dt-bindings: mailbox: Add Amlogic Meson MHU Bindings
[deliverable/linux.git] / drivers / net / ethernet / freescale / fs_enet / mac-fcc.c
1 /*
2 * FCC driver for Motorola MPC82xx (PQ2).
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * This file is licensed under the terms of the GNU General Public License
11 * version 2. This program is licensed "as is" without any warranty of any
12 * kind, whether express or implied.
13 */
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/spinlock.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/bitops.h>
31 #include <linux/fs.h>
32 #include <linux/platform_device.h>
33 #include <linux/phy.h>
34 #include <linux/of_address.h>
35 #include <linux/of_device.h>
36 #include <linux/of_irq.h>
37 #include <linux/gfp.h>
38
39 #include <asm/immap_cpm2.h>
40 #include <asm/mpc8260.h>
41 #include <asm/cpm2.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/irq.h>
45 #include <asm/uaccess.h>
46
47 #include "fs_enet.h"
48
49 /*************************************************/
50
51 /* FCC access macros */
52
53 /* write, read, set bits, clear bits */
54 #define W32(_p, _m, _v) out_be32(&(_p)->_m, (_v))
55 #define R32(_p, _m) in_be32(&(_p)->_m)
56 #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
57 #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
58
59 #define W16(_p, _m, _v) out_be16(&(_p)->_m, (_v))
60 #define R16(_p, _m) in_be16(&(_p)->_m)
61 #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
62 #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
63
64 #define W8(_p, _m, _v) out_8(&(_p)->_m, (_v))
65 #define R8(_p, _m) in_8(&(_p)->_m)
66 #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
67 #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
68
69 /*************************************************/
70
71 #define FCC_MAX_MULTICAST_ADDRS 64
72
73 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
74 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
75 #define mk_mii_end 0
76
77 #define MAX_CR_CMD_LOOPS 10000
78
79 static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op)
80 {
81 const struct fs_platform_info *fpi = fep->fpi;
82
83 return cpm_command(fpi->cp_command, op);
84 }
85
86 static int do_pd_setup(struct fs_enet_private *fep)
87 {
88 struct platform_device *ofdev = to_platform_device(fep->dev);
89 struct fs_platform_info *fpi = fep->fpi;
90 int ret = -EINVAL;
91
92 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
93 if (fep->interrupt == NO_IRQ)
94 goto out;
95
96 fep->fcc.fccp = of_iomap(ofdev->dev.of_node, 0);
97 if (!fep->fcc.fccp)
98 goto out;
99
100 fep->fcc.ep = of_iomap(ofdev->dev.of_node, 1);
101 if (!fep->fcc.ep)
102 goto out_fccp;
103
104 fep->fcc.fcccp = of_iomap(ofdev->dev.of_node, 2);
105 if (!fep->fcc.fcccp)
106 goto out_ep;
107
108 fep->fcc.mem = (void __iomem *)cpm2_immr;
109 fpi->dpram_offset = cpm_dpalloc(128, 32);
110 if (IS_ERR_VALUE(fpi->dpram_offset)) {
111 ret = fpi->dpram_offset;
112 goto out_fcccp;
113 }
114
115 return 0;
116
117 out_fcccp:
118 iounmap(fep->fcc.fcccp);
119 out_ep:
120 iounmap(fep->fcc.ep);
121 out_fccp:
122 iounmap(fep->fcc.fccp);
123 out:
124 return ret;
125 }
126
127 #define FCC_NAPI_RX_EVENT_MSK (FCC_ENET_RXF | FCC_ENET_RXB)
128 #define FCC_NAPI_TX_EVENT_MSK (FCC_ENET_TXB)
129 #define FCC_RX_EVENT (FCC_ENET_RXF)
130 #define FCC_TX_EVENT (FCC_ENET_TXB)
131 #define FCC_ERR_EVENT_MSK (FCC_ENET_TXE)
132
133 static int setup_data(struct net_device *dev)
134 {
135 struct fs_enet_private *fep = netdev_priv(dev);
136
137 if (do_pd_setup(fep) != 0)
138 return -EINVAL;
139
140 fep->ev_napi_rx = FCC_NAPI_RX_EVENT_MSK;
141 fep->ev_napi_tx = FCC_NAPI_TX_EVENT_MSK;
142 fep->ev_rx = FCC_RX_EVENT;
143 fep->ev_tx = FCC_TX_EVENT;
144 fep->ev_err = FCC_ERR_EVENT_MSK;
145
