arch: Mass conversion of smp_mb__*()
[deliverable/linux.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #include <asm/reg.h>
92 #include <asm/mpc85xx.h>
93 #include <asm/irq.h>
94 #include <asm/uaccess.h>
95 #include <linux/module.h>
96 #include <linux/dma-mapping.h>
97 #include <linux/crc32.h>
98 #include <linux/mii.h>
99 #include <linux/phy.h>
100 #include <linux/phy_fixed.h>
101 #include <linux/of.h>
102 #include <linux/of_net.h>
103
104 #include "gianfar.h"
105
106 #define TX_TIMEOUT (1*HZ)
107
108 const char gfar_driver_version[] = "1.3";
109
110 static int gfar_enet_open(struct net_device *dev);
111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
112 static void gfar_reset_task(struct work_struct *work);
113 static void gfar_timeout(struct net_device *dev);
114 static int gfar_close(struct net_device *dev);
115 struct sk_buff *gfar_new_skb(struct net_device *dev);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
117 struct sk_buff *skb);
118 static int gfar_set_mac_address(struct net_device *dev);
119 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
120 static irqreturn_t gfar_error(int irq, void *dev_id);
121 static irqreturn_t gfar_transmit(int irq, void *dev_id);
122 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
123 static void adjust_link(struct net_device *dev);
124 static int init_phy(struct net_device *dev);
125 static int gfar_probe(struct platform_device *ofdev);
126 static int gfar_remove(struct platform_device *ofdev);
127 static void free_skb_resources(struct gfar_private *priv);
128 static void gfar_set_multi(struct net_device *dev);
129 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
130 static void gfar_configure_serdes(struct net_device *dev);
131 static int gfar_poll_rx(struct napi_struct *napi, int budget);
132 static int gfar_poll_tx(struct napi_struct *napi, int budget);
133 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
134 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
135 #ifdef CONFIG_NET_POLL_CONTROLLER
136 static void gfar_netpoll(struct net_device *dev);
137 #endif
138 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
139 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
140 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
141 int amount_pull, struct napi_struct *napi);
142 static void gfar_halt_nodisable(struct gfar_private *priv);
143 static void gfar_clear_exact_match(struct net_device *dev);
144 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
145 const u8 *addr);
146 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
147
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
151
152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
153 dma_addr_t buf)
154 {
155 u32 lstatus;
156
157 bdp->bufPtr = buf;
158
159 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
160 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
161 lstatus |= BD_LFLAG(RXBD_WRAP);
162
163 eieio();
164
165 bdp->lstatus = lstatus;
166 }
167
168 static int gfar_init_bds(struct net_device *ndev)
169 {
170 struct gfar_private *priv = netdev_priv(ndev);
171 struct gfar_priv_tx_q *tx_queue = NULL;
172 struct gfar_priv_rx_q *rx_queue = NULL;
173 struct txbd8 *txbdp;
174 struct rxbd8 *rxbdp;
175 int i, j;
176
177 for (i = 0; i < priv->num_tx_queues; i++) {
178 tx_queue = priv->tx_queue[i];
179 /* Initialize some variables in our dev structure */
180 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
181 tx_queue->dirty_tx = tx_queue->tx_bd_base;
182 tx_queue->cur_tx = tx_queue->tx_bd_base;
183 tx_queue->skb_curtx = 0;
184 tx_queue->skb_dirtytx = 0;
185
186 /* Initialize Transmit Descriptor Ring */
187 txbdp = tx_queue->tx_bd_base;
188 for (j = 0; j < tx_queue->tx_ring_size; j++) {
189 txbdp->lstatus = 0;
190 txbdp->bufPtr = 0;
191 txbdp++;
192 }
193
194 /* Set the last descriptor in the ring to indicate wrap */
195 txbdp--;
196 txbdp->status |= TXBD_WRAP;
197 }
198
199 for (i = 0; i < priv->num_rx_queues; i++) {
200 rx_queue = priv->rx_queue[i];
201 rx_queue->cur_rx = rx_queue->rx_bd_base;
202 rx_queue->skb_currx = 0;
203 rxbdp = rx_queue->rx_bd_base;
204
205 for (j = 0; j < rx_queue->rx_ring_size; j++) {
206 struct sk_buff *skb = rx_queue->rx_skbuff[j];
207
208 if (skb) {
209 gfar_init_rxbdp(rx_queue, rxbdp,
210 rxbdp->bufPtr);
211 } else {
212 skb = gfar_new_skb(ndev);
213 if (!skb) {
214 netdev_err(ndev, "Can't allocate RX buffers\n");
215 return -ENOMEM;
216 }
217 rx_queue->rx_skbuff[j] = skb;
218
219 gfar_new_rxbdp(rx_queue, rxbdp, skb);
220 }
221
222 rxbdp++;
223 }
224
225 }
226
227 return 0;
228 }
229
230 static int gfar_alloc_skb_resources(struct net_device *ndev)
231 {
232 void *vaddr;
233 dma_addr_t addr;
234 int i, j, k;
235 struct gfar_private *priv = netdev_priv(ndev);
236 struct device *dev = priv->dev;
237 struct gfar_priv_tx_q *tx_queue = NULL;
238 struct gfar_priv_rx_q *rx_queue = NULL;
239
240 priv->total_tx_ring_size = 0;
241 for (i = 0; i < priv->num_tx_queues; i++)
242 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
243
244 priv->total_rx_ring_size = 0;
245 for (i = 0; i < priv->num_rx_queues; i++)
246 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
247
248 /* Allocate memory for the buffer descriptors */
249 vaddr = dma_alloc_coherent(dev,
250 (priv->total_tx_ring_size *
251 sizeof(struct txbd8)) +
252 (priv->total_rx_ring_size *
253 sizeof(struct rxbd8)),
254 &addr, GFP_KERNEL);
255 if (!vaddr)
256 return -ENOMEM;
257
258 for (i = 0; i < priv->num_tx_queues; i++) {
259 tx_queue = priv->tx_queue[i];
260 tx_queue->tx_bd_base = vaddr;
261 tx_queue->tx_bd_dma_base = addr;
262 tx_queue->dev = ndev;
263 /* enet DMA only understands physical addresses */
264 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
265 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
266 }
267
268 /* Start the rx descriptor ring where the tx ring leaves off */
269 for (i = 0; i < priv->num_rx_queues; i++) {
270 rx_queue = priv->rx_queue[i];
271 rx_queue->rx_bd_base = vaddr;
272 rx_queue->rx_bd_dma_base = addr;
273 rx_queue->dev = ndev;
274 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
275 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
276 }
277
278 /* Setup the skbuff rings */
279 for (i = 0; i < priv->num_tx_queues; i++) {
280 tx_queue = priv->tx_queue[i];
281 tx_queue->tx_skbuff =
282 kmalloc_array(tx_queue->tx_ring_size,
283 sizeof(*tx_queue->tx_skbuff),
284 GFP_KERNEL);
285 if (!tx_queue->tx_skbuff)
286 goto cleanup;
287
288 for (k = 0; k < tx_queue->tx_ring_size; k++)
289 tx_queue->tx_skbuff[k] = NULL;
290 }
291
292 for (i = 0; i < priv->num_rx_queues; i++) {
293 rx_queue = priv->rx_queue[i];
294 rx_queue->rx_skbuff =
295 kmalloc_array(rx_queue->rx_ring_size,
296 sizeof(*rx_queue->rx_skbuff),
297 GFP_KERNEL);
298 if (!rx_queue->rx_skbuff)
299 goto cleanup;
300
301 for (j = 0; j < rx_queue->rx_ring_size; j++)
302 rx_queue->rx_skbuff[j] = NULL;
303 }
304
305 if (gfar_init_bds(ndev))
306 goto cleanup;
307
308 return 0;
309
310 cleanup:
311 free_skb_resources(priv);
312 return -ENOMEM;
313 }
314
315 static void gfar_init_tx_rx_base(struct gfar_private *priv)
316 {
317 struct gfar __iomem *regs = priv->gfargrp[0].regs;
318 u32 __iomem *baddr;
319 int i;
320
321 baddr = &regs->tbase0;
322 for (i = 0; i < priv->num_tx_queues; i++) {
323 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
324 baddr += 2;
325 }
326
327 baddr = &regs->rbase0;
328 for (i = 0; i < priv->num_rx_queues; i++) {
329 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
330 baddr += 2;
331 }
332 }
333
334 static void gfar_rx_buff_size_config(struct gfar_private *priv)
335 {
336 int frame_size = priv->ndev->mtu + ETH_HLEN;
337
338 /* set this when rx hw offload (TOE) functions are being used */
339 priv->uses_rxfcb = 0;
340
341 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 priv->uses_rxfcb = 1;
343
344 if (priv->hwts_rx_en)
345 priv->uses_rxfcb = 1;
346
347 if (priv->uses_rxfcb)
348 frame_size += GMAC_FCB_LEN;
349
350 frame_size += priv->padding;
351
352 frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
353 INCREMENTAL_BUFFER_SIZE;
354
355 priv->rx_buffer_size = frame_size;
356 }
357
358 static void gfar_mac_rx_config(struct gfar_private *priv)
359 {
360 struct gfar __iomem *regs = priv->gfargrp[0].regs;
361 u32 rctrl = 0;
362
363 if (priv->rx_filer_enable) {
364 rctrl |= RCTRL_FILREN;
365 /* Program the RIR0 reg with the required distribution */
366 if (priv->poll_mode == GFAR_SQ_POLLING)
367 gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
368 else /* GFAR_MQ_POLLING */
369 gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
370 }
371
372 /* Restore PROMISC mode */
373 if (priv->ndev->flags & IFF_PROMISC)
374 rctrl |= RCTRL_PROM;
375
376 if (priv->ndev->features & NETIF_F_RXCSUM)
377 rctrl |= RCTRL_CHECKSUMMING;
378
379 if (priv->extended_hash)
380 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
381
382 if (priv->padding) {
383 rctrl &= ~RCTRL_PAL_MASK;
384 rctrl |= RCTRL_PADDING(priv->padding);
385 }
386
387 /* Enable HW time stamping if requested from user space */
388 if (priv->hwts_rx_en)
389 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
390
391 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
392 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
393
394 /* Init rctrl based on our settings */
395 gfar_write(&regs->rctrl, rctrl);
396 }
397
398 static void gfar_mac_tx_config(struct gfar_private *priv)
399 {
400 struct gfar __iomem *regs = priv->gfargrp[0].regs;
401 u32 tctrl = 0;
402
403 if (priv->ndev->features & NETIF_F_IP_CSUM)
404 tctrl |= TCTRL_INIT_CSUM;
405
406 if (priv->prio_sched_en)
407 tctrl |= TCTRL_TXSCHED_PRIO;
408 else {
409 tctrl |= TCTRL_TXSCHED_WRRS;
410 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
411 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
412 }
413
414 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
415 tctrl |= TCTRL_VLINS;
416
417 gfar_write(&regs->tctrl, tctrl);
418 }
419
420 static void gfar_configure_coalescing(struct gfar_private *priv,
421 unsigned long tx_mask, unsigned long rx_mask)
422 {
423 struct gfar __iomem *regs = priv->gfargrp[0].regs;
424 u32 __iomem *baddr;
425
426 if (priv->mode == MQ_MG_MODE) {
427 int i = 0;
428
429 baddr = &regs->txic0;
430 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
431 gfar_write(baddr + i, 0);
432 if (likely(priv->tx_queue[i]->txcoalescing))
433 gfar_write(baddr + i, priv->tx_queue[i]->txic);
434 }
435
436 baddr = &regs->rxic0;
437 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
438 gfar_write(baddr + i, 0);
439 if (likely(priv->rx_queue[i]->rxcoalescing))
440 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
441 }
442 } else {
443 /* Backward compatible case -- even if we enable
444 * multiple queues, there's only single reg to program
445 */
446 gfar_write(&regs->txic, 0);
447 if (likely(priv->tx_queue[0]->txcoalescing))
448 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
449
450 gfar_write(&regs->rxic, 0);
451 if (unlikely(priv->rx_queue[0]->rxcoalescing))
452 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
453 }
454 }
455
456 void gfar_configure_coalescing_all(struct gfar_private *priv)
457 {
458 gfar_configure_coalescing(priv, 0xFF, 0xFF);
459 }
460
461 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
462 {
463 struct gfar_private *priv = netdev_priv(dev);
464 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
465 unsigned long tx_packets = 0, tx_bytes = 0;
466 int i;
467
468 for (i = 0; i < priv->num_rx_queues; i++) {
469 rx_packets += priv->rx_queue[i]->stats.rx_packets;
470 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
471 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
472 }
473
474 dev->stats.rx_packets = rx_packets;
475 dev->stats.rx_bytes = rx_bytes;
476 dev->stats.rx_dropped = rx_dropped;
477
478 for (i = 0; i < priv->num_tx_queues; i++) {
479 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
480 tx_packets += priv->tx_queue[i]->stats.tx_packets;
481 }
482
483 dev->stats.tx_bytes = tx_bytes;
484 dev->stats.tx_packets = tx_packets;
485
486 return &dev->stats;
487 }
488
489 static const struct net_device_ops gfar_netdev_ops = {
490 .ndo_open = gfar_enet_open,
491 .ndo_start_xmit = gfar_start_xmit,
492 .ndo_stop = gfar_close,
493 .ndo_change_mtu = gfar_change_mtu,
494 .ndo_set_features = gfar_set_features,
495 .ndo_set_rx_mode = gfar_set_multi,
496 .ndo_tx_timeout = gfar_timeout,
497 .ndo_do_ioctl = gfar_ioctl,
498 .ndo_get_stats = gfar_get_stats,
499 .ndo_set_mac_address = eth_mac_addr,
500 .ndo_validate_addr = eth_validate_addr,
