Merge remote-tracking branch 'battery/for-next'
[deliverable/linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4 * Copyright(c) 2013 - 2016 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29
30 #include "i40evf.h"
31 #include "i40e_prototype.h"
32
33 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 u32 td_tag)
35 {
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
38 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41 }
42
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45 /**
46 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47 * @ring: the ring that owns the buffer
48 * @tx_buffer: the buffer to free
49 **/
50 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 struct i40e_tx_buffer *tx_buffer)
52 {
53 if (tx_buffer->skb) {
54 dev_kfree_skb_any(tx_buffer->skb);
55 if (dma_unmap_len(tx_buffer, len))
56 dma_unmap_single(ring->dev,
57 dma_unmap_addr(tx_buffer, dma),
58 dma_unmap_len(tx_buffer, len),
59 DMA_TO_DEVICE);
60 } else if (dma_unmap_len(tx_buffer, len)) {
61 dma_unmap_page(ring->dev,
62 dma_unmap_addr(tx_buffer, dma),
63 dma_unmap_len(tx_buffer, len),
64 DMA_TO_DEVICE);
65 }
66
67 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
68 kfree(tx_buffer->raw_buf);
69
70 tx_buffer->next_to_watch = NULL;
71 tx_buffer->skb = NULL;
72 dma_unmap_len_set(tx_buffer, len, 0);
73 /* tx_buffer must be completely set up in the transmit path */
74 }
75
76 /**
77 * i40evf_clean_tx_ring - Free any empty Tx buffers
78 * @tx_ring: ring to be cleaned
79 **/
80 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81 {
82 unsigned long bi_size;
83 u16 i;
84
85 /* ring already cleared, nothing to do */
86 if (!tx_ring->tx_bi)
87 return;
88
89 /* Free all the Tx ring sk_buffs */
90 for (i = 0; i < tx_ring->count; i++)
91 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 memset(tx_ring->tx_bi, 0, bi_size);
95
96 /* Zero out the descriptor ring */
97 memset(tx_ring->desc, 0, tx_ring->size);
98
99 tx_ring->next_to_use = 0;
100 tx_ring->next_to_clean = 0;
101
102 if (!tx_ring->netdev)
103 return;
104
105 /* cleanup Tx queue statistics */
106 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107 tx_ring->queue_index));
108 }
109
110 /**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117 {
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127 }
128
129 /**
130 * i40evf_get_tx_pending - how many Tx descriptors not processed
131 * @tx_ring: the ring of descriptors
132 * @in_sw: is tx_pending being checked in SW or HW
133 *
134 * Since there is no access to the ring head register
135 * in XL710, we need to use our local copies
136 **/
137 u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
138 {
139 u32 head, tail;
140
141 if (!in_sw)
142 head = i40e_get_head(ring);
143 else
144 head = ring->next_to_clean;
145 tail = readl(ring->tail);
146
147 if (head != tail)
148 return (head < tail) ?
149 tail - head : (tail + ring->count - head);
150
151 return 0;
152 }
153
154 #define WB_STRIDE 0x3
155
156 /**
157 * i40e_clean_tx_irq - Reclaim resources after transmit completes
158 * @vsi: the VSI we care about
159 * @tx_ring: Tx ring to clean
160 * @napi_budget: Used to determine if we are in netpoll
161 *
162 * Returns true if there's any budget left (e.g. the clean is finished)
163 **/
164 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
165 struct i40e_ring *tx_ring, int napi_budget)
166 {
167 u16 i = tx_ring->next_to_clean;
168 struct i40e_tx_buffer *tx_buf;
169 struct i40e_tx_desc *tx_head;
170 struct i40e_tx_desc *tx_desc;
171 unsigned int total_bytes = 0, total_packets = 0;
172 unsigned int budget = vsi->work_limit;
173
174 tx_buf = &tx_ring->tx_bi[i];
175 tx_desc = I40E_TX_DESC(tx_ring, i);
176 i -= tx_ring->count;
177
178 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
179
180 do {
181 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
182
183 /* if next_to_watch is not set then there is no work pending */
184 if (!eop_desc)
185 break;
186
187 /* prevent any other reads prior to eop_desc */
188 read_barrier_depends();
189
190 /* we have caught up to head, no work left to do */
191 if (tx_head == tx_desc)
192 break;
193
194 /* clear next_to_watch to prevent false hangs */
195 tx_buf->next_to_watch = NULL;
196
197 /* update the statistics for this packet */
198 total_bytes += tx_buf->bytecount;
199 total_packets += tx_buf->gso_segs;
200
201 /* free the skb */
202 napi_consume_skb(tx_buf->skb, napi_budget);
203
204 /* unmap skb header data */
205 dma_unmap_single(tx_ring->dev,
206 dma_unmap_addr(tx_buf, dma),
207 dma_unmap_len(tx_buf, len),
208 DMA_TO_DEVICE);
209
210 /* clear tx_buffer data */
211 tx_buf->skb = NULL;
212 dma_unmap_len_set(tx_buf, len, 0);
213
214 /* unmap remaining buffers */
215 while (tx_desc != eop_desc) {
216
217 tx_buf++;
218 tx_desc++;
219 i++;
220 if (unlikely(!i)) {
221 i -= tx_ring->count;
222 tx_buf = tx_ring->tx_bi;
223 tx_desc = I40E_TX_DESC(tx_ring, 0);
224 }
225
226 /* unmap any remaining paged data */
227 if (dma_unmap_len(tx_buf, len)) {
228 dma_unmap_page(tx_ring->dev,
229 dma_unmap_addr(tx_buf, dma),
230 dma_unmap_len(tx_buf, len),
231 DMA_TO_DEVICE);
232 dma_unmap_len_set(tx_buf, len, 0);
233 }
234 }
235
236 /* move us one more past the eop_desc for start of next pkt */
237 tx_buf++;
238 tx_desc++;
239 i++;
240 if (unlikely(!i)) {
241 i -= tx_ring->count;
242 tx_buf = tx_ring->tx_bi;
243 tx_desc = I40E_TX_DESC(tx_ring, 0);
244 }
245
246 prefetch(tx_desc);
247
248 /* update budget accounting */
249 budget--;
250 } while (likely(budget));
251
252 i += tx_ring->count;
253 tx_ring->next_to_clean = i;
254 u64_stats_update_begin(&tx_ring->syncp);
255 tx_ring->stats.bytes += total_bytes;
256 tx_ring->stats.packets += total_packets;
257 u64_stats_update_end(&tx_ring->syncp);
258 tx_ring->q_vector->tx.total_bytes += total_bytes;
259 tx_ring->q_vector->tx.total_packets += total_packets;
260
261 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
262 /* check to see if there are < 4 descriptors
263 * waiting to be written back, then kick the hardware to force
264 * them to be written back in case we stay in NAPI.
265 * In this mode on X722 we do not enable Interrupt.
266 */
267 unsigned int j = i40evf_get_tx_pending(tx_ring, false);
268
269 if (budget &&
270 ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
271 !test_bit(__I40E_DOWN, &vsi->state) &&
272 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
273 tx_ring->arm_wb = true;
274 }
275
276 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
277 tx_ring->queue_index),
278 total_packets, total_bytes);
279
280 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
281 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
282 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
283 /* Make sure that anybody stopping the queue after this
284 * sees the new next_to_clean.
