latent_entropy: Mark functions with __latent_entropy
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59
60 #define MAJ 5
61 #define MIN 3
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68 "Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70 "Copyright (c) 2007-2014 Intel Corporation.";
71
72 static const struct e1000_info *igb_info_tbl[] = {
73 [board_82575] = &e1000_82575_info,
74 };
75
76 static const struct pci_device_id igb_pci_tbl[] = {
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112 /* required last entry */
113 {0, }
114 };
115
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141 struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160 netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172 int vf, u16 vlan, u8 qos);
173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175 bool setting);
176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177 struct ifla_vf_info *ivi);
178 static void igb_check_vf_rate_limit(struct igb_adapter *);
179
180 #ifdef CONFIG_PCI_IOV
181 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
182 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
183 static int igb_disable_sriov(struct pci_dev *dev);
184 static int igb_pci_disable_sriov(struct pci_dev *dev);
185 #endif
186
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 static int igb_runtime_suspend(struct device *dev);
193 static int igb_runtime_resume(struct device *dev);
194 static int igb_runtime_idle(struct device *dev);
195 static const struct dev_pm_ops igb_pm_ops = {
196 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198 igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206 .notifier_call = igb_notify_dca,
207 .next = NULL,
208 .priority = 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
219 #endif /* CONFIG_PCI_IOV */
220
221 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
222 pci_channel_state_t);
223 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
224 static void igb_io_resume(struct pci_dev *);
225
226 static const struct pci_error_handlers igb_err_handler = {
227 .error_detected = igb_io_error_detected,
228 .slot_reset = igb_io_slot_reset,
229 .resume = igb_io_resume,
230 };
231
232 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
233
234 static struct pci_driver igb_driver = {
235 .name = igb_driver_name,
236 .id_table = igb_pci_tbl,
237 .probe = igb_probe,
238 .remove = igb_remove,
239 #ifdef CONFIG_PM
240 .driver.pm = &igb_pm_ops,
241 #endif
242 .shutdown = igb_shutdown,
243 .sriov_configure = igb_pci_sriov_configure,
244 .err_handler = &igb_err_handler
245 };
246
247 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
248 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
251
252 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
253 static int debug = -1;
254 module_param(debug, int, 0);
255 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
256
257 struct igb_reg_info {
258 u32 ofs;
259 char *name;
260 };
261
262 static const struct igb_reg_info igb_reg_info_tbl[] = {
263
264 /* General Registers */
265 {E1000_CTRL, "CTRL"},
266 {E1000_STATUS, "STATUS"},
267 {E1000_CTRL_EXT, "CTRL_EXT"},
268
269 /* Interrupt Registers */
270 {E1000_ICR, "ICR"},
271
272 /* RX Registers */
273 {E1000_RCTL, "RCTL"},
274 {E1000_RDLEN(0), "RDLEN"},
275 {E1000_RDH(0), "RDH"},
276 {E1000_RDT(0), "RDT"},
277 {E1000_RXDCTL(0), "RXDCTL"},
278 {E1000_RDBAL(0), "RDBAL"},
279 {E1000_RDBAH(0), "RDBAH"},
280
281 /* TX Registers */
282 {E1000_TCTL, "TCTL"},
283 {E1000_TDBAL(0), "TDBAL"},
284 {E1000_TDBAH(0), "TDBAH"},
285 {E1000_TDLEN(0), "TDLEN"},
286 {E1000_TDH(0), "TDH"},
287 {E1000_TDT(0), "TDT"},
288 {E1000_TXDCTL(0), "TXDCTL"},
289 {E1000_TDFH, "TDFH"},
290 {E1000_TDFT, "TDFT"},
291 {E1000_TDFHS, "TDFHS"},
292 {E1000_TDFPC, "TDFPC"},
293
294 /* List Terminator */
295 {}
296 };
297
298 /* igb_regdump - register printout routine */
299 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
300 {
301 int n = 0;
302 char rname[16];
303 u32 regs[8];
304
305 switch (reginfo->ofs) {
306 case E1000_RDLEN(0):
307 for (n = 0; n < 4; n++)
308 regs[n] = rd32(E1000_RDLEN(n));
309 break;
310 case E1000_RDH(0):
311 for (n = 0; n < 4; n++)
312 regs[n] = rd32(E1000_RDH(n));
313 break;
314 case E1000_RDT(0):
315 for (n = 0; n < 4; n++)
316 regs[n] = rd32(E1000_RDT(n));
317 break;
318 case E1000_RXDCTL(0):
319 for (n = 0; n < 4; n++)
320 regs[n] = rd32(E1000_RXDCTL(n));
321 break;
322 case E1000_RDBAL(0):
323 for (n = 0; n < 4; n++)
324 regs[n] = rd32(E1000_RDBAL(n));
325 break;
326 case E1000_RDBAH(0):
327 for (n = 0; n < 4; n++)
328 regs[n] = rd32(E1000_RDBAH(n));
329 break;
330 case E1000_TDBAL(0):
331 for (n = 0; n < 4; n++)
332 regs[n] = rd32(E1000_RDBAL(n));
333 break;
334 case E1000_TDBAH(0):
335 for (n = 0; n < 4; n++)
336 regs[n] = rd32(E1000_TDBAH(n));
337 break;
338 case E1000_TDLEN(0):
339 for (n = 0; n < 4; n++)
340 regs[n] = rd32(E1000_TDLEN(n));
341 break;
342 case E1000_TDH(0):
343 for (n = 0; n < 4; n++)
344 regs[n] = rd32(E1000_TDH(n));
345 break;
346 case E1000_TDT(0):
347 for (n = 0; n < 4; n++)
348 regs[n] = rd32(E1000_TDT(n));
349 break;
350 case E1000_TXDCTL(0):
351 for (n = 0; n < 4; n++)
352 regs[n] = rd32(E1000_TXDCTL(n));
353 break;
354 default:
355 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
356 return;
357 }
358
359 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
360 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
361 regs[2], regs[3]);
362 }
363
364 /* igb_dump - Print registers, Tx-rings and Rx-rings */
365 static void igb_dump(struct igb_adapter *adapter)
366 {
367 struct net_device *netdev = adapter->netdev;
368 struct e1000_hw *hw = &adapter->hw;
369 struct igb_reg_info *reginfo;
370 struct igb_ring *tx_ring;
371 union e1000_adv_tx_desc *tx_desc;
372 struct my_u0 { u64 a; u64 b; } *u0;
373 struct igb_ring *rx_ring;
374 union e1000_adv_rx_desc *rx_desc;
375 u32 staterr;
376 u16 i, n;
377
378 if (!netif_msg_hw(adapter))
379 return;
380
381 /* Print netdevice Info */
382 if (netdev) {
383 dev_info(&adapter->pdev->dev, "Net device Info\n");
384 pr_info("Device Name state trans_start last_rx\n");
385 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
386 netdev->state, dev_trans_start(netdev), netdev->last_rx);
387 }
388
389 /* Print Registers */
390 dev_info(&adapter->pdev->dev, "Register Dump\n");
391 pr_info(" Register Name Value\n");
392 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
393 reginfo->name; reginfo++) {
394 igb_regdump(hw, reginfo);
395 }
396
397 /* Print TX Ring Summary */
398 if (!netdev || !netif_running(netdev))
399 goto exit;
400
401 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
402 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
403 for (n = 0; n < adapter->num_tx_queues; n++) {
404 struct igb_tx_buffer *buffer_info;
405 tx_ring = adapter->tx_ring[n];
406 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
407 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
408 n, tx_ring->next_to_use, tx_ring->next_to_clean,
409 (u64)dma_unmap_addr(buffer_info, dma),
410 dma_unmap_len(buffer_info, len),
411 buffer_info->next_to_watch,
412 (u64)buffer_info->time_stamp);
413 }
414
415 /* Print TX Rings */
416 if (!netif_msg_tx_done(adapter))
417 goto rx_ring_summary;
418
419 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
420
421 /* Transmit Descriptor Formats
422 *
423 * Advanced Transmit Descriptor
424 * +--------------------------------------------------------------+
425 * 0 | Buffer Address [63:0] |
426 * +--------------------------------------------------------------+
427 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
428 * +--------------------------------------------------------------+
429 * 63 46 45 40 39 38 36 35 32 31 24 15 0
430 */
431
432 for (n = 0; n < adapter->num_tx_queues; n++) {
433 tx_ring = adapter->tx_ring[n];
434 pr_info("------------------------------------\n");
435 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
436 pr_info("------------------------------------\n");
437 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
438
439 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
440 const char *next_desc;
441 struct igb_tx_buffer *buffer_info;
442 tx_desc = IGB_TX_DESC(tx_ring, i);
443 buffer_info = &tx_ring->tx_buffer_info[i];
444 u0 = (struct my_u0 *)tx_desc;
445 if (i == tx_ring->next_to_use &&
446 i == tx_ring->next_to_clean)
447 next_desc = " NTC/U";
448 else if (i == tx_ring->next_to_use)
449 next_desc = " NTU";
450 else if (i == tx_ring->next_to_clean)
451 next_desc = " NTC";
452 else
453 next_desc = "";
454
455 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
456 i, le64_to_cpu(u0->a),
457 le64_to_cpu(u0->b),
458 (u64)dma_unmap_addr(buffer_info, dma),
459 dma_unmap_len(buffer_info, len),
460 buffer_info->next_to_watch,
461 (u64)buffer_info->time_stamp,
462 buffer_info->skb, next_desc);
463
464 if (netif_msg_pktdata(adapter) && buffer_info->skb)
465 print_hex_dump(KERN_INFO, "",
466 DUMP_PREFIX_ADDRESS,
467 16, 1, buffer_info->skb->data,
468 dma_unmap_len(buffer_info, len),
469 true);
470 }
471 }
472
473 /* Print RX Rings Summary */
474 rx_ring_summary:
475 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476 pr_info("Queue [NTU] [NTC]\n");
477 for (n = 0; n < adapter->num_rx_queues; n++) {
478 rx_ring = adapter->rx_ring[n];
479 pr_info(" %5d %5X %5X\n",
480 n, rx_ring->next_to_use, rx_ring->next_to_clean);
481 }
482
483 /* Print RX Rings */
484 if (!netif_msg_rx_status(adapter))
485 goto exit;
486
487 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489 /* Advanced Receive Descriptor (Read) Format
490 * 63 1 0
491 * +-----------------------------------------------------+
492 * 0 | Packet Buffer Address [63:1] |A0/NSE|
493 * +----------------------------------------------+------+
494 * 8 | Header Buffer Address [63:1] | DD |
495 * +-----------------------------------------------------+
496 *
497 *
498 * Advanced Receive Descriptor (Write-Back) Format
499 *
500 * 63 48 47 32 31 30 21 20 17 16 4 3 0
501 * +------------------------------------------------------+
502 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
503 * | Checksum Ident | | | | Type | Type |
504 * +------------------------------------------------------+
505 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506 * +------------------------------------------------------+
507 * 63 48 47 32 31 20 19 0
508 */
509
510 for (n = 0; n < adapter->num_rx_queues; n++) {
511 rx_ring = adapter->rx_ring[n];
512 pr_info("------------------------------------\n");
513 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514 pr_info("------------------------------------\n");
515 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
516 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
517
518 for (i = 0; i < rx_ring->count; i++) {
519 const char *next_desc;
520 struct igb_rx_buffer *buffer_info;
521 buffer_info = &rx_ring->rx_buffer_info[i];
522 rx_desc = IGB_RX_DESC(rx_ring, i);
523 u0 = (struct my_u0 *)rx_desc;
524 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
525
526 if (i == rx_ring->next_to_use)
527 next_desc = " NTU";
528 else if (i == rx_ring->next_to_clean)
529 next_desc = " NTC";
530 else
531 next_desc = "";
532
533 if (staterr & E1000_RXD_STAT_DD) {
534 /* Descriptor Done */
535 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
536 "RWB", i,
537 le64_to_cpu(u0->a),
538 le64_to_cpu(u0->b),
539 next_desc);
540 } else {
541 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
542 "R ", i,
543 le64_to_cpu(u0->a),
544 le64_to_cpu(u0->b),
545 (u64)buffer_info->dma,
546 next_desc);
547
548 if (netif_msg_pktdata(adapter) &&
549 buffer_info->dma && buffer_info->page) {
550 print_hex_dump(KERN_INFO, "",
551 DUMP_PREFIX_ADDRESS,
552 16, 1,
553 page_address(buffer_info->page) +
554 buffer_info->page_offset,
555 IGB_RX_BUFSZ, true);
556 }
557 }
558 }
559 }
560
561 exit:
562 return;
563 }
564
565 /**
566 * igb_get_i2c_data - Reads the I2C SDA data bit
567 * @hw: pointer to hardware structure
568 * @i2cctl: Current value of I2CCTL register
569 *
570 * Returns the I2C data bit value
571 **/
572 static int igb_get_i2c_data(void *data)
573 {
574 struct igb_adapter *adapter = (struct igb_adapter *)data;
575 struct e1000_hw *hw = &adapter->hw;
576 s32 i2cctl = rd32(E1000_I2CPARAMS);
577
578 return !!(i2cctl & E1000_I2C_DATA_IN);
579 }
580
581 /**
582 * igb_set_i2c_data - Sets the I2C data bit
583 * @data: pointer to hardware structure
584 * @state: I2C data value (0 or 1) to set
585 *
586 * Sets the I2C data bit
587 **/
588 static void igb_set_i2c_data(void *data, int state)
589 {
590 struct igb_adapter *adapter = (struct igb_adapter *)data;
591 struct e1000_hw *hw = &adapter->hw;
592 s32 i2cctl = rd32(E1000_I2CPARAMS);
593
594 if (state)
595 i2cctl |= E1000_I2C_DATA_OUT;
596 else
597 i2cctl &= ~E1000_I2C_DATA_OUT;
598
599 i2cctl &= ~E1000_I2C_DATA_OE_N;
600 i2cctl |= E1000_I2C_CLK_OE_N;
601 wr32(E1000_I2CPARAMS, i2cctl);
602 wrfl();
603
604 }
605
606 /**
607 * igb_set_i2c_clk - Sets the I2C SCL clock
608 * @data: pointer to hardware structure
609 * @state: state to set clock
610 *
611 * Sets the I2C clock line to state
612 **/
613 static void igb_set_i2c_clk(void *data, int state)
614 {
615 struct igb_adapter *adapter = (struct igb_adapter *)data;
616 struct e1000_hw *hw = &adapter->hw;
617 s32 i2cctl = rd32(E1000_I2CPARAMS);
618
619 if (state) {
620 i2cctl |= E1000_I2C_CLK_OUT;
621 i2cctl &= ~E1000_I2C_CLK_OE_N;
622 } else {
623 i2cctl &= ~E1000_I2C_CLK_OUT;
624 i2cctl &= ~E1000_I2C_CLK_OE_N;
625 }
626 wr32(E1000_I2CPARAMS, i2cctl);
627 wrfl();
628 }
629
630 /**
631 * igb_get_i2c_clk - Gets the I2C SCL clock state
632 * @data: pointer to hardware structure
633 *
634 * Gets the I2C clock state
635 **/
636 static int igb_get_i2c_clk(void *data)
637 {
638 struct igb_adapter *adapter = (struct igb_adapter *)data;
639 struct e1000_hw *hw = &adapter->hw;
640 s32 i2cctl = rd32(E1000_I2CPARAMS);
641
642 return !!(i2cctl & E1000_I2C_CLK_IN);
643 }
644
645 static const struct i2c_algo_bit_data igb_i2c_algo = {
646 .setsda = igb_set_i2c_data,
647 .setscl = igb_set_i2c_clk,
648 .getsda = igb_get_i2c_data,
649 .getscl = igb_get_i2c_clk,
650 .udelay = 5,
651 .timeout = 20,
652 };
653
654 /**
655 * igb_get_hw_dev - return device
656 * @hw: pointer to hardware structure
657 *
658 * used by hardware layer to print debugging information
659 **/
660 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
661 {
662 struct igb_adapter *adapter = hw->back;
663 return adapter->netdev;
664 }
665
666 /**
667 * igb_init_module - Driver Registration Routine
668 *
669 * igb_init_module is the first routine called when the driver is
670 * loaded. All it does is register with the PCI subsystem.
671 **/
672 static int __init igb_init_module(void)
673 {
674 int ret;
675
676 pr_info("%s - version %s\n",
677 igb_driver_string, igb_driver_version);
678 pr_info("%s\n", igb_copyright);
679
680 #ifdef CONFIG_IGB_DCA
681 dca_register_notify(&dca_notifier);
682 #endif
683 ret = pci_register_driver(&igb_driver);
684 return ret;
685 }
686
687 module_init(igb_init_module);
688
689 /**
690 * igb_exit_module - Driver Exit Cleanup Routine
691 *
692 * igb_exit_module is called just before the driver is removed
693 * from memory.
694 **/
695 static void __exit igb_exit_module(void)
696 {
697 #ifdef CONFIG_IGB_DCA
698 dca_unregister_notify(&dca_notifier);
699 #endif
700 pci_unregister_driver(&igb_driver);
701 }
702
703 module_exit(igb_exit_module);
704
705 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
706 /**
707 * igb_cache_ring_register - Descriptor ring to register mapping
708 * @adapter: board private structure to initialize
709 *
710 * Once we know the feature-set enabled for the device, we'll cache
711 * the register offset the descriptor ring is assigned to.
712 **/
713 static void igb_cache_ring_register(struct igb_adapter *adapter)
714 {
715 int i = 0, j = 0;
716 u32 rbase_offset = adapter->vfs_allocated_count;
717
718 switch (adapter->hw.mac.type) {
719 case e1000_82576:
720 /* The queues are allocated for virtualization such that VF 0
721 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
722 * In order to avoid collision we start at the first free queue
723 * and continue consuming queues in the same sequence
724 */
725 if (adapter->vfs_allocated_count) {
726 for (; i < adapter->rss_queues; i++)
727 adapter->rx_ring[i]->reg_idx = rbase_offset +
728 Q_IDX_82576(i);
729 }
730 /* Fall through */
731 case e1000_82575:
732 case e1000_82580:
733 case e1000_i350:
734 case e1000_i354:
735 case e1000_i210:
736 case e1000_i211:
737 /* Fall through */
738 default:
739 for (; i < adapter->num_rx_queues; i++)
740 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741 for (; j < adapter->num_tx_queues; j++)
742 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743 break;
744 }
745 }
746
747 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748 {
749 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
750 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
751 u32 value = 0;
752
753 if (E1000_REMOVED(hw_addr))
754 return ~value;
755
756 value = readl(&hw_addr[reg]);
757
758 /* reads should not return all F's */
759 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
760 struct net_device *netdev = igb->netdev;
761 hw->hw_addr = NULL;
762 netif_device_detach(netdev);
763 netdev_err(netdev, "PCIe link lost, device now detached\n");
764 }
765
766 return value;
767 }
768
769 /**
770 * igb_write_ivar - configure ivar for given MSI-X vector
771 * @hw: pointer to the HW structure
772 * @msix_vector: vector number we are allocating to a given ring
773 * @index: row index of IVAR register to write within IVAR table
774 * @offset: column offset of in IVAR, should be multiple of 8
775 *
776 * This function is intended to handle the writing of the IVAR register
777 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
778 * each containing an cause allocation for an Rx and Tx ring, and a
779 * variable number of rows depending on the number of queues supported.
780 **/
781 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
782 int index, int offset)
783 {
784 u32 ivar = array_rd32(E1000_IVAR0, index);
785
786 /* clear any bits that are currently set */
787 ivar &= ~((u32)0xFF << offset);
788
789 /* write vector and valid bit */
790 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791
792 array_wr32(E1000_IVAR0, index, ivar);
793 }
794
795 #define IGB_N0_QUEUE -1
796 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797 {
798 struct igb_adapter *adapter = q_vector->adapter;
799 struct e1000_hw *hw = &adapter->hw;
800 int rx_queue = IGB_N0_QUEUE;
801 int tx_queue = IGB_N0_QUEUE;
802 u32 msixbm = 0;
803
804 if (q_vector->rx.ring)
805 rx_queue = q_vector->rx.ring->reg_idx;
806 if (q_vector->tx.ring)
807 tx_queue = q_vector->tx.ring->reg_idx;
808
809 switch (hw->mac.type) {
810 case e1000_82575:
811 /* The 82575 assigns vectors using a bitmask, which matches the
812 * bitmask for the EICR/EIMS/EIMC registers. To assign one
813 * or more queues to a vector, we write the appropriate bits
814 * into the MSIXBM register for that vector.
815 */
816 if (rx_queue > IGB_N0_QUEUE)
817 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
818 if (tx_queue > IGB_N0_QUEUE)
819 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
820 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
821 msixbm |= E1000_EIMS_OTHER;
822 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
823 q_vector->eims_value = msixbm;
824 break;
825 case e1000_82576:
826 /* 82576 uses a table that essentially consists of 2 columns
827 * with 8 rows. The ordering is column-major so we use the
828 * lower 3 bits as the row index, and the 4th bit as the
829 * column offset.
830 */
831 if (rx_queue > IGB_N0_QUEUE)
832 igb_write_ivar(hw, msix_vector,
833 rx_queue & 0x7,
834 (rx_queue & 0x8) << 1);
835 if (tx_queue > IGB_N0_QUEUE)
836 igb_write_ivar(hw, msix_vector,
837 tx_queue & 0x7,
838 ((tx_queue & 0x8) << 1) + 8);
839 q_vector->eims_value = BIT(msix_vector);
840 break;
841 case e1000_82580:
842 case e1000_i350:
843 case e1000_i354:
844 case e1000_i210:
845 case e1000_i211:
846 /* On 82580 and newer adapters the scheme is similar to 82576
847 * however instead of ordering column-major we have things
848 * ordered row-major. So we traverse the table by using
849 * bit 0 as the column offset, and the remaining bits as the
850 * row index.
851 */
852 if (rx_queue > IGB_N0_QUEUE)
853 igb_write_ivar(hw, msix_vector,
854 rx_queue >> 1,
855 (rx_queue & 0x1) << 4);
856 if (tx_queue > IGB_N0_QUEUE)
857 igb_write_ivar(hw, msix_vector,
858 tx_queue >> 1,
859 ((tx_queue & 0x1) << 4) + 8);
860 q_vector->eims_value = BIT(msix_vector);
861 break;
862 default:
863 BUG();
864 break;
865 }
866
867 /* add q_vector eims value to global eims_enable_mask */
868 adapter->eims_enable_mask |= q_vector->eims_value;
869
870 /* configure q_vector to set itr on first interrupt */
871 q_vector->set_itr = 1;
872 }
873
874 /**
875 * igb_configure_msix - Configure MSI-X hardware
876 * @adapter: board private structure to initialize
877 *
878 * igb_configure_msix sets up the hardware to properly
879 * generate MSI-X interrupts.
880 **/
881 static void igb_configure_msix(struct igb_adapter *adapter)
882 {
883 u32 tmp;
884 int i, vector = 0;
885 struct e1000_hw *hw = &adapter->hw;
886
887 adapter->eims_enable_mask = 0;
888
889 /* set vector for other causes, i.e. link changes */
890 switch (hw->mac.type) {
891 case e1000_82575:
892 tmp = rd32(E1000_CTRL_EXT);
893 /* enable MSI-X PBA support*/
894 tmp |= E1000_CTRL_EXT_PBA_CLR;
895
896 /* Auto-Mask interrupts upon ICR read. */
897 tmp |= E1000_CTRL_EXT_EIAME;
898 tmp |= E1000_CTRL_EXT_IRCA;
899
900 wr32(E1000_CTRL_EXT, tmp);
901
902 /* enable msix_other interrupt */
903 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
904 adapter->eims_other = E1000_EIMS_OTHER;
905
906 break;
907
908 case e1000_82576:
909 case e1000_82580:
910 case e1000_i350:
911 case e1000_i354:
912 case e1000_i210:
913 case e1000_i211:
914 /* Turn on MSI-X capability first, or our settings
915 * won't stick. And it will take days to debug.