501 #ifdef CONFIG_NET_POLL_CONTROLLER
502 .ndo_poll_controller = gfar_netpoll,
503 #endif
504 };
505
506 static void gfar_ints_disable(struct gfar_private *priv)
507 {
508 int i;
509 for (i = 0; i < priv->num_grps; i++) {
510 struct gfar __iomem *regs = priv->gfargrp[i].regs;
511 /* Clear IEVENT */
512 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
513
514 /* Initialize IMASK */
515 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
516 }
517 }
518
519 static void gfar_ints_enable(struct gfar_private *priv)
520 {
521 int i;
522 for (i = 0; i < priv->num_grps; i++) {
523 struct gfar __iomem *regs = priv->gfargrp[i].regs;
524 /* Unmask the interrupts we look for */
525 gfar_write(&regs->imask, IMASK_DEFAULT);
526 }
527 }
528
529 void lock_tx_qs(struct gfar_private *priv)
530 {
531 int i;
532
533 for (i = 0; i < priv->num_tx_queues; i++)
534 spin_lock(&priv->tx_queue[i]->txlock);
535 }
536
537 void unlock_tx_qs(struct gfar_private *priv)
538 {
539 int i;
540
541 for (i = 0; i < priv->num_tx_queues; i++)
542 spin_unlock(&priv->tx_queue[i]->txlock);
543 }
544
545 static int gfar_alloc_tx_queues(struct gfar_private *priv)
546 {
547 int i;
548
549 for (i = 0; i < priv->num_tx_queues; i++) {
550 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
551 GFP_KERNEL);
552 if (!priv->tx_queue[i])
553 return -ENOMEM;
554
555 priv->tx_queue[i]->tx_skbuff = NULL;
556 priv->tx_queue[i]->qindex = i;
557 priv->tx_queue[i]->dev = priv->ndev;
558 spin_lock_init(&(priv->tx_queue[i]->txlock));
559 }
560 return 0;
561 }
562
563 static int gfar_alloc_rx_queues(struct gfar_private *priv)
564 {
565 int i;
566
567 for (i = 0; i < priv->num_rx_queues; i++) {
568 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
569 GFP_KERNEL);
570 if (!priv->rx_queue[i])
571 return -ENOMEM;
572
573 priv->rx_queue[i]->rx_skbuff = NULL;
574 priv->rx_queue[i]->qindex = i;
575 priv->rx_queue[i]->dev = priv->ndev;
576 }
577 return 0;
578 }
579
580 static void gfar_free_tx_queues(struct gfar_private *priv)
581 {
582 int i;
583
584 for (i = 0; i < priv->num_tx_queues; i++)
585 kfree(priv->tx_queue[i]);
586 }
587
588 static void gfar_free_rx_queues(struct gfar_private *priv)
589 {
590 int i;
591
592 for (i = 0; i < priv->num_rx_queues; i++)
593 kfree(priv->rx_queue[i]);
594 }
595
596 static void unmap_group_regs(struct gfar_private *priv)
597 {
598 int i;
599
600 for (i = 0; i < MAXGROUPS; i++)
601 if (priv->gfargrp[i].regs)
602 iounmap(priv->gfargrp[i].regs);
603 }
604
605 static void free_gfar_dev(struct gfar_private *priv)
606 {
607 int i, j;
608
609 for (i = 0; i < priv->num_grps; i++)
610 for (j = 0; j < GFAR_NUM_IRQS; j++) {
611 kfree(priv->gfargrp[i].irqinfo[j]);
612 priv->gfargrp[i].irqinfo[j] = NULL;
613 }
614
615 free_netdev(priv->ndev);
616 }
617
618 static void disable_napi(struct gfar_private *priv)
619 {
620 int i;
621
622 for (i = 0; i < priv->num_grps; i++) {
623 napi_disable(&priv->gfargrp[i].napi_rx);
624 napi_disable(&priv->gfargrp[i].napi_tx);
625 }
626 }
627
628 static void enable_napi(struct gfar_private *priv)
629 {
630 int i;
631
632 for (i = 0; i < priv->num_grps; i++) {
633 napi_enable(&priv->gfargrp[i].napi_rx);
634 napi_enable(&priv->gfargrp[i].napi_tx);
635 }
636 }
637
638 static int gfar_parse_group(struct device_node *np,
639 struct gfar_private *priv, const char *model)
640 {
641 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
642 int i;
643
644 for (i = 0; i < GFAR_NUM_IRQS; i++) {
645 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
646 GFP_KERNEL);
647 if (!grp->irqinfo[i])
648 return -ENOMEM;
649 }
650
651 grp->regs = of_iomap(np, 0);
652 if (!grp->regs)
653 return -ENOMEM;
654
655 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
656
657 /* If we aren't the FEC we have multiple interrupts */
658 if (model && strcasecmp(model, "FEC")) {
659 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
660 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
661 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
662 gfar_irq(grp, RX)->irq == NO_IRQ ||
663 gfar_irq(grp, ER)->irq == NO_IRQ)
664 return -EINVAL;
665 }
666
667 grp->priv = priv;
668 spin_lock_init(&grp->grplock);
669 if (priv->mode == MQ_MG_MODE) {
670 u32 *rxq_mask, *txq_mask;
671 rxq_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
672 txq_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
673
674 if (priv->poll_mode == GFAR_SQ_POLLING) {
675 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
676 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
677 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
678 } else { /* GFAR_MQ_POLLING */
679 grp->rx_bit_map = rxq_mask ?
680 *rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
681 grp->tx_bit_map = txq_mask ?
682 *txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
683 }
684 } else {
685 grp->rx_bit_map = 0xFF;
686 grp->tx_bit_map = 0xFF;
687 }
688
689 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
690 * right to left, so we need to revert the 8 bits to get the q index
691 */
692 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
693 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
694
695 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
696 * also assign queues to groups
697 */
698 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
699 if (!grp->rx_queue)
700 grp->rx_queue = priv->rx_queue[i];
701 grp->num_rx_queues++;
702 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
703 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
704 priv->rx_queue[i]->grp = grp;
705 }
706
707 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
708 if (!grp->tx_queue)
709 grp->tx_queue = priv->tx_queue[i];
710 grp->num_tx_queues++;
711 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
712 priv->tqueue |= (TQUEUE_EN0 >> i);
713 priv->tx_queue[i]->grp = grp;
714 }
715
716 priv->num_grps++;
717
718 return 0;
719 }
720
721 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
722 {
723 const char *model;
724 const char *ctype;
725 const void *mac_addr;
726 int err = 0, i;
727 struct net_device *dev = NULL;
728 struct gfar_private *priv = NULL;
729 struct device_node *np = ofdev->dev.of_node;
730 struct device_node *child = NULL;
731 const u32 *stash;
732 const u32 *stash_len;
733 const u32 *stash_idx;
734 unsigned int num_tx_qs, num_rx_qs;
735 u32 *tx_queues, *rx_queues;
736 unsigned short mode, poll_mode;
737
738 if (!np || !of_device_is_available(np))
739 return -ENODEV;
740
741 if (of_device_is_compatible(np, "fsl,etsec2")) {
742 mode = MQ_MG_MODE;
743 poll_mode = GFAR_SQ_POLLING;
744 } else {
745 mode = SQ_SG_MODE;
746 poll_mode = GFAR_SQ_POLLING;
747 }
748
749 /* parse the num of HW tx and rx queues */
750 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
751 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
752
753 if (mode == SQ_SG_MODE) {
754 num_tx_qs = 1;
755 num_rx_qs = 1;
756 } else { /* MQ_MG_MODE */
757 /* get the actual number of supported groups */
758 unsigned int num_grps = of_get_available_child_count(np);
759
760 if (num_grps == 0 || num_grps > MAXGROUPS) {
761 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
762 num_grps);
763 pr_err("Cannot do alloc_etherdev, aborting\n");
764 return -EINVAL;
765 }
766
767 if (poll_mode == GFAR_SQ_POLLING) {
768 num_tx_qs = num_grps; /* one txq per int group */
769 num_rx_qs = num_grps; /* one rxq per int group */
770 } else { /* GFAR_MQ_POLLING */
771 num_tx_qs = tx_queues ? *tx_queues : 1;
772 num_rx_qs = rx_queues ? *rx_queues : 1;
773 }
774 }
775
776 if (num_tx_qs > MAX_TX_QS) {
777 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
778 num_tx_qs, MAX_TX_QS);
779 pr_err("Cannot do alloc_etherdev, aborting\n");
780 return -EINVAL;
781 }
782
783 if (num_rx_qs > MAX_RX_QS) {
784 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
785 num_rx_qs, MAX_RX_QS);
786 pr_err("Cannot do alloc_etherdev, aborting\n");
787 return -EINVAL;
788 }
789
790 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
791 dev = *pdev;
792 if (NULL == dev)
793 return -ENOMEM;
794
795 priv = netdev_priv(dev);
796 priv->ndev = dev;
797
798 priv->mode = mode;
799 priv->poll_mode = poll_mode;
800
801 priv->num_tx_queues = num_tx_qs;
802 netif_set_real_num_rx_queues(dev, num_rx_qs);
803 priv->num_rx_queues = num_rx_qs;
804
805 err = gfar_alloc_tx_queues(priv);
806 if (err)
807 goto tx_alloc_failed;
808
809 err = gfar_alloc_rx_queues(priv);
810 if (err)
811 goto rx_alloc_failed;
812
813 /* Init Rx queue filer rule set linked list */
814 INIT_LIST_HEAD(&priv->rx_list.list);
815 priv->rx_list.count = 0;
816 mutex_init(&priv->rx_queue_access);
817
818 model = of_get_property(np, "model", NULL);
819
820 for (i = 0; i < MAXGROUPS; i++)
821 priv->gfargrp[i].regs = NULL;
822
823 /* Parse and initialize group specific information */
824 if (priv->mode == MQ_MG_MODE) {
825 for_each_child_of_node(np, child) {
826 err = gfar_parse_group(child, priv, model);
827 if (err)
828 goto err_grp_init;
829 }
830 } else { /* SQ_SG_MODE */
831 err = gfar_parse_group(np, priv, model);
832 if (err)
833 goto err_grp_init;
834 }
835
836 stash = of_get_property(np, "bd-stash", NULL);
837
838 if (stash) {
839 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
840 priv->bd_stash_en = 1;
841 }
842
843 stash_len = of_get_property(np, "rx-stash-len", NULL);
844
845 if (stash_len)
846 priv->rx_stash_size = *stash_len;
847
848 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
849
850 if (stash_idx)
851 priv->rx_stash_index = *stash_idx;
852
853 if (stash_len || stash_idx)
854 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
855
856 mac_addr = of_get_mac_address(np);
857
858 if (mac_addr)
859 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
860
861 if (model && !strcasecmp(model, "TSEC"))
862 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
863 FSL_GIANFAR_DEV_HAS_COALESCE |
864 FSL_GIANFAR_DEV_HAS_RMON |
865 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
866
867 if (model && !strcasecmp(model, "eTSEC"))
868 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
869 FSL_GIANFAR_DEV_HAS_COALESCE |
870 FSL_GIANFAR_DEV_HAS_RMON |
871 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
872 FSL_GIANFAR_DEV_HAS_CSUM |
873 FSL_GIANFAR_DEV_HAS_VLAN |
874 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
875 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
876 FSL_GIANFAR_DEV_HAS_TIMER;
877
878 ctype = of_get_property(np, "phy-connection-type", NULL);
879
880 /* We only care about rgmii-id. The rest are autodetected */
881 if (ctype && !strcmp(ctype, "rgmii-id"))
882 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
883 else
884 priv->interface = PHY_INTERFACE_MODE_MII;
885
886 if (of_get_property(np, "fsl,magic-packet", NULL))
887 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
888
889 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
890
891 /* Find the TBI PHY. If it's not there, we don't support SGMII */
892 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
893
894 return 0;
895
896 err_grp_init:
897 unmap_group_regs(priv);
898 rx_alloc_failed:
899 gfar_free_rx_queues(priv);
900 tx_alloc_failed:
901 gfar_free_tx_queues(priv);
902 free_gfar_dev(priv);
903 return err;
904 }
905
906 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
907 {
908 struct hwtstamp_config config;
909 struct gfar_private *priv = netdev_priv(netdev);
910
911 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
912 return -EFAULT;
913
914 /* reserved for future extensions */
915 if (config.flags)
916 return -EINVAL;
917
918 switch (config.tx_type) {
919 case HWTSTAMP_TX_OFF:
920 priv->hwts_tx_en = 0;
921 break;
922 case HWTSTAMP_TX_ON:
923 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
924 return -ERANGE;
925 priv->hwts_tx_en = 1;
926 break;
927 default:
928 return -ERANGE;
929 }
930
931 switch (config.rx_filter) {
932 case HWTSTAMP_FILTER_NONE:
933 if (priv->hwts_rx_en) {
934 priv->hwts_rx_en = 0;
935 reset_gfar(netdev);
936 }
937 break;
938 default:
939 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
940 return -ERANGE;
941 if (!priv->hwts_rx_en) {
942 priv->hwts_rx_en = 1;
943 reset_gfar(netdev);
944 }
945 config.rx_filter = HWTSTAMP_FILTER_ALL;
946 break;
947 }
948
949 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
950 -EFAULT : 0;
951 }
952
953 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
954 {
955 struct hwtstamp_config config;
956 struct gfar_private *priv = netdev_priv(netdev);
957
958 config.flags = 0;
959 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
960 config.rx_filter = (priv->hwts_rx_en ?
