net: fec: align IP header in hardware
[deliverable/linux.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
64
65 #include <asm/cacheflush.h>
66
67 #include "fec.h"
68
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
71
72 #define DRIVER_NAME "fec"
73
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
75
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE (1 << 5)
78 #define FEC_ENET_RSEM_V 0x84
79 #define FEC_ENET_RSFL_V 16
80 #define FEC_ENET_RAEM_V 0x8
81 #define FEC_ENET_RAFL_V 0x8
82 #define FEC_ENET_OPD_V 0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
84
85 static struct platform_device_id fec_devtype[] = {
86 {
87 /* keep it for coldfire */
88 .name = DRIVER_NAME,
89 .driver_data = 0,
90 }, {
91 .name = "imx25-fec",
92 .driver_data = FEC_QUIRK_USE_GASKET,
93 }, {
94 .name = "imx27-fec",
95 .driver_data = 0,
96 }, {
97 .name = "imx28-fec",
98 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 }, {
101 .name = "imx6q-fec",
102 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 FEC_QUIRK_HAS_RACC,
106 }, {
107 .name = "mvf600-fec",
108 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 }, {
110 .name = "imx6sx-fec",
111 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 }, {
117 .name = "imx6ul-fec",
118 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_BUG_CAPTURE |
121 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
122 }, {
123 /* sentinel */
124 }
125 };
126 MODULE_DEVICE_TABLE(platform, fec_devtype);
127
128 enum imx_fec_type {
129 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
130 IMX27_FEC, /* runs on i.mx27/35/51 */
131 IMX28_FEC,
132 IMX6Q_FEC,
133 MVF600_FEC,
134 IMX6SX_FEC,
135 IMX6UL_FEC,
136 };
137
138 static const struct of_device_id fec_dt_ids[] = {
139 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
140 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
141 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
142 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
143 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
144 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
145 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
146 { /* sentinel */ }
147 };
148 MODULE_DEVICE_TABLE(of, fec_dt_ids);
149
150 static unsigned char macaddr[ETH_ALEN];
151 module_param_array(macaddr, byte, NULL, 0);
152 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
153
154 #if defined(CONFIG_M5272)
155 /*
156 * Some hardware gets it MAC address out of local flash memory.
157 * if this is non-zero then assume it is the address to get MAC from.
158 */
159 #if defined(CONFIG_NETtel)
160 #define FEC_FLASHMAC 0xf0006006
161 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
162 #define FEC_FLASHMAC 0xf0006000
163 #elif defined(CONFIG_CANCam)
164 #define FEC_FLASHMAC 0xf0020000
165 #elif defined (CONFIG_M5272C3)
166 #define FEC_FLASHMAC (0xffe04000 + 4)
167 #elif defined(CONFIG_MOD5272)
168 #define FEC_FLASHMAC 0xffc0406b
169 #else
170 #define FEC_FLASHMAC 0
171 #endif
172 #endif /* CONFIG_M5272 */
173
174 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
175 */
176 #define PKT_MAXBUF_SIZE 1522
177 #define PKT_MINBUF_SIZE 64
178 #define PKT_MAXBLR_SIZE 1536
179
180 /* FEC receive acceleration */
181 #define FEC_RACC_IPDIS (1 << 1)
182 #define FEC_RACC_PRODIS (1 << 2)
183 #define FEC_RACC_SHIFT16 BIT(7)
184 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
185
186 /*
187 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
188 * size bits. Other FEC hardware does not, so we need to take that into
189 * account when setting it.
190 */
191 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
192 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
193 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
194 #else
195 #define OPT_FRAME_SIZE 0
196 #endif
197
198 /* FEC MII MMFR bits definition */
199 #define FEC_MMFR_ST (1 << 30)
200 #define FEC_MMFR_OP_READ (2 << 28)
201 #define FEC_MMFR_OP_WRITE (1 << 28)
202 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
203 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
204 #define FEC_MMFR_TA (2 << 16)
205 #define FEC_MMFR_DATA(v) (v & 0xffff)
206 /* FEC ECR bits definition */
207 #define FEC_ECR_MAGICEN (1 << 2)
208 #define FEC_ECR_SLEEP (1 << 3)
209
210 #define FEC_MII_TIMEOUT 30000 /* us */
211
212 /* Transmitter timeout */
213 #define TX_TIMEOUT (2 * HZ)
214
215 #define FEC_PAUSE_FLAG_AUTONEG 0x1
216 #define FEC_PAUSE_FLAG_ENABLE 0x2
217 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
218 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
219 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
220
221 #define COPYBREAK_DEFAULT 256
222
223 #define TSO_HEADER_SIZE 128
224 /* Max number of allowed TCP segments for software TSO */
225 #define FEC_MAX_TSO_SEGS 100
226 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
227
228 #define IS_TSO_HEADER(txq, addr) \
229 ((addr >= txq->tso_hdrs_dma) && \
230 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
231
232 static int mii_cnt;
233
234 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
235 struct bufdesc_prop *bd)
236 {
237 return (bdp >= bd->last) ? bd->base
238 : (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
239 }
240
241 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
242 struct bufdesc_prop *bd)
243 {
244 return (bdp <= bd->base) ? bd->last
245 : (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
246 }
247
248 static int fec_enet_get_bd_index(struct bufdesc *bdp,
249 struct bufdesc_prop *bd)
250 {
251 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
252 }
253
254 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
255 {
256 int entries;
257
258 entries = (((const char *)txq->dirty_tx -
259 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
260
261 return entries >= 0 ? entries : entries + txq->bd.ring_size;
262 }
263
264 static void swap_buffer(void *bufaddr, int len)
265 {
266 int i;
267 unsigned int *buf = bufaddr;
268
269 for (i = 0; i < len; i += 4, buf++)
270 swab32s(buf);
271 }
272
273 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
274 {
275 int i;
276 unsigned int *src = src_buf;
277 unsigned int *dst = dst_buf;
278
279 for (i = 0; i < len; i += 4, src++, dst++)
280 *dst = swab32p(src);
281 }
282
283 static void fec_dump(struct net_device *ndev)
284 {
285 struct fec_enet_private *fep = netdev_priv(ndev);
286 struct bufdesc *bdp;
287 struct fec_enet_priv_tx_q *txq;
288 int index = 0;
289
290 netdev_info(ndev, "TX ring dump\n");
291 pr_info("Nr SC addr len SKB\n");
292
293 txq = fep->tx_queue[0];
294 bdp = txq->bd.base;
295
296 do {
297 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
298 index,
299 bdp == txq->bd.cur ? 'S' : ' ',
300 bdp == txq->dirty_tx ? 'H' : ' ',
301 fec16_to_cpu(bdp->cbd_sc),
302 fec32_to_cpu(bdp->cbd_bufaddr),
303 fec16_to_cpu(bdp->cbd_datlen),
304 txq->tx_skbuff[index]);
305 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
306 index++;
307 } while (bdp != txq->bd.base);
308 }
309
310 static inline bool is_ipv4_pkt(struct sk_buff *skb)
311 {
312 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
313 }
314
315 static int
316 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
317 {
318 /* Only run for packets requiring a checksum. */
319 if (skb->ip_summed != CHECKSUM_PARTIAL)
320 return 0;
321
322 if (unlikely(skb_cow_head(skb, 0)))
323 return -1;
324
325 if (is_ipv4_pkt(skb))
326 ip_hdr(skb)->check = 0;
327 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
328
329 return 0;
330 }
331
332 static struct bufdesc *
333 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
334 struct sk_buff *skb,
335 struct net_device *ndev)
336 {
337 struct fec_enet_private *fep = netdev_priv(ndev);
338 struct bufdesc *bdp = txq->bd.cur;
339 struct bufdesc_ex *ebdp;
340 int nr_frags = skb_shinfo(skb)->nr_frags;
341 int frag, frag_len;
342 unsigned short status;
343 unsigned int estatus = 0;
344 skb_frag_t *this_frag;
345 unsigned int index;
346 void *bufaddr;
347 dma_addr_t addr;
348 int i;
349
350 for (frag = 0; frag < nr_frags; frag++) {
351 this_frag = &skb_shinfo(skb)->frags[frag];
352 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
353 ebdp = (struct bufdesc_ex *)bdp;
354
355 status = fec16_to_cpu(bdp->cbd_sc);
356 status &= ~BD_ENET_TX_STATS;
357 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
358 frag_len = skb_shinfo(skb)->frags[frag].size;
359
360 /* Handle the last BD specially */
361 if (frag == nr_frags - 1) {
362 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
363 if (fep->bufdesc_ex) {
364 estatus |= BD_ENET_TX_INT;
365 if (unlikely(skb_shinfo(skb)->tx_flags &
366 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
367 estatus |= BD_ENET_TX_TS;
368 }
369 }
370
371 if (fep->bufdesc_ex) {
372 if (fep->quirks & FEC_QUIRK_HAS_AVB)
373 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
374 if (skb->ip_summed == CHECKSUM_PARTIAL)
375 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
376 ebdp->cbd_bdu = 0;
377 ebdp->cbd_esc = cpu_to_fec32(estatus);
378 }
379
380 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
381
382 index = fec_enet_get_bd_index(bdp, &txq->bd);
383 if (((unsigned long) bufaddr) & fep->tx_align ||
384 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
385 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
386 bufaddr = txq->tx_bounce[index];
387
388 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
389 swap_buffer(bufaddr, frag_len);
390 }
391
392 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
393 DMA_TO_DEVICE);
394 if (dma_mapping_error(&fep->pdev->dev, addr)) {
395 if (net_ratelimit())
396 netdev_err(ndev, "Tx DMA memory map failed\n");
397 goto dma_mapping_error;
398 }
399
400 bdp->cbd_bufaddr = cpu_to_fec32(addr);
401 bdp->cbd_datlen = cpu_to_fec16(frag_len);
402 /* Make sure the updates to rest of the descriptor are
403 * performed before transferring ownership.
404 */
405 wmb();
406 bdp->cbd_sc = cpu_to_fec16(status);
407 }
408
409 return bdp;
410 dma_mapping_error:
411 bdp = txq->bd.cur;
412 for (i = 0; i < frag; i++) {
413 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
414 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
415 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
416 }
417 return ERR_PTR(-ENOMEM);
418 }
419
420 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
421 struct sk_buff *skb, struct net_device *ndev)
422 {
423 struct fec_enet_private *fep = netdev_priv(ndev);
424 int nr_frags = skb_shinfo(skb)->nr_frags;
425 struct bufdesc *bdp, *last_bdp;
426 void *bufaddr;
427 dma_addr_t addr;
428 unsigned short status;
429 unsigned short buflen;
430 unsigned int estatus = 0;
431 unsigned int index;
432 int entries_free;
433
434 entries_free = fec_enet_get_free_txdesc_num(txq);
435 if (entries_free < MAX_SKB_FRAGS + 1) {
436 dev_kfree_skb_any(skb);
437 if (net_ratelimit())
438 netdev_err(ndev, "NOT enough BD for SG!\n");
439 return NETDEV_TX_OK;
440 }
441
442 /* Protocol checksum off-load for TCP and UDP. */
443 if (fec_enet_clear_csum(skb, ndev)) {
444 dev_kfree_skb_any(skb);
445 return NETDEV_TX_OK;
446 }
447
448 /* Fill in a Tx ring entry */
449 bdp = txq->bd.cur;
450 last_bdp = bdp;
451 status = fec16_to_cpu(bdp->cbd_sc);
452 status &= ~BD_ENET_TX_STATS;
453
454 /* Set buffer length and buffer pointer */
455 bufaddr = skb->data;
456 buflen = skb_headlen(skb);
457
458 index = fec_enet_get_bd_index(bdp, &txq->bd);
459 if (((unsigned long) bufaddr) & fep->tx_align ||
460 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
461 memcpy(txq->tx_bounce[index], skb->data, buflen);
462 bufaddr = txq->tx_bounce[index];
463
464 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
465 swap_buffer(bufaddr, buflen);
466 }
467
468 /* Push the data cache so the CPM does not get stale memory data. */
469 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
470 if (dma_mapping_error(&fep->pdev->dev, addr)) {
471 dev_kfree_skb_any(skb);
472 if (net_ratelimit())
473 netdev_err(ndev, "Tx DMA memory map failed\n");
474 return NETDEV_TX_OK;
475 }
476
477 if (nr_frags) {
478 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
479 if (IS_ERR(last_bdp)) {
480 dma_unmap_single(&fep->pdev->dev, addr,
481 buflen, DMA_TO_DEVICE);
482 dev_kfree_skb_any(skb);
483 return NETDEV_TX_OK;
484 }
485 } else {
486 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
487 if (fep->bufdesc_ex) {
488 estatus = BD_ENET_TX_INT;
489 if (unlikely(skb_shinfo(skb)->tx_flags &
490 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
491 estatus |= BD_ENET_TX_TS;
492 }
493 }
494 bdp->cbd_bufaddr = cpu_to_fec32(addr);
495 bdp->cbd_datlen = cpu_to_fec16(buflen);
496
497 if (fep->bufdesc_ex) {
498
499 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
500
501 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
502 fep->hwts_tx_en))
503 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
504
505 if (fep->quirks & FEC_QUIRK_HAS_AVB)
506 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
507
508 if (skb->ip_summed == CHECKSUM_PARTIAL)
509 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
510
511 ebdp->cbd_bdu = 0;
512 ebdp->cbd_esc = cpu_to_fec32(estatus);
513 }
514
515 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
516 /* Save skb pointer */
517 txq->tx_skbuff[index] = skb;
518
519 /* Make sure the updates to rest of the descriptor are performed before
520 * transferring ownership.