916 */
917 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
918 E1000_GPIE_PBA | E1000_GPIE_EIAME |
919 E1000_GPIE_NSICR);
920
921 /* enable msix_other interrupt */
922 adapter->eims_other = BIT(vector);
923 tmp = (vector++ | E1000_IVAR_VALID) << 8;
924
925 wr32(E1000_IVAR_MISC, tmp);
926 break;
927 default:
928 /* do nothing, since nothing else supports MSI-X */
929 break;
930 } /* switch (hw->mac.type) */
931
932 adapter->eims_enable_mask |= adapter->eims_other;
933
934 for (i = 0; i < adapter->num_q_vectors; i++)
935 igb_assign_vector(adapter->q_vector[i], vector++);
936
937 wrfl();
938 }
939
940 /**
941 * igb_request_msix - Initialize MSI-X interrupts
942 * @adapter: board private structure to initialize
943 *
944 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
945 * kernel.
946 **/
947 static int igb_request_msix(struct igb_adapter *adapter)
948 {
949 struct net_device *netdev = adapter->netdev;
950 int i, err = 0, vector = 0, free_vector = 0;
951
952 err = request_irq(adapter->msix_entries[vector].vector,
953 igb_msix_other, 0, netdev->name, adapter);
954 if (err)
955 goto err_out;
956
957 for (i = 0; i < adapter->num_q_vectors; i++) {
958 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960 vector++;
961
962 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
963
964 if (q_vector->rx.ring && q_vector->tx.ring)
965 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966 q_vector->rx.ring->queue_index);
967 else if (q_vector->tx.ring)
968 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969 q_vector->tx.ring->queue_index);
970 else if (q_vector->rx.ring)
971 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972 q_vector->rx.ring->queue_index);
973 else
974 sprintf(q_vector->name, "%s-unused", netdev->name);
975
976 err = request_irq(adapter->msix_entries[vector].vector,
977 igb_msix_ring, 0, q_vector->name,
978 q_vector);
979 if (err)
980 goto err_free;
981 }
982
983 igb_configure_msix(adapter);
984 return 0;
985
986 err_free:
987 /* free already assigned IRQs */
988 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990 vector--;
991 for (i = 0; i < vector; i++) {
992 free_irq(adapter->msix_entries[free_vector++].vector,
993 adapter->q_vector[i]);
994 }
995 err_out:
996 return err;
997 }
998
999 /**
1000 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1001 * @adapter: board private structure to initialize
1002 * @v_idx: Index of vector to be freed
1003 *
1004 * This function frees the memory allocated to the q_vector.
1005 **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010 adapter->q_vector[v_idx] = NULL;
1011
1012 /* igb_get_stats64() might access the rings on this vector,
1013 * we must wait a grace period before freeing it.
1014 */
1015 if (q_vector)
1016 kfree_rcu(q_vector, rcu);
1017 }
1018
1019 /**
1020 * igb_reset_q_vector - Reset config for interrupt vector
1021 * @adapter: board private structure to initialize
1022 * @v_idx: Index of vector to be reset
1023 *
1024 * If NAPI is enabled it will delete any references to the
1025 * NAPI struct. This is preparation for igb_free_q_vector.
1026 **/
1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028 {
1029 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032 * allocated. So, q_vector is NULL so we should stop here.
1033 */
1034 if (!q_vector)
1035 return;
1036
1037 if (q_vector->tx.ring)
1038 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040 if (q_vector->rx.ring)
1041 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043 netif_napi_del(&q_vector->napi);
1044
1045 }
1046
1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048 {
1049 int v_idx = adapter->num_q_vectors;
1050
1051 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052 pci_disable_msix(adapter->pdev);
1053 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054 pci_disable_msi(adapter->pdev);
1055
1056 while (v_idx--)
1057 igb_reset_q_vector(adapter, v_idx);
1058 }
1059
1060 /**
1061 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1062 * @adapter: board private structure to initialize
1063 *
1064 * This function frees the memory allocated to the q_vectors. In addition if
1065 * NAPI is enabled it will delete any references to the NAPI struct prior
1066 * to freeing the q_vector.
1067 **/
1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
1069 {
1070 int v_idx = adapter->num_q_vectors;
1071
1072 adapter->num_tx_queues = 0;
1073 adapter->num_rx_queues = 0;
1074 adapter->num_q_vectors = 0;
1075
1076 while (v_idx--) {
1077 igb_reset_q_vector(adapter, v_idx);
1078 igb_free_q_vector(adapter, v_idx);
1079 }
1080 }
1081
1082 /**
1083 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084 * @adapter: board private structure to initialize
1085 *
1086 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1087 * MSI-X interrupts allocated.
1088 */
1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090 {
1091 igb_free_q_vectors(adapter);
1092 igb_reset_interrupt_capability(adapter);
1093 }
1094
1095 /**
1096 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1097 * @adapter: board private structure to initialize
1098 * @msix: boolean value of MSIX capability
1099 *
1100 * Attempt to configure interrupts using the best available
1101 * capabilities of the hardware and kernel.
1102 **/
1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104 {
1105 int err;
1106 int numvecs, i;
1107
1108 if (!msix)
1109 goto msi_only;
1110 adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112 /* Number of supported queues. */
1113 adapter->num_rx_queues = adapter->rss_queues;
1114 if (adapter->vfs_allocated_count)
1115 adapter->num_tx_queues = 1;
1116 else
1117 adapter->num_tx_queues = adapter->rss_queues;
1118
1119 /* start with one vector for every Rx queue */
1120 numvecs = adapter->num_rx_queues;
1121
1122 /* if Tx handler is separate add 1 for every Tx queue */
1123 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124 numvecs += adapter->num_tx_queues;
1125
1126 /* store the number of vectors reserved for queues */
1127 adapter->num_q_vectors = numvecs;
1128
1129 /* add 1 vector for link status interrupts */
1130 numvecs++;
1131 for (i = 0; i < numvecs; i++)
1132 adapter->msix_entries[i].entry = i;
1133
1134 err = pci_enable_msix_range(adapter->pdev,
1135 adapter->msix_entries,
1136 numvecs,
1137 numvecs);
1138 if (err > 0)
1139 return;
1140
1141 igb_reset_interrupt_capability(adapter);
1142
1143 /* If we can't do MSI-X, try MSI */
1144 msi_only:
1145 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146 #ifdef CONFIG_PCI_IOV
1147 /* disable SR-IOV for non MSI-X configurations */
1148 if (adapter->vf_data) {
1149 struct e1000_hw *hw = &adapter->hw;
1150 /* disable iov and allow time for transactions to clear */
1151 pci_disable_sriov(adapter->pdev);
1152 msleep(500);
1153
1154 kfree(adapter->vf_data);
1155 adapter->vf_data = NULL;
1156 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157 wrfl();
1158 msleep(100);
1159 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160 }
1161 #endif
1162 adapter->vfs_allocated_count = 0;
1163 adapter->rss_queues = 1;
1164 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165 adapter->num_rx_queues = 1;
1166 adapter->num_tx_queues = 1;
1167 adapter->num_q_vectors = 1;
1168 if (!pci_enable_msi(adapter->pdev))
1169 adapter->flags |= IGB_FLAG_HAS_MSI;
1170 }
1171
1172 static void igb_add_ring(struct igb_ring *ring,
1173 struct igb_ring_container *head)
1174 {
1175 head->ring = ring;
1176 head->count++;
1177 }
1178
1179 /**
1180 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181 * @adapter: board private structure to initialize
1182 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1183 * @v_idx: index of vector in adapter struct
1184 * @txr_count: total number of Tx rings to allocate
1185 * @txr_idx: index of first Tx ring to allocate
1186 * @rxr_count: total number of Rx rings to allocate
1187 * @rxr_idx: index of first Rx ring to allocate
1188 *
1189 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1190 **/
1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192 int v_count, int v_idx,
1193 int txr_count, int txr_idx,
1194 int rxr_count, int rxr_idx)
1195 {
1196 struct igb_q_vector *q_vector;
1197 struct igb_ring *ring;
1198 int ring_count, size;
1199
1200 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201 if (txr_count > 1 || rxr_count > 1)
1202 return -ENOMEM;
1203
1204 ring_count = txr_count + rxr_count;
1205 size = sizeof(struct igb_q_vector) +
1206 (sizeof(struct igb_ring) * ring_count);
1207
1208 /* allocate q_vector and rings */
1209 q_vector = adapter->q_vector[v_idx];
1210 if (!q_vector) {
1211 q_vector = kzalloc(size, GFP_KERNEL);
1212 } else if (size > ksize(q_vector)) {
1213 kfree_rcu(q_vector, rcu);
1214 q_vector = kzalloc(size, GFP_KERNEL);
1215 } else {
1216 memset(q_vector, 0, size);
1217 }
1218 if (!q_vector)
1219 return -ENOMEM;
1220
1221 /* initialize NAPI */
1222 netif_napi_add(adapter->netdev, &q_vector->napi,
1223 igb_poll, 64);
1224
1225 /* tie q_vector and adapter together */
1226 adapter->q_vector[v_idx] = q_vector;
1227 q_vector->adapter = adapter;
1228
1229 /* initialize work limits */
1230 q_vector->tx.work_limit = adapter->tx_work_limit;
1231
1232 /* initialize ITR configuration */
1233 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1234 q_vector->itr_val = IGB_START_ITR;
1235
1236 /* initialize pointer to rings */
1237 ring = q_vector->ring;
1238
1239 /* intialize ITR */
1240 if (rxr_count) {
1241 /* rx or rx/tx vector */
1242 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1243 q_vector->itr_val = adapter->rx_itr_setting;
1244 } else {
1245 /* tx only vector */
1246 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1247 q_vector->itr_val = adapter->tx_itr_setting;
1248 }
1249
1250 if (txr_count) {
1251 /* assign generic ring traits */
1252 ring->dev = &adapter->pdev->dev;
1253 ring->netdev = adapter->netdev;
1254
1255 /* configure backlink on ring */
1256 ring->q_vector = q_vector;
1257
1258 /* update q_vector Tx values */
1259 igb_add_ring(ring, &q_vector->tx);
1260
1261 /* For 82575, context index must be unique per ring. */
1262 if (adapter->hw.mac.type == e1000_82575)
1263 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1264
1265 /* apply Tx specific ring traits */
1266 ring->count = adapter->tx_ring_count;
1267 ring->queue_index = txr_idx;
1268
1269 u64_stats_init(&ring->tx_syncp);
1270 u64_stats_init(&ring->tx_syncp2);
1271
1272 /* assign ring to adapter */
1273 adapter->tx_ring[txr_idx] = ring;
1274
1275 /* push pointer to next ring */
1276 ring++;
1277 }
1278
1279 if (rxr_count) {
1280 /* assign generic ring traits */
1281 ring->dev = &adapter->pdev->dev;
1282 ring->netdev = adapter->netdev;
1283
1284 /* configure backlink on ring */
1285 ring->q_vector = q_vector;
1286
1287 /* update q_vector Rx values */
1288 igb_add_ring(ring, &q_vector->rx);
1289
1290 /* set flag indicating ring supports SCTP checksum offload */
1291 if (adapter->hw.mac.type >= e1000_82576)
1292 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294 /* On i350, i354, i210, and i211, loopback VLAN packets
1295 * have the tag byte-swapped.
1296 */
1297 if (adapter->hw.mac.type >= e1000_i350)
1298 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300 /* apply Rx specific ring traits */
1301 ring->count = adapter->rx_ring_count;
1302 ring->queue_index = rxr_idx;
1303
1304 u64_stats_init(&ring->rx_syncp);
1305
1306 /* assign ring to adapter */
1307 adapter->rx_ring[rxr_idx] = ring;
1308 }
1309
1310 return 0;
1311 }
1312
1313
1314 /**
1315 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316 * @adapter: board private structure to initialize
1317 *
1318 * We allocate one q_vector per queue interrupt. If allocation fails we
1319 * return -ENOMEM.
1320 **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323 int q_vectors = adapter->num_q_vectors;
1324 int rxr_remaining = adapter->num_rx_queues;
1325 int txr_remaining = adapter->num_tx_queues;
1326 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 int err;
1328
1329 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 for (; rxr_remaining; v_idx++) {
1331 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 0, 0, 1, rxr_idx);
1333
1334 if (err)
1335 goto err_out;
1336
1337 /* update counts and index */
1338 rxr_remaining--;
1339 rxr_idx++;
1340 }
1341 }
1342
1343 for (; v_idx < q_vectors; v_idx++) {
1344 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 tqpv, txr_idx, rqpv, rxr_idx);
1349
1350 if (err)
1351 goto err_out;
1352
1353 /* update counts and index */
1354 rxr_remaining -= rqpv;
1355 txr_remaining -= tqpv;
1356 rxr_idx++;
1357 txr_idx++;
1358 }
1359
1360 return 0;
1361
1362 err_out:
1363 adapter->num_tx_queues = 0;
1364 adapter->num_rx_queues = 0;
1365 adapter->num_q_vectors = 0;
1366
1367 while (v_idx--)
1368 igb_free_q_vector(adapter, v_idx);
1369
1370 return -ENOMEM;
1371 }
1372
1373 /**
1374 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375 * @adapter: board private structure to initialize
1376 * @msix: boolean value of MSIX capability
1377 *
1378 * This function initializes the interrupts and allocates all of the queues.
1379 **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382 struct pci_dev *pdev = adapter->pdev;
1383 int err;
1384
1385 igb_set_interrupt_capability(adapter, msix);
1386
1387 err = igb_alloc_q_vectors(adapter);
1388 if (err) {
1389 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 goto err_alloc_q_vectors;
1391 }
1392
1393 igb_cache_ring_register(adapter);
1394
1395 return 0;
1396
1397 err_alloc_q_vectors:
1398 igb_reset_interrupt_capability(adapter);
1399 return err;
1400 }
1401
1402 /**
1403 * igb_request_irq - initialize interrupts
1404 * @adapter: board private structure to initialize
1405 *
1406 * Attempts to configure interrupts using the best available
1407 * capabilities of the hardware and kernel.
1408 **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411 struct net_device *netdev = adapter->netdev;
1412 struct pci_dev *pdev = adapter->pdev;
1413 int err = 0;
1414
1415 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 err = igb_request_msix(adapter);
1417 if (!err)
1418 goto request_done;
1419 /* fall back to MSI */
1420 igb_free_all_tx_resources(adapter);
1421 igb_free_all_rx_resources(adapter);
1422
1423 igb_clear_interrupt_scheme(adapter);
1424 err = igb_init_interrupt_scheme(adapter, false);
1425 if (err)
1426 goto request_done;
1427
1428 igb_setup_all_tx_resources(adapter);
1429 igb_setup_all_rx_resources(adapter);
1430 igb_configure(adapter);
1431 }
1432
1433 igb_assign_vector(adapter->q_vector[0], 0);
1434
1435 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 netdev->name, adapter);
1438 if (!err)
1439 goto request_done;
1440
1441 /* fall back to legacy interrupts */
1442 igb_reset_interrupt_capability(adapter);
1443 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 }
1445
1446 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 netdev->name, adapter);
1448
1449 if (err)
1450 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 err);
1452
1453 request_done:
1454 return err;
1455 }
1456
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 int vector = 0, i;
1461
1462 free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464 for (i = 0; i < adapter->num_q_vectors; i++)
1465 free_irq(adapter->msix_entries[vector++].vector,
1466 adapter->q_vector[i]);
1467 } else {
1468 free_irq(adapter->pdev->irq, adapter);
1469 }
1470 }
1471
1472 /**
1473 * igb_irq_disable - Mask off interrupt generation on the NIC
1474 * @adapter: board private structure
1475 **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478 struct e1000_hw *hw = &adapter->hw;
1479
1480 /* we need to be careful when disabling interrupts. The VFs are also
1481 * mapped into these registers and so clearing the bits can cause
1482 * issues on the VF drivers so we only need to clear what we set
1483 */
1484 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 u32 regval = rd32(E1000_EIAM);
1486
1487 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 regval = rd32(E1000_EIAC);
1490 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 }
1492
1493 wr32(E1000_IAM, 0);
1494 wr32(E1000_IMC, ~0);
1495 wrfl();
1496 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 int i;
1498
1499 for (i = 0; i < adapter->num_q_vectors; i++)
1500 synchronize_irq(adapter->msix_entries[i].vector);
1501 } else {
1502 synchronize_irq(adapter->pdev->irq);
1503 }
1504 }
1505
1506 /**
1507 * igb_irq_enable - Enable default interrupt generation settings
1508 * @adapter: board private structure
1509 **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512 struct e1000_hw *hw = &adapter->hw;
1513
1514 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 u32 regval = rd32(E1000_EIAC);
1517
1518 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 regval = rd32(E1000_EIAM);
1520 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 if (adapter->vfs_allocated_count) {
1523 wr32(E1000_MBVFIMR, 0xFF);
1524 ims |= E1000_IMS_VMMB;
1525 }
1526 wr32(E1000_IMS, ims);
1527 } else {
1528 wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 E1000_IMS_DRSTA);
1530 wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 E1000_IMS_DRSTA);
1532 }
1533 }
1534
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537 struct e1000_hw *hw = &adapter->hw;
1538 u16 pf_id = adapter->vfs_allocated_count;
1539 u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 u16 old_vid = adapter->mng_vlan_id;
1541
1542 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 /* add VID to filter table */
1544 igb_vfta_set(hw, vid, pf_id, true, true);
1545 adapter->mng_vlan_id = vid;
1546 } else {
1547 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 }
1549
1550 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 (vid != old_vid) &&
1552 !test_bit(old_vid, adapter->active_vlans)) {
1553 /* remove VID from filter table */
1554 igb_vfta_set(hw, vid, pf_id, false, true);
1555 }
1556 }
1557
1558 /**
1559 * igb_release_hw_control - release control of the h/w to f/w
1560 * @adapter: address of board private structure
1561 *
1562 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563 * For ASF and Pass Through versions of f/w this means that the
1564 * driver is no longer loaded.
1565 **/
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568 struct e1000_hw *hw = &adapter->hw;
1569 u32 ctrl_ext;
1570
1571 /* Let firmware take over control of h/w */
1572 ctrl_ext = rd32(E1000_CTRL_EXT);
1573 wr32(E1000_CTRL_EXT,
1574 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576
1577 /**
1578 * igb_get_hw_control - get control of the h/w from f/w
1579 * @adapter: address of board private structure
1580 *
1581 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582 * For ASF and Pass Through versions of f/w this means that
1583 * the driver is loaded.
1584 **/
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587 struct e1000_hw *hw = &adapter->hw;
1588 u32 ctrl_ext;
1589
1590 /* Let firmware know the driver has taken over */
1591 ctrl_ext = rd32(E1000_CTRL_EXT);
1592 wr32(E1000_CTRL_EXT,
1593 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595
1596 /**
1597 * igb_configure - configure the hardware for RX and TX
1598 * @adapter: private board structure
1599 **/
1600 static void igb_configure(struct igb_adapter *adapter)
1601 {
1602 struct net_device *netdev = adapter->netdev;
1603 int i;
1604
1605 igb_get_hw_control(adapter);
1606 igb_set_rx_mode(netdev);
1607
1608 igb_restore_vlan(adapter);
1609
1610 igb_setup_tctl(adapter);
1611 igb_setup_mrqc(adapter);
1612 igb_setup_rctl(adapter);
1613
1614 igb_configure_tx(adapter);
1615 igb_configure_rx(adapter);
1616
1617 igb_rx_fifo_flush_82575(&adapter->hw);
1618
1619 /* call igb_desc_unused which always leaves
1620 * at least 1 descriptor unused to make sure
1621 * next_to_use != next_to_clean
1622 */
1623 for (i = 0; i < adapter->num_rx_queues; i++) {
1624 struct igb_ring *ring = adapter->rx_ring[i];
1625 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1626 }
1627 }
1628
1629 /**
1630 * igb_power_up_link - Power up the phy/serdes link
1631 * @adapter: address of board private structure
1632 **/
1633 void igb_power_up_link(struct igb_adapter *adapter)
1634 {
1635 igb_reset_phy(&adapter->hw);
1636
1637 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1638 igb_power_up_phy_copper(&adapter->hw);
1639 else
1640 igb_power_up_serdes_link_82575(&adapter->hw);
1641
1642 igb_setup_link(&adapter->hw);
1643 }
1644
1645 /**
1646 * igb_power_down_link - Power down the phy/serdes link
1647 * @adapter: address of board private structure
1648 */
1649 static void igb_power_down_link(struct igb_adapter *adapter)
1650 {
1651 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1652 igb_power_down_phy_copper_82575(&adapter->hw);
1653 else
1654 igb_shutdown_serdes_link_82575(&adapter->hw);
1655 }
1656
1657 /**
1658 * Detect and switch function for Media Auto Sense
1659 * @adapter: address of the board private structure
1660 **/
1661 static void igb_check_swap_media(struct igb_adapter *adapter)
1662 {
1663 struct e1000_hw *hw = &adapter->hw;
1664 u32 ctrl_ext, connsw;
1665 bool swap_now = false;
1666
1667 ctrl_ext = rd32(E1000_CTRL_EXT);
1668 connsw = rd32(E1000_CONNSW);
1669
1670 /* need to live swap if current media is copper and we have fiber/serdes
1671 * to go to.