961 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
962
963 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
964 -EFAULT : 0;
965 }
966
967 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
968 {
969 struct gfar_private *priv = netdev_priv(dev);
970
971 if (!netif_running(dev))
972 return -EINVAL;
973
974 if (cmd == SIOCSHWTSTAMP)
975 return gfar_hwtstamp_set(dev, rq);
976 if (cmd == SIOCGHWTSTAMP)
977 return gfar_hwtstamp_get(dev, rq);
978
979 if (!priv->phydev)
980 return -ENODEV;
981
982 return phy_mii_ioctl(priv->phydev, rq, cmd);
983 }
984
985 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
986 u32 class)
987 {
988 u32 rqfpr = FPR_FILER_MASK;
989 u32 rqfcr = 0x0;
990
991 rqfar--;
992 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
993 priv->ftp_rqfpr[rqfar] = rqfpr;
994 priv->ftp_rqfcr[rqfar] = rqfcr;
995 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
996
997 rqfar--;
998 rqfcr = RQFCR_CMP_NOMATCH;
999 priv->ftp_rqfpr[rqfar] = rqfpr;
1000 priv->ftp_rqfcr[rqfar] = rqfcr;
1001 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1002
1003 rqfar--;
1004 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1005 rqfpr = class;
1006 priv->ftp_rqfcr[rqfar] = rqfcr;
1007 priv->ftp_rqfpr[rqfar] = rqfpr;
1008 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1009
1010 rqfar--;
1011 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1012 rqfpr = class;
1013 priv->ftp_rqfcr[rqfar] = rqfcr;
1014 priv->ftp_rqfpr[rqfar] = rqfpr;
1015 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1016
1017 return rqfar;
1018 }
1019
1020 static void gfar_init_filer_table(struct gfar_private *priv)
1021 {
1022 int i = 0x0;
1023 u32 rqfar = MAX_FILER_IDX;
1024 u32 rqfcr = 0x0;
1025 u32 rqfpr = FPR_FILER_MASK;
1026
1027 /* Default rule */
1028 rqfcr = RQFCR_CMP_MATCH;
1029 priv->ftp_rqfcr[rqfar] = rqfcr;
1030 priv->ftp_rqfpr[rqfar] = rqfpr;
1031 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1032
1033 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1034 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1035 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1036 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1037 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1038 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1039
1040 /* cur_filer_idx indicated the first non-masked rule */
1041 priv->cur_filer_idx = rqfar;
1042
1043 /* Rest are masked rules */
1044 rqfcr = RQFCR_CMP_NOMATCH;
1045 for (i = 0; i < rqfar; i++) {
1046 priv->ftp_rqfcr[i] = rqfcr;
1047 priv->ftp_rqfpr[i] = rqfpr;
1048 gfar_write_filer(priv, i, rqfcr, rqfpr);
1049 }
1050 }
1051
1052 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1053 {
1054 unsigned int pvr = mfspr(SPRN_PVR);
1055 unsigned int svr = mfspr(SPRN_SVR);
1056 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1057 unsigned int rev = svr & 0xffff;
1058
1059 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1060 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1061 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1062 priv->errata |= GFAR_ERRATA_74;
1063
1064 /* MPC8313 and MPC837x all rev */
1065 if ((pvr == 0x80850010 && mod == 0x80b0) ||
1066 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1067 priv->errata |= GFAR_ERRATA_76;
1068
1069 /* MPC8313 Rev < 2.0 */
1070 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1071 priv->errata |= GFAR_ERRATA_12;
1072 }
1073
1074 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1075 {
1076 unsigned int svr = mfspr(SPRN_SVR);
1077
1078 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1079 priv->errata |= GFAR_ERRATA_12;
1080 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1081 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1082 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1083 }
1084
1085 static void gfar_detect_errata(struct gfar_private *priv)
1086 {
1087 struct device *dev = &priv->ofdev->dev;
1088
1089 /* no plans to fix */
1090 priv->errata |= GFAR_ERRATA_A002;
1091
1092 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1093 __gfar_detect_errata_85xx(priv);
1094 else /* non-mpc85xx parts, i.e. e300 core based */
1095 __gfar_detect_errata_83xx(priv);
1096
1097 if (priv->errata)
1098 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1099 priv->errata);
1100 }
1101
1102 void gfar_mac_reset(struct gfar_private *priv)
1103 {
1104 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1105 u32 tempval;
1106
1107 /* Reset MAC layer */
1108 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1109
1110 /* We need to delay at least 3 TX clocks */
1111 udelay(3);
1112
1113 /* the soft reset bit is not self-resetting, so we need to
1114 * clear it before resuming normal operation
1115 */
1116 gfar_write(&regs->maccfg1, 0);
1117
1118 udelay(3);
1119
1120 /* Compute rx_buff_size based on config flags */
1121 gfar_rx_buff_size_config(priv);
1122
1123 /* Initialize the max receive frame/buffer lengths */
1124 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1125 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1126
1127 /* Initialize the Minimum Frame Length Register */
1128 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1129
1130 /* Initialize MACCFG2. */
1131 tempval = MACCFG2_INIT_SETTINGS;
1132
1133 /* If the mtu is larger than the max size for standard
1134 * ethernet frames (ie, a jumbo frame), then set maccfg2
1135 * to allow huge frames, and to check the length
1136 */
1137 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1138 gfar_has_errata(priv, GFAR_ERRATA_74))
1139 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1140
1141 gfar_write(&regs->maccfg2, tempval);
1142
1143 /* Clear mac addr hash registers */
1144 gfar_write(&regs->igaddr0, 0);
1145 gfar_write(&regs->igaddr1, 0);
1146 gfar_write(&regs->igaddr2, 0);
1147 gfar_write(&regs->igaddr3, 0);
1148 gfar_write(&regs->igaddr4, 0);
1149 gfar_write(&regs->igaddr5, 0);
1150 gfar_write(&regs->igaddr6, 0);
1151 gfar_write(&regs->igaddr7, 0);
1152
1153 gfar_write(&regs->gaddr0, 0);
1154 gfar_write(&regs->gaddr1, 0);
1155 gfar_write(&regs->gaddr2, 0);
1156 gfar_write(&regs->gaddr3, 0);
1157 gfar_write(&regs->gaddr4, 0);
1158 gfar_write(&regs->gaddr5, 0);
1159 gfar_write(&regs->gaddr6, 0);
1160 gfar_write(&regs->gaddr7, 0);
1161
1162 if (priv->extended_hash)
1163 gfar_clear_exact_match(priv->ndev);
1164
1165 gfar_mac_rx_config(priv);
1166
1167 gfar_mac_tx_config(priv);
1168
1169 gfar_set_mac_address(priv->ndev);
1170
1171 gfar_set_multi(priv->ndev);
1172
1173 /* clear ievent and imask before configuring coalescing */
1174 gfar_ints_disable(priv);
1175
1176 /* Configure the coalescing support */
1177 gfar_configure_coalescing_all(priv);
1178 }
1179
1180 static void gfar_hw_init(struct gfar_private *priv)
1181 {
1182 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1183 u32 attrs;
1184
1185 /* Stop the DMA engine now, in case it was running before
1186 * (The firmware could have used it, and left it running).
1187 */
1188 gfar_halt(priv);
1189
1190 gfar_mac_reset(priv);
1191
1192 /* Zero out the rmon mib registers if it has them */
1193 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1194 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1195
1196 /* Mask off the CAM interrupts */
1197 gfar_write(&regs->rmon.cam1, 0xffffffff);
1198 gfar_write(&regs->rmon.cam2, 0xffffffff);
1199 }
1200
1201 /* Initialize ECNTRL */
1202 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1203
1204 /* Set the extraction length and index */
1205 attrs = ATTRELI_EL(priv->rx_stash_size) |
1206 ATTRELI_EI(priv->rx_stash_index);
1207
1208 gfar_write(&regs->attreli, attrs);
1209
1210 /* Start with defaults, and add stashing
1211 * depending on driver parameters
1212 */
1213 attrs = ATTR_INIT_SETTINGS;
1214
1215 if (priv->bd_stash_en)
1216 attrs |= ATTR_BDSTASH;
1217
1218 if (priv->rx_stash_size != 0)
1219 attrs |= ATTR_BUFSTASH;
1220
1221 gfar_write(&regs->attr, attrs);
1222
1223 /* FIFO configs */
1224 gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1225 gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1226 gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1227
1228 /* Program the interrupt steering regs, only for MG devices */
1229 if (priv->num_grps > 1)
1230 gfar_write_isrg(priv);
1231 }
1232
1233 static void __init gfar_init_addr_hash_table(struct gfar_private *priv)
1234 {
1235 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1236
1237 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1238 priv->extended_hash = 1;
1239 priv->hash_width = 9;
1240
1241 priv->hash_regs[0] = &regs->igaddr0;
1242 priv->hash_regs[1] = &regs->igaddr1;
1243 priv->hash_regs[2] = &regs->igaddr2;
1244 priv->hash_regs[3] = &regs->igaddr3;
1245 priv->hash_regs[4] = &regs->igaddr4;
1246 priv->hash_regs[5] = &regs->igaddr5;
1247 priv->hash_regs[6] = &regs->igaddr6;
1248 priv->hash_regs[7] = &regs->igaddr7;
1249 priv->hash_regs[8] = &regs->gaddr0;
1250 priv->hash_regs[9] = &regs->gaddr1;
1251 priv->hash_regs[10] = &regs->gaddr2;
1252 priv->hash_regs[11] = &regs->gaddr3;
1253 priv->hash_regs[12] = &regs->gaddr4;
1254 priv->hash_regs[13] = &regs->gaddr5;
1255 priv->hash_regs[14] = &regs->gaddr6;
1256 priv->hash_regs[15] = &regs->gaddr7;
1257
1258 } else {
1259 priv->extended_hash = 0;
1260 priv->hash_width = 8;
1261
1262 priv->hash_regs[0] = &regs->gaddr0;
1263 priv->hash_regs[1] = &regs->gaddr1;
1264 priv->hash_regs[2] = &regs->gaddr2;
1265 priv->hash_regs[3] = &regs->gaddr3;
1266 priv->hash_regs[4] = &regs->gaddr4;
1267 priv->hash_regs[5] = &regs->gaddr5;
1268 priv->hash_regs[6] = &regs->gaddr6;
1269 priv->hash_regs[7] = &regs->gaddr7;
1270 }
1271 }
1272
1273 /* Set up the ethernet device structure, private data,
1274 * and anything else we need before we start
1275 */
1276 static int gfar_probe(struct platform_device *ofdev)
1277 {
1278 struct net_device *dev = NULL;
1279 struct gfar_private *priv = NULL;
1280 int err = 0, i;
1281
1282 err = gfar_of_init(ofdev, &dev);
1283
1284 if (err)
1285 return err;
1286
1287 priv = netdev_priv(dev);
1288 priv->ndev = dev;
1289 priv->ofdev = ofdev;
1290 priv->dev = &ofdev->dev;
1291 SET_NETDEV_DEV(dev, &ofdev->dev);
1292
1293 spin_lock_init(&priv->bflock);
1294 INIT_WORK(&priv->reset_task, gfar_reset_task);
1295
1296 platform_set_drvdata(ofdev, priv);
1297
1298 gfar_detect_errata(priv);
1299
1300 /* Set the dev->base_addr to the gfar reg region */
1301 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1302
1303 /* Fill in the dev structure */
1304 dev->watchdog_timeo = TX_TIMEOUT;
1305 dev->mtu = 1500;
1306 dev->netdev_ops = &gfar_netdev_ops;
1307 dev->ethtool_ops = &gfar_ethtool_ops;
1308
1309 /* Register for napi ...We are registering NAPI for each grp */
1310 for (i = 0; i < priv->num_grps; i++) {
1311 if (priv->poll_mode == GFAR_SQ_POLLING) {
1312 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1313 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1314 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1315 gfar_poll_tx_sq, 2);
1316 } else {
1317 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1318 gfar_poll_rx, GFAR_DEV_WEIGHT);
1319 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1320 gfar_poll_tx, 2);
1321 }
1322 }
1323
1324 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1325 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1326 NETIF_F_RXCSUM;
1327 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1328 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1329 }
1330
1331 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1332 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1333 NETIF_F_HW_VLAN_CTAG_RX;
1334 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1335 }
1336
1337 gfar_init_addr_hash_table(priv);
1338
1339 /* Insert receive time stamps into padding alignment bytes */
1340 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1341 priv->padding = 8;
1342
1343 if (dev->features & NETIF_F_IP_CSUM ||
1344 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1345 dev->needed_headroom = GMAC_FCB_LEN;
1346
1347 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1348
1349 /* Initializing some of the rx/tx queue level parameters */
1350 for (i = 0; i < priv->num_tx_queues; i++) {
1351 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1352 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1353 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1354 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1355 }
1356
1357 for (i = 0; i < priv->num_rx_queues; i++) {
1358 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1359 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1360 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1361 }
1362
1363 /* always enable rx filer */
1364 priv->rx_filer_enable = 1;
1365 /* Enable most messages by default */
1366 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1367 /* use pritority h/w tx queue scheduling for single queue devices */
1368 if (priv->num_tx_queues == 1)
1369 priv->prio_sched_en = 1;
1370
1371 set_bit(GFAR_DOWN, &priv->state);
1372
1373 gfar_hw_init(priv);
1374
1375 err = register_netdev(dev);
1376
1377 if (err) {
1378 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1379 goto register_fail;
1380 }
1381
1382 /* Carrier starts down, phylib will bring it up */
1383 netif_carrier_off(dev);
1384
1385 device_init_wakeup(&dev->dev,
1386 priv->device_flags &
1387 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1388
1389 /* fill out IRQ number and name fields */
1390 for (i = 0; i < priv->num_grps; i++) {
1391 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1392 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1393 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1394 dev->name, "_g", '0' + i, "_tx");
1395 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1396 dev->name, "_g", '0' + i, "_rx");
1397 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1398 dev->name, "_g", '0' + i, "_er");
1399 } else
1400 strcpy(gfar_irq(grp, TX)->name, dev->name);
1401 }
1402
1403 /* Initialize the filer table */
1404 gfar_init_filer_table(priv);
1405
1406 /* Print out the device info */
1407 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1408
1409 /* Even more device info helps when determining which kernel
1410 * provided which set of benchmarks.
