Merge branch 'for-4.9/block' into for-next
[deliverable/linux.git] / drivers / net / ethernet / freescale / fs_enet / fs_enet-main.c
1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
35 #include <linux/fs.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
38 #include <linux/of.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_platform.h>
41 #include <linux/of_gpio.h>
42 #include <linux/of_net.h>
43
44 #include <linux/vmalloc.h>
45 #include <asm/pgtable.h>
46 #include <asm/irq.h>
47 #include <asm/uaccess.h>
48
49 #include "fs_enet.h"
50
51 /*************************************************/
52
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56 MODULE_VERSION(DRV_MODULE_VERSION);
57
58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59 module_param(fs_enet_debug, int, 0);
60 MODULE_PARM_DESC(fs_enet_debug,
61 "Freescale bitmapped debugging message enable value");
62
63 #ifdef CONFIG_NET_POLL_CONTROLLER
64 static void fs_enet_netpoll(struct net_device *dev);
65 #endif
66
67 static void fs_set_multicast_list(struct net_device *dev)
68 {
69 struct fs_enet_private *fep = netdev_priv(dev);
70
71 (*fep->ops->set_multicast_list)(dev);
72 }
73
74 static void skb_align(struct sk_buff *skb, int align)
75 {
76 int off = ((unsigned long)skb->data) & (align - 1);
77
78 if (off)
79 skb_reserve(skb, align - off);
80 }
81
82 /* NAPI receive function */
83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
84 {
85 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
86 struct net_device *dev = fep->ndev;
87 const struct fs_platform_info *fpi = fep->fpi;
88 cbd_t __iomem *bdp;
89 struct sk_buff *skb, *skbn;
90 int received = 0;
91 u16 pkt_len, sc;
92 int curidx;
93
94 if (budget <= 0)
95 return received;
96
97 /*
98 * First, grab all of the stats for the incoming packet.
99 * These get messed up if we get called due to a busy condition.
100 */
101 bdp = fep->cur_rx;
102
103 /* clear RX status bits for napi*/
104 (*fep->ops->napi_clear_rx_event)(dev);
105
106 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
107 curidx = bdp - fep->rx_bd_base;
108
109 /*
110 * Since we have allocated space to hold a complete frame,
111 * the last indicator should be set.
112 */
113 if ((sc & BD_ENET_RX_LAST) == 0)
114 dev_warn(fep->dev, "rcv is not +last\n");
115
116 /*
117 * Check for errors.
118 */
119 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
120 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
121 fep->stats.rx_errors++;
122 /* Frame too long or too short. */
123 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
124 fep->stats.rx_length_errors++;
125 /* Frame alignment */
126 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
127 fep->stats.rx_frame_errors++;
128 /* CRC Error */
129 if (sc & BD_ENET_RX_CR)
130 fep->stats.rx_crc_errors++;
131 /* FIFO overrun */
132 if (sc & BD_ENET_RX_OV)
133 fep->stats.rx_crc_errors++;
134
135 skb = fep->rx_skbuff[curidx];
136
137 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
138 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
139 DMA_FROM_DEVICE);
140
141 skbn = skb;
142
143 } else {
144 skb = fep->rx_skbuff[curidx];
145
146 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
147 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
148 DMA_FROM_DEVICE);
149
150 /*
151 * Process the incoming frame.
152 */
153 fep->stats.rx_packets++;
154 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
155 fep->stats.rx_bytes += pkt_len + 4;
156
157 if (pkt_len <= fpi->rx_copybreak) {
158 /* +2 to make IP header L1 cache aligned */
159 skbn = netdev_alloc_skb(dev, pkt_len + 2);
160 if (skbn != NULL) {
161 skb_reserve(skbn, 2); /* align IP header */
162 skb_copy_from_linear_data(skb,
163 skbn->data, pkt_len);
164 swap(skb, skbn);
165 }
166 } else {
167 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
168
169 if (skbn)
170 skb_align(skbn, ENET_RX_ALIGN);
171 }
172
173 if (skbn != NULL) {
174 skb_put(skb, pkt_len); /* Make room */
175 skb->protocol = eth_type_trans(skb, dev);
176 received++;
177 netif_receive_skb(skb);
178 } else {
179 fep->stats.rx_dropped++;
180 skbn = skb;
181 }
182 }
183
184 fep->rx_skbuff[curidx] = skbn;
185 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
186 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
187 DMA_FROM_DEVICE));
188 CBDW_DATLEN(bdp, 0);
189 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
190
191 /*
192 * Update BD pointer to next entry.