1672 */
1673
1674 if ((hw->phy.media_type == e1000_media_type_copper) &&
1675 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1676 swap_now = true;
1677 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1678 /* copper signal takes time to appear */
1679 if (adapter->copper_tries < 4) {
1680 adapter->copper_tries++;
1681 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1682 wr32(E1000_CONNSW, connsw);
1683 return;
1684 } else {
1685 adapter->copper_tries = 0;
1686 if ((connsw & E1000_CONNSW_PHYSD) &&
1687 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1688 swap_now = true;
1689 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1690 wr32(E1000_CONNSW, connsw);
1691 }
1692 }
1693 }
1694
1695 if (!swap_now)
1696 return;
1697
1698 switch (hw->phy.media_type) {
1699 case e1000_media_type_copper:
1700 netdev_info(adapter->netdev,
1701 "MAS: changing media to fiber/serdes\n");
1702 ctrl_ext |=
1703 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1704 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1705 adapter->copper_tries = 0;
1706 break;
1707 case e1000_media_type_internal_serdes:
1708 case e1000_media_type_fiber:
1709 netdev_info(adapter->netdev,
1710 "MAS: changing media to copper\n");
1711 ctrl_ext &=
1712 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1713 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1714 break;
1715 default:
1716 /* shouldn't get here during regular operation */
1717 netdev_err(adapter->netdev,
1718 "AMS: Invalid media type found, returning\n");
1719 break;
1720 }
1721 wr32(E1000_CTRL_EXT, ctrl_ext);
1722 }
1723
1724 /**
1725 * igb_up - Open the interface and prepare it to handle traffic
1726 * @adapter: board private structure
1727 **/
1728 int igb_up(struct igb_adapter *adapter)
1729 {
1730 struct e1000_hw *hw = &adapter->hw;
1731 int i;
1732
1733 /* hardware has been reset, we need to reload some things */
1734 igb_configure(adapter);
1735
1736 clear_bit(__IGB_DOWN, &adapter->state);
1737
1738 for (i = 0; i < adapter->num_q_vectors; i++)
1739 napi_enable(&(adapter->q_vector[i]->napi));
1740
1741 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1742 igb_configure_msix(adapter);
1743 else
1744 igb_assign_vector(adapter->q_vector[0], 0);
1745
1746 /* Clear any pending interrupts. */
1747 rd32(E1000_ICR);
1748 igb_irq_enable(adapter);
1749
1750 /* notify VFs that reset has been completed */
1751 if (adapter->vfs_allocated_count) {
1752 u32 reg_data = rd32(E1000_CTRL_EXT);
1753
1754 reg_data |= E1000_CTRL_EXT_PFRSTD;
1755 wr32(E1000_CTRL_EXT, reg_data);
1756 }
1757
1758 netif_tx_start_all_queues(adapter->netdev);
1759
1760 /* start the watchdog. */
1761 hw->mac.get_link_status = 1;
1762 schedule_work(&adapter->watchdog_task);
1763
1764 if ((adapter->flags & IGB_FLAG_EEE) &&
1765 (!hw->dev_spec._82575.eee_disable))
1766 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1767
1768 return 0;
1769 }
1770
1771 void igb_down(struct igb_adapter *adapter)
1772 {
1773 struct net_device *netdev = adapter->netdev;
1774 struct e1000_hw *hw = &adapter->hw;
1775 u32 tctl, rctl;
1776 int i;
1777
1778 /* signal that we're down so the interrupt handler does not
1779 * reschedule our watchdog timer
1780 */
1781 set_bit(__IGB_DOWN, &adapter->state);
1782
1783 /* disable receives in the hardware */
1784 rctl = rd32(E1000_RCTL);
1785 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1786 /* flush and sleep below */
1787
1788 netif_carrier_off(netdev);
1789 netif_tx_stop_all_queues(netdev);
1790
1791 /* disable transmits in the hardware */
1792 tctl = rd32(E1000_TCTL);
1793 tctl &= ~E1000_TCTL_EN;
1794 wr32(E1000_TCTL, tctl);
1795 /* flush both disables and wait for them to finish */
1796 wrfl();
1797 usleep_range(10000, 11000);
1798
1799 igb_irq_disable(adapter);
1800
1801 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1802
1803 for (i = 0; i < adapter->num_q_vectors; i++) {
1804 if (adapter->q_vector[i]) {
1805 napi_synchronize(&adapter->q_vector[i]->napi);
1806 napi_disable(&adapter->q_vector[i]->napi);
1807 }
1808 }
1809
1810 del_timer_sync(&adapter->watchdog_timer);
1811 del_timer_sync(&adapter->phy_info_timer);
1812
1813 /* record the stats before reset*/
1814 spin_lock(&adapter->stats64_lock);
1815 igb_update_stats(adapter, &adapter->stats64);
1816 spin_unlock(&adapter->stats64_lock);
1817
1818 adapter->link_speed = 0;
1819 adapter->link_duplex = 0;
1820
1821 if (!pci_channel_offline(adapter->pdev))
1822 igb_reset(adapter);
1823
1824 /* clear VLAN promisc flag so VFTA will be updated if necessary */
1825 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1826
1827 igb_clean_all_tx_rings(adapter);
1828 igb_clean_all_rx_rings(adapter);
1829 #ifdef CONFIG_IGB_DCA
1830
1831 /* since we reset the hardware DCA settings were cleared */
1832 igb_setup_dca(adapter);
1833 #endif
1834 }
1835
1836 void igb_reinit_locked(struct igb_adapter *adapter)
1837 {
1838 WARN_ON(in_interrupt());
1839 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1840 usleep_range(1000, 2000);
1841 igb_down(adapter);
1842 igb_up(adapter);
1843 clear_bit(__IGB_RESETTING, &adapter->state);
1844 }
1845
1846 /** igb_enable_mas - Media Autosense re-enable after swap
1847 *
1848 * @adapter: adapter struct
1849 **/
1850 static void igb_enable_mas(struct igb_adapter *adapter)
1851 {
1852 struct e1000_hw *hw = &adapter->hw;
1853 u32 connsw = rd32(E1000_CONNSW);
1854
1855 /* configure for SerDes media detect */
1856 if ((hw->phy.media_type == e1000_media_type_copper) &&
1857 (!(connsw & E1000_CONNSW_SERDESD))) {
1858 connsw |= E1000_CONNSW_ENRGSRC;
1859 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1860 wr32(E1000_CONNSW, connsw);
1861 wrfl();
1862 }
1863 }
1864
1865 void igb_reset(struct igb_adapter *adapter)
1866 {
1867 struct pci_dev *pdev = adapter->pdev;
1868 struct e1000_hw *hw = &adapter->hw;
1869 struct e1000_mac_info *mac = &hw->mac;
1870 struct e1000_fc_info *fc = &hw->fc;
1871 u32 pba, hwm;
1872
1873 /* Repartition Pba for greater than 9k mtu
1874 * To take effect CTRL.RST is required.
1875 */
1876 switch (mac->type) {
1877 case e1000_i350:
1878 case e1000_i354:
1879 case e1000_82580:
1880 pba = rd32(E1000_RXPBS);
1881 pba = igb_rxpbs_adjust_82580(pba);
1882 break;
1883 case e1000_82576:
1884 pba = rd32(E1000_RXPBS);
1885 pba &= E1000_RXPBS_SIZE_MASK_82576;
1886 break;
1887 case e1000_82575:
1888 case e1000_i210:
1889 case e1000_i211:
1890 default:
1891 pba = E1000_PBA_34K;
1892 break;
1893 }
1894
1895 if (mac->type == e1000_82575) {
1896 u32 min_rx_space, min_tx_space, needed_tx_space;
1897
1898 /* write Rx PBA so that hardware can report correct Tx PBA */
1899 wr32(E1000_PBA, pba);
1900
1901 /* To maintain wire speed transmits, the Tx FIFO should be
1902 * large enough to accommodate two full transmit packets,
1903 * rounded up to the next 1KB and expressed in KB. Likewise,
1904 * the Rx FIFO should be large enough to accommodate at least
1905 * one full receive packet and is similarly rounded up and
1906 * expressed in KB.
1907 */
1908 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1909
1910 /* The Tx FIFO also stores 16 bytes of information about the Tx
1911 * but don't include Ethernet FCS because hardware appends it.
1912 * We only need to round down to the nearest 512 byte block
1913 * count since the value we care about is 2 frames, not 1.
1914 */
1915 min_tx_space = adapter->max_frame_size;
1916 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1917 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1918
1919 /* upper 16 bits has Tx packet buffer allocation size in KB */
1920 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1921
1922 /* If current Tx allocation is less than the min Tx FIFO size,
1923 * and the min Tx FIFO size is less than the current Rx FIFO
1924 * allocation, take space away from current Rx allocation.
1925 */
1926 if (needed_tx_space < pba) {
1927 pba -= needed_tx_space;
1928
1929 /* if short on Rx space, Rx wins and must trump Tx
1930 * adjustment
1931 */
1932 if (pba < min_rx_space)
1933 pba = min_rx_space;
1934 }
1935
1936 /* adjust PBA for jumbo frames */
1937 wr32(E1000_PBA, pba);
1938 }
1939
1940 /* flow control settings
1941 * The high water mark must be low enough to fit one full frame
1942 * after transmitting the pause frame. As such we must have enough
1943 * space to allow for us to complete our current transmit and then
1944 * receive the frame that is in progress from the link partner.
1945 * Set it to:
1946 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1947 */
1948 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1949
1950 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1951 fc->low_water = fc->high_water - 16;
1952 fc->pause_time = 0xFFFF;
1953 fc->send_xon = 1;
1954 fc->current_mode = fc->requested_mode;
1955
1956 /* disable receive for all VFs and wait one second */
1957 if (adapter->vfs_allocated_count) {
1958 int i;
1959
1960 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962
1963 /* ping all the active vfs to let them know we are going down */
1964 igb_ping_all_vfs(adapter);
1965
1966 /* disable transmits and receives */
1967 wr32(E1000_VFRE, 0);
1968 wr32(E1000_VFTE, 0);
1969 }
1970
1971 /* Allow time for pending master requests to run */
1972 hw->mac.ops.reset_hw(hw);
1973 wr32(E1000_WUC, 0);
1974
1975 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976 /* need to resetup here after media swap */
1977 adapter->ei.get_invariants(hw);
1978 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979 }
1980 if ((mac->type == e1000_82575) &&
1981 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1982 igb_enable_mas(adapter);
1983 }
1984 if (hw->mac.ops.init_hw(hw))
1985 dev_err(&pdev->dev, "Hardware Error\n");
1986
1987 /* Flow control settings reset on hardware reset, so guarantee flow
1988 * control is off when forcing speed.
1989 */
1990 if (!hw->mac.autoneg)
1991 igb_force_mac_fc(hw);
1992
1993 igb_init_dmac(adapter, pba);
1994 #ifdef CONFIG_IGB_HWMON
1995 /* Re-initialize the thermal sensor on i350 devices. */
1996 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1997 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1998 /* If present, re-initialize the external thermal sensor
1999 * interface.
2000 */
2001 if (adapter->ets)
2002 mac->ops.init_thermal_sensor_thresh(hw);
2003 }
2004 }
2005 #endif
2006 /* Re-establish EEE setting */
2007 if (hw->phy.media_type == e1000_media_type_copper) {
2008 switch (mac->type) {
2009 case e1000_i350:
2010 case e1000_i210:
2011 case e1000_i211:
2012 igb_set_eee_i350(hw, true, true);
2013 break;
2014 case e1000_i354:
2015 igb_set_eee_i354(hw, true, true);
2016 break;
2017 default:
2018 break;
2019 }
2020 }
2021 if (!netif_running(adapter->netdev))
2022 igb_power_down_link(adapter);
2023
2024 igb_update_mng_vlan(adapter);
2025
2026 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2027 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2028
2029 /* Re-enable PTP, where applicable. */
2030 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2031 igb_ptp_reset(adapter);
2032
2033 igb_get_phy_info(hw);
2034 }
2035
2036 static netdev_features_t igb_fix_features(struct net_device *netdev,
2037 netdev_features_t features)
2038 {
2039 /* Since there is no support for separate Rx/Tx vlan accel
2040 * enable/disable make sure Tx flag is always in same state as Rx.
2041 */
2042 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2043 features |= NETIF_F_HW_VLAN_CTAG_TX;
2044 else
2045 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2046
2047 return features;
2048 }
2049
2050 static int igb_set_features(struct net_device *netdev,
2051 netdev_features_t features)
2052 {
2053 netdev_features_t changed = netdev->features ^ features;
2054 struct igb_adapter *adapter = netdev_priv(netdev);
2055
2056 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2057 igb_vlan_mode(netdev, features);
2058
2059 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2060 return 0;
2061
2062 netdev->features = features;
2063
2064 if (netif_running(netdev))
2065 igb_reinit_locked(adapter);
2066 else
2067 igb_reset(adapter);
2068
2069 return 0;
2070 }
2071
2072 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2073 struct net_device *dev,
2074 const unsigned char *addr, u16 vid,
2075 u16 flags)
2076 {
2077 /* guarantee we can provide a unique filter for the unicast address */
2078 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2079 struct igb_adapter *adapter = netdev_priv(dev);
2080 struct e1000_hw *hw = &adapter->hw;
2081 int vfn = adapter->vfs_allocated_count;
2082 int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2083
2084 if (netdev_uc_count(dev) >= rar_entries)
2085 return -ENOMEM;
2086 }
2087
2088 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2089 }
2090
2091 #define IGB_MAX_MAC_HDR_LEN 127
2092 #define IGB_MAX_NETWORK_HDR_LEN 511
2093
2094 static netdev_features_t
2095 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2096 netdev_features_t features)
2097 {
2098 unsigned int network_hdr_len, mac_hdr_len;
2099
2100 /* Make certain the headers can be described by a context descriptor */
2101 mac_hdr_len = skb_network_header(skb) - skb->data;
2102 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2103 return features & ~(NETIF_F_HW_CSUM |
2104 NETIF_F_SCTP_CRC |
2105 NETIF_F_HW_VLAN_CTAG_TX |
2106 NETIF_F_TSO |
2107 NETIF_F_TSO6);
2108
2109 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2110 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2111 return features & ~(NETIF_F_HW_CSUM |
2112 NETIF_F_SCTP_CRC |
2113 NETIF_F_TSO |
2114 NETIF_F_TSO6);
2115
2116 /* We can only support IPV4 TSO in tunnels if we can mangle the
2117 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2118 */
2119 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2120 features &= ~NETIF_F_TSO;
2121
2122 return features;
2123 }
2124
2125 static const struct net_device_ops igb_netdev_ops = {
2126 .ndo_open = igb_open,
2127 .ndo_stop = igb_close,
2128 .ndo_start_xmit = igb_xmit_frame,
2129 .ndo_get_stats64 = igb_get_stats64,
2130 .ndo_set_rx_mode = igb_set_rx_mode,
2131 .ndo_set_mac_address = igb_set_mac,
2132 .ndo_change_mtu = igb_change_mtu,
2133 .ndo_do_ioctl = igb_ioctl,
2134 .ndo_tx_timeout = igb_tx_timeout,
2135 .ndo_validate_addr = eth_validate_addr,
2136 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2137 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2138 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2139 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2140 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2141 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2142 .ndo_get_vf_config = igb_ndo_get_vf_config,
2143 #ifdef CONFIG_NET_POLL_CONTROLLER
2144 .ndo_poll_controller = igb_netpoll,
2145 #endif
2146 .ndo_fix_features = igb_fix_features,
2147 .ndo_set_features = igb_set_features,
2148 .ndo_fdb_add = igb_ndo_fdb_add,
2149 .ndo_features_check = igb_features_check,
2150 };
2151
2152 /**
2153 * igb_set_fw_version - Configure version string for ethtool
2154 * @adapter: adapter struct
2155 **/
2156 void igb_set_fw_version(struct igb_adapter *adapter)
2157 {
2158 struct e1000_hw *hw = &adapter->hw;
2159 struct e1000_fw_version fw;
2160
2161 igb_get_fw_version(hw, &fw);
2162
2163 switch (hw->mac.type) {
2164 case e1000_i210:
2165 case e1000_i211:
2166 if (!(igb_get_flash_presence_i210(hw))) {
2167 snprintf(adapter->fw_version,
2168 sizeof(adapter->fw_version),
2169 "%2d.%2d-%d",
2170 fw.invm_major, fw.invm_minor,
2171 fw.invm_img_type);
2172 break;
2173 }
2174 /* fall through */
2175 default:
2176 /* if option is rom valid, display its version too */
2177 if (fw.or_valid) {
2178 snprintf(adapter->fw_version,
2179 sizeof(adapter->fw_version),
2180 "%d.%d, 0x%08x, %d.%d.%d",
2181 fw.eep_major, fw.eep_minor, fw.etrack_id,
2182 fw.or_major, fw.or_build, fw.or_patch);
2183 /* no option rom */
2184 } else if (fw.etrack_id != 0X0000) {
2185 snprintf(adapter->fw_version,
2186 sizeof(adapter->fw_version),
2187 "%d.%d, 0x%08x",
2188 fw.eep_major, fw.eep_minor, fw.etrack_id);
2189 } else {
2190 snprintf(adapter->fw_version,
2191 sizeof(adapter->fw_version),
2192 "%d.%d.%d",
2193 fw.eep_major, fw.eep_minor, fw.eep_build);
2194 }
2195 break;
2196 }
2197 }
2198
2199 /**
2200 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2201 *
2202 * @adapter: adapter struct
2203 **/
2204 static void igb_init_mas(struct igb_adapter *adapter)
2205 {
2206 struct e1000_hw *hw = &adapter->hw;
2207 u16 eeprom_data;
2208
2209 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2210 switch (hw->bus.func) {
2211 case E1000_FUNC_0:
2212 if (eeprom_data & IGB_MAS_ENABLE_0) {
2213 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2214 netdev_info(adapter->netdev,
2215 "MAS: Enabling Media Autosense for port %d\n",
2216 hw->bus.func);
2217 }
2218 break;
2219 case E1000_FUNC_1:
2220 if (eeprom_data & IGB_MAS_ENABLE_1) {
2221 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2222 netdev_info(adapter->netdev,
2223 "MAS: Enabling Media Autosense for port %d\n",
2224 hw->bus.func);
2225 }
2226 break;
2227 case E1000_FUNC_2:
2228 if (eeprom_data & IGB_MAS_ENABLE_2) {
2229 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2230 netdev_info(adapter->netdev,
2231 "MAS: Enabling Media Autosense for port %d\n",
2232 hw->bus.func);
2233 }
2234 break;
2235 case E1000_FUNC_3:
2236 if (eeprom_data & IGB_MAS_ENABLE_3) {
2237 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2238 netdev_info(adapter->netdev,
2239 "MAS: Enabling Media Autosense for port %d\n",
2240 hw->bus.func);
2241 }
2242 break;
2243 default:
2244 /* Shouldn't get here */
2245 netdev_err(adapter->netdev,
2246 "MAS: Invalid port configuration, returning\n");
2247 break;
2248 }
2249 }
2250
2251 /**
2252 * igb_init_i2c - Init I2C interface
2253 * @adapter: pointer to adapter structure
2254 **/
2255 static s32 igb_init_i2c(struct igb_adapter *adapter)
2256 {
2257 s32 status = 0;
2258
2259 /* I2C interface supported on i350 devices */
2260 if (adapter->hw.mac.type != e1000_i350)
2261 return 0;
2262
2263 /* Initialize the i2c bus which is controlled by the registers.
2264 * This bus will use the i2c_algo_bit structue that implements
2265 * the protocol through toggling of the 4 bits in the register.
2266 */
2267 adapter->i2c_adap.owner = THIS_MODULE;
2268 adapter->i2c_algo = igb_i2c_algo;
2269 adapter->i2c_algo.data = adapter;
2270 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2271 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2272 strlcpy(adapter->i2c_adap.name, "igb BB",
2273 sizeof(adapter->i2c_adap.name));
2274 status = i2c_bit_add_bus(&adapter->i2c_adap);
2275 return status;
2276 }
2277
2278 /**
2279 * igb_probe - Device Initialization Routine
2280 * @pdev: PCI device information struct
2281 * @ent: entry in igb_pci_tbl
2282 *
2283 * Returns 0 on success, negative on failure
2284 *
2285 * igb_probe initializes an adapter identified by a pci_dev structure.
2286 * The OS initialization, configuring of the adapter private structure,
2287 * and a hardware reset occur.
2288 **/
2289 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2290 {
2291 struct net_device *netdev;
2292 struct igb_adapter *adapter;
2293 struct e1000_hw *hw;
2294 u16 eeprom_data = 0;
2295 s32 ret_val;
2296 static int global_quad_port_a; /* global quad port a indication */
2297 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2298 int err, pci_using_dac;
2299 u8 part_str[E1000_PBANUM_LENGTH];
2300
2301 /* Catch broken hardware that put the wrong VF device ID in
2302 * the PCIe SR-IOV capability.
2303 */
2304 if (pdev->is_virtfn) {
2305 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2306 pci_name(pdev), pdev->vendor, pdev->device);
2307 return -EINVAL;
2308 }
2309
2310 err = pci_enable_device_mem(pdev);
2311 if (err)
2312 return err;
2313
2314 pci_using_dac = 0;
2315 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2316 if (!err) {
2317 pci_using_dac = 1;
2318 } else {
2319 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2320 if (err) {
2321 dev_err(&pdev->dev,
2322 "No usable DMA configuration, aborting\n");
2323 goto err_dma;
2324 }
2325 }
2326
2327 err = pci_request_mem_regions(pdev, igb_driver_name);
2328 if (err)
2329 goto err_pci_reg;
2330
2331 pci_enable_pcie_error_reporting(pdev);
2332
2333 pci_set_master(pdev);
2334 pci_save_state(pdev);
2335
2336 err = -ENOMEM;
2337 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2338 IGB_MAX_TX_QUEUES);
2339 if (!netdev)
2340 goto err_alloc_etherdev;
2341
2342 SET_NETDEV_DEV(netdev, &pdev->dev);
2343
2344 pci_set_drvdata(pdev, netdev);
2345 adapter = netdev_priv(netdev);
2346 adapter->netdev = netdev;
2347 adapter->pdev = pdev;
2348 hw = &adapter->hw;
2349 hw->back = adapter;
2350 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2351
2352 err = -EIO;
2353 adapter->io_addr = pci_iomap(pdev, 0, 0);
2354 if (!adapter->io_addr)
2355 goto err_ioremap;
2356 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2357 hw->hw_addr = adapter->io_addr;
2358
2359 netdev->netdev_ops = &igb_netdev_ops;
2360 igb_set_ethtool_ops(netdev);
2361 netdev->watchdog_timeo = 5 * HZ;
2362
2363 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2364
2365 netdev->mem_start = pci_resource_start(pdev, 0);
2366 netdev->mem_end = pci_resource_end(pdev, 0);
2367
2368 /* PCI config space info */
2369 hw->vendor_id = pdev->vendor;
2370 hw->device_id = pdev->device;
2371 hw->revision_id = pdev->revision;
2372 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2373 hw->subsystem_device_id = pdev->subsystem_device;
2374
2375 /* Copy the default MAC, PHY and NVM function pointers */
2376 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2377 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2378 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2379 /* Initialize skew-specific constants */
2380 err = ei->get_invariants(hw);
2381 if (err)
2382 goto err_sw_init;
2383
2384 /* setup the private structure */
2385 err = igb_sw_init(adapter);
2386 if (err)
2387 goto err_sw_init;
2388
2389 igb_get_bus_info_pcie(hw);
2390
2391 hw->phy.autoneg_wait_to_complete = false;
2392
2393 /* Copper options */
2394 if (hw->phy.media_type == e1000_media_type_copper) {
2395 hw->phy.mdix = AUTO_ALL_MODES;
2396 hw->phy.disable_polarity_correction = false;
2397 hw->phy.ms_type = e1000_ms_hw_default;
2398 }
2399
2400 if (igb_check_reset_block(hw))
2401 dev_info(&pdev->dev,
2402 "PHY reset is blocked due to SOL/IDER session.\n");
2403
2404 /* features is initialized to 0 in allocation, it might have bits
2405 * set by igb_sw_init so we should use an or instead of an
2406 * assignment.
