gpiolib-acpi: Duplicate con_id string when adding it to the crs lookup list
[deliverable/linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4 * Copyright(c) 2013 - 2016 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29
30 #include "i40evf.h"
31 #include "i40e_prototype.h"
32
33 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 u32 td_tag)
35 {
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
38 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41 }
42
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45 /**
46 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47 * @ring: the ring that owns the buffer
48 * @tx_buffer: the buffer to free
49 **/
50 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 struct i40e_tx_buffer *tx_buffer)
52 {
53 if (tx_buffer->skb) {
54 dev_kfree_skb_any(tx_buffer->skb);
55 if (dma_unmap_len(tx_buffer, len))
56 dma_unmap_single(ring->dev,
57 dma_unmap_addr(tx_buffer, dma),
58 dma_unmap_len(tx_buffer, len),
59 DMA_TO_DEVICE);
60 } else if (dma_unmap_len(tx_buffer, len)) {
61 dma_unmap_page(ring->dev,
62 dma_unmap_addr(tx_buffer, dma),
63 dma_unmap_len(tx_buffer, len),
64 DMA_TO_DEVICE);
65 }
66
67 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
68 kfree(tx_buffer->raw_buf);
69
70 tx_buffer->next_to_watch = NULL;
71 tx_buffer->skb = NULL;
72 dma_unmap_len_set(tx_buffer, len, 0);
73 /* tx_buffer must be completely set up in the transmit path */
74 }
75
76 /**
77 * i40evf_clean_tx_ring - Free any empty Tx buffers
78 * @tx_ring: ring to be cleaned
79 **/
80 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81 {
82 unsigned long bi_size;
83 u16 i;
84
85 /* ring already cleared, nothing to do */
86 if (!tx_ring->tx_bi)
87 return;
88
89 /* Free all the Tx ring sk_buffs */
90 for (i = 0; i < tx_ring->count; i++)
91 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 memset(tx_ring->tx_bi, 0, bi_size);
95
96 /* Zero out the descriptor ring */
97 memset(tx_ring->desc, 0, tx_ring->size);
98
99 tx_ring->next_to_use = 0;
100 tx_ring->next_to_clean = 0;
101
102 if (!tx_ring->netdev)
103 return;
104
105 /* cleanup Tx queue statistics */
106 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107 tx_ring->queue_index));
108 }
109
110 /**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117 {
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127 }
128
129 /**
130 * i40evf_get_tx_pending - how many Tx descriptors not processed
131 * @tx_ring: the ring of descriptors
132 * @in_sw: is tx_pending being checked in SW or HW
133 *
134 * Since there is no access to the ring head register
135 * in XL710, we need to use our local copies
136 **/
137 u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
138 {
139 u32 head, tail;
140
141 if (!in_sw)
142 head = i40e_get_head(ring);
143 else
144 head = ring->next_to_clean;
145 tail = readl(ring->tail);
146
147 if (head != tail)
148 return (head < tail) ?
149 tail - head : (tail + ring->count - head);
150
151 return 0;
152 }
153
154 #define WB_STRIDE 0x3
155
156 /**
157 * i40e_clean_tx_irq - Reclaim resources after transmit completes
158 * @tx_ring: tx ring to clean
159 * @budget: how many cleans we're allowed
160 *
161 * Returns true if there's any budget left (e.g. the clean is finished)
162 **/
163 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
164 {
165 u16 i = tx_ring->next_to_clean;
166 struct i40e_tx_buffer *tx_buf;
167 struct i40e_tx_desc *tx_head;
168 struct i40e_tx_desc *tx_desc;
169 unsigned int total_packets = 0;
170 unsigned int total_bytes = 0;
171
172 tx_buf = &tx_ring->tx_bi[i];
173 tx_desc = I40E_TX_DESC(tx_ring, i);
174 i -= tx_ring->count;
175
176 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
177
178 do {
179 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
180
181 /* if next_to_watch is not set then there is no work pending */
182 if (!eop_desc)
183 break;
184
185 /* prevent any other reads prior to eop_desc */
186 read_barrier_depends();
187
188 /* we have caught up to head, no work left to do */
189 if (tx_head == tx_desc)
190 break;
191
192 /* clear next_to_watch to prevent false hangs */
193 tx_buf->next_to_watch = NULL;
194
195 /* update the statistics for this packet */
196 total_bytes += tx_buf->bytecount;
197 total_packets += tx_buf->gso_segs;
198
199 /* free the skb */
200 dev_kfree_skb_any(tx_buf->skb);
201
202 /* unmap skb header data */
203 dma_unmap_single(tx_ring->dev,
204 dma_unmap_addr(tx_buf, dma),
205 dma_unmap_len(tx_buf, len),
206 DMA_TO_DEVICE);
207
208 /* clear tx_buffer data */
209 tx_buf->skb = NULL;
210 dma_unmap_len_set(tx_buf, len, 0);
211
212 /* unmap remaining buffers */
213 while (tx_desc != eop_desc) {
214
215 tx_buf++;
216 tx_desc++;
217 i++;
218 if (unlikely(!i)) {
219 i -= tx_ring->count;
220 tx_buf = tx_ring->tx_bi;
221 tx_desc = I40E_TX_DESC(tx_ring, 0);
222 }
223
224 /* unmap any remaining paged data */
225 if (dma_unmap_len(tx_buf, len)) {
226 dma_unmap_page(tx_ring->dev,
227 dma_unmap_addr(tx_buf, dma),
228 dma_unmap_len(tx_buf, len),
229 DMA_TO_DEVICE);
230 dma_unmap_len_set(tx_buf, len, 0);
231 }
232 }
233
234 /* move us one more past the eop_desc for start of next pkt */
235 tx_buf++;
236 tx_desc++;
237 i++;
238 if (unlikely(!i)) {
239 i -= tx_ring->count;
240 tx_buf = tx_ring->tx_bi;
241 tx_desc = I40E_TX_DESC(tx_ring, 0);
242 }
243
244 prefetch(tx_desc);
245
246 /* update budget accounting */
247 budget--;
248 } while (likely(budget));
249
250 i += tx_ring->count;
251 tx_ring->next_to_clean = i;
252 u64_stats_update_begin(&tx_ring->syncp);
253 tx_ring->stats.bytes += total_bytes;
254 tx_ring->stats.packets += total_packets;
255 u64_stats_update_end(&tx_ring->syncp);
256 tx_ring->q_vector->tx.total_bytes += total_bytes;
257 tx_ring->q_vector->tx.total_packets += total_packets;
258
259 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
260 unsigned int j = 0;
261 /* check to see if there are < 4 descriptors
262 * waiting to be written back, then kick the hardware to force
263 * them to be written back in case we stay in NAPI.
264 * In this mode on X722 we do not enable Interrupt.
265 */
266 j = i40evf_get_tx_pending(tx_ring, false);
267
268 if (budget &&
269 ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
270 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
271 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
272 tx_ring->arm_wb = true;
273 }
274
275 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
276 tx_ring->queue_index),
277 total_packets, total_bytes);
278
279 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
280 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
281 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
282 /* Make sure that anybody stopping the queue after this
283 * sees the new next_to_clean.
284 */
285 smp_mb();
286 if (__netif_subqueue_stopped(tx_ring->netdev,
287 tx_ring->queue_index) &&
288 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
289 netif_wake_subqueue(tx_ring->netdev,
290 tx_ring->queue_index);
291 ++tx_ring->tx_stats.restart_queue;
292 }
293 }
294
295 return !!budget;
296 }
297
298 /**
299 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
300 * @vsi: the VSI we care about
301 * @q_vector: the vector on which to enable writeback
302 *
303 **/
304 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
305 struct i40e_q_vector *q_vector)
306 {
307 u16 flags = q_vector->tx.ring[0].flags;
308 u32 val;
309
310 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
311 return;
312
313 if (q_vector->arm_wb_state)
314 return;
315
316 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
317 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
318
319 wr32(&vsi->back->hw,
320 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
321 vsi->base_vector - 1), val);
322 q_vector->arm_wb_state = true;
323 }
324
325 /**
326 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
327 * @vsi: the VSI we care about
328 * @q_vector: the vector on which to force writeback
329 *
330 **/
331 void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
332 {
333 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
334 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
335 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
336 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
337 /* allow 00 to be written to the index */;
338
339 wr32(&vsi->back->hw,
340 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
341 val);
342 }
343
344 /**
345 * i40e_set_new_dynamic_itr - Find new ITR level
346 * @rc: structure containing ring performance data
347 *
348 * Returns true if ITR changed, false if not
349 *
350 * Stores a new ITR value based on packets and byte counts during
351 * the last interrupt. The advantage of per interrupt computation
352 * is faster updates and more accurate ITR for the current traffic
353 * pattern. Constants in this function were computed based on
354 * theoretical maximum wire speed and thresholds were set based on
355 * testing data as well as attempting to minimize response time
356 * while increasing bulk throughput.
357 **/
358 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
359 {
360 enum i40e_latency_range new_latency_range = rc->latency_range;
361 struct i40e_q_vector *qv = rc->ring->q_vector;
362 u32 new_itr = rc->itr;
363 int bytes_per_int;
364 int usecs;
365
366 if (rc->total_packets == 0 || !rc->itr)
367 return false;
368
369 /* simple throttlerate management
370 * 0-10MB/s lowest (50000 ints/s)
371 * 10-20MB/s low (20000 ints/s)
372 * 20-1249MB/s bulk (18000 ints/s)
373 * > 40000 Rx packets per second (8000 ints/s)
374 *
375 * The math works out because the divisor is in 10^(-6) which
376 * turns the bytes/us input value into MB/s values, but
377 * make sure to use usecs, as the register values written
378 * are in 2 usec increments in the ITR registers, and make sure
379 * to use the smoothed values that the countdown timer gives us.
380 */
381 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
382 bytes_per_int = rc->total_bytes / usecs;
383
384 switch (new_latency_range) {
385 case I40E_LOWEST_LATENCY:
386 if (bytes_per_int > 10)
387 new_latency_range = I40E_LOW_LATENCY;
388 break;
389 case I40E_LOW_LATENCY:
390 if (bytes_per_int > 20)
391 new_latency_range = I40E_BULK_LATENCY;
392 else if (bytes_per_int <= 10)
393 new_latency_range = I40E_LOWEST_LATENCY;
394 break;
395 case I40E_BULK_LATENCY:
396 case I40E_ULTRA_LATENCY:
397 default:
398 if (bytes_per_int <= 20)
399 new_latency_range = I40E_LOW_LATENCY;
400 break;
401 }
402
403 /* this is to adjust RX more aggressively when streaming small
404 * packets. The value of 40000 was picked as it is just beyond
405 * what the hardware can receive per second if in low latency
406 * mode.
407 */
408 #define RX_ULTRA_PACKET_RATE 40000
409
410 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
411 (&qv->rx == rc))
412 new_latency_range = I40E_ULTRA_LATENCY;
413
414 rc->latency_range = new_latency_range;
415
416 switch (new_latency_range) {
417 case I40E_LOWEST_LATENCY:
418 new_itr = I40E_ITR_50K;
419 break;
420 case I40E_LOW_LATENCY:
421 new_itr = I40E_ITR_20K;
422 break;
423 case I40E_BULK_LATENCY:
424 new_itr = I40E_ITR_18K;
425 break;
426 case I40E_ULTRA_LATENCY:
427 new_itr = I40E_ITR_8K;
428 break;
429 default:
430 break;
431 }
432
433 rc->total_bytes = 0;
434 rc->total_packets = 0;
435
436 if (new_itr != rc->itr) {
437 rc->itr = new_itr;
438 return true;
439 }
440
441 return false;
442 }
443
444 /**
445 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
446 * @tx_ring: the tx ring to set up
447 *
448 * Return 0 on success, negative on error
449 **/
450 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
451 {
452 struct device *dev = tx_ring->dev;
453 int bi_size;
454
455 if (!dev)
456 return -ENOMEM;
457
458 /* warn if we are about to overwrite the pointer */
459 WARN_ON(tx_ring->tx_bi);
460 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
461 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
462 if (!tx_ring->tx_bi)
463 goto err;
464
465 /* round up to nearest 4K */
466 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
467 /* add u32 for head writeback, align after this takes care of
468 * guaranteeing this is at least one cache line in size
469 */
470 tx_ring->size += sizeof(u32);
471 tx_ring->size = ALIGN(tx_ring->size, 4096);
472 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
473 &tx_ring->dma, GFP_KERNEL);
474 if (!tx_ring->desc) {
475 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
476 tx_ring->size);
477 goto err;
478 }
479
480 tx_ring->next_to_use = 0;
481 tx_ring->next_to_clean = 0;
482 return 0;
483
484 err:
485 kfree(tx_ring->tx_bi);
486 tx_ring->tx_bi = NULL;
487 return -ENOMEM;
488 }
489
490 /**
491 * i40evf_clean_rx_ring - Free Rx buffers
492 * @rx_ring: ring to be cleaned
493 **/
494 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
495 {
496 struct device *dev = rx_ring->dev;
497 struct i40e_rx_buffer *rx_bi;
498 unsigned long bi_size;
499 u16 i;
500
501 /* ring already cleared, nothing to do */
502 if (!rx_ring->rx_bi)
503 return;
504
505 if (ring_is_ps_enabled(rx_ring)) {
506 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
507
508 rx_bi = &rx_ring->rx_bi[0];
509 if (rx_bi->hdr_buf) {
510 dma_free_coherent(dev,
511 bufsz,
512 rx_bi->hdr_buf,
513 rx_bi->dma);
514 for (i = 0; i < rx_ring->count; i++) {
515 rx_bi = &rx_ring->rx_bi[i];
516 rx_bi->dma = 0;
517 rx_bi->hdr_buf = NULL;
518 }
519 }
520 }
521 /* Free all the Rx ring sk_buffs */
522 for (i = 0; i < rx_ring->count; i++) {
523 rx_bi = &rx_ring->rx_bi[i];
524 if (rx_bi->dma) {
525 dma_unmap_single(dev,
526 rx_bi->dma,
527 rx_ring->rx_buf_len,
528 DMA_FROM_DEVICE);
529 rx_bi->dma = 0;
530 }
531 if (rx_bi->skb) {
532 dev_kfree_skb(rx_bi->skb);
533 rx_bi->skb = NULL;
534 }
535 if (rx_bi->page) {
536 if (rx_bi->page_dma) {
537 dma_unmap_page(dev,
538 rx_bi->page_dma,
539 PAGE_SIZE,
540 DMA_FROM_DEVICE);
541 rx_bi->page_dma = 0;
542 }
543 __free_page(rx_bi->page);
544 rx_bi->page = NULL;
545 rx_bi->page_offset = 0;
546 }
547 }
548
549 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
550 memset(rx_ring->rx_bi, 0, bi_size);
551
552 /* Zero out the descriptor ring */
553 memset(rx_ring->desc, 0, rx_ring->size);
554
555 rx_ring->next_to_clean = 0;
556 rx_ring->next_to_use = 0;
557 }
558
559 /**
560 * i40evf_free_rx_resources - Free Rx resources
561 * @rx_ring: ring to clean the resources from
562 *
563 * Free all receive software resources
564 **/
565 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
566 {
567 i40evf_clean_rx_ring(rx_ring);
568 kfree(rx_ring->rx_bi);
569 rx_ring->rx_bi = NULL;
570
571 if (rx_ring->desc) {
572 dma_free_coherent(rx_ring->dev, rx_ring->size,
573 rx_ring->desc, rx_ring->dma);
574 rx_ring->desc = NULL;
575 }
576 }
577
578 /**
579 * i40evf_alloc_rx_headers - allocate rx header buffers
580 * @rx_ring: ring to alloc buffers
581 *
582 * Allocate rx header buffers for the entire ring. As these are static,
583 * this is only called when setting up a new ring.
584 **/
585 void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
586 {
587 struct device *dev = rx_ring->dev;
588 struct i40e_rx_buffer *rx_bi;
589 dma_addr_t dma;
590 void *buffer;
591 int buf_size;
592 int i;
593
594 if (rx_ring->rx_bi[0].hdr_buf)
595 return;
596 /* Make sure the buffers don't cross cache line boundaries. */
597 buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
598 buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
599 &dma, GFP_KERNEL);
600 if (!buffer)
601 return;
602 for (i = 0; i < rx_ring->count; i++) {
603 rx_bi = &rx_ring->rx_bi[i];
604 rx_bi->dma = dma + (i * buf_size);
605 rx_bi->hdr_buf = buffer + (i * buf_size);
606 }
607 }
608
609 /**
610 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
611 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
612 *
613 * Returns 0 on success, negative on failure
614 **/
615 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
616 {
617 struct device *dev = rx_ring->dev;
618 int bi_size;
619
620 /* warn if we are about to overwrite the pointer */
621 WARN_ON(rx_ring->rx_bi);
622 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
623 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
624 if (!rx_ring->rx_bi)
625 goto err;
626
627 u64_stats_init(&rx_ring->syncp);
628
629 /* Round up to nearest 4K */
630 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
631 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
632 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
633 rx_ring->size = ALIGN(rx_ring->size, 4096);
634 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
635 &rx_ring->dma, GFP_KERNEL);
636
637 if (!rx_ring->desc) {
638 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
639 rx_ring->size);
640 goto err;
641 }
642
643 rx_ring->next_to_clean = 0;
644 rx_ring->next_to_use = 0;
645
646 return 0;
647 err:
648 kfree(rx_ring->rx_bi);
649 rx_ring->rx_bi = NULL;
650 return -ENOMEM;
651 }
652
653 /**
654 * i40e_release_rx_desc - Store the new tail and head values
655 * @rx_ring: ring to bump
656 * @val: new head index
657 **/
658 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
659 {
660 rx_ring->next_to_use = val;
661 /* Force memory writes to complete before letting h/w
662 * know there are new descriptors to fetch. (Only
663 * applicable for weak-ordered memory model archs,
664 * such as IA-64).
665 */
666 wmb();
667 writel(val, rx_ring->tail);
668 }
669
670 /**
671 * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
672 * @rx_ring: ring to place buffers on
673 * @cleaned_count: number of buffers to replace
674 *
675 * Returns true if any errors on allocation
676 **/
677 bool i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
678 {
679 u16 i = rx_ring->next_to_use;
680 union i40e_rx_desc *rx_desc;
681 struct i40e_rx_buffer *bi;
682 const int current_node = numa_node_id();
683
684 /* do nothing if no valid netdev defined */
685 if (!rx_ring->netdev || !cleaned_count)
686 return false;
687
688 while (cleaned_count--) {
689 rx_desc = I40E_RX_DESC(rx_ring, i);
690 bi = &rx_ring->rx_bi[i];
691
692 if (bi->skb) /* desc is in use */
693 goto no_buffers;
694
695 /* If we've been moved to a different NUMA node, release the
696 * page so we can get a new one on the current node.
697 */
698 if (bi->page && page_to_nid(bi->page) != current_node) {
699 dma_unmap_page(rx_ring->dev,
700 bi->page_dma,
701 PAGE_SIZE,
702 DMA_FROM_DEVICE);
703 __free_page(bi->page);
704 bi->page = NULL;
705 bi->page_dma = 0;
706 rx_ring->rx_stats.realloc_count++;
707 } else if (bi->page) {
708 rx_ring->rx_stats.page_reuse_count++;
709 }
710
711 if (!bi->page) {
712 bi->page = alloc_page(GFP_ATOMIC);
713 if (!bi->page) {
714 rx_ring->rx_stats.alloc_page_failed++;
715 goto no_buffers;
716 }
717 bi->page_dma = dma_map_page(rx_ring->dev,
718 bi->page,
719 0,
720 PAGE_SIZE,
721 DMA_FROM_DEVICE);
722 if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
723 rx_ring->rx_stats.alloc_page_failed++;
724 __free_page(bi->page);
725 bi->page = NULL;
726 bi->page_dma = 0;
727 bi->page_offset = 0;
728 goto no_buffers;
729 }
730 bi->page_offset = 0;
731 }
732
733 /* Refresh the desc even if buffer_addrs didn't change
734 * because each write-back erases this info.
735 */
736 rx_desc->read.pkt_addr =
737 cpu_to_le64(bi->page_dma + bi->page_offset);
738 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
739 i++;
740 if (i == rx_ring->count)
741 i = 0;
742 }
743
744 if (rx_ring->next_to_use != i)
745 i40e_release_rx_desc(rx_ring, i);
746
747 return false;
748
749 no_buffers:
750 if (rx_ring->next_to_use != i)
751 i40e_release_rx_desc(rx_ring, i);
752
753 /* make sure to come back via polling to try again after
754 * allocation failure
755 */
756 return true;
757 }
758
759 /**
760 * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
761 * @rx_ring: ring to place buffers on
762 * @cleaned_count: number of buffers to replace
763 *
764 * Returns true if any errors on allocation
765 **/
766 bool i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
767 {
768 u16 i = rx_ring->next_to_use;
769 union i40e_rx_desc *rx_desc;
770 struct i40e_rx_buffer *bi;
771 struct sk_buff *skb;
772
773 /* do nothing if no valid netdev defined */
774 if (!rx_ring->netdev || !cleaned_count)
775 return false;
776
777 while (cleaned_count--) {
778 rx_desc = I40E_RX_DESC(rx_ring, i);
779 bi = &rx_ring->rx_bi[i];
780 skb = bi->skb;
781
782 if (!skb) {
783 skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
784 rx_ring->rx_buf_len,
785 GFP_ATOMIC |
786 __GFP_NOWARN);
787 if (!skb) {
788 rx_ring->rx_stats.alloc_buff_failed++;
789 goto no_buffers;
790 }
791 /* initialize queue mapping */
792 skb_record_rx_queue(skb, rx_ring->queue_index);
793 bi->skb = skb;
794 }
795
796 if (!bi->dma) {
797 bi->dma = dma_map_single(rx_ring->dev,
798 skb->data,
799 rx_ring->rx_buf_len,
800 DMA_FROM_DEVICE);
801 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
802 rx_ring->rx_stats.alloc_buff_failed++;
803 bi->dma = 0;
804 dev_kfree_skb(bi->skb);
805 bi->skb = NULL;
806 goto no_buffers;
807 }
808 }
809
810 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
811 rx_desc->read.hdr_addr = 0;
812 i++;
813 if (i == rx_ring->count)
814 i = 0;
815 }
816
817 if (rx_ring->next_to_use != i)
818 i40e_release_rx_desc(rx_ring, i);
819
820 return false;
821
822 no_buffers:
823 if (rx_ring->next_to_use != i)
824 i40e_release_rx_desc(rx_ring, i);
825
826 /* make sure to come back via polling to try again after
827 * allocation failure
828 */
829 return true;
830 }
831
832 /**
833 * i40e_receive_skb - Send a completed packet up the stack
834 * @rx_ring: rx ring in play
835 * @skb: packet to send up
836 * @vlan_tag: vlan tag for packet
837 **/
838 static void i40e_receive_skb(struct i40e_ring *rx_ring,
839 struct sk_buff *skb, u16 vlan_tag)
840 {
841 struct i40e_q_vector *q_vector = rx_ring->q_vector;
842
843 if (vlan_tag & VLAN_VID_MASK)
844 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
845
846 napi_gro_receive(&q_vector->napi, skb);
847 }
848
849 /**
850 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
851 * @vsi: the VSI we care about
852 * @skb: skb currently being received and modified
853 * @rx_status: status value of last descriptor in packet
854 * @rx_error: error value of last descriptor in packet
855 * @rx_ptype: ptype value of last descriptor in packet
856 **/
857 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
858 struct sk_buff *skb,
859 u32 rx_status,
860 u32 rx_error,
861 u16 rx_ptype)
862 {
863 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
864 bool ipv4, ipv6, ipv4_tunnel, ipv6_tunnel;
865
866 skb->ip_summed = CHECKSUM_NONE;
867
868 /* Rx csum enabled and ip headers found? */
869 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
870 return;
871
872 /* did the hardware decode the packet and checksum? */
873 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
874 return;
875
876 /* both known and outer_ip must be set for the below code to work */
877 if (!(decoded.known && decoded.outer_ip))
878 return;
879
880 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
881 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
882 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
883 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
884
885 if (ipv4 &&
886 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
887 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
888 goto checksum_fail;
889
890 /* likely incorrect csum if alternate IP extension headers found */
891 if (ipv6 &&
892 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
893 /* don't increment checksum err here, non-fatal err */
894 return;
895
896 /* there was some L4 error, count error and punt packet to the stack */
897 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
898 goto checksum_fail;
899
900 /* handle packets that were not able to be checksummed due
901 * to arrival speed, in this case the stack can compute
902 * the csum.
903 */
904 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
905 return;
906
907 /* The hardware supported by this driver does not validate outer
908 * checksums for tunneled VXLAN or GENEVE frames. I don't agree
909 * with it but the specification states that you "MAY validate", it
910 * doesn't make it a hard requirement so if we have validated the
911 * inner checksum report CHECKSUM_UNNECESSARY.
912 */
913
914 ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
915 (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
916 ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
917 (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
918
919 skb->ip_summed = CHECKSUM_UNNECESSARY;
920 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
921
922 return;
923
924 checksum_fail:
925 vsi->back->hw_csum_rx_error++;
926 }
927
928 /**
929 * i40e_ptype_to_htype - get a hash type
930 * @ptype: the ptype value from the descriptor
931 *
932 * Returns a hash type to be used by skb_set_hash
933 **/
934 static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
935 {
936 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
937
938 if (!decoded.known)
939 return PKT_HASH_TYPE_NONE;
940
941 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
942 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
943 return PKT_HASH_TYPE_L4;
944 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
945 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
946 return PKT_HASH_TYPE_L3;
947 else
948 return PKT_HASH_TYPE_L2;
949 }
950
951 /**
952 * i40e_rx_hash - set the hash value in the skb
953 * @ring: descriptor ring
954 * @rx_desc: specific descriptor
955 **/
956 static inline void i40e_rx_hash(struct i40e_ring *ring,
957 union i40e_rx_desc *rx_desc,
958 struct sk_buff *skb,
959 u8 rx_ptype)
960 {
961 u32 hash;
962 const __le64 rss_mask =
963 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
964 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
965
966 if (ring->netdev->features & NETIF_F_RXHASH)
967 return;
968
969 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
970 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
971 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
972 }
973 }
974
975 /**
976 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
977 * @rx_ring: rx ring to clean
978 * @budget: how many cleans we're allowed
979 *
980 * Returns true if there's any budget left (e.g. the clean is finished)
981 **/
982 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
983 {
984 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
985 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
986 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
987 struct i40e_vsi *vsi = rx_ring->vsi;
988 u16 i = rx_ring->next_to_clean;
989 union i40e_rx_desc *rx_desc;
990 u32 rx_error, rx_status;
991 bool failure = false;
992 u8 rx_ptype;
993 u64 qword;
994 u32 copysize;
995
996 do {
997 struct i40e_rx_buffer *rx_bi;
998 struct sk_buff *skb;
999 u16 vlan_tag;
1000 /* return some buffers to hardware, one at a time is too slow */
1001 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1002 failure = failure ||
1003 i40evf_alloc_rx_buffers_ps(rx_ring,
1004 cleaned_count);
1005 cleaned_count = 0;
1006 }
1007
1008 i = rx_ring->next_to_clean;
1009 rx_desc = I40E_RX_DESC(rx_ring, i);
1010 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1011 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1012 I40E_RXD_QW1_STATUS_SHIFT;
1013
1014 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1015 break;
1016
1017 /* This memory barrier is needed to keep us from reading
1018 * any other fields out of the rx_desc until we know the
1019 * DD bit is set.
1020 */
1021 dma_rmb();
1022 /* sync header buffer for reading */
1023 dma_sync_single_range_for_cpu(rx_ring->dev,
1024 rx_ring->rx_bi[0].dma,
1025 i * rx_ring->rx_hdr_len,
1026 rx_ring->rx_hdr_len,
1027 DMA_FROM_DEVICE);
1028 rx_bi = &rx_ring->rx_bi[i];
1029 skb = rx_bi->skb;
1030 if (likely(!skb)) {
1031 skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
1032 rx_ring->rx_hdr_len,
1033 GFP_ATOMIC |
1034 __GFP_NOWARN);
1035 if (!skb) {
1036 rx_ring->rx_stats.alloc_buff_failed++;
1037 failure = true;
1038 break;
1039 }
1040
1041 /* initialize queue mapping */
1042 skb_record_rx_queue(skb, rx_ring->queue_index);
1043 /* we are reusing so sync this buffer for CPU use */
1044 dma_sync_single_range_for_cpu(rx_ring->dev,
1045 rx_ring->rx_bi[0].dma,
1046 i * rx_ring->rx_hdr_len,
1047 rx_ring->rx_hdr_len,
1048 DMA_FROM_DEVICE);
1049 }
1050 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1051 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1052 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1053 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1054 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1055 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1056
1057 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1058 I40E_RXD_QW1_ERROR_SHIFT;
1059 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1060 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1061
1062 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1063 I40E_RXD_QW1_PTYPE_SHIFT;
1064 /* sync half-page for reading */
1065 dma_sync_single_range_for_cpu(rx_ring->dev,
1066 rx_bi->page_dma,
1067 rx_bi->page_offset,
1068 PAGE_SIZE / 2,
1069 DMA_FROM_DEVICE);
1070 prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
1071 rx_bi->skb = NULL;
1072 cleaned_count++;
1073 copysize = 0;
1074 if (rx_hbo || rx_sph) {
1075 int len;
1076
1077 if (rx_hbo)
1078 len = I40E_RX_HDR_SIZE;
1079 else
1080 len = rx_header_len;
1081 memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1082 } else if (skb->len == 0) {
1083 int len;
1084 unsigned char *va = page_address(rx_bi->page) +
1085 rx_bi->page_offset;
1086
1087 len = min(rx_packet_len, rx_ring->rx_hdr_len);
1088 memcpy(__skb_put(skb, len), va, len);
1089 copysize = len;
1090 rx_packet_len -= len;
1091 }
1092 /* Get the rest of the data if this was a header split */
1093 if (rx_packet_len) {
1094 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1095 rx_bi->page,
1096 rx_bi->page_offset + copysize,
1097 rx_packet_len, I40E_RXBUFFER_2048);
1098
1099 /* If the page count is more than 2, then both halves
1100 * of the page are used and we need to free it. Do it
1101 * here instead of in the alloc code. Otherwise one
1102 * of the half-pages might be released between now and
1103 * then, and we wouldn't know which one to use.
1104 * Don't call get_page and free_page since those are
1105 * both expensive atomic operations that just change
1106 * the refcount in opposite directions. Just give the
1107 * page to the stack; he can have our refcount.
1108 */
1109 if (page_count(rx_bi->page) > 2) {
1110 dma_unmap_page(rx_ring->dev,
1111 rx_bi->page_dma,
1112 PAGE_SIZE,
1113 DMA_FROM_DEVICE);
1114 rx_bi->page = NULL;
1115 rx_bi->page_dma = 0;
1116 rx_ring->rx_stats.realloc_count++;
1117 } else {
1118 get_page(rx_bi->page);
1119 /* switch to the other half-page here; the
1120 * allocation code programs the right addr
1121 * into HW. If we haven't used this half-page,
1122 * the address won't be changed, and HW can
1123 * just use it next time through.
1124 */
1125 rx_bi->page_offset ^= PAGE_SIZE / 2;
1126 }
1127
1128 }
1129 I40E_RX_INCREMENT(rx_ring, i);
1130
1131 if (unlikely(
1132 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1133 struct i40e_rx_buffer *next_buffer;
1134
1135 next_buffer = &rx_ring->rx_bi[i];
1136 next_buffer->skb = skb;
1137 rx_ring->rx_stats.non_eop_descs++;
1138 continue;
1139 }
1140
1141 /* ERR_MASK will only have valid bits if EOP set */
1142 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1143 dev_kfree_skb_any(skb);
1144 continue;
1145 }
1146
1147 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1148
1149 /* probably a little skewed due to removing CRC */
1150 total_rx_bytes += skb->len;
1151 total_rx_packets++;
1152
1153 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1154
1155 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1156
1157 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1158 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1159 : 0;
1160 #ifdef I40E_FCOE
1161 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1162 dev_kfree_skb_any(skb);
1163 continue;
1164 }
1165 #endif
1166 i40e_receive_skb(rx_ring, skb, vlan_tag);
1167
1168 rx_desc->wb.qword1.status_error_len = 0;
1169
1170 } while (likely(total_rx_packets < budget));
1171
1172 u64_stats_update_begin(&rx_ring->syncp);
1173 rx_ring->stats.packets += total_rx_packets;
1174 rx_ring->stats.bytes += total_rx_bytes;
1175 u64_stats_update_end(&rx_ring->syncp);
1176 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1177 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1178
1179 return failure ? budget : total_rx_packets;
1180 }
1181
1182 /**
1183 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1184 * @rx_ring: rx ring to clean
1185 * @budget: how many cleans we're allowed
1186 *
1187 * Returns number of packets cleaned
1188 **/
1189 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1190 {
1191 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1192 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1193 struct i40e_vsi *vsi = rx_ring->vsi;
1194 union i40e_rx_desc *rx_desc;
1195 u32 rx_error, rx_status;
1196 u16 rx_packet_len;
1197 bool failure = false;
1198 u8 rx_ptype;
1199 u64 qword;
1200 u16 i;
1201
1202 do {
1203 struct i40e_rx_buffer *rx_bi;
1204 struct sk_buff *skb;
1205 u16 vlan_tag;
1206 /* return some buffers to hardware, one at a time is too slow */
1207 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1208 failure = failure ||
1209 i40evf_alloc_rx_buffers_1buf(rx_ring,
1210 cleaned_count);
1211 cleaned_count = 0;
1212 }
1213
1214 i = rx_ring->next_to_clean;
1215 rx_desc = I40E_RX_DESC(rx_ring, i);
1216 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1217 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1218 I40E_RXD_QW1_STATUS_SHIFT;
1219
1220 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1221 break;
1222
1223 /* This memory barrier is needed to keep us from reading
1224 * any other fields out of the rx_desc until we know the
1225 * DD bit is set.
1226 */
1227 dma_rmb();
1228
1229 rx_bi = &rx_ring->rx_bi[i];
1230 skb = rx_bi->skb;
1231 prefetch(skb->data);
1232
1233 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1234 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1235
1236 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1237 I40E_RXD_QW1_ERROR_SHIFT;
1238 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1239
1240 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1241 I40E_RXD_QW1_PTYPE_SHIFT;
1242 rx_bi->skb = NULL;
1243 cleaned_count++;
1244
1245 /* Get the header and possibly the whole packet
1246 * If this is an skb from previous receive dma will be 0
1247 */
1248 skb_put(skb, rx_packet_len);
1249 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1250 DMA_FROM_DEVICE);
1251 rx_bi->dma = 0;
1252
1253 I40E_RX_INCREMENT(rx_ring, i);
1254
1255 if (unlikely(
1256 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1257 rx_ring->rx_stats.non_eop_descs++;
1258 continue;
1259 }
1260
1261 /* ERR_MASK will only have valid bits if EOP set */
1262 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1263 dev_kfree_skb_any(skb);
1264 continue;
1265 }
1266
1267 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1268 /* probably a little skewed due to removing CRC */
1269 total_rx_bytes += skb->len;
1270 total_rx_packets++;
1271
1272 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1273
1274 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1275
1276 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1277 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1278 : 0;
1279 i40e_receive_skb(rx_ring, skb, vlan_tag);
1280
1281 rx_desc->wb.qword1.status_error_len = 0;
1282 } while (likely(total_rx_packets < budget));
1283
1284 u64_stats_update_begin(&rx_ring->syncp);
1285 rx_ring->stats.packets += total_rx_packets;
1286 rx_ring->stats.bytes += total_rx_bytes;
1287 u64_stats_update_end(&rx_ring->syncp);
1288 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1289 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1290
1291 return failure ? budget : total_rx_packets;
1292 }
1293
1294 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1295 {
1296 u32 val;
1297
1298 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1299 /* Don't clear PBA because that can cause lost interrupts that
1300 * came in while we were cleaning/polling
1301 */
1302 (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1303 (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1304
1305 return val;
1306 }
1307
1308 /* a small macro to shorten up some long lines */
1309 #define INTREG I40E_VFINT_DYN_CTLN1
1310
1311 /**
1312 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1313 * @vsi: the VSI we care about
1314 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1315 *
1316 **/
1317 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1318 struct i40e_q_vector *q_vector)
1319 {
1320 struct i40e_hw *hw = &vsi->back->hw;
1321 bool rx = false, tx = false;
1322 u32 rxval, txval;
1323 int vector;
1324
1325 vector = (q_vector->v_idx + vsi->base_vector);
1326
1327 /* avoid dynamic calculation if in countdown mode OR if
1328 * all dynamic is disabled
1329 */
1330 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1331
1332 if (q_vector->itr_countdown > 0 ||
1333 (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1334 !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1335 goto enable_int;
1336 }
1337
1338 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1339 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1340 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1341 }
1342
1343 if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1344 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1345 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1346 }
1347
1348 if (rx || tx) {
1349 /* get the higher of the two ITR adjustments and
1350 * use the same value for both ITR registers
1351 * when in adaptive mode (Rx and/or Tx)
1352 */
1353 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1354
1355 q_vector->tx.itr = q_vector->rx.itr = itr;
1356 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1357 tx = true;
1358 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1359 rx = true;
1360 }
1361
1362 /* only need to enable the interrupt once, but need
1363 * to possibly update both ITR values
1364 */
1365 if (rx) {
1366 /* set the INTENA_MSK_MASK so that this first write
1367 * won't actually enable the interrupt, instead just
1368 * updating the ITR (it's bit 31 PF and VF)
1369 */
1370 rxval |= BIT(31);
1371 /* don't check _DOWN because interrupt isn't being enabled */
1372 wr32(hw, INTREG(vector - 1), rxval);
1373 }
1374
1375 enable_int:
1376 if (!test_bit(__I40E_DOWN, &vsi->state))
1377 wr32(hw, INTREG(vector - 1), txval);
1378
1379 if (q_vector->itr_countdown)
1380 q_vector->itr_countdown--;
1381 else
1382 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1383 }
1384
1385 /**
1386 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1387 * @napi: napi struct with our devices info in it
1388 * @budget: amount of work driver is allowed to do this pass, in packets
1389 *
1390 * This function will clean all queues associated with a q_vector.
1391 *
1392 * Returns the amount of work done
1393 **/
1394 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1395 {
1396 struct i40e_q_vector *q_vector =
1397 container_of(napi, struct i40e_q_vector, napi);
1398 struct i40e_vsi *vsi = q_vector->vsi;
1399 struct i40e_ring *ring;
1400 bool clean_complete = true;
1401 bool arm_wb = false;
1402 int budget_per_ring;
1403 int work_done = 0;
1404
1405 if (test_bit(__I40E_DOWN, &vsi->state)) {
1406 napi_complete(napi);
1407 return 0;
1408 }
1409
1410 /* Since the actual Tx work is minimal, we can give the Tx a larger
1411 * budget and be more aggressive about cleaning up the Tx descriptors.
1412 */
1413 i40e_for_each_ring(ring, q_vector->tx) {
1414 clean_complete = clean_complete &&
1415 i40e_clean_tx_irq(ring, vsi->work_limit);
1416 arm_wb = arm_wb || ring->arm_wb;
1417 ring->arm_wb = false;
1418 }
1419
1420 /* Handle case where we are called by netpoll with a budget of 0 */
1421 if (budget <= 0)
1422 goto tx_only;
1423
1424 /* We attempt to distribute budget to each Rx queue fairly, but don't
1425 * allow the budget to go below 1 because that would exit polling early.
1426 */
1427 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1428
1429 i40e_for_each_ring(ring, q_vector->rx) {
1430 int cleaned;
1431
1432 if (ring_is_ps_enabled(ring))
1433 cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1434 else
1435 cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1436
1437 work_done += cleaned;
1438 /* if we didn't clean as many as budgeted, we must be done */
1439 clean_complete = clean_complete && (budget_per_ring > cleaned);
1440 }
1441
1442 /* If work not completed, return budget and polling will return */
1443 if (!clean_complete) {
1444 tx_only:
1445 if (arm_wb) {
1446 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1447 i40e_enable_wb_on_itr(vsi, q_vector);
1448 }
1449 return budget;
1450 }
1451
1452 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1453 q_vector->arm_wb_state = false;
1454
1455 /* Work is done so exit the polling mode and re-enable the interrupt */
1456 napi_complete_done(napi, work_done);
1457 i40e_update_enable_itr(vsi, q_vector);
1458 return 0;
1459 }
1460
1461 /**
1462 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1463 * @skb: send buffer
1464 * @tx_ring: ring to send buffer on
1465 * @flags: the tx flags to be set
1466 *
1467 * Checks the skb and set up correspondingly several generic transmit flags
1468 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1469 *
1470 * Returns error code indicate the frame should be dropped upon error and the
1471 * otherwise returns 0 to indicate the flags has been set properly.
1472 **/
1473 static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1474 struct i40e_ring *tx_ring,
1475 u32 *flags)
1476 {
1477 __be16 protocol = skb->protocol;
1478 u32 tx_flags = 0;
1479
1480 if (protocol == htons(ETH_P_8021Q) &&
1481 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1482 /* When HW VLAN acceleration is turned off by the user the
1483 * stack sets the protocol to 8021q so that the driver
1484 * can take any steps required to support the SW only
1485 * VLAN handling. In our case the driver doesn't need
1486 * to take any further steps so just set the protocol
1487 * to the encapsulated ethertype.
1488 */
1489 skb->protocol = vlan_get_protocol(skb);
1490 goto out;
1491 }
1492
1493 /* if we have a HW VLAN tag being added, default to the HW one */
1494 if (skb_vlan_tag_present(skb)) {
1495 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1496 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1497 /* else if it is a SW VLAN, check the next protocol and store the tag */
1498 } else if (protocol == htons(ETH_P_8021Q)) {
1499 struct vlan_hdr *vhdr, _vhdr;
1500
1501 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1502 if (!vhdr)
1503 return -EINVAL;
1504
1505 protocol = vhdr->h_vlan_encapsulated_proto;
1506 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1507 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1508 }
1509
1510 out:
1511 *flags = tx_flags;
1512 return 0;
1513 }
1514
1515 /**
1516 * i40e_tso - set up the tso context descriptor
1517 * @tx_ring: ptr to the ring to send
1518 * @skb: ptr to the skb we're sending
1519 * @hdr_len: ptr to the size of the packet header
1520 * @cd_type_cmd_tso_mss: Quad Word 1
1521 *
1522 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1523 **/
1524 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1525 u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
1526 {
1527 u64 cd_cmd, cd_tso_len, cd_mss;
1528 union {
1529 struct iphdr *v4;
1530 struct ipv6hdr *v6;
1531 unsigned char *hdr;
1532 } ip;
1533 union {
1534 struct tcphdr *tcp;
1535 struct udphdr *udp;
1536 unsigned char *hdr;
1537 } l4;
1538 u32 paylen, l4_offset;
1539 int err;
1540
1541 if (skb->ip_summed != CHECKSUM_PARTIAL)
1542 return 0;
1543
1544 if (!skb_is_gso(skb))
1545 return 0;
1546
1547 err = skb_cow_head(skb, 0);
1548 if (err < 0)
1549 return err;
1550
1551 ip.hdr = skb_network_header(skb);
1552 l4.hdr = skb_transport_header(skb);
1553
1554 /* initialize outer IP header fields */
1555 if (ip.v4->version == 4) {
1556 ip.v4->tot_len = 0;
1557 ip.v4->check = 0;
1558 } else {
1559 ip.v6->payload_len = 0;
1560 }
1561
1562 if (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_GRE |
1563 SKB_GSO_UDP_TUNNEL_CSUM)) {
1564 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) {
1565 /* determine offset of outer transport header */
1566 l4_offset = l4.hdr - skb->data;
1567
1568 /* remove payload length from outer checksum */
1569 paylen = (__force u16)l4.udp->check;
1570 paylen += ntohs(1) * (u16)~(skb->len - l4_offset);
1571 l4.udp->check = ~csum_fold((__force __wsum)paylen);
1572 }
1573
1574 /* reset pointers to inner headers */
1575 ip.hdr = skb_inner_network_header(skb);
1576 l4.hdr = skb_inner_transport_header(skb);
1577
1578 /* initialize inner IP header fields */
1579 if (ip.v4->version == 4) {
1580 ip.v4->tot_len = 0;
1581 ip.v4->check = 0;
1582 } else {
1583 ip.v6->payload_len = 0;
1584 }
1585 }
1586
1587 /* determine offset of inner transport header */
1588 l4_offset = l4.hdr - skb->data;
1589
1590 /* remove payload length from inner checksum */
1591 paylen = (__force u16)l4.tcp->check;
1592 paylen += ntohs(1) * (u16)~(skb->len - l4_offset);
1593 l4.tcp->check = ~csum_fold((__force __wsum)paylen);
1594
1595 /* compute length of segmentation header */
1596 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1597
1598 /* find the field values */
1599 cd_cmd = I40E_TX_CTX_DESC_TSO;
1600 cd_tso_len = skb->len - *hdr_len;
1601 cd_mss = skb_shinfo(skb)->gso_size;
1602 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1603 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1604 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1605 return 1;
1606 }
1607
1608 /**
1609 * i40e_tx_enable_csum - Enable Tx checksum offloads
1610 * @skb: send buffer
1611 * @tx_flags: pointer to Tx flags currently set
1612 * @td_cmd: Tx descriptor command bits to set
1613 * @td_offset: Tx descriptor header offsets to set
1614 * @tx_ring: Tx descriptor ring
1615 * @cd_tunneling: ptr to context desc bits
1616 **/
1617 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1618 u32 *td_cmd, u32 *td_offset,
1619 struct i40e_ring *tx_ring,
1620 u32 *cd_tunneling)
1621 {
1622 union {
1623 struct iphdr *v4;
1624 struct ipv6hdr *v6;
1625 unsigned char *hdr;
1626 } ip;
1627 union {
1628 struct tcphdr *tcp;
1629 struct udphdr *udp;
1630 unsigned char *hdr;
1631 } l4;
1632 unsigned char *exthdr;
1633 u32 offset, cmd = 0, tunnel = 0;
1634 __be16 frag_off;
1635 u8 l4_proto = 0;
1636
1637 if (skb->ip_summed != CHECKSUM_PARTIAL)
1638 return 0;
1639
1640 ip.hdr = skb_network_header(skb);
1641 l4.hdr = skb_transport_header(skb);
1642
1643 /* compute outer L2 header size */
1644 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1645
1646 if (skb->encapsulation) {
1647 /* define outer network header type */
1648 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1649 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1650 I40E_TX_CTX_EXT_IP_IPV4 :
1651 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1652
1653 l4_proto = ip.v4->protocol;
1654 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1655 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1656
1657 exthdr = ip.hdr + sizeof(*ip.v6);
1658 l4_proto = ip.v6->nexthdr;
1659 if (l4.hdr != exthdr)
1660 ipv6_skip_exthdr(skb, exthdr - skb->data,
1661 &l4_proto, &frag_off);
1662 }
1663
1664 /* compute outer L3 header size */
1665 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1666 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1667
1668 /* switch IP header pointer from outer to inner header */
1669 ip.hdr = skb_inner_network_header(skb);
1670
1671 /* define outer transport */
1672 switch (l4_proto) {
1673 case IPPROTO_UDP:
1674 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1675 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1676 break;
1677 case IPPROTO_GRE:
1678 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1679 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1680 break;
1681 default:
1682 if (*tx_flags & I40E_TX_FLAGS_TSO)
1683 return -1;
1684
1685 skb_checksum_help(skb);
1686 return 0;
1687 }
1688
1689 /* compute tunnel header size */
1690 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1691 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1692
1693 /* indicate if we need to offload outer UDP header */
1694 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1695 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1696 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1697
1698 /* record tunnel offload values */
1699 *cd_tunneling |= tunnel;
1700
1701 /* switch L4 header pointer from outer to inner */
1702 l4.hdr = skb_inner_transport_header(skb);
1703 l4_proto = 0;
1704
1705 /* reset type as we transition from outer to inner headers */
1706 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
1707 if (ip.v4->version == 4)
1708 *tx_flags |= I40E_TX_FLAGS_IPV4;
1709 if (ip.v6->version == 6)
1710 *tx_flags |= I40E_TX_FLAGS_IPV6;
1711 }
1712
1713 /* Enable IP checksum offloads */
1714 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1715 l4_proto = ip.v4->protocol;
1716 /* the stack computes the IP header already, the only time we
1717 * need the hardware to recompute it is in the case of TSO.
1718 */
1719 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1720 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
1721 I40E_TX_DESC_CMD_IIPT_IPV4;
1722 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1723 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1724
1725 exthdr = ip.hdr + sizeof(*ip.v6);
1726 l4_proto = ip.v6->nexthdr;
1727 if (l4.hdr != exthdr)
1728 ipv6_skip_exthdr(skb, exthdr - skb->data,
1729 &l4_proto, &frag_off);
1730 }
1731
1732 /* compute inner L3 header size */
1733 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1734
1735 /* Enable L4 checksum offloads */
1736 switch (l4_proto) {
1737 case IPPROTO_TCP:
1738 /* enable checksum offloads */
1739 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1740 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1741 break;
1742 case IPPROTO_SCTP:
1743 /* enable SCTP checksum offload */
1744 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1745 offset |= (sizeof(struct sctphdr) >> 2) <<
1746 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1747 break;
1748 case IPPROTO_UDP:
1749 /* enable UDP checksum offload */
1750 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1751 offset |= (sizeof(struct udphdr) >> 2) <<
1752 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1753 break;
1754 default:
1755 if (*tx_flags & I40E_TX_FLAGS_TSO)
1756 return -1;
1757 skb_checksum_help(skb);
1758 return 0;
1759 }
1760
1761 *td_cmd |= cmd;
1762 *td_offset |= offset;
1763
1764 return 1;
1765 }
1766
1767 /**
1768 * i40e_create_tx_ctx Build the Tx context descriptor
1769 * @tx_ring: ring to create the descriptor on
1770 * @cd_type_cmd_tso_mss: Quad Word 1
1771 * @cd_tunneling: Quad Word 0 - bits 0-31
1772 * @cd_l2tag2: Quad Word 0 - bits 32-63
1773 **/
1774 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1775 const u64 cd_type_cmd_tso_mss,
1776 const u32 cd_tunneling, const u32 cd_l2tag2)
1777 {
1778 struct i40e_tx_context_desc *context_desc;
1779 int i = tx_ring->next_to_use;
1780
1781 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1782 !cd_tunneling && !cd_l2tag2)
1783 return;
1784
1785 /* grab the next descriptor */
1786 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1787
1788 i++;
1789 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1790
1791 /* cpu_to_le32 and assign to struct fields */
1792 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1793 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1794 context_desc->rsvd = cpu_to_le16(0);
1795 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1796 }
1797
1798 /**
1799 * __i40evf_chk_linearize - Check if there are more than 8 fragments per packet
1800 * @skb: send buffer
1801 *
1802 * Note: Our HW can't scatter-gather more than 8 fragments to build
1803 * a packet on the wire and so we need to figure out the cases where we
1804 * need to linearize the skb.
1805 **/
1806 bool __i40evf_chk_linearize(struct sk_buff *skb)
1807 {
1808 const struct skb_frag_struct *frag, *stale;
1809 int gso_size, nr_frags, sum;
1810
1811 /* check to see if TSO is enabled, if so we may get a repreive */
1812 gso_size = skb_shinfo(skb)->gso_size;
1813 if (unlikely(!gso_size))
1814 return true;
1815
1816 /* no need to check if number of frags is less than 8 */
1817 nr_frags = skb_shinfo(skb)->nr_frags;
1818 if (nr_frags < I40E_MAX_BUFFER_TXD)
1819 return false;
1820
1821 /* We need to walk through the list and validate that each group
1822 * of 6 fragments totals at least gso_size. However we don't need
1823 * to perform such validation on the first or last 6 since the first
1824 * 6 cannot inherit any data from a descriptor before them, and the
1825 * last 6 cannot inherit any data from a descriptor after them.
1826 */
1827 nr_frags -= I40E_MAX_BUFFER_TXD - 1;
1828 frag = &skb_shinfo(skb)->frags[0];
1829
1830 /* Initialize size to the negative value of gso_size minus 1. We
1831 * use this as the worst case scenerio in which the frag ahead
1832 * of us only provides one byte which is why we are limited to 6
1833 * descriptors for a single transmit as the header and previous
1834 * fragment are already consuming 2 descriptors.
1835 */
1836 sum = 1 - gso_size;
1837
1838 /* Add size of frags 1 through 5 to create our initial sum */
1839 sum += skb_frag_size(++frag);
1840 sum += skb_frag_size(++frag);
1841 sum += skb_frag_size(++frag);
1842 sum += skb_frag_size(++frag);
1843 sum += skb_frag_size(++frag);
1844
1845 /* Walk through fragments adding latest fragment, testing it, and
1846 * then removing stale fragments from the sum.
1847 */
1848 stale = &skb_shinfo(skb)->frags[0];
1849 for (;;) {
1850 sum += skb_frag_size(++frag);
1851
1852 /* if sum is negative we failed to make sufficient progress */
1853 if (sum < 0)
1854 return true;
1855
1856 /* use pre-decrement to avoid processing last fragment */
1857 if (!--nr_frags)
1858 break;
1859
1860 sum -= skb_frag_size(++stale);
1861 }
1862
1863 return false;
1864 }
1865
1866 /**
1867 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1868 * @tx_ring: the ring to be checked
1869 * @size: the size buffer we want to assure is available
1870 *
1871 * Returns -EBUSY if a stop is needed, else 0
1872 **/
1873 int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1874 {
1875 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1876 /* Memory barrier before checking head and tail */
1877 smp_mb();
1878
1879 /* Check again in a case another CPU has just made room available. */
1880 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1881 return -EBUSY;
1882
1883 /* A reprieve! - use start_queue because it doesn't call schedule */
1884 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1885 ++tx_ring->tx_stats.restart_queue;
1886 return 0;
1887 }
1888
1889 /**
1890 * i40evf_tx_map - Build the Tx descriptor
1891 * @tx_ring: ring to send buffer on
1892 * @skb: send buffer
1893 * @first: first buffer info buffer to use
1894 * @tx_flags: collected send information
1895 * @hdr_len: size of the packet header
1896 * @td_cmd: the command field in the descriptor
1897 * @td_offset: offset for checksum or crc
1898 **/
1899 static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1900 struct i40e_tx_buffer *first, u32 tx_flags,
1901 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1902 {
1903 unsigned int data_len = skb->data_len;
1904 unsigned int size = skb_headlen(skb);
1905 struct skb_frag_struct *frag;
1906 struct i40e_tx_buffer *tx_bi;
1907 struct i40e_tx_desc *tx_desc;
1908 u16 i = tx_ring->next_to_use;
1909 u32 td_tag = 0;
1910 dma_addr_t dma;
1911 u16 gso_segs;
1912 u16 desc_count = 0;
1913 bool tail_bump = true;
1914 bool do_rs = false;
1915
1916 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1917 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1918 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1919 I40E_TX_FLAGS_VLAN_SHIFT;
1920 }
1921
1922 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1923 gso_segs = skb_shinfo(skb)->gso_segs;
1924 else
1925 gso_segs = 1;
1926
1927 /* multiply data chunks by size of headers */
1928 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1929 first->gso_segs = gso_segs;
1930 first->skb = skb;
1931 first->tx_flags = tx_flags;
1932
1933 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1934
1935 tx_desc = I40E_TX_DESC(tx_ring, i);
1936 tx_bi = first;
1937
1938 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1939 if (dma_mapping_error(tx_ring->dev, dma))
1940 goto dma_error;
1941
1942 /* record length, and DMA address */
1943 dma_unmap_len_set(tx_bi, len, size);
1944 dma_unmap_addr_set(tx_bi, dma, dma);
1945
1946 tx_desc->buffer_addr = cpu_to_le64(dma);
1947
1948 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1949 tx_desc->cmd_type_offset_bsz =
1950 build_ctob(td_cmd, td_offset,
1951 I40E_MAX_DATA_PER_TXD, td_tag);
1952
1953 tx_desc++;
1954 i++;
1955 desc_count++;
1956
1957 if (i == tx_ring->count) {
1958 tx_desc = I40E_TX_DESC(tx_ring, 0);
1959 i = 0;
1960 }
1961
1962 dma += I40E_MAX_DATA_PER_TXD;
1963 size -= I40E_MAX_DATA_PER_TXD;
1964
1965 tx_desc->buffer_addr = cpu_to_le64(dma);
1966 }
1967
1968 if (likely(!data_len))
1969 break;
1970
1971 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1972 size, td_tag);
1973
1974 tx_desc++;
1975 i++;
1976 desc_count++;
1977
1978 if (i == tx_ring->count) {
1979 tx_desc = I40E_TX_DESC(tx_ring, 0);
1980 i = 0;
1981 }
1982
1983 size = skb_frag_size(frag);
1984 data_len -= size;
1985
1986 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1987 DMA_TO_DEVICE);
1988
1989 tx_bi = &tx_ring->tx_bi[i];
1990 }
1991
1992 /* set next_to_watch value indicating a packet is present */
1993 first->next_to_watch = tx_desc;
1994
1995 i++;
1996 if (i == tx_ring->count)
1997 i = 0;
1998
1999 tx_ring->next_to_use = i;
2000
2001 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2002 tx_ring->queue_index),
2003 first->bytecount);
2004 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2005
2006 /* Algorithm to optimize tail and RS bit setting:
2007 * if xmit_more is supported
2008 * if xmit_more is true
2009 * do not update tail and do not mark RS bit.
2010 * if xmit_more is false and last xmit_more was false
2011 * if every packet spanned less than 4 desc
2012 * then set RS bit on 4th packet and update tail
2013 * on every packet
2014 * else
2015 * update tail and set RS bit on every packet.
2016 * if xmit_more is false and last_xmit_more was true
2017 * update tail and set RS bit.
2018 *
2019 * Optimization: wmb to be issued only in case of tail update.
2020 * Also optimize the Descriptor WB path for RS bit with the same
2021 * algorithm.
2022 *
2023 * Note: If there are less than 4 packets
2024 * pending and interrupts were disabled the service task will
2025 * trigger a force WB.
2026 */
2027 if (skb->xmit_more &&
2028 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2029 tx_ring->queue_index))) {
2030 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2031 tail_bump = false;
2032 } else if (!skb->xmit_more &&
2033 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2034 tx_ring->queue_index)) &&
2035 (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2036 (tx_ring->packet_stride < WB_STRIDE) &&
2037 (desc_count < WB_STRIDE)) {
2038 tx_ring->packet_stride++;
2039 } else {
2040 tx_ring->packet_stride = 0;
2041 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2042 do_rs = true;
2043 }
2044 if (do_rs)
2045 tx_ring->packet_stride = 0;
2046
2047 tx_desc->cmd_type_offset_bsz =
2048 build_ctob(td_cmd, td_offset, size, td_tag) |
2049 cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2050 I40E_TX_DESC_CMD_EOP) <<
2051 I40E_TXD_QW1_CMD_SHIFT);
2052
2053 /* notify HW of packet */
2054 if (!tail_bump)
2055 prefetchw(tx_desc + 1);
2056
2057 if (tail_bump) {
2058 /* Force memory writes to complete before letting h/w
2059 * know there are new descriptors to fetch. (Only
2060 * applicable for weak-ordered memory model archs,
2061 * such as IA-64).
2062 */
2063 wmb();
2064 writel(i, tx_ring->tail);
2065 }
2066
2067 return;
2068
2069 dma_error:
2070 dev_info(tx_ring->dev, "TX DMA map failed\n");
2071
2072 /* clear dma mappings for failed tx_bi map */
2073 for (;;) {
2074 tx_bi = &tx_ring->tx_bi[i];
2075 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2076 if (tx_bi == first)
2077 break;
2078 if (i == 0)
2079 i = tx_ring->count;
2080 i--;
2081 }
2082
2083 tx_ring->next_to_use = i;
2084 }
2085
2086 /**
2087 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2088 * @skb: send buffer
2089 * @tx_ring: ring to send buffer on
2090 *
2091 * Returns NETDEV_TX_OK if sent, else an error code
2092 **/
2093 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2094 struct i40e_ring *tx_ring)
2095 {
2096 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2097 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2098 struct i40e_tx_buffer *first;
2099 u32 td_offset = 0;
2100 u32 tx_flags = 0;
2101 __be16 protocol;
2102 u32 td_cmd = 0;
2103 u8 hdr_len = 0;
2104 int tso, count;
2105
2106 /* prefetch the data, we'll need it later */
2107 prefetch(skb->data);
2108
2109 count = i40e_xmit_descriptor_count(skb);
2110 if (i40e_chk_linearize(skb, count)) {
2111 if (__skb_linearize(skb))
2112 goto out_drop;
2113 count = TXD_USE_COUNT(skb->len);
2114 tx_ring->tx_stats.tx_linearize++;
2115 }
2116
2117 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2118 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2119 * + 4 desc gap to avoid the cache line where head is,
2120 * + 1 desc for context descriptor,
2121 * otherwise try next time
2122 */
2123 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2124 tx_ring->tx_stats.tx_busy++;
2125 return NETDEV_TX_BUSY;
2126 }
2127
2128 /* prepare the xmit flags */
2129 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2130 goto out_drop;
2131
2132 /* obtain protocol of skb */
2133 protocol = vlan_get_protocol(skb);
2134
2135 /* record the location of the first descriptor for this packet */
2136 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2137
2138 /* setup IPv4/IPv6 offloads */
2139 if (protocol == htons(ETH_P_IP))
2140 tx_flags |= I40E_TX_FLAGS_IPV4;
2141 else if (protocol == htons(ETH_P_IPV6))
2142 tx_flags |= I40E_TX_FLAGS_IPV6;
2143
2144 tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2145
2146 if (tso < 0)
2147 goto out_drop;
2148 else if (tso)
2149 tx_flags |= I40E_TX_FLAGS_TSO;
2150
2151 /* Always offload the checksum, since it's in the data descriptor */
2152 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2153 tx_ring, &cd_tunneling);
2154 if (tso < 0)
2155 goto out_drop;
2156
2157 skb_tx_timestamp(skb);
2158
2159 /* always enable CRC insertion offload */
2160 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2161
2162 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2163 cd_tunneling, cd_l2tag2);
2164
2165 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2166 td_cmd, td_offset);
2167
2168 return NETDEV_TX_OK;
2169
2170 out_drop:
2171 dev_kfree_skb_any(skb);
2172 return NETDEV_TX_OK;
2173 }
2174
2175 /**
2176 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2177 * @skb: send buffer
2178 * @netdev: network interface device structure
2179 *
2180 * Returns NETDEV_TX_OK if sent, else an error code
2181 **/
2182 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2183 {
2184 struct i40evf_adapter *adapter = netdev_priv(netdev);
2185 struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2186
2187 /* hardware can't handle really short frames, hardware padding works
2188 * beyond this point
2189 */
2190 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2191 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2192 return NETDEV_TX_OK;
2193 skb->len = I40E_MIN_TX_LEN;
2194 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2195 }
2196
2197 return i40e_xmit_frame_ring(skb, tx_ring);
2198 }
This page took 0.078533 seconds and 5 git commands to generate.