193 */
194 if ((sc & BD_ENET_RX_WRAP) == 0)
195 bdp++;
196 else
197 bdp = fep->rx_bd_base;
198
199 (*fep->ops->rx_bd_done)(dev);
200
201 if (received >= budget)
202 break;
203 }
204
205 fep->cur_rx = bdp;
206
207 if (received < budget) {
208 /* done */
209 napi_complete(napi);
210 (*fep->ops->napi_enable_rx)(dev);
211 }
212 return received;
213 }
214
215 static int fs_enet_tx_napi(struct napi_struct *napi, int budget)
216 {
217 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private,
218 napi_tx);
219 struct net_device *dev = fep->ndev;
220 cbd_t __iomem *bdp;
221 struct sk_buff *skb;
222 int dirtyidx, do_wake, do_restart;
223 u16 sc;
224 int has_tx_work = 0;
225
226 spin_lock(&fep->tx_lock);
227 bdp = fep->dirty_tx;
228
229 /* clear TX status bits for napi*/
230 (*fep->ops->napi_clear_tx_event)(dev);
231
232 do_wake = do_restart = 0;
233 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
234 dirtyidx = bdp - fep->tx_bd_base;
235
236 if (fep->tx_free == fep->tx_ring)
237 break;
238
239 skb = fep->tx_skbuff[dirtyidx];
240
241 /*
242 * Check for errors.
243 */
244 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
245 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
246
247 if (sc & BD_ENET_TX_HB) /* No heartbeat */
248 fep->stats.tx_heartbeat_errors++;
249 if (sc & BD_ENET_TX_LC) /* Late collision */
250 fep->stats.tx_window_errors++;
251 if (sc & BD_ENET_TX_RL) /* Retrans limit */
252 fep->stats.tx_aborted_errors++;
253 if (sc & BD_ENET_TX_UN) /* Underrun */
254 fep->stats.tx_fifo_errors++;
255 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
256 fep->stats.tx_carrier_errors++;
257
258 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
259 fep->stats.tx_errors++;
260 do_restart = 1;
261 }
262 } else
263 fep->stats.tx_packets++;
264
265 if (sc & BD_ENET_TX_READY) {
266 dev_warn(fep->dev,
267 "HEY! Enet xmit interrupt and TX_READY.\n");
268 }
269
270 /*
271 * Deferred means some collisions occurred during transmit,
272 * but we eventually sent the packet OK.
273 */
274 if (sc & BD_ENET_TX_DEF)
275 fep->stats.collisions++;
276
277 /* unmap */
278 if (fep->mapped_as_page[dirtyidx])
279 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
280 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
281 else
282 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
283 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
284
285 /*
286 * Free the sk buffer associated with this last transmit.
287 */
288 if (skb) {
289 dev_kfree_skb(skb);
290 fep->tx_skbuff[dirtyidx] = NULL;
291 }
292
293 /*
294 * Update pointer to next buffer descriptor to be transmitted.
295 */
296 if ((sc & BD_ENET_TX_WRAP) == 0)
297 bdp++;
298 else
299 bdp = fep->tx_bd_base;
300
301 /*
302 * Since we have freed up a buffer, the ring is no longer
303 * full.
304 */
305 if (++fep->tx_free >= MAX_SKB_FRAGS)
306 do_wake = 1;
307 has_tx_work = 1;
308 }
309
310 fep->dirty_tx = bdp;
311
312 if (do_restart)
313 (*fep->ops->tx_restart)(dev);
314
315 if (!has_tx_work) {
316 napi_complete(napi);
317 (*fep->ops->napi_enable_tx)(dev);
318 }
319
320 spin_unlock(&fep->tx_lock);
321
322 if (do_wake)
323 netif_wake_queue(dev);
324
325 if (has_tx_work)
326 return budget;
327 return 0;
328 }
329
330 /*
331 * The interrupt handler.