285 */
286 smp_mb();
287 if (__netif_subqueue_stopped(tx_ring->netdev,
288 tx_ring->queue_index) &&
289 !test_bit(__I40E_DOWN, &vsi->state)) {
290 netif_wake_subqueue(tx_ring->netdev,
291 tx_ring->queue_index);
292 ++tx_ring->tx_stats.restart_queue;
293 }
294 }
295
296 return !!budget;
297 }
298
299 /**
300 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
301 * @vsi: the VSI we care about
302 * @q_vector: the vector on which to enable writeback
303 *
304 **/
305 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
306 struct i40e_q_vector *q_vector)
307 {
308 u16 flags = q_vector->tx.ring[0].flags;
309 u32 val;
310
311 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
312 return;
313
314 if (q_vector->arm_wb_state)
315 return;
316
317 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
318 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
319
320 wr32(&vsi->back->hw,
321 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
322 vsi->base_vector - 1), val);
323 q_vector->arm_wb_state = true;
324 }
325
326 /**
327 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
328 * @vsi: the VSI we care about
329 * @q_vector: the vector on which to force writeback
330 *
331 **/
332 void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
333 {
334 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
335 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
336 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
337 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
338 /* allow 00 to be written to the index */;
339
340 wr32(&vsi->back->hw,
341 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
342 val);
343 }
344
345 /**
346 * i40e_set_new_dynamic_itr - Find new ITR level
347 * @rc: structure containing ring performance data
348 *
349 * Returns true if ITR changed, false if not
350 *
351 * Stores a new ITR value based on packets and byte counts during
352 * the last interrupt. The advantage of per interrupt computation
353 * is faster updates and more accurate ITR for the current traffic
354 * pattern. Constants in this function were computed based on
355 * theoretical maximum wire speed and thresholds were set based on
356 * testing data as well as attempting to minimize response time
357 * while increasing bulk throughput.
358 **/
359 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
360 {
361 enum i40e_latency_range new_latency_range = rc->latency_range;
362 struct i40e_q_vector *qv = rc->ring->q_vector;
363 u32 new_itr = rc->itr;
364 int bytes_per_int;
365 int usecs;
366
367 if (rc->total_packets == 0 || !rc->itr)
368 return false;
369
370 /* simple throttlerate management
371 * 0-10MB/s lowest (50000 ints/s)
372 * 10-20MB/s low (20000 ints/s)
373 * 20-1249MB/s bulk (18000 ints/s)
374 * > 40000 Rx packets per second (8000 ints/s)
375 *
376 * The math works out because the divisor is in 10^(-6) which
377 * turns the bytes/us input value into MB/s values, but
378 * make sure to use usecs, as the register values written
379 * are in 2 usec increments in the ITR registers, and make sure
380 * to use the smoothed values that the countdown timer gives us.
381 */
382 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
383 bytes_per_int = rc->total_bytes / usecs;
384
385 switch (new_latency_range) {
386 case I40E_LOWEST_LATENCY:
387 if (bytes_per_int > 10)
388 new_latency_range = I40E_LOW_LATENCY;
389 break;
390 case I40E_LOW_LATENCY:
391 if (bytes_per_int > 20)
392 new_latency_range = I40E_BULK_LATENCY;
393 else if (bytes_per_int <= 10)
394 new_latency_range = I40E_LOWEST_LATENCY;
395 break;
396 case I40E_BULK_LATENCY:
397 case I40E_ULTRA_LATENCY:
398 default:
399 if (bytes_per_int <= 20)
400 new_latency_range = I40E_LOW_LATENCY;
401 break;
402 }
403
404 /* this is to adjust RX more aggressively when streaming small
405 * packets. The value of 40000 was picked as it is just beyond
406 * what the hardware can receive per second if in low latency
407 * mode.
408 */
409 #define RX_ULTRA_PACKET_RATE 40000
410
411 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
412 (&qv->rx == rc))
413 new_latency_range = I40E_ULTRA_LATENCY;
414
415 rc->latency_range = new_latency_range;
416
417 switch (new_latency_range) {
418 case I40E_LOWEST_LATENCY:
419 new_itr = I40E_ITR_50K;
420 break;
421 case I40E_LOW_LATENCY:
422 new_itr = I40E_ITR_20K;
423 break;
424 case I40E_BULK_LATENCY:
425 new_itr = I40E_ITR_18K;
426 break;
427 case I40E_ULTRA_LATENCY:
428 new_itr = I40E_ITR_8K;
429 break;
430 default:
431 break;
432 }
433
434 rc->total_bytes = 0;
435 rc->total_packets = 0;
436
437 if (new_itr != rc->itr) {
438 rc->itr = new_itr;
439 return true;
440 }
441
442 return false;
443 }
444
445 /**
446 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
447 * @tx_ring: the tx ring to set up
448 *
449 * Return 0 on success, negative on error
450 **/
451 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
452 {
453 struct device *dev = tx_ring->dev;
454 int bi_size;
455
456 if (!dev)
457 return -ENOMEM;
458
459 /* warn if we are about to overwrite the pointer */
460 WARN_ON(tx_ring->tx_bi);
461 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
462 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
463 if (!tx_ring->tx_bi)
464 goto err;
465
466 /* round up to nearest 4K */
467 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
468 /* add u32 for head writeback, align after this takes care of
469 * guaranteeing this is at least one cache line in size
470 */
471 tx_ring->size += sizeof(u32);
472 tx_ring->size = ALIGN(tx_ring->size, 4096);
473 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
474 &tx_ring->dma, GFP_KERNEL);
475 if (!tx_ring->desc) {
476 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
477 tx_ring->size);
478 goto err;
479 }
480
481 tx_ring->next_to_use = 0;
482 tx_ring->next_to_clean = 0;
483 return 0;
484
485 err:
486 kfree(tx_ring->tx_bi);
487 tx_ring->tx_bi = NULL;
488 return -ENOMEM;
489 }
490
491 /**
492 * i40evf_clean_rx_ring - Free Rx buffers
493 * @rx_ring: ring to be cleaned
494 **/
495 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
496 {
497 struct device *dev = rx_ring->dev;
498 unsigned long bi_size;
499 u16 i;
500
501 /* ring already cleared, nothing to do */
502 if (!rx_ring->rx_bi)
503 return;
504
505 /* Free all the Rx ring sk_buffs */
506 for (i = 0; i < rx_ring->count; i++) {
507 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
508
509 if (rx_bi->skb) {
510 dev_kfree_skb(rx_bi->skb);
511 rx_bi->skb = NULL;
512 }
513 if (!rx_bi->page)
514 continue;
515
516 dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
517 __free_pages(rx_bi->page, 0);
518
519 rx_bi->page = NULL;
520 rx_bi->page_offset = 0;
521 }
522
523 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
524 memset(rx_ring->rx_bi, 0, bi_size);
525
526 /* Zero out the descriptor ring */
527 memset(rx_ring->desc, 0, rx_ring->size);
528
529 rx_ring->next_to_alloc = 0;
530 rx_ring->next_to_clean = 0;
531 rx_ring->next_to_use = 0;
532 }
533
534 /**
535 * i40evf_free_rx_resources - Free Rx resources
536 * @rx_ring: ring to clean the resources from
537 *
538 * Free all receive software resources
539 **/
540 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
541 {
542 i40evf_clean_rx_ring(rx_ring);
543 kfree(rx_ring->rx_bi);
544 rx_ring->rx_bi = NULL;
545
546 if (rx_ring->desc) {
547 dma_free_coherent(rx_ring->dev, rx_ring->size,
548 rx_ring->desc, rx_ring->dma);
549 rx_ring->desc = NULL;
550 }
551 }
552
553 /**
554 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
555 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
556 *
557 * Returns 0 on success, negative on failure
558 **/
559 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
560 {
561 struct device *dev = rx_ring->dev;
562 int bi_size;
563
564 /* warn if we are about to overwrite the pointer */
565 WARN_ON(rx_ring->rx_bi);
566 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
567 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
568 if (!rx_ring->rx_bi)
569 goto err;
570
571 u64_stats_init(&rx_ring->syncp);
572
573 /* Round up to nearest 4K */
574 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
575 rx_ring->size = ALIGN(rx_ring->size, 4096);
576 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
577 &rx_ring->dma, GFP_KERNEL);
578
579 if (!rx_ring->desc) {
580 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
581 rx_ring->size);
582 goto err;
583 }
584
585 rx_ring->next_to_alloc = 0;
586 rx_ring->next_to_clean = 0;
587 rx_ring->next_to_use = 0;
588
589 return 0;
590 err:
591 kfree(rx_ring->rx_bi);
592 rx_ring->rx_bi = NULL;
593 return -ENOMEM;
594 }
595
596 /**
597 * i40e_release_rx_desc - Store the new tail and head values
598 * @rx_ring: ring to bump
599 * @val: new head index
600 **/
601 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
602 {
603 rx_ring->next_to_use = val;
604
605 /* update next to alloc since we have filled the ring */
606 rx_ring->next_to_alloc = val;
607
608 /* Force memory writes to complete before letting h/w
609 * know there are new descriptors to fetch. (Only
610 * applicable for weak-ordered memory model archs,
611 * such as IA-64).