1411 */
1412 netdev_info(dev, "Running with NAPI enabled\n");
1413 for (i = 0; i < priv->num_rx_queues; i++)
1414 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1415 i, priv->rx_queue[i]->rx_ring_size);
1416 for (i = 0; i < priv->num_tx_queues; i++)
1417 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1418 i, priv->tx_queue[i]->tx_ring_size);
1419
1420 return 0;
1421
1422 register_fail:
1423 unmap_group_regs(priv);
1424 gfar_free_rx_queues(priv);
1425 gfar_free_tx_queues(priv);
1426 if (priv->phy_node)
1427 of_node_put(priv->phy_node);
1428 if (priv->tbi_node)
1429 of_node_put(priv->tbi_node);
1430 free_gfar_dev(priv);
1431 return err;
1432 }
1433
1434 static int gfar_remove(struct platform_device *ofdev)
1435 {
1436 struct gfar_private *priv = platform_get_drvdata(ofdev);
1437
1438 if (priv->phy_node)
1439 of_node_put(priv->phy_node);
1440 if (priv->tbi_node)
1441 of_node_put(priv->tbi_node);
1442
1443 unregister_netdev(priv->ndev);
1444 unmap_group_regs(priv);
1445 gfar_free_rx_queues(priv);
1446 gfar_free_tx_queues(priv);
1447 free_gfar_dev(priv);
1448
1449 return 0;
1450 }
1451
1452 #ifdef CONFIG_PM
1453
1454 static int gfar_suspend(struct device *dev)
1455 {
1456 struct gfar_private *priv = dev_get_drvdata(dev);
1457 struct net_device *ndev = priv->ndev;
1458 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1459 unsigned long flags;
1460 u32 tempval;
1461
1462 int magic_packet = priv->wol_en &&
1463 (priv->device_flags &
1464 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1465
1466 netif_device_detach(ndev);
1467
1468 if (netif_running(ndev)) {
1469
1470 local_irq_save(flags);
1471 lock_tx_qs(priv);
1472
1473 gfar_halt_nodisable(priv);
1474
1475 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1476 tempval = gfar_read(&regs->maccfg1);
1477
1478 tempval &= ~MACCFG1_TX_EN;
1479
1480 if (!magic_packet)
1481 tempval &= ~MACCFG1_RX_EN;
1482
1483 gfar_write(&regs->maccfg1, tempval);
1484
1485 unlock_tx_qs(priv);
1486 local_irq_restore(flags);
1487
1488 disable_napi(priv);
1489
1490 if (magic_packet) {
1491 /* Enable interrupt on Magic Packet */
1492 gfar_write(&regs->imask, IMASK_MAG);
1493
1494 /* Enable Magic Packet mode */
1495 tempval = gfar_read(&regs->maccfg2);
1496 tempval |= MACCFG2_MPEN;
1497 gfar_write(&regs->maccfg2, tempval);
1498 } else {
1499 phy_stop(priv->phydev);
1500 }
1501 }
1502
1503 return 0;
1504 }
1505
1506 static int gfar_resume(struct device *dev)
1507 {
1508 struct gfar_private *priv = dev_get_drvdata(dev);
1509 struct net_device *ndev = priv->ndev;
1510 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1511 unsigned long flags;
1512 u32 tempval;
1513 int magic_packet = priv->wol_en &&
1514 (priv->device_flags &
1515 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1516
1517 if (!netif_running(ndev)) {
1518 netif_device_attach(ndev);
1519 return 0;
1520 }
1521
1522 if (!magic_packet && priv->phydev)
1523 phy_start(priv->phydev);
1524
1525 /* Disable Magic Packet mode, in case something
1526 * else woke us up.
1527 */
1528 local_irq_save(flags);
1529 lock_tx_qs(priv);
1530
1531 tempval = gfar_read(&regs->maccfg2);
1532 tempval &= ~MACCFG2_MPEN;
1533 gfar_write(&regs->maccfg2, tempval);
1534
1535 gfar_start(priv);
1536
1537 unlock_tx_qs(priv);
1538 local_irq_restore(flags);
1539
1540 netif_device_attach(ndev);
1541
1542 enable_napi(priv);
1543
1544 return 0;
1545 }
1546
1547 static int gfar_restore(struct device *dev)
1548 {
1549 struct gfar_private *priv = dev_get_drvdata(dev);
1550 struct net_device *ndev = priv->ndev;
1551
1552 if (!netif_running(ndev)) {
1553 netif_device_attach(ndev);
1554
1555 return 0;
1556 }
1557
1558 if (gfar_init_bds(ndev)) {
1559 free_skb_resources(priv);
1560 return -ENOMEM;
1561 }
1562
1563 gfar_mac_reset(priv);
1564
1565 gfar_init_tx_rx_base(priv);
1566
1567 gfar_start(priv);
1568
1569 priv->oldlink = 0;
1570 priv->oldspeed = 0;
1571 priv->oldduplex = -1;
1572
1573 if (priv->phydev)
1574 phy_start(priv->phydev);
1575
1576 netif_device_attach(ndev);
1577 enable_napi(priv);
1578
1579 return 0;
1580 }
1581
1582 static struct dev_pm_ops gfar_pm_ops = {
1583 .suspend = gfar_suspend,
1584 .resume = gfar_resume,
1585 .freeze = gfar_suspend,
1586 .thaw = gfar_resume,
1587 .restore = gfar_restore,
1588 };
1589
1590 #define GFAR_PM_OPS (&gfar_pm_ops)
1591
1592 #else
1593
1594 #define GFAR_PM_OPS NULL
1595
1596 #endif
1597
1598 /* Reads the controller's registers to determine what interface
1599 * connects it to the PHY.
1600 */
1601 static phy_interface_t gfar_get_interface(struct net_device *dev)
1602 {
1603 struct gfar_private *priv = netdev_priv(dev);
1604 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1605 u32 ecntrl;
1606
1607 ecntrl = gfar_read(&regs->ecntrl);
1608
1609 if (ecntrl & ECNTRL_SGMII_MODE)
1610 return PHY_INTERFACE_MODE_SGMII;
1611
1612 if (ecntrl & ECNTRL_TBI_MODE) {
1613 if (ecntrl & ECNTRL_REDUCED_MODE)
1614 return PHY_INTERFACE_MODE_RTBI;
1615 else
1616 return PHY_INTERFACE_MODE_TBI;
1617 }
1618
1619 if (ecntrl & ECNTRL_REDUCED_MODE) {
1620 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1621 return PHY_INTERFACE_MODE_RMII;
1622 }
1623 else {
1624 phy_interface_t interface = priv->interface;
1625
1626 /* This isn't autodetected right now, so it must
1627 * be set by the device tree or platform code.
1628 */
1629 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1630 return PHY_INTERFACE_MODE_RGMII_ID;
1631
1632 return PHY_INTERFACE_MODE_RGMII;
1633 }
1634 }
1635
1636 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1637 return PHY_INTERFACE_MODE_GMII;
1638
1639 return PHY_INTERFACE_MODE_MII;
1640 }
1641
1642
1643 /* Initializes driver's PHY state, and attaches to the PHY.
1644 * Returns 0 on success.
1645 */
1646 static int init_phy(struct net_device *dev)
1647 {
1648 struct gfar_private *priv = netdev_priv(dev);
1649 uint gigabit_support =
1650 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1651 GFAR_SUPPORTED_GBIT : 0;
1652 phy_interface_t interface;
1653
1654 priv->oldlink = 0;
1655 priv->oldspeed = 0;
1656 priv->oldduplex = -1;
1657
1658 interface = gfar_get_interface(dev);
1659
1660 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1661 interface);
1662 if (!priv->phydev)
1663 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1664 interface);
1665 if (!priv->phydev) {
1666 dev_err(&dev->dev, "could not attach to PHY\n");
1667 return -ENODEV;
1668 }
1669
1670 if (interface == PHY_INTERFACE_MODE_SGMII)
1671 gfar_configure_serdes(dev);
1672
1673 /* Remove any features not supported by the controller */
1674 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1675 priv->phydev->advertising = priv->phydev->supported;
1676
1677 return 0;
1678 }
1679
1680 /* Initialize TBI PHY interface for communicating with the
1681 * SERDES lynx PHY on the chip. We communicate with this PHY
1682 * through the MDIO bus on each controller, treating it as a
1683 * "normal" PHY at the address found in the TBIPA register. We assume
1684 * that the TBIPA register is valid. Either the MDIO bus code will set
1685 * it to a value that doesn't conflict with other PHYs on the bus, or the
1686 * value doesn't matter, as there are no other PHYs on the bus.
1687 */
1688 static void gfar_configure_serdes(struct net_device *dev)
1689 {
1690 struct gfar_private *priv = netdev_priv(dev);
1691 struct phy_device *tbiphy;
1692
1693 if (!priv->tbi_node) {
1694 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1695 "device tree specify a tbi-handle\n");
1696 return;
1697 }
1698
1699 tbiphy = of_phy_find_device(priv->tbi_node);
1700 if (!tbiphy) {
1701 dev_err(&dev->dev, "error: Could not get TBI device\n");
1702 return;
1703 }
1704
1705 /* If the link is already up, we must already be ok, and don't need to
1706 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1707 * everything for us? Resetting it takes the link down and requires
1708 * several seconds for it to come back.
1709 */
1710 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1711 return;
1712
1713 /* Single clk mode, mii mode off(for serdes communication) */
1714 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1715
1716 phy_write(tbiphy, MII_ADVERTISE,
1717 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1718 ADVERTISE_1000XPSE_ASYM);
1719
1720 phy_write(tbiphy, MII_BMCR,
1721 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1722 BMCR_SPEED1000);
1723 }
1724
1725 static int __gfar_is_rx_idle(struct gfar_private *priv)
1726 {
1727 u32 res;
1728
1729 /* Normaly TSEC should not hang on GRS commands, so we should
1730 * actually wait for IEVENT_GRSC flag.
1731 */
1732 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1733 return 0;
1734
1735 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1736 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1737 * and the Rx can be safely reset.
1738 */
1739 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1740 res &= 0x7f807f80;
1741 if ((res & 0xffff) == (res >> 16))
1742 return 1;
1743
1744 return 0;
1745 }
1746
1747 /* Halt the receive and transmit queues */
1748 static void gfar_halt_nodisable(struct gfar_private *priv)
1749 {
1750 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1751 u32 tempval;
1752
1753 gfar_ints_disable(priv);
1754
1755 /* Stop the DMA, and wait for it to stop */
1756 tempval = gfar_read(&regs->dmactrl);
1757 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1758 (DMACTRL_GRS | DMACTRL_GTS)) {
1759 int ret;
1760
1761 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1762 gfar_write(&regs->dmactrl, tempval);
1763
1764 do {
1765 ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1766 (IEVENT_GRSC | IEVENT_GTSC)) ==
1767 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1768 if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1769 ret = __gfar_is_rx_idle(priv);
1770 } while (!ret);
1771 }
1772 }
1773
1774 /* Halt the receive and transmit queues */
1775 void gfar_halt(struct gfar_private *priv)
1776 {
1777 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1778 u32 tempval;
1779
1780 /* Dissable the Rx/Tx hw queues */
1781 gfar_write(&regs->rqueue, 0);
1782 gfar_write(&regs->tqueue, 0);
1783
1784 mdelay(10);
1785
1786 gfar_halt_nodisable(priv);
1787
1788 /* Disable Rx/Tx DMA */
1789 tempval = gfar_read(&regs->maccfg1);
1790 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1791 gfar_write(&regs->maccfg1, tempval);
1792 }
1793
1794 void stop_gfar(struct net_device *dev)
1795 {
1796 struct gfar_private *priv = netdev_priv(dev);
1797
1798 netif_tx_stop_all_queues(dev);
1799
1800 smp_mb__before_atomic();
1801 set_bit(GFAR_DOWN, &priv->state);
1802 smp_mb__after_atomic();
1803
1804 disable_napi(priv);
1805
1806 /* disable ints and gracefully shut down Rx/Tx DMA */
1807 gfar_halt(priv);
1808
1809 phy_stop(priv->phydev);
1810
1811 free_skb_resources(priv);
1812 }
1813
1814 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1815 {
1816 struct txbd8 *txbdp;
1817 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1818 int i, j;
1819
1820 txbdp = tx_queue->tx_bd_base;
1821
1822 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1823 if (!tx_queue->tx_skbuff[i])
1824 continue;
1825
1826 dma_unmap_single(priv->dev, txbdp->bufPtr,
1827 txbdp->length, DMA_TO_DEVICE);
1828 txbdp->lstatus = 0;
1829 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1830 j++) {
1831 txbdp++;
1832 dma_unmap_page(priv->dev, txbdp->bufPtr,
1833 txbdp->length, DMA_TO_DEVICE);
1834 }
1835 txbdp++;
1836 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1837 tx_queue->tx_skbuff[i] = NULL;
1838 }
1839 kfree(tx_queue->tx_skbuff);
1840 tx_queue->tx_skbuff = NULL;
1841 }
1842
1843 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1844 {
1845 struct rxbd8 *rxbdp;
1846 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1847 int i;
1848
1849 rxbdp = rx_queue->rx_bd_base;
1850
1851 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1852 if (rx_queue->rx_skbuff[i]) {
1853 dma_unmap_single(priv->dev, rxbdp->bufPtr,
1854 priv->rx_buffer_size,
1855 DMA_FROM_DEVICE);
1856 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1857 rx_queue->rx_skbuff[i] = NULL;
1858 }
1859 rxbdp->lstatus = 0;
1860 rxbdp->bufPtr = 0;
1861 rxbdp++;
1862 }
1863 kfree(rx_queue->rx_skbuff);
1864 rx_queue->rx_skbuff = NULL;
1865 }
1866
1867 /* If there are any tx skbs or rx skbs still around, free them.