521 */
522 wmb();
523
524 /* Send it on its way. Tell FEC it's ready, interrupt when done,
525 * it's the last BD of the frame, and to put the CRC on the end.
526 */
527 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
528 bdp->cbd_sc = cpu_to_fec16(status);
529
530 /* If this was the last BD in the ring, start at the beginning again. */
531 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
532
533 skb_tx_timestamp(skb);
534
535 /* Make sure the update to bdp and tx_skbuff are performed before
536 * txq->bd.cur.
537 */
538 wmb();
539 txq->bd.cur = bdp;
540
541 /* Trigger transmission start */
542 writel(0, txq->bd.reg_desc_active);
543
544 return 0;
545 }
546
547 static int
548 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
549 struct net_device *ndev,
550 struct bufdesc *bdp, int index, char *data,
551 int size, bool last_tcp, bool is_last)
552 {
553 struct fec_enet_private *fep = netdev_priv(ndev);
554 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
555 unsigned short status;
556 unsigned int estatus = 0;
557 dma_addr_t addr;
558
559 status = fec16_to_cpu(bdp->cbd_sc);
560 status &= ~BD_ENET_TX_STATS;
561
562 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
563
564 if (((unsigned long) data) & fep->tx_align ||
565 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
566 memcpy(txq->tx_bounce[index], data, size);
567 data = txq->tx_bounce[index];
568
569 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
570 swap_buffer(data, size);
571 }
572
573 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
574 if (dma_mapping_error(&fep->pdev->dev, addr)) {
575 dev_kfree_skb_any(skb);
576 if (net_ratelimit())
577 netdev_err(ndev, "Tx DMA memory map failed\n");
578 return NETDEV_TX_BUSY;
579 }
580
581 bdp->cbd_datlen = cpu_to_fec16(size);
582 bdp->cbd_bufaddr = cpu_to_fec32(addr);
583
584 if (fep->bufdesc_ex) {
585 if (fep->quirks & FEC_QUIRK_HAS_AVB)
586 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
587 if (skb->ip_summed == CHECKSUM_PARTIAL)
588 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
589 ebdp->cbd_bdu = 0;
590 ebdp->cbd_esc = cpu_to_fec32(estatus);
591 }
592
593 /* Handle the last BD specially */
594 if (last_tcp)
595 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
596 if (is_last) {
597 status |= BD_ENET_TX_INTR;
598 if (fep->bufdesc_ex)
599 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
600 }
601
602 bdp->cbd_sc = cpu_to_fec16(status);
603
604 return 0;
605 }
606
607 static int
608 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
609 struct sk_buff *skb, struct net_device *ndev,
610 struct bufdesc *bdp, int index)
611 {
612 struct fec_enet_private *fep = netdev_priv(ndev);
613 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
614 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
615 void *bufaddr;
616 unsigned long dmabuf;
617 unsigned short status;
618 unsigned int estatus = 0;
619
620 status = fec16_to_cpu(bdp->cbd_sc);
621 status &= ~BD_ENET_TX_STATS;
622 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
623
624 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
625 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
626 if (((unsigned long)bufaddr) & fep->tx_align ||
627 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
628 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
629 bufaddr = txq->tx_bounce[index];
630
631 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
632 swap_buffer(bufaddr, hdr_len);
633
634 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
635 hdr_len, DMA_TO_DEVICE);
636 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
637 dev_kfree_skb_any(skb);
638 if (net_ratelimit())
639 netdev_err(ndev, "Tx DMA memory map failed\n");
640 return NETDEV_TX_BUSY;
641 }
642 }
643
644 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
645 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
646
647 if (fep->bufdesc_ex) {
648 if (fep->quirks & FEC_QUIRK_HAS_AVB)
649 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
650 if (skb->ip_summed == CHECKSUM_PARTIAL)
651 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
652 ebdp->cbd_bdu = 0;
653 ebdp->cbd_esc = cpu_to_fec32(estatus);
654 }
655
656 bdp->cbd_sc = cpu_to_fec16(status);
657
658 return 0;
659 }
660
661 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
662 struct sk_buff *skb,
663 struct net_device *ndev)
664 {
665 struct fec_enet_private *fep = netdev_priv(ndev);
666 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
667 int total_len, data_left;
668 struct bufdesc *bdp = txq->bd.cur;
669 struct tso_t tso;
670 unsigned int index = 0;
671 int ret;
672
673 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
674 dev_kfree_skb_any(skb);
675 if (net_ratelimit())
676 netdev_err(ndev, "NOT enough BD for TSO!\n");
677 return NETDEV_TX_OK;
678 }
679
680 /* Protocol checksum off-load for TCP and UDP. */
681 if (fec_enet_clear_csum(skb, ndev)) {
682 dev_kfree_skb_any(skb);
683 return NETDEV_TX_OK;
684 }
685
686 /* Initialize the TSO handler, and prepare the first payload */
687 tso_start(skb, &tso);
688
689 total_len = skb->len - hdr_len;
690 while (total_len > 0) {
691 char *hdr;
692
693 index = fec_enet_get_bd_index(bdp, &txq->bd);
694 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
695 total_len -= data_left;
696
697 /* prepare packet headers: MAC + IP + TCP */
698 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
699 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
700 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
701 if (ret)
702 goto err_release;
703
704 while (data_left > 0) {
705 int size;
706
707 size = min_t(int, tso.size, data_left);
708 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
709 index = fec_enet_get_bd_index(bdp, &txq->bd);
710 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
711 bdp, index,
712 tso.data, size,
713 size == data_left,
714 total_len == 0);
715 if (ret)
716 goto err_release;
717
718 data_left -= size;
719 tso_build_data(skb, &tso, size);
720 }
721
722 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
723 }
724
725 /* Save skb pointer */
726 txq->tx_skbuff[index] = skb;
727
728 skb_tx_timestamp(skb);
729 txq->bd.cur = bdp;
730
731 /* Trigger transmission start */
732 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
733 !readl(txq->bd.reg_desc_active) ||
734 !readl(txq->bd.reg_desc_active) ||
735 !readl(txq->bd.reg_desc_active) ||
736 !readl(txq->bd.reg_desc_active))
737 writel(0, txq->bd.reg_desc_active);
738
739 return 0;
740
741 err_release:
742 /* TODO: Release all used data descriptors for TSO */
743 return ret;
744 }
745
746 static netdev_tx_t
747 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
748 {
749 struct fec_enet_private *fep = netdev_priv(ndev);
750 int entries_free;
751 unsigned short queue;
752 struct fec_enet_priv_tx_q *txq;
753 struct netdev_queue *nq;
754 int ret;
755
756 queue = skb_get_queue_mapping(skb);
757 txq = fep->tx_queue[queue];
758 nq = netdev_get_tx_queue(ndev, queue);
759
760 if (skb_is_gso(skb))
761 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
762 else
763 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
764 if (ret)
765 return ret;
766
767 entries_free = fec_enet_get_free_txdesc_num(txq);
768 if (entries_free <= txq->tx_stop_threshold)
769 netif_tx_stop_queue(nq);
770
771 return NETDEV_TX_OK;
772 }
773
774 /* Init RX & TX buffer descriptors
775 */
776 static void fec_enet_bd_init(struct net_device *dev)
777 {
778 struct fec_enet_private *fep = netdev_priv(dev);
779 struct fec_enet_priv_tx_q *txq;
780 struct fec_enet_priv_rx_q *rxq;
781 struct bufdesc *bdp;
782 unsigned int i;
783 unsigned int q;
784
785 for (q = 0; q < fep->num_rx_queues; q++) {
786 /* Initialize the receive buffer descriptors. */
787 rxq = fep->rx_queue[q];
788 bdp = rxq->bd.base;
789
790 for (i = 0; i < rxq->bd.ring_size; i++) {
791
792 /* Initialize the BD for every fragment in the page. */
793 if (bdp->cbd_bufaddr)
794 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
795 else
796 bdp->cbd_sc = cpu_to_fec16(0);
797 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
798 }
799
800 /* Set the last buffer to wrap */
801 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
802 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
803
804 rxq->bd.cur = rxq->bd.base;
805 }
806
807 for (q = 0; q < fep->num_tx_queues; q++) {
808 /* ...and the same for transmit */
809 txq = fep->tx_queue[q];
810 bdp = txq->bd.base;
811 txq->bd.cur = bdp;
812
813 for (i = 0; i < txq->bd.ring_size; i++) {
814 /* Initialize the BD for every fragment in the page. */
815 bdp->cbd_sc = cpu_to_fec16(0);
816 if (txq->tx_skbuff[i]) {
817 dev_kfree_skb_any(txq->tx_skbuff[i]);
818 txq->tx_skbuff[i] = NULL;
819 }
820 bdp->cbd_bufaddr = cpu_to_fec32(0);
821 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
822 }
823
824 /* Set the last buffer to wrap */
825 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
826 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
827 txq->dirty_tx = bdp;
828 }
829 }
830
831 static void fec_enet_active_rxring(struct net_device *ndev)
832 {
833 struct fec_enet_private *fep = netdev_priv(ndev);
834 int i;
835
836 for (i = 0; i < fep->num_rx_queues; i++)
837 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
838 }
839
840 static void fec_enet_enable_ring(struct net_device *ndev)
841 {
842 struct fec_enet_private *fep = netdev_priv(ndev);
843 struct fec_enet_priv_tx_q *txq;
844 struct fec_enet_priv_rx_q *rxq;
845 int i;
846
847 for (i = 0; i < fep->num_rx_queues; i++) {
848 rxq = fep->rx_queue[i];
849 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
850 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
851
852 /* enable DMA1/2 */
853 if (i)
854 writel(RCMR_MATCHEN | RCMR_CMP(i),
855 fep->hwp + FEC_RCMR(i));
856 }
857
858 for (i = 0; i < fep->num_tx_queues; i++) {
859 txq = fep->tx_queue[i];
860 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
861
862 /* enable DMA1/2 */
863 if (i)
864 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
865 fep->hwp + FEC_DMA_CFG(i));
866 }
867 }
868
869 static void fec_enet_reset_skb(struct net_device *ndev)
870 {
871 struct fec_enet_private *fep = netdev_priv(ndev);
872 struct fec_enet_priv_tx_q *txq;
873 int i, j;
874
875 for (i = 0; i < fep->num_tx_queues; i++) {
876 txq = fep->tx_queue[i];
877
878 for (j = 0; j < txq->bd.ring_size; j++) {
879 if (txq->tx_skbuff[j]) {
880 dev_kfree_skb_any(txq->tx_skbuff[j]);
881 txq->tx_skbuff[j] = NULL;
882 }
883 }
884 }
885 }
886
887 /*
888 * This function is called to start or restart the FEC during a link
889 * change, transmit timeout, or to reconfigure the FEC. The network
890 * packet processing for this device must be stopped before this call.
891 */
892 static void
893 fec_restart(struct net_device *ndev)
894 {
895 struct fec_enet_private *fep = netdev_priv(ndev);
896 u32 val;
897 u32 temp_mac[2];
898 u32 rcntl = OPT_FRAME_SIZE | 0x04;
899 u32 ecntl = 0x2; /* ETHEREN */
900
901 /* Whack a reset. We should wait for this.
902 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
903 * instead of reset MAC itself.
904 */
905 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
906 writel(0, fep->hwp + FEC_ECNTRL);
907 } else {
908 writel(1, fep->hwp + FEC_ECNTRL);
909 udelay(10);
910 }
911
912 /*
913 * enet-mac reset will reset mac address registers too,
914 * so need to reconfigure it.
915 */
916 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
917 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
918 writel((__force u32)cpu_to_be32(temp_mac[0]),
919 fep->hwp + FEC_ADDR_LOW);
920 writel((__force u32)cpu_to_be32(temp_mac[1]),
921 fep->hwp + FEC_ADDR_HIGH);
922 }
923
924 /* Clear any outstanding interrupt. */
925 writel(0xffffffff, fep->hwp + FEC_IEVENT);
926
927 fec_enet_bd_init(ndev);
928
929 fec_enet_enable_ring(ndev);
930
931 /* Reset tx SKB buffers. */
932 fec_enet_reset_skb(ndev);
933
934 /* Enable MII mode */
935 if (fep->full_duplex == DUPLEX_FULL) {
936 /* FD enable */
937 writel(0x04, fep->hwp + FEC_X_CNTRL);
938 } else {
939 /* No Rcv on Xmit */
940 rcntl |= 0x02;
941 writel(0x0, fep->hwp + FEC_X_CNTRL);
942 }
943
944 /* Set MII speed */
945 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
946
947 #if !defined(CONFIG_M5272)
948 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
949 val = readl(fep->hwp + FEC_RACC);
950 /* align IP header */
951 val |= FEC_RACC_SHIFT16;
952 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
953 /* set RX checksum */
954 val |= FEC_RACC_OPTIONS;
955 else
956 val &= ~FEC_RACC_OPTIONS;
957 writel(val, fep->hwp + FEC_RACC);
958 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
959 }
960 #endif
961
962 /*
963 * The phy interface and speed need to get configured
964 * differently on enet-mac.