612 */
613 wmb();
614 writel(val, rx_ring->tail);
615 }
616
617 /**
618 * i40e_alloc_mapped_page - recycle or make a new page
619 * @rx_ring: ring to use
620 * @bi: rx_buffer struct to modify
621 *
622 * Returns true if the page was successfully allocated or
623 * reused.
624 **/
625 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
626 struct i40e_rx_buffer *bi)
627 {
628 struct page *page = bi->page;
629 dma_addr_t dma;
630
631 /* since we are recycling buffers we should seldom need to alloc */
632 if (likely(page)) {
633 rx_ring->rx_stats.page_reuse_count++;
634 return true;
635 }
636
637 /* alloc new page for storage */
638 page = dev_alloc_page();
639 if (unlikely(!page)) {
640 rx_ring->rx_stats.alloc_page_failed++;
641 return false;
642 }
643
644 /* map page for use */
645 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
646
647 /* if mapping failed free memory back to system since
648 * there isn't much point in holding memory we can't use
649 */
650 if (dma_mapping_error(rx_ring->dev, dma)) {
651 __free_pages(page, 0);
652 rx_ring->rx_stats.alloc_page_failed++;
653 return false;
654 }
655
656 bi->dma = dma;
657 bi->page = page;
658 bi->page_offset = 0;
659
660 return true;
661 }
662
663 /**
664 * i40e_receive_skb - Send a completed packet up the stack
665 * @rx_ring: rx ring in play
666 * @skb: packet to send up
667 * @vlan_tag: vlan tag for packet
668 **/
669 static void i40e_receive_skb(struct i40e_ring *rx_ring,
670 struct sk_buff *skb, u16 vlan_tag)
671 {
672 struct i40e_q_vector *q_vector = rx_ring->q_vector;
673
674 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
675 (vlan_tag & VLAN_VID_MASK))
676 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
677
678 napi_gro_receive(&q_vector->napi, skb);
679 }
680
681 /**
682 * i40evf_alloc_rx_buffers - Replace used receive buffers
683 * @rx_ring: ring to place buffers on
684 * @cleaned_count: number of buffers to replace
685 *
686 * Returns false if all allocations were successful, true if any fail
687 **/
688 bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
689 {
690 u16 ntu = rx_ring->next_to_use;
691 union i40e_rx_desc *rx_desc;
692 struct i40e_rx_buffer *bi;
693
694 /* do nothing if no valid netdev defined */
695 if (!rx_ring->netdev || !cleaned_count)
696 return false;
697
698 rx_desc = I40E_RX_DESC(rx_ring, ntu);
699 bi = &rx_ring->rx_bi[ntu];
700
701 do {
702 if (!i40e_alloc_mapped_page(rx_ring, bi))
703 goto no_buffers;
704
705 /* Refresh the desc even if buffer_addrs didn't change
706 * because each write-back erases this info.
707 */
708 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
709 rx_desc->read.hdr_addr = 0;
710
711 rx_desc++;
712 bi++;
713 ntu++;
714 if (unlikely(ntu == rx_ring->count)) {
715 rx_desc = I40E_RX_DESC(rx_ring, 0);
716 bi = rx_ring->rx_bi;
717 ntu = 0;
718 }
719
720 /* clear the status bits for the next_to_use descriptor */
721 rx_desc->wb.qword1.status_error_len = 0;
722
723 cleaned_count--;
724 } while (cleaned_count);
725
726 if (rx_ring->next_to_use != ntu)
727 i40e_release_rx_desc(rx_ring, ntu);
728
729 return false;
730
731 no_buffers:
732 if (rx_ring->next_to_use != ntu)
733 i40e_release_rx_desc(rx_ring, ntu);
734
735 /* make sure to come back via polling to try again after
736 * allocation failure
737 */
738 return true;
739 }
740
741 /**
742 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
743 * @vsi: the VSI we care about
744 * @skb: skb currently being received and modified
745 * @rx_desc: the receive descriptor
746 *
747 * skb->protocol must be set before this function is called
748 **/
749 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
750 struct sk_buff *skb,
751 union i40e_rx_desc *rx_desc)
752 {
753 struct i40e_rx_ptype_decoded decoded;
754 u32 rx_error, rx_status;
755 bool ipv4, ipv6;
756 u8 ptype;
757 u64 qword;
758
759 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
760 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
761 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
762 I40E_RXD_QW1_ERROR_SHIFT;
763 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
764 I40E_RXD_QW1_STATUS_SHIFT;
765 decoded = decode_rx_desc_ptype(ptype);
766
767 skb->ip_summed = CHECKSUM_NONE;
768
769 skb_checksum_none_assert(skb);
770
771 /* Rx csum enabled and ip headers found? */
772 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
773 return;
774
775 /* did the hardware decode the packet and checksum? */
776 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
777 return;
778
779 /* both known and outer_ip must be set for the below code to work */
780 if (!(decoded.known && decoded.outer_ip))
781 return;
782
783 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
784 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
785 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
786 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
787
788 if (ipv4 &&
789 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
790 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
791 goto checksum_fail;
792
793 /* likely incorrect csum if alternate IP extension headers found */
794 if (ipv6 &&
795 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
796 /* don't increment checksum err here, non-fatal err */
797 return;
798
799 /* there was some L4 error, count error and punt packet to the stack */
800 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
801 goto checksum_fail;
802
803 /* handle packets that were not able to be checksummed due
804 * to arrival speed, in this case the stack can compute
805 * the csum.
806 */
807 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
808 return;
809
810 /* If there is an outer header present that might contain a checksum
811 * we need to bump the checksum level by 1 to reflect the fact that
812 * we are indicating we validated the inner checksum.
813 */
814 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
815 skb->csum_level = 1;
816
817 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
818 switch (decoded.inner_prot) {
819 case I40E_RX_PTYPE_INNER_PROT_TCP:
820 case I40E_RX_PTYPE_INNER_PROT_UDP:
821 case I40E_RX_PTYPE_INNER_PROT_SCTP:
822 skb->ip_summed = CHECKSUM_UNNECESSARY;
823 /* fall though */
824 default:
825 break;
826 }
827
828 return;
829
830 checksum_fail:
831 vsi->back->hw_csum_rx_error++;
832 }
833
834 /**
835 * i40e_ptype_to_htype - get a hash type
836 * @ptype: the ptype value from the descriptor
837 *
838 * Returns a hash type to be used by skb_set_hash
839 **/
840 static inline int i40e_ptype_to_htype(u8 ptype)
841 {
842 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
843
844 if (!decoded.known)
845 return PKT_HASH_TYPE_NONE;
846
847 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
848 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
849 return PKT_HASH_TYPE_L4;
850 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
851 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
852 return PKT_HASH_TYPE_L3;
853 else
854 return PKT_HASH_TYPE_L2;
855 }
856
857 /**
858 * i40e_rx_hash - set the hash value in the skb
859 * @ring: descriptor ring
860 * @rx_desc: specific descriptor
861 **/
862 static inline void i40e_rx_hash(struct i40e_ring *ring,
863 union i40e_rx_desc *rx_desc,
864 struct sk_buff *skb,
865 u8 rx_ptype)
866 {
867 u32 hash;
868 const __le64 rss_mask =
869 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
870 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
871
872 if (ring->netdev->features & NETIF_F_RXHASH)
873 return;
874
875 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
876 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
877 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
878 }
879 }
880
881 /**
882 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
883 * @rx_ring: rx descriptor ring packet is being transacted on
884 * @rx_desc: pointer to the EOP Rx descriptor
885 * @skb: pointer to current skb being populated
886 * @rx_ptype: the packet type decoded by hardware
887 *
888 * This function checks the ring, descriptor, and packet information in
889 * order to populate the hash, checksum, VLAN, protocol, and
890 * other fields within the skb.