146 return 0;
147 }
148
149 static int allocate_bd(struct net_device *dev)
150 {
151 struct fs_enet_private *fep = netdev_priv(dev);
152 const struct fs_platform_info *fpi = fep->fpi;
153
154 fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev,
155 (fpi->tx_ring + fpi->rx_ring) *
156 sizeof(cbd_t), &fep->ring_mem_addr,
157 GFP_KERNEL);
158 if (fep->ring_base == NULL)
159 return -ENOMEM;
160
161 return 0;
162 }
163
164 static void free_bd(struct net_device *dev)
165 {
166 struct fs_enet_private *fep = netdev_priv(dev);
167 const struct fs_platform_info *fpi = fep->fpi;
168
169 if (fep->ring_base)
170 dma_free_coherent(fep->dev,
171 (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
172 (void __force *)fep->ring_base, fep->ring_mem_addr);
173 }
174
175 static void cleanup_data(struct net_device *dev)
176 {
177 /* nothing */
178 }
179
180 static void set_promiscuous_mode(struct net_device *dev)
181 {
182 struct fs_enet_private *fep = netdev_priv(dev);
183 fcc_t __iomem *fccp = fep->fcc.fccp;
184
185 S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
186 }
187
188 static void set_multicast_start(struct net_device *dev)
189 {
190 struct fs_enet_private *fep = netdev_priv(dev);
191 fcc_enet_t __iomem *ep = fep->fcc.ep;
192
193 W32(ep, fen_gaddrh, 0);
194 W32(ep, fen_gaddrl, 0);
195 }
196
197 static void set_multicast_one(struct net_device *dev, const u8 *mac)
198 {
199 struct fs_enet_private *fep = netdev_priv(dev);
200 fcc_enet_t __iomem *ep = fep->fcc.ep;
201 u16 taddrh, taddrm, taddrl;
202
203 taddrh = ((u16)mac[5] << 8) | mac[4];
204 taddrm = ((u16)mac[3] << 8) | mac[2];
205 taddrl = ((u16)mac[1] << 8) | mac[0];
206
207 W16(ep, fen_taddrh, taddrh);
208 W16(ep, fen_taddrm, taddrm);
209 W16(ep, fen_taddrl, taddrl);
210 fcc_cr_cmd(fep, CPM_CR_SET_GADDR);
211 }
212
213 static void set_multicast_finish(struct net_device *dev)
214 {
215 struct fs_enet_private *fep = netdev_priv(dev);
216 fcc_t __iomem *fccp = fep->fcc.fccp;
217 fcc_enet_t __iomem *ep = fep->fcc.ep;
218
219 /* clear promiscuous always */
220 C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
221
222 /* if all multi or too many multicasts; just enable all */
223 if ((dev->flags & IFF_ALLMULTI) != 0 ||
224 netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) {
225
226 W32(ep, fen_gaddrh, 0xffffffff);
227 W32(ep, fen_gaddrl, 0xffffffff);
228 }
229
230 /* read back */
231 fep->fcc.gaddrh = R32(ep, fen_gaddrh);
232 fep->fcc.gaddrl = R32(ep, fen_gaddrl);
233 }
234
235 static void set_multicast_list(struct net_device *dev)
236 {
237 struct netdev_hw_addr *ha;
238
239 if ((dev->flags & IFF_PROMISC) == 0) {
240 set_multicast_start(dev);
241 netdev_for_each_mc_addr(ha, dev)
242 set_multicast_one(dev, ha->addr);
243 set_multicast_finish(dev);
244 } else
245 set_promiscuous_mode(dev);
246 }
247
248 static void restart(struct net_device *dev)
249 {
250 struct fs_enet_private *fep = netdev_priv(dev);
251 const struct fs_platform_info *fpi = fep->fpi;
252 fcc_t __iomem *fccp = fep->fcc.fccp;
253 fcc_c_t __iomem *fcccp = fep->fcc.fcccp;
254 fcc_enet_t __iomem *ep = fep->fcc.ep;
255 dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
256 u16 paddrh, paddrm, paddrl;
257 const unsigned char *mac;
258 int i;
259
260 C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
261
262 /* clear everything (slow & steady does it) */
263 for (i = 0; i < sizeof(*ep); i++)
264 out_8((u8 __iomem *)ep + i, 0);
265
266 /* get physical address */
267 rx_bd_base_phys = fep->ring_mem_addr;
268 tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
269
270 /* point to bds */
271 W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
272 W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
273
274 /* Set maximum bytes per receive buffer.
