selinux: fix overflow and 0 length allocations
[deliverable/linux.git] / drivers / net / ethernet / intel / fm10k / fm10k_pf.c
1 /* Intel(R) Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2016 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21 #include "fm10k_pf.h"
22 #include "fm10k_vf.h"
23
24 /**
25 * fm10k_reset_hw_pf - PF hardware reset
26 * @hw: pointer to hardware structure
27 *
28 * This function should return the hardware to a state similar to the
29 * one it is in after being powered on.
30 **/
31 static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
32 {
33 s32 err;
34 u32 reg;
35 u16 i;
36
37 /* Disable interrupts */
38 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
39
40 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
42 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
43
44 /* We assume here Tx and Rx queue 0 are owned by the PF */
45
46 /* Shut off VF access to their queues forcing them to queue 0 */
47 for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
48 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
49 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
50 }
51
52 /* shut down all rings */
53 err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
54 if (err == FM10K_ERR_REQUESTS_PENDING) {
55 hw->mac.reset_while_pending++;
56 goto force_reset;
57 } else if (err) {
58 return err;
59 }
60
61 /* Verify that DMA is no longer active */
62 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
63 if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
64 return FM10K_ERR_DMA_PENDING;
65
66 force_reset:
67 /* Inititate data path reset */
68 reg = FM10K_DMA_CTRL_DATAPATH_RESET;
69 fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
70
71 /* Flush write and allow 100us for reset to complete */
72 fm10k_write_flush(hw);
73 udelay(FM10K_RESET_TIMEOUT);
74
75 /* Reset mailbox global interrupts */
76 reg = FM10K_MBX_GLOBAL_REQ_INTERRUPT | FM10K_MBX_GLOBAL_ACK_INTERRUPT;
77 fm10k_write_reg(hw, FM10K_GMBX, reg);
78
79 /* Verify we made it out of reset */
80 reg = fm10k_read_reg(hw, FM10K_IP);
81 if (!(reg & FM10K_IP_NOTINRESET))
82 return FM10K_ERR_RESET_FAILED;
83
84 return 0;
85 }
86
87 /**
88 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
89 * @hw: pointer to hardware structure
90 *
91 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
92 **/
93 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
94 {
95 u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
96
97 return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
98 }
99
100 /**
101 * fm10k_init_hw_pf - PF hardware initialization
102 * @hw: pointer to hardware structure
103 *
104 **/
105 static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
106 {
107 u32 dma_ctrl, txqctl;
108 u16 i;
109
110 /* Establish default VSI as valid */
111 fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
112 fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
113 FM10K_DGLORTMAP_ANY);
114
115 /* Invalidate all other GLORT entries */
116 for (i = 1; i < FM10K_DGLORT_COUNT; i++)
117 fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
118
119 /* reset ITR2(0) to point to itself */
120 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
121
122 /* reset VF ITR2(0) to point to 0 avoid PF registers */
123 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
124
125 /* loop through all PF ITR2 registers pointing them to the previous */
126 for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
127 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
128
129 /* Enable interrupt moderator if not already enabled */
130 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
131
132 /* compute the default txqctl configuration */
133 txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
134 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
135
136 for (i = 0; i < FM10K_MAX_QUEUES; i++) {
137 /* configure rings for 256 Queue / 32 Descriptor cache mode */
138 fm10k_write_reg(hw, FM10K_TQDLOC(i),
139 (i * FM10K_TQDLOC_BASE_32_DESC) |
140 FM10K_TQDLOC_SIZE_32_DESC);
141 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
142
143 /* configure rings to provide TPH processing hints */
144 fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
145 FM10K_TPH_TXCTRL_DESC_TPHEN |
146 FM10K_TPH_TXCTRL_DESC_RROEN |
147 FM10K_TPH_TXCTRL_DESC_WROEN |
148 FM10K_TPH_TXCTRL_DATA_RROEN);
149 fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
150 FM10K_TPH_RXCTRL_DESC_TPHEN |
151 FM10K_TPH_RXCTRL_DESC_RROEN |
152 FM10K_TPH_RXCTRL_DATA_WROEN |
153 FM10K_TPH_RXCTRL_HDR_WROEN);
154 }
155
156 /* set max hold interval to align with 1.024 usec in all modes and
157 * store ITR scale
158 */
159 switch (hw->bus.speed) {
160 case fm10k_bus_speed_2500:
161 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
162 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
163 break;
164 case fm10k_bus_speed_5000:
165 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
166 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
167 break;
168 case fm10k_bus_speed_8000:
169 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
170 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
171 break;
172 default:
173 dma_ctrl = 0;
174 /* just in case, assume Gen3 ITR scale */
175 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
176 break;
177 }
178
179 /* Configure TSO flags */
180 fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
181 fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
182
183 /* Enable DMA engine
184 * Set Rx Descriptor size to 32
185 * Set Minimum MSS to 64
186 * Set Maximum number of Rx queues to 256 / 32 Descriptor
187 */
188 dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
189 FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
190 FM10K_DMA_CTRL_32_DESC;
191
192 fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
193
194 /* record maximum queue count, we limit ourselves to 128 */
195 hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
196
197 /* We support either 64 VFs or 7 VFs depending on if we have ARI */
198 hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
199
200 return 0;
201 }
202
203 /**
204 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
205 * @hw: pointer to hardware structure
206 * @vid: VLAN ID to add to table
207 * @vsi: Index indicating VF ID or PF ID in table
208 * @set: Indicates if this is a set or clear operation
209 *
210 * This function adds or removes the corresponding VLAN ID from the VLAN
211 * filter table for the corresponding function. In addition to the
212 * standard set/clear that supports one bit a multi-bit write is
213 * supported to set 64 bits at a time.
214 **/
215 static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
216 {
217 u32 vlan_table, reg, mask, bit, len;
218
219 /* verify the VSI index is valid */
220 if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
221 return FM10K_ERR_PARAM;
222
223 /* VLAN multi-bit write:
224 * The multi-bit write has several parts to it.
225 * 24 16 8 0
226 * 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
227 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
228 * | RSVD0 | Length |C|RSVD0| VLAN ID |
229 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
230 *
231 * VLAN ID: Vlan Starting value
232 * RSVD0: Reserved section, must be 0
233 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
234 * Length: Number of times to repeat the bit being set
235 */
236 len = vid >> 16;
237 vid = (vid << 17) >> 17;
238
239 /* verify the reserved 0 fields are 0 */
240 if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
241 return FM10K_ERR_PARAM;
242
243 /* Loop through the table updating all required VLANs */
244 for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
245 len < FM10K_VLAN_TABLE_VID_MAX;
246 len -= 32 - bit, reg++, bit = 0) {
247 /* record the initial state of the register */
248 vlan_table = fm10k_read_reg(hw, reg);
249
250 /* truncate mask if we are at the start or end of the run */
251 mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
252
253 /* make necessary modifications to the register */
254 mask &= set ? ~vlan_table : vlan_table;
255 if (mask)
256 fm10k_write_reg(hw, reg, vlan_table ^ mask);
257 }
258
259 return 0;
260 }
261
262 /**
263 * fm10k_read_mac_addr_pf - Read device MAC address
264 * @hw: pointer to the HW structure
265 *
266 * Reads the device MAC address from the SM_AREA and stores the value.