1868 * Then free tx_skbuff and rx_skbuff
1869 */
1870 static void free_skb_resources(struct gfar_private *priv)
1871 {
1872 struct gfar_priv_tx_q *tx_queue = NULL;
1873 struct gfar_priv_rx_q *rx_queue = NULL;
1874 int i;
1875
1876 /* Go through all the buffer descriptors and free their data buffers */
1877 for (i = 0; i < priv->num_tx_queues; i++) {
1878 struct netdev_queue *txq;
1879
1880 tx_queue = priv->tx_queue[i];
1881 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1882 if (tx_queue->tx_skbuff)
1883 free_skb_tx_queue(tx_queue);
1884 netdev_tx_reset_queue(txq);
1885 }
1886
1887 for (i = 0; i < priv->num_rx_queues; i++) {
1888 rx_queue = priv->rx_queue[i];
1889 if (rx_queue->rx_skbuff)
1890 free_skb_rx_queue(rx_queue);
1891 }
1892
1893 dma_free_coherent(priv->dev,
1894 sizeof(struct txbd8) * priv->total_tx_ring_size +
1895 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1896 priv->tx_queue[0]->tx_bd_base,
1897 priv->tx_queue[0]->tx_bd_dma_base);
1898 }
1899
1900 void gfar_start(struct gfar_private *priv)
1901 {
1902 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1903 u32 tempval;
1904 int i = 0;
1905
1906 /* Enable Rx/Tx hw queues */
1907 gfar_write(&regs->rqueue, priv->rqueue);
1908 gfar_write(&regs->tqueue, priv->tqueue);
1909
1910 /* Initialize DMACTRL to have WWR and WOP */
1911 tempval = gfar_read(&regs->dmactrl);
1912 tempval |= DMACTRL_INIT_SETTINGS;
1913 gfar_write(&regs->dmactrl, tempval);
1914
1915 /* Make sure we aren't stopped */
1916 tempval = gfar_read(&regs->dmactrl);
1917 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1918 gfar_write(&regs->dmactrl, tempval);
1919
1920 for (i = 0; i < priv->num_grps; i++) {
1921 regs = priv->gfargrp[i].regs;
1922 /* Clear THLT/RHLT, so that the DMA starts polling now */
1923 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1924 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1925 }
1926
1927 /* Enable Rx/Tx DMA */
1928 tempval = gfar_read(&regs->maccfg1);
1929 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1930 gfar_write(&regs->maccfg1, tempval);
1931
1932 gfar_ints_enable(priv);
1933
1934 priv->ndev->trans_start = jiffies; /* prevent tx timeout */
1935 }
1936
1937 static void free_grp_irqs(struct gfar_priv_grp *grp)
1938 {
1939 free_irq(gfar_irq(grp, TX)->irq, grp);
1940 free_irq(gfar_irq(grp, RX)->irq, grp);
1941 free_irq(gfar_irq(grp, ER)->irq, grp);
1942 }
1943
1944 static int register_grp_irqs(struct gfar_priv_grp *grp)
1945 {
1946 struct gfar_private *priv = grp->priv;
1947 struct net_device *dev = priv->ndev;
1948 int err;
1949
1950 /* If the device has multiple interrupts, register for
1951 * them. Otherwise, only register for the one
1952 */
1953 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1954 /* Install our interrupt handlers for Error,
1955 * Transmit, and Receive
1956 */
1957 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1958 gfar_irq(grp, ER)->name, grp);
1959 if (err < 0) {
1960 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1961 gfar_irq(grp, ER)->irq);
1962
1963 goto err_irq_fail;
1964 }
1965 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1966 gfar_irq(grp, TX)->name, grp);
1967 if (err < 0) {
1968 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1969 gfar_irq(grp, TX)->irq);
1970 goto tx_irq_fail;
1971 }
1972 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1973 gfar_irq(grp, RX)->name, grp);
1974 if (err < 0) {
1975 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1976 gfar_irq(grp, RX)->irq);
1977 goto rx_irq_fail;
1978 }
1979 } else {
1980 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1981 gfar_irq(grp, TX)->name, grp);
1982 if (err < 0) {
1983 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1984 gfar_irq(grp, TX)->irq);
1985 goto err_irq_fail;
1986 }
1987 }
1988
1989 return 0;
1990
1991 rx_irq_fail:
1992 free_irq(gfar_irq(grp, TX)->irq, grp);
1993 tx_irq_fail:
1994 free_irq(gfar_irq(grp, ER)->irq, grp);
1995 err_irq_fail:
1996 return err;
1997
1998 }
1999
2000 static void gfar_free_irq(struct gfar_private *priv)
2001 {
2002 int i;
2003
2004 /* Free the IRQs */
2005 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2006 for (i = 0; i < priv->num_grps; i++)
2007 free_grp_irqs(&priv->gfargrp[i]);
2008 } else {
2009 for (i = 0; i < priv->num_grps; i++)
2010 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2011 &priv->gfargrp[i]);
2012 }
2013 }
2014
2015 static int gfar_request_irq(struct gfar_private *priv)
2016 {
2017 int err, i, j;
2018
2019 for (i = 0; i < priv->num_grps; i++) {
2020 err = register_grp_irqs(&priv->gfargrp[i]);
2021 if (err) {
2022 for (j = 0; j < i; j++)
2023 free_grp_irqs(&priv->gfargrp[j]);
2024 return err;
2025 }
2026 }
2027
2028 return 0;
2029 }
2030
2031 /* Bring the controller up and running */
2032 int startup_gfar(struct net_device *ndev)
2033 {
2034 struct gfar_private *priv = netdev_priv(ndev);
2035 int err;
2036
2037 gfar_mac_reset(priv);
2038
2039 err = gfar_alloc_skb_resources(ndev);
2040 if (err)
2041 return err;
2042
2043 gfar_init_tx_rx_base(priv);
2044
2045 smp_mb__before_atomic();
2046 clear_bit(GFAR_DOWN, &priv->state);
2047 smp_mb__after_atomic();
2048
2049 /* Start Rx/Tx DMA and enable the interrupts */
2050 gfar_start(priv);
2051
2052 phy_start(priv->phydev);
2053
2054 enable_napi(priv);
2055
2056 netif_tx_wake_all_queues(ndev);
2057
2058 return 0;
2059 }
2060
2061 /* Called when something needs to use the ethernet device
2062 * Returns 0 for success.
2063 */
2064 static int gfar_enet_open(struct net_device *dev)
2065 {
2066 struct gfar_private *priv = netdev_priv(dev);
2067 int err;
2068
2069 err = init_phy(dev);
2070 if (err)
2071 return err;
2072
2073 err = gfar_request_irq(priv);
2074 if (err)
2075 return err;
2076
2077 err = startup_gfar(dev);
2078 if (err)
2079 return err;
2080
2081 device_set_wakeup_enable(&dev->dev, priv->wol_en);
2082
2083 return err;
2084 }
2085
2086 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2087 {
2088 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2089
2090 memset(fcb, 0, GMAC_FCB_LEN);
2091
2092 return fcb;
2093 }
2094
2095 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2096 int fcb_length)
2097 {
2098 /* If we're here, it's a IP packet with a TCP or UDP
2099 * payload. We set it to checksum, using a pseudo-header
2100 * we provide
2101 */
2102 u8 flags = TXFCB_DEFAULT;
2103
2104 /* Tell the controller what the protocol is
2105 * And provide the already calculated phcs
2106 */
2107 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2108 flags |= TXFCB_UDP;
2109 fcb->phcs = udp_hdr(skb)->check;
2110 } else
2111 fcb->phcs = tcp_hdr(skb)->check;
2112
2113 /* l3os is the distance between the start of the
2114 * frame (skb->data) and the start of the IP hdr.
2115 * l4os is the distance between the start of the
2116 * l3 hdr and the l4 hdr
2117 */
2118 fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2119 fcb->l4os = skb_network_header_len(skb);
2120
2121 fcb->flags = flags;
2122 }
2123
2124 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2125 {
2126 fcb->flags |= TXFCB_VLN;
2127 fcb->vlctl = vlan_tx_tag_get(skb);
2128 }
2129
2130 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2131 struct txbd8 *base, int ring_size)
2132 {
2133 struct txbd8 *new_bd = bdp + stride;
2134
2135 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2136 }
2137
2138 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2139 int ring_size)
2140 {
2141 return skip_txbd(bdp, 1, base, ring_size);
2142 }
2143
2144 /* eTSEC12: csum generation not supported for some fcb offsets */
2145 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2146 unsigned long fcb_addr)
2147 {
2148 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2149 (fcb_addr % 0x20) > 0x18);
2150 }
2151
2152 /* eTSEC76: csum generation for frames larger than 2500 may
2153 * cause excess delays before start of transmission
2154 */
2155 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2156 unsigned int len)
2157 {
2158 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2159 (len > 2500));
2160 }
2161
2162 /* This is called by the kernel when a frame is ready for transmission.
2163 * It is pointed to by the dev->hard_start_xmit function pointer
2164 */
2165 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2166 {
2167 struct gfar_private *priv = netdev_priv(dev);
2168 struct gfar_priv_tx_q *tx_queue = NULL;
2169 struct netdev_queue *txq;
2170 struct gfar __iomem *regs = NULL;
2171 struct txfcb *fcb = NULL;
2172 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2173 u32 lstatus;
2174 int i, rq = 0;
2175 int do_tstamp, do_csum, do_vlan;
2176 u32 bufaddr;
2177 unsigned long flags;
2178 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2179
2180 rq = skb->queue_mapping;
2181 tx_queue = priv->tx_queue[rq];
2182 txq = netdev_get_tx_queue(dev, rq);
2183 base = tx_queue->tx_bd_base;
2184 regs = tx_queue->grp->regs;
2185
2186 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2187 do_vlan = vlan_tx_tag_present(skb);
2188 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2189 priv->hwts_tx_en;
2190
2191 if (do_csum || do_vlan)
2192 fcb_len = GMAC_FCB_LEN;
2193
2194 /* check if time stamp should be generated */
2195 if (unlikely(do_tstamp))
2196 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2197
2198 /* make space for additional header when fcb is needed */
2199 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2200 struct sk_buff *skb_new;
2201
2202 skb_new = skb_realloc_headroom(skb, fcb_len);
2203 if (!skb_new) {
2204 dev->stats.tx_errors++;
2205 dev_kfree_skb_any(skb);
2206 return NETDEV_TX_OK;
2207 }
2208
2209 if (skb->sk)
2210 skb_set_owner_w(skb_new, skb->sk);
2211 dev_consume_skb_any(skb);
2212 skb = skb_new;
2213 }
2214
2215 /* total number of fragments in the SKB */
2216 nr_frags = skb_shinfo(skb)->nr_frags;
2217
2218 /* calculate the required number of TxBDs for this skb */
2219 if (unlikely(do_tstamp))
2220 nr_txbds = nr_frags + 2;
2221 else
2222 nr_txbds = nr_frags + 1;
2223
2224 /* check if there is space to queue this packet */
2225 if (nr_txbds > tx_queue->num_txbdfree) {
2226 /* no space, stop the queue */
2227 netif_tx_stop_queue(txq);
2228 dev->stats.tx_fifo_errors++;
2229 return NETDEV_TX_BUSY;
2230 }
2231
2232 /* Update transmit stats */
2233 bytes_sent = skb->len;
2234 tx_queue->stats.tx_bytes += bytes_sent;
2235 /* keep Tx bytes on wire for BQL accounting */
2236 GFAR_CB(skb)->bytes_sent = bytes_sent;
2237 tx_queue->stats.tx_packets++;
2238
2239 txbdp = txbdp_start = tx_queue->cur_tx;
2240 lstatus = txbdp->lstatus;
2241
2242 /* Time stamp insertion requires one additional TxBD */
2243 if (unlikely(do_tstamp))
2244 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2245 tx_queue->tx_ring_size);
2246
2247 if (nr_frags == 0) {
2248 if (unlikely(do_tstamp))
2249 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2250 TXBD_INTERRUPT);
2251 else
2252 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2253 } else {
2254 /* Place the fragment addresses and lengths into the TxBDs */
2255 for (i = 0; i < nr_frags; i++) {
2256 unsigned int frag_len;
2257 /* Point at the next BD, wrapping as needed */
2258 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2259
2260 frag_len = skb_shinfo(skb)->frags[i].size;
2261
2262 lstatus = txbdp->lstatus | frag_len |
2263 BD_LFLAG(TXBD_READY);
2264
2265 /* Handle the last BD specially */
2266 if (i == nr_frags - 1)
2267 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2268
2269 bufaddr = skb_frag_dma_map(priv->dev,
2270 &skb_shinfo(skb)->frags[i],
2271 0,
2272 frag_len,
2273 DMA_TO_DEVICE);
2274
2275 /* set the TxBD length and buffer pointer */
2276 txbdp->bufPtr = bufaddr;
2277 txbdp->lstatus = lstatus;
2278 }
2279
2280 lstatus = txbdp_start->lstatus;
2281 }
2282
2283 /* Add TxPAL between FCB and frame if required */
2284 if (unlikely(do_tstamp)) {
2285 skb_push(skb, GMAC_TXPAL_LEN);
2286 memset(skb->data, 0, GMAC_TXPAL_LEN);
2287 }
2288
2289 /* Add TxFCB if required */
2290 if (fcb_len) {
2291 fcb = gfar_add_fcb(skb);
2292 lstatus |= BD_LFLAG(TXBD_TOE);
2293 }
2294
2295 /* Set up checksumming */
2296 if (do_csum) {
2297 gfar_tx_checksum(skb, fcb, fcb_len);
2298
2299 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2300 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2301 __skb_pull(skb, GMAC_FCB_LEN);
2302 skb_checksum_help(skb);
2303 if (do_vlan || do_tstamp) {
2304 /* put back a new fcb for vlan/tstamp TOE */
2305 fcb = gfar_add_fcb(skb);
2306 } else {
2307 /* Tx TOE not used */
2308 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2309 fcb = NULL;
2310 }
2311 }
2312 }
2313
2314 if (do_vlan)
2315 gfar_tx_vlan(skb, fcb);
2316
2317 /* Setup tx hardware time stamping if requested */
2318 if (unlikely(do_tstamp)) {
2319 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2320 fcb->ptp = 1;
2321 }
2322
2323 txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2324 skb_headlen(skb), DMA_TO_DEVICE);
2325
2326 /* If time stamping is requested one additional TxBD must be set up. The
2327 * first TxBD points to the FCB and must have a data length of
2328 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2329 * the full frame length.