332 * This is called from the MPC core interrupt.
333 */
334 static irqreturn_t
335 fs_enet_interrupt(int irq, void *dev_id)
336 {
337 struct net_device *dev = dev_id;
338 struct fs_enet_private *fep;
339 const struct fs_platform_info *fpi;
340 u32 int_events;
341 u32 int_clr_events;
342 int nr, napi_ok;
343 int handled;
344
345 fep = netdev_priv(dev);
346 fpi = fep->fpi;
347
348 nr = 0;
349 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
350 nr++;
351
352 int_clr_events = int_events;
353 int_clr_events &= ~fep->ev_napi_rx;
354
355 (*fep->ops->clear_int_events)(dev, int_clr_events);
356
357 if (int_events & fep->ev_err)
358 (*fep->ops->ev_error)(dev, int_events);
359
360 if (int_events & fep->ev_rx) {
361 napi_ok = napi_schedule_prep(&fep->napi);
362
363 (*fep->ops->napi_disable_rx)(dev);
364 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
365
366 /* NOTE: it is possible for FCCs in NAPI mode */
367 /* to submit a spurious interrupt while in poll */
368 if (napi_ok)
369 __napi_schedule(&fep->napi);
370 }
371
372 if (int_events & fep->ev_tx) {
373 napi_ok = napi_schedule_prep(&fep->napi_tx);
374
375 (*fep->ops->napi_disable_tx)(dev);
376 (*fep->ops->clear_int_events)(dev, fep->ev_napi_tx);
377
378 /* NOTE: it is possible for FCCs in NAPI mode */
379 /* to submit a spurious interrupt while in poll */
380 if (napi_ok)
381 __napi_schedule(&fep->napi_tx);
382 }
383 }
384
385 handled = nr > 0;
386 return IRQ_RETVAL(handled);
387 }
388
389 void fs_init_bds(struct net_device *dev)
390 {
391 struct fs_enet_private *fep = netdev_priv(dev);
392 cbd_t __iomem *bdp;
393 struct sk_buff *skb;
394 int i;
395
396 fs_cleanup_bds(dev);
397
398 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
399 fep->tx_free = fep->tx_ring;
400 fep->cur_rx = fep->rx_bd_base;
401
402 /*
403 * Initialize the receive buffer descriptors.
404 */
405 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
406 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
407 if (skb == NULL)
408 break;
409
410 skb_align(skb, ENET_RX_ALIGN);
411 fep->rx_skbuff[i] = skb;
412 CBDW_BUFADDR(bdp,
413 dma_map_single(fep->dev, skb->data,
414 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
415 DMA_FROM_DEVICE));
416 CBDW_DATLEN(bdp, 0); /* zero */
417 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
418 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
419 }
420 /*
421 * if we failed, fillup remainder
422 */
423 for (; i < fep->rx_ring; i++, bdp++) {
424 fep->rx_skbuff[i] = NULL;
425 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
426 }
427
428 /*
429 * ...and the same for transmit.
430 */
431 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
432 fep->tx_skbuff[i] = NULL;
433 CBDW_BUFADDR(bdp, 0);
434 CBDW_DATLEN(bdp, 0);
435 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
436 }
437 }
438
439 void fs_cleanup_bds(struct net_device *dev)
440 {
441 struct fs_enet_private *fep = netdev_priv(dev);
442 struct sk_buff *skb;
443 cbd_t __iomem *bdp;
444 int i;
445
446 /*
447 * Reset SKB transmit buffers.