275 * It must be a multiple of 32.
276 */
277 W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
278
279 W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
280 W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
281
282 /* Allocate space in the reserved FCC area of DPRAM for the
283 * internal buffers. No one uses this space (yet), so we
284 * can do this. Later, we will add resource management for
285 * this area.
286 */
287
288 W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset);
289 W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32);
290
291 W16(ep, fen_padptr, fpi->dpram_offset + 64);
292
293 /* fill with special symbol... */
294 memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
295
296 W32(ep, fen_genfcc.fcc_rbptr, 0);
297 W32(ep, fen_genfcc.fcc_tbptr, 0);
298 W32(ep, fen_genfcc.fcc_rcrc, 0);
299 W32(ep, fen_genfcc.fcc_tcrc, 0);
300 W16(ep, fen_genfcc.fcc_res1, 0);
301 W32(ep, fen_genfcc.fcc_res2, 0);
302
303 /* no CAM */
304 W32(ep, fen_camptr, 0);
305
306 /* Set CRC preset and mask */
307 W32(ep, fen_cmask, 0xdebb20e3);
308 W32(ep, fen_cpres, 0xffffffff);
309
310 W32(ep, fen_crcec, 0); /* CRC Error counter */
311 W32(ep, fen_alec, 0); /* alignment error counter */
312 W32(ep, fen_disfc, 0); /* discard frame counter */
313 W16(ep, fen_retlim, 15); /* Retry limit threshold */
314 W16(ep, fen_pper, 0); /* Normal persistence */
315
316 /* set group address */
317 W32(ep, fen_gaddrh, fep->fcc.gaddrh);
318 W32(ep, fen_gaddrl, fep->fcc.gaddrh);
319
320 /* Clear hash filter tables */
321 W32(ep, fen_iaddrh, 0);
322 W32(ep, fen_iaddrl, 0);
323
324 /* Clear the Out-of-sequence TxBD */
325 W16(ep, fen_tfcstat, 0);
326 W16(ep, fen_tfclen, 0);
327 W32(ep, fen_tfcptr, 0);
328
329 W16(ep, fen_mflr, PKT_MAXBUF_SIZE); /* maximum frame length register */
330 W16(ep, fen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
331
332 /* set address */
333 mac = dev->dev_addr;
334 paddrh = ((u16)mac[5] << 8) | mac[4];
335 paddrm = ((u16)mac[3] << 8) | mac[2];
336 paddrl = ((u16)mac[1] << 8) | mac[0];
337
338 W16(ep, fen_paddrh, paddrh);
339 W16(ep, fen_paddrm, paddrm);
340 W16(ep, fen_paddrl, paddrl);
341
342 W16(ep, fen_taddrh, 0);
343 W16(ep, fen_taddrm, 0);
344 W16(ep, fen_taddrl, 0);
345
346 W16(ep, fen_maxd1, 1520); /* maximum DMA1 length */
347 W16(ep, fen_maxd2, 1520); /* maximum DMA2 length */
348
349 /* Clear stat counters, in case we ever enable RMON */
350 W32(ep, fen_octc, 0);
351 W32(ep, fen_colc, 0);
352 W32(ep, fen_broc, 0);
353 W32(ep, fen_mulc, 0);
354 W32(ep, fen_uspc, 0);
355 W32(ep, fen_frgc, 0);
356 W32(ep, fen_ospc, 0);
357 W32(ep, fen_jbrc, 0);
358 W32(ep, fen_p64c, 0);
359 W32(ep, fen_p65c, 0);
360 W32(ep, fen_p128c, 0);
361 W32(ep, fen_p256c, 0);
362 W32(ep, fen_p512c, 0);
363 W32(ep, fen_p1024c, 0);
364
365 W16(ep, fen_rfthr, 0); /* Suggested by manual */
366 W16(ep, fen_rfcnt, 0);
367 W16(ep, fen_cftype, 0);
368
369 fs_init_bds(dev);
370
371 /* adjust to speed (for RMII mode) */
372 if (fpi->use_rmii) {
373 if (dev->phydev->speed == 100)
374 C8(fcccp, fcc_gfemr, 0x20);
375 else
376 S8(fcccp, fcc_gfemr, 0x20);
377 }
378
379 fcc_cr_cmd(fep, CPM_CR_INIT_TRX);
380
381 /* clear events */
382 W16(fccp, fcc_fcce, 0xffff);
383
384 /* Enable interrupts we wish to service */
385 W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
386
387 /* Set GFMR to enable Ethernet operating mode */
388 W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
389
390 /* set sync/delimiters */
391 W16(fccp, fcc_fdsr, 0xd555);
392
393 W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
394
395 if (fpi->use_rmii)
396 S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
397
398 /* adjust to duplex mode */