267 **/
268 static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
269 {
270 u8 perm_addr[ETH_ALEN];
271 u32 serial_num;
272
273 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
274
275 /* last byte should be all 1's */
276 if ((~serial_num) << 24)
277 return FM10K_ERR_INVALID_MAC_ADDR;
278
279 perm_addr[0] = (u8)(serial_num >> 24);
280 perm_addr[1] = (u8)(serial_num >> 16);
281 perm_addr[2] = (u8)(serial_num >> 8);
282
283 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
284
285 /* first byte should be all 1's */
286 if ((~serial_num) >> 24)
287 return FM10K_ERR_INVALID_MAC_ADDR;
288
289 perm_addr[3] = (u8)(serial_num >> 16);
290 perm_addr[4] = (u8)(serial_num >> 8);
291 perm_addr[5] = (u8)(serial_num);
292
293 ether_addr_copy(hw->mac.perm_addr, perm_addr);
294 ether_addr_copy(hw->mac.addr, perm_addr);
295
296 return 0;
297 }
298
299 /**
300 * fm10k_glort_valid_pf - Validate that the provided glort is valid
301 * @hw: pointer to the HW structure
302 * @glort: base glort to be validated
303 *
304 * This function will return an error if the provided glort is invalid
305 **/
306 bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
307 {
308 glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
309
310 return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
311 }
312
313 /**
314 * fm10k_update_xc_addr_pf - Update device addresses
315 * @hw: pointer to the HW structure
316 * @glort: base resource tag for this request
317 * @mac: MAC address to add/remove from table
318 * @vid: VLAN ID to add/remove from table
319 * @add: Indicates if this is an add or remove operation
320 * @flags: flags field to indicate add and secure
321 *
322 * This function generates a message to the Switch API requesting
323 * that the given logical port add/remove the given L2 MAC/VLAN address.
324 **/
325 static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
326 const u8 *mac, u16 vid, bool add, u8 flags)
327 {
328 struct fm10k_mbx_info *mbx = &hw->mbx;
329 struct fm10k_mac_update mac_update;
330 u32 msg[5];
331
332 /* clear set bit from VLAN ID */
333 vid &= ~FM10K_VLAN_CLEAR;
334
335 /* if glort or VLAN are not valid return error */
336 if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
337 return FM10K_ERR_PARAM;
338
339 /* record fields */
340 mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
341 ((u32)mac[3] << 16) |
342 ((u32)mac[4] << 8) |
343 ((u32)mac[5]));
344 mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
345 ((u16)mac[1]));
346 mac_update.vlan = cpu_to_le16(vid);
347 mac_update.glort = cpu_to_le16(glort);
348 mac_update.action = add ? 0 : 1;
349 mac_update.flags = flags;
350
351 /* populate mac_update fields */
352 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
353 fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
354 &mac_update, sizeof(mac_update));
355
356 /* load onto outgoing mailbox */
357 return mbx->ops.enqueue_tx(hw, mbx, msg);
358 }
359
360 /**
361 * fm10k_update_uc_addr_pf - Update device unicast addresses
362 * @hw: pointer to the HW structure
363 * @glort: base resource tag for this request
364 * @mac: MAC address to add/remove from table
365 * @vid: VLAN ID to add/remove from table
366 * @add: Indicates if this is an add or remove operation
367 * @flags: flags field to indicate add and secure
368 *
369 * This function is used to add or remove unicast addresses for
370 * the PF.
371 **/
372 static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
373 const u8 *mac, u16 vid, bool add, u8 flags)
374 {
375 /* verify MAC address is valid */
376 if (!is_valid_ether_addr(mac))
377 return FM10K_ERR_PARAM;
378
379 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
380 }
381
382 /**
383 * fm10k_update_mc_addr_pf - Update device multicast addresses
384 * @hw: pointer to the HW structure
385 * @glort: base resource tag for this request
386 * @mac: MAC address to add/remove from table
387 * @vid: VLAN ID to add/remove from table
388 * @add: Indicates if this is an add or remove operation
389 *
390 * This function is used to add or remove multicast MAC addresses for
391 * the PF.
392 **/
393 static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
394 const u8 *mac, u16 vid, bool add)
395 {
396 /* verify multicast address is valid */
397 if (!is_multicast_ether_addr(mac))
398 return FM10K_ERR_PARAM;
399
400 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
401 }
402
403 /**
404 * fm10k_update_xcast_mode_pf - Request update of multicast mode
405 * @hw: pointer to hardware structure
406 * @glort: base resource tag for this request
407 * @mode: integer value indicating mode being requested
408 *
409 * This function will attempt to request a higher mode for the port
410 * so that it can enable either multicast, multicast promiscuous, or
411 * promiscuous mode of operation.
412 **/
413 static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
414 {
415 struct fm10k_mbx_info *mbx = &hw->mbx;
416 u32 msg[3], xcast_mode;
417
418 if (mode > FM10K_XCAST_MODE_NONE)
419 return FM10K_ERR_PARAM;
420
421 /* if glort is not valid return error */
422 if (!fm10k_glort_valid_pf(hw, glort))
423 return FM10K_ERR_PARAM;
424
425 /* write xcast mode as a single u32 value,
426 * lower 16 bits: glort
427 * upper 16 bits: mode
428 */
429 xcast_mode = ((u32)mode << 16) | glort;
430
431 /* generate message requesting to change xcast mode */
432 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
433 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
434
435 /* load onto outgoing mailbox */
436 return mbx->ops.enqueue_tx(hw, mbx, msg);
437 }
438
439 /**
440 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list
441 * @hw: pointer to hardware structure
442 *
443 * This function walks through the MSI-X vector table to determine the
444 * number of active interrupts and based on that information updates the
445 * interrupt moderator linked list.
446 **/
447 static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
448 {
449 u32 i;
450
451 /* Disable interrupt moderator */
452 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
453
454 /* loop through PF from last to first looking enabled vectors */
455 for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
456 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
457 break;
458 }
459
460 /* always reset VFITR2[0] to point to last enabled PF vector */
461 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
462
463 /* reset ITR2[0] to point to last enabled PF vector */
464 if (!hw->iov.num_vfs)
465 fm10k_write_reg(hw, FM10K_ITR2(0), i);
466
467 /* Enable interrupt moderator */
468 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
469 }
470
471 /**
472 * fm10k_update_lport_state_pf - Notify the switch of a change in port state
473 * @hw: pointer to the HW structure
474 * @glort: base resource tag for this request
475 * @count: number of logical ports being updated
476 * @enable: boolean value indicating enable or disable
477 *
478 * This function is used to add/remove a logical port from the switch.