448 */
449 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
450 if ((skb = fep->tx_skbuff[i]) == NULL)
451 continue;
452
453 /* unmap */
454 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
455 skb->len, DMA_TO_DEVICE);
456
457 fep->tx_skbuff[i] = NULL;
458 dev_kfree_skb(skb);
459 }
460
461 /*
462 * Reset SKB receive buffers
463 */
464 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
465 if ((skb = fep->rx_skbuff[i]) == NULL)
466 continue;
467
468 /* unmap */
469 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
470 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
471 DMA_FROM_DEVICE);
472
473 fep->rx_skbuff[i] = NULL;
474
475 dev_kfree_skb(skb);
476 }
477 }
478
479 /**********************************************************************************/
480
481 #ifdef CONFIG_FS_ENET_MPC5121_FEC
482 /*
483 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
484 */
485 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
486 struct sk_buff *skb)
487 {
488 struct sk_buff *new_skb;
489
490 if (skb_linearize(skb))
491 return NULL;
492
493 /* Alloc new skb */
494 new_skb = netdev_alloc_skb(dev, skb->len + 4);
495 if (!new_skb)
496 return NULL;
497
498 /* Make sure new skb is properly aligned */
499 skb_align(new_skb, 4);
500
501 /* Copy data to new skb ... */
502 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
503 skb_put(new_skb, skb->len);
504
505 /* ... and free an old one */
506 dev_kfree_skb_any(skb);
507
508 return new_skb;
509 }
510 #endif
511
512 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
513 {
514 struct fs_enet_private *fep = netdev_priv(dev);
515 cbd_t __iomem *bdp;
516 int curidx;
517 u16 sc;
518 int nr_frags;
519 skb_frag_t *frag;
520 int len;
521 #ifdef CONFIG_FS_ENET_MPC5121_FEC
522 int is_aligned = 1;
523 int i;
524
525 if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
526 is_aligned = 0;
527 } else {
528 nr_frags = skb_shinfo(skb)->nr_frags;
529 frag = skb_shinfo(skb)->frags;
530 for (i = 0; i < nr_frags; i++, frag++) {
531 if (!IS_ALIGNED(frag->page_offset, 4)) {
532 is_aligned = 0;
533 break;
534 }
535 }
536 }
537
538 if (!is_aligned) {
539 skb = tx_skb_align_workaround(dev, skb);
540 if (!skb) {
541 /*
542 * We have lost packet due to memory allocation error
543 * in tx_skb_align_workaround(). Hopefully original
544 * skb is still valid, so try transmit it later.
545 */
546 return NETDEV_TX_BUSY;
547 }
548 }
549 #endif
550
551 spin_lock(&fep->tx_lock);
552
553 /*
554 * Fill in a Tx ring entry
555 */
556 bdp = fep->cur_tx;
557
558 nr_frags = skb_shinfo(skb)->nr_frags;
559 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
560 netif_stop_queue(dev);
561 spin_unlock(&fep->tx_lock);
562
563 /*
564 * Ooops. All transmit buffers are full. Bail out.
565 * This should not happen, since the tx queue should be stopped.
566 */
567 dev_warn(fep->dev, "tx queue full!.\n");
568 return NETDEV_TX_BUSY;
569 }
570
571 curidx = bdp - fep->tx_bd_base;
572
573 len = skb->len;
574 fep->stats.tx_bytes += len;
575 if (nr_frags)
576 len -= skb->data_len;
577 fep->tx_free -= nr_frags + 1;
578 /*
579 * Push the data cache so the CPM does not get stale memory data.