965 */
966 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
967 /* Enable flow control and length check */
968 rcntl |= 0x40000000 | 0x00000020;
969
970 /* RGMII, RMII or MII */
971 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
972 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
973 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
974 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
975 rcntl |= (1 << 6);
976 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
977 rcntl |= (1 << 8);
978 else
979 rcntl &= ~(1 << 8);
980
981 /* 1G, 100M or 10M */
982 if (ndev->phydev) {
983 if (ndev->phydev->speed == SPEED_1000)
984 ecntl |= (1 << 5);
985 else if (ndev->phydev->speed == SPEED_100)
986 rcntl &= ~(1 << 9);
987 else
988 rcntl |= (1 << 9);
989 }
990 } else {
991 #ifdef FEC_MIIGSK_ENR
992 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
993 u32 cfgr;
994 /* disable the gasket and wait */
995 writel(0, fep->hwp + FEC_MIIGSK_ENR);
996 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
997 udelay(1);
998
999 /*
1000 * configure the gasket:
1001 * RMII, 50 MHz, no loopback, no echo
1002 * MII, 25 MHz, no loopback, no echo
1003 */
1004 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1005 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1006 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1007 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1008 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1009
1010 /* re-enable the gasket */
1011 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1012 }
1013 #endif
1014 }
1015
1016 #if !defined(CONFIG_M5272)
1017 /* enable pause frame*/
1018 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1019 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1020 ndev->phydev && ndev->phydev->pause)) {
1021 rcntl |= FEC_ENET_FCE;
1022
1023 /* set FIFO threshold parameter to reduce overrun */
1024 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1025 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1026 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1027 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1028
1029 /* OPD */
1030 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1031 } else {
1032 rcntl &= ~FEC_ENET_FCE;
1033 }
1034 #endif /* !defined(CONFIG_M5272) */
1035
1036 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1037
1038 /* Setup multicast filter. */
1039 set_multicast_list(ndev);
1040 #ifndef CONFIG_M5272
1041 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1042 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1043 #endif
1044
1045 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1046 /* enable ENET endian swap */
1047 ecntl |= (1 << 8);
1048 /* enable ENET store and forward mode */
1049 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1050 }
1051
1052 if (fep->bufdesc_ex)
1053 ecntl |= (1 << 4);
1054
1055 #ifndef CONFIG_M5272
1056 /* Enable the MIB statistic event counters */
1057 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1058 #endif
1059
1060 /* And last, enable the transmit and receive processing */
1061 writel(ecntl, fep->hwp + FEC_ECNTRL);
1062 fec_enet_active_rxring(ndev);
1063
1064 if (fep->bufdesc_ex)
1065 fec_ptp_start_cyclecounter(ndev);
1066
1067 /* Enable interrupts we wish to service */
1068 if (fep->link)
1069 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1070 else
1071 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1072
1073 /* Init the interrupt coalescing */
1074 fec_enet_itr_coal_init(ndev);
1075
1076 }
1077
1078 static void
1079 fec_stop(struct net_device *ndev)
1080 {
1081 struct fec_enet_private *fep = netdev_priv(ndev);
1082 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1083 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1084 u32 val;
1085
1086 /* We cannot expect a graceful transmit stop without link !!! */
1087 if (fep->link) {
1088 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1089 udelay(10);
1090 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1091 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1092 }
1093
1094 /* Whack a reset. We should wait for this.
1095 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1096 * instead of reset MAC itself.
1097 */
1098 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1099 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1100 writel(0, fep->hwp + FEC_ECNTRL);
1101 } else {
1102 writel(1, fep->hwp + FEC_ECNTRL);
1103 udelay(10);
1104 }
1105 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1106 } else {
1107 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1108 val = readl(fep->hwp + FEC_ECNTRL);
1109 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1110 writel(val, fep->hwp + FEC_ECNTRL);
1111
1112 if (pdata && pdata->sleep_mode_enable)
1113 pdata->sleep_mode_enable(true);
1114 }
1115 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1116
1117 /* We have to keep ENET enabled to have MII interrupt stay working */
1118 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1119 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1120 writel(2, fep->hwp + FEC_ECNTRL);
1121 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1122 }
1123 }
1124
1125
1126 static void
1127 fec_timeout(struct net_device *ndev)
1128 {
1129 struct fec_enet_private *fep = netdev_priv(ndev);
1130
1131 fec_dump(ndev);
1132
1133 ndev->stats.tx_errors++;
1134
1135 schedule_work(&fep->tx_timeout_work);
1136 }
1137
1138 static void fec_enet_timeout_work(struct work_struct *work)
1139 {
1140 struct fec_enet_private *fep =
1141 container_of(work, struct fec_enet_private, tx_timeout_work);
1142 struct net_device *ndev = fep->netdev;
1143
1144 rtnl_lock();
1145 if (netif_device_present(ndev) || netif_running(ndev)) {
1146 napi_disable(&fep->napi);
1147 netif_tx_lock_bh(ndev);
1148 fec_restart(ndev);
1149 netif_wake_queue(ndev);
1150 netif_tx_unlock_bh(ndev);
1151 napi_enable(&fep->napi);
1152 }
1153 rtnl_unlock();
1154 }
1155
1156 static void
1157 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1158 struct skb_shared_hwtstamps *hwtstamps)
1159 {
1160 unsigned long flags;
1161 u64 ns;
1162
1163 spin_lock_irqsave(&fep->tmreg_lock, flags);
1164 ns = timecounter_cyc2time(&fep->tc, ts);
1165 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1166
1167 memset(hwtstamps, 0, sizeof(*hwtstamps));
1168 hwtstamps->hwtstamp = ns_to_ktime(ns);
1169 }
1170
1171 static void
1172 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1173 {
1174 struct fec_enet_private *fep;
1175 struct bufdesc *bdp;
1176 unsigned short status;
1177 struct sk_buff *skb;
1178 struct fec_enet_priv_tx_q *txq;
1179 struct netdev_queue *nq;
1180 int index = 0;
1181 int entries_free;
1182
1183 fep = netdev_priv(ndev);
1184
1185 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1186
1187 txq = fep->tx_queue[queue_id];
1188 /* get next bdp of dirty_tx */
1189 nq = netdev_get_tx_queue(ndev, queue_id);
1190 bdp = txq->dirty_tx;
1191
1192 /* get next bdp of dirty_tx */
1193 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1194
1195 while (bdp != READ_ONCE(txq->bd.cur)) {
1196 /* Order the load of bd.cur and cbd_sc */
1197 rmb();
1198 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1199 if (status & BD_ENET_TX_READY)
1200 break;
1201
1202 index = fec_enet_get_bd_index(bdp, &txq->bd);
1203
1204 skb = txq->tx_skbuff[index];
1205 txq->tx_skbuff[index] = NULL;
1206 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1207 dma_unmap_single(&fep->pdev->dev,
1208 fec32_to_cpu(bdp->cbd_bufaddr),
1209 fec16_to_cpu(bdp->cbd_datlen),
1210 DMA_TO_DEVICE);
1211 bdp->cbd_bufaddr = cpu_to_fec32(0);
1212 if (!skb)
1213 goto skb_done;
1214
1215 /* Check for errors. */
1216 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1217 BD_ENET_TX_RL | BD_ENET_TX_UN |
1218 BD_ENET_TX_CSL)) {
1219 ndev->stats.tx_errors++;
1220 if (status & BD_ENET_TX_HB) /* No heartbeat */
1221 ndev->stats.tx_heartbeat_errors++;
1222 if (status & BD_ENET_TX_LC) /* Late collision */
1223 ndev->stats.tx_window_errors++;
1224 if (status & BD_ENET_TX_RL) /* Retrans limit */
1225 ndev->stats.tx_aborted_errors++;
1226 if (status & BD_ENET_TX_UN) /* Underrun */
1227 ndev->stats.tx_fifo_errors++;
1228 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1229 ndev->stats.tx_carrier_errors++;
1230 } else {
1231 ndev->stats.tx_packets++;
1232 ndev->stats.tx_bytes += skb->len;
1233 }
1234
1235 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1236 fep->bufdesc_ex) {
1237 struct skb_shared_hwtstamps shhwtstamps;
1238 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1239
1240 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1241 skb_tstamp_tx(skb, &shhwtstamps);
1242 }
1243
1244 /* Deferred means some collisions occurred during transmit,
1245 * but we eventually sent the packet OK.
1246 */
1247 if (status & BD_ENET_TX_DEF)
1248 ndev->stats.collisions++;
1249
1250 /* Free the sk buffer associated with this last transmit */
1251 dev_kfree_skb_any(skb);
1252 skb_done:
1253 /* Make sure the update to bdp and tx_skbuff are performed
1254 * before dirty_tx
1255 */
1256 wmb();
1257 txq->dirty_tx = bdp;
1258
1259 /* Update pointer to next buffer descriptor to be transmitted */
1260 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1261
1262 /* Since we have freed up a buffer, the ring is no longer full
1263 */
1264 if (netif_queue_stopped(ndev)) {
1265 entries_free = fec_enet_get_free_txdesc_num(txq);
1266 if (entries_free >= txq->tx_wake_threshold)
1267 netif_tx_wake_queue(nq);
1268 }
1269 }
1270
1271 /* ERR006538: Keep the transmitter going */
1272 if (bdp != txq->bd.cur &&
1273 readl(txq->bd.reg_desc_active) == 0)
1274 writel(0, txq->bd.reg_desc_active);
1275 }
1276
1277 static void
1278 fec_enet_tx(struct net_device *ndev)
1279 {
1280 struct fec_enet_private *fep = netdev_priv(ndev);
1281 u16 queue_id;
1282 /* First process class A queue, then Class B and Best Effort queue */
1283 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1284 clear_bit(queue_id, &fep->work_tx);
1285 fec_enet_tx_queue(ndev, queue_id);
1286 }
1287 return;
1288 }
1289
1290 static int
1291 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1292 {
1293 struct fec_enet_private *fep = netdev_priv(ndev);
1294 int off;
1295
1296 off = ((unsigned long)skb->data) & fep->rx_align;
1297 if (off)
1298 skb_reserve(skb, fep->rx_align + 1 - off);
1299
1300 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1301 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1302 if (net_ratelimit())
1303 netdev_err(ndev, "Rx DMA memory map failed\n");
1304 return -ENOMEM;
1305 }
1306
1307 return 0;
1308 }
1309
1310 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1311 struct bufdesc *bdp, u32 length, bool swap)
1312 {
1313 struct fec_enet_private *fep = netdev_priv(ndev);
1314 struct sk_buff *new_skb;
1315
1316 if (length > fep->rx_copybreak)
1317 return false;
1318
1319 new_skb = netdev_alloc_skb(ndev, length);
1320 if (!new_skb)
1321 return false;
1322
1323 dma_sync_single_for_cpu(&fep->pdev->dev,
1324 fec32_to_cpu(bdp->cbd_bufaddr),
1325 FEC_ENET_RX_FRSIZE - fep->rx_align,
1326 DMA_FROM_DEVICE);
1327 if (!swap)
1328 memcpy(new_skb->data, (*skb)->data, length);
1329 else
1330 swap_buffer2(new_skb->data, (*skb)->data, length);
1331 *skb = new_skb;
1332
1333 return true;
1334 }
1335
1336 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1337 * When we update through the ring, if the next incoming buffer has
1338 * not been given to the system, we just set the empty indicator,
1339 * effectively tossing the packet.
1340 */
1341 static int
1342 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1343 {
1344 struct fec_enet_private *fep = netdev_priv(ndev);
1345 struct fec_enet_priv_rx_q *rxq;
1346 struct bufdesc *bdp;
1347 unsigned short status;
1348 struct sk_buff *skb_new = NULL;
1349 struct sk_buff *skb;
1350 ushort pkt_len;
1351 __u8 *data;
1352 int pkt_received = 0;
1353 struct bufdesc_ex *ebdp = NULL;
1354 bool vlan_packet_rcvd = false;
1355 u16 vlan_tag;
1356 int index = 0;
1357 bool is_copybreak;
1358 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1359
1360 #ifdef CONFIG_M532x
1361 flush_cache_all();
1362 #endif
1363 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1364 rxq = fep->rx_queue[queue_id];
1365
1366 /* First, grab all of the stats for the incoming packet.
1367 * These get messed up if we get called due to a busy condition.
1368 */
1369 bdp = rxq->bd.cur;
1370
1371 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1372
1373 if (pkt_received >= budget)
1374 break;
1375 pkt_received++;
1376
1377 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1378
1379 /* Check for errors. */
1380 status ^= BD_ENET_RX_LAST;
1381 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1382 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1383 BD_ENET_RX_CL)) {
1384 ndev->stats.rx_errors++;
1385 if (status & BD_ENET_RX_OV) {
1386 /* FIFO overrun */
1387 ndev->stats.rx_fifo_errors++;
1388 goto rx_processing_done;
1389 }
1390 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1391 | BD_ENET_RX_LAST)) {
1392 /* Frame too long or too short. */
1393 ndev->stats.rx_length_errors++;
1394 if (status & BD_ENET_RX_LAST)
1395 netdev_err(ndev, "rcv is not +last\n");
1396 }
1397 if (status & BD_ENET_RX_CR) /* CRC Error */
1398 ndev->stats.rx_crc_errors++;
1399 /* Report late collisions as a frame error. */
1400 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1401 ndev->stats.rx_frame_errors++;
1402 goto rx_processing_done;
1403 }
1404
1405 /* Process the incoming frame. */
1406 ndev->stats.rx_packets++;
1407 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1408 ndev->stats.rx_bytes += pkt_len;
1409
1410 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1411 skb = rxq->rx_skbuff[index];
1412
1413 /* The packet length includes FCS, but we don't want to
1414 * include that when passing upstream as it messes up
1415 * bridging applications.