479 **/
480 static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
481 u16 count, bool enable)
482 {
483 struct fm10k_mbx_info *mbx = &hw->mbx;
484 u32 msg[3], lport_msg;
485
486 /* do nothing if we are being asked to create or destroy 0 ports */
487 if (!count)
488 return 0;
489
490 /* if glort is not valid return error */
491 if (!fm10k_glort_valid_pf(hw, glort))
492 return FM10K_ERR_PARAM;
493
494 /* reset multicast mode if deleting lport */
495 if (!enable)
496 fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE);
497
498 /* construct the lport message from the 2 pieces of data we have */
499 lport_msg = ((u32)count << 16) | glort;
500
501 /* generate lport create/delete message */
502 fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
503 FM10K_PF_MSG_ID_LPORT_DELETE);
504 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
505
506 /* load onto outgoing mailbox */
507 return mbx->ops.enqueue_tx(hw, mbx, msg);
508 }
509
510 /**
511 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
512 * @hw: pointer to hardware structure
513 * @dglort: pointer to dglort configuration structure
514 *
515 * Reads the configuration structure contained in dglort_cfg and uses
516 * that information to then populate a DGLORTMAP/DEC entry and the queues
517 * to which it has been assigned.
518 **/
519 static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
520 struct fm10k_dglort_cfg *dglort)
521 {
522 u16 glort, queue_count, vsi_count, pc_count;
523 u16 vsi, queue, pc, q_idx;
524 u32 txqctl, dglortdec, dglortmap;
525
526 /* verify the dglort pointer */
527 if (!dglort)
528 return FM10K_ERR_PARAM;
529
530 /* verify the dglort values */
531 if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
532 (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
533 (dglort->queue_l > 8) || (dglort->queue_b >= 256))
534 return FM10K_ERR_PARAM;
535
536 /* determine count of VSIs and queues */
537 queue_count = BIT(dglort->rss_l + dglort->pc_l);
538 vsi_count = BIT(dglort->vsi_l + dglort->queue_l);
539 glort = dglort->glort;
540 q_idx = dglort->queue_b;
541
542 /* configure SGLORT for queues */
543 for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
544 for (queue = 0; queue < queue_count; queue++, q_idx++) {
545 if (q_idx >= FM10K_MAX_QUEUES)
546 break;
547
548 fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
549 fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
550 }
551 }
552
553 /* determine count of PCs and queues */
554 queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l);
555 pc_count = BIT(dglort->pc_l);
556
557 /* configure PC for Tx queues */
558 for (pc = 0; pc < pc_count; pc++) {
559 q_idx = pc + dglort->queue_b;
560 for (queue = 0; queue < queue_count; queue++) {
561 if (q_idx >= FM10K_MAX_QUEUES)
562 break;
563
564 txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
565 txqctl &= ~FM10K_TXQCTL_PC_MASK;
566 txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
567 fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
568
569 q_idx += pc_count;
570 }
571 }
572
573 /* configure DGLORTDEC */
574 dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
575 ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
576 ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
577 ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
578 ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
579 ((u32)(dglort->queue_l));
580 if (dglort->inner_rss)
581 dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE;
582
583 /* configure DGLORTMAP */
584 dglortmap = (dglort->idx == fm10k_dglort_default) ?
585 FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
586 dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
587 dglortmap |= dglort->glort;
588
589 /* write values to hardware */
590 fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
591 fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
592
593 return 0;
594 }
595
596 u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
597 {
598 u16 num_pools = hw->iov.num_pools;
599
600 return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
601 8 : FM10K_MAX_QUEUES_POOL;
602 }
603
604 u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
605 {
606 u16 num_vfs = hw->iov.num_vfs;
607 u16 vf_q_idx = FM10K_MAX_QUEUES;
608
609 vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
610
611 return vf_q_idx;
612 }
613
614 static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
615 {
616 u16 num_pools = hw->iov.num_pools;
617
618 return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
619 FM10K_MAX_VECTORS_POOL;
620 }
621
622 static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
623 {
624 u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
625
626 vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
627
628 return vf_v_idx;
629 }
630
631 /**
632 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
633 * @hw: pointer to the HW structure
634 * @num_vfs: number of VFs to be allocated
635 * @num_pools: number of virtualization pools to be allocated
636 *
637 * Allocates queues and traffic classes to virtualization entities to prepare
638 * the PF for SR-IOV and VMDq
639 **/
640 static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
641 u16 num_pools)
642 {
643 u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
644 u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
645 int i, j;
646
647 /* hardware only supports up to 64 pools */
648 if (num_pools > 64)
649 return FM10K_ERR_PARAM;
650
651 /* the number of VFs cannot exceed the number of pools */
652 if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
653 return FM10K_ERR_PARAM;
654
655 /* record number of virtualization entities */
656 hw->iov.num_vfs = num_vfs;
657 hw->iov.num_pools = num_pools;
658
659 /* determine qmap offsets and counts */
660 qmap_stride = (num_vfs > 8) ? 32 : 256;
661 qpp = fm10k_queues_per_pool(hw);
662 vpp = fm10k_vectors_per_pool(hw);
663
664 /* calculate starting index for queues */
665 vf_q_idx = fm10k_vf_queue_index(hw, 0);
666 qmap_idx = 0;
667
668 /* establish TCs with -1 credits and no quanta to prevent transmit */
669 for (i = 0; i < num_vfs; i++) {
670 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
671 fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
672 fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
673 FM10K_TC_CREDIT_CREDIT_MASK);
674 }
675
676 /* zero out all mbmem registers */
677 for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
678 fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
679
680 /* clear event notification of VF FLR */
681 fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
682 fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
683
684 /* loop through unallocated rings assigning them back to PF */
685 for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
686 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
687 fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
688 FM10K_TXQCTL_UNLIMITED_BW | vid);
689 fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
690 }
691
692 /* PF should have already updated VFITR2[0] */
693
694 /* update all ITR registers to flow to VFITR2[0] */
695 for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
696 if (!(i & (vpp - 1)))
697 fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
698 else
699 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
700 }
701
702 /* update PF ITR2[0] to reference the last vector */
703 fm10k_write_reg(hw, FM10K_ITR2(0),
704 fm10k_vf_vector_index(hw, num_vfs - 1));
705
706 /* loop through rings populating rings and TCs */
707 for (i = 0; i < num_vfs; i++) {
708 /* record index for VF queue 0 for use in end of loop */
709 vf_q_idx0 = vf_q_idx;
710
711 for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
712 /* assign VF and locked TC to queues */
713 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
714 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
715 (i << FM10K_TXQCTL_TC_SHIFT) | i |
716 FM10K_TXQCTL_VF | vid);
717 fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
718 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
719 FM10K_RXDCTL_DROP_ON_EMPTY);
720 fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
721 (i << FM10K_RXQCTL_VF_SHIFT) |
722 FM10K_RXQCTL_VF);
723
724 /* map queue pair to VF */
725 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
726 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
727 }
728
729 /* repeat the first ring for all of the remaining VF rings */
730 for (; j < qmap_stride; j++, qmap_idx++) {
731 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
732 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
733 }
734 }
735
736 /* loop through remaining indexes assigning all to queue 0 */
737 while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
738 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
739 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
740 qmap_idx++;
741 }
742
743 return 0;
744 }
745
746 /**
747 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF
748 * @hw: pointer to the HW structure
749 * @vf_idx: index of VF receiving GLORT
750 * @rate: Rate indicated in Mb/s
751 *
752 * Configured the TC for a given VF to allow only up to a given number
753 * of Mb/s of outgoing Tx throughput.