580 */
581 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
582 skb->data, len, DMA_TO_DEVICE));
583 CBDW_DATLEN(bdp, len);
584
585 fep->mapped_as_page[curidx] = 0;
586 frag = skb_shinfo(skb)->frags;
587 while (nr_frags) {
588 CBDC_SC(bdp,
589 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
590 BD_ENET_TX_TC);
591 CBDS_SC(bdp, BD_ENET_TX_READY);
592
593 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
594 bdp++, curidx++;
595 else
596 bdp = fep->tx_bd_base, curidx = 0;
597
598 len = skb_frag_size(frag);
599 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
600 DMA_TO_DEVICE));
601 CBDW_DATLEN(bdp, len);
602
603 fep->tx_skbuff[curidx] = NULL;
604 fep->mapped_as_page[curidx] = 1;
605
606 frag++;
607 nr_frags--;
608 }
609
610 /* Trigger transmission start */
611 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
612 BD_ENET_TX_LAST | BD_ENET_TX_TC;
613
614 /* note that while FEC does not have this bit
615 * it marks it as available for software use
616 * yay for hw reuse :) */
617 if (skb->len <= 60)
618 sc |= BD_ENET_TX_PAD;
619 CBDC_SC(bdp, BD_ENET_TX_STATS);
620 CBDS_SC(bdp, sc);
621
622 /* Save skb pointer. */
623 fep->tx_skbuff[curidx] = skb;
624
625 /* If this was the last BD in the ring, start at the beginning again. */
626 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
627 bdp++;
628 else
629 bdp = fep->tx_bd_base;
630 fep->cur_tx = bdp;
631
632 if (fep->tx_free < MAX_SKB_FRAGS)
633 netif_stop_queue(dev);
634
635 skb_tx_timestamp(skb);
636
637 (*fep->ops->tx_kickstart)(dev);
638
639 spin_unlock(&fep->tx_lock);
640
641 return NETDEV_TX_OK;
642 }
643
644 static void fs_timeout(struct net_device *dev)
645 {
646 struct fs_enet_private *fep = netdev_priv(dev);
647 unsigned long flags;
648 int wake = 0;
649
650 fep->stats.tx_errors++;
651
652 spin_lock_irqsave(&fep->lock, flags);
653
654 if (dev->flags & IFF_UP) {
655 phy_stop(dev->phydev);
656 (*fep->ops->stop)(dev);
657 (*fep->ops->restart)(dev);
658 phy_start(dev->phydev);
659 }
660
661 phy_start(dev->phydev);
662 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
663 spin_unlock_irqrestore(&fep->lock, flags);
664
665 if (wake)
666 netif_wake_queue(dev);
667 }
668
669 /*-----------------------------------------------------------------------------
670 * generic link-change handler - should be sufficient for most cases
671 *-----------------------------------------------------------------------------*/
672 static void generic_adjust_link(struct net_device *dev)
673 {
674 struct fs_enet_private *fep = netdev_priv(dev);
675 struct phy_device *phydev = dev->phydev;
676 int new_state = 0;
677
678 if (phydev->link) {
679 /* adjust to duplex mode */
680 if (phydev->duplex != fep->oldduplex) {
681 new_state = 1;
682 fep->oldduplex = phydev->duplex;
683 }
684
685 if (phydev->speed != fep->oldspeed) {
686 new_state = 1;
687 fep->oldspeed = phydev->speed;
688 }
689
690 if (!fep->oldlink) {
691 new_state = 1;
692 fep->oldlink = 1;
693 }
694
695 if (new_state)
696 fep->ops->restart(dev);
697 } else if (fep->oldlink) {
698 new_state = 1;
699 fep->oldlink = 0;
700 fep->oldspeed = 0;
701 fep->oldduplex = -1;
702 }
703
704 if (new_state && netif_msg_link(fep))
705 phy_print_status(phydev);
706 }
707
708
709 static void fs_adjust_link(struct net_device *dev)
710 {
711 struct fs_enet_private *fep = netdev_priv(dev);
712 unsigned long flags;
713
714 spin_lock_irqsave(&fep->lock, flags);
715
716 if(fep->ops->adjust_link)
717 fep->ops->adjust_link(dev);
718 else
719 generic_adjust_link(dev);
720
721 spin_unlock_irqrestore(&fep->lock, flags);
722 }
723
724 static int fs_init_phy(struct net_device *dev)
725 {
726 struct fs_enet_private *fep = netdev_priv(dev);
727 struct phy_device *phydev;
728 phy_interface_t iface;
729
730 fep->oldlink = 0;
731 fep->oldspeed = 0;
732 fep->oldduplex = -1;
733
734 iface = fep->fpi->use_rmii ?