1416 */
1417 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1418 need_swap);
1419 if (!is_copybreak) {
1420 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1421 if (unlikely(!skb_new)) {
1422 ndev->stats.rx_dropped++;
1423 goto rx_processing_done;
1424 }
1425 dma_unmap_single(&fep->pdev->dev,
1426 fec32_to_cpu(bdp->cbd_bufaddr),
1427 FEC_ENET_RX_FRSIZE - fep->rx_align,
1428 DMA_FROM_DEVICE);
1429 }
1430
1431 prefetch(skb->data - NET_IP_ALIGN);
1432 skb_put(skb, pkt_len - 4);
1433 data = skb->data;
1434
1435 #if !defined(CONFIG_M5272)
1436 if (fep->quirks & FEC_QUIRK_HAS_RACC)
1437 data = skb_pull_inline(skb, 2);
1438 #endif
1439
1440 if (!is_copybreak && need_swap)
1441 swap_buffer(data, pkt_len);
1442
1443 /* Extract the enhanced buffer descriptor */
1444 ebdp = NULL;
1445 if (fep->bufdesc_ex)
1446 ebdp = (struct bufdesc_ex *)bdp;
1447
1448 /* If this is a VLAN packet remove the VLAN Tag */
1449 vlan_packet_rcvd = false;
1450 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1451 fep->bufdesc_ex &&
1452 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1453 /* Push and remove the vlan tag */
1454 struct vlan_hdr *vlan_header =
1455 (struct vlan_hdr *) (data + ETH_HLEN);
1456 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1457
1458 vlan_packet_rcvd = true;
1459
1460 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1461 skb_pull(skb, VLAN_HLEN);
1462 }
1463
1464 skb->protocol = eth_type_trans(skb, ndev);
1465
1466 /* Get receive timestamp from the skb */
1467 if (fep->hwts_rx_en && fep->bufdesc_ex)
1468 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1469 skb_hwtstamps(skb));
1470
1471 if (fep->bufdesc_ex &&
1472 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1473 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1474 /* don't check it */
1475 skb->ip_summed = CHECKSUM_UNNECESSARY;
1476 } else {
1477 skb_checksum_none_assert(skb);
1478 }
1479 }
1480
1481 /* Handle received VLAN packets */
1482 if (vlan_packet_rcvd)
1483 __vlan_hwaccel_put_tag(skb,
1484 htons(ETH_P_8021Q),
1485 vlan_tag);
1486
1487 napi_gro_receive(&fep->napi, skb);
1488
1489 if (is_copybreak) {
1490 dma_sync_single_for_device(&fep->pdev->dev,
1491 fec32_to_cpu(bdp->cbd_bufaddr),
1492 FEC_ENET_RX_FRSIZE - fep->rx_align,
1493 DMA_FROM_DEVICE);
1494 } else {
1495 rxq->rx_skbuff[index] = skb_new;
1496 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1497 }
1498
1499 rx_processing_done:
1500 /* Clear the status flags for this buffer */
1501 status &= ~BD_ENET_RX_STATS;
1502
1503 /* Mark the buffer empty */
1504 status |= BD_ENET_RX_EMPTY;
1505
1506 if (fep->bufdesc_ex) {
1507 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1508
1509 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1510 ebdp->cbd_prot = 0;
1511 ebdp->cbd_bdu = 0;
1512 }
1513 /* Make sure the updates to rest of the descriptor are
1514 * performed before transferring ownership.
1515 */
1516 wmb();
1517 bdp->cbd_sc = cpu_to_fec16(status);
1518
1519 /* Update BD pointer to next entry */
1520 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1521
1522 /* Doing this here will keep the FEC running while we process
1523 * incoming frames. On a heavily loaded network, we should be
1524 * able to keep up at the expense of system resources.
1525 */
1526 writel(0, rxq->bd.reg_desc_active);
1527 }
1528 rxq->bd.cur = bdp;
1529 return pkt_received;
1530 }
1531
1532 static int
1533 fec_enet_rx(struct net_device *ndev, int budget)
1534 {
1535 int pkt_received = 0;
1536 u16 queue_id;
1537 struct fec_enet_private *fep = netdev_priv(ndev);
1538
1539 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1540 int ret;
1541
1542 ret = fec_enet_rx_queue(ndev,
1543 budget - pkt_received, queue_id);
1544
1545 if (ret < budget - pkt_received)
1546 clear_bit(queue_id, &fep->work_rx);
1547
1548 pkt_received += ret;
1549 }
1550 return pkt_received;
1551 }
1552
1553 static bool
1554 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1555 {
1556 if (int_events == 0)
1557 return false;
1558
1559 if (int_events & FEC_ENET_RXF)
1560 fep->work_rx |= (1 << 2);
1561 if (int_events & FEC_ENET_RXF_1)
1562 fep->work_rx |= (1 << 0);
1563 if (int_events & FEC_ENET_RXF_2)
1564 fep->work_rx |= (1 << 1);
1565
1566 if (int_events & FEC_ENET_TXF)
1567 fep->work_tx |= (1 << 2);
1568 if (int_events & FEC_ENET_TXF_1)
1569 fep->work_tx |= (1 << 0);
1570 if (int_events & FEC_ENET_TXF_2)
1571 fep->work_tx |= (1 << 1);
1572
1573 return true;
1574 }
1575
1576 static irqreturn_t
1577 fec_enet_interrupt(int irq, void *dev_id)
1578 {
1579 struct net_device *ndev = dev_id;
1580 struct fec_enet_private *fep = netdev_priv(ndev);
1581 uint int_events;
1582 irqreturn_t ret = IRQ_NONE;
1583
1584 int_events = readl(fep->hwp + FEC_IEVENT);
1585 writel(int_events, fep->hwp + FEC_IEVENT);
1586 fec_enet_collect_events(fep, int_events);
1587
1588 if ((fep->work_tx || fep->work_rx) && fep->link) {
1589 ret = IRQ_HANDLED;
1590
1591 if (napi_schedule_prep(&fep->napi)) {
1592 /* Disable the NAPI interrupts */
1593 writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1594 __napi_schedule(&fep->napi);
1595 }
1596 }
1597
1598 if (int_events & FEC_ENET_MII) {
1599 ret = IRQ_HANDLED;
1600 complete(&fep->mdio_done);
1601 }
1602
1603 if (fep->ptp_clock)
1604 fec_ptp_check_pps_event(fep);
1605
1606 return ret;
1607 }
1608
1609 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1610 {
1611 struct net_device *ndev = napi->dev;
1612 struct fec_enet_private *fep = netdev_priv(ndev);
1613 int pkts;
1614
1615 pkts = fec_enet_rx(ndev, budget);
1616
1617 fec_enet_tx(ndev);
1618
1619 if (pkts < budget) {
1620 napi_complete(napi);
1621 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1622 }
1623 return pkts;
1624 }
1625
1626 /* ------------------------------------------------------------------------- */
1627 static void fec_get_mac(struct net_device *ndev)
1628 {
1629 struct fec_enet_private *fep = netdev_priv(ndev);
1630 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1631 unsigned char *iap, tmpaddr[ETH_ALEN];
1632
1633 /*
1634 * try to get mac address in following order:
1635 *
1636 * 1) module parameter via kernel command line in form
1637 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1638 */
1639 iap = macaddr;
1640
1641 /*
1642 * 2) from device tree data
1643 */
1644 if (!is_valid_ether_addr(iap)) {
1645 struct device_node *np = fep->pdev->dev.of_node;
1646 if (np) {
1647 const char *mac = of_get_mac_address(np);
1648 if (mac)
1649 iap = (unsigned char *) mac;
1650 }
1651 }
1652
1653 /*
1654 * 3) from flash or fuse (via platform data)
1655 */
1656 if (!is_valid_ether_addr(iap)) {
1657 #ifdef CONFIG_M5272
1658 if (FEC_FLASHMAC)
1659 iap = (unsigned char *)FEC_FLASHMAC;
1660 #else
1661 if (pdata)
1662 iap = (unsigned char *)&pdata->mac;
1663 #endif
1664 }
1665
1666 /*
1667 * 4) FEC mac registers set by bootloader
1668 */
1669 if (!is_valid_ether_addr(iap)) {
1670 *((__be32 *) &tmpaddr[0]) =
1671 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1672 *((__be16 *) &tmpaddr[4]) =
1673 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1674 iap = &tmpaddr[0];
1675 }
1676
1677 /*
1678 * 5) random mac address
1679 */
1680 if (!is_valid_ether_addr(iap)) {
1681 /* Report it and use a random ethernet address instead */
1682 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1683 eth_hw_addr_random(ndev);
1684 netdev_info(ndev, "Using random MAC address: %pM\n",
1685 ndev->dev_addr);
1686 return;
1687 }
1688
1689 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1690
1691 /* Adjust MAC if using macaddr */
1692 if (iap == macaddr)
1693 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1694 }
1695
1696 /* ------------------------------------------------------------------------- */
1697
1698 /*
1699 * Phy section
1700 */
1701 static void fec_enet_adjust_link(struct net_device *ndev)
1702 {
1703 struct fec_enet_private *fep = netdev_priv(ndev);
1704 struct phy_device *phy_dev = ndev->phydev;
1705 int status_change = 0;
1706
1707 /* Prevent a state halted on mii error */
1708 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1709 phy_dev->state = PHY_RESUMING;
1710 return;
1711 }
1712
1713 /*
1714 * If the netdev is down, or is going down, we're not interested
1715 * in link state events, so just mark our idea of the link as down
1716 * and ignore the event.
1717 */
1718 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1719 fep->link = 0;
1720 } else if (phy_dev->link) {
1721 if (!fep->link) {
1722 fep->link = phy_dev->link;
1723 status_change = 1;
1724 }
1725
1726 if (fep->full_duplex != phy_dev->duplex) {
1727 fep->full_duplex = phy_dev->duplex;
1728 status_change = 1;
1729 }
1730
1731 if (phy_dev->speed != fep->speed) {
1732 fep->speed = phy_dev->speed;
1733 status_change = 1;
1734 }
1735
1736 /* if any of the above changed restart the FEC */
1737 if (status_change) {
1738 napi_disable(&fep->napi);
1739 netif_tx_lock_bh(ndev);
1740 fec_restart(ndev);
1741 netif_wake_queue(ndev);
1742 netif_tx_unlock_bh(ndev);
1743 napi_enable(&fep->napi);
1744 }
1745 } else {
1746 if (fep->link) {
1747 napi_disable(&fep->napi);
1748 netif_tx_lock_bh(ndev);
1749 fec_stop(ndev);
1750 netif_tx_unlock_bh(ndev);
1751 napi_enable(&fep->napi);
1752 fep->link = phy_dev->link;
1753 status_change = 1;
1754 }
1755 }
1756
1757 if (status_change)
1758 phy_print_status(phy_dev);
1759 }
1760
1761 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1762 {
1763 struct fec_enet_private *fep = bus->priv;
1764 struct device *dev = &fep->pdev->dev;
1765 unsigned long time_left;
1766 int ret = 0;
1767
1768 ret = pm_runtime_get_sync(dev);
1769 if (ret < 0)
1770 return ret;
1771
1772 fep->mii_timeout = 0;
1773 reinit_completion(&fep->mdio_done);
1774
1775 /* start a read op */
1776 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1777 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1778 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1779
1780 /* wait for end of transfer */
1781 time_left = wait_for_completion_timeout(&fep->mdio_done,
1782 usecs_to_jiffies(FEC_MII_TIMEOUT));
1783 if (time_left == 0) {
1784 fep->mii_timeout = 1;
1785 netdev_err(fep->netdev, "MDIO read timeout\n");
1786 ret = -ETIMEDOUT;
1787 goto out;
1788 }
1789
1790 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1791
1792 out:
1793 pm_runtime_mark_last_busy(dev);
1794 pm_runtime_put_autosuspend(dev);
1795
1796 return ret;
1797 }
1798
1799 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1800 u16 value)
1801 {
1802 struct fec_enet_private *fep = bus->priv;
1803 struct device *dev = &fep->pdev->dev;
1804 unsigned long time_left;
1805 int ret;
1806
1807 ret = pm_runtime_get_sync(dev);
1808 if (ret < 0)
1809 return ret;
1810 else
1811 ret = 0;
1812
1813 fep->mii_timeout = 0;
1814 reinit_completion(&fep->mdio_done);
1815
1816 /* start a write op */
1817 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1818 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1819 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1820 fep->hwp + FEC_MII_DATA);
1821
1822 /* wait for end of transfer */
1823 time_left = wait_for_completion_timeout(&fep->mdio_done,
1824 usecs_to_jiffies(FEC_MII_TIMEOUT));
1825 if (time_left == 0) {
1826 fep->mii_timeout = 1;
1827 netdev_err(fep->netdev, "MDIO write timeout\n");
1828 ret = -ETIMEDOUT;
1829 }
1830
1831 pm_runtime_mark_last_busy(dev);
1832 pm_runtime_put_autosuspend(dev);
1833
1834 return ret;
1835 }
1836
1837 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1838 {
1839 struct fec_enet_private *fep = netdev_priv(ndev);
1840 int ret;
1841
1842 if (enable) {
1843 ret = clk_prepare_enable(fep->clk_ahb);
1844 if (ret)
1845 return ret;
1846 if (fep->clk_enet_out) {
1847 ret = clk_prepare_enable(fep->clk_enet_out);
1848 if (ret)
1849 goto failed_clk_enet_out;
1850 }
1851 if (fep->clk_ptp) {
1852 mutex_lock(&fep->ptp_clk_mutex);
1853 ret = clk_prepare_enable(fep->clk_ptp);
1854 if (ret) {
1855 mutex_unlock(&fep->ptp_clk_mutex);
1856 goto failed_clk_ptp;
1857 } else {
1858 fep->ptp_clk_on = true;
1859 }
1860 mutex_unlock(&fep->ptp_clk_mutex);
1861 }
1862 if (fep->clk_ref) {
1863 ret = clk_prepare_enable(fep->clk_ref);
1864 if (ret)
1865 goto failed_clk_ref;
1866 }
1867 } else {
1868 clk_disable_unprepare(fep->clk_ahb);
1869 if (fep->clk_enet_out)
1870 clk_disable_unprepare(fep->clk_enet_out);
1871 if (fep->clk_ptp) {
1872 mutex_lock(&fep->ptp_clk_mutex);
1873 clk_disable_unprepare(fep->clk_ptp);
1874 fep->ptp_clk_on = false;
1875 mutex_unlock(&fep->ptp_clk_mutex);
1876 }
1877 if (fep->clk_ref)
1878 clk_disable_unprepare(fep->clk_ref);
1879 }
1880
1881 return 0;
1882
1883 failed_clk_ref:
1884 if (fep->clk_ref)
1885 clk_disable_unprepare(fep->clk_ref);
1886 failed_clk_ptp:
1887 if (fep->clk_enet_out)
1888 clk_disable_unprepare(fep->clk_enet_out);
1889 failed_clk_enet_out:
1890 clk_disable_unprepare(fep->clk_ahb);
1891
1892 return ret;
1893 }
1894
1895 static int fec_enet_mii_probe(struct net_device *ndev)
1896 {
1897 struct fec_enet_private *fep = netdev_priv(ndev);
1898 struct phy_device *phy_dev = NULL;
1899 char mdio_bus_id[MII_BUS_ID_SIZE];
1900 char phy_name[MII_BUS_ID_SIZE + 3];
1901 int phy_id;
1902 int dev_id = fep->dev_id;
1903
1904 if (fep->phy_node) {
1905 phy_dev = of_phy_connect(ndev, fep->phy_node,
1906 &fec_enet_adjust_link, 0,
1907 fep->phy_interface);
1908 if (!phy_dev)
1909 return -ENODEV;
1910 } else {
1911 /* check for attached phy */
1912 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1913 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1914 continue;
1915 if (dev_id--)
1916 continue;
1917 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1918 break;
1919 }
1920
1921 if (phy_id >= PHY_MAX_ADDR) {
1922 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1923 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1924 phy_id = 0;
1925 }
1926
1927 snprintf(phy_name, sizeof(phy_name),
1928 PHY_ID_FMT, mdio_bus_id, phy_id);
1929 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1930 fep->phy_interface);
1931 }
1932
1933 if (IS_ERR(phy_dev)) {
1934 netdev_err(ndev, "could not attach to PHY\n");
1935 return PTR_ERR(phy_dev);
1936 }
1937
1938 /* mask with MAC supported features */
1939 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1940 phy_dev->supported &= PHY_GBIT_FEATURES;
1941 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1942 #if !defined(CONFIG_M5272)
1943 phy_dev->supported |= SUPPORTED_Pause;
1944 #endif
1945 }
1946 else
1947 phy_dev->supported &= PHY_BASIC_FEATURES;
1948
1949 phy_dev->advertising = phy_dev->supported;
1950
1951 fep->link = 0;
1952 fep->full_duplex = 0;
1953
1954 phy_attached_info(phy_dev);
1955
1956 return 0;
1957 }
1958
1959 static int fec_enet_mii_init(struct platform_device *pdev)
1960 {
1961 static struct mii_bus *fec0_mii_bus;
1962 struct net_device *ndev = platform_get_drvdata(pdev);
1963 struct fec_enet_private *fep = netdev_priv(ndev);
1964 struct device_node *node;
1965 int err = -ENXIO;
1966 u32 mii_speed, holdtime;
1967
1968 /*
1969 * The i.MX28 dual fec interfaces are not equal.