754 **/
755 static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
756 {
757 /* configure defaults */
758 u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
759 u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
760
761 /* verify vf is in range */
762 if (vf_idx >= hw->iov.num_vfs)
763 return FM10K_ERR_PARAM;
764
765 /* set interval to align with 4.096 usec in all modes */
766 switch (hw->bus.speed) {
767 case fm10k_bus_speed_2500:
768 interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
769 break;
770 case fm10k_bus_speed_5000:
771 interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
772 break;
773 default:
774 break;
775 }
776
777 if (rate) {
778 if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
779 return FM10K_ERR_PARAM;
780
781 /* The quanta is measured in Bytes per 4.096 or 8.192 usec
782 * The rate is provided in Mbits per second
783 * To tralslate from rate to quanta we need to multiply the
784 * rate by 8.192 usec and divide by 8 bits/byte. To avoid
785 * dealing with floating point we can round the values up
786 * to the nearest whole number ratio which gives us 128 / 125.
787 */
788 tc_rate = (rate * 128) / 125;
789
790 /* try to keep the rate limiting accurate by increasing
791 * the number of credits and interval for rates less than 4Gb/s
792 */
793 if (rate < 4000)
794 interval <<= 1;
795 else
796 tc_rate >>= 1;
797 }
798
799 /* update rate limiter with new values */
800 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
801 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
802 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
803
804 return 0;
805 }
806
807 /**
808 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
809 * @hw: pointer to the HW structure
810 * @vf_idx: index of VF receiving GLORT
811 *
812 * Update the interrupt moderator linked list to include any MSI-X
813 * interrupts which the VF has enabled in the MSI-X vector table.
814 **/
815 static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
816 {
817 u16 vf_v_idx, vf_v_limit, i;
818
819 /* verify vf is in range */
820 if (vf_idx >= hw->iov.num_vfs)
821 return FM10K_ERR_PARAM;
822
823 /* determine vector offset and count */
824 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
825 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
826
827 /* search for first vector that is not masked */
828 for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
829 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
830 break;
831 }
832
833 /* reset linked list so it now includes our active vectors */
834 if (vf_idx == (hw->iov.num_vfs - 1))
835 fm10k_write_reg(hw, FM10K_ITR2(0), i);
836 else
837 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
838
839 return 0;
840 }
841
842 /**
843 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
844 * @hw: pointer to the HW structure
845 * @vf_info: pointer to VF information structure
846 *
847 * Assign a MAC address and default VLAN to a VF and notify it of the update
848 **/
849 static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
850 struct fm10k_vf_info *vf_info)
851 {
852 u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
853 u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
854 s32 err = 0;
855 u16 vf_idx, vf_vid;
856
857 /* verify vf is in range */
858 if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
859 return FM10K_ERR_PARAM;
860
861 /* determine qmap offsets and counts */
862 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
863 queues_per_pool = fm10k_queues_per_pool(hw);
864
865 /* calculate starting index for queues */
866 vf_idx = vf_info->vf_idx;
867 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
868 qmap_idx = qmap_stride * vf_idx;
869
870 /* MAP Tx queue back to 0 temporarily, and disable it */
871 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
872 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
873
874 /* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
875 * used here to indicate to the VF that it will not have privilege to
876 * write VLAN_TABLE. All policy is enforced on the PF but this allows
877 * the VF to correctly report errors to userspace rqeuests.
878 */
879 if (vf_info->pf_vid)
880 vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE;
881 else
882 vf_vid = vf_info->sw_vid;
883
884 /* generate MAC_ADDR request */
885 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
886 fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
887 vf_info->mac, vf_vid);
888
889 /* load onto outgoing mailbox, ignore any errors on enqueue */
890 if (vf_info->mbx.ops.enqueue_tx)
891 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
892
893 /* verify ring has disabled before modifying base address registers */
894 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
895 for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
896 /* limit ourselves to a 1ms timeout */
897 if (timeout == 10) {
898 err = FM10K_ERR_DMA_PENDING;
899 goto err_out;
900 }
901
902 usleep_range(100, 200);
903 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
904 }
905
906 /* Update base address registers to contain MAC address */
907 if (is_valid_ether_addr(vf_info->mac)) {
908 tdbal = (((u32)vf_info->mac[3]) << 24) |
909 (((u32)vf_info->mac[4]) << 16) |
910 (((u32)vf_info->mac[5]) << 8);
911
912 tdbah = (((u32)0xFF) << 24) |
913 (((u32)vf_info->mac[0]) << 16) |
914 (((u32)vf_info->mac[1]) << 8) |
915 ((u32)vf_info->mac[2]);
916 }
917
918 /* Record the base address into queue 0 */
919 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
920 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
921
922 /* Provide the VF the ITR scale, using software-defined fields in TDLEN
923 * to pass the information during VF initialization. See definition of
924 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
925 */
926 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
927 FM10K_TDLEN_ITR_SCALE_SHIFT);
928
929 err_out:
930 /* configure Queue control register */
931 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
932 FM10K_TXQCTL_VID_MASK;
933 txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
934 FM10K_TXQCTL_VF | vf_idx;
935
936 /* assign VLAN ID */
937 for (i = 0; i < queues_per_pool; i++)
938 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
939
940 /* restore the queue back to VF ownership */
941 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
942 return err;
943 }
944
945 /**
946 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
947 * @hw: pointer to the HW structure
948 * @vf_info: pointer to VF information structure
949 *
950 * Reassign the interrupts and queues to a VF following an FLR
951 **/
952 static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
953 struct fm10k_vf_info *vf_info)
954 {
955 u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
956 u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
957 u16 vf_v_idx, vf_v_limit, vf_vid;
958 u8 vf_idx = vf_info->vf_idx;
959 int i;
960
961 /* verify vf is in range */
962 if (vf_idx >= hw->iov.num_vfs)
963 return FM10K_ERR_PARAM;
964
965 /* clear event notification of VF FLR */
966 fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32));
967
968 /* force timeout and then disconnect the mailbox */
969 vf_info->mbx.timeout = 0;
970 if (vf_info->mbx.ops.disconnect)
971 vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
972
973 /* determine vector offset and count */
974 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
975 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
976