2330 */
2331 if (unlikely(do_tstamp)) {
2332 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2333 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2334 (skb_headlen(skb) - fcb_len);
2335 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2336 } else {
2337 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2338 }
2339
2340 netdev_tx_sent_queue(txq, bytes_sent);
2341
2342 /* We can work in parallel with gfar_clean_tx_ring(), except
2343 * when modifying num_txbdfree. Note that we didn't grab the lock
2344 * when we were reading the num_txbdfree and checking for available
2345 * space, that's because outside of this function it can only grow,
2346 * and once we've got needed space, it cannot suddenly disappear.
2347 *
2348 * The lock also protects us from gfar_error(), which can modify
2349 * regs->tstat and thus retrigger the transfers, which is why we
2350 * also must grab the lock before setting ready bit for the first
2351 * to be transmitted BD.
2352 */
2353 spin_lock_irqsave(&tx_queue->txlock, flags);
2354
2355 /* The powerpc-specific eieio() is used, as wmb() has too strong
2356 * semantics (it requires synchronization between cacheable and
2357 * uncacheable mappings, which eieio doesn't provide and which we
2358 * don't need), thus requiring a more expensive sync instruction. At
2359 * some point, the set of architecture-independent barrier functions
2360 * should be expanded to include weaker barriers.
2361 */
2362 eieio();
2363
2364 txbdp_start->lstatus = lstatus;
2365
2366 eieio(); /* force lstatus write before tx_skbuff */
2367
2368 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2369
2370 /* Update the current skb pointer to the next entry we will use
2371 * (wrapping if necessary)
2372 */
2373 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2374 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2375
2376 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2377
2378 /* reduce TxBD free count */
2379 tx_queue->num_txbdfree -= (nr_txbds);
2380
2381 /* If the next BD still needs to be cleaned up, then the bds
2382 * are full. We need to tell the kernel to stop sending us stuff.
2383 */
2384 if (!tx_queue->num_txbdfree) {
2385 netif_tx_stop_queue(txq);
2386
2387 dev->stats.tx_fifo_errors++;
2388 }
2389
2390 /* Tell the DMA to go go go */
2391 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2392
2393 /* Unlock priv */
2394 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2395
2396 return NETDEV_TX_OK;
2397 }
2398
2399 /* Stops the kernel queue, and halts the controller */
2400 static int gfar_close(struct net_device *dev)
2401 {
2402 struct gfar_private *priv = netdev_priv(dev);
2403
2404 cancel_work_sync(&priv->reset_task);
2405 stop_gfar(dev);
2406
2407 /* Disconnect from the PHY */
2408 phy_disconnect(priv->phydev);
2409 priv->phydev = NULL;
2410
2411 gfar_free_irq(priv);
2412
2413 return 0;
2414 }
2415
2416 /* Changes the mac address if the controller is not running. */
2417 static int gfar_set_mac_address(struct net_device *dev)
2418 {
2419 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2420
2421 return 0;
2422 }
2423
2424 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2425 {
2426 struct gfar_private *priv = netdev_priv(dev);
2427 int frame_size = new_mtu + ETH_HLEN;
2428
2429 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2430 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2431 return -EINVAL;
2432 }
2433
2434 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2435 cpu_relax();
2436
2437 if (dev->flags & IFF_UP)
2438 stop_gfar(dev);
2439
2440 dev->mtu = new_mtu;
2441
2442 if (dev->flags & IFF_UP)
2443 startup_gfar(dev);
2444
2445 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2446
2447 return 0;
2448 }
2449
2450 void reset_gfar(struct net_device *ndev)
2451 {
2452 struct gfar_private *priv = netdev_priv(ndev);
2453
2454 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2455 cpu_relax();
2456
2457 stop_gfar(ndev);
2458 startup_gfar(ndev);
2459
2460 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2461 }
2462
2463 /* gfar_reset_task gets scheduled when a packet has not been
2464 * transmitted after a set amount of time.
2465 * For now, assume that clearing out all the structures, and
2466 * starting over will fix the problem.
2467 */
2468 static void gfar_reset_task(struct work_struct *work)
2469 {
2470 struct gfar_private *priv = container_of(work, struct gfar_private,
2471 reset_task);
2472 reset_gfar(priv->ndev);
2473 }
2474
2475 static void gfar_timeout(struct net_device *dev)
2476 {
2477 struct gfar_private *priv = netdev_priv(dev);
2478
2479 dev->stats.tx_errors++;
2480 schedule_work(&priv->reset_task);
2481 }
2482
2483 static void gfar_align_skb(struct sk_buff *skb)
2484 {
2485 /* We need the data buffer to be aligned properly. We will reserve
2486 * as many bytes as needed to align the data properly
2487 */
2488 skb_reserve(skb, RXBUF_ALIGNMENT -
2489 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2490 }
2491
2492 /* Interrupt Handler for Transmit complete */
2493 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2494 {
2495 struct net_device *dev = tx_queue->dev;
2496 struct netdev_queue *txq;
2497 struct gfar_private *priv = netdev_priv(dev);
2498 struct txbd8 *bdp, *next = NULL;
2499 struct txbd8 *lbdp = NULL;
2500 struct txbd8 *base = tx_queue->tx_bd_base;
2501 struct sk_buff *skb;
2502 int skb_dirtytx;
2503 int tx_ring_size = tx_queue->tx_ring_size;
2504 int frags = 0, nr_txbds = 0;
2505 int i;
2506 int howmany = 0;
2507 int tqi = tx_queue->qindex;
2508 unsigned int bytes_sent = 0;
2509 u32 lstatus;
2510 size_t buflen;
2511
2512 txq = netdev_get_tx_queue(dev, tqi);
2513 bdp = tx_queue->dirty_tx;
2514 skb_dirtytx = tx_queue->skb_dirtytx;
2515
2516 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2517 unsigned long flags;
2518
2519 frags = skb_shinfo(skb)->nr_frags;
2520
2521 /* When time stamping, one additional TxBD must be freed.
2522 * Also, we need to dma_unmap_single() the TxPAL.
2523 */
2524 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2525 nr_txbds = frags + 2;
2526 else
2527 nr_txbds = frags + 1;
2528
2529 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2530
2531 lstatus = lbdp->lstatus;
2532
2533 /* Only clean completed frames */
2534 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2535 (lstatus & BD_LENGTH_MASK))
2536 break;
2537
2538 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2539 next = next_txbd(bdp, base, tx_ring_size);
2540 buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2541 } else
2542 buflen = bdp->length;
2543
2544 dma_unmap_single(priv->dev, bdp->bufPtr,
2545 buflen, DMA_TO_DEVICE);
2546
2547 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2548 struct skb_shared_hwtstamps shhwtstamps;
2549 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2550
2551 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2552 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2553 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2554 skb_tstamp_tx(skb, &shhwtstamps);
2555 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2556 bdp = next;
2557 }
2558
2559 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2560 bdp = next_txbd(bdp, base, tx_ring_size);
2561
2562 for (i = 0; i < frags; i++) {
2563 dma_unmap_page(priv->dev, bdp->bufPtr,
2564 bdp->length, DMA_TO_DEVICE);
2565 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2566 bdp = next_txbd(bdp, base, tx_ring_size);
2567 }
2568
2569 bytes_sent += GFAR_CB(skb)->bytes_sent;
2570
2571 dev_kfree_skb_any(skb);
2572
2573 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2574
2575 skb_dirtytx = (skb_dirtytx + 1) &
2576 TX_RING_MOD_MASK(tx_ring_size);
2577
2578 howmany++;
2579 spin_lock_irqsave(&tx_queue->txlock, flags);
2580 tx_queue->num_txbdfree += nr_txbds;
2581 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2582 }
2583
2584 /* If we freed a buffer, we can restart transmission, if necessary */
2585 if (tx_queue->num_txbdfree &&
2586 netif_tx_queue_stopped(txq) &&
2587 !(test_bit(GFAR_DOWN, &priv->state)))
2588 netif_wake_subqueue(priv->ndev, tqi);
2589
2590 /* Update dirty indicators */
2591 tx_queue->skb_dirtytx = skb_dirtytx;
2592 tx_queue->dirty_tx = bdp;
2593
2594 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2595 }
2596
2597 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2598 struct sk_buff *skb)
2599 {
2600 struct net_device *dev = rx_queue->dev;
2601 struct gfar_private *priv = netdev_priv(dev);
2602 dma_addr_t buf;
2603
2604 buf = dma_map_single(priv->dev, skb->data,
2605 priv->rx_buffer_size, DMA_FROM_DEVICE);
2606 gfar_init_rxbdp(rx_queue, bdp, buf);
2607 }
2608
2609 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2610 {
2611 struct gfar_private *priv = netdev_priv(dev);
2612 struct sk_buff *skb;
2613
2614 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2615 if (!skb)
2616 return NULL;
2617
2618 gfar_align_skb(skb);
2619
2620 return skb;
2621 }
2622
2623 struct sk_buff *gfar_new_skb(struct net_device *dev)
2624 {
2625 return gfar_alloc_skb(dev);
2626 }
2627
2628 static inline void count_errors(unsigned short status, struct net_device *dev)
2629 {
2630 struct gfar_private *priv = netdev_priv(dev);
2631 struct net_device_stats *stats = &dev->stats;
2632 struct gfar_extra_stats *estats = &priv->extra_stats;
2633
2634 /* If the packet was truncated, none of the other errors matter */
2635 if (status & RXBD_TRUNCATED) {
2636 stats->rx_length_errors++;
2637
2638 atomic64_inc(&estats->rx_trunc);
2639
2640 return;
2641 }
2642 /* Count the errors, if there were any */
2643 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2644 stats->rx_length_errors++;
2645
2646 if (status & RXBD_LARGE)
2647 atomic64_inc(&estats->rx_large);
2648 else
2649 atomic64_inc(&estats->rx_short);
2650 }
2651 if (status & RXBD_NONOCTET) {
2652 stats->rx_frame_errors++;
2653 atomic64_inc(&estats->rx_nonoctet);
2654 }
2655 if (status & RXBD_CRCERR) {
2656 atomic64_inc(&estats->rx_crcerr);
2657 stats->rx_crc_errors++;
2658 }
2659 if (status & RXBD_OVERRUN) {
2660 atomic64_inc(&estats->rx_overrun);
2661 stats->rx_crc_errors++;
2662 }
2663 }
2664
2665 irqreturn_t gfar_receive(int irq, void *grp_id)
2666 {
2667 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2668 unsigned long flags;
2669 u32 imask;
2670
2671 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2672 spin_lock_irqsave(&grp->grplock, flags);
2673 imask = gfar_read(&grp->regs->imask);
2674 imask &= IMASK_RX_DISABLED;
2675 gfar_write(&grp->regs->imask, imask);
2676 spin_unlock_irqrestore(&grp->grplock, flags);
2677 __napi_schedule(&grp->napi_rx);
2678 } else {
2679 /* Clear IEVENT, so interrupts aren't called again
2680 * because of the packets that have already arrived.