891 **/
892 static inline
893 void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
894 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
895 u8 rx_ptype)
896 {
897 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
898
899 /* modifies the skb - consumes the enet header */
900 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
901
902 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
903
904 skb_record_rx_queue(skb, rx_ring->queue_index);
905 }
906
907 /**
908 * i40e_pull_tail - i40e specific version of skb_pull_tail
909 * @rx_ring: rx descriptor ring packet is being transacted on
910 * @skb: pointer to current skb being adjusted
911 *
912 * This function is an i40e specific version of __pskb_pull_tail. The
913 * main difference between this version and the original function is that
914 * this function can make several assumptions about the state of things
915 * that allow for significant optimizations versus the standard function.
916 * As a result we can do things like drop a frag and maintain an accurate
917 * truesize for the skb.
918 */
919 static void i40e_pull_tail(struct i40e_ring *rx_ring, struct sk_buff *skb)
920 {
921 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
922 unsigned char *va;
923 unsigned int pull_len;
924
925 /* it is valid to use page_address instead of kmap since we are
926 * working with pages allocated out of the lomem pool per
927 * alloc_page(GFP_ATOMIC)
928 */
929 va = skb_frag_address(frag);
930
931 /* we need the header to contain the greater of either ETH_HLEN or
932 * 60 bytes if the skb->len is less than 60 for skb_pad.
933 */
934 pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
935
936 /* align pull length to size of long to optimize memcpy performance */
937 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
938
939 /* update all of the pointers */
940 skb_frag_size_sub(frag, pull_len);
941 frag->page_offset += pull_len;
942 skb->data_len -= pull_len;
943 skb->tail += pull_len;
944 }
945
946 /**
947 * i40e_cleanup_headers - Correct empty headers
948 * @rx_ring: rx descriptor ring packet is being transacted on
949 * @skb: pointer to current skb being fixed
950 *
951 * Also address the case where we are pulling data in on pages only
952 * and as such no data is present in the skb header.
953 *
954 * In addition if skb is not at least 60 bytes we need to pad it so that
955 * it is large enough to qualify as a valid Ethernet frame.
956 *
957 * Returns true if an error was encountered and skb was freed.
958 **/
959 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
960 {
961 /* place header in linear portion of buffer */
962 if (skb_is_nonlinear(skb))
963 i40e_pull_tail(rx_ring, skb);
964
965 /* if eth_skb_pad returns an error the skb was freed */
966 if (eth_skb_pad(skb))
967 return true;
968
969 return false;
970 }
971
972 /**
973 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
974 * @rx_ring: rx descriptor ring to store buffers on
975 * @old_buff: donor buffer to have page reused
976 *
977 * Synchronizes page for reuse by the adapter
978 **/
979 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
980 struct i40e_rx_buffer *old_buff)
981 {
982 struct i40e_rx_buffer *new_buff;
983 u16 nta = rx_ring->next_to_alloc;
984
985 new_buff = &rx_ring->rx_bi[nta];
986
987 /* update, and store next to alloc */
988 nta++;
989 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
990
991 /* transfer page from old buffer to new buffer */
992 *new_buff = *old_buff;
993 }
994
995 /**
996 * i40e_page_is_reserved - check if reuse is possible
997 * @page: page struct to check
998 */
999 static inline bool i40e_page_is_reserved(struct page *page)
1000 {
1001 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1002 }
1003
1004 /**
1005 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1006 * @rx_ring: rx descriptor ring to transact packets on
1007 * @rx_buffer: buffer containing page to add
1008 * @rx_desc: descriptor containing length of buffer written by hardware
1009 * @skb: sk_buff to place the data into
1010 *
1011 * This function will add the data contained in rx_buffer->page to the skb.
1012 * This is done either through a direct copy if the data in the buffer is
1013 * less than the skb header size, otherwise it will just attach the page as
1014 * a frag to the skb.
1015 *
1016 * The function will then update the page offset if necessary and return
1017 * true if the buffer can be reused by the adapter.
1018 **/
1019 static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
1020 struct i40e_rx_buffer *rx_buffer,
1021 union i40e_rx_desc *rx_desc,
1022 struct sk_buff *skb)
1023 {
1024 struct page *page = rx_buffer->page;
1025 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1026 unsigned int size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1027 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1028 #if (PAGE_SIZE < 8192)
1029 unsigned int truesize = I40E_RXBUFFER_2048;
1030 #else
1031 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
1032 unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
1033 #endif
1034
1035 /* will the data fit in the skb we allocated? if so, just
1036 * copy it as it is pretty small anyway
1037 */
1038 if ((size <= I40E_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
1039 unsigned char *va = page_address(page) + rx_buffer->page_offset;
1040
1041 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
1042
1043 /* page is not reserved, we can reuse buffer as-is */
1044 if (likely(!i40e_page_is_reserved(page)))
1045 return true;
1046
1047 /* this page cannot be reused so discard it */
1048 __free_pages(page, 0);
1049 return false;
1050 }
1051
1052 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1053 rx_buffer->page_offset, size, truesize);
1054
1055 /* avoid re-using remote pages */
1056 if (unlikely(i40e_page_is_reserved(page)))
1057 return false;
1058
1059 #if (PAGE_SIZE < 8192)
1060 /* if we are only owner of page we can reuse it */
1061 if (unlikely(page_count(page) != 1))
1062 return false;
1063
1064 /* flip page offset to other buffer */
1065 rx_buffer->page_offset ^= truesize;
1066 #else
1067 /* move offset up to the next cache line */
1068 rx_buffer->page_offset += truesize;
1069
1070 if (rx_buffer->page_offset > last_offset)
1071 return false;
1072 #endif
1073
1074 /* Even if we own the page, we are not allowed to use atomic_set()
1075 * This would break get_page_unless_zero() users.
1076 */
1077 get_page(rx_buffer->page);
1078
1079 return true;
1080 }
1081
1082 /**
1083 * i40evf_fetch_rx_buffer - Allocate skb and populate it
1084 * @rx_ring: rx descriptor ring to transact packets on
1085 * @rx_desc: descriptor containing info written by hardware
1086 *
1087 * This function allocates an skb on the fly, and populates it with the page
1088 * data from the current receive descriptor, taking care to set up the skb
1089 * correctly, as well as handling calling the page recycle function if
1090 * necessary.
1091 */
1092 static inline
1093 struct sk_buff *i40evf_fetch_rx_buffer(struct i40e_ring *rx_ring,
1094 union i40e_rx_desc *rx_desc)
1095 {
1096 struct i40e_rx_buffer *rx_buffer;
1097 struct sk_buff *skb;
1098 struct page *page;
1099
1100 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1101 page = rx_buffer->page;
1102 prefetchw(page);
1103
1104 skb = rx_buffer->skb;
1105
1106 if (likely(!skb)) {
1107 void *page_addr = page_address(page) + rx_buffer->page_offset;
1108
1109 /* prefetch first cache line of first page */
1110 prefetch(page_addr);
1111 #if L1_CACHE_BYTES < 128
1112 prefetch(page_addr + L1_CACHE_BYTES);
1113 #endif
1114
1115 /* allocate a skb to store the frags */
1116 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1117 I40E_RX_HDR_SIZE,
1118 GFP_ATOMIC | __GFP_NOWARN);
1119 if (unlikely(!skb)) {
1120 rx_ring->rx_stats.alloc_buff_failed++;
1121 return NULL;
1122 }
1123
1124 /* we will be copying header into skb->data in
1125 * pskb_may_pull so it is in our interest to prefetch
1126 * it now to avoid a possible cache miss
1127 */
1128 prefetchw(skb->data);
1129 } else {
1130 rx_buffer->skb = NULL;
1131 }
1132
1133 /* we are reusing so sync this buffer for CPU use */
1134 dma_sync_single_range_for_cpu(rx_ring->dev,
1135 rx_buffer->dma,
1136 rx_buffer->page_offset,
1137 I40E_RXBUFFER_2048,
1138 DMA_FROM_DEVICE);
1139
1140 /* pull page into skb */
1141 if (i40e_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
1142 /* hand second half of page back to the ring */
1143 i40e_reuse_rx_page(rx_ring, rx_buffer);
1144 rx_ring->rx_stats.page_reuse_count++;
1145 } else {
1146 /* we are not reusing the buffer so unmap it */
1147 dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
1148 DMA_FROM_DEVICE);
1149 }
1150
1151 /* clear contents of buffer_info */
1152 rx_buffer->page = NULL;
1153
1154 return skb;
1155 }
1156
1157 /**
1158 * i40e_is_non_eop - process handling of non-EOP buffers
1159 * @rx_ring: Rx ring being processed
1160 * @rx_desc: Rx descriptor for current buffer
1161 * @skb: Current socket buffer containing buffer in progress
1162 *
1163 * This function updates next to clean. If the buffer is an EOP buffer
1164 * this function exits returning false, otherwise it will place the
1165 * sk_buff in the next buffer to be chained and return true indicating
1166 * that this is in fact a non-EOP buffer.