1970 * Here are the differences:
1971 *
1972 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1973 * - fec0 acts as the 1588 time master while fec1 is slave
1974 * - external phys can only be configured by fec0
1975 *
1976 * That is to say fec1 can not work independently. It only works
1977 * when fec0 is working. The reason behind this design is that the
1978 * second interface is added primarily for Switch mode.
1979 *
1980 * Because of the last point above, both phys are attached on fec0
1981 * mdio interface in board design, and need to be configured by
1982 * fec0 mii_bus.
1983 */
1984 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1985 /* fec1 uses fec0 mii_bus */
1986 if (mii_cnt && fec0_mii_bus) {
1987 fep->mii_bus = fec0_mii_bus;
1988 mii_cnt++;
1989 return 0;
1990 }
1991 return -ENOENT;
1992 }
1993
1994 fep->mii_timeout = 0;
1995
1996 /*
1997 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1998 *
1999 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2000 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2001 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2002 * document.
2003 */
2004 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2005 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2006 mii_speed--;
2007 if (mii_speed > 63) {
2008 dev_err(&pdev->dev,
2009 "fec clock (%lu) to fast to get right mii speed\n",
2010 clk_get_rate(fep->clk_ipg));
2011 err = -EINVAL;
2012 goto err_out;
2013 }
2014
2015 /*
2016 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2017 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2018 * versions are RAZ there, so just ignore the difference and write the
2019 * register always.
2020 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2021 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2022 * output.
2023 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2024 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2025 * holdtime cannot result in a value greater than 3.
2026 */
2027 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2028
2029 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2030
2031 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2032
2033 fep->mii_bus = mdiobus_alloc();
2034 if (fep->mii_bus == NULL) {
2035 err = -ENOMEM;
2036 goto err_out;
2037 }
2038
2039 fep->mii_bus->name = "fec_enet_mii_bus";
2040 fep->mii_bus->read = fec_enet_mdio_read;
2041 fep->mii_bus->write = fec_enet_mdio_write;
2042 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2043 pdev->name, fep->dev_id + 1);
2044 fep->mii_bus->priv = fep;
2045 fep->mii_bus->parent = &pdev->dev;
2046
2047 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2048 if (node) {
2049 err = of_mdiobus_register(fep->mii_bus, node);
2050 of_node_put(node);
2051 } else {
2052 err = mdiobus_register(fep->mii_bus);
2053 }
2054
2055 if (err)
2056 goto err_out_free_mdiobus;
2057
2058 mii_cnt++;
2059
2060 /* save fec0 mii_bus */
2061 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2062 fec0_mii_bus = fep->mii_bus;
2063
2064 return 0;
2065
2066 err_out_free_mdiobus:
2067 mdiobus_free(fep->mii_bus);
2068 err_out:
2069 return err;
2070 }
2071
2072 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2073 {
2074 if (--mii_cnt == 0) {
2075 mdiobus_unregister(fep->mii_bus);
2076 mdiobus_free(fep->mii_bus);
2077 }
2078 }
2079
2080 static void fec_enet_get_drvinfo(struct net_device *ndev,
2081 struct ethtool_drvinfo *info)
2082 {
2083 struct fec_enet_private *fep = netdev_priv(ndev);
2084
2085 strlcpy(info->driver, fep->pdev->dev.driver->name,
2086 sizeof(info->driver));
2087 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2088 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2089 }
2090
2091 static int fec_enet_get_regs_len(struct net_device *ndev)
2092 {
2093 struct fec_enet_private *fep = netdev_priv(ndev);
2094 struct resource *r;
2095 int s = 0;
2096
2097 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2098 if (r)
2099 s = resource_size(r);
2100
2101 return s;
2102 }
2103
2104 /* List of registers that can be safety be read to dump them with ethtool */
2105 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2106 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2107 static u32 fec_enet_register_offset[] = {
2108 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2109 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2110 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2111 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2112 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2113 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2114 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2115 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2116 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2117 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2118 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2119 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2120 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2121 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2122 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2123 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2124 RMON_T_P_GTE2048, RMON_T_OCTETS,
2125 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2126 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2127 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2128 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2129 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2130 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2131 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2132 RMON_R_P_GTE2048, RMON_R_OCTETS,
2133 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2134 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2135 };
2136 #else
2137 static u32 fec_enet_register_offset[] = {
2138 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2139 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2140 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2141 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2142 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2143 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2144 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2145 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2146 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2147 };
2148 #endif
2149
2150 static void fec_enet_get_regs(struct net_device *ndev,
2151 struct ethtool_regs *regs, void *regbuf)
2152 {
2153 struct fec_enet_private *fep = netdev_priv(ndev);
2154 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2155 u32 *buf = (u32 *)regbuf;
2156 u32 i, off;
2157
2158 memset(buf, 0, regs->len);
2159
2160 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2161 off = fec_enet_register_offset[i] / 4;
2162 buf[off] = readl(&theregs[off]);
2163 }
2164 }
2165
2166 static int fec_enet_get_ts_info(struct net_device *ndev,
2167 struct ethtool_ts_info *info)
2168 {
2169 struct fec_enet_private *fep = netdev_priv(ndev);
2170
2171 if (fep->bufdesc_ex) {
2172
2173 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2174 SOF_TIMESTAMPING_RX_SOFTWARE |
2175 SOF_TIMESTAMPING_SOFTWARE |
2176 SOF_TIMESTAMPING_TX_HARDWARE |
2177 SOF_TIMESTAMPING_RX_HARDWARE |
2178 SOF_TIMESTAMPING_RAW_HARDWARE;
2179 if (fep->ptp_clock)
2180 info->phc_index = ptp_clock_index(fep->ptp_clock);
2181 else
2182 info->phc_index = -1;
2183
2184 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2185 (1 << HWTSTAMP_TX_ON);
2186
2187 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2188 (1 << HWTSTAMP_FILTER_ALL);
2189 return 0;
2190 } else {
2191 return ethtool_op_get_ts_info(ndev, info);
2192 }
2193 }
2194
2195 #if !defined(CONFIG_M5272)
2196
2197 static void fec_enet_get_pauseparam(struct net_device *ndev,
2198 struct ethtool_pauseparam *pause)
2199 {
2200 struct fec_enet_private *fep = netdev_priv(ndev);
2201
2202 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2203 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2204 pause->rx_pause = pause->tx_pause;
2205 }
2206
2207 static int fec_enet_set_pauseparam(struct net_device *ndev,
2208 struct ethtool_pauseparam *pause)
2209 {
2210 struct fec_enet_private *fep = netdev_priv(ndev);
2211
2212 if (!ndev->phydev)
2213 return -ENODEV;
2214
2215 if (pause->tx_pause != pause->rx_pause) {
2216 netdev_info(ndev,
2217 "hardware only support enable/disable both tx and rx");
2218 return -EINVAL;
2219 }
2220
2221 fep->pause_flag = 0;
2222
2223 /* tx pause must be same as rx pause */
2224 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2225 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2226
2227 if (pause->rx_pause || pause->autoneg) {
2228 ndev->phydev->supported |= ADVERTISED_Pause;
2229 ndev->phydev->advertising |= ADVERTISED_Pause;
2230 } else {
2231 ndev->phydev->supported &= ~ADVERTISED_Pause;
2232 ndev->phydev->advertising &= ~ADVERTISED_Pause;
2233 }
2234
2235 if (pause->autoneg) {
2236 if (netif_running(ndev))
2237 fec_stop(ndev);
2238 phy_start_aneg(ndev->phydev);
2239 }
2240 if (netif_running(ndev)) {
2241 napi_disable(&fep->napi);
2242 netif_tx_lock_bh(ndev);
2243 fec_restart(ndev);
2244 netif_wake_queue(ndev);
2245 netif_tx_unlock_bh(ndev);
2246 napi_enable(&fep->napi);
2247 }
2248
2249 return 0;
2250 }
2251
2252 static const struct fec_stat {
2253 char name[ETH_GSTRING_LEN];
2254 u16 offset;
2255 } fec_stats[] = {
2256 /* RMON TX */
2257 { "tx_dropped", RMON_T_DROP },
2258 { "tx_packets", RMON_T_PACKETS },
2259 { "tx_broadcast", RMON_T_BC_PKT },
2260 { "tx_multicast", RMON_T_MC_PKT },
2261 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2262 { "tx_undersize", RMON_T_UNDERSIZE },
2263 { "tx_oversize", RMON_T_OVERSIZE },
2264 { "tx_fragment", RMON_T_FRAG },
2265 { "tx_jabber", RMON_T_JAB },
2266 { "tx_collision", RMON_T_COL },
2267 { "tx_64byte", RMON_T_P64 },
2268 { "tx_65to127byte", RMON_T_P65TO127 },
2269 { "tx_128to255byte", RMON_T_P128TO255 },
2270 { "tx_256to511byte", RMON_T_P256TO511 },
2271 { "tx_512to1023byte", RMON_T_P512TO1023 },
2272 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2273 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2274 { "tx_octets", RMON_T_OCTETS },
2275
2276 /* IEEE TX */
2277 { "IEEE_tx_drop", IEEE_T_DROP },
2278 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2279 { "IEEE_tx_1col", IEEE_T_1COL },
2280 { "IEEE_tx_mcol", IEEE_T_MCOL },
2281 { "IEEE_tx_def", IEEE_T_DEF },
2282 { "IEEE_tx_lcol", IEEE_T_LCOL },
2283 { "IEEE_tx_excol", IEEE_T_EXCOL },
2284 { "IEEE_tx_macerr", IEEE_T_MACERR },
2285 { "IEEE_tx_cserr", IEEE_T_CSERR },
2286 { "IEEE_tx_sqe", IEEE_T_SQE },
2287 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2288 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2289
2290 /* RMON RX */
2291 { "rx_packets", RMON_R_PACKETS },
2292 { "rx_broadcast", RMON_R_BC_PKT },
2293 { "rx_multicast", RMON_R_MC_PKT },
2294 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2295 { "rx_undersize", RMON_R_UNDERSIZE },
2296 { "rx_oversize", RMON_R_OVERSIZE },
2297 { "rx_fragment", RMON_R_FRAG },
2298 { "rx_jabber", RMON_R_JAB },
2299 { "rx_64byte", RMON_R_P64 },
2300 { "rx_65to127byte", RMON_R_P65TO127 },
2301 { "rx_128to255byte", RMON_R_P128TO255 },
2302 { "rx_256to511byte", RMON_R_P256TO511 },
2303 { "rx_512to1023byte", RMON_R_P512TO1023 },
2304 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2305 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2306 { "rx_octets", RMON_R_OCTETS },
2307
2308 /* IEEE RX */
2309 { "IEEE_rx_drop", IEEE_R_DROP },
2310 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2311 { "IEEE_rx_crc", IEEE_R_CRC },
2312 { "IEEE_rx_align", IEEE_R_ALIGN },
2313 { "IEEE_rx_macerr", IEEE_R_MACERR },
2314 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2315 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2316 };
2317
2318 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2319 struct ethtool_stats *stats, u64 *data)
2320 {
2321 struct fec_enet_private *fep = netdev_priv(dev);
2322 int i;
2323
2324 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2325 data[i] = readl(fep->hwp + fec_stats[i].offset);
2326 }
2327
2328 static void fec_enet_get_strings(struct net_device *netdev,
2329 u32 stringset, u8 *data)
2330 {
2331 int i;
2332 switch (stringset) {
2333 case ETH_SS_STATS:
2334 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2335 memcpy(data + i * ETH_GSTRING_LEN,
2336 fec_stats[i].name, ETH_GSTRING_LEN);
2337 break;
2338 }
2339 }
2340
2341 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2342 {
2343 switch (sset) {
2344 case ETH_SS_STATS:
2345 return ARRAY_SIZE(fec_stats);
2346 default:
2347 return -EOPNOTSUPP;
2348 }
2349 }
2350 #endif /* !defined(CONFIG_M5272) */
2351
2352 static int fec_enet_nway_reset(struct net_device *dev)
2353 {
2354 struct phy_device *phydev = dev->phydev;
2355
2356 if (!phydev)
2357 return -ENODEV;
2358
2359 return genphy_restart_aneg(phydev);
2360 }
2361
2362 /* ITR clock source is enet system clock (clk_ahb).