2407 */
2408 netdev->features |= NETIF_F_SG |
2409 NETIF_F_TSO |
2410 NETIF_F_TSO6 |
2411 NETIF_F_RXHASH |
2412 NETIF_F_RXCSUM |
2413 NETIF_F_HW_CSUM;
2414
2415 if (hw->mac.type >= e1000_82576)
2416 netdev->features |= NETIF_F_SCTP_CRC;
2417
2418 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2419 NETIF_F_GSO_GRE_CSUM | \
2420 NETIF_F_GSO_IPXIP4 | \
2421 NETIF_F_GSO_IPXIP6 | \
2422 NETIF_F_GSO_UDP_TUNNEL | \
2423 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2424
2425 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2426 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2427
2428 /* copy netdev features into list of user selectable features */
2429 netdev->hw_features |= netdev->features |
2430 NETIF_F_HW_VLAN_CTAG_RX |
2431 NETIF_F_HW_VLAN_CTAG_TX |
2432 NETIF_F_RXALL;
2433
2434 if (hw->mac.type >= e1000_i350)
2435 netdev->hw_features |= NETIF_F_NTUPLE;
2436
2437 if (pci_using_dac)
2438 netdev->features |= NETIF_F_HIGHDMA;
2439
2440 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2441 netdev->mpls_features |= NETIF_F_HW_CSUM;
2442 netdev->hw_enc_features |= netdev->vlan_features;
2443
2444 /* set this bit last since it cannot be part of vlan_features */
2445 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2446 NETIF_F_HW_VLAN_CTAG_RX |
2447 NETIF_F_HW_VLAN_CTAG_TX;
2448
2449 netdev->priv_flags |= IFF_SUPP_NOFCS;
2450
2451 netdev->priv_flags |= IFF_UNICAST_FLT;
2452
2453 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2454
2455 /* before reading the NVM, reset the controller to put the device in a
2456 * known good starting state
2457 */
2458 hw->mac.ops.reset_hw(hw);
2459
2460 /* make sure the NVM is good , i211/i210 parts can have special NVM
2461 * that doesn't contain a checksum
2462 */
2463 switch (hw->mac.type) {
2464 case e1000_i210:
2465 case e1000_i211:
2466 if (igb_get_flash_presence_i210(hw)) {
2467 if (hw->nvm.ops.validate(hw) < 0) {
2468 dev_err(&pdev->dev,
2469 "The NVM Checksum Is Not Valid\n");
2470 err = -EIO;
2471 goto err_eeprom;
2472 }
2473 }
2474 break;
2475 default:
2476 if (hw->nvm.ops.validate(hw) < 0) {
2477 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2478 err = -EIO;
2479 goto err_eeprom;
2480 }
2481 break;
2482 }
2483
2484 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2485 /* copy the MAC address out of the NVM */
2486 if (hw->mac.ops.read_mac_addr(hw))
2487 dev_err(&pdev->dev, "NVM Read Error\n");
2488 }
2489
2490 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2491
2492 if (!is_valid_ether_addr(netdev->dev_addr)) {
2493 dev_err(&pdev->dev, "Invalid MAC Address\n");
2494 err = -EIO;
2495 goto err_eeprom;
2496 }
2497
2498 /* get firmware version for ethtool -i */
2499 igb_set_fw_version(adapter);
2500
2501 /* configure RXPBSIZE and TXPBSIZE */
2502 if (hw->mac.type == e1000_i210) {
2503 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2504 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2505 }
2506
2507 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2508 (unsigned long) adapter);
2509 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2510 (unsigned long) adapter);
2511
2512 INIT_WORK(&adapter->reset_task, igb_reset_task);
2513 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2514
2515 /* Initialize link properties that are user-changeable */
2516 adapter->fc_autoneg = true;
2517 hw->mac.autoneg = true;
2518 hw->phy.autoneg_advertised = 0x2f;
2519
2520 hw->fc.requested_mode = e1000_fc_default;
2521 hw->fc.current_mode = e1000_fc_default;
2522
2523 igb_validate_mdi_setting(hw);
2524
2525 /* By default, support wake on port A */
2526 if (hw->bus.func == 0)
2527 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2528
2529 /* Check the NVM for wake support on non-port A ports */
2530 if (hw->mac.type >= e1000_82580)
2531 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2532 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2533 &eeprom_data);
2534 else if (hw->bus.func == 1)
2535 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2536
2537 if (eeprom_data & IGB_EEPROM_APME)
2538 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2539
2540 /* now that we have the eeprom settings, apply the special cases where
2541 * the eeprom may be wrong or the board simply won't support wake on
2542 * lan on a particular port
2543 */
2544 switch (pdev->device) {
2545 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2546 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2547 break;
2548 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2549 case E1000_DEV_ID_82576_FIBER:
2550 case E1000_DEV_ID_82576_SERDES:
2551 /* Wake events only supported on port A for dual fiber
2552 * regardless of eeprom setting
2553 */
2554 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2555 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2556 break;
2557 case E1000_DEV_ID_82576_QUAD_COPPER:
2558 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2559 /* if quad port adapter, disable WoL on all but port A */
2560 if (global_quad_port_a != 0)
2561 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2562 else
2563 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2564 /* Reset for multiple quad port adapters */
2565 if (++global_quad_port_a == 4)
2566 global_quad_port_a = 0;
2567 break;
2568 default:
2569 /* If the device can't wake, don't set software support */
2570 if (!device_can_wakeup(&adapter->pdev->dev))
2571 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2572 }
2573
2574 /* initialize the wol settings based on the eeprom settings */
2575 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2576 adapter->wol |= E1000_WUFC_MAG;
2577
2578 /* Some vendors want WoL disabled by default, but still supported */
2579 if ((hw->mac.type == e1000_i350) &&
2580 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2581 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2582 adapter->wol = 0;
2583 }
2584
2585 /* Some vendors want the ability to Use the EEPROM setting as
2586 * enable/disable only, and not for capability
2587 */
2588 if (((hw->mac.type == e1000_i350) ||
2589 (hw->mac.type == e1000_i354)) &&
2590 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2591 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2592 adapter->wol = 0;
2593 }
2594 if (hw->mac.type == e1000_i350) {
2595 if (((pdev->subsystem_device == 0x5001) ||
2596 (pdev->subsystem_device == 0x5002)) &&
2597 (hw->bus.func == 0)) {
2598 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2599 adapter->wol = 0;
2600 }
2601 if (pdev->subsystem_device == 0x1F52)
2602 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2603 }
2604
2605 device_set_wakeup_enable(&adapter->pdev->dev,
2606 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2607
2608 /* reset the hardware with the new settings */
2609 igb_reset(adapter);
2610
2611 /* Init the I2C interface */
2612 err = igb_init_i2c(adapter);
2613 if (err) {
2614 dev_err(&pdev->dev, "failed to init i2c interface\n");
2615 goto err_eeprom;
2616 }
2617
2618 /* let the f/w know that the h/w is now under the control of the
2619 * driver.
2620 */
2621 igb_get_hw_control(adapter);
2622
2623 strcpy(netdev->name, "eth%d");
2624 err = register_netdev(netdev);
2625 if (err)
2626 goto err_register;
2627
2628 /* carrier off reporting is important to ethtool even BEFORE open */
2629 netif_carrier_off(netdev);
2630
2631 #ifdef CONFIG_IGB_DCA
2632 if (dca_add_requester(&pdev->dev) == 0) {
2633 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2634 dev_info(&pdev->dev, "DCA enabled\n");
2635 igb_setup_dca(adapter);
2636 }
2637
2638 #endif
2639 #ifdef CONFIG_IGB_HWMON
2640 /* Initialize the thermal sensor on i350 devices. */
2641 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2642 u16 ets_word;
2643
2644 /* Read the NVM to determine if this i350 device supports an
2645 * external thermal sensor.
2646 */
2647 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2648 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2649 adapter->ets = true;
2650 else
2651 adapter->ets = false;
2652 if (igb_sysfs_init(adapter))
2653 dev_err(&pdev->dev,
2654 "failed to allocate sysfs resources\n");
2655 } else {
2656 adapter->ets = false;
2657 }
2658 #endif
2659 /* Check if Media Autosense is enabled */
2660 adapter->ei = *ei;
2661 if (hw->dev_spec._82575.mas_capable)
2662 igb_init_mas(adapter);
2663
2664 /* do hw tstamp init after resetting */
2665 igb_ptp_init(adapter);
2666
2667 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2668 /* print bus type/speed/width info, not applicable to i354 */
2669 if (hw->mac.type != e1000_i354) {
2670 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2671 netdev->name,
2672 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2673 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2674 "unknown"),
2675 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2676 "Width x4" :
2677 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2678 "Width x2" :
2679 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2680 "Width x1" : "unknown"), netdev->dev_addr);
2681 }
2682
2683 if ((hw->mac.type >= e1000_i210 ||
2684 igb_get_flash_presence_i210(hw))) {
2685 ret_val = igb_read_part_string(hw, part_str,
2686 E1000_PBANUM_LENGTH);
2687 } else {
2688 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2689 }
2690
2691 if (ret_val)
2692 strcpy(part_str, "Unknown");
2693 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2694 dev_info(&pdev->dev,
2695 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2696 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2697 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2698 adapter->num_rx_queues, adapter->num_tx_queues);
2699 if (hw->phy.media_type == e1000_media_type_copper) {
2700 switch (hw->mac.type) {
2701 case e1000_i350:
2702 case e1000_i210:
2703 case e1000_i211:
2704 /* Enable EEE for internal copper PHY devices */
2705 err = igb_set_eee_i350(hw, true, true);
2706 if ((!err) &&
2707 (!hw->dev_spec._82575.eee_disable)) {
2708 adapter->eee_advert =
2709 MDIO_EEE_100TX | MDIO_EEE_1000T;
2710 adapter->flags |= IGB_FLAG_EEE;
2711 }
2712 break;
2713 case e1000_i354:
2714 if ((rd32(E1000_CTRL_EXT) &
2715 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2716 err = igb_set_eee_i354(hw, true, true);
2717 if ((!err) &&
2718 (!hw->dev_spec._82575.eee_disable)) {
2719 adapter->eee_advert =
2720 MDIO_EEE_100TX | MDIO_EEE_1000T;
2721 adapter->flags |= IGB_FLAG_EEE;
2722 }
2723 }
2724 break;
2725 default:
2726 break;
2727 }
2728 }
2729 pm_runtime_put_noidle(&pdev->dev);
2730 return 0;
2731
2732 err_register:
2733 igb_release_hw_control(adapter);
2734 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2735 err_eeprom:
2736 if (!igb_check_reset_block(hw))
2737 igb_reset_phy(hw);
2738
2739 if (hw->flash_address)
2740 iounmap(hw->flash_address);
2741 err_sw_init:
2742 kfree(adapter->shadow_vfta);
2743 igb_clear_interrupt_scheme(adapter);
2744 #ifdef CONFIG_PCI_IOV
2745 igb_disable_sriov(pdev);
2746 #endif
2747 pci_iounmap(pdev, adapter->io_addr);
2748 err_ioremap:
2749 free_netdev(netdev);
2750 err_alloc_etherdev:
2751 pci_release_mem_regions(pdev);
2752 err_pci_reg:
2753 err_dma:
2754 pci_disable_device(pdev);
2755 return err;
2756 }
2757
2758 #ifdef CONFIG_PCI_IOV
2759 static int igb_disable_sriov(struct pci_dev *pdev)
2760 {
2761 struct net_device *netdev = pci_get_drvdata(pdev);
2762 struct igb_adapter *adapter = netdev_priv(netdev);
2763 struct e1000_hw *hw = &adapter->hw;
2764
2765 /* reclaim resources allocated to VFs */
2766 if (adapter->vf_data) {
2767 /* disable iov and allow time for transactions to clear */
2768 if (pci_vfs_assigned(pdev)) {
2769 dev_warn(&pdev->dev,
2770 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2771 return -EPERM;
2772 } else {
2773 pci_disable_sriov(pdev);
2774 msleep(500);
2775 }
2776
2777 kfree(adapter->vf_data);
2778 adapter->vf_data = NULL;
2779 adapter->vfs_allocated_count = 0;
2780 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2781 wrfl();
2782 msleep(100);
2783 dev_info(&pdev->dev, "IOV Disabled\n");
2784
2785 /* Re-enable DMA Coalescing flag since IOV is turned off */
2786 adapter->flags |= IGB_FLAG_DMAC;
2787 }
2788
2789 return 0;
2790 }
2791
2792 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2793 {
2794 struct net_device *netdev = pci_get_drvdata(pdev);
2795 struct igb_adapter *adapter = netdev_priv(netdev);
2796 int old_vfs = pci_num_vf(pdev);
2797 int err = 0;
2798 int i;
2799
2800 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2801 err = -EPERM;
2802 goto out;
2803 }
2804 if (!num_vfs)
2805 goto out;
2806
2807 if (old_vfs) {
2808 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2809 old_vfs, max_vfs);
2810 adapter->vfs_allocated_count = old_vfs;
2811 } else
2812 adapter->vfs_allocated_count = num_vfs;
2813
2814 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2815 sizeof(struct vf_data_storage), GFP_KERNEL);
2816
2817 /* if allocation failed then we do not support SR-IOV */
2818 if (!adapter->vf_data) {
2819 adapter->vfs_allocated_count = 0;
2820 dev_err(&pdev->dev,
2821 "Unable to allocate memory for VF Data Storage\n");
2822 err = -ENOMEM;
2823 goto out;
2824 }
2825
2826 /* only call pci_enable_sriov() if no VFs are allocated already */
2827 if (!old_vfs) {
2828 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2829 if (err)
2830 goto err_out;
2831 }
2832 dev_info(&pdev->dev, "%d VFs allocated\n",
2833 adapter->vfs_allocated_count);
2834 for (i = 0; i < adapter->vfs_allocated_count; i++)
2835 igb_vf_configure(adapter, i);
2836
2837 /* DMA Coalescing is not supported in IOV mode. */
2838 adapter->flags &= ~IGB_FLAG_DMAC;
2839 goto out;
2840
2841 err_out:
2842 kfree(adapter->vf_data);
2843 adapter->vf_data = NULL;
2844 adapter->vfs_allocated_count = 0;
2845 out:
2846 return err;
2847 }
2848
2849 #endif
2850 /**
2851 * igb_remove_i2c - Cleanup I2C interface
2852 * @adapter: pointer to adapter structure
2853 **/
2854 static void igb_remove_i2c(struct igb_adapter *adapter)
2855 {
2856 /* free the adapter bus structure */
2857 i2c_del_adapter(&adapter->i2c_adap);
2858 }
2859
2860 /**
2861 * igb_remove - Device Removal Routine
2862 * @pdev: PCI device information struct
2863 *
2864 * igb_remove is called by the PCI subsystem to alert the driver
2865 * that it should release a PCI device. The could be caused by a
2866 * Hot-Plug event, or because the driver is going to be removed from
2867 * memory.
2868 **/
2869 static void igb_remove(struct pci_dev *pdev)
2870 {
2871 struct net_device *netdev = pci_get_drvdata(pdev);
2872 struct igb_adapter *adapter = netdev_priv(netdev);
2873 struct e1000_hw *hw = &adapter->hw;
2874
2875 pm_runtime_get_noresume(&pdev->dev);
2876 #ifdef CONFIG_IGB_HWMON
2877 igb_sysfs_exit(adapter);
2878 #endif
2879 igb_remove_i2c(adapter);
2880 igb_ptp_stop(adapter);
2881 /* The watchdog timer may be rescheduled, so explicitly
2882 * disable watchdog from being rescheduled.
2883 */
2884 set_bit(__IGB_DOWN, &adapter->state);
2885 del_timer_sync(&adapter->watchdog_timer);
2886 del_timer_sync(&adapter->phy_info_timer);
2887
2888 cancel_work_sync(&adapter->reset_task);
2889 cancel_work_sync(&adapter->watchdog_task);
2890
2891 #ifdef CONFIG_IGB_DCA
2892 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2893 dev_info(&pdev->dev, "DCA disabled\n");
2894 dca_remove_requester(&pdev->dev);
2895 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2896 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2897 }
2898 #endif
2899
2900 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2901 * would have already happened in close and is redundant.
2902 */
2903 igb_release_hw_control(adapter);
2904
2905 #ifdef CONFIG_PCI_IOV
2906 igb_disable_sriov(pdev);
2907 #endif
2908
2909 unregister_netdev(netdev);
2910
2911 igb_clear_interrupt_scheme(adapter);
2912
2913 pci_iounmap(pdev, adapter->io_addr);
2914 if (hw->flash_address)
2915 iounmap(hw->flash_address);
2916 pci_release_mem_regions(pdev);
2917
2918 kfree(adapter->shadow_vfta);
2919 free_netdev(netdev);
2920
2921 pci_disable_pcie_error_reporting(pdev);
2922
2923 pci_disable_device(pdev);
2924 }
2925
2926 /**
2927 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2928 * @adapter: board private structure to initialize
2929 *
2930 * This function initializes the vf specific data storage and then attempts to
2931 * allocate the VFs. The reason for ordering it this way is because it is much
2932 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2933 * the memory for the VFs.
2934 **/
2935 static void igb_probe_vfs(struct igb_adapter *adapter)
2936 {
2937 #ifdef CONFIG_PCI_IOV
2938 struct pci_dev *pdev = adapter->pdev;
2939 struct e1000_hw *hw = &adapter->hw;
2940
2941 /* Virtualization features not supported on i210 family. */
2942 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2943 return;
2944
2945 /* Of the below we really only want the effect of getting
2946 * IGB_FLAG_HAS_MSIX set (if available), without which
2947 * igb_enable_sriov() has no effect.
2948 */
2949 igb_set_interrupt_capability(adapter, true);
2950 igb_reset_interrupt_capability(adapter);
2951
2952 pci_sriov_set_totalvfs(pdev, 7);
2953 igb_enable_sriov(pdev, max_vfs);
2954
2955 #endif /* CONFIG_PCI_IOV */
2956 }
2957
2958 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2959 {
2960 struct e1000_hw *hw = &adapter->hw;
2961 u32 max_rss_queues;
2962
2963 /* Determine the maximum number of RSS queues supported. */
2964 switch (hw->mac.type) {
2965 case e1000_i211:
2966 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2967 break;
2968 case e1000_82575:
2969 case e1000_i210:
2970 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2971 break;
2972 case e1000_i350:
2973 /* I350 cannot do RSS and SR-IOV at the same time */
2974 if (!!adapter->vfs_allocated_count) {
2975 max_rss_queues = 1;
2976 break;
2977 }
2978 /* fall through */
2979 case e1000_82576:
2980 if (!!adapter->vfs_allocated_count) {
2981 max_rss_queues = 2;
2982 break;
2983 }
2984 /* fall through */
2985 case e1000_82580:
2986 case e1000_i354:
2987 default:
2988 max_rss_queues = IGB_MAX_RX_QUEUES;
2989 break;
2990 }
2991
2992 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2993
2994 igb_set_flag_queue_pairs(adapter, max_rss_queues);
2995 }
2996
2997 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
2998 const u32 max_rss_queues)
2999 {
3000 struct e1000_hw *hw = &adapter->hw;
3001
3002 /* Determine if we need to pair queues. */
3003 switch (hw->mac.type) {
3004 case e1000_82575:
3005 case e1000_i211:
3006 /* Device supports enough interrupts without queue pairing. */
3007 break;
3008 case e1000_82576:
3009 case e1000_82580:
3010 case e1000_i350:
3011 case e1000_i354:
3012 case e1000_i210:
3013 default:
3014 /* If rss_queues > half of max_rss_queues, pair the queues in
3015 * order to conserve interrupts due to limited supply.
3016 */
3017 if (adapter->rss_queues > (max_rss_queues / 2))
3018 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3019 else
3020 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3021 break;
3022 }
3023 }
3024
3025 /**
3026 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3027 * @adapter: board private structure to initialize
3028 *
3029 * igb_sw_init initializes the Adapter private data structure.
3030 * Fields are initialized based on PCI device information and
3031 * OS network device settings (MTU size).
3032 **/
3033 static int igb_sw_init(struct igb_adapter *adapter)
3034 {
3035 struct e1000_hw *hw = &adapter->hw;
3036 struct net_device *netdev = adapter->netdev;
3037 struct pci_dev *pdev = adapter->pdev;
3038
3039 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3040
3041 /* set default ring sizes */
3042 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3043 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3044
3045 /* set default ITR values */
3046 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3047 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3048
3049 /* set default work limits */
3050 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3051
3052 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3053 VLAN_HLEN;
3054 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3055
3056 spin_lock_init(&adapter->stats64_lock);
3057 #ifdef CONFIG_PCI_IOV
3058 switch (hw->mac.type) {
3059 case e1000_82576:
3060 case e1000_i350:
3061 if (max_vfs > 7) {
3062 dev_warn(&pdev->dev,
3063 "Maximum of 7 VFs per PF, using max\n");
3064 max_vfs = adapter->vfs_allocated_count = 7;
3065 } else
3066 adapter->vfs_allocated_count = max_vfs;
3067 if (adapter->vfs_allocated_count)
3068 dev_warn(&pdev->dev,
3069 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3070 break;
3071 default:
3072 break;
3073 }
3074 #endif /* CONFIG_PCI_IOV */
3075
3076 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3077 adapter->flags |= IGB_FLAG_HAS_MSIX;
3078
3079 igb_probe_vfs(adapter);
3080
3081 igb_init_queue_configuration(adapter);
3082
3083 /* Setup and initialize a copy of the hw vlan table array */
3084 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3085 GFP_ATOMIC);
3086
3087 /* This call may decrease the number of queues */
3088 if (igb_init_interrupt_scheme(adapter, true)) {
3089 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3090 return -ENOMEM;
3091 }
3092
3093 /* Explicitly disable IRQ since the NIC can be in any state. */
3094 igb_irq_disable(adapter);
3095
3096 if (hw->mac.type >= e1000_i350)
3097 adapter->flags &= ~IGB_FLAG_DMAC;
3098
3099 set_bit(__IGB_DOWN, &adapter->state);
3100 return 0;
3101 }
3102
3103 /**
3104 * igb_open - Called when a network interface is made active
3105 * @netdev: network interface device structure
3106 *
3107 * Returns 0 on success, negative value on failure
3108 *
3109 * The open entry point is called when a network interface is made
3110 * active by the system (IFF_UP). At this point all resources needed
3111 * for transmit and receive operations are allocated, the interrupt
3112 * handler is registered with the OS, the watchdog timer is started,
3113 * and the stack is notified that the interface is ready.
3114 **/
3115 static int __igb_open(struct net_device *netdev, bool resuming)
3116 {
3117 struct igb_adapter *adapter = netdev_priv(netdev);
3118 struct e1000_hw *hw = &adapter->hw;
3119 struct pci_dev *pdev = adapter->pdev;
3120 int err;
3121 int i;
3122
3123 /* disallow open during test */
3124 if (test_bit(__IGB_TESTING, &adapter->state)) {
3125 WARN_ON(resuming);
3126 return -EBUSY;
3127 }
3128
3129 if (!resuming)
3130 pm_runtime_get_sync(&pdev->dev);
3131
3132 netif_carrier_off(netdev);
3133
3134 /* allocate transmit descriptors */
3135 err = igb_setup_all_tx_resources(adapter);
3136 if (err)
3137 goto err_setup_tx;
3138
3139 /* allocate receive descriptors */
3140 err = igb_setup_all_rx_resources(adapter);
3141 if (err)
3142 goto err_setup_rx;
3143
3144 igb_power_up_link(adapter);
3145
3146 /* before we allocate an interrupt, we must be ready to handle it.
3147 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3148 * as soon as we call pci_request_irq, so we have to setup our
3149 * clean_rx handler before we do so.