2681 */
2682 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2683 }
2684
2685 return IRQ_HANDLED;
2686 }
2687
2688 /* Interrupt Handler for Transmit complete */
2689 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2690 {
2691 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2692 unsigned long flags;
2693 u32 imask;
2694
2695 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2696 spin_lock_irqsave(&grp->grplock, flags);
2697 imask = gfar_read(&grp->regs->imask);
2698 imask &= IMASK_TX_DISABLED;
2699 gfar_write(&grp->regs->imask, imask);
2700 spin_unlock_irqrestore(&grp->grplock, flags);
2701 __napi_schedule(&grp->napi_tx);
2702 } else {
2703 /* Clear IEVENT, so interrupts aren't called again
2704 * because of the packets that have already arrived.
2705 */
2706 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2707 }
2708
2709 return IRQ_HANDLED;
2710 }
2711
2712 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2713 {
2714 /* If valid headers were found, and valid sums
2715 * were verified, then we tell the kernel that no
2716 * checksumming is necessary. Otherwise, it is [FIXME]
2717 */
2718 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2719 skb->ip_summed = CHECKSUM_UNNECESSARY;
2720 else
2721 skb_checksum_none_assert(skb);
2722 }
2723
2724
2725 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2726 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2727 int amount_pull, struct napi_struct *napi)
2728 {
2729 struct gfar_private *priv = netdev_priv(dev);
2730 struct rxfcb *fcb = NULL;
2731
2732 /* fcb is at the beginning if exists */
2733 fcb = (struct rxfcb *)skb->data;
2734
2735 /* Remove the FCB from the skb
2736 * Remove the padded bytes, if there are any
2737 */
2738 if (amount_pull) {
2739 skb_record_rx_queue(skb, fcb->rq);
2740 skb_pull(skb, amount_pull);
2741 }
2742
2743 /* Get receive timestamp from the skb */
2744 if (priv->hwts_rx_en) {
2745 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2746 u64 *ns = (u64 *) skb->data;
2747
2748 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2749 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2750 }
2751
2752 if (priv->padding)
2753 skb_pull(skb, priv->padding);
2754
2755 if (dev->features & NETIF_F_RXCSUM)
2756 gfar_rx_checksum(skb, fcb);
2757
2758 /* Tell the skb what kind of packet this is */
2759 skb->protocol = eth_type_trans(skb, dev);
2760
2761 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2762 * Even if vlan rx accel is disabled, on some chips
2763 * RXFCB_VLN is pseudo randomly set.
2764 */
2765 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2766 fcb->flags & RXFCB_VLN)
2767 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2768
2769 /* Send the packet up the stack */
2770 napi_gro_receive(napi, skb);
2771
2772 }
2773
2774 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2775 * until the budget/quota has been reached. Returns the number
2776 * of frames handled
2777 */
2778 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2779 {
2780 struct net_device *dev = rx_queue->dev;
2781 struct rxbd8 *bdp, *base;
2782 struct sk_buff *skb;
2783 int pkt_len;
2784 int amount_pull;
2785 int howmany = 0;
2786 struct gfar_private *priv = netdev_priv(dev);
2787
2788 /* Get the first full descriptor */
2789 bdp = rx_queue->cur_rx;
2790 base = rx_queue->rx_bd_base;
2791
2792 amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2793
2794 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2795 struct sk_buff *newskb;
2796
2797 rmb();
2798
2799 /* Add another skb for the future */
2800 newskb = gfar_new_skb(dev);
2801
2802 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2803
2804 dma_unmap_single(priv->dev, bdp->bufPtr,
2805 priv->rx_buffer_size, DMA_FROM_DEVICE);
2806
2807 if (unlikely(!(bdp->status & RXBD_ERR) &&
2808 bdp->length > priv->rx_buffer_size))
2809 bdp->status = RXBD_LARGE;
2810
2811 /* We drop the frame if we failed to allocate a new buffer */
2812 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2813 bdp->status & RXBD_ERR)) {
2814 count_errors(bdp->status, dev);
2815
2816 if (unlikely(!newskb))
2817 newskb = skb;
2818 else if (skb)
2819 dev_kfree_skb(skb);
2820 } else {
2821 /* Increment the number of packets */
2822 rx_queue->stats.rx_packets++;
2823 howmany++;
2824
2825 if (likely(skb)) {
2826 pkt_len = bdp->length - ETH_FCS_LEN;
2827 /* Remove the FCS from the packet length */
2828 skb_put(skb, pkt_len);
2829 rx_queue->stats.rx_bytes += pkt_len;
2830 skb_record_rx_queue(skb, rx_queue->qindex);
2831 gfar_process_frame(dev, skb, amount_pull,
2832 &rx_queue->grp->napi_rx);
2833
2834 } else {
2835 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2836 rx_queue->stats.rx_dropped++;
2837 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2838 }
2839
2840 }
2841
2842 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2843
2844 /* Setup the new bdp */
2845 gfar_new_rxbdp(rx_queue, bdp, newskb);
2846
2847 /* Update to the next pointer */
2848 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2849
2850 /* update to point at the next skb */
2851 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2852 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2853 }
2854
2855 /* Update the current rxbd pointer to be the next one */
2856 rx_queue->cur_rx = bdp;
2857
2858 return howmany;
2859 }
2860
2861 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2862 {
2863 struct gfar_priv_grp *gfargrp =
2864 container_of(napi, struct gfar_priv_grp, napi_rx);
2865 struct gfar __iomem *regs = gfargrp->regs;
2866 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2867 int work_done = 0;
2868
2869 /* Clear IEVENT, so interrupts aren't called again
2870 * because of the packets that have already arrived
2871 */
2872 gfar_write(&regs->ievent, IEVENT_RX_MASK);
2873
2874 work_done = gfar_clean_rx_ring(rx_queue, budget);
2875
2876 if (work_done < budget) {
2877 u32 imask;
2878 napi_complete(napi);
2879 /* Clear the halt bit in RSTAT */
2880 gfar_write(&regs->rstat, gfargrp->rstat);
2881
2882 spin_lock_irq(&gfargrp->grplock);
2883 imask = gfar_read(&regs->imask);
2884 imask |= IMASK_RX_DEFAULT;
2885 gfar_write(&regs->imask, imask);
2886 spin_unlock_irq(&gfargrp->grplock);
2887 }
2888
2889 return work_done;
2890 }
2891
2892 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2893 {
2894 struct gfar_priv_grp *gfargrp =
2895 container_of(napi, struct gfar_priv_grp, napi_tx);
2896 struct gfar __iomem *regs = gfargrp->regs;
2897 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2898 u32 imask;
2899
2900 /* Clear IEVENT, so interrupts aren't called again
2901 * because of the packets that have already arrived
2902 */
2903 gfar_write(&regs->ievent, IEVENT_TX_MASK);
2904
2905 /* run Tx cleanup to completion */
2906 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2907 gfar_clean_tx_ring(tx_queue);
2908
2909 napi_complete(napi);
2910
2911 spin_lock_irq(&gfargrp->grplock);
2912 imask = gfar_read(&regs->imask);
2913 imask |= IMASK_TX_DEFAULT;
2914 gfar_write(&regs->imask, imask);
2915 spin_unlock_irq(&gfargrp->grplock);
2916
2917 return 0;
2918 }
2919
2920 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2921 {
2922 struct gfar_priv_grp *gfargrp =
2923 container_of(napi, struct gfar_priv_grp, napi_rx);
2924 struct gfar_private *priv = gfargrp->priv;
2925 struct gfar __iomem *regs = gfargrp->regs;
2926 struct gfar_priv_rx_q *rx_queue = NULL;
2927 int work_done = 0, work_done_per_q = 0;
2928 int i, budget_per_q = 0;
2929 unsigned long rstat_rxf;
2930 int num_act_queues;
2931
2932 /* Clear IEVENT, so interrupts aren't called again
2933 * because of the packets that have already arrived
2934 */
2935 gfar_write(&regs->ievent, IEVENT_RX_MASK);
2936
2937 rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2938
2939 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2940 if (num_act_queues)
2941 budget_per_q = budget/num_act_queues;
2942
2943 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2944 /* skip queue if not active */
2945 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2946 continue;
2947
2948 rx_queue = priv->rx_queue[i];
2949 work_done_per_q =
2950 gfar_clean_rx_ring(rx_queue, budget_per_q);
2951 work_done += work_done_per_q;
2952
2953 /* finished processing this queue */
2954 if (work_done_per_q < budget_per_q) {
2955 /* clear active queue hw indication */
2956 gfar_write(&regs->rstat,
2957 RSTAT_CLEAR_RXF0 >> i);
2958 num_act_queues--;
2959
2960 if (!num_act_queues)
2961 break;
2962 }
2963 }
2964
2965 if (!num_act_queues) {
2966 u32 imask;
2967 napi_complete(napi);
2968
2969 /* Clear the halt bit in RSTAT */
2970 gfar_write(&regs->rstat, gfargrp->rstat);
2971
2972 spin_lock_irq(&gfargrp->grplock);
2973 imask = gfar_read(&regs->imask);
2974 imask |= IMASK_RX_DEFAULT;
2975 gfar_write(&regs->imask, imask);
2976 spin_unlock_irq(&gfargrp->grplock);
2977 }
2978
2979 return work_done;
2980 }
2981
2982 static int gfar_poll_tx(struct napi_struct *napi, int budget)
2983 {
2984 struct gfar_priv_grp *gfargrp =
2985 container_of(napi, struct gfar_priv_grp, napi_tx);
2986 struct gfar_private *priv = gfargrp->priv;
2987 struct gfar __iomem *regs = gfargrp->regs;
2988 struct gfar_priv_tx_q *tx_queue = NULL;
2989 int has_tx_work = 0;
2990 int i;
2991
2992 /* Clear IEVENT, so interrupts aren't called again
2993 * because of the packets that have already arrived
2994 */
2995 gfar_write(&regs->ievent, IEVENT_TX_MASK);
2996
2997 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2998 tx_queue = priv->tx_queue[i];
2999 /* run Tx cleanup to completion */
3000 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3001 gfar_clean_tx_ring(tx_queue);
3002 has_tx_work = 1;
3003 }
3004 }
3005
3006 if (!has_tx_work) {
3007 u32 imask;
3008 napi_complete(napi);
3009
3010 spin_lock_irq(&gfargrp->grplock);
3011 imask = gfar_read(&regs->imask);
3012 imask |= IMASK_TX_DEFAULT;
3013 gfar_write(&regs->imask, imask);
3014 spin_unlock_irq(&gfargrp->grplock);
3015 }
3016
3017 return 0;
3018 }
3019
3020
3021 #ifdef CONFIG_NET_POLL_CONTROLLER
3022 /* Polling 'interrupt' - used by things like netconsole to send skbs
3023 * without having to re-enable interrupts. It's not called while
3024 * the interrupt routine is executing.
3025 */
3026 static void gfar_netpoll(struct net_device *dev)
3027 {
3028 struct gfar_private *priv = netdev_priv(dev);
3029 int i;
3030
3031 /* If the device has multiple interrupts, run tx/rx */
3032 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3033 for (i = 0; i < priv->num_grps; i++) {
3034 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3035
3036 disable_irq(gfar_irq(grp, TX)->irq);
3037 disable_irq(gfar_irq(grp, RX)->irq);
3038 disable_irq(gfar_irq(grp, ER)->irq);
3039 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3040 enable_irq(gfar_irq(grp, ER)->irq);
3041 enable_irq(gfar_irq(grp, RX)->irq);
3042 enable_irq(gfar_irq(grp, TX)->irq);
3043 }
3044 } else {
3045 for (i = 0; i < priv->num_grps; i++) {
3046 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3047
3048 disable_irq(gfar_irq(grp, TX)->irq);
3049 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3050 enable_irq(gfar_irq(grp, TX)->irq);
3051 }
3052 }
3053 }
3054 #endif
3055
3056 /* The interrupt handler for devices with one interrupt */
3057 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3058 {
3059 struct gfar_priv_grp *gfargrp = grp_id;
3060
3061 /* Save ievent for future reference */
3062 u32 events = gfar_read(&gfargrp->regs->ievent);
3063
3064 /* Check for reception */
3065 if (events & IEVENT_RX_MASK)
3066 gfar_receive(irq, grp_id);
3067
3068 /* Check for transmit completion */
3069 if (events & IEVENT_TX_MASK)
3070 gfar_transmit(irq, grp_id);
3071
3072 /* Check for errors */
3073 if (events & IEVENT_ERR_MASK)
3074 gfar_error(irq, grp_id);
3075
3076 return IRQ_HANDLED;
3077 }
3078
3079 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3080 {
3081 struct phy_device *phydev = priv->phydev;
3082 u32 val = 0;
3083
3084 if (!phydev->duplex)
3085 return val;
3086
3087 if (!priv->pause_aneg_en) {
3088 if (priv->tx_pause_en)
3089 val |= MACCFG1_TX_FLOW;
3090 if (priv->rx_pause_en)
3091 val |= MACCFG1_RX_FLOW;
3092 } else {
3093 u16 lcl_adv, rmt_adv;
3094 u8 flowctrl;
3095 /* get link partner capabilities */
3096 rmt_adv = 0;
3097 if (phydev->pause)
3098 rmt_adv = LPA_PAUSE_CAP;
3099 if (phydev->asym_pause)
3100 rmt_adv |= LPA_PAUSE_ASYM;
3101
3102 lcl_adv = mii_advertise_flowctrl(phydev->advertising);
3103
3104 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3105 if (flowctrl & FLOW_CTRL_TX)
3106 val |= MACCFG1_TX_FLOW;
3107 if (flowctrl & FLOW_CTRL_RX)
3108 val |= MACCFG1_RX_FLOW;
3109 }
3110
3111 return val;
3112 }
3113
3114 /* Called every time the controller might need to be made
3115 * aware of new link state. The PHY code conveys this
3116 * information through variables in the phydev structure, and this
3117 * function converts those variables into the appropriate
3118 * register values, and can bring down the device if needed.
3119 */
3120 static void adjust_link(struct net_device *dev)
3121 {
3122 struct gfar_private *priv = netdev_priv(dev);
3123 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3124 struct phy_device *phydev = priv->phydev;
3125 int new_state = 0;
3126
3127 if (test_bit(GFAR_RESETTING, &priv->state))
3128 return;
3129
3130 if (phydev->link) {
3131 u32 tempval1 = gfar_read(&regs->maccfg1);
3132 u32 tempval = gfar_read(&regs->maccfg2);
3133 u32 ecntrl = gfar_read(&regs->ecntrl);
3134
3135 /* Now we make sure that we can be in full duplex mode.
3136 * If not, we operate in half-duplex mode.
3137 */
3138 if (phydev->duplex != priv->oldduplex) {
3139 new_state = 1;
3140 if (!(phydev->duplex))
3141 tempval &= ~(MACCFG2_FULL_DUPLEX);
3142 else
3143 tempval |= MACCFG2_FULL_DUPLEX;
3144
3145 priv->oldduplex = phydev->duplex;
3146 }
3147
3148 if (phydev->speed != priv->oldspeed) {
3149 new_state = 1;
3150 switch (phydev->speed) {
3151 case 1000:
3152 tempval =
3153 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3154
3155 ecntrl &= ~(ECNTRL_R100);
3156 break;
3157 case 100:
3158 case 10:
3159 tempval =
3160 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3161
3162 /* Reduced mode distinguishes
3163 * between 10 and 100
3164 */
3165 if (phydev->speed == SPEED_100)
3166 ecntrl |= ECNTRL_R100;
3167 else
3168 ecntrl &= ~(ECNTRL_R100);
3169 break;
3170 default:
3171 netif_warn(priv, link, dev,
3172 "Ack! Speed (%d) is not 10/100/1000!\n",
3173 phydev->speed);
3174 break;
3175 }
3176
3177 priv->oldspeed = phydev->speed;
3178 }
3179
3180 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3181 tempval1 |= gfar_get_flowctrl_cfg(priv);
3182
3183 gfar_write(&regs->maccfg1, tempval1);
3184 gfar_write(&regs->maccfg2, tempval);
3185 gfar_write(&regs->ecntrl, ecntrl);
3186
3187 if (!priv->oldlink) {
3188 new_state = 1;
3189 priv->oldlink = 1;
3190 }
3191 } else if (priv->oldlink) {
3192 new_state = 1;
3193 priv->oldlink = 0;
3194 priv->oldspeed = 0;
3195 priv->oldduplex = -1;
3196 }
3197
3198 if (new_state && netif_msg_link(priv))
3199 phy_print_status(phydev);
3200 }
3201
3202 /* Update the hash table based on the current list of multicast
3203 * addresses we subscribe to. Also, change the promiscuity of
3204 * the device based on the flags (this function is called
3205 * whenever dev->flags is changed
3206 */
3207 static void gfar_set_multi(struct net_device *dev)
3208 {
3209 struct netdev_hw_addr *ha;
3210 struct gfar_private *priv = netdev_priv(dev);
3211 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3212 u32 tempval;
3213
3214 if (dev->flags & IFF_PROMISC) {
3215 /* Set RCTRL to PROM */
3216 tempval = gfar_read(&regs->rctrl);
3217 tempval |= RCTRL_PROM;
3218 gfar_write(&regs->rctrl, tempval);
3219 } else {
3220 /* Set RCTRL to not PROM */
3221 tempval = gfar_read(&regs->rctrl);
3222 tempval &= ~(RCTRL_PROM);
3223 gfar_write(&regs->rctrl, tempval);
3224 }
3225
3226 if (dev->flags & IFF_ALLMULTI) {
3227 /* Set the hash to rx all multicast frames */
3228 gfar_write(&regs->igaddr0, 0xffffffff);
3229 gfar_write(&regs->igaddr1, 0xffffffff);
3230 gfar_write(&regs->igaddr2, 0xffffffff);
3231 gfar_write(&regs->igaddr3, 0xffffffff);
3232 gfar_write(&regs->igaddr4, 0xffffffff);
3233 gfar_write(&regs->igaddr5, 0xffffffff);
3234 gfar_write(&regs->igaddr6, 0xffffffff);
3235 gfar_write(&regs->igaddr7, 0xffffffff);
3236 gfar_write(&regs->gaddr0, 0xffffffff);
3237 gfar_write(&regs->gaddr1, 0xffffffff);
3238 gfar_write(&regs->gaddr2, 0xffffffff);
3239 gfar_write(&regs->gaddr3, 0xffffffff);
3240 gfar_write(&regs->gaddr4, 0xffffffff);
3241 gfar_write(&regs->gaddr5, 0xffffffff);
3242 gfar_write(&regs->gaddr6, 0xffffffff);
3243 gfar_write(&regs->gaddr7, 0xffffffff);
3244 } else {
3245 int em_num;
3246 int idx;
3247
3248 /* zero out the hash */
3249 gfar_write(&regs->igaddr0, 0x0);
3250 gfar_write(&regs->igaddr1, 0x0);
3251 gfar_write(&regs->igaddr2, 0x0);
3252 gfar_write(&regs->igaddr3, 0x0);
3253 gfar_write(&regs->igaddr4, 0x0);
3254 gfar_write(&regs->igaddr5, 0x0);
3255 gfar_write(&regs->igaddr6, 0x0);
3256 gfar_write(&regs->igaddr7, 0x0);
3257 gfar_write(&regs->gaddr0, 0x0);
3258 gfar_write(&regs->gaddr1, 0x0);
3259 gfar_write(&regs->gaddr2, 0x0);
3260 gfar_write(&regs->gaddr3, 0x0);
3261 gfar_write(&regs->gaddr4, 0x0);
3262 gfar_write(&regs->gaddr5, 0x0);
3263 gfar_write(&regs->gaddr6, 0x0);
3264 gfar_write(&regs->gaddr7, 0x0);
3265
3266 /* If we have extended hash tables, we need to
3267 * clear the exact match registers to prepare for
3268 * setting them
3269 */
3270 if (priv->extended_hash) {
3271 em_num = GFAR_EM_NUM + 1;
3272 gfar_clear_exact_match(dev);
3273 idx = 1;
3274 } else {
3275 idx = 0;
3276 em_num = 0;
3277 }
3278
3279 if (netdev_mc_empty(dev))
3280 return;
3281
3282 /* Parse the list, and set the appropriate bits */
3283 netdev_for_each_mc_addr(ha, dev) {
3284 if (idx < em_num) {
3285 gfar_set_mac_for_addr(dev, idx, ha->addr);
3286 idx++;
3287 } else
3288 gfar_set_hash_for_addr(dev, ha->addr);
3289 }
3290 }
3291 }
3292
3293
3294 /* Clears each of the exact match registers to zero, so they
3295 * don't interfere with normal reception
3296 */
3297 static void gfar_clear_exact_match(struct net_device *dev)
3298 {
3299 int idx;
3300 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3301
3302 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3303 gfar_set_mac_for_addr(dev, idx, zero_arr);
3304 }
3305
3306 /* Set the appropriate hash bit for the given addr */
3307 /* The algorithm works like so:
3308 * 1) Take the Destination Address (ie the multicast address), and
3309 * do a CRC on it (little endian), and reverse the bits of the
3310 * result.
3311 * 2) Use the 8 most significant bits as a hash into a 256-entry
3312 * table. The table is controlled through 8 32-bit registers:
3313 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3314 * gaddr7. This means that the 3 most significant bits in the
3315 * hash index which gaddr register to use, and the 5 other bits
3316 * indicate which bit (assuming an IBM numbering scheme, which
3317 * for PowerPC (tm) is usually the case) in the register holds
3318 * the entry.
3319 */
3320 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3321 {
3322 u32 tempval;
3323 struct gfar_private *priv = netdev_priv(dev);
3324 u32 result = ether_crc(ETH_ALEN, addr);
3325 int width = priv->hash_width;
3326 u8 whichbit = (result >> (32 - width)) & 0x1f;
3327 u8 whichreg = result >> (32 - width + 5);
3328 u32 value = (1 << (31-whichbit));
3329
3330 tempval = gfar_read(priv->hash_regs[whichreg]);
3331 tempval |= value;
3332 gfar_write(priv->hash_regs[whichreg], tempval);
3333 }
3334
3335
3336 /* There are multiple MAC Address register pairs on some controllers
3337 * This function sets the numth pair to a given address
3338 */
3339 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3340 const u8 *addr)
3341 {
3342 struct gfar_private *priv = netdev_priv(dev);
3343 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3344 int idx;
3345 char tmpbuf[ETH_ALEN];
3346 u32 tempval;
3347 u32 __iomem *macptr = &regs->macstnaddr1;
3348
3349 macptr += num*2;
3350
3351 /* Now copy it into the mac registers backwards, cuz
3352 * little endian is silly
3353 */
3354 for (idx = 0; idx < ETH_ALEN; idx++)
3355 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3356
3357 gfar_write(macptr, *((u32 *) (tmpbuf)));
3358
3359 tempval = *((u32 *) (tmpbuf + 4));
3360
3361 gfar_write(macptr+1, tempval);
3362 }
3363
3364 /* GFAR error interrupt handler */
3365 static irqreturn_t gfar_error(int irq, void *grp_id)
3366 {
3367 struct gfar_priv_grp *gfargrp = grp_id;
3368 struct gfar __iomem *regs = gfargrp->regs;
3369 struct gfar_private *priv= gfargrp->priv;
3370 struct net_device *dev = priv->ndev;
3371
3372 /* Save ievent for future reference */
3373 u32 events = gfar_read(&regs->ievent);
3374
3375 /* Clear IEVENT */
3376 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3377
3378 /* Magic Packet is not an error. */
3379 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3380 (events & IEVENT_MAG))
3381 events &= ~IEVENT_MAG;
3382
3383 /* Hmm... */
3384 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3385 netdev_dbg(dev,
3386 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3387 events, gfar_read(&regs->imask));
3388
3389 /* Update the error counters */
3390 if (events & IEVENT_TXE) {
3391 dev->stats.tx_errors++;
3392
3393 if (events & IEVENT_LC)
3394 dev->stats.tx_window_errors++;
3395 if (events & IEVENT_CRL)
3396 dev->stats.tx_aborted_errors++;
3397 if (events & IEVENT_XFUN) {
3398 unsigned long flags;
3399
3400 netif_dbg(priv, tx_err, dev,
3401 "TX FIFO underrun, packet dropped\n");
3402 dev->stats.tx_dropped++;
3403 atomic64_inc(&priv->extra_stats.tx_underrun);
3404
3405 local_irq_save(flags);
3406 lock_tx_qs(priv);
3407
3408 /* Reactivate the Tx Queues */
3409 gfar_write(&regs->tstat, gfargrp->tstat);
3410
3411 unlock_tx_qs(priv);
3412 local_irq_restore(flags);
3413 }
3414 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3415 }
3416 if (events & IEVENT_BSY) {
3417 dev->stats.rx_errors++;
3418 atomic64_inc(&priv->extra_stats.rx_bsy);
3419
3420 gfar_receive(irq, grp_id);
3421
3422 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3423 gfar_read(&regs->rstat));
3424 }
3425 if (events & IEVENT_BABR) {
3426 dev->stats.rx_errors++;
3427 atomic64_inc(&priv->extra_stats.rx_babr);
3428
3429 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3430 }
3431 if (events & IEVENT_EBERR) {
3432 atomic64_inc(&priv->extra_stats.eberr);
3433 netif_dbg(priv, rx_err, dev, "bus error\n");
3434 }
3435 if (events & IEVENT_RXC)
3436 netif_dbg(priv, rx_status, dev, "control frame\n");
3437
3438 if (events & IEVENT_BABT) {
3439 atomic64_inc(&priv->extra_stats.tx_babt);
3440 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3441 }
3442 return IRQ_HANDLED;
3443 }
3444
3445 static struct of_device_id gfar_match[] =
3446 {
3447 {
3448 .type = "network",
3449 .compatible = "gianfar",
3450 },
3451 {
3452 .compatible = "fsl,etsec2",
3453 },
3454 {},
3455 };
3456 MODULE_DEVICE_TABLE(of, gfar_match);
3457
3458 /* Structure for a device driver */
3459 static struct platform_driver gfar_driver = {
3460 .driver = {
3461 .name = "fsl-gianfar",
3462 .owner = THIS_MODULE,
3463 .pm = GFAR_PM_OPS,
3464 .of_match_table = gfar_match,
3465 },
3466 .probe = gfar_probe,
3467 .remove = gfar_remove,
3468 };
3469
3470 module_platform_driver(gfar_driver);
This page took 0.10931 seconds and 5 git commands to generate.