735 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
736
737 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
738 iface);
739 if (!phydev) {
740 dev_err(&dev->dev, "Could not attach to PHY\n");
741 return -ENODEV;
742 }
743
744 return 0;
745 }
746
747 static int fs_enet_open(struct net_device *dev)
748 {
749 struct fs_enet_private *fep = netdev_priv(dev);
750 int r;
751 int err;
752
753 /* to initialize the fep->cur_rx,... */
754 /* not doing this, will cause a crash in fs_enet_rx_napi */
755 fs_init_bds(fep->ndev);
756
757 napi_enable(&fep->napi);
758 napi_enable(&fep->napi_tx);
759
760 /* Install our interrupt handler. */
761 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
762 "fs_enet-mac", dev);
763 if (r != 0) {
764 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
765 napi_disable(&fep->napi);
766 napi_disable(&fep->napi_tx);
767 return -EINVAL;
768 }
769
770 err = fs_init_phy(dev);
771 if (err) {
772 free_irq(fep->interrupt, dev);
773 napi_disable(&fep->napi);
774 napi_disable(&fep->napi_tx);
775 return err;
776 }
777 phy_start(dev->phydev);
778
779 netif_start_queue(dev);
780
781 return 0;
782 }
783
784 static int fs_enet_close(struct net_device *dev)
785 {
786 struct fs_enet_private *fep = netdev_priv(dev);
787 unsigned long flags;
788
789 netif_stop_queue(dev);
790 netif_carrier_off(dev);
791 napi_disable(&fep->napi);
792 napi_disable(&fep->napi_tx);
793 phy_stop(dev->phydev);
794
795 spin_lock_irqsave(&fep->lock, flags);
796 spin_lock(&fep->tx_lock);
797 (*fep->ops->stop)(dev);
798 spin_unlock(&fep->tx_lock);
799 spin_unlock_irqrestore(&fep->lock, flags);
800
801 /* release any irqs */
802 phy_disconnect(dev->phydev);
803 free_irq(fep->interrupt, dev);
804
805 return 0;
806 }
807
808 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
809 {
810 struct fs_enet_private *fep = netdev_priv(dev);
811 return &fep->stats;
812 }
813
814 /*************************************************************************/
815
816 static void fs_get_drvinfo(struct net_device *dev,
817 struct ethtool_drvinfo *info)
818 {
819 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
820 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
821 }
822
823 static int fs_get_regs_len(struct net_device *dev)
824 {
825 struct fs_enet_private *fep = netdev_priv(dev);
826
827 return (*fep->ops->get_regs_len)(dev);
828 }
829
830 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
831 void *p)
832 {
833 struct fs_enet_private *fep = netdev_priv(dev);
834 unsigned long flags;
835 int r, len;
836
837 len = regs->len;
838
839 spin_lock_irqsave(&fep->lock, flags);
840 r = (*fep->ops->get_regs)(dev, p, &len);
841 spin_unlock_irqrestore(&fep->lock, flags);
842
843 if (r == 0)
844 regs->version = 0;
845 }
846
847 static int fs_nway_reset(struct net_device *dev)
848 {
849 return 0;
850 }
851
852 static u32 fs_get_msglevel(struct net_device *dev)
853 {
854 struct fs_enet_private *fep = netdev_priv(dev);
855 return fep->msg_enable;
856 }
857
858 static void fs_set_msglevel(struct net_device *dev, u32 value)
859 {
860 struct fs_enet_private *fep = netdev_priv(dev);
861 fep->msg_enable = value;
862 }
863
864 static const struct ethtool_ops fs_ethtool_ops = {
865 .get_drvinfo = fs_get_drvinfo,
866 .get_regs_len = fs_get_regs_len,
867 .nway_reset = fs_nway_reset,
868 .get_link = ethtool_op_get_link,
869 .get_msglevel = fs_get_msglevel,
870 .set_msglevel = fs_set_msglevel,
871 .get_regs = fs_get_regs,
872 .get_ts_info = ethtool_op_get_ts_info,
873 .get_link_ksettings = phy_ethtool_get_link_ksettings,