2363 * TCTT unit is cycle_ns * 64 cycle
2364 * So, the ICTT value = X us / (cycle_ns * 64)
2365 */
2366 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2367 {
2368 struct fec_enet_private *fep = netdev_priv(ndev);
2369
2370 return us * (fep->itr_clk_rate / 64000) / 1000;
2371 }
2372
2373 /* Set threshold for interrupt coalescing */
2374 static void fec_enet_itr_coal_set(struct net_device *ndev)
2375 {
2376 struct fec_enet_private *fep = netdev_priv(ndev);
2377 int rx_itr, tx_itr;
2378
2379 /* Must be greater than zero to avoid unpredictable behavior */
2380 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2381 !fep->tx_time_itr || !fep->tx_pkts_itr)
2382 return;
2383
2384 /* Select enet system clock as Interrupt Coalescing
2385 * timer Clock Source
2386 */
2387 rx_itr = FEC_ITR_CLK_SEL;
2388 tx_itr = FEC_ITR_CLK_SEL;
2389
2390 /* set ICFT and ICTT */
2391 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2392 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2393 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2394 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2395
2396 rx_itr |= FEC_ITR_EN;
2397 tx_itr |= FEC_ITR_EN;
2398
2399 writel(tx_itr, fep->hwp + FEC_TXIC0);
2400 writel(rx_itr, fep->hwp + FEC_RXIC0);
2401 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2402 writel(tx_itr, fep->hwp + FEC_TXIC1);
2403 writel(rx_itr, fep->hwp + FEC_RXIC1);
2404 writel(tx_itr, fep->hwp + FEC_TXIC2);
2405 writel(rx_itr, fep->hwp + FEC_RXIC2);
2406 }
2407 }
2408
2409 static int
2410 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2411 {
2412 struct fec_enet_private *fep = netdev_priv(ndev);
2413
2414 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2415 return -EOPNOTSUPP;
2416
2417 ec->rx_coalesce_usecs = fep->rx_time_itr;
2418 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2419
2420 ec->tx_coalesce_usecs = fep->tx_time_itr;
2421 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2422
2423 return 0;
2424 }
2425
2426 static int
2427 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2428 {
2429 struct fec_enet_private *fep = netdev_priv(ndev);
2430 unsigned int cycle;
2431
2432 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2433 return -EOPNOTSUPP;
2434
2435 if (ec->rx_max_coalesced_frames > 255) {
2436 pr_err("Rx coalesced frames exceed hardware limitation\n");
2437 return -EINVAL;
2438 }
2439
2440 if (ec->tx_max_coalesced_frames > 255) {
2441 pr_err("Tx coalesced frame exceed hardware limitation\n");
2442 return -EINVAL;
2443 }
2444
2445 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2446 if (cycle > 0xFFFF) {
2447 pr_err("Rx coalesced usec exceed hardware limitation\n");
2448 return -EINVAL;
2449 }
2450
2451 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2452 if (cycle > 0xFFFF) {
2453 pr_err("Rx coalesced usec exceed hardware limitation\n");
2454 return -EINVAL;
2455 }
2456
2457 fep->rx_time_itr = ec->rx_coalesce_usecs;
2458 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2459
2460 fep->tx_time_itr = ec->tx_coalesce_usecs;
2461 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2462
2463 fec_enet_itr_coal_set(ndev);
2464
2465 return 0;
2466 }
2467
2468 static void fec_enet_itr_coal_init(struct net_device *ndev)
2469 {
2470 struct ethtool_coalesce ec;
2471
2472 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2473 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2474
2475 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2476 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2477
2478 fec_enet_set_coalesce(ndev, &ec);
2479 }
2480
2481 static int fec_enet_get_tunable(struct net_device *netdev,
2482 const struct ethtool_tunable *tuna,
2483 void *data)
2484 {
2485 struct fec_enet_private *fep = netdev_priv(netdev);
2486 int ret = 0;
2487
2488 switch (tuna->id) {
2489 case ETHTOOL_RX_COPYBREAK:
2490 *(u32 *)data = fep->rx_copybreak;
2491 break;
2492 default:
2493 ret = -EINVAL;
2494 break;
2495 }
2496
2497 return ret;
2498 }
2499
2500 static int fec_enet_set_tunable(struct net_device *netdev,
2501 const struct ethtool_tunable *tuna,
2502 const void *data)
2503 {
2504 struct fec_enet_private *fep = netdev_priv(netdev);
2505 int ret = 0;
2506
2507 switch (tuna->id) {
2508 case ETHTOOL_RX_COPYBREAK:
2509 fep->rx_copybreak = *(u32 *)data;
2510 break;
2511 default:
2512 ret = -EINVAL;
2513 break;
2514 }
2515
2516 return ret;
2517 }
2518
2519 static void
2520 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2521 {
2522 struct fec_enet_private *fep = netdev_priv(ndev);
2523
2524 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2525 wol->supported = WAKE_MAGIC;
2526 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2527 } else {
2528 wol->supported = wol->wolopts = 0;
2529 }
2530 }
2531
2532 static int
2533 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2534 {
2535 struct fec_enet_private *fep = netdev_priv(ndev);
2536
2537 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2538 return -EINVAL;
2539
2540 if (wol->wolopts & ~WAKE_MAGIC)
2541 return -EINVAL;
2542
2543 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2544 if (device_may_wakeup(&ndev->dev)) {
2545 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2546 if (fep->irq[0] > 0)
2547 enable_irq_wake(fep->irq[0]);
2548 } else {
2549 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2550 if (fep->irq[0] > 0)
2551 disable_irq_wake(fep->irq[0]);
2552 }
2553
2554 return 0;
2555 }
2556
2557 static const struct ethtool_ops fec_enet_ethtool_ops = {
2558 .get_drvinfo = fec_enet_get_drvinfo,
2559 .get_regs_len = fec_enet_get_regs_len,
2560 .get_regs = fec_enet_get_regs,
2561 .nway_reset = fec_enet_nway_reset,
2562 .get_link = ethtool_op_get_link,
2563 .get_coalesce = fec_enet_get_coalesce,
2564 .set_coalesce = fec_enet_set_coalesce,
2565 #ifndef CONFIG_M5272
2566 .get_pauseparam = fec_enet_get_pauseparam,
2567 .set_pauseparam = fec_enet_set_pauseparam,
2568 .get_strings = fec_enet_get_strings,
2569 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2570 .get_sset_count = fec_enet_get_sset_count,
2571 #endif
2572 .get_ts_info = fec_enet_get_ts_info,
2573 .get_tunable = fec_enet_get_tunable,
2574 .set_tunable = fec_enet_set_tunable,
2575 .get_wol = fec_enet_get_wol,
2576 .set_wol = fec_enet_set_wol,
2577 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2578 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2579 };
2580
2581 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2582 {
2583 struct fec_enet_private *fep = netdev_priv(ndev);
2584 struct phy_device *phydev = ndev->phydev;
2585
2586 if (!netif_running(ndev))
2587 return -EINVAL;
2588
2589 if (!phydev)
2590 return -ENODEV;
2591
2592 if (fep->bufdesc_ex) {
2593 if (cmd == SIOCSHWTSTAMP)
2594 return fec_ptp_set(ndev, rq);
2595 if (cmd == SIOCGHWTSTAMP)
2596 return fec_ptp_get(ndev, rq);
2597 }
2598
2599 return phy_mii_ioctl(phydev, rq, cmd);
2600 }
2601
2602 static void fec_enet_free_buffers(struct net_device *ndev)
2603 {
2604 struct fec_enet_private *fep = netdev_priv(ndev);
2605 unsigned int i;
2606 struct sk_buff *skb;
2607 struct bufdesc *bdp;
2608 struct fec_enet_priv_tx_q *txq;
2609 struct fec_enet_priv_rx_q *rxq;
2610 unsigned int q;
2611
2612 for (q = 0; q < fep->num_rx_queues; q++) {
2613 rxq = fep->rx_queue[q];
2614 bdp = rxq->bd.base;
2615 for (i = 0; i < rxq->bd.ring_size; i++) {
2616 skb = rxq->rx_skbuff[i];
2617 rxq->rx_skbuff[i] = NULL;
2618 if (skb) {
2619 dma_unmap_single(&fep->pdev->dev,
2620 fec32_to_cpu(bdp->cbd_bufaddr),
2621 FEC_ENET_RX_FRSIZE - fep->rx_align,
2622 DMA_FROM_DEVICE);
2623 dev_kfree_skb(skb);
2624 }
2625 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2626 }
2627 }
2628
2629 for (q = 0; q < fep->num_tx_queues; q++) {
2630 txq = fep->tx_queue[q];
2631 bdp = txq->bd.base;
2632 for (i = 0; i < txq->bd.ring_size; i++) {
2633 kfree(txq->tx_bounce[i]);
2634 txq->tx_bounce[i] = NULL;
2635 skb = txq->tx_skbuff[i];
2636 txq->tx_skbuff[i] = NULL;
2637 dev_kfree_skb(skb);
2638 }
2639 }
2640 }
2641
2642 static void fec_enet_free_queue(struct net_device *ndev)
2643 {
2644 struct fec_enet_private *fep = netdev_priv(ndev);
2645 int i;
2646 struct fec_enet_priv_tx_q *txq;
2647
2648 for (i = 0; i < fep->num_tx_queues; i++)
2649 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2650 txq = fep->tx_queue[i];
2651 dma_free_coherent(NULL,
2652 txq->bd.ring_size * TSO_HEADER_SIZE,
2653 txq->tso_hdrs,
2654 txq->tso_hdrs_dma);
2655 }
2656
2657 for (i = 0; i < fep->num_rx_queues; i++)
2658 kfree(fep->rx_queue[i]);
2659 for (i = 0; i < fep->num_tx_queues; i++)
2660 kfree(fep->tx_queue[i]);
2661 }
2662
2663 static int fec_enet_alloc_queue(struct net_device *ndev)
2664 {
2665 struct fec_enet_private *fep = netdev_priv(ndev);
2666 int i;
2667 int ret = 0;
2668 struct fec_enet_priv_tx_q *txq;
2669
2670 for (i = 0; i < fep->num_tx_queues; i++) {
2671 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2672 if (!txq) {
2673 ret = -ENOMEM;
2674 goto alloc_failed;
2675 }
2676
2677 fep->tx_queue[i] = txq;
2678 txq->bd.ring_size = TX_RING_SIZE;
2679 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2680
2681 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2682 txq->tx_wake_threshold =
2683 (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2684
2685 txq->tso_hdrs = dma_alloc_coherent(NULL,
2686 txq->bd.ring_size * TSO_HEADER_SIZE,
2687 &txq->tso_hdrs_dma,
2688 GFP_KERNEL);
2689 if (!txq->tso_hdrs) {
2690 ret = -ENOMEM;
2691 goto alloc_failed;
2692 }
2693 }
2694
2695 for (i = 0; i < fep->num_rx_queues; i++) {
2696 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2697 GFP_KERNEL);
2698 if (!fep->rx_queue[i]) {
2699 ret = -ENOMEM;
2700 goto alloc_failed;
2701 }
2702
2703 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2704 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2705 }
2706 return ret;
2707
2708 alloc_failed:
2709 fec_enet_free_queue(ndev);
2710 return ret;
2711 }
2712
2713 static int
2714 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2715 {
2716 struct fec_enet_private *fep = netdev_priv(ndev);
2717 unsigned int i;
2718 struct sk_buff *skb;
2719 struct bufdesc *bdp;
2720 struct fec_enet_priv_rx_q *rxq;
2721
2722 rxq = fep->rx_queue[queue];
2723 bdp = rxq->bd.base;
2724 for (i = 0; i < rxq->bd.ring_size; i++) {
2725 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2726 if (!skb)
2727 goto err_alloc;
2728
2729 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2730 dev_kfree_skb(skb);
2731 goto err_alloc;
2732 }
2733
2734 rxq->rx_skbuff[i] = skb;
2735 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2736
2737 if (fep->bufdesc_ex) {
2738 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2739 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2740 }
2741
2742 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2743 }
2744
2745 /* Set the last buffer to wrap. */
2746 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2747 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2748 return 0;
2749
2750 err_alloc:
2751 fec_enet_free_buffers(ndev);
2752 return -ENOMEM;
2753 }
2754
2755 static int
2756 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2757 {
2758 struct fec_enet_private *fep = netdev_priv(ndev);
2759 unsigned int i;
2760 struct bufdesc *bdp;
2761 struct fec_enet_priv_tx_q *txq;
2762
2763 txq = fep->tx_queue[queue];
2764 bdp = txq->bd.base;
2765 for (i = 0; i < txq->bd.ring_size; i++) {
2766 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2767 if (!txq->tx_bounce[i])
2768 goto err_alloc;
2769
2770 bdp->cbd_sc = cpu_to_fec16(0);
2771 bdp->cbd_bufaddr = cpu_to_fec32(0);
2772
2773 if (fep->bufdesc_ex) {
2774 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2775 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2776 }
2777
2778 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2779 }
2780
2781 /* Set the last buffer to wrap. */
2782 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2783 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2784
2785 return 0;
2786
2787 err_alloc:
2788 fec_enet_free_buffers(ndev);
2789 return -ENOMEM;
2790 }
2791
2792 static int fec_enet_alloc_buffers(struct net_device *ndev)
2793 {
2794 struct fec_enet_private *fep = netdev_priv(ndev);
2795 unsigned int i;
2796
2797 for (i = 0; i < fep->num_rx_queues; i++)
2798 if (fec_enet_alloc_rxq_buffers(ndev, i))
2799 return -ENOMEM;
2800
2801 for (i = 0; i < fep->num_tx_queues; i++)
2802 if (fec_enet_alloc_txq_buffers(ndev, i))
2803 return -ENOMEM;
2804 return 0;
2805 }
2806
2807 static int
2808 fec_enet_open(struct net_device *ndev)
2809 {
2810 struct fec_enet_private *fep = netdev_priv(ndev);
2811 int ret;
2812
2813 ret = pm_runtime_get_sync(&fep->pdev->dev);
2814 if (ret < 0)
2815 return ret;
2816
2817 pinctrl_pm_select_default_state(&fep->pdev->dev);
2818 ret = fec_enet_clk_enable(ndev, true);
2819 if (ret)
2820 goto clk_enable;
2821
2822 /* I should reset the ring buffers here, but I don't yet know
2823 * a simple way to do that.