399 if (dev->phydev->duplex)
400 S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
401 else
402 C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
403
404 /* Restore multicast and promiscuous settings */
405 set_multicast_list(dev);
406
407 S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
408 }
409
410 static void stop(struct net_device *dev)
411 {
412 struct fs_enet_private *fep = netdev_priv(dev);
413 fcc_t __iomem *fccp = fep->fcc.fccp;
414
415 /* stop ethernet */
416 C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
417
418 /* clear events */
419 W16(fccp, fcc_fcce, 0xffff);
420
421 /* clear interrupt mask */
422 W16(fccp, fcc_fccm, 0);
423
424 fs_cleanup_bds(dev);
425 }
426
427 static void napi_clear_rx_event(struct net_device *dev)
428 {
429 struct fs_enet_private *fep = netdev_priv(dev);
430 fcc_t __iomem *fccp = fep->fcc.fccp;
431
432 W16(fccp, fcc_fcce, FCC_NAPI_RX_EVENT_MSK);
433 }
434
435 static void napi_enable_rx(struct net_device *dev)
436 {
437 struct fs_enet_private *fep = netdev_priv(dev);
438 fcc_t __iomem *fccp = fep->fcc.fccp;
439
440 S16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
441 }
442
443 static void napi_disable_rx(struct net_device *dev)
444 {
445 struct fs_enet_private *fep = netdev_priv(dev);
446 fcc_t __iomem *fccp = fep->fcc.fccp;
447
448 C16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
449 }
450
451 static void napi_clear_tx_event(struct net_device *dev)
452 {
453 struct fs_enet_private *fep = netdev_priv(dev);
454 fcc_t __iomem *fccp = fep->fcc.fccp;
455
456 W16(fccp, fcc_fcce, FCC_NAPI_TX_EVENT_MSK);
457 }
458
459 static void napi_enable_tx(struct net_device *dev)
460 {
461 struct fs_enet_private *fep = netdev_priv(dev);
462 fcc_t __iomem *fccp = fep->fcc.fccp;
463
464 S16(fccp, fcc_fccm, FCC_NAPI_TX_EVENT_MSK);
465 }
466
467 static void napi_disable_tx(struct net_device *dev)
468 {
469 struct fs_enet_private *fep = netdev_priv(dev);
470 fcc_t __iomem *fccp = fep->fcc.fccp;
471
472 C16(fccp, fcc_fccm, FCC_NAPI_TX_EVENT_MSK);
473 }
474
475 static void rx_bd_done(struct net_device *dev)
476 {
477 /* nothing */
478 }
479
480 static void tx_kickstart(struct net_device *dev)
481 {
482 struct fs_enet_private *fep = netdev_priv(dev);
483 fcc_t __iomem *fccp = fep->fcc.fccp;
484
485 S16(fccp, fcc_ftodr, 0x8000);
486 }
487
488 static u32 get_int_events(struct net_device *dev)
489 {
490 struct fs_enet_private *fep = netdev_priv(dev);
491 fcc_t __iomem *fccp = fep->fcc.fccp;
492
493 return (u32)R16(fccp, fcc_fcce);
494 }
495
496 static void clear_int_events(struct net_device *dev, u32 int_events)
497 {
498 struct fs_enet_private *fep = netdev_priv(dev);
499 fcc_t __iomem *fccp = fep->fcc.fccp;
500
501 W16(fccp, fcc_fcce, int_events & 0xffff);
502 }
503
504 static void ev_error(struct net_device *dev, u32 int_events)
505 {
506 struct fs_enet_private *fep = netdev_priv(dev);
507
508 dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events);
509 }
510
511 static int get_regs(struct net_device *dev, void *p, int *sizep)
512 {
513 struct fs_enet_private *fep = netdev_priv(dev);
514
515 if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1)
516 return -EINVAL;
517
518 memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
519 p = (char *)p + sizeof(fcc_t);
520
521 memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
522 p = (char *)p + sizeof(fcc_enet_t);
523
524 memcpy_fromio(p, fep->fcc.fcccp, 1);
525 return 0;
526 }
527
528 static int get_regs_len(struct net_device *dev)
529 {
530 return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1;
531 }
532
533 /* Some transmit errors cause the transmitter to shut
534 * down. We now issue a restart transmit.