977 /* determine qmap offsets and counts */
978 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
979 queues_per_pool = fm10k_queues_per_pool(hw);
980 qmap_idx = qmap_stride * vf_idx;
981
982 /* make all the queues inaccessible to the VF */
983 for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
984 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
985 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
986 }
987
988 /* calculate starting index for queues */
989 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
990
991 /* determine correct default VLAN ID */
992 if (vf_info->pf_vid)
993 vf_vid = vf_info->pf_vid;
994 else
995 vf_vid = vf_info->sw_vid;
996
997 /* configure Queue control register */
998 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
999 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
1000 FM10K_TXQCTL_VF | vf_idx;
1001 rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF;
1002
1003 /* stop further DMA and reset queue ownership back to VF */
1004 for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
1005 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
1006 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
1007 fm10k_write_reg(hw, FM10K_RXDCTL(i),
1008 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
1009 FM10K_RXDCTL_DROP_ON_EMPTY);
1010 fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
1011 }
1012
1013 /* reset TC with -1 credits and no quanta to prevent transmit */
1014 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1015 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1016 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1017 FM10K_TC_CREDIT_CREDIT_MASK);
1018
1019 /* update our first entry in the table based on previous VF */
1020 if (!vf_idx)
1021 hw->mac.ops.update_int_moderator(hw);
1022 else
1023 hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1024
1025 /* reset linked list so it now includes our active vectors */
1026 if (vf_idx == (hw->iov.num_vfs - 1))
1027 fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1028 else
1029 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1030
1031 /* link remaining vectors so that next points to previous */
1032 for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1033 fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1034
1035 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1036 for (i = FM10K_VFMBMEM_LEN; i--;)
1037 fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1038 for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1039 fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1040 for (i = FM10K_RETA_SIZE; i--;)
1041 fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1042 for (i = FM10K_RSSRK_SIZE; i--;)
1043 fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1044 fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1045
1046 /* Update base address registers to contain MAC address */
1047 if (is_valid_ether_addr(vf_info->mac)) {
1048 tdbal = (((u32)vf_info->mac[3]) << 24) |
1049 (((u32)vf_info->mac[4]) << 16) |
1050 (((u32)vf_info->mac[5]) << 8);
1051 tdbah = (((u32)0xFF) << 24) |
1052 (((u32)vf_info->mac[0]) << 16) |
1053 (((u32)vf_info->mac[1]) << 8) |
1054 ((u32)vf_info->mac[2]);
1055 }
1056
1057 /* map queue pairs back to VF from last to first */
1058 for (i = queues_per_pool; i--;) {
1059 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1060 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1061 /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1062 * explanation of how TDLEN is used.
1063 */
1064 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1065 hw->mac.itr_scale <<
1066 FM10K_TDLEN_ITR_SCALE_SHIFT);
1067 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1068 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1069 }
1070
1071 /* repeat the first ring for all the remaining VF rings */
1072 for (i = queues_per_pool; i < qmap_stride; i++) {
1073 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1074 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1075 }
1076
1077 return 0;
1078 }
1079
1080 /**
1081 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1082 * @hw: pointer to hardware structure
1083 * @vf_info: pointer to VF information structure
1084 * @lport_idx: Logical port offset from the hardware glort
1085 * @flags: Set of capability flags to extend port beyond basic functionality
1086 *
1087 * This function allows enabling a VF port by assigning it a GLORT and
1088 * setting the flags so that it can enable an Rx mode.
1089 **/
1090 static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1091 struct fm10k_vf_info *vf_info,
1092 u16 lport_idx, u8 flags)
1093 {
1094 u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1095
1096 /* if glort is not valid return error */
1097 if (!fm10k_glort_valid_pf(hw, glort))
1098 return FM10K_ERR_PARAM;
1099
1100 vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1101 vf_info->glort = glort;
1102
1103 return 0;
1104 }
1105
1106 /**
1107 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1108 * @hw: pointer to hardware structure
1109 * @vf_info: pointer to VF information structure
1110 *
1111 * This function disables a VF port by stripping it of a GLORT and
1112 * setting the flags so that it cannot enable any Rx mode.
1113 **/
1114 static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1115 struct fm10k_vf_info *vf_info)
1116 {
1117 u32 msg[1];
1118
1119 /* need to disable the port if it is already enabled */
1120 if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1121 /* notify switch that this port has been disabled */
1122 fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1123
1124 /* generate port state response to notify VF it is not ready */
1125 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1126 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1127 }
1128
1129 /* clear flags and glort if it exists */
1130 vf_info->vf_flags = 0;
1131 vf_info->glort = 0;
1132 }
1133
1134 /**
1135 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1136 * @hw: pointer to hardware structure
1137 * @q: stats for all queues of a VF
1138 * @vf_idx: index of VF
1139 *
1140 * This function collects queue stats for VFs.
1141 **/
1142 static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1143 struct fm10k_hw_stats_q *q,
1144 u16 vf_idx)
1145 {
1146 u32 idx, qpp;
1147
1148 /* get stats for all of the queues */
1149 qpp = fm10k_queues_per_pool(hw);
1150 idx = fm10k_vf_queue_index(hw, vf_idx);
1151 fm10k_update_hw_stats_q(hw, q, idx, qpp);
1152 }
1153
1154 /**
1155 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1156 * @hw: Pointer to hardware structure
1157 * @results: Pointer array to message, results[0] is pointer to message
1158 * @mbx: Pointer to mailbox information structure
1159 *
1160 * This function is a default handler for MSI-X requests from the VF. The
1161 * assumption is that in this case it is acceptable to just directly
1162 * hand off the message from the VF to the underlying shared code.
1163 **/
1164 s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1165 struct fm10k_mbx_info *mbx)
1166 {
1167 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1168 u8 vf_idx = vf_info->vf_idx;
1169
1170 return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1171 }
1172
1173 /**
1174 * fm10k_iov_select_vid - Select correct default VLAN ID
1175 * @hw: Pointer to hardware structure
1176 * @vid: VLAN ID to correct
1177 *
1178 * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1179 * return either the pf_vid or sw_vid depending on which one is set.