3150 */
3151 igb_configure(adapter);
3152
3153 err = igb_request_irq(adapter);
3154 if (err)
3155 goto err_req_irq;
3156
3157 /* Notify the stack of the actual queue counts. */
3158 err = netif_set_real_num_tx_queues(adapter->netdev,
3159 adapter->num_tx_queues);
3160 if (err)
3161 goto err_set_queues;
3162
3163 err = netif_set_real_num_rx_queues(adapter->netdev,
3164 adapter->num_rx_queues);
3165 if (err)
3166 goto err_set_queues;
3167
3168 /* From here on the code is the same as igb_up() */
3169 clear_bit(__IGB_DOWN, &adapter->state);
3170
3171 for (i = 0; i < adapter->num_q_vectors; i++)
3172 napi_enable(&(adapter->q_vector[i]->napi));
3173
3174 /* Clear any pending interrupts. */
3175 rd32(E1000_ICR);
3176
3177 igb_irq_enable(adapter);
3178
3179 /* notify VFs that reset has been completed */
3180 if (adapter->vfs_allocated_count) {
3181 u32 reg_data = rd32(E1000_CTRL_EXT);
3182
3183 reg_data |= E1000_CTRL_EXT_PFRSTD;
3184 wr32(E1000_CTRL_EXT, reg_data);
3185 }
3186
3187 netif_tx_start_all_queues(netdev);
3188
3189 if (!resuming)
3190 pm_runtime_put(&pdev->dev);
3191
3192 /* start the watchdog. */
3193 hw->mac.get_link_status = 1;
3194 schedule_work(&adapter->watchdog_task);
3195
3196 return 0;
3197
3198 err_set_queues:
3199 igb_free_irq(adapter);
3200 err_req_irq:
3201 igb_release_hw_control(adapter);
3202 igb_power_down_link(adapter);
3203 igb_free_all_rx_resources(adapter);
3204 err_setup_rx:
3205 igb_free_all_tx_resources(adapter);
3206 err_setup_tx:
3207 igb_reset(adapter);
3208 if (!resuming)
3209 pm_runtime_put(&pdev->dev);
3210
3211 return err;
3212 }
3213
3214 int igb_open(struct net_device *netdev)
3215 {
3216 return __igb_open(netdev, false);
3217 }
3218
3219 /**
3220 * igb_close - Disables a network interface
3221 * @netdev: network interface device structure
3222 *
3223 * Returns 0, this is not allowed to fail
3224 *
3225 * The close entry point is called when an interface is de-activated
3226 * by the OS. The hardware is still under the driver's control, but
3227 * needs to be disabled. A global MAC reset is issued to stop the
3228 * hardware, and all transmit and receive resources are freed.
3229 **/
3230 static int __igb_close(struct net_device *netdev, bool suspending)
3231 {
3232 struct igb_adapter *adapter = netdev_priv(netdev);
3233 struct pci_dev *pdev = adapter->pdev;
3234
3235 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3236
3237 if (!suspending)
3238 pm_runtime_get_sync(&pdev->dev);
3239
3240 igb_down(adapter);
3241 igb_free_irq(adapter);
3242
3243 igb_free_all_tx_resources(adapter);
3244 igb_free_all_rx_resources(adapter);
3245
3246 if (!suspending)
3247 pm_runtime_put_sync(&pdev->dev);
3248 return 0;
3249 }
3250
3251 int igb_close(struct net_device *netdev)
3252 {
3253 return __igb_close(netdev, false);
3254 }
3255
3256 /**
3257 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3258 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3259 *
3260 * Return 0 on success, negative on failure
3261 **/
3262 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3263 {
3264 struct device *dev = tx_ring->dev;
3265 int size;
3266
3267 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3268
3269 tx_ring->tx_buffer_info = vzalloc(size);
3270 if (!tx_ring->tx_buffer_info)
3271 goto err;
3272
3273 /* round up to nearest 4K */
3274 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3275 tx_ring->size = ALIGN(tx_ring->size, 4096);
3276
3277 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3278 &tx_ring->dma, GFP_KERNEL);
3279 if (!tx_ring->desc)
3280 goto err;
3281
3282 tx_ring->next_to_use = 0;
3283 tx_ring->next_to_clean = 0;
3284
3285 return 0;
3286
3287 err:
3288 vfree(tx_ring->tx_buffer_info);
3289 tx_ring->tx_buffer_info = NULL;
3290 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3291 return -ENOMEM;
3292 }
3293
3294 /**
3295 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3296 * (Descriptors) for all queues
3297 * @adapter: board private structure
3298 *
3299 * Return 0 on success, negative on failure
3300 **/
3301 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3302 {
3303 struct pci_dev *pdev = adapter->pdev;
3304 int i, err = 0;
3305
3306 for (i = 0; i < adapter->num_tx_queues; i++) {
3307 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3308 if (err) {
3309 dev_err(&pdev->dev,
3310 "Allocation for Tx Queue %u failed\n", i);
3311 for (i--; i >= 0; i--)
3312 igb_free_tx_resources(adapter->tx_ring[i]);
3313 break;
3314 }
3315 }
3316
3317 return err;
3318 }
3319
3320 /**
3321 * igb_setup_tctl - configure the transmit control registers
3322 * @adapter: Board private structure
3323 **/
3324 void igb_setup_tctl(struct igb_adapter *adapter)
3325 {
3326 struct e1000_hw *hw = &adapter->hw;
3327 u32 tctl;
3328
3329 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3330 wr32(E1000_TXDCTL(0), 0);
3331
3332 /* Program the Transmit Control Register */
3333 tctl = rd32(E1000_TCTL);
3334 tctl &= ~E1000_TCTL_CT;
3335 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3336 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3337
3338 igb_config_collision_dist(hw);
3339
3340 /* Enable transmits */
3341 tctl |= E1000_TCTL_EN;
3342
3343 wr32(E1000_TCTL, tctl);
3344 }
3345
3346 /**
3347 * igb_configure_tx_ring - Configure transmit ring after Reset
3348 * @adapter: board private structure
3349 * @ring: tx ring to configure
3350 *
3351 * Configure a transmit ring after a reset.
3352 **/
3353 void igb_configure_tx_ring(struct igb_adapter *adapter,
3354 struct igb_ring *ring)
3355 {
3356 struct e1000_hw *hw = &adapter->hw;
3357 u32 txdctl = 0;
3358 u64 tdba = ring->dma;
3359 int reg_idx = ring->reg_idx;
3360
3361 /* disable the queue */
3362 wr32(E1000_TXDCTL(reg_idx), 0);
3363 wrfl();
3364 mdelay(10);
3365
3366 wr32(E1000_TDLEN(reg_idx),
3367 ring->count * sizeof(union e1000_adv_tx_desc));
3368 wr32(E1000_TDBAL(reg_idx),
3369 tdba & 0x00000000ffffffffULL);
3370 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3371
3372 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3373 wr32(E1000_TDH(reg_idx), 0);
3374 writel(0, ring->tail);
3375
3376 txdctl |= IGB_TX_PTHRESH;
3377 txdctl |= IGB_TX_HTHRESH << 8;
3378 txdctl |= IGB_TX_WTHRESH << 16;
3379
3380 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3381 wr32(E1000_TXDCTL(reg_idx), txdctl);
3382 }
3383
3384 /**
3385 * igb_configure_tx - Configure transmit Unit after Reset
3386 * @adapter: board private structure
3387 *
3388 * Configure the Tx unit of the MAC after a reset.
3389 **/
3390 static void igb_configure_tx(struct igb_adapter *adapter)
3391 {
3392 int i;
3393
3394 for (i = 0; i < adapter->num_tx_queues; i++)
3395 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3396 }
3397
3398 /**
3399 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3400 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3401 *
3402 * Returns 0 on success, negative on failure
3403 **/
3404 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3405 {
3406 struct device *dev = rx_ring->dev;
3407 int size;
3408
3409 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3410
3411 rx_ring->rx_buffer_info = vzalloc(size);
3412 if (!rx_ring->rx_buffer_info)
3413 goto err;
3414
3415 /* Round up to nearest 4K */
3416 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3417 rx_ring->size = ALIGN(rx_ring->size, 4096);
3418
3419 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3420 &rx_ring->dma, GFP_KERNEL);
3421 if (!rx_ring->desc)
3422 goto err;
3423
3424 rx_ring->next_to_alloc = 0;
3425 rx_ring->next_to_clean = 0;
3426 rx_ring->next_to_use = 0;
3427
3428 return 0;
3429
3430 err:
3431 vfree(rx_ring->rx_buffer_info);
3432 rx_ring->rx_buffer_info = NULL;
3433 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3434 return -ENOMEM;
3435 }
3436
3437 /**
3438 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3439 * (Descriptors) for all queues
3440 * @adapter: board private structure
3441 *
3442 * Return 0 on success, negative on failure
3443 **/
3444 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3445 {
3446 struct pci_dev *pdev = adapter->pdev;
3447 int i, err = 0;
3448
3449 for (i = 0; i < adapter->num_rx_queues; i++) {
3450 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3451 if (err) {
3452 dev_err(&pdev->dev,
3453 "Allocation for Rx Queue %u failed\n", i);
3454 for (i--; i >= 0; i--)
3455 igb_free_rx_resources(adapter->rx_ring[i]);
3456 break;
3457 }
3458 }
3459
3460 return err;
3461 }
3462
3463 /**
3464 * igb_setup_mrqc - configure the multiple receive queue control registers
3465 * @adapter: Board private structure
3466 **/
3467 static void igb_setup_mrqc(struct igb_adapter *adapter)
3468 {
3469 struct e1000_hw *hw = &adapter->hw;
3470 u32 mrqc, rxcsum;
3471 u32 j, num_rx_queues;
3472 u32 rss_key[10];
3473
3474 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3475 for (j = 0; j < 10; j++)
3476 wr32(E1000_RSSRK(j), rss_key[j]);
3477
3478 num_rx_queues = adapter->rss_queues;
3479
3480 switch (hw->mac.type) {
3481 case e1000_82576:
3482 /* 82576 supports 2 RSS queues for SR-IOV */
3483 if (adapter->vfs_allocated_count)
3484 num_rx_queues = 2;
3485 break;
3486 default:
3487 break;
3488 }
3489
3490 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3491 for (j = 0; j < IGB_RETA_SIZE; j++)
3492 adapter->rss_indir_tbl[j] =
3493 (j * num_rx_queues) / IGB_RETA_SIZE;
3494 adapter->rss_indir_tbl_init = num_rx_queues;
3495 }
3496 igb_write_rss_indir_tbl(adapter);
3497
3498 /* Disable raw packet checksumming so that RSS hash is placed in
3499 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3500 * offloads as they are enabled by default
3501 */
3502 rxcsum = rd32(E1000_RXCSUM);
3503 rxcsum |= E1000_RXCSUM_PCSD;
3504
3505 if (adapter->hw.mac.type >= e1000_82576)
3506 /* Enable Receive Checksum Offload for SCTP */
3507 rxcsum |= E1000_RXCSUM_CRCOFL;
3508
3509 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3510 wr32(E1000_RXCSUM, rxcsum);
3511
3512 /* Generate RSS hash based on packet types, TCP/UDP
3513 * port numbers and/or IPv4/v6 src and dst addresses
3514 */
3515 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3516 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3517 E1000_MRQC_RSS_FIELD_IPV6 |
3518 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3519 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3520
3521 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3522 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3523 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3524 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3525
3526 /* If VMDq is enabled then we set the appropriate mode for that, else
3527 * we default to RSS so that an RSS hash is calculated per packet even
3528 * if we are only using one queue
3529 */
3530 if (adapter->vfs_allocated_count) {
3531 if (hw->mac.type > e1000_82575) {
3532 /* Set the default pool for the PF's first queue */
3533 u32 vtctl = rd32(E1000_VT_CTL);
3534
3535 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3536 E1000_VT_CTL_DISABLE_DEF_POOL);
3537 vtctl |= adapter->vfs_allocated_count <<
3538 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3539 wr32(E1000_VT_CTL, vtctl);
3540 }
3541 if (adapter->rss_queues > 1)
3542 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3543 else
3544 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3545 } else {
3546 if (hw->mac.type != e1000_i211)
3547 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3548 }
3549 igb_vmm_control(adapter);
3550
3551 wr32(E1000_MRQC, mrqc);
3552 }
3553
3554 /**
3555 * igb_setup_rctl - configure the receive control registers
3556 * @adapter: Board private structure
3557 **/
3558 void igb_setup_rctl(struct igb_adapter *adapter)
3559 {
3560 struct e1000_hw *hw = &adapter->hw;
3561 u32 rctl;
3562
3563 rctl = rd32(E1000_RCTL);
3564
3565 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3566 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3567
3568 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3569 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3570
3571 /* enable stripping of CRC. It's unlikely this will break BMC
3572 * redirection as it did with e1000. Newer features require
3573 * that the HW strips the CRC.
3574 */
3575 rctl |= E1000_RCTL_SECRC;
3576
3577 /* disable store bad packets and clear size bits. */
3578 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3579
3580 /* enable LPE to allow for reception of jumbo frames */
3581 rctl |= E1000_RCTL_LPE;
3582
3583 /* disable queue 0 to prevent tail write w/o re-config */
3584 wr32(E1000_RXDCTL(0), 0);
3585
3586 /* Attention!!! For SR-IOV PF driver operations you must enable
3587 * queue drop for all VF and PF queues to prevent head of line blocking
3588 * if an un-trusted VF does not provide descriptors to hardware.
3589 */
3590 if (adapter->vfs_allocated_count) {
3591 /* set all queue drop enable bits */
3592 wr32(E1000_QDE, ALL_QUEUES);
3593 }
3594
3595 /* This is useful for sniffing bad packets. */
3596 if (adapter->netdev->features & NETIF_F_RXALL) {
3597 /* UPE and MPE will be handled by normal PROMISC logic
3598 * in e1000e_set_rx_mode
3599 */
3600 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3601 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3602 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3603
3604 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3605 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3606 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3607 * and that breaks VLANs.
3608 */
3609 }
3610
3611 wr32(E1000_RCTL, rctl);
3612 }
3613
3614 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3615 int vfn)
3616 {
3617 struct e1000_hw *hw = &adapter->hw;
3618 u32 vmolr;
3619
3620 if (size > MAX_JUMBO_FRAME_SIZE)
3621 size = MAX_JUMBO_FRAME_SIZE;
3622
3623 vmolr = rd32(E1000_VMOLR(vfn));
3624 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3625 vmolr |= size | E1000_VMOLR_LPE;
3626 wr32(E1000_VMOLR(vfn), vmolr);
3627
3628 return 0;
3629 }
3630
3631 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3632 int vfn, bool enable)
3633 {
3634 struct e1000_hw *hw = &adapter->hw;
3635 u32 val, reg;
3636
3637 if (hw->mac.type < e1000_82576)
3638 return;
3639
3640 if (hw->mac.type == e1000_i350)
3641 reg = E1000_DVMOLR(vfn);
3642 else
3643 reg = E1000_VMOLR(vfn);
3644
3645 val = rd32(reg);
3646 if (enable)
3647 val |= E1000_VMOLR_STRVLAN;
3648 else
3649 val &= ~(E1000_VMOLR_STRVLAN);
3650 wr32(reg, val);
3651 }
3652
3653 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3654 int vfn, bool aupe)
3655 {
3656 struct e1000_hw *hw = &adapter->hw;
3657 u32 vmolr;
3658
3659 /* This register exists only on 82576 and newer so if we are older then
3660 * we should exit and do nothing
3661 */
3662 if (hw->mac.type < e1000_82576)
3663 return;
3664
3665 vmolr = rd32(E1000_VMOLR(vfn));
3666 if (aupe)
3667 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3668 else
3669 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3670
3671 /* clear all bits that might not be set */
3672 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3673
3674 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3675 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3676 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3677 * multicast packets
3678 */
3679 if (vfn <= adapter->vfs_allocated_count)
3680 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3681
3682 wr32(E1000_VMOLR(vfn), vmolr);
3683 }
3684
3685 /**
3686 * igb_configure_rx_ring - Configure a receive ring after Reset
3687 * @adapter: board private structure
3688 * @ring: receive ring to be configured
3689 *
3690 * Configure the Rx unit of the MAC after a reset.
3691 **/
3692 void igb_configure_rx_ring(struct igb_adapter *adapter,
3693 struct igb_ring *ring)
3694 {
3695 struct e1000_hw *hw = &adapter->hw;
3696 u64 rdba = ring->dma;
3697 int reg_idx = ring->reg_idx;
3698 u32 srrctl = 0, rxdctl = 0;
3699
3700 /* disable the queue */
3701 wr32(E1000_RXDCTL(reg_idx), 0);
3702
3703 /* Set DMA base address registers */
3704 wr32(E1000_RDBAL(reg_idx),
3705 rdba & 0x00000000ffffffffULL);
3706 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3707 wr32(E1000_RDLEN(reg_idx),
3708 ring->count * sizeof(union e1000_adv_rx_desc));
3709
3710 /* initialize head and tail */
3711 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3712 wr32(E1000_RDH(reg_idx), 0);
3713 writel(0, ring->tail);
3714
3715 /* set descriptor configuration */
3716 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3717 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3718 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3719 if (hw->mac.type >= e1000_82580)
3720 srrctl |= E1000_SRRCTL_TIMESTAMP;
3721 /* Only set Drop Enable if we are supporting multiple queues */
3722 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3723 srrctl |= E1000_SRRCTL_DROP_EN;
3724
3725 wr32(E1000_SRRCTL(reg_idx), srrctl);
3726
3727 /* set filtering for VMDQ pools */
3728 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3729
3730 rxdctl |= IGB_RX_PTHRESH;
3731 rxdctl |= IGB_RX_HTHRESH << 8;
3732 rxdctl |= IGB_RX_WTHRESH << 16;
3733
3734 /* enable receive descriptor fetching */
3735 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3736 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3737 }
3738
3739 /**
3740 * igb_configure_rx - Configure receive Unit after Reset
3741 * @adapter: board private structure
3742 *
3743 * Configure the Rx unit of the MAC after a reset.
3744 **/
3745 static void igb_configure_rx(struct igb_adapter *adapter)
3746 {
3747 int i;
3748
3749 /* set the correct pool for the PF default MAC address in entry 0 */
3750 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3751 adapter->vfs_allocated_count);
3752
3753 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3754 * the Base and Length of the Rx Descriptor Ring
3755 */
3756 for (i = 0; i < adapter->num_rx_queues; i++)
3757 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3758 }
3759
3760 /**
3761 * igb_free_tx_resources - Free Tx Resources per Queue
3762 * @tx_ring: Tx descriptor ring for a specific queue
3763 *
3764 * Free all transmit software resources
3765 **/
3766 void igb_free_tx_resources(struct igb_ring *tx_ring)
3767 {
3768 igb_clean_tx_ring(tx_ring);
3769
3770 vfree(tx_ring->tx_buffer_info);
3771 tx_ring->tx_buffer_info = NULL;
3772
3773 /* if not set, then don't free */
3774 if (!tx_ring->desc)
3775 return;
3776
3777 dma_free_coherent(tx_ring->dev, tx_ring->size,
3778 tx_ring->desc, tx_ring->dma);
3779
3780 tx_ring->desc = NULL;
3781 }
3782
3783 /**
3784 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3785 * @adapter: board private structure
3786 *
3787 * Free all transmit software resources
3788 **/
3789 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3790 {
3791 int i;
3792
3793 for (i = 0; i < adapter->num_tx_queues; i++)
3794 if (adapter->tx_ring[i])
3795 igb_free_tx_resources(adapter->tx_ring[i]);
3796 }
3797
3798 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3799 struct igb_tx_buffer *tx_buffer)
3800 {
3801 if (tx_buffer->skb) {
3802 dev_kfree_skb_any(tx_buffer->skb);
3803 if (dma_unmap_len(tx_buffer, len))
3804 dma_unmap_single(ring->dev,
3805 dma_unmap_addr(tx_buffer, dma),
3806 dma_unmap_len(tx_buffer, len),
3807 DMA_TO_DEVICE);
3808 } else if (dma_unmap_len(tx_buffer, len)) {
3809 dma_unmap_page(ring->dev,
3810 dma_unmap_addr(tx_buffer, dma),
3811 dma_unmap_len(tx_buffer, len),
3812 DMA_TO_DEVICE);
3813 }
3814 tx_buffer->next_to_watch = NULL;
3815 tx_buffer->skb = NULL;
3816 dma_unmap_len_set(tx_buffer, len, 0);
3817 /* buffer_info must be completely set up in the transmit path */
3818 }
3819
3820 /**
3821 * igb_clean_tx_ring - Free Tx Buffers
3822 * @tx_ring: ring to be cleaned
3823 **/
3824 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3825 {
3826 struct igb_tx_buffer *buffer_info;
3827 unsigned long size;
3828 u16 i;
3829
3830 if (!tx_ring->tx_buffer_info)
3831 return;
3832 /* Free all the Tx ring sk_buffs */
3833
3834 for (i = 0; i < tx_ring->count; i++) {
3835 buffer_info = &tx_ring->tx_buffer_info[i];
3836 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3837 }
3838
3839 netdev_tx_reset_queue(txring_txq(tx_ring));
3840
3841 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3842 memset(tx_ring->tx_buffer_info, 0, size);
3843
3844 /* Zero out the descriptor ring */
3845 memset(tx_ring->desc, 0, tx_ring->size);
3846
3847 tx_ring->next_to_use = 0;
3848 tx_ring->next_to_clean = 0;
3849 }
3850
3851 /**
3852 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3853 * @adapter: board private structure
3854 **/
3855 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3856 {
3857 int i;
3858
3859 for (i = 0; i < adapter->num_tx_queues; i++)
3860 if (adapter->tx_ring[i])
3861 igb_clean_tx_ring(adapter->tx_ring[i]);
3862 }
3863
3864 /**
3865 * igb_free_rx_resources - Free Rx Resources
3866 * @rx_ring: ring to clean the resources from
3867 *
3868 * Free all receive software resources
3869 **/
3870 void igb_free_rx_resources(struct igb_ring *rx_ring)
3871 {
3872 igb_clean_rx_ring(rx_ring);
3873
3874 vfree(rx_ring->rx_buffer_info);
3875 rx_ring->rx_buffer_info = NULL;
3876
3877 /* if not set, then don't free */
3878 if (!rx_ring->desc)
3879 return;
3880
3881 dma_free_coherent(rx_ring->dev, rx_ring->size,
3882 rx_ring->desc, rx_ring->dma);
3883
3884 rx_ring->desc = NULL;
3885 }
3886
3887 /**
3888 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3889 * @adapter: board private structure
3890 *
3891 * Free all receive software resources
3892 **/
3893 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3894 {
3895 int i;
3896
3897 for (i = 0; i < adapter->num_rx_queues; i++)
3898 if (adapter->rx_ring[i])
3899 igb_free_rx_resources(adapter->rx_ring[i]);
3900 }
3901
3902 /**
3903 * igb_clean_rx_ring - Free Rx Buffers per Queue
3904 * @rx_ring: ring to free buffers from
3905 **/
3906 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3907 {
3908 unsigned long size;
3909 u16 i;
3910
3911 if (rx_ring->skb)
3912 dev_kfree_skb(rx_ring->skb);
3913 rx_ring->skb = NULL;
3914
3915 if (!rx_ring->rx_buffer_info)
3916 return;
3917
3918 /* Free all the Rx ring sk_buffs */
3919 for (i = 0; i < rx_ring->count; i++) {
3920 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3921
3922 if (!buffer_info->page)
3923 continue;
3924
3925 dma_unmap_page(rx_ring->dev,
3926 buffer_info->dma,
3927 PAGE_SIZE,
3928 DMA_FROM_DEVICE);
3929 __free_page(buffer_info->page);
3930
3931 buffer_info->page = NULL;
3932 }
3933
3934 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3935 memset(rx_ring->rx_buffer_info, 0, size);
3936
3937 /* Zero out the descriptor ring */
3938 memset(rx_ring->desc, 0, rx_ring->size);
3939
3940 rx_ring->next_to_alloc = 0;
3941 rx_ring->next_to_clean = 0;
3942 rx_ring->next_to_use = 0;
3943 }
3944
3945 /**
3946 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3947 * @adapter: board private structure
3948 **/
3949 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3950 {
3951 int i;
3952
3953 for (i = 0; i < adapter->num_rx_queues; i++)
3954 if (adapter->rx_ring[i])
3955 igb_clean_rx_ring(adapter->rx_ring[i]);
3956 }
3957
3958 /**
3959 * igb_set_mac - Change the Ethernet Address of the NIC
3960 * @netdev: network interface device structure
3961 * @p: pointer to an address structure
3962 *
3963 * Returns 0 on success, negative on failure
3964 **/
3965 static int igb_set_mac(struct net_device *netdev, void *p)
3966 {
3967 struct igb_adapter *adapter = netdev_priv(netdev);
3968 struct e1000_hw *hw = &adapter->hw;
3969 struct sockaddr *addr = p;
3970
3971 if (!is_valid_ether_addr(addr->sa_data))
3972 return -EADDRNOTAVAIL;
3973
3974 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3975 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3976
3977 /* set the correct pool for the new PF MAC address in entry 0 */
3978 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3979 adapter->vfs_allocated_count);
3980
3981 return 0;
3982 }
3983
3984 /**
3985 * igb_write_mc_addr_list - write multicast addresses to MTA
3986 * @netdev: network interface device structure
3987 *
3988 * Writes multicast address list to the MTA hash table.