535 * Also, to workaround 8260 device erratum CPM37, we must
536 * disable and then re-enable the transmitterfollowing a
537 * Late Collision, Underrun, or Retry Limit error.
538 * In addition, tbptr may point beyond BDs beyond still marked
539 * as ready due to internal pipelining, so we need to look back
540 * through the BDs and adjust tbptr to point to the last BD
541 * marked as ready. This may result in some buffers being
542 * retransmitted.
543 */
544 static void tx_restart(struct net_device *dev)
545 {
546 struct fs_enet_private *fep = netdev_priv(dev);
547 fcc_t __iomem *fccp = fep->fcc.fccp;
548 const struct fs_platform_info *fpi = fep->fpi;
549 fcc_enet_t __iomem *ep = fep->fcc.ep;
550 cbd_t __iomem *curr_tbptr;
551 cbd_t __iomem *recheck_bd;
552 cbd_t __iomem *prev_bd;
553 cbd_t __iomem *last_tx_bd;
554
555 last_tx_bd = fep->tx_bd_base + (fpi->tx_ring - 1);
556
557 /* get the current bd held in TBPTR and scan back from this point */
558 recheck_bd = curr_tbptr = (cbd_t __iomem *)
559 ((R32(ep, fen_genfcc.fcc_tbptr) - fep->ring_mem_addr) +
560 fep->ring_base);
561
562 prev_bd = (recheck_bd == fep->tx_bd_base) ? last_tx_bd : recheck_bd - 1;
563
564 /* Move through the bds in reverse, look for the earliest buffer
565 * that is not ready. Adjust TBPTR to the following buffer */
566 while ((CBDR_SC(prev_bd) & BD_ENET_TX_READY) != 0) {
567 /* Go back one buffer */
568 recheck_bd = prev_bd;
569
570 /* update the previous buffer */
571 prev_bd = (prev_bd == fep->tx_bd_base) ? last_tx_bd : prev_bd - 1;
572
573 /* We should never see all bds marked as ready, check anyway */
574 if (recheck_bd == curr_tbptr)
575 break;
576 }
577 /* Now update the TBPTR and dirty flag to the current buffer */
578 W32(ep, fen_genfcc.fcc_tbptr,
579 (uint) (((void *)recheck_bd - fep->ring_base) +
580 fep->ring_mem_addr));
581 fep->dirty_tx = recheck_bd;
582
583 C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
584 udelay(10);
585 S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
586
587 fcc_cr_cmd(fep, CPM_CR_RESTART_TX);
588 }
589
590 /*************************************************************************/
591
592 const struct fs_ops fs_fcc_ops = {
593 .setup_data = setup_data,
594 .cleanup_data = cleanup_data,
595 .set_multicast_list = set_multicast_list,
596 .restart = restart,
597 .stop = stop,
598 .napi_clear_rx_event = napi_clear_rx_event,
599 .napi_enable_rx = napi_enable_rx,
600 .napi_disable_rx = napi_disable_rx,
601 .napi_clear_tx_event = napi_clear_tx_event,
602 .napi_enable_tx = napi_enable_tx,
603 .napi_disable_tx = napi_disable_tx,
604 .rx_bd_done = rx_bd_done,
605 .tx_kickstart = tx_kickstart,
606 .get_int_events = get_int_events,
607 .clear_int_events = clear_int_events,
608 .ev_error = ev_error,
609 .get_regs = get_regs,
610 .get_regs_len = get_regs_len,
611 .tx_restart = tx_restart,
612 .allocate_bd = allocate_bd,
613 .free_bd = free_bd,
614 };
This page took 0.045515 seconds and 5 git commands to generate.