize-1;i++){
5482 if (i < 3) {
5483 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5484 }
5485 }
5486 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5487 for (i=0;i<lp->txRingSize-1;i++){
5488 if (i < 3) {
5489 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5490 }
5491 }
5492 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5493
5494 for (i=0;i<lp->rxRingSize;i++){
5495 tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5496 }
5497 for (i=0;i<lp->txRingSize;i++){
5498 tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5499 }
5500
5501 tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4;
5502 tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4;
5503 tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4;
5504 tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5505 tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5506 tmp.lval[j>>2] = inl(DE4X5_STS); j+=4;
5507 tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4;
5508 tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4;
5509 tmp.lval[j>>2] = lp->chipset; j+=4;
5510 if (lp->chipset == DC21140) {
5511 tmp.lval[j>>2] = gep_rd(dev); j+=4;
5512 } else {
5513 tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5514 tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5515 tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5516 tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5517 }
5518 tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5519 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5520 tmp.lval[j>>2] = lp->active; j+=4;
5521 tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5522 tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5523 tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5524 tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5525 if (lp->phy[lp->active].id != BROADCOM_T4) {
5526 tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5527 tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5528 }
5529 tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5530 if (lp->phy[lp->active].id != BROADCOM_T4) {
5531 tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5532 tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5533 } else {
5534 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5535 }
5536 }
5537
5538 tmp.addr[j++] = lp->txRingSize;
5539 tmp.addr[j++] = netif_queue_stopped(dev);
5540
5541 ioc->len = j;
5542 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5543 break;
5544
5545 */
5546 default:
5547 return -EOPNOTSUPP;
5548 }
5549
5550 return status;
5551 }
5552
5553 static int __init de4x5_module_init (void)
5554 {
5555 int err = 0;
5556
5557 #ifdef CONFIG_PCI
5558 err = pci_register_driver(&de4x5_pci_driver);
5559 #endif
5560 #ifdef CONFIG_EISA
5561 err |= eisa_driver_register (&de4x5_eisa_driver);
5562 #endif
5563
5564 return err;
5565 }
5566
5567 static void __exit de4x5_module_exit (void)
5568 {
5569 #ifdef CONFIG_PCI
5570 pci_unregister_driver (&de4x5_pci_driver);
5571 #endif
5572 #ifdef CONFIG_EISA
5573 eisa_driver_unregister (&de4x5_eisa_driver);
5574 #endif
5575 }
5576
5577 module_init (de4x5_module_init);
5578 module_exit (de4x5_module_exit);
This page took 0.449533 seconds and 5 git commands to generate.