1167 **/
1168 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1169 union i40e_rx_desc *rx_desc,
1170 struct sk_buff *skb)
1171 {
1172 u32 ntc = rx_ring->next_to_clean + 1;
1173
1174 /* fetch, update, and store next to clean */
1175 ntc = (ntc < rx_ring->count) ? ntc : 0;
1176 rx_ring->next_to_clean = ntc;
1177
1178 prefetch(I40E_RX_DESC(rx_ring, ntc));
1179
1180 /* if we are the last buffer then there is nothing else to do */
1181 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1182 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1183 return false;
1184
1185 /* place skb in next buffer to be received */
1186 rx_ring->rx_bi[ntc].skb = skb;
1187 rx_ring->rx_stats.non_eop_descs++;
1188
1189 return true;
1190 }
1191
1192 /**
1193 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1194 * @rx_ring: rx descriptor ring to transact packets on
1195 * @budget: Total limit on number of packets to process
1196 *
1197 * This function provides a "bounce buffer" approach to Rx interrupt
1198 * processing. The advantage to this is that on systems that have
1199 * expensive overhead for IOMMU access this provides a means of avoiding
1200 * it by maintaining the mapping of the page to the system.
1201 *
1202 * Returns amount of work completed
1203 **/
1204 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1205 {
1206 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1207 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1208 bool failure = false;
1209
1210 while (likely(total_rx_packets < budget)) {
1211 union i40e_rx_desc *rx_desc;
1212 struct sk_buff *skb;
1213 u32 rx_status;
1214 u16 vlan_tag;
1215 u8 rx_ptype;
1216 u64 qword;
1217
1218 /* return some buffers to hardware, one at a time is too slow */
1219 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1220 failure = failure ||
1221 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1222 cleaned_count = 0;
1223 }
1224
1225 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1226
1227 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1228 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1229 I40E_RXD_QW1_PTYPE_SHIFT;
1230 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1231 I40E_RXD_QW1_STATUS_SHIFT;
1232
1233 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1234 break;
1235
1236 /* status_error_len will always be zero for unused descriptors
1237 * because it's cleared in cleanup, and overlaps with hdr_addr
1238 * which is always zero because packet split isn't used, if the
1239 * hardware wrote DD then it will be non-zero
1240 */
1241 if (!rx_desc->wb.qword1.status_error_len)
1242 break;
1243
1244 /* This memory barrier is needed to keep us from reading
1245 * any other fields out of the rx_desc until we know the
1246 * DD bit is set.
1247 */
1248 dma_rmb();
1249
1250 skb = i40evf_fetch_rx_buffer(rx_ring, rx_desc);
1251 if (!skb)
1252 break;
1253
1254 cleaned_count++;
1255
1256 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1257 continue;
1258
1259 /* ERR_MASK will only have valid bits if EOP set, and
1260 * what we are doing here is actually checking
1261 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1262 * the error field
1263 */
1264 if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1265 dev_kfree_skb_any(skb);
1266 continue;
1267 }
1268
1269 if (i40e_cleanup_headers(rx_ring, skb))
1270 continue;
1271
1272 /* probably a little skewed due to removing CRC */
1273 total_rx_bytes += skb->len;
1274
1275 /* populate checksum, VLAN, and protocol */
1276 i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1277
1278
1279 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1280 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1281
1282 i40e_receive_skb(rx_ring, skb, vlan_tag);
1283
1284 /* update budget accounting */
1285 total_rx_packets++;
1286 }
1287
1288 u64_stats_update_begin(&rx_ring->syncp);
1289 rx_ring->stats.packets += total_rx_packets;
1290 rx_ring->stats.bytes += total_rx_bytes;
1291 u64_stats_update_end(&rx_ring->syncp);
1292 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1293 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1294
1295 /* guarantee a trip back through this routine if there was a failure */
1296 return failure ? budget : total_rx_packets;
1297 }
1298
1299 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1300 {
1301 u32 val;
1302
1303 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1304 /* Don't clear PBA because that can cause lost interrupts that
1305 * came in while we were cleaning/polling
1306 */
1307 (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1308 (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1309
1310 return val;
1311 }
1312
1313 /* a small macro to shorten up some long lines */
1314 #define INTREG I40E_VFINT_DYN_CTLN1
1315
1316 /**
1317 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1318 * @vsi: the VSI we care about
1319 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1320 *
1321 **/
1322 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1323 struct i40e_q_vector *q_vector)
1324 {
1325 struct i40e_hw *hw = &vsi->back->hw;
1326 bool rx = false, tx = false;
1327 u32 rxval, txval;
1328 int vector;
1329
1330 vector = (q_vector->v_idx + vsi->base_vector);
1331
1332 /* avoid dynamic calculation if in countdown mode OR if
1333 * all dynamic is disabled
1334 */
1335 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1336
1337 if (q_vector->itr_countdown > 0 ||
1338 (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1339 !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1340 goto enable_int;
1341 }
1342
1343 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1344 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1345 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1346 }
1347
1348 if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1349 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1350 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1351 }
1352
1353 if (rx || tx) {
1354 /* get the higher of the two ITR adjustments and
1355 * use the same value for both ITR registers
1356 * when in adaptive mode (Rx and/or Tx)
1357 */
1358 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1359
1360 q_vector->tx.itr = q_vector->rx.itr = itr;
1361 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1362 tx = true;
1363 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1364 rx = true;
1365 }
1366
1367 /* only need to enable the interrupt once, but need
1368 * to possibly update both ITR values
1369 */
1370 if (rx) {
1371 /* set the INTENA_MSK_MASK so that this first write
1372 * won't actually enable the interrupt, instead just
1373 * updating the ITR (it's bit 31 PF and VF)
1374 */
1375 rxval |= BIT(31);
1376 /* don't check _DOWN because interrupt isn't being enabled */
1377 wr32(hw, INTREG(vector - 1), rxval);
1378 }
1379
1380 enable_int:
1381 if (!test_bit(__I40E_DOWN, &vsi->state))
1382 wr32(hw, INTREG(vector - 1), txval);
1383
1384 if (q_vector->itr_countdown)
1385 q_vector->itr_countdown--;
1386 else
1387 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1388 }
1389
1390 /**
1391 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1392 * @napi: napi struct with our devices info in it
1393 * @budget: amount of work driver is allowed to do this pass, in packets
1394 *
1395 * This function will clean all queues associated with a q_vector.
1396 *
1397 * Returns the amount of work done
1398 **/
1399 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1400 {
1401 struct i40e_q_vector *q_vector =
1402 container_of(napi, struct i40e_q_vector, napi);
1403 struct i40e_vsi *vsi = q_vector->vsi;
1404 struct i40e_ring *ring;
1405 bool clean_complete = true;
1406 bool arm_wb = false;
1407 int budget_per_ring;
1408 int work_done = 0;
1409
1410 if (test_bit(__I40E_DOWN, &vsi->state)) {
1411 napi_complete(napi);
1412 return 0;
1413 }
1414
1415 /* Since the actual Tx work is minimal, we can give the Tx a larger
1416 * budget and be more aggressive about cleaning up the Tx descriptors.
1417 */
1418 i40e_for_each_ring(ring, q_vector->tx) {
1419 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1420 clean_complete = false;
1421 continue;
1422 }
1423 arm_wb |= ring->arm_wb;
1424 ring->arm_wb = false;
1425 }
1426
1427 /* Handle case where we are called by netpoll with a budget of 0 */
1428 if (budget <= 0)
1429 goto tx_only;
1430
1431 /* We attempt to distribute budget to each Rx queue fairly, but don't
1432 * allow the budget to go below 1 because that would exit polling early.
1433 */
1434 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1435
1436 i40e_for_each_ring(ring, q_vector->rx) {
1437 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1438
1439 work_done += cleaned;
1440 /* if we clean as many as budgeted, we must not be done */
1441 if (cleaned >= budget_per_ring)
1442 clean_complete = false;
1443 }
1444
1445 /* If work not completed, return budget and polling will return */
1446 if (!clean_complete) {
1447 tx_only:
1448 if (arm_wb) {
1449 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1450 i40e_enable_wb_on_itr(vsi, q_vector);
1451 }
1452 return budget;
1453 }
1454
1455 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1456 q_vector->arm_wb_state = false;
1457
1458 /* Work is done so exit the polling mode and re-enable the interrupt */
1459 napi_complete_done(napi, work_done);
1460 i40e_update_enable_itr(vsi, q_vector);
1461 return 0;
1462 }
1463
1464 /**
1465 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1466 * @skb: send buffer
1467 * @tx_ring: ring to send buffer on
1468 * @flags: the tx flags to be set
1469 *
1470 * Checks the skb and set up correspondingly several generic transmit flags
1471 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1472 *
1473 * Returns error code indicate the frame should be dropped upon error and the
1474 * otherwise returns 0 to indicate the flags has been set properly.
1475 **/
1476 static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1477 struct i40e_ring *tx_ring,
1478 u32 *flags)
1479 {
1480 __be16 protocol = skb->protocol;
1481 u32 tx_flags = 0;
1482
1483 if (protocol == htons(ETH_P_8021Q) &&
1484 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1485 /* When HW VLAN acceleration is turned off by the user the
1486 * stack sets the protocol to 8021q so that the driver
1487 * can take any steps required to support the SW only
1488 * VLAN handling. In our case the driver doesn't need
1489 * to take any further steps so just set the protocol
1490 * to the encapsulated ethertype.
1491 */
1492 skb->protocol = vlan_get_protocol(skb);
1493 goto out;
1494 }
1495
1496 /* if we have a HW VLAN tag being added, default to the HW one */
1497 if (skb_vlan_tag_present(skb)) {
1498 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1499 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1500 /* else if it is a SW VLAN, check the next protocol and store the tag */
1501 } else if (protocol == htons(ETH_P_8021Q)) {
1502 struct vlan_hdr *vhdr, _vhdr;
1503
1504 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1505 if (!vhdr)
1506 return -EINVAL;
1507
1508 protocol = vhdr->h_vlan_encapsulated_proto;
1509 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1510 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1511 }
1512
1513 out:
1514 *flags = tx_flags;
1515 return 0;
1516 }
1517
1518 /**
1519 * i40e_tso - set up the tso context descriptor
1520 * @skb: ptr to the skb we're sending
1521 * @hdr_len: ptr to the size of the packet header
1522 * @cd_type_cmd_tso_mss: Quad Word 1
1523 *
1524 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1525 **/
1526 static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
1527 {
1528 u64 cd_cmd, cd_tso_len, cd_mss;
1529 union {
1530 struct iphdr *v4;
1531 struct ipv6hdr *v6;
1532 unsigned char *hdr;
1533 } ip;
1534 union {
1535 struct tcphdr *tcp;
1536 struct udphdr *udp;
1537 unsigned char *hdr;
1538 } l4;
1539 u32 paylen, l4_offset;
1540 int err;
1541
1542 if (skb->ip_summed != CHECKSUM_PARTIAL)
1543 return 0;
1544
1545 if (!skb_is_gso(skb))
1546 return 0;
1547
1548 err = skb_cow_head(skb, 0);
1549 if (err < 0)
1550 return err;
1551
1552 ip.hdr = skb_network_header(skb);
1553 l4.hdr = skb_transport_header(skb);
1554
1555 /* initialize outer IP header fields */
1556 if (ip.v4->version == 4) {
1557 ip.v4->tot_len = 0;
1558 ip.v4->check = 0;
1559 } else {
1560 ip.v6->payload_len = 0;
1561 }
1562
1563 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1564 SKB_GSO_GRE_CSUM |
1565 SKB_GSO_IPXIP4 |
1566 SKB_GSO_IPXIP6 |
1567 SKB_GSO_UDP_TUNNEL |
1568 SKB_GSO_UDP_TUNNEL_CSUM)) {
1569 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1570 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1571 l4.udp->len = 0;
1572
1573 /* determine offset of outer transport header */
1574 l4_offset = l4.hdr - skb->data;
1575
1576 /* remove payload length from outer checksum */
1577 paylen = skb->len - l4_offset;
1578 csum_replace_by_diff(&l4.udp->check, htonl(paylen));
1579 }
1580
1581 /* reset pointers to inner headers */
1582 ip.hdr = skb_inner_network_header(skb);
1583 l4.hdr = skb_inner_transport_header(skb);
1584
1585 /* initialize inner IP header fields */
1586 if (ip.v4->version == 4) {
1587 ip.v4->tot_len = 0;
1588 ip.v4->check = 0;
1589 } else {
1590 ip.v6->payload_len = 0;
1591 }
1592 }
1593
1594 /* determine offset of inner transport header */
1595 l4_offset = l4.hdr - skb->data;
1596
1597 /* remove payload length from inner checksum */
1598 paylen = skb->len - l4_offset;
1599 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
1600
1601 /* compute length of segmentation header */
1602 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1603
1604 /* find the field values */
1605 cd_cmd = I40E_TX_CTX_DESC_TSO;
1606 cd_tso_len = skb->len - *hdr_len;
1607 cd_mss = skb_shinfo(skb)->gso_size;
1608 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1609 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1610 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1611 return 1;
1612 }
1613
1614 /**
1615 * i40e_tx_enable_csum - Enable Tx checksum offloads
1616 * @skb: send buffer
1617 * @tx_flags: pointer to Tx flags currently set
1618 * @td_cmd: Tx descriptor command bits to set
1619 * @td_offset: Tx descriptor header offsets to set
1620 * @tx_ring: Tx descriptor ring
1621 * @cd_tunneling: ptr to context desc bits
1622 **/
1623 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1624 u32 *td_cmd, u32 *td_offset,
1625 struct i40e_ring *tx_ring,
1626 u32 *cd_tunneling)
1627 {
1628 union {
1629 struct iphdr *v4;
1630 struct ipv6hdr *v6;
1631 unsigned char *hdr;
1632 } ip;
1633 union {
1634 struct tcphdr *tcp;
1635 struct udphdr *udp;
1636 unsigned char *hdr;
1637 } l4;
1638 unsigned char *exthdr;
1639 u32 offset, cmd = 0;
1640 __be16 frag_off;
1641 u8 l4_proto = 0;
1642
1643 if (skb->ip_summed != CHECKSUM_PARTIAL)
1644 return 0;
1645
1646 ip.hdr = skb_network_header(skb);
1647 l4.hdr = skb_transport_header(skb);
1648
1649 /* compute outer L2 header size */
1650 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1651
1652 if (skb->encapsulation) {
1653 u32 tunnel = 0;
1654 /* define outer network header type */
1655 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1656 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1657 I40E_TX_CTX_EXT_IP_IPV4 :
1658 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1659
1660 l4_proto = ip.v4->protocol;
1661 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1662 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1663
1664 exthdr = ip.hdr + sizeof(*ip.v6);
1665 l4_proto = ip.v6->nexthdr;
1666 if (l4.hdr != exthdr)
1667 ipv6_skip_exthdr(skb, exthdr - skb->data,
1668 &l4_proto, &frag_off);
1669 }
1670
1671 /* define outer transport */
1672 switch (l4_proto) {
1673 case IPPROTO_UDP:
1674 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1675 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1676 break;
1677 case IPPROTO_GRE:
1678 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1679 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1680 break;
1681 case IPPROTO_IPIP:
1682 case IPPROTO_IPV6:
1683 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1684 l4.hdr = skb_inner_network_header(skb);
1685 break;
1686 default:
1687 if (*tx_flags & I40E_TX_FLAGS_TSO)
1688 return -1;
1689
1690 skb_checksum_help(skb);
1691 return 0;
1692 }
1693
1694 /* compute outer L3 header size */
1695 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1696 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1697
1698 /* switch IP header pointer from outer to inner header */
1699 ip.hdr = skb_inner_network_header(skb);
1700
1701 /* compute tunnel header size */
1702 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1703 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1704
1705 /* indicate if we need to offload outer UDP header */
1706 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1707 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1708 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1709 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1710
1711 /* record tunnel offload values */
1712 *cd_tunneling |= tunnel;
1713
1714 /* switch L4 header pointer from outer to inner */
1715 l4.hdr = skb_inner_transport_header(skb);
1716 l4_proto = 0;
1717
1718 /* reset type as we transition from outer to inner headers */
1719 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
1720 if (ip.v4->version == 4)
1721 *tx_flags |= I40E_TX_FLAGS_IPV4;
1722 if (ip.v6->version == 6)
1723 *tx_flags |= I40E_TX_FLAGS_IPV6;
1724 }
1725
1726 /* Enable IP checksum offloads */
1727 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1728 l4_proto = ip.v4->protocol;
1729 /* the stack computes the IP header already, the only time we
1730 * need the hardware to recompute it is in the case of TSO.
1731 */
1732 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1733 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
1734 I40E_TX_DESC_CMD_IIPT_IPV4;
1735 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1736 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1737
1738 exthdr = ip.hdr + sizeof(*ip.v6);
1739 l4_proto = ip.v6->nexthdr;
1740 if (l4.hdr != exthdr)
1741 ipv6_skip_exthdr(skb, exthdr - skb->data,
1742 &l4_proto, &frag_off);
1743 }
1744
1745 /* compute inner L3 header size */
1746 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1747
1748 /* Enable L4 checksum offloads */
1749 switch (l4_proto) {
1750 case IPPROTO_TCP:
1751 /* enable checksum offloads */
1752 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1753 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1754 break;
1755 case IPPROTO_SCTP:
1756 /* enable SCTP checksum offload */
1757 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1758 offset |= (sizeof(struct sctphdr) >> 2) <<
1759 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1760 break;
1761 case IPPROTO_UDP:
1762 /* enable UDP checksum offload */
1763 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1764 offset |= (sizeof(struct udphdr) >> 2) <<
1765 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1766 break;
1767 default:
1768 if (*tx_flags & I40E_TX_FLAGS_TSO)
1769 return -1;
1770 skb_checksum_help(skb);
1771 return 0;
1772 }
1773
1774 *td_cmd |= cmd;
1775 *td_offset |= offset;
1776
1777 return 1;
1778 }
1779
1780 /**
1781 * i40e_create_tx_ctx Build the Tx context descriptor
1782 * @tx_ring: ring to create the descriptor on
1783 * @cd_type_cmd_tso_mss: Quad Word 1
1784 * @cd_tunneling: Quad Word 0 - bits 0-31
1785 * @cd_l2tag2: Quad Word 0 - bits 32-63
1786 **/
1787 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1788 const u64 cd_type_cmd_tso_mss,
1789 const u32 cd_tunneling, const u32 cd_l2tag2)
1790 {
1791 struct i40e_tx_context_desc *context_desc;
1792 int i = tx_ring->next_to_use;
1793
1794 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1795 !cd_tunneling && !cd_l2tag2)
1796 return;
1797
1798 /* grab the next descriptor */
1799 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1800
1801 i++;
1802 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1803
1804 /* cpu_to_le32 and assign to struct fields */
1805 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1806 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1807 context_desc->rsvd = cpu_to_le16(0);
1808 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1809 }
1810
1811 /**
1812 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
1813 * @skb: send buffer
1814 *
1815 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
1816 * and so we need to figure out the cases where we need to linearize the skb.
1817 *
1818 * For TSO we need to count the TSO header and segment payload separately.
1819 * As such we need to check cases where we have 7 fragments or more as we
1820 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1821 * the segment payload in the first descriptor, and another 7 for the
1822 * fragments.
1823 **/
1824 bool __i40evf_chk_linearize(struct sk_buff *skb)
1825 {
1826 const struct skb_frag_struct *frag, *stale;
1827 int nr_frags, sum;
1828
1829 /* no need to check if number of frags is less than 7 */
1830 nr_frags = skb_shinfo(skb)->nr_frags;
1831 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
1832 return false;
1833
1834 /* We need to walk through the list and validate that each group
1835 * of 6 fragments totals at least gso_size. However we don't need
1836 * to perform such validation on the last 6 since the last 6 cannot
1837 * inherit any data from a descriptor after them.
1838 */
1839 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
1840 frag = &skb_shinfo(skb)->frags[0];
1841
1842 /* Initialize size to the negative value of gso_size minus 1. We
1843 * use this as the worst case scenerio in which the frag ahead
1844 * of us only provides one byte which is why we are limited to 6
1845 * descriptors for a single transmit as the header and previous
1846 * fragment are already consuming 2 descriptors.
1847 */
1848 sum = 1 - skb_shinfo(skb)->gso_size;
1849
1850 /* Add size of frags 0 through 4 to create our initial sum */
1851 sum += skb_frag_size(frag++);
1852 sum += skb_frag_size(frag++);
1853 sum += skb_frag_size(frag++);
1854 sum += skb_frag_size(frag++);
1855 sum += skb_frag_size(frag++);
1856
1857 /* Walk through fragments adding latest fragment, testing it, and
1858 * then removing stale fragments from the sum.
1859 */
1860 stale = &skb_shinfo(skb)->frags[0];
1861 for (;;) {
1862 sum += skb_frag_size(frag++);
1863
1864 /* if sum is negative we failed to make sufficient progress */
1865 if (sum < 0)
1866 return true;
1867
1868 /* use pre-decrement to avoid processing last fragment */
1869 if (!--nr_frags)
1870 break;
1871
1872 sum -= skb_frag_size(stale++);
1873 }
1874
1875 return false;
1876 }
1877
1878 /**
1879 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1880 * @tx_ring: the ring to be checked
1881 * @size: the size buffer we want to assure is available
1882 *
1883 * Returns -EBUSY if a stop is needed, else 0
1884 **/
1885 int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1886 {
1887 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1888 /* Memory barrier before checking head and tail */
1889 smp_mb();
1890
1891 /* Check again in a case another CPU has just made room available. */
1892 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1893 return -EBUSY;
1894
1895 /* A reprieve! - use start_queue because it doesn't call schedule */
1896 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1897 ++tx_ring->tx_stats.restart_queue;
1898 return 0;
1899 }
1900
1901 /**
1902 * i40evf_tx_map - Build the Tx descriptor
1903 * @tx_ring: ring to send buffer on
1904 * @skb: send buffer
1905 * @first: first buffer info buffer to use
1906 * @tx_flags: collected send information
1907 * @hdr_len: size of the packet header
1908 * @td_cmd: the command field in the descriptor
1909 * @td_offset: offset for checksum or crc
1910 **/
1911 static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1912 struct i40e_tx_buffer *first, u32 tx_flags,
1913 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1914 {
1915 unsigned int data_len = skb->data_len;
1916 unsigned int size = skb_headlen(skb);
1917 struct skb_frag_struct *frag;
1918 struct i40e_tx_buffer *tx_bi;
1919 struct i40e_tx_desc *tx_desc;
1920 u16 i = tx_ring->next_to_use;
1921 u32 td_tag = 0;
1922 dma_addr_t dma;
1923 u16 gso_segs;
1924 u16 desc_count = 0;
1925 bool tail_bump = true;
1926 bool do_rs = false;
1927
1928 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1929 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1930 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1931 I40E_TX_FLAGS_VLAN_SHIFT;
1932 }
1933
1934 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1935 gso_segs = skb_shinfo(skb)->gso_segs;
1936 else
1937 gso_segs = 1;
1938
1939 /* multiply data chunks by size of headers */
1940 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1941 first->gso_segs = gso_segs;
1942 first->skb = skb;
1943 first->tx_flags = tx_flags;
1944
1945 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1946
1947 tx_desc = I40E_TX_DESC(tx_ring, i);
1948 tx_bi = first;
1949
1950 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1951 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
1952
1953 if (dma_mapping_error(tx_ring->dev, dma))
1954 goto dma_error;
1955
1956 /* record length, and DMA address */
1957 dma_unmap_len_set(tx_bi, len, size);
1958 dma_unmap_addr_set(tx_bi, dma, dma);
1959
1960 /* align size to end of page */
1961 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
1962 tx_desc->buffer_addr = cpu_to_le64(dma);
1963
1964 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1965 tx_desc->cmd_type_offset_bsz =
1966 build_ctob(td_cmd, td_offset,
1967 max_data, td_tag);
1968
1969 tx_desc++;
1970 i++;
1971 desc_count++;
1972
1973 if (i == tx_ring->count) {
1974 tx_desc = I40E_TX_DESC(tx_ring, 0);
1975 i = 0;
1976 }
1977
1978 dma += max_data;
1979 size -= max_data;
1980
1981 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
1982 tx_desc->buffer_addr = cpu_to_le64(dma);
1983 }
1984
1985 if (likely(!data_len))
1986 break;
1987
1988 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1989 size, td_tag);
1990
1991 tx_desc++;
1992 i++;
1993 desc_count++;
1994
1995 if (i == tx_ring->count) {
1996 tx_desc = I40E_TX_DESC(tx_ring, 0);
1997 i = 0;
1998 }
1999
2000 size = skb_frag_size(frag);
2001 data_len -= size;
2002
2003 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2004 DMA_TO_DEVICE);
2005
2006 tx_bi = &tx_ring->tx_bi[i];
2007 }
2008
2009 /* set next_to_watch value indicating a packet is present */
2010 first->next_to_watch = tx_desc;
2011
2012 i++;
2013 if (i == tx_ring->count)
2014 i = 0;
2015
2016 tx_ring->next_to_use = i;
2017
2018 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2019 tx_ring->queue_index),
2020 first->bytecount);
2021 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2022
2023 /* Algorithm to optimize tail and RS bit setting:
2024 * if xmit_more is supported
2025 * if xmit_more is true
2026 * do not update tail and do not mark RS bit.