1180 */
1181 static s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
1182 {
1183 if (!vid)
1184 return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1185 else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1186 return FM10K_ERR_PARAM;
1187 else
1188 return vid;
1189 }
1190
1191 /**
1192 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1193 * @hw: Pointer to hardware structure
1194 * @results: Pointer array to message, results[0] is pointer to message
1195 * @mbx: Pointer to mailbox information structure
1196 *
1197 * This function is a default handler for MAC/VLAN requests from the VF.
1198 * The assumption is that in this case it is acceptable to just directly
1199 * hand off the message from the VF to the underlying shared code.
1200 **/
1201 s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1202 struct fm10k_mbx_info *mbx)
1203 {
1204 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1205 u8 mac[ETH_ALEN];
1206 u32 *result;
1207 int err = 0;
1208 bool set;
1209 u16 vlan;
1210 u32 vid;
1211
1212 /* we shouldn't be updating rules on a disabled interface */
1213 if (!FM10K_VF_FLAG_ENABLED(vf_info))
1214 err = FM10K_ERR_PARAM;
1215
1216 if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1217 result = results[FM10K_MAC_VLAN_MSG_VLAN];
1218
1219 /* record VLAN id requested */
1220 err = fm10k_tlv_attr_get_u32(result, &vid);
1221 if (err)
1222 return err;
1223
1224 set = !(vid & FM10K_VLAN_CLEAR);
1225 vid &= ~FM10K_VLAN_CLEAR;
1226
1227 /* if the length field has been set, this is a multi-bit
1228 * update request. For multi-bit requests, simply disallow
1229 * them when the pf_vid has been set. In this case, the PF
1230 * should have already cleared the VLAN_TABLE, and if we
1231 * allowed them, it could allow a rogue VF to receive traffic
1232 * on a VLAN it was not assigned. In the single-bit case, we
1233 * need to modify requests for VLAN 0 to use the default PF or
1234 * SW vid when assigned.
1235 */
1236
1237 if (vid >> 16) {
1238 /* prevent multi-bit requests when PF has
1239 * administratively set the VLAN for this VF
1240 */
1241 if (vf_info->pf_vid)
1242 return FM10K_ERR_PARAM;
1243 } else {
1244 err = fm10k_iov_select_vid(vf_info, (u16)vid);
1245 if (err < 0)
1246 return err;
1247
1248 vid = err;
1249 }
1250
1251 /* update VSI info for VF in regards to VLAN table */
1252 err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
1253 }
1254
1255 if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1256 result = results[FM10K_MAC_VLAN_MSG_MAC];
1257
1258 /* record unicast MAC address requested */
1259 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1260 if (err)
1261 return err;
1262
1263 /* block attempts to set MAC for a locked device */
1264 if (is_valid_ether_addr(vf_info->mac) &&
1265 !ether_addr_equal(mac, vf_info->mac))
1266 return FM10K_ERR_PARAM;
1267
1268 set = !(vlan & FM10K_VLAN_CLEAR);
1269 vlan &= ~FM10K_VLAN_CLEAR;
1270
1271 err = fm10k_iov_select_vid(vf_info, vlan);
1272 if (err < 0)
1273 return err;
1274
1275 vlan = (u16)err;
1276
1277 /* notify switch of request for new unicast address */
1278 err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1279 mac, vlan, set, 0);
1280 }
1281
1282 if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1283 result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1284
1285 /* record multicast MAC address requested */
1286 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1287 if (err)
1288 return err;
1289
1290 /* verify that the VF is allowed to request multicast */
1291 if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1292 return FM10K_ERR_PARAM;
1293
1294 set = !(vlan & FM10K_VLAN_CLEAR);
1295 vlan &= ~FM10K_VLAN_CLEAR;
1296
1297 err = fm10k_iov_select_vid(vf_info, vlan);
1298 if (err < 0)
1299 return err;
1300
1301 vlan = (u16)err;
1302
1303 /* notify switch of request for new multicast address */
1304 err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1305 mac, vlan, set);
1306 }
1307
1308 return err;
1309 }
1310
1311 /**
1312 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1313 * @vf_info: VF info structure containing capability flags
1314 * @mode: Requested xcast mode
1315 *
1316 * This function outputs the mode that most closely matches the requested
1317 * mode. If not modes match it will request we disable the port
1318 **/
1319 static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1320 u8 mode)
1321 {
1322 u8 vf_flags = vf_info->vf_flags;
1323
1324 /* match up mode to capabilities as best as possible */
1325 switch (mode) {
1326 case FM10K_XCAST_MODE_PROMISC:
1327 if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1328 return FM10K_XCAST_MODE_PROMISC;
1329 /* fallthough */
1330 case FM10K_XCAST_MODE_ALLMULTI:
1331 if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1332 return FM10K_XCAST_MODE_ALLMULTI;
1333 /* fallthough */
1334 case FM10K_XCAST_MODE_MULTI:
1335 if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1336 return FM10K_XCAST_MODE_MULTI;
1337 /* fallthough */
1338 case FM10K_XCAST_MODE_NONE:
1339 if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1340 return FM10K_XCAST_MODE_NONE;
1341 /* fallthough */
1342 default:
1343 break;
1344 }
1345
1346 /* disable interface as it should not be able to request any */
1347 return FM10K_XCAST_MODE_DISABLE;
1348 }
1349
1350 /**
1351 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1352 * @hw: Pointer to hardware structure
1353 * @results: Pointer array to message, results[0] is pointer to message
1354 * @mbx: Pointer to mailbox information structure
1355 *
1356 * This function is a default handler for port state requests. The port
1357 * state requests for now are basic and consist of enabling or disabling
1358 * the port.
1359 **/
1360 s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1361 struct fm10k_mbx_info *mbx)
1362 {
1363 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1364 u32 *result;
1365 s32 err = 0;
1366 u32 msg[2];
1367 u8 mode = 0;
1368
1369 /* verify VF is allowed to enable even minimal mode */
1370 if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1371 return FM10K_ERR_PARAM;
1372
1373 if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1374 result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1375
1376 /* XCAST mode update requested */
1377 err = fm10k_tlv_attr_get_u8(result, &mode);
1378 if (err)
1379 return FM10K_ERR_PARAM;
1380
1381 /* prep for possible demotion depending on capabilities */
1382 mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1383
1384 /* if mode is not currently enabled, enable it */
1385 if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode)))
1386 fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1387
1388 /* swap mode back to a bit flag */
1389 mode = FM10K_VF_FLAG_SET_MODE(mode);
1390 } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1391 /* need to disable the port if it is already enabled */
1392 if (FM10K_VF_FLAG_ENABLED(vf_info))
1393 err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1394 1, false);
1395
1396 /* we need to clear VF_FLAG_ENABLED flags in order to ensure
1397 * that we actually re-enable the LPORT state below. Note that
1398 * this has no impact if the VF is already disabled, as the
1399 * flags are already cleared.