3989 * Returns: -ENOMEM on failure
3990 * 0 on no addresses written
3991 * X on writing X addresses to MTA
3992 **/
3993 static int igb_write_mc_addr_list(struct net_device *netdev)
3994 {
3995 struct igb_adapter *adapter = netdev_priv(netdev);
3996 struct e1000_hw *hw = &adapter->hw;
3997 struct netdev_hw_addr *ha;
3998 u8 *mta_list;
3999 int i;
4000
4001 if (netdev_mc_empty(netdev)) {
4002 /* nothing to program, so clear mc list */
4003 igb_update_mc_addr_list(hw, NULL, 0);
4004 igb_restore_vf_multicasts(adapter);
4005 return 0;
4006 }
4007
4008 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4009 if (!mta_list)
4010 return -ENOMEM;
4011
4012 /* The shared function expects a packed array of only addresses. */
4013 i = 0;
4014 netdev_for_each_mc_addr(ha, netdev)
4015 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4016
4017 igb_update_mc_addr_list(hw, mta_list, i);
4018 kfree(mta_list);
4019
4020 return netdev_mc_count(netdev);
4021 }
4022
4023 /**
4024 * igb_write_uc_addr_list - write unicast addresses to RAR table
4025 * @netdev: network interface device structure
4026 *
4027 * Writes unicast address list to the RAR table.
4028 * Returns: -ENOMEM on failure/insufficient address space
4029 * 0 on no addresses written
4030 * X on writing X addresses to the RAR table
4031 **/
4032 static int igb_write_uc_addr_list(struct net_device *netdev)
4033 {
4034 struct igb_adapter *adapter = netdev_priv(netdev);
4035 struct e1000_hw *hw = &adapter->hw;
4036 unsigned int vfn = adapter->vfs_allocated_count;
4037 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4038 int count = 0;
4039
4040 /* return ENOMEM indicating insufficient memory for addresses */
4041 if (netdev_uc_count(netdev) > rar_entries)
4042 return -ENOMEM;
4043
4044 if (!netdev_uc_empty(netdev) && rar_entries) {
4045 struct netdev_hw_addr *ha;
4046
4047 netdev_for_each_uc_addr(ha, netdev) {
4048 if (!rar_entries)
4049 break;
4050 igb_rar_set_qsel(adapter, ha->addr,
4051 rar_entries--,
4052 vfn);
4053 count++;
4054 }
4055 }
4056 /* write the addresses in reverse order to avoid write combining */
4057 for (; rar_entries > 0 ; rar_entries--) {
4058 wr32(E1000_RAH(rar_entries), 0);
4059 wr32(E1000_RAL(rar_entries), 0);
4060 }
4061 wrfl();
4062
4063 return count;
4064 }
4065
4066 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4067 {
4068 struct e1000_hw *hw = &adapter->hw;
4069 u32 i, pf_id;
4070
4071 switch (hw->mac.type) {
4072 case e1000_i210:
4073 case e1000_i211:
4074 case e1000_i350:
4075 /* VLAN filtering needed for VLAN prio filter */
4076 if (adapter->netdev->features & NETIF_F_NTUPLE)
4077 break;
4078 /* fall through */
4079 case e1000_82576:
4080 case e1000_82580:
4081 case e1000_i354:
4082 /* VLAN filtering needed for pool filtering */
4083 if (adapter->vfs_allocated_count)
4084 break;
4085 /* fall through */
4086 default:
4087 return 1;
4088 }
4089
4090 /* We are already in VLAN promisc, nothing to do */
4091 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4092 return 0;
4093
4094 if (!adapter->vfs_allocated_count)
4095 goto set_vfta;
4096
4097 /* Add PF to all active pools */
4098 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4099
4100 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4101 u32 vlvf = rd32(E1000_VLVF(i));
4102
4103 vlvf |= BIT(pf_id);
4104 wr32(E1000_VLVF(i), vlvf);
4105 }
4106
4107 set_vfta:
4108 /* Set all bits in the VLAN filter table array */
4109 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4110 hw->mac.ops.write_vfta(hw, i, ~0U);
4111
4112 /* Set flag so we don't redo unnecessary work */
4113 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4114
4115 return 0;
4116 }
4117
4118 #define VFTA_BLOCK_SIZE 8
4119 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4120 {
4121 struct e1000_hw *hw = &adapter->hw;
4122 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4123 u32 vid_start = vfta_offset * 32;
4124 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4125 u32 i, vid, word, bits, pf_id;
4126
4127 /* guarantee that we don't scrub out management VLAN */
4128 vid = adapter->mng_vlan_id;
4129 if (vid >= vid_start && vid < vid_end)
4130 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4131
4132 if (!adapter->vfs_allocated_count)
4133 goto set_vfta;
4134
4135 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4136
4137 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4138 u32 vlvf = rd32(E1000_VLVF(i));
4139
4140 /* pull VLAN ID from VLVF */
4141 vid = vlvf & VLAN_VID_MASK;
4142
4143 /* only concern ourselves with a certain range */
4144 if (vid < vid_start || vid >= vid_end)
4145 continue;
4146
4147 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4148 /* record VLAN ID in VFTA */
4149 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4150
4151 /* if PF is part of this then continue */
4152 if (test_bit(vid, adapter->active_vlans))
4153 continue;
4154 }
4155
4156 /* remove PF from the pool */
4157 bits = ~BIT(pf_id);
4158 bits &= rd32(E1000_VLVF(i));
4159 wr32(E1000_VLVF(i), bits);
4160 }
4161
4162 set_vfta:
4163 /* extract values from active_vlans and write back to VFTA */
4164 for (i = VFTA_BLOCK_SIZE; i--;) {
4165 vid = (vfta_offset + i) * 32;
4166 word = vid / BITS_PER_LONG;
4167 bits = vid % BITS_PER_LONG;
4168
4169 vfta[i] |= adapter->active_vlans[word] >> bits;
4170
4171 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4172 }
4173 }
4174
4175 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4176 {
4177 u32 i;
4178
4179 /* We are not in VLAN promisc, nothing to do */
4180 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4181 return;
4182
4183 /* Set flag so we don't redo unnecessary work */
4184 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4185
4186 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4187 igb_scrub_vfta(adapter, i);
4188 }
4189
4190 /**
4191 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4192 * @netdev: network interface device structure
4193 *
4194 * The set_rx_mode entry point is called whenever the unicast or multicast
4195 * address lists or the network interface flags are updated. This routine is
4196 * responsible for configuring the hardware for proper unicast, multicast,
4197 * promiscuous mode, and all-multi behavior.
4198 **/
4199 static void igb_set_rx_mode(struct net_device *netdev)
4200 {
4201 struct igb_adapter *adapter = netdev_priv(netdev);
4202 struct e1000_hw *hw = &adapter->hw;
4203 unsigned int vfn = adapter->vfs_allocated_count;
4204 u32 rctl = 0, vmolr = 0;
4205 int count;
4206
4207 /* Check for Promiscuous and All Multicast modes */
4208 if (netdev->flags & IFF_PROMISC) {
4209 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4210 vmolr |= E1000_VMOLR_MPME;
4211
4212 /* enable use of UTA filter to force packets to default pool */
4213 if (hw->mac.type == e1000_82576)
4214 vmolr |= E1000_VMOLR_ROPE;
4215 } else {
4216 if (netdev->flags & IFF_ALLMULTI) {
4217 rctl |= E1000_RCTL_MPE;
4218 vmolr |= E1000_VMOLR_MPME;
4219 } else {
4220 /* Write addresses to the MTA, if the attempt fails
4221 * then we should just turn on promiscuous mode so
4222 * that we can at least receive multicast traffic
4223 */
4224 count = igb_write_mc_addr_list(netdev);
4225 if (count < 0) {
4226 rctl |= E1000_RCTL_MPE;
4227 vmolr |= E1000_VMOLR_MPME;
4228 } else if (count) {
4229 vmolr |= E1000_VMOLR_ROMPE;
4230 }
4231 }
4232 }
4233
4234 /* Write addresses to available RAR registers, if there is not
4235 * sufficient space to store all the addresses then enable
4236 * unicast promiscuous mode
4237 */
4238 count = igb_write_uc_addr_list(netdev);
4239 if (count < 0) {
4240 rctl |= E1000_RCTL_UPE;
4241 vmolr |= E1000_VMOLR_ROPE;
4242 }
4243
4244 /* enable VLAN filtering by default */
4245 rctl |= E1000_RCTL_VFE;
4246
4247 /* disable VLAN filtering for modes that require it */
4248 if ((netdev->flags & IFF_PROMISC) ||
4249 (netdev->features & NETIF_F_RXALL)) {
4250 /* if we fail to set all rules then just clear VFE */
4251 if (igb_vlan_promisc_enable(adapter))
4252 rctl &= ~E1000_RCTL_VFE;
4253 } else {
4254 igb_vlan_promisc_disable(adapter);
4255 }
4256
4257 /* update state of unicast, multicast, and VLAN filtering modes */
4258 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4259 E1000_RCTL_VFE);
4260 wr32(E1000_RCTL, rctl);
4261
4262 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4263 * the VMOLR to enable the appropriate modes. Without this workaround
4264 * we will have issues with VLAN tag stripping not being done for frames
4265 * that are only arriving because we are the default pool
4266 */
4267 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4268 return;
4269
4270 /* set UTA to appropriate mode */
4271 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4272
4273 vmolr |= rd32(E1000_VMOLR(vfn)) &
4274 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4275
4276 /* enable Rx jumbo frames, no need for restriction */
4277 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4278 vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4279
4280 wr32(E1000_VMOLR(vfn), vmolr);
4281 wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4282
4283 igb_restore_vf_multicasts(adapter);
4284 }
4285
4286 static void igb_check_wvbr(struct igb_adapter *adapter)
4287 {
4288 struct e1000_hw *hw = &adapter->hw;
4289 u32 wvbr = 0;
4290
4291 switch (hw->mac.type) {
4292 case e1000_82576:
4293 case e1000_i350:
4294 wvbr = rd32(E1000_WVBR);
4295 if (!wvbr)
4296 return;
4297 break;
4298 default:
4299 break;
4300 }
4301
4302 adapter->wvbr |= wvbr;
4303 }
4304
4305 #define IGB_STAGGERED_QUEUE_OFFSET 8
4306
4307 static void igb_spoof_check(struct igb_adapter *adapter)
4308 {
4309 int j;
4310
4311 if (!adapter->wvbr)
4312 return;
4313
4314 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4315 if (adapter->wvbr & BIT(j) ||
4316 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4317 dev_warn(&adapter->pdev->dev,
4318 "Spoof event(s) detected on VF %d\n", j);
4319 adapter->wvbr &=
4320 ~(BIT(j) |
4321 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4322 }
4323 }
4324 }
4325
4326 /* Need to wait a few seconds after link up to get diagnostic information from
4327 * the phy
4328 */
4329 static void igb_update_phy_info(unsigned long data)
4330 {
4331 struct igb_adapter *adapter = (struct igb_adapter *) data;
4332 igb_get_phy_info(&adapter->hw);
4333 }
4334
4335 /**
4336 * igb_has_link - check shared code for link and determine up/down
4337 * @adapter: pointer to driver private info
4338 **/
4339 bool igb_has_link(struct igb_adapter *adapter)
4340 {
4341 struct e1000_hw *hw = &adapter->hw;
4342 bool link_active = false;
4343
4344 /* get_link_status is set on LSC (link status) interrupt or
4345 * rx sequence error interrupt. get_link_status will stay
4346 * false until the e1000_check_for_link establishes link
4347 * for copper adapters ONLY
4348 */
4349 switch (hw->phy.media_type) {
4350 case e1000_media_type_copper:
4351 if (!hw->mac.get_link_status)
4352 return true;
4353 case e1000_media_type_internal_serdes:
4354 hw->mac.ops.check_for_link(hw);
4355 link_active = !hw->mac.get_link_status;
4356 break;
4357 default:
4358 case e1000_media_type_unknown:
4359 break;
4360 }
4361
4362 if (((hw->mac.type == e1000_i210) ||
4363 (hw->mac.type == e1000_i211)) &&
4364 (hw->phy.id == I210_I_PHY_ID)) {
4365 if (!netif_carrier_ok(adapter->netdev)) {
4366 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4367 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4368 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4369 adapter->link_check_timeout = jiffies;
4370 }
4371 }
4372
4373 return link_active;
4374 }
4375
4376 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4377 {
4378 bool ret = false;
4379 u32 ctrl_ext, thstat;
4380
4381 /* check for thermal sensor event on i350 copper only */
4382 if (hw->mac.type == e1000_i350) {
4383 thstat = rd32(E1000_THSTAT);
4384 ctrl_ext = rd32(E1000_CTRL_EXT);
4385
4386 if ((hw->phy.media_type == e1000_media_type_copper) &&
4387 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4388 ret = !!(thstat & event);
4389 }
4390
4391 return ret;
4392 }
4393
4394 /**
4395 * igb_check_lvmmc - check for malformed packets received
4396 * and indicated in LVMMC register
4397 * @adapter: pointer to adapter
4398 **/
4399 static void igb_check_lvmmc(struct igb_adapter *adapter)
4400 {
4401 struct e1000_hw *hw = &adapter->hw;
4402 u32 lvmmc;
4403
4404 lvmmc = rd32(E1000_LVMMC);
4405 if (lvmmc) {
4406 if (unlikely(net_ratelimit())) {
4407 netdev_warn(adapter->netdev,
4408 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4409 lvmmc);
4410 }
4411 }
4412 }
4413
4414 /**
4415 * igb_watchdog - Timer Call-back
4416 * @data: pointer to adapter cast into an unsigned long
4417 **/
4418 static void igb_watchdog(unsigned long data)
4419 {
4420 struct igb_adapter *adapter = (struct igb_adapter *)data;
4421 /* Do the rest outside of interrupt context */
4422 schedule_work(&adapter->watchdog_task);
4423 }
4424
4425 static void igb_watchdog_task(struct work_struct *work)
4426 {
4427 struct igb_adapter *adapter = container_of(work,
4428 struct igb_adapter,
4429 watchdog_task);
4430 struct e1000_hw *hw = &adapter->hw;
4431 struct e1000_phy_info *phy = &hw->phy;
4432 struct net_device *netdev = adapter->netdev;
4433 u32 link;
4434 int i;
4435 u32 connsw;
4436 u16 phy_data, retry_count = 20;
4437
4438 link = igb_has_link(adapter);
4439
4440 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4441 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4442 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4443 else
4444 link = false;
4445 }
4446
4447 /* Force link down if we have fiber to swap to */
4448 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4449 if (hw->phy.media_type == e1000_media_type_copper) {
4450 connsw = rd32(E1000_CONNSW);
4451 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4452 link = 0;
4453 }
4454 }
4455 if (link) {
4456 /* Perform a reset if the media type changed. */
4457 if (hw->dev_spec._82575.media_changed) {
4458 hw->dev_spec._82575.media_changed = false;
4459 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4460 igb_reset(adapter);
4461 }
4462 /* Cancel scheduled suspend requests. */
4463 pm_runtime_resume(netdev->dev.parent);
4464
4465 if (!netif_carrier_ok(netdev)) {
4466 u32 ctrl;
4467
4468 hw->mac.ops.get_speed_and_duplex(hw,
4469 &adapter->link_speed,
4470 &adapter->link_duplex);
4471
4472 ctrl = rd32(E1000_CTRL);
4473 /* Links status message must follow this format */
4474 netdev_info(netdev,
4475 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4476 netdev->name,
4477 adapter->link_speed,
4478 adapter->link_duplex == FULL_DUPLEX ?
4479 "Full" : "Half",
4480 (ctrl & E1000_CTRL_TFCE) &&
4481 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4482 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4483 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4484
4485 /* disable EEE if enabled */
4486 if ((adapter->flags & IGB_FLAG_EEE) &&
4487 (adapter->link_duplex == HALF_DUPLEX)) {
4488 dev_info(&adapter->pdev->dev,
4489 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4490 adapter->hw.dev_spec._82575.eee_disable = true;
4491 adapter->flags &= ~IGB_FLAG_EEE;
4492 }
4493
4494 /* check if SmartSpeed worked */
4495 igb_check_downshift(hw);
4496 if (phy->speed_downgraded)
4497 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4498
4499 /* check for thermal sensor event */
4500 if (igb_thermal_sensor_event(hw,
4501 E1000_THSTAT_LINK_THROTTLE))
4502 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4503
4504 /* adjust timeout factor according to speed/duplex */
4505 adapter->tx_timeout_factor = 1;
4506 switch (adapter->link_speed) {
4507 case SPEED_10:
4508 adapter->tx_timeout_factor = 14;
4509 break;
4510 case SPEED_100:
4511 /* maybe add some timeout factor ? */
4512 break;
4513 }
4514
4515 if (adapter->link_speed != SPEED_1000)
4516 goto no_wait;
4517
4518 /* wait for Remote receiver status OK */
4519 retry_read_status:
4520 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4521 &phy_data)) {
4522 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4523 retry_count) {
4524 msleep(100);
4525 retry_count--;
4526 goto retry_read_status;
4527 } else if (!retry_count) {
4528 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4529 }
4530 } else {
4531 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4532 }
4533 no_wait:
4534 netif_carrier_on(netdev);
4535
4536 igb_ping_all_vfs(adapter);
4537 igb_check_vf_rate_limit(adapter);
4538
4539 /* link state has changed, schedule phy info update */
4540 if (!test_bit(__IGB_DOWN, &adapter->state))
4541 mod_timer(&adapter->phy_info_timer,
4542 round_jiffies(jiffies + 2 * HZ));
4543 }
4544 } else {
4545 if (netif_carrier_ok(netdev)) {
4546 adapter->link_speed = 0;
4547 adapter->link_duplex = 0;
4548
4549 /* check for thermal sensor event */
4550 if (igb_thermal_sensor_event(hw,
4551 E1000_THSTAT_PWR_DOWN)) {
4552 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4553 }
4554
4555 /* Links status message must follow this format */
4556 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4557 netdev->name);
4558 netif_carrier_off(netdev);
4559
4560 igb_ping_all_vfs(adapter);
4561
4562 /* link state has changed, schedule phy info update */
4563 if (!test_bit(__IGB_DOWN, &adapter->state))
4564 mod_timer(&adapter->phy_info_timer,
4565 round_jiffies(jiffies + 2 * HZ));
4566
4567 /* link is down, time to check for alternate media */
4568 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4569 igb_check_swap_media(adapter);
4570 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4571 schedule_work(&adapter->reset_task);
4572 /* return immediately */
4573 return;
4574 }
4575 }
4576 pm_schedule_suspend(netdev->dev.parent,
4577 MSEC_PER_SEC * 5);
4578
4579 /* also check for alternate media here */
4580 } else if (!netif_carrier_ok(netdev) &&
4581 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4582 igb_check_swap_media(adapter);
4583 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4584 schedule_work(&adapter->reset_task);
4585 /* return immediately */
4586 return;
4587 }
4588 }
4589 }
4590
4591 spin_lock(&adapter->stats64_lock);
4592 igb_update_stats(adapter, &adapter->stats64);
4593 spin_unlock(&adapter->stats64_lock);
4594
4595 for (i = 0; i < adapter->num_tx_queues; i++) {
4596 struct igb_ring *tx_ring = adapter->tx_ring[i];
4597 if (!netif_carrier_ok(netdev)) {
4598 /* We've lost link, so the controller stops DMA,
4599 * but we've got queued Tx work that's never going
4600 * to get done, so reset controller to flush Tx.
4601 * (Do the reset outside of interrupt context).
4602 */
4603 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4604 adapter->tx_timeout_count++;
4605 schedule_work(&adapter->reset_task);
4606 /* return immediately since reset is imminent */
4607 return;
4608 }
4609 }
4610
4611 /* Force detection of hung controller every watchdog period */
4612 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4613 }
4614
4615 /* Cause software interrupt to ensure Rx ring is cleaned */
4616 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4617 u32 eics = 0;
4618
4619 for (i = 0; i < adapter->num_q_vectors; i++)
4620 eics |= adapter->q_vector[i]->eims_value;
4621 wr32(E1000_EICS, eics);
4622 } else {
4623 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4624 }
4625
4626 igb_spoof_check(adapter);
4627 igb_ptp_rx_hang(adapter);
4628
4629 /* Check LVMMC register on i350/i354 only */
4630 if ((adapter->hw.mac.type == e1000_i350) ||
4631 (adapter->hw.mac.type == e1000_i354))
4632 igb_check_lvmmc(adapter);
4633
4634 /* Reset the timer */
4635 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4636 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4637 mod_timer(&adapter->watchdog_timer,
4638 round_jiffies(jiffies + HZ));
4639 else
4640 mod_timer(&adapter->watchdog_timer,
4641 round_jiffies(jiffies + 2 * HZ));
4642 }
4643 }
4644
4645 enum latency_range {
4646 lowest_latency = 0,
4647 low_latency = 1,
4648 bulk_latency = 2,
4649 latency_invalid = 255
4650 };
4651
4652 /**
4653 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4654 * @q_vector: pointer to q_vector
4655 *
4656 * Stores a new ITR value based on strictly on packet size. This
4657 * algorithm is less sophisticated than that used in igb_update_itr,
4658 * due to the difficulty of synchronizing statistics across multiple
4659 * receive rings. The divisors and thresholds used by this function
4660 * were determined based on theoretical maximum wire speed and testing
4661 * data, in order to minimize response time while increasing bulk
4662 * throughput.
4663 * This functionality is controlled by ethtool's coalescing settings.
4664 * NOTE: This function is called only when operating in a multiqueue
4665 * receive environment.
4666 **/
4667 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4668 {
4669 int new_val = q_vector->itr_val;
4670 int avg_wire_size = 0;
4671 struct igb_adapter *adapter = q_vector->adapter;
4672 unsigned int packets;
4673
4674 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4675 * ints/sec - ITR timer value of 120 ticks.