2824 */
2825
2826 ret = fec_enet_alloc_buffers(ndev);
2827 if (ret)
2828 goto err_enet_alloc;
2829
2830 /* Init MAC prior to mii bus probe */
2831 fec_restart(ndev);
2832
2833 /* Probe and connect to PHY when open the interface */
2834 ret = fec_enet_mii_probe(ndev);
2835 if (ret)
2836 goto err_enet_mii_probe;
2837
2838 if (fep->quirks & FEC_QUIRK_ERR006687)
2839 imx6q_cpuidle_fec_irqs_used();
2840
2841 napi_enable(&fep->napi);
2842 phy_start(ndev->phydev);
2843 netif_tx_start_all_queues(ndev);
2844
2845 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2846 FEC_WOL_FLAG_ENABLE);
2847
2848 return 0;
2849
2850 err_enet_mii_probe:
2851 fec_enet_free_buffers(ndev);
2852 err_enet_alloc:
2853 fec_enet_clk_enable(ndev, false);
2854 clk_enable:
2855 pm_runtime_mark_last_busy(&fep->pdev->dev);
2856 pm_runtime_put_autosuspend(&fep->pdev->dev);
2857 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2858 return ret;
2859 }
2860
2861 static int
2862 fec_enet_close(struct net_device *ndev)
2863 {
2864 struct fec_enet_private *fep = netdev_priv(ndev);
2865
2866 phy_stop(ndev->phydev);
2867
2868 if (netif_device_present(ndev)) {
2869 napi_disable(&fep->napi);
2870 netif_tx_disable(ndev);
2871 fec_stop(ndev);
2872 }
2873
2874 phy_disconnect(ndev->phydev);
2875
2876 if (fep->quirks & FEC_QUIRK_ERR006687)
2877 imx6q_cpuidle_fec_irqs_unused();
2878
2879 fec_enet_clk_enable(ndev, false);
2880 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2881 pm_runtime_mark_last_busy(&fep->pdev->dev);
2882 pm_runtime_put_autosuspend(&fep->pdev->dev);
2883
2884 fec_enet_free_buffers(ndev);
2885
2886 return 0;
2887 }
2888
2889 /* Set or clear the multicast filter for this adaptor.
2890 * Skeleton taken from sunlance driver.
2891 * The CPM Ethernet implementation allows Multicast as well as individual
2892 * MAC address filtering. Some of the drivers check to make sure it is
2893 * a group multicast address, and discard those that are not. I guess I
2894 * will do the same for now, but just remove the test if you want
2895 * individual filtering as well (do the upper net layers want or support
2896 * this kind of feature?).
2897 */
2898
2899 #define HASH_BITS 6 /* #bits in hash */
2900 #define CRC32_POLY 0xEDB88320
2901
2902 static void set_multicast_list(struct net_device *ndev)
2903 {
2904 struct fec_enet_private *fep = netdev_priv(ndev);
2905 struct netdev_hw_addr *ha;
2906 unsigned int i, bit, data, crc, tmp;
2907 unsigned char hash;
2908
2909 if (ndev->flags & IFF_PROMISC) {
2910 tmp = readl(fep->hwp + FEC_R_CNTRL);
2911 tmp |= 0x8;
2912 writel(tmp, fep->hwp + FEC_R_CNTRL);
2913 return;
2914 }
2915
2916 tmp = readl(fep->hwp + FEC_R_CNTRL);
2917 tmp &= ~0x8;
2918 writel(tmp, fep->hwp + FEC_R_CNTRL);
2919
2920 if (ndev->flags & IFF_ALLMULTI) {
2921 /* Catch all multicast addresses, so set the
2922 * filter to all 1's
2923 */
2924 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2925 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2926
2927 return;
2928 }
2929
2930 /* Clear filter and add the addresses in hash register
2931 */
2932 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2933 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2934
2935 netdev_for_each_mc_addr(ha, ndev) {
2936 /* calculate crc32 value of mac address */
2937 crc = 0xffffffff;
2938
2939 for (i = 0; i < ndev->addr_len; i++) {
2940 data = ha->addr[i];
2941 for (bit = 0; bit < 8; bit++, data >>= 1) {
2942 crc = (crc >> 1) ^
2943 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2944 }
2945 }
2946
2947 /* only upper 6 bits (HASH_BITS) are used
2948 * which point to specific bit in he hash registers
2949 */
2950 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2951
2952 if (hash > 31) {
2953 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2954 tmp |= 1 << (hash - 32);
2955 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2956 } else {
2957 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2958 tmp |= 1 << hash;
2959 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2960 }
2961 }
2962 }
2963
2964 /* Set a MAC change in hardware. */
2965 static int
2966 fec_set_mac_address(struct net_device *ndev, void *p)
2967 {
2968 struct fec_enet_private *fep = netdev_priv(ndev);
2969 struct sockaddr *addr = p;
2970
2971 if (addr) {
2972 if (!is_valid_ether_addr(addr->sa_data))
2973 return -EADDRNOTAVAIL;
2974 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2975 }
2976
2977 /* Add netif status check here to avoid system hang in below case:
2978 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2979 * After ethx down, fec all clocks are gated off and then register
2980 * access causes system hang.
2981 */
2982 if (!netif_running(ndev))
2983 return 0;
2984
2985 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2986 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2987 fep->hwp + FEC_ADDR_LOW);
2988 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2989 fep->hwp + FEC_ADDR_HIGH);
2990 return 0;
2991 }
2992
2993 #ifdef CONFIG_NET_POLL_CONTROLLER
2994 /**
2995 * fec_poll_controller - FEC Poll controller function
2996 * @dev: The FEC network adapter
2997 *
2998 * Polled functionality used by netconsole and others in non interrupt mode
2999 *
3000 */
3001 static void fec_poll_controller(struct net_device *dev)
3002 {
3003 int i;
3004 struct fec_enet_private *fep = netdev_priv(dev);
3005
3006 for (i = 0; i < FEC_IRQ_NUM; i++) {
3007 if (fep->irq[i] > 0) {
3008 disable_irq(fep->irq[i]);
3009 fec_enet_interrupt(fep->irq[i], dev);
3010 enable_irq(fep->irq[i]);
3011 }
3012 }
3013 }
3014 #endif
3015
3016 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3017 netdev_features_t features)
3018 {
3019 struct fec_enet_private *fep = netdev_priv(netdev);
3020 netdev_features_t changed = features ^ netdev->features;
3021
3022 netdev->features = features;
3023
3024 /* Receive checksum has been changed */
3025 if (changed & NETIF_F_RXCSUM) {
3026 if (features & NETIF_F_RXCSUM)
3027 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3028 else
3029 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3030 }
3031 }
3032
3033 static int fec_set_features(struct net_device *netdev,
3034 netdev_features_t features)
3035 {
3036 struct fec_enet_private *fep = netdev_priv(netdev);
3037 netdev_features_t changed = features ^ netdev->features;
3038
3039 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3040 napi_disable(&fep->napi);
3041 netif_tx_lock_bh(netdev);
3042 fec_stop(netdev);
3043 fec_enet_set_netdev_features(netdev, features);
3044 fec_restart(netdev);
3045 netif_tx_wake_all_queues(netdev);
3046 netif_tx_unlock_bh(netdev);
3047 napi_enable(&fep->napi);
3048 } else {
3049 fec_enet_set_netdev_features(netdev, features);
3050 }
3051
3052 return 0;
3053 }
3054
3055 static const struct net_device_ops fec_netdev_ops = {
3056 .ndo_open = fec_enet_open,
3057 .ndo_stop = fec_enet_close,
3058 .ndo_start_xmit = fec_enet_start_xmit,
3059 .ndo_set_rx_mode = set_multicast_list,
3060 .ndo_change_mtu = eth_change_mtu,
3061 .ndo_validate_addr = eth_validate_addr,
3062 .ndo_tx_timeout = fec_timeout,
3063 .ndo_set_mac_address = fec_set_mac_address,
3064 .ndo_do_ioctl = fec_enet_ioctl,
3065 #ifdef CONFIG_NET_POLL_CONTROLLER
3066 .ndo_poll_controller = fec_poll_controller,
3067 #endif
3068 .ndo_set_features = fec_set_features,
3069 };
3070
3071 static const unsigned short offset_des_active_rxq[] = {
3072 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3073 };
3074
3075 static const unsigned short offset_des_active_txq[] = {
3076 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3077 };
3078
3079 /*
3080 * XXX: We need to clean up on failure exits here.
3081 *
3082 */
3083 static int fec_enet_init(struct net_device *ndev)
3084 {
3085 struct fec_enet_private *fep = netdev_priv(ndev);
3086 struct bufdesc *cbd_base;
3087 dma_addr_t bd_dma;
3088 int bd_size;
3089 unsigned int i;
3090 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3091 sizeof(struct bufdesc);
3092 unsigned dsize_log2 = __fls(dsize);
3093
3094 WARN_ON(dsize != (1 << dsize_log2));
3095 #if defined(CONFIG_ARM)
3096 fep->rx_align = 0xf;
3097 fep->tx_align = 0xf;
3098 #else
3099 fep->rx_align = 0x3;
3100 fep->tx_align = 0x3;
3101 #endif
3102
3103 fec_enet_alloc_queue(ndev);
3104
3105 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3106
3107 /* Allocate memory for buffer descriptors. */
3108 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3109 GFP_KERNEL);
3110 if (!cbd_base) {
3111 return -ENOMEM;
3112 }
3113
3114 memset(cbd_base, 0, bd_size);
3115
3116 /* Get the Ethernet address */
3117 fec_get_mac(ndev);
3118 /* make sure MAC we just acquired is programmed into the hw */
3119 fec_set_mac_address(ndev, NULL);
3120
3121 /* Set receive and transmit descriptor base. */
3122 for (i = 0; i < fep->num_rx_queues; i++) {
3123 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3124 unsigned size = dsize * rxq->bd.ring_size;
3125
3126 rxq->bd.qid = i;
3127 rxq->bd.base = cbd_base;
3128 rxq->bd.cur = cbd_base;
3129 rxq->bd.dma = bd_dma;
3130 rxq->bd.dsize = dsize;
3131 rxq->bd.dsize_log2 = dsize_log2;
3132 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3133 bd_dma += size;
3134 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3135 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3136 }
3137
3138 for (i = 0; i < fep->num_tx_queues; i++) {
3139 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3140 unsigned size = dsize * txq->bd.ring_size;
3141
3142 txq->bd.qid = i;
3143 txq->bd.base = cbd_base;
3144 txq->bd.cur = cbd_base;
3145 txq->bd.dma = bd_dma;
3146 txq->bd.dsize = dsize;
3147 txq->bd.dsize_log2 = dsize_log2;
3148 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3149 bd_dma += size;
3150 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3151 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3152 }
3153
3154
3155 /* The FEC Ethernet specific entries in the device structure */
3156 ndev->watchdog_timeo = TX_TIMEOUT;
3157 ndev->netdev_ops = &fec_netdev_ops;
3158 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3159
3160 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3161 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3162
3163 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3164 /* enable hw VLAN support */
3165 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3166
3167 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3168 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3169
3170 /* enable hw accelerator */
3171 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3172 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3173 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3174 }
3175
3176 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3177 fep->tx_align = 0;
3178 fep->rx_align = 0x3f;
3179 }
3180
3181 ndev->hw_features = ndev->features;
3182
3183 fec_restart(ndev);
3184
3185 return 0;
3186 }
3187
3188 #ifdef CONFIG_OF
3189 static void fec_reset_phy(struct platform_device *pdev)
3190 {
3191 int err, phy_reset;
3192 bool active_high = false;
3193 int msec = 1;
3194 struct device_node *np = pdev->dev.of_node;
3195
3196 if (!np)
3197 return;
3198
3199 of_property_read_u32(np, "phy-reset-duration", &msec);
3200 /* A sane reset duration should not be longer than 1s */
3201 if (msec > 1000)
3202 msec = 1;
3203
3204 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3205 if (!gpio_is_valid(phy_reset))
3206 return;
3207
3208 active_high = of_property_read_bool(np, "phy-reset-active-high");
3209
3210 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3211 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3212 "phy-reset");
3213 if (err) {
3214 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3215 return;
3216 }
3217
3218 if (msec > 20)
3219 msleep(msec);
3220 else
3221 usleep_range(msec * 1000, msec * 1000 + 1000);
3222
3223 gpio_set_value_cansleep(phy_reset, !active_high);
3224 }
3225 #else /* CONFIG_OF */
3226 static void fec_reset_phy(struct platform_device *pdev)
3227 {
3228 /*
3229 * In case of platform probe, the reset has been done
3230 * by machine code.
3231 */
3232 }
3233 #endif /* CONFIG_OF */
3234
3235 static void
3236 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3237 {
3238 struct device_node *np = pdev->dev.of_node;
3239
3240 *num_tx = *num_rx = 1;
3241
3242 if (!np || !of_device_is_available(np))
3243 return;
3244
3245 /* parse the num of tx and rx queues */
3246 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3247
3248 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3249
3250 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3251 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3252 *num_tx);
3253 *num_tx = 1;
3254 return;
3255 }
3256
3257 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3258 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3259 *num_rx);
3260 *num_rx = 1;
3261 return;
3262 }
3263
3264 }
3265
3266 static int
3267 fec_probe(struct platform_device *pdev)
3268 {
3269 struct fec_enet_private *fep;
3270 struct fec_platform_data *pdata;
3271 struct net_device *ndev;
3272 int i, irq, ret = 0;
3273 struct resource *r;
3274 const struct of_device_id *of_id;
3275 static int dev_id;
3276 struct device_node *np = pdev->dev.of_node, *phy_node;
3277 int num_tx_qs;
3278 int num_rx_qs;
3279
3280 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3281
3282 /* Init network device */
3283 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3284 num_tx_qs, num_rx_qs);
3285 if (!ndev)
3286 return -ENOMEM;
3287
3288 SET_NETDEV_DEV(ndev, &pdev->dev);
3289
3290 /* setup board info structure */
3291 fep = netdev_priv(ndev);
3292
3293 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3294 if (of_id)
3295 pdev->id_entry = of_id->data;
3296 fep->quirks = pdev->id_entry->driver_data;
3297
3298 fep->netdev = ndev;
3299 fep->num_rx_queues = num_rx_qs;
3300 fep->num_tx_queues = num_tx_qs;
3301
3302 #if !defined(CONFIG_M5272)
3303 /* default enable pause frame auto negotiation */
3304 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3305 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3306 #endif
3307
3308 /* Select default pin state */
3309 pinctrl_pm_select_default_state(&pdev->dev);
3310
3311 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3312 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3313 if (IS_ERR(fep->hwp)) {
3314 ret = PTR_ERR(fep->hwp);
3315 goto failed_ioremap;
3316 }
3317
3318 fep->pdev = pdev;
3319 fep->dev_id = dev_id++;
3320
3321 platform_set_drvdata(pdev, ndev);
3322
3323 if ((of_machine_is_compatible("fsl,imx6q") ||
3324 of_machine_is_compatible("fsl,imx6dl")) &&
3325 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3326 fep->quirks |= FEC_QUIRK_ERR006687;
3327
3328 if (of_get_property(np, "fsl,magic-packet", NULL))
3329 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3330
3331 phy_node = of_parse_phandle(np, "phy-handle", 0);
3332 if (!phy_node && of_phy_is_fixed_link(np)) {
3333 ret = of_phy_register_fixed_link(np);
3334 if (ret < 0) {
3335 dev_err(&pdev->dev,
3336 "broken fixed-link specification\n");
3337 goto failed_phy;
3338 }
3339 phy_node = of_node_get(np);
3340 }
3341 fep->phy_node = phy_node;
3342
3343 ret = of_get_phy_mode(pdev->dev.of_node);
3344 if (ret < 0) {
3345 pdata = dev_get_platdata(&pdev->dev);
3346 if (pdata)
3347 fep->phy_interface = pdata->phy;
3348 else
3349 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3350 } else {
3351 fep->phy_interface = ret;
3352 }
3353
3354 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3355 if (IS_ERR(fep->clk_ipg)) {
3356 ret = PTR_ERR(fep->clk_ipg);
3357 goto failed_clk;
3358 }
3359
3360 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3361 if (IS_ERR(fep->clk_ahb)) {
3362 ret = PTR_ERR(fep->clk_ahb);
3363 goto failed_clk;
3364 }
3365
3366 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3367
3368 /* enet_out is optional, depends on board */
3369 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3370 if (IS_ERR(fep->clk_enet_out))
3371 fep->clk_enet_out = NULL;
3372
3373 fep->ptp_clk_on = false;
3374 mutex_init(&fep->ptp_clk_mutex);
3375
3376 /* clk_ref is optional, depends on board */
3377 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3378 if (IS_ERR(fep->clk_ref))
3379 fep->clk_ref = NULL;
3380
3381 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3382 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3383 if (IS_ERR(fep->clk_ptp)) {
3384 fep->clk_ptp = NULL;
3385 fep->bufdesc_ex = false;
3386 }
3387
3388 ret = fec_enet_clk_enable(ndev, true);
3389 if (ret)
3390 goto failed_clk;
3391
3392 ret = clk_prepare_enable(fep->clk_ipg);
3393 if (ret)
3394 goto failed_clk_ipg;
3395
3396 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3397 if (!IS_ERR(fep->reg_phy)) {
3398 ret = regulator_enable(fep->reg_phy);
3399 if (ret) {
3400 dev_err(&pdev->dev,
3401 "Failed to enable phy regulator: %d\n", ret);
3402 goto failed_regulator;
3403 }
3404 } else {
3405 fep->reg_phy = NULL;
3406 }
3407
3408 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3409 pm_runtime_use_autosuspend(&pdev->dev);
3410 pm_runtime_get_noresume(&pdev->dev);
3411 pm_runtime_set_active(&pdev->dev);
3412 pm_runtime_enable(&pdev->dev);
3413
3414 fec_reset_phy(pdev);
3415
3416 if (fep->bufdesc_ex)
3417 fec_ptp_init(pdev);
3418
3419 ret = fec_enet_init(ndev);
3420 if (ret)
3421 goto failed_init;
3422
3423 for (i = 0; i < FEC_IRQ_NUM; i++) {
3424 irq = platform_get_irq(pdev, i);
3425 if (irq < 0) {
3426 if (i)
3427 break;
3428 ret = irq;
3429 goto failed_irq;
3430 }
3431 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3432 0, pdev->name, ndev);
3433 if (ret)
3434 goto failed_irq;
3435
3436 fep->irq[i] = irq;
3437 }
3438
3439 init_completion(&fep->mdio_done);
3440 ret = fec_enet_mii_init(pdev);
3441 if (ret)
3442 goto failed_mii_init;
3443
3444 /* Carrier starts down, phylib will bring it up */
3445 netif_carrier_off(ndev);
3446 fec_enet_clk_enable(ndev, false);
3447 pinctrl_pm_select_sleep_state(&pdev->dev);
3448
3449 ret = register_netdev(ndev);
3450 if (ret)
3451 goto failed_register;
3452
3453 device_init_wakeup(&ndev->dev, fep->wol_flag &
3454 FEC_WOL_HAS_MAGIC_PACKET);
3455
3456 if (fep->bufdesc_ex && fep->ptp_clock)
3457 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3458
3459 fep->rx_copybreak = COPYBREAK_DEFAULT;
3460 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3461
3462 pm_runtime_mark_last_busy(&pdev->dev);
3463 pm_runtime_put_autosuspend(&pdev->dev);
3464
3465 return 0;
3466
3467 failed_register:
3468 fec_enet_mii_remove(fep);
3469 failed_mii_init:
3470 failed_irq:
3471 failed_init:
3472 fec_ptp_stop(pdev);
3473 if (fep->reg_phy)
3474 regulator_disable(fep->reg_phy);
3475 failed_regulator:
3476 clk_disable_unprepare(fep->clk_ipg);
3477 failed_clk_ipg:
3478 fec_enet_clk_enable(ndev, false);
3479 failed_clk:
3480 failed_phy:
3481 of_node_put(phy_node);
3482 failed_ioremap:
3483 free_netdev(ndev);
3484
3485 return ret;
3486 }
3487
3488 static int
3489 fec_drv_remove(struct platform_device *pdev)
3490 {
3491 struct net_device *ndev = platform_get_drvdata(pdev);
3492 struct fec_enet_private *fep = netdev_priv(ndev);
3493
3494 cancel_work_sync(&fep->tx_timeout_work);
3495 fec_ptp_stop(pdev);
3496 unregister_netdev(ndev);
3497 fec_enet_mii_remove(fep);
3498 if (fep->reg_phy)
3499 regulator_disable(fep->reg_phy);
3500 of_node_put(fep->phy_node);
3501 free_netdev(ndev);
3502
3503 return 0;
3504 }
3505
3506 static int __maybe_unused fec_suspend(struct device *dev)
3507 {
3508 struct net_device *ndev = dev_get_drvdata(dev);
3509 struct fec_enet_private *fep = netdev_priv(ndev);
3510
3511 rtnl_lock();
3512 if (netif_running(ndev)) {
3513 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3514 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3515 phy_stop(ndev->phydev);
3516 napi_disable(&fep->napi);
3517 netif_tx_lock_bh(ndev);
3518 netif_device_detach(ndev);
3519 netif_tx_unlock_bh(ndev);
3520 fec_stop(ndev);
3521 fec_enet_clk_enable(ndev, false);
3522 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3523 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3524 }
3525 rtnl_unlock();
3526
3527 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3528 regulator_disable(fep->reg_phy);
3529
3530 /* SOC supply clock to phy, when clock is disabled, phy link down
3531 * SOC control phy regulator, when regulator is disabled, phy link down
3532 */
3533 if (fep->clk_enet_out || fep->reg_phy)
3534 fep->link = 0;
3535
3536 return 0;
3537 }
3538
3539 static int __maybe_unused fec_resume(struct device *dev)
3540 {
3541 struct net_device *ndev = dev_get_drvdata(dev);
3542 struct fec_enet_private *fep = netdev_priv(ndev);
3543 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3544 int ret;
3545 int val;
3546
3547 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3548 ret = regulator_enable(fep->reg_phy);
3549 if (ret)
3550 return ret;
3551 }
3552
3553 rtnl_lock();
3554 if (netif_running(ndev)) {
3555 ret = fec_enet_clk_enable(ndev, true);
3556 if (ret) {
3557 rtnl_unlock();
3558 goto failed_clk;
3559 }
3560 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3561 if (pdata && pdata->sleep_mode_enable)
3562 pdata->sleep_mode_enable(false);
3563 val = readl(fep->hwp + FEC_ECNTRL);
3564 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3565 writel(val, fep->hwp + FEC_ECNTRL);
3566 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3567 } else {
3568 pinctrl_pm_select_default_state(&fep->pdev->dev);
3569 }
3570 fec_restart(ndev);
3571 netif_tx_lock_bh(ndev);
3572 netif_device_attach(ndev);
3573 netif_tx_unlock_bh(ndev);
3574 napi_enable(&fep->napi);
3575 phy_start(ndev->phydev);
3576 }
3577 rtnl_unlock();
3578
3579 return 0;
3580
3581 failed_clk:
3582 if (fep->reg_phy)
3583 regulator_disable(fep->reg_phy);
3584 return ret;
3585 }
3586
3587 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3588 {
3589 struct net_device *ndev = dev_get_drvdata(dev);
3590 struct fec_enet_private *fep = netdev_priv(ndev);
3591
3592 clk_disable_unprepare(fep->clk_ipg);
3593
3594 return 0;
3595 }
3596
3597 static int __maybe_unused fec_runtime_resume(struct device *dev)
3598 {
3599 struct net_device *ndev = dev_get_drvdata(dev);
3600 struct fec_enet_private *fep = netdev_priv(ndev);
3601
3602 return clk_prepare_enable(fep->clk_ipg);
3603 }
3604
3605 static const struct dev_pm_ops fec_pm_ops = {
3606 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3607 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3608 };
3609
3610 static struct platform_driver fec_driver = {
3611 .driver = {
3612 .name = DRIVER_NAME,
3613 .pm = &fec_pm_ops,
3614 .of_match_table = fec_dt_ids,
3615 },
3616 .id_table = fec_devtype,
3617 .probe = fec_probe,
3618 .remove = fec_drv_remove,
3619 };
3620
3621 module_platform_driver(fec_driver);
3622
3623 MODULE_ALIAS("platform:"DRIVER_NAME);
3624 MODULE_LICENSE("GPL");
This page took 0.109067 seconds and 5 git commands to generate.