874 .set_link_ksettings = phy_ethtool_set_link_ksettings,
875 };
876
877 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
878 {
879 if (!netif_running(dev))
880 return -EINVAL;
881
882 return phy_mii_ioctl(dev->phydev, rq, cmd);
883 }
884
885 extern int fs_mii_connect(struct net_device *dev);
886 extern void fs_mii_disconnect(struct net_device *dev);
887
888 /**************************************************************************************/
889
890 #ifdef CONFIG_FS_ENET_HAS_FEC
891 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
892 #else
893 #define IS_FEC(match) 0
894 #endif
895
896 static const struct net_device_ops fs_enet_netdev_ops = {
897 .ndo_open = fs_enet_open,
898 .ndo_stop = fs_enet_close,
899 .ndo_get_stats = fs_enet_get_stats,
900 .ndo_start_xmit = fs_enet_start_xmit,
901 .ndo_tx_timeout = fs_timeout,
902 .ndo_set_rx_mode = fs_set_multicast_list,
903 .ndo_do_ioctl = fs_ioctl,
904 .ndo_validate_addr = eth_validate_addr,
905 .ndo_set_mac_address = eth_mac_addr,
906 .ndo_change_mtu = eth_change_mtu,
907 #ifdef CONFIG_NET_POLL_CONTROLLER
908 .ndo_poll_controller = fs_enet_netpoll,
909 #endif
910 };
911
912 static const struct of_device_id fs_enet_match[];
913 static int fs_enet_probe(struct platform_device *ofdev)
914 {
915 const struct of_device_id *match;
916 struct net_device *ndev;
917 struct fs_enet_private *fep;
918 struct fs_platform_info *fpi;
919 const u32 *data;
920 struct clk *clk;
921 int err;
922 const u8 *mac_addr;
923 const char *phy_connection_type;
924 int privsize, len, ret = -ENODEV;
925
926 match = of_match_device(fs_enet_match, &ofdev->dev);
927 if (!match)
928 return -EINVAL;
929
930 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
931 if (!fpi)
932 return -ENOMEM;
933
934 if (!IS_FEC(match)) {
935 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
936 if (!data || len != 4)
937 goto out_free_fpi;
938
939 fpi->cp_command = *data;
940 }
941
942 fpi->rx_ring = 32;
943 fpi->tx_ring = 64;
944 fpi->rx_copybreak = 240;
945 fpi->napi_weight = 17;
946 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
947 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
948 err = of_phy_register_fixed_link(ofdev->dev.of_node);
949 if (err)
950 goto out_free_fpi;
951
952 /* In the case of a fixed PHY, the DT node associated
953 * to the PHY is the Ethernet MAC DT node.
954 */
955 fpi->phy_node = of_node_get(ofdev->dev.of_node);
956 }
957
958 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
959 phy_connection_type = of_get_property(ofdev->dev.of_node,
960 "phy-connection-type", NULL);
961 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
962 fpi->use_rmii = 1;
963 }
964
965 /* make clock lookup non-fatal (the driver is shared among platforms),
966 * but require enable to succeed when a clock was specified/found,
967 * keep a reference to the clock upon successful acquisition
968 */
969 clk = devm_clk_get(&ofdev->dev, "per");
970 if (!IS_ERR(clk)) {
971 err = clk_prepare_enable(clk);
972 if (err) {
973 ret = err;
974 goto out_free_fpi;
975 }
976 fpi->clk_per = clk;
977 }
978
979 privsize = sizeof(*fep) +
980 sizeof(struct sk_buff **) *
981 (fpi->rx_ring + fpi->tx_ring) +
982 sizeof(char) * fpi->tx_ring;
983
984 ndev = alloc_etherdev(privsize);
985 if (!ndev) {
986 ret = -ENOMEM;
987 goto out_put;
988 }
989
990 SET_NETDEV_DEV(ndev, &ofdev->dev);
991 platform_set_drvdata(ofdev, ndev);
992
993 fep = netdev_priv(ndev);
994 fep->dev = &ofdev->dev;
995 fep->ndev = ndev;
996 fep->fpi = fpi;
997 fep->ops = match->data;
998