1400 */
1401 if (!err)
1402 vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1403
1404 /* when enabling the port we should reset the rate limiters */
1405 hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1406
1407 /* set mode for minimal functionality */
1408 mode = FM10K_VF_FLAG_SET_MODE_NONE;
1409
1410 /* generate port state response to notify VF it is ready */
1411 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1412 fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1413 mbx->ops.enqueue_tx(hw, mbx, msg);
1414 }
1415
1416 /* if enable state toggled note the update */
1417 if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1418 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1419 !!mode);
1420
1421 /* if state change succeeded, then update our stored state */
1422 mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1423 if (!err)
1424 vf_info->vf_flags = mode;
1425
1426 return err;
1427 }
1428
1429 /**
1430 * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1431 * @hw: pointer to hardware structure
1432 * @stats: pointer to the stats structure to update
1433 *
1434 * This function collects and aggregates global and per queue hardware
1435 * statistics.
1436 **/
1437 static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1438 struct fm10k_hw_stats *stats)
1439 {
1440 u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1441 u32 id, id_prev;
1442
1443 /* Use Tx queue 0 as a canary to detect a reset */
1444 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1445
1446 /* Read Global Statistics */
1447 do {
1448 timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1449 &stats->timeout);
1450 ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1451 ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1452 um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1453 xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1454 vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1455 &stats->vlan_drop);
1456 loopback_drop =
1457 fm10k_read_hw_stats_32b(hw,
1458 FM10K_STATS_LOOPBACK_DROP,
1459 &stats->loopback_drop);
1460 nodesc_drop = fm10k_read_hw_stats_32b(hw,
1461 FM10K_STATS_NODESC_DROP,
1462 &stats->nodesc_drop);
1463
1464 /* if value has not changed then we have consistent data */
1465 id_prev = id;
1466 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1467 } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1468
1469 /* drop non-ID bits and set VALID ID bit */
1470 id &= FM10K_TXQCTL_ID_MASK;
1471 id |= FM10K_STAT_VALID;
1472
1473 /* Update Global Statistics */
1474 if (stats->stats_idx == id) {
1475 stats->timeout.count += timeout;
1476 stats->ur.count += ur;
1477 stats->ca.count += ca;
1478 stats->um.count += um;
1479 stats->xec.count += xec;
1480 stats->vlan_drop.count += vlan_drop;
1481 stats->loopback_drop.count += loopback_drop;
1482 stats->nodesc_drop.count += nodesc_drop;
1483 }
1484
1485 /* Update bases and record current PF id */
1486 fm10k_update_hw_base_32b(&stats->timeout, timeout);
1487 fm10k_update_hw_base_32b(&stats->ur, ur);
1488 fm10k_update_hw_base_32b(&stats->ca, ca);
1489 fm10k_update_hw_base_32b(&stats->um, um);
1490 fm10k_update_hw_base_32b(&stats->xec, xec);
1491 fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1492 fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1493 fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1494 stats->stats_idx = id;
1495
1496 /* Update Queue Statistics */
1497 fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1498 }
1499
1500 /**
1501 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1502 * @hw: pointer to hardware structure
1503 * @stats: pointer to the stats structure to update
1504 *
1505 * This function resets the base for global and per queue hardware
1506 * statistics.
1507 **/
1508 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1509 struct fm10k_hw_stats *stats)
1510 {
1511 /* Unbind Global Statistics */
1512 fm10k_unbind_hw_stats_32b(&stats->timeout);
1513 fm10k_unbind_hw_stats_32b(&stats->ur);
1514 fm10k_unbind_hw_stats_32b(&stats->ca);
1515 fm10k_unbind_hw_stats_32b(&stats->um);
1516 fm10k_unbind_hw_stats_32b(&stats->xec);
1517 fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1518 fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1519 fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1520
1521 /* Unbind Queue Statistics */
1522 fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1523
1524 /* Reinitialize bases for all stats */
1525 fm10k_update_hw_stats_pf(hw, stats);
1526 }
1527
1528 /**
1529 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1530 * @hw: pointer to hardware structure
1531 * @dma_mask: 64 bit DMA mask required for platform
1532 *
1533 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1534 * to limit the access to memory beyond what is physically in the system.
1535 **/
1536 static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1537 {
1538 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1539 u32 phyaddr = (u32)(dma_mask >> 32);
1540
1541 fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1542 }
1543
1544 /**
1545 * fm10k_get_fault_pf - Record a fault in one of the interface units
1546 * @hw: pointer to hardware structure
1547 * @type: pointer to fault type register offset
1548 * @fault: pointer to memory location to record the fault
1549 *
1550 * Record the fault register contents to the fault data structure and
1551 * clear the entry from the register.
1552 *
1553 * Returns ERR_PARAM if invalid register is specified or no error is present.
1554 **/
1555 static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1556 struct fm10k_fault *fault)
1557 {
1558 u32 func;
1559
1560 /* verify the fault register is in range and is aligned */
1561 switch (type) {
1562 case FM10K_PCA_FAULT:
1563 case FM10K_THI_FAULT:
1564 case FM10K_FUM_FAULT:
1565 break;
1566 default:
1567 return FM10K_ERR_PARAM;
1568 }
1569
1570 /* only service faults that are valid */
1571 func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1572 if (!(func & FM10K_FAULT_FUNC_VALID))
1573 return FM10K_ERR_PARAM;
1574
1575 /* read remaining fields */
1576 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1577 fault->address <<= 32;
1578 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1579 fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1580
1581 /* clear valid bit to allow for next error */
1582 fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1583
1584 /* Record which function triggered the error */
1585 if (func & FM10K_FAULT_FUNC_PF)
1586 fault->func = 0;
1587 else
1588 fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1589 FM10K_FAULT_FUNC_VF_SHIFT);
1590
1591 /* record fault type */
1592 fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1593
1594 return 0;
1595 }
1596
1597 /**
1598 * fm10k_request_lport_map_pf - Request LPORT map from the switch API
1599 * @hw: pointer to hardware structure
1600 *
1601 **/
1602 static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1603 {
1604 struct fm10k_mbx_info *mbx = &hw->mbx;
1605 u32 msg[1];
1606
1607 /* issue request asking for LPORT map */
1608 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1609
1610 /* load onto outgoing mailbox */
1611 return mbx->ops.enqueue_tx(hw, mbx, msg);
1612 }
1613
1614 /**
1615 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1616 * @hw: pointer to hardware structure
1617 * @switch_ready: pointer to boolean value that will record switch state
1618 *
1619 * This function will check the DMA_CTRL2 register and mailbox in order
1620 * to determine if the switch is ready for the PF to begin requesting
1621 * addresses and mapping traffic to the local interface.