2027 * if xmit_more is false and last xmit_more was false
2028 * if every packet spanned less than 4 desc
2029 * then set RS bit on 4th packet and update tail
2030 * on every packet
2031 * else
2032 * update tail and set RS bit on every packet.
2033 * if xmit_more is false and last_xmit_more was true
2034 * update tail and set RS bit.
2035 *
2036 * Optimization: wmb to be issued only in case of tail update.
2037 * Also optimize the Descriptor WB path for RS bit with the same
2038 * algorithm.
2039 *
2040 * Note: If there are less than 4 packets
2041 * pending and interrupts were disabled the service task will
2042 * trigger a force WB.
2043 */
2044 if (skb->xmit_more &&
2045 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2046 tx_ring->queue_index))) {
2047 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2048 tail_bump = false;
2049 } else if (!skb->xmit_more &&
2050 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2051 tx_ring->queue_index)) &&
2052 (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2053 (tx_ring->packet_stride < WB_STRIDE) &&
2054 (desc_count < WB_STRIDE)) {
2055 tx_ring->packet_stride++;
2056 } else {
2057 tx_ring->packet_stride = 0;
2058 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2059 do_rs = true;
2060 }
2061 if (do_rs)
2062 tx_ring->packet_stride = 0;
2063
2064 tx_desc->cmd_type_offset_bsz =
2065 build_ctob(td_cmd, td_offset, size, td_tag) |
2066 cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2067 I40E_TX_DESC_CMD_EOP) <<
2068 I40E_TXD_QW1_CMD_SHIFT);
2069
2070 /* notify HW of packet */
2071 if (!tail_bump) {
2072 prefetchw(tx_desc + 1);
2073 } else {
2074 /* Force memory writes to complete before letting h/w
2075 * know there are new descriptors to fetch. (Only
2076 * applicable for weak-ordered memory model archs,
2077 * such as IA-64).
2078 */
2079 wmb();
2080 writel(i, tx_ring->tail);
2081 }
2082 return;
2083
2084 dma_error:
2085 dev_info(tx_ring->dev, "TX DMA map failed\n");
2086
2087 /* clear dma mappings for failed tx_bi map */
2088 for (;;) {
2089 tx_bi = &tx_ring->tx_bi[i];
2090 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2091 if (tx_bi == first)
2092 break;
2093 if (i == 0)
2094 i = tx_ring->count;
2095 i--;
2096 }
2097
2098 tx_ring->next_to_use = i;
2099 }
2100
2101 /**
2102 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2103 * @skb: send buffer
2104 * @tx_ring: ring to send buffer on
2105 *
2106 * Returns NETDEV_TX_OK if sent, else an error code
2107 **/
2108 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2109 struct i40e_ring *tx_ring)
2110 {
2111 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2112 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2113 struct i40e_tx_buffer *first;
2114 u32 td_offset = 0;
2115 u32 tx_flags = 0;
2116 __be16 protocol;
2117 u32 td_cmd = 0;
2118 u8 hdr_len = 0;
2119 int tso, count;
2120
2121 /* prefetch the data, we'll need it later */
2122 prefetch(skb->data);
2123
2124 count = i40e_xmit_descriptor_count(skb);
2125 if (i40e_chk_linearize(skb, count)) {
2126 if (__skb_linearize(skb))
2127 goto out_drop;
2128 count = i40e_txd_use_count(skb->len);
2129 tx_ring->tx_stats.tx_linearize++;
2130 }
2131
2132 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2133 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2134 * + 4 desc gap to avoid the cache line where head is,
2135 * + 1 desc for context descriptor,
2136 * otherwise try next time
2137 */
2138 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2139 tx_ring->tx_stats.tx_busy++;
2140 return NETDEV_TX_BUSY;
2141 }
2142
2143 /* prepare the xmit flags */
2144 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2145 goto out_drop;
2146
2147 /* obtain protocol of skb */
2148 protocol = vlan_get_protocol(skb);
2149
2150 /* record the location of the first descriptor for this packet */
2151 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2152
2153 /* setup IPv4/IPv6 offloads */
2154 if (protocol == htons(ETH_P_IP))
2155 tx_flags |= I40E_TX_FLAGS_IPV4;
2156 else if (protocol == htons(ETH_P_IPV6))
2157 tx_flags |= I40E_TX_FLAGS_IPV6;
2158
2159 tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
2160
2161 if (tso < 0)
2162 goto out_drop;
2163 else if (tso)
2164 tx_flags |= I40E_TX_FLAGS_TSO;
2165
2166 /* Always offload the checksum, since it's in the data descriptor */
2167 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2168 tx_ring, &cd_tunneling);
2169 if (tso < 0)
2170 goto out_drop;
2171
2172 skb_tx_timestamp(skb);
2173
2174 /* always enable CRC insertion offload */
2175 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2176
2177 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2178 cd_tunneling, cd_l2tag2);
2179
2180 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2181 td_cmd, td_offset);
2182
2183 return NETDEV_TX_OK;
2184
2185 out_drop:
2186 dev_kfree_skb_any(skb);
2187 return NETDEV_TX_OK;
2188 }
2189
2190 /**
2191 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2192 * @skb: send buffer
2193 * @netdev: network interface device structure
2194 *
2195 * Returns NETDEV_TX_OK if sent, else an error code
2196 **/
2197 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2198 {
2199 struct i40evf_adapter *adapter = netdev_priv(netdev);
2200 struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2201
2202 /* hardware can't handle really short frames, hardware padding works
2203 * beyond this point
2204 */
2205 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2206 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2207 return NETDEV_TX_OK;
2208 skb->len = I40E_MIN_TX_LEN;
2209 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2210 }
2211
2212 return i40e_xmit_frame_ring(skb, tx_ring);
2213 }
This page took 0.079259 seconds and 5 git commands to generate.