4676 */
4677 if (adapter->link_speed != SPEED_1000) {
4678 new_val = IGB_4K_ITR;
4679 goto set_itr_val;
4680 }
4681
4682 packets = q_vector->rx.total_packets;
4683 if (packets)
4684 avg_wire_size = q_vector->rx.total_bytes / packets;
4685
4686 packets = q_vector->tx.total_packets;
4687 if (packets)
4688 avg_wire_size = max_t(u32, avg_wire_size,
4689 q_vector->tx.total_bytes / packets);
4690
4691 /* if avg_wire_size isn't set no work was done */
4692 if (!avg_wire_size)
4693 goto clear_counts;
4694
4695 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4696 avg_wire_size += 24;
4697
4698 /* Don't starve jumbo frames */
4699 avg_wire_size = min(avg_wire_size, 3000);
4700
4701 /* Give a little boost to mid-size frames */
4702 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4703 new_val = avg_wire_size / 3;
4704 else
4705 new_val = avg_wire_size / 2;
4706
4707 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4708 if (new_val < IGB_20K_ITR &&
4709 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4710 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4711 new_val = IGB_20K_ITR;
4712
4713 set_itr_val:
4714 if (new_val != q_vector->itr_val) {
4715 q_vector->itr_val = new_val;
4716 q_vector->set_itr = 1;
4717 }
4718 clear_counts:
4719 q_vector->rx.total_bytes = 0;
4720 q_vector->rx.total_packets = 0;
4721 q_vector->tx.total_bytes = 0;
4722 q_vector->tx.total_packets = 0;
4723 }
4724
4725 /**
4726 * igb_update_itr - update the dynamic ITR value based on statistics
4727 * @q_vector: pointer to q_vector
4728 * @ring_container: ring info to update the itr for
4729 *
4730 * Stores a new ITR value based on packets and byte
4731 * counts during the last interrupt. The advantage of per interrupt
4732 * computation is faster updates and more accurate ITR for the current
4733 * traffic pattern. Constants in this function were computed
4734 * based on theoretical maximum wire speed and thresholds were set based
4735 * on testing data as well as attempting to minimize response time
4736 * while increasing bulk throughput.
4737 * This functionality is controlled by ethtool's coalescing settings.
4738 * NOTE: These calculations are only valid when operating in a single-
4739 * queue environment.
4740 **/
4741 static void igb_update_itr(struct igb_q_vector *q_vector,
4742 struct igb_ring_container *ring_container)
4743 {
4744 unsigned int packets = ring_container->total_packets;
4745 unsigned int bytes = ring_container->total_bytes;
4746 u8 itrval = ring_container->itr;
4747
4748 /* no packets, exit with status unchanged */
4749 if (packets == 0)
4750 return;
4751
4752 switch (itrval) {
4753 case lowest_latency:
4754 /* handle TSO and jumbo frames */
4755 if (bytes/packets > 8000)
4756 itrval = bulk_latency;
4757 else if ((packets < 5) && (bytes > 512))
4758 itrval = low_latency;
4759 break;
4760 case low_latency: /* 50 usec aka 20000 ints/s */
4761 if (bytes > 10000) {
4762 /* this if handles the TSO accounting */
4763 if (bytes/packets > 8000)
4764 itrval = bulk_latency;
4765 else if ((packets < 10) || ((bytes/packets) > 1200))
4766 itrval = bulk_latency;
4767 else if ((packets > 35))
4768 itrval = lowest_latency;
4769 } else if (bytes/packets > 2000) {
4770 itrval = bulk_latency;
4771 } else if (packets <= 2 && bytes < 512) {
4772 itrval = lowest_latency;
4773 }
4774 break;
4775 case bulk_latency: /* 250 usec aka 4000 ints/s */
4776 if (bytes > 25000) {
4777 if (packets > 35)
4778 itrval = low_latency;
4779 } else if (bytes < 1500) {
4780 itrval = low_latency;
4781 }
4782 break;
4783 }
4784
4785 /* clear work counters since we have the values we need */
4786 ring_container->total_bytes = 0;
4787 ring_container->total_packets = 0;
4788
4789 /* write updated itr to ring container */
4790 ring_container->itr = itrval;
4791 }
4792
4793 static void igb_set_itr(struct igb_q_vector *q_vector)
4794 {
4795 struct igb_adapter *adapter = q_vector->adapter;
4796 u32 new_itr = q_vector->itr_val;
4797 u8 current_itr = 0;
4798
4799 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4800 if (adapter->link_speed != SPEED_1000) {
4801 current_itr = 0;
4802 new_itr = IGB_4K_ITR;
4803 goto set_itr_now;
4804 }
4805
4806 igb_update_itr(q_vector, &q_vector->tx);
4807 igb_update_itr(q_vector, &q_vector->rx);
4808
4809 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4810
4811 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4812 if (current_itr == lowest_latency &&
4813 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4814 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4815 current_itr = low_latency;
4816
4817 switch (current_itr) {
4818 /* counts and packets in update_itr are dependent on these numbers */
4819 case lowest_latency:
4820 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4821 break;
4822 case low_latency:
4823 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4824 break;
4825 case bulk_latency:
4826 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4827 break;
4828 default:
4829 break;
4830 }
4831
4832 set_itr_now:
4833 if (new_itr != q_vector->itr_val) {
4834 /* this attempts to bias the interrupt rate towards Bulk
4835 * by adding intermediate steps when interrupt rate is
4836 * increasing
4837 */
4838 new_itr = new_itr > q_vector->itr_val ?
4839 max((new_itr * q_vector->itr_val) /
4840 (new_itr + (q_vector->itr_val >> 2)),
4841 new_itr) : new_itr;
4842 /* Don't write the value here; it resets the adapter's
4843 * internal timer, and causes us to delay far longer than
4844 * we should between interrupts. Instead, we write the ITR
4845 * value at the beginning of the next interrupt so the timing
4846 * ends up being correct.
4847 */
4848 q_vector->itr_val = new_itr;
4849 q_vector->set_itr = 1;
4850 }
4851 }
4852
4853 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4854 u32 type_tucmd, u32 mss_l4len_idx)
4855 {
4856 struct e1000_adv_tx_context_desc *context_desc;
4857 u16 i = tx_ring->next_to_use;
4858
4859 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4860
4861 i++;
4862 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4863
4864 /* set bits to identify this as an advanced context descriptor */
4865 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4866
4867 /* For 82575, context index must be unique per ring. */
4868 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4869 mss_l4len_idx |= tx_ring->reg_idx << 4;
4870
4871 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4872 context_desc->seqnum_seed = 0;
4873 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4874 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4875 }
4876
4877 static int igb_tso(struct igb_ring *tx_ring,
4878 struct igb_tx_buffer *first,
4879 u8 *hdr_len)
4880 {
4881 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4882 struct sk_buff *skb = first->skb;
4883 union {
4884 struct iphdr *v4;
4885 struct ipv6hdr *v6;
4886 unsigned char *hdr;
4887 } ip;
4888 union {
4889 struct tcphdr *tcp;
4890 unsigned char *hdr;
4891 } l4;
4892 u32 paylen, l4_offset;
4893 int err;
4894
4895 if (skb->ip_summed != CHECKSUM_PARTIAL)
4896 return 0;
4897
4898 if (!skb_is_gso(skb))
4899 return 0;
4900
4901 err = skb_cow_head(skb, 0);
4902 if (err < 0)
4903 return err;
4904
4905 ip.hdr = skb_network_header(skb);
4906 l4.hdr = skb_checksum_start(skb);
4907
4908 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4909 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4910
4911 /* initialize outer IP header fields */
4912 if (ip.v4->version == 4) {
4913 /* IP header will have to cancel out any data that
4914 * is not a part of the outer IP header
4915 */
4916 ip.v4->check = csum_fold(csum_add(lco_csum(skb),
4917 csum_unfold(l4.tcp->check)));
4918 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4919
4920 ip.v4->tot_len = 0;
4921 first->tx_flags |= IGB_TX_FLAGS_TSO |
4922 IGB_TX_FLAGS_CSUM |
4923 IGB_TX_FLAGS_IPV4;
4924 } else {
4925 ip.v6->payload_len = 0;
4926 first->tx_flags |= IGB_TX_FLAGS_TSO |
4927 IGB_TX_FLAGS_CSUM;
4928 }
4929
4930 /* determine offset of inner transport header */
4931 l4_offset = l4.hdr - skb->data;
4932
4933 /* compute length of segmentation header */
4934 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
4935
4936 /* remove payload length from inner checksum */
4937 paylen = skb->len - l4_offset;
4938 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
4939
4940 /* update gso size and bytecount with header size */
4941 first->gso_segs = skb_shinfo(skb)->gso_segs;
4942 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4943
4944 /* MSS L4LEN IDX */
4945 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
4946 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4947
4948 /* VLAN MACLEN IPLEN */
4949 vlan_macip_lens = l4.hdr - ip.hdr;
4950 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
4951 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4952
4953 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4954
4955 return 1;
4956 }
4957
4958 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4959 {
4960 unsigned int offset = 0;
4961
4962 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4963
4964 return offset == skb_checksum_start_offset(skb);
4965 }
4966
4967 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4968 {
4969 struct sk_buff *skb = first->skb;
4970 u32 vlan_macip_lens = 0;
4971 u32 type_tucmd = 0;
4972
4973 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4974 csum_failed:
4975 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4976 return;
4977 goto no_csum;
4978 }
4979
4980 switch (skb->csum_offset) {
4981 case offsetof(struct tcphdr, check):
4982 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4983 /* fall through */
4984 case offsetof(struct udphdr, check):
4985 break;
4986 case offsetof(struct sctphdr, checksum):
4987 /* validate that this is actually an SCTP request */
4988 if (((first->protocol == htons(ETH_P_IP)) &&
4989 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
4990 ((first->protocol == htons(ETH_P_IPV6)) &&
4991 igb_ipv6_csum_is_sctp(skb))) {
4992 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
4993 break;
4994 }
4995 default:
4996 skb_checksum_help(skb);
4997 goto csum_failed;
4998 }
4999
5000 /* update TX checksum flag */
5001 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5002 vlan_macip_lens = skb_checksum_start_offset(skb) -
5003 skb_network_offset(skb);
5004 no_csum:
5005 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5006 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5007
5008 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5009 }
5010
5011 #define IGB_SET_FLAG(_input, _flag, _result) \
5012 ((_flag <= _result) ? \
5013 ((u32)(_input & _flag) * (_result / _flag)) : \
5014 ((u32)(_input & _flag) / (_flag / _result)))
5015
5016 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5017 {
5018 /* set type for advanced descriptor with frame checksum insertion */
5019 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5020 E1000_ADVTXD_DCMD_DEXT |
5021 E1000_ADVTXD_DCMD_IFCS;
5022
5023 /* set HW vlan bit if vlan is present */
5024 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5025 (E1000_ADVTXD_DCMD_VLE));
5026
5027 /* set segmentation bits for TSO */
5028 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5029 (E1000_ADVTXD_DCMD_TSE));
5030
5031 /* set timestamp bit if present */
5032 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5033 (E1000_ADVTXD_MAC_TSTAMP));
5034
5035 /* insert frame checksum */
5036 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5037
5038 return cmd_type;
5039 }
5040
5041 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5042 union e1000_adv_tx_desc *tx_desc,
5043 u32 tx_flags, unsigned int paylen)
5044 {
5045 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5046
5047 /* 82575 requires a unique index per ring */
5048 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5049 olinfo_status |= tx_ring->reg_idx << 4;
5050
5051 /* insert L4 checksum */
5052 olinfo_status |= IGB_SET_FLAG(tx_flags,
5053 IGB_TX_FLAGS_CSUM,
5054 (E1000_TXD_POPTS_TXSM << 8));
5055
5056 /* insert IPv4 checksum */
5057 olinfo_status |= IGB_SET_FLAG(tx_flags,
5058 IGB_TX_FLAGS_IPV4,
5059 (E1000_TXD_POPTS_IXSM << 8));
5060
5061 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5062 }
5063
5064 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5065 {
5066 struct net_device *netdev = tx_ring->netdev;
5067
5068 netif_stop_subqueue(netdev, tx_ring->queue_index);
5069
5070 /* Herbert's original patch had:
5071 * smp_mb__after_netif_stop_queue();
5072 * but since that doesn't exist yet, just open code it.
5073 */
5074 smp_mb();
5075
5076 /* We need to check again in a case another CPU has just
5077 * made room available.
5078 */
5079 if (igb_desc_unused(tx_ring) < size)
5080 return -EBUSY;
5081
5082 /* A reprieve! */
5083 netif_wake_subqueue(netdev, tx_ring->queue_index);
5084
5085 u64_stats_update_begin(&tx_ring->tx_syncp2);
5086 tx_ring->tx_stats.restart_queue2++;
5087 u64_stats_update_end(&tx_ring->tx_syncp2);
5088
5089 return 0;
5090 }
5091
5092 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5093 {
5094 if (igb_desc_unused(tx_ring) >= size)
5095 return 0;
5096 return __igb_maybe_stop_tx(tx_ring, size);
5097 }
5098
5099 static void igb_tx_map(struct igb_ring *tx_ring,
5100 struct igb_tx_buffer *first,
5101 const u8 hdr_len)
5102 {
5103 struct sk_buff *skb = first->skb;
5104 struct igb_tx_buffer *tx_buffer;
5105 union e1000_adv_tx_desc *tx_desc;
5106 struct skb_frag_struct *frag;
5107 dma_addr_t dma;
5108 unsigned int data_len, size;
5109 u32 tx_flags = first->tx_flags;
5110 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5111 u16 i = tx_ring->next_to_use;
5112
5113 tx_desc = IGB_TX_DESC(tx_ring, i);
5114
5115 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5116
5117 size = skb_headlen(skb);
5118 data_len = skb->data_len;
5119
5120 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5121
5122 tx_buffer = first;
5123
5124 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5125 if (dma_mapping_error(tx_ring->dev, dma))
5126 goto dma_error;
5127
5128 /* record length, and DMA address */
5129 dma_unmap_len_set(tx_buffer, len, size);
5130 dma_unmap_addr_set(tx_buffer, dma, dma);
5131
5132 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5133
5134 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5135 tx_desc->read.cmd_type_len =
5136 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5137
5138 i++;
5139 tx_desc++;
5140 if (i == tx_ring->count) {
5141 tx_desc = IGB_TX_DESC(tx_ring, 0);
5142 i = 0;
5143 }
5144 tx_desc->read.olinfo_status = 0;
5145
5146 dma += IGB_MAX_DATA_PER_TXD;
5147 size -= IGB_MAX_DATA_PER_TXD;
5148
5149 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5150 }
5151
5152 if (likely(!data_len))
5153 break;
5154
5155 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5156
5157 i++;
5158 tx_desc++;
5159 if (i == tx_ring->count) {
5160 tx_desc = IGB_TX_DESC(tx_ring, 0);
5161 i = 0;
5162 }
5163 tx_desc->read.olinfo_status = 0;
5164
5165 size = skb_frag_size(frag);
5166 data_len -= size;
5167
5168 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5169 size, DMA_TO_DEVICE);
5170
5171 tx_buffer = &tx_ring->tx_buffer_info[i];
5172 }
5173
5174 /* write last descriptor with RS and EOP bits */
5175 cmd_type |= size | IGB_TXD_DCMD;
5176 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5177
5178 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5179
5180 /* set the timestamp */
5181 first->time_stamp = jiffies;
5182
5183 /* Force memory writes to complete before letting h/w know there
5184 * are new descriptors to fetch. (Only applicable for weak-ordered
5185 * memory model archs, such as IA-64).
5186 *
5187 * We also need this memory barrier to make certain all of the
5188 * status bits have been updated before next_to_watch is written.
5189 */
5190 wmb();
5191
5192 /* set next_to_watch value indicating a packet is present */
5193 first->next_to_watch = tx_desc;
5194
5195 i++;
5196 if (i == tx_ring->count)
5197 i = 0;
5198
5199 tx_ring->next_to_use = i;
5200
5201 /* Make sure there is space in the ring for the next send. */
5202 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5203
5204 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5205 writel(i, tx_ring->tail);
5206
5207 /* we need this if more than one processor can write to our tail
5208 * at a time, it synchronizes IO on IA64/Altix systems
5209 */
5210 mmiowb();
5211 }
5212 return;
5213
5214 dma_error:
5215 dev_err(tx_ring->dev, "TX DMA map failed\n");
5216
5217 /* clear dma mappings for failed tx_buffer_info map */
5218 for (;;) {
5219 tx_buffer = &tx_ring->tx_buffer_info[i];
5220 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5221 if (tx_buffer == first)
5222 break;
5223 if (i == 0)
5224 i = tx_ring->count;
5225 i--;
5226 }
5227
5228 tx_ring->next_to_use = i;
5229 }
5230
5231 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5232 struct igb_ring *tx_ring)
5233 {
5234 struct igb_tx_buffer *first;
5235 int tso;
5236 u32 tx_flags = 0;
5237 unsigned short f;
5238 u16 count = TXD_USE_COUNT(skb_headlen(skb));
5239 __be16 protocol = vlan_get_protocol(skb);
5240 u8 hdr_len = 0;
5241
5242 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5243 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5244 * + 2 desc gap to keep tail from touching head,
5245 * + 1 desc for context descriptor,
5246 * otherwise try next time
5247 */
5248 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5249 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5250
5251 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5252 /* this is a hard error */
5253 return NETDEV_TX_BUSY;
5254 }
5255
5256 /* record the location of the first descriptor for this packet */
5257 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5258 first->skb = skb;
5259 first->bytecount = skb->len;
5260 first->gso_segs = 1;
5261
5262 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5263 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5264
5265 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5266 &adapter->state)) {
5267 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5268 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5269
5270 adapter->ptp_tx_skb = skb_get(skb);
5271 adapter->ptp_tx_start = jiffies;
5272 if (adapter->hw.mac.type == e1000_82576)
5273 schedule_work(&adapter->ptp_tx_work);
5274 }
5275 }
5276
5277 skb_tx_timestamp(skb);
5278
5279 if (skb_vlan_tag_present(skb)) {
5280 tx_flags |= IGB_TX_FLAGS_VLAN;
5281 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5282 }
5283
5284 /* record initial flags and protocol */
5285 first->tx_flags = tx_flags;
5286 first->protocol = protocol;
5287
5288 tso = igb_tso(tx_ring, first, &hdr_len);
5289 if (tso < 0)
5290 goto out_drop;
5291 else if (!tso)
5292 igb_tx_csum(tx_ring, first);
5293
5294 igb_tx_map(tx_ring, first, hdr_len);
5295
5296 return NETDEV_TX_OK;
5297
5298 out_drop:
5299 igb_unmap_and_free_tx_resource(tx_ring, first);
5300
5301 return NETDEV_TX_OK;
5302 }
5303
5304 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5305 struct sk_buff *skb)
5306 {
5307 unsigned int r_idx = skb->queue_mapping;
5308
5309 if (r_idx >= adapter->num_tx_queues)
5310 r_idx = r_idx % adapter->num_tx_queues;
5311
5312 return adapter->tx_ring[r_idx];
5313 }
5314
5315 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5316 struct net_device *netdev)
5317 {
5318 struct igb_adapter *adapter = netdev_priv(netdev);
5319
5320 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5321 * in order to meet this minimum size requirement.
5322 */
5323 if (skb_put_padto(skb, 17))
5324 return NETDEV_TX_OK;
5325
5326 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5327 }
5328
5329 /**
5330 * igb_tx_timeout - Respond to a Tx Hang
5331 * @netdev: network interface device structure
5332 **/
5333 static void igb_tx_timeout(struct net_device *netdev)
5334 {
5335 struct igb_adapter *adapter = netdev_priv(netdev);
5336 struct e1000_hw *hw = &adapter->hw;
5337
5338 /* Do the reset outside of interrupt context */
5339 adapter->tx_timeout_count++;
5340
5341 if (hw->mac.type >= e1000_82580)
5342 hw->dev_spec._82575.global_device_reset = true;
5343
5344 schedule_work(&adapter->reset_task);
5345 wr32(E1000_EICS,
5346 (adapter->eims_enable_mask & ~adapter->eims_other));
5347 }
5348
5349 static void igb_reset_task(struct work_struct *work)
5350 {
5351 struct igb_adapter *adapter;
5352 adapter = container_of(work, struct igb_adapter, reset_task);
5353
5354 igb_dump(adapter);
5355 netdev_err(adapter->netdev, "Reset adapter\n");
5356 igb_reinit_locked(adapter);
5357 }
5358
5359 /**
5360 * igb_get_stats64 - Get System Network Statistics
5361 * @netdev: network interface device structure
5362 * @stats: rtnl_link_stats64 pointer
5363 **/
5364 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5365 struct rtnl_link_stats64 *stats)
5366 {
5367 struct igb_adapter *adapter = netdev_priv(netdev);
5368
5369 spin_lock(&adapter->stats64_lock);
5370 igb_update_stats(adapter, &adapter->stats64);
5371 memcpy(stats, &adapter->stats64, sizeof(*stats));
5372 spin_unlock(&adapter->stats64_lock);
5373
5374 return stats;
5375 }
5376
5377 /**
5378 * igb_change_mtu - Change the Maximum Transfer Unit
5379 * @netdev: network interface device structure
5380 * @new_mtu: new value for maximum frame size
5381 *
5382 * Returns 0 on success, negative on failure
5383 **/
5384 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5385 {
5386 struct igb_adapter *adapter = netdev_priv(netdev);
5387 struct pci_dev *pdev = adapter->pdev;
5388 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5389
5390 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5391 dev_err(&pdev->dev, "Invalid MTU setting\n");
5392 return -EINVAL;
5393 }
5394
5395 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5396 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5397 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5398 return -EINVAL;
5399 }
5400
5401 /* adjust max frame to be at least the size of a standard frame */
5402 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5403 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5404
5405 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5406 usleep_range(1000, 2000);
5407
5408 /* igb_down has a dependency on max_frame_size */
5409 adapter->max_frame_size = max_frame;
5410
5411 if (netif_running(netdev))
5412 igb_down(adapter);
5413
5414 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5415 netdev->mtu, new_mtu);
5416 netdev->mtu = new_mtu;
5417
5418 if (netif_running(netdev))
5419 igb_up(adapter);
5420 else
5421 igb_reset(adapter);
5422
5423 clear_bit(__IGB_RESETTING, &adapter->state);
5424
5425 return 0;
5426 }
5427
5428 /**
5429 * igb_update_stats - Update the board statistics counters
5430 * @adapter: board private structure
5431 **/
5432 void igb_update_stats(struct igb_adapter *adapter,
5433 struct rtnl_link_stats64 *net_stats)
5434 {
5435 struct e1000_hw *hw = &adapter->hw;
5436 struct pci_dev *pdev = adapter->pdev;
5437 u32 reg, mpc;
5438 int i;
5439 u64 bytes, packets;
5440 unsigned int start;
5441 u64 _bytes, _packets;
5442
5443 /* Prevent stats update while adapter is being reset, or if the pci
5444 * connection is down.