1622 **/
1623 static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1624 {
1625 u32 dma_ctrl2;
1626
1627 /* verify the switch is ready for interaction */
1628 dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1629 if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1630 return 0;
1631
1632 /* retrieve generic host state info */
1633 return fm10k_get_host_state_generic(hw, switch_ready);
1634 }
1635
1636 /* This structure defines the attibutes to be parsed below */
1637 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1638 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1639 sizeof(struct fm10k_swapi_error)),
1640 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1641 FM10K_TLV_ATTR_LAST
1642 };
1643
1644 /**
1645 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1646 * @hw: Pointer to hardware structure
1647 * @results: pointer array containing parsed data
1648 * @mbx: Pointer to mailbox information structure
1649 *
1650 * This handler configures the lport mapping based on the reply from the
1651 * switch API.
1652 **/
1653 s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1654 struct fm10k_mbx_info *mbx)
1655 {
1656 u16 glort, mask;
1657 u32 dglort_map;
1658 s32 err;
1659
1660 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1661 &dglort_map);
1662 if (err)
1663 return err;
1664
1665 /* extract values out of the header */
1666 glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1667 mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1668
1669 /* verify mask is set and none of the masked bits in glort are set */
1670 if (!mask || (glort & ~mask))
1671 return FM10K_ERR_PARAM;
1672
1673 /* verify the mask is contiguous, and that it is 1's followed by 0's */
1674 if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1675 return FM10K_ERR_PARAM;
1676
1677 /* record the glort, mask, and port count */
1678 hw->mac.dglort_map = dglort_map;
1679
1680 return 0;
1681 }
1682
1683 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1684 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1685 FM10K_TLV_ATTR_LAST
1686 };
1687
1688 /**
1689 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1690 * @hw: Pointer to hardware structure
1691 * @results: pointer array containing parsed data
1692 * @mbx: Pointer to mailbox information structure
1693 *
1694 * This handler configures the default VLAN for the PF
1695 **/
1696 static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1697 struct fm10k_mbx_info *mbx)
1698 {
1699 u16 glort, pvid;
1700 u32 pvid_update;
1701 s32 err;
1702
1703 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1704 &pvid_update);
1705 if (err)
1706 return err;
1707
1708 /* extract values from the pvid update */
1709 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1710 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1711
1712 /* if glort is not valid return error */
1713 if (!fm10k_glort_valid_pf(hw, glort))
1714 return FM10K_ERR_PARAM;
1715
1716 /* verify VLAN ID is valid */
1717 if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1718 return FM10K_ERR_PARAM;
1719
1720 /* record the port VLAN ID value */
1721 hw->mac.default_vid = pvid;
1722
1723 return 0;
1724 }
1725
1726 /**
1727 * fm10k_record_global_table_data - Move global table data to swapi table info
1728 * @from: pointer to source table data structure
1729 * @to: pointer to destination table info structure
1730 *
1731 * This function is will copy table_data to the table_info contained in
1732 * the hw struct.
1733 **/
1734 static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1735 struct fm10k_swapi_table_info *to)
1736 {
1737 /* convert from le32 struct to CPU byte ordered values */
1738 to->used = le32_to_cpu(from->used);
1739 to->avail = le32_to_cpu(from->avail);
1740 }
1741
1742 const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1743 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1744 sizeof(struct fm10k_swapi_error)),
1745 FM10K_TLV_ATTR_LAST
1746 };
1747
1748 /**
1749 * fm10k_msg_err_pf - Message handler for error reply
1750 * @hw: Pointer to hardware structure
1751 * @results: pointer array containing parsed data
1752 * @mbx: Pointer to mailbox information structure
1753 *
1754 * This handler will capture the data for any error replies to previous
1755 * messages that the PF has sent.
1756 **/
1757 s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1758 struct fm10k_mbx_info *mbx)
1759 {
1760 struct fm10k_swapi_error err_msg;
1761 s32 err;
1762
1763 /* extract structure from message */
1764 err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1765 &err_msg, sizeof(err_msg));
1766 if (err)
1767 return err;
1768
1769 /* record table status */
1770 fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1771 fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1772 fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1773
1774 /* record SW API status value */
1775 hw->swapi.status = le32_to_cpu(err_msg.status);
1776
1777 return 0;
1778 }
1779
1780 static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1781 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1782 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1783 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1784 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1785 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1786 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1787 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1788 };
1789
1790 static const struct fm10k_mac_ops mac_ops_pf = {
1791 .get_bus_info = fm10k_get_bus_info_generic,
1792 .reset_hw = fm10k_reset_hw_pf,
1793 .init_hw = fm10k_init_hw_pf,
1794 .start_hw = fm10k_start_hw_generic,
1795 .stop_hw = fm10k_stop_hw_generic,
1796 .update_vlan = fm10k_update_vlan_pf,
1797 .read_mac_addr = fm10k_read_mac_addr_pf,
1798 .update_uc_addr = fm10k_update_uc_addr_pf,
1799 .update_mc_addr = fm10k_update_mc_addr_pf,
1800 .update_xcast_mode = fm10k_update_xcast_mode_pf,
1801 .update_int_moderator = fm10k_update_int_moderator_pf,
1802 .update_lport_state = fm10k_update_lport_state_pf,
1803 .update_hw_stats = fm10k_update_hw_stats_pf,
1804 .rebind_hw_stats = fm10k_rebind_hw_stats_pf,
1805 .configure_dglort_map = fm10k_configure_dglort_map_pf,
1806 .set_dma_mask = fm10k_set_dma_mask_pf,
1807 .get_fault = fm10k_get_fault_pf,
1808 .get_host_state = fm10k_get_host_state_pf,
1809 .request_lport_map = fm10k_request_lport_map_pf,
1810 };
1811
1812 static const struct fm10k_iov_ops iov_ops_pf = {
1813 .assign_resources = fm10k_iov_assign_resources_pf,
1814 .configure_tc = fm10k_iov_configure_tc_pf,
1815 .assign_int_moderator = fm10k_iov_assign_int_moderator_pf,
1816 .assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf,
1817 .reset_resources = fm10k_iov_reset_resources_pf,
1818 .set_lport = fm10k_iov_set_lport_pf,
1819 .reset_lport = fm10k_iov_reset_lport_pf,
1820 .update_stats = fm10k_iov_update_stats_pf,
1821 };
1822
1823 static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1824 {
1825 fm10k_get_invariants_generic(hw);
1826
1827 return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1828 }
1829
1830 const struct fm10k_info fm10k_pf_info = {
1831 .mac = fm10k_mac_pf,
1832 .get_invariants = fm10k_get_invariants_pf,
1833 .mac_ops = &mac_ops_pf,
1834 .iov_ops = &iov_ops_pf,
1835 };
This page took 0.07464 seconds and 5 git commands to generate.