999 ret = fep->ops->setup_data(ndev);
1000 if (ret)
1001 goto out_free_dev;
1002
1003 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1004 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1005 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1006 fpi->tx_ring);
1007
1008 spin_lock_init(&fep->lock);
1009 spin_lock_init(&fep->tx_lock);
1010
1011 mac_addr = of_get_mac_address(ofdev->dev.of_node);
1012 if (mac_addr)
1013 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1014
1015 ret = fep->ops->allocate_bd(ndev);
1016 if (ret)
1017 goto out_cleanup_data;
1018
1019 fep->rx_bd_base = fep->ring_base;
1020 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1021
1022 fep->tx_ring = fpi->tx_ring;
1023 fep->rx_ring = fpi->rx_ring;
1024
1025 ndev->netdev_ops = &fs_enet_netdev_ops;
1026 ndev->watchdog_timeo = 2 * HZ;
1027 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, fpi->napi_weight);
1028 netif_tx_napi_add(ndev, &fep->napi_tx, fs_enet_tx_napi, 2);
1029
1030 ndev->ethtool_ops = &fs_ethtool_ops;
1031
1032 init_timer(&fep->phy_timer_list);
1033
1034 netif_carrier_off(ndev);
1035
1036 ndev->features |= NETIF_F_SG;
1037
1038 ret = register_netdev(ndev);
1039 if (ret)
1040 goto out_free_bd;
1041
1042 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1043
1044 return 0;
1045
1046 out_free_bd:
1047 fep->ops->free_bd(ndev);
1048 out_cleanup_data:
1049 fep->ops->cleanup_data(ndev);
1050 out_free_dev:
1051 free_netdev(ndev);
1052 out_put:
1053 of_node_put(fpi->phy_node);
1054 if (fpi->clk_per)
1055 clk_disable_unprepare(fpi->clk_per);
1056 out_free_fpi:
1057 kfree(fpi);
1058 return ret;
1059 }
1060
1061 static int fs_enet_remove(struct platform_device *ofdev)
1062 {
1063 struct net_device *ndev = platform_get_drvdata(ofdev);
1064 struct fs_enet_private *fep = netdev_priv(ndev);
1065
1066 unregister_netdev(ndev);
1067
1068 fep->ops->free_bd(ndev);
1069 fep->ops->cleanup_data(ndev);
1070 dev_set_drvdata(fep->dev, NULL);
1071 of_node_put(fep->fpi->phy_node);
1072 if (fep->fpi->clk_per)
1073 clk_disable_unprepare(fep->fpi->clk_per);
1074 free_netdev(ndev);
1075 return 0;
1076 }
1077
1078 static const struct of_device_id fs_enet_match[] = {
1079 #ifdef CONFIG_FS_ENET_HAS_SCC
1080 {
1081 .compatible = "fsl,cpm1-scc-enet",
1082 .data = (void *)&fs_scc_ops,
1083 },
1084 {
1085 .compatible = "fsl,cpm2-scc-enet",
1086 .data = (void *)&fs_scc_ops,
1087 },
1088 #endif
1089 #ifdef CONFIG_FS_ENET_HAS_FCC
1090 {
1091 .compatible = "fsl,cpm2-fcc-enet",
1092 .data = (void *)&fs_fcc_ops,
1093 },
1094 #endif
1095 #ifdef CONFIG_FS_ENET_HAS_FEC
1096 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1097 {
1098 .compatible = "fsl,mpc5121-fec",
1099 .data = (void *)&fs_fec_ops,
1100 },
1101 {
1102 .compatible = "fsl,mpc5125-fec",
1103 .data = (void *)&fs_fec_ops,
1104 },
1105 #else
1106 {
1107 .compatible = "fsl,pq1-fec-enet",
1108 .data = (void *)&fs_fec_ops,
1109 },
1110 #endif
1111 #endif
1112 {}
1113 };
1114 MODULE_DEVICE_TABLE(of, fs_enet_match);
1115
1116 static struct platform_driver fs_enet_driver = {
1117 .driver = {
1118 .name = "fs_enet",
1119 .of_match_table = fs_enet_match,
1120 },
1121 .probe = fs_enet_probe,
1122 .remove = fs_enet_remove,
1123 };
1124
1125 #ifdef CONFIG_NET_POLL_CONTROLLER
1126 static void fs_enet_netpoll(struct net_device *dev)
1127 {
1128 disable_irq(dev->irq);
1129 fs_enet_interrupt(dev->irq, dev);
1130 enable_irq(dev->irq);
1131 }
1132 #endif
1133
1134 module_platform_driver(fs_enet_driver);
This page took 0.057989 seconds and 5 git commands to generate.