5445 */
5446 if (adapter->link_speed == 0)
5447 return;
5448 if (pci_channel_offline(pdev))
5449 return;
5450
5451 bytes = 0;
5452 packets = 0;
5453
5454 rcu_read_lock();
5455 for (i = 0; i < adapter->num_rx_queues; i++) {
5456 struct igb_ring *ring = adapter->rx_ring[i];
5457 u32 rqdpc = rd32(E1000_RQDPC(i));
5458 if (hw->mac.type >= e1000_i210)
5459 wr32(E1000_RQDPC(i), 0);
5460
5461 if (rqdpc) {
5462 ring->rx_stats.drops += rqdpc;
5463 net_stats->rx_fifo_errors += rqdpc;
5464 }
5465
5466 do {
5467 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5468 _bytes = ring->rx_stats.bytes;
5469 _packets = ring->rx_stats.packets;
5470 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5471 bytes += _bytes;
5472 packets += _packets;
5473 }
5474
5475 net_stats->rx_bytes = bytes;
5476 net_stats->rx_packets = packets;
5477
5478 bytes = 0;
5479 packets = 0;
5480 for (i = 0; i < adapter->num_tx_queues; i++) {
5481 struct igb_ring *ring = adapter->tx_ring[i];
5482 do {
5483 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5484 _bytes = ring->tx_stats.bytes;
5485 _packets = ring->tx_stats.packets;
5486 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5487 bytes += _bytes;
5488 packets += _packets;
5489 }
5490 net_stats->tx_bytes = bytes;
5491 net_stats->tx_packets = packets;
5492 rcu_read_unlock();
5493
5494 /* read stats registers */
5495 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5496 adapter->stats.gprc += rd32(E1000_GPRC);
5497 adapter->stats.gorc += rd32(E1000_GORCL);
5498 rd32(E1000_GORCH); /* clear GORCL */
5499 adapter->stats.bprc += rd32(E1000_BPRC);
5500 adapter->stats.mprc += rd32(E1000_MPRC);
5501 adapter->stats.roc += rd32(E1000_ROC);
5502
5503 adapter->stats.prc64 += rd32(E1000_PRC64);
5504 adapter->stats.prc127 += rd32(E1000_PRC127);
5505 adapter->stats.prc255 += rd32(E1000_PRC255);
5506 adapter->stats.prc511 += rd32(E1000_PRC511);
5507 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5508 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5509 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5510 adapter->stats.sec += rd32(E1000_SEC);
5511
5512 mpc = rd32(E1000_MPC);
5513 adapter->stats.mpc += mpc;
5514 net_stats->rx_fifo_errors += mpc;
5515 adapter->stats.scc += rd32(E1000_SCC);
5516 adapter->stats.ecol += rd32(E1000_ECOL);
5517 adapter->stats.mcc += rd32(E1000_MCC);
5518 adapter->stats.latecol += rd32(E1000_LATECOL);
5519 adapter->stats.dc += rd32(E1000_DC);
5520 adapter->stats.rlec += rd32(E1000_RLEC);
5521 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5522 adapter->stats.xontxc += rd32(E1000_XONTXC);
5523 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5524 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5525 adapter->stats.fcruc += rd32(E1000_FCRUC);
5526 adapter->stats.gptc += rd32(E1000_GPTC);
5527 adapter->stats.gotc += rd32(E1000_GOTCL);
5528 rd32(E1000_GOTCH); /* clear GOTCL */
5529 adapter->stats.rnbc += rd32(E1000_RNBC);
5530 adapter->stats.ruc += rd32(E1000_RUC);
5531 adapter->stats.rfc += rd32(E1000_RFC);
5532 adapter->stats.rjc += rd32(E1000_RJC);
5533 adapter->stats.tor += rd32(E1000_TORH);
5534 adapter->stats.tot += rd32(E1000_TOTH);
5535 adapter->stats.tpr += rd32(E1000_TPR);
5536
5537 adapter->stats.ptc64 += rd32(E1000_PTC64);
5538 adapter->stats.ptc127 += rd32(E1000_PTC127);
5539 adapter->stats.ptc255 += rd32(E1000_PTC255);
5540 adapter->stats.ptc511 += rd32(E1000_PTC511);
5541 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5542 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5543
5544 adapter->stats.mptc += rd32(E1000_MPTC);
5545 adapter->stats.bptc += rd32(E1000_BPTC);
5546
5547 adapter->stats.tpt += rd32(E1000_TPT);
5548 adapter->stats.colc += rd32(E1000_COLC);
5549
5550 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5551 /* read internal phy specific stats */
5552 reg = rd32(E1000_CTRL_EXT);
5553 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5554 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5555
5556 /* this stat has invalid values on i210/i211 */
5557 if ((hw->mac.type != e1000_i210) &&
5558 (hw->mac.type != e1000_i211))
5559 adapter->stats.tncrs += rd32(E1000_TNCRS);
5560 }
5561
5562 adapter->stats.tsctc += rd32(E1000_TSCTC);
5563 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5564
5565 adapter->stats.iac += rd32(E1000_IAC);
5566 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5567 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5568 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5569 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5570 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5571 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5572 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5573 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5574
5575 /* Fill out the OS statistics structure */
5576 net_stats->multicast = adapter->stats.mprc;
5577 net_stats->collisions = adapter->stats.colc;
5578
5579 /* Rx Errors */
5580
5581 /* RLEC on some newer hardware can be incorrect so build
5582 * our own version based on RUC and ROC
5583 */
5584 net_stats->rx_errors = adapter->stats.rxerrc +
5585 adapter->stats.crcerrs + adapter->stats.algnerrc +
5586 adapter->stats.ruc + adapter->stats.roc +
5587 adapter->stats.cexterr;
5588 net_stats->rx_length_errors = adapter->stats.ruc +
5589 adapter->stats.roc;
5590 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5591 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5592 net_stats->rx_missed_errors = adapter->stats.mpc;
5593
5594 /* Tx Errors */
5595 net_stats->tx_errors = adapter->stats.ecol +
5596 adapter->stats.latecol;
5597 net_stats->tx_aborted_errors = adapter->stats.ecol;
5598 net_stats->tx_window_errors = adapter->stats.latecol;
5599 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5600
5601 /* Tx Dropped needs to be maintained elsewhere */
5602
5603 /* Management Stats */
5604 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5605 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5606 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5607
5608 /* OS2BMC Stats */
5609 reg = rd32(E1000_MANC);
5610 if (reg & E1000_MANC_EN_BMC2OS) {
5611 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5612 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5613 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5614 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5615 }
5616 }
5617
5618 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5619 {
5620 struct e1000_hw *hw = &adapter->hw;
5621 struct ptp_clock_event event;
5622 struct timespec64 ts;
5623 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5624
5625 if (tsicr & TSINTR_SYS_WRAP) {
5626 event.type = PTP_CLOCK_PPS;
5627 if (adapter->ptp_caps.pps)
5628 ptp_clock_event(adapter->ptp_clock, &event);
5629 else
5630 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5631 ack |= TSINTR_SYS_WRAP;
5632 }
5633
5634 if (tsicr & E1000_TSICR_TXTS) {
5635 /* retrieve hardware timestamp */
5636 schedule_work(&adapter->ptp_tx_work);
5637 ack |= E1000_TSICR_TXTS;
5638 }
5639
5640 if (tsicr & TSINTR_TT0) {
5641 spin_lock(&adapter->tmreg_lock);
5642 ts = timespec64_add(adapter->perout[0].start,
5643 adapter->perout[0].period);
5644 /* u32 conversion of tv_sec is safe until y2106 */
5645 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5646 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5647 tsauxc = rd32(E1000_TSAUXC);
5648 tsauxc |= TSAUXC_EN_TT0;
5649 wr32(E1000_TSAUXC, tsauxc);
5650 adapter->perout[0].start = ts;
5651 spin_unlock(&adapter->tmreg_lock);
5652 ack |= TSINTR_TT0;
5653 }
5654
5655 if (tsicr & TSINTR_TT1) {
5656 spin_lock(&adapter->tmreg_lock);
5657 ts = timespec64_add(adapter->perout[1].start,
5658 adapter->perout[1].period);
5659 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5660 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5661 tsauxc = rd32(E1000_TSAUXC);
5662 tsauxc |= TSAUXC_EN_TT1;
5663 wr32(E1000_TSAUXC, tsauxc);
5664 adapter->perout[1].start = ts;
5665 spin_unlock(&adapter->tmreg_lock);
5666 ack |= TSINTR_TT1;
5667 }
5668
5669 if (tsicr & TSINTR_AUTT0) {
5670 nsec = rd32(E1000_AUXSTMPL0);
5671 sec = rd32(E1000_AUXSTMPH0);
5672 event.type = PTP_CLOCK_EXTTS;
5673 event.index = 0;
5674 event.timestamp = sec * 1000000000ULL + nsec;
5675 ptp_clock_event(adapter->ptp_clock, &event);
5676 ack |= TSINTR_AUTT0;
5677 }
5678
5679 if (tsicr & TSINTR_AUTT1) {
5680 nsec = rd32(E1000_AUXSTMPL1);
5681 sec = rd32(E1000_AUXSTMPH1);
5682 event.type = PTP_CLOCK_EXTTS;
5683 event.index = 1;
5684 event.timestamp = sec * 1000000000ULL + nsec;
5685 ptp_clock_event(adapter->ptp_clock, &event);
5686 ack |= TSINTR_AUTT1;
5687 }
5688
5689 /* acknowledge the interrupts */
5690 wr32(E1000_TSICR, ack);
5691 }
5692
5693 static irqreturn_t igb_msix_other(int irq, void *data)
5694 {
5695 struct igb_adapter *adapter = data;
5696 struct e1000_hw *hw = &adapter->hw;
5697 u32 icr = rd32(E1000_ICR);
5698 /* reading ICR causes bit 31 of EICR to be cleared */
5699
5700 if (icr & E1000_ICR_DRSTA)
5701 schedule_work(&adapter->reset_task);
5702
5703 if (icr & E1000_ICR_DOUTSYNC) {
5704 /* HW is reporting DMA is out of sync */
5705 adapter->stats.doosync++;
5706 /* The DMA Out of Sync is also indication of a spoof event
5707 * in IOV mode. Check the Wrong VM Behavior register to
5708 * see if it is really a spoof event.
5709 */
5710 igb_check_wvbr(adapter);
5711 }
5712
5713 /* Check for a mailbox event */
5714 if (icr & E1000_ICR_VMMB)
5715 igb_msg_task(adapter);
5716
5717 if (icr & E1000_ICR_LSC) {
5718 hw->mac.get_link_status = 1;
5719 /* guard against interrupt when we're going down */
5720 if (!test_bit(__IGB_DOWN, &adapter->state))
5721 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5722 }
5723
5724 if (icr & E1000_ICR_TS)
5725 igb_tsync_interrupt(adapter);
5726
5727 wr32(E1000_EIMS, adapter->eims_other);
5728
5729 return IRQ_HANDLED;
5730 }
5731
5732 static void igb_write_itr(struct igb_q_vector *q_vector)
5733 {
5734 struct igb_adapter *adapter = q_vector->adapter;
5735 u32 itr_val = q_vector->itr_val & 0x7FFC;
5736
5737 if (!q_vector->set_itr)
5738 return;
5739
5740 if (!itr_val)
5741 itr_val = 0x4;
5742
5743 if (adapter->hw.mac.type == e1000_82575)
5744 itr_val |= itr_val << 16;
5745 else
5746 itr_val |= E1000_EITR_CNT_IGNR;
5747
5748 writel(itr_val, q_vector->itr_register);
5749 q_vector->set_itr = 0;
5750 }
5751
5752 static irqreturn_t igb_msix_ring(int irq, void *data)
5753 {
5754 struct igb_q_vector *q_vector = data;
5755
5756 /* Write the ITR value calculated from the previous interrupt. */
5757 igb_write_itr(q_vector);
5758
5759 napi_schedule(&q_vector->napi);
5760
5761 return IRQ_HANDLED;
5762 }
5763
5764 #ifdef CONFIG_IGB_DCA
5765 static void igb_update_tx_dca(struct igb_adapter *adapter,
5766 struct igb_ring *tx_ring,
5767 int cpu)
5768 {
5769 struct e1000_hw *hw = &adapter->hw;
5770 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5771
5772 if (hw->mac.type != e1000_82575)
5773 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5774
5775 /* We can enable relaxed ordering for reads, but not writes when
5776 * DCA is enabled. This is due to a known issue in some chipsets
5777 * which will cause the DCA tag to be cleared.
5778 */
5779 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5780 E1000_DCA_TXCTRL_DATA_RRO_EN |
5781 E1000_DCA_TXCTRL_DESC_DCA_EN;
5782
5783 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5784 }
5785
5786 static void igb_update_rx_dca(struct igb_adapter *adapter,
5787 struct igb_ring *rx_ring,
5788 int cpu)
5789 {
5790 struct e1000_hw *hw = &adapter->hw;
5791 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5792
5793 if (hw->mac.type != e1000_82575)
5794 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5795
5796 /* We can enable relaxed ordering for reads, but not writes when
5797 * DCA is enabled. This is due to a known issue in some chipsets
5798 * which will cause the DCA tag to be cleared.
5799 */
5800 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5801 E1000_DCA_RXCTRL_DESC_DCA_EN;
5802
5803 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5804 }
5805
5806 static void igb_update_dca(struct igb_q_vector *q_vector)
5807 {
5808 struct igb_adapter *adapter = q_vector->adapter;
5809 int cpu = get_cpu();
5810
5811 if (q_vector->cpu == cpu)
5812 goto out_no_update;
5813
5814 if (q_vector->tx.ring)
5815 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5816
5817 if (q_vector->rx.ring)
5818 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5819
5820 q_vector->cpu = cpu;
5821 out_no_update:
5822 put_cpu();
5823 }
5824
5825 static void igb_setup_dca(struct igb_adapter *adapter)
5826 {
5827 struct e1000_hw *hw = &adapter->hw;
5828 int i;
5829
5830 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5831 return;
5832
5833 /* Always use CB2 mode, difference is masked in the CB driver. */
5834 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5835
5836 for (i = 0; i < adapter->num_q_vectors; i++) {
5837 adapter->q_vector[i]->cpu = -1;
5838 igb_update_dca(adapter->q_vector[i]);
5839 }
5840 }
5841
5842 static int __igb_notify_dca(struct device *dev, void *data)
5843 {
5844 struct net_device *netdev = dev_get_drvdata(dev);
5845 struct igb_adapter *adapter = netdev_priv(netdev);
5846 struct pci_dev *pdev = adapter->pdev;
5847 struct e1000_hw *hw = &adapter->hw;
5848 unsigned long event = *(unsigned long *)data;
5849
5850 switch (event) {
5851 case DCA_PROVIDER_ADD:
5852 /* if already enabled, don't do it again */
5853 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5854 break;
5855 if (dca_add_requester(dev) == 0) {
5856 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5857 dev_info(&pdev->dev, "DCA enabled\n");
5858 igb_setup_dca(adapter);
5859 break;
5860 }
5861 /* Fall Through since DCA is disabled. */
5862 case DCA_PROVIDER_REMOVE:
5863 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5864 /* without this a class_device is left
5865 * hanging around in the sysfs model
5866 */
5867 dca_remove_requester(dev);
5868 dev_info(&pdev->dev, "DCA disabled\n");
5869 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5870 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5871 }
5872 break;
5873 }
5874
5875 return 0;
5876 }
5877
5878 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5879 void *p)
5880 {
5881 int ret_val;
5882
5883 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5884 __igb_notify_dca);
5885
5886 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5887 }
5888 #endif /* CONFIG_IGB_DCA */
5889
5890 #ifdef CONFIG_PCI_IOV
5891 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5892 {
5893 unsigned char mac_addr[ETH_ALEN];
5894
5895 eth_zero_addr(mac_addr);
5896 igb_set_vf_mac(adapter, vf, mac_addr);
5897
5898 /* By default spoof check is enabled for all VFs */
5899 adapter->vf_data[vf].spoofchk_enabled = true;
5900
5901 return 0;
5902 }
5903
5904 #endif
5905 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5906 {
5907 struct e1000_hw *hw = &adapter->hw;
5908 u32 ping;
5909 int i;
5910
5911 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5912 ping = E1000_PF_CONTROL_MSG;
5913 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5914 ping |= E1000_VT_MSGTYPE_CTS;
5915 igb_write_mbx(hw, &ping, 1, i);
5916 }
5917 }
5918
5919 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5920 {
5921 struct e1000_hw *hw = &adapter->hw;
5922 u32 vmolr = rd32(E1000_VMOLR(vf));
5923 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5924
5925 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5926 IGB_VF_FLAG_MULTI_PROMISC);
5927 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5928
5929 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5930 vmolr |= E1000_VMOLR_MPME;
5931 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5932 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5933 } else {
5934 /* if we have hashes and we are clearing a multicast promisc
5935 * flag we need to write the hashes to the MTA as this step
5936 * was previously skipped
5937 */
5938 if (vf_data->num_vf_mc_hashes > 30) {
5939 vmolr |= E1000_VMOLR_MPME;
5940 } else if (vf_data->num_vf_mc_hashes) {
5941 int j;
5942
5943 vmolr |= E1000_VMOLR_ROMPE;
5944 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5945 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5946 }
5947 }
5948
5949 wr32(E1000_VMOLR(vf), vmolr);
5950
5951 /* there are flags left unprocessed, likely not supported */
5952 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5953 return -EINVAL;
5954
5955 return 0;
5956 }
5957
5958 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5959 u32 *msgbuf, u32 vf)
5960 {
5961 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5962 u16 *hash_list = (u16 *)&msgbuf[1];
5963 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5964 int i;
5965
5966 /* salt away the number of multicast addresses assigned
5967 * to this VF for later use to restore when the PF multi cast
5968 * list changes
5969 */
5970 vf_data->num_vf_mc_hashes = n;
5971
5972 /* only up to 30 hash values supported */
5973 if (n > 30)
5974 n = 30;
5975
5976 /* store the hashes for later use */
5977 for (i = 0; i < n; i++)
5978 vf_data->vf_mc_hashes[i] = hash_list[i];
5979
5980 /* Flush and reset the mta with the new values */
5981 igb_set_rx_mode(adapter->netdev);
5982
5983 return 0;
5984 }
5985
5986 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5987 {
5988 struct e1000_hw *hw = &adapter->hw;
5989 struct vf_data_storage *vf_data;
5990 int i, j;
5991
5992 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5993 u32 vmolr = rd32(E1000_VMOLR(i));
5994
5995 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5996
5997 vf_data = &adapter->vf_data[i];
5998
5999 if ((vf_data->num_vf_mc_hashes > 30) ||
6000 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6001 vmolr |= E1000_VMOLR_MPME;
6002 } else if (vf_data->num_vf_mc_hashes) {
6003 vmolr |= E1000_VMOLR_ROMPE;
6004 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6005 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6006 }
6007 wr32(E1000_VMOLR(i), vmolr);
6008 }
6009 }
6010
6011 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6012 {
6013 struct e1000_hw *hw = &adapter->hw;
6014 u32 pool_mask, vlvf_mask, i;
6015
6016 /* create mask for VF and other pools */
6017 pool_mask = E1000_VLVF_POOLSEL_MASK;
6018 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6019
6020 /* drop PF from pool bits */
6021 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6022 adapter->vfs_allocated_count);
6023
6024 /* Find the vlan filter for this id */
6025 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6026 u32 vlvf = rd32(E1000_VLVF(i));
6027 u32 vfta_mask, vid, vfta;
6028
6029 /* remove the vf from the pool */
6030 if (!(vlvf & vlvf_mask))
6031 continue;
6032
6033 /* clear out bit from VLVF */
6034 vlvf ^= vlvf_mask;
6035
6036 /* if other pools are present, just remove ourselves */
6037 if (vlvf & pool_mask)
6038 goto update_vlvfb;
6039
6040 /* if PF is present, leave VFTA */
6041 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6042 goto update_vlvf;
6043
6044 vid = vlvf & E1000_VLVF_VLANID_MASK;
6045 vfta_mask = BIT(vid % 32);
6046
6047 /* clear bit from VFTA */
6048 vfta = adapter->shadow_vfta[vid / 32];
6049 if (vfta & vfta_mask)
6050 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6051 update_vlvf:
6052 /* clear pool selection enable */
6053 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6054 vlvf &= E1000_VLVF_POOLSEL_MASK;
6055 else
6056 vlvf = 0;
6057 update_vlvfb:
6058 /* clear pool bits */
6059 wr32(E1000_VLVF(i), vlvf);
6060 }
6061 }
6062
6063 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6064 {
6065 u32 vlvf;
6066 int idx;
6067
6068 /* short cut the special case */
6069 if (vlan == 0)
6070 return 0;
6071
6072 /* Search for the VLAN id in the VLVF entries */
6073 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6074 vlvf = rd32(E1000_VLVF(idx));
6075 if ((vlvf & VLAN_VID_MASK) == vlan)
6076 break;
6077 }
6078
6079 return idx;
6080 }
6081
6082 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6083 {
6084 struct e1000_hw *hw = &adapter->hw;
6085 u32 bits, pf_id;
6086 int idx;
6087
6088 idx = igb_find_vlvf_entry(hw, vid);
6089 if (!idx)
6090 return;
6091
6092 /* See if any other pools are set for this VLAN filter
6093 * entry other than the PF.
6094 */
6095 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6096 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6097 bits &= rd32(E1000_VLVF(idx));
6098
6099 /* Disable the filter so this falls into the default pool. */
6100 if (!bits) {
6101 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6102 wr32(E1000_VLVF(idx), BIT(pf_id));
6103 else
6104 wr32(E1000_VLVF(idx), 0);
6105 }
6106 }
6107
6108 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6109 bool add, u32 vf)
6110 {
6111 int pf_id = adapter->vfs_allocated_count;
6112 struct e1000_hw *hw = &adapter->hw;
6113 int err;
6114
6115 /* If VLAN overlaps with one the PF is currently monitoring make
6116 * sure that we are able to allocate a VLVF entry. This may be
6117 * redundant but it guarantees PF will maintain visibility to
6118 * the VLAN.
6119 */
6120 if (add && test_bit(vid, adapter->active_vlans)) {
6121 err = igb_vfta_set(hw, vid, pf_id, true, false);
6122 if (err)
6123 return err;
6124 }
6125
6126 err = igb_vfta_set(hw, vid, vf, add, false);
6127
6128 if (add && !err)
6129 return err;
6130
6131 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6132 * we may need to drop the PF pool bit in order to allow us to free
6133 * up the VLVF resources.
6134 */
6135 if (test_bit(vid, adapter->active_vlans) ||
6136 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6137 igb_update_pf_vlvf(adapter, vid);
6138
6139 return err;
6140 }
6141
6142 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6143 {
6144 struct e1000_hw *hw = &adapter->hw;
6145
6146 if (vid)
6147 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6148 else
6149 wr32(E1000_VMVIR(vf), 0);
6150 }
6151
6152 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6153 u16 vlan, u8 qos)
6154 {
6155 int err;
6156
6157 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6158 if (err)
6159 return err;
6160
6161 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6162 igb_set_vmolr(adapter, vf, !vlan);
6163
6164 /* revoke access to previous VLAN */
6165 if (vlan != adapter->vf_data[vf].pf_vlan)
6166 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6167 false, vf);
6168
6169 adapter->vf_data[vf].pf_vlan = vlan;
6170 adapter->vf_data[vf].pf_qos = qos;
6171 igb_set_vf_vlan_strip(adapter, vf, true);
6172 dev_info(&adapter->pdev->dev,
6173 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6174 if (test_bit(__IGB_DOWN, &adapter->state)) {
6175 dev_warn(&adapter->pdev->dev,
6176 "The VF VLAN has been set, but the PF device is not up.\n");
6177 dev_warn(&adapter->pdev->dev,
6178 "Bring the PF device up before attempting to use the VF device.\n");
6179 }
6180
6181 return err;
6182 }
6183
6184 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6185 {
6186 /* Restore tagless access via VLAN 0 */
6187 igb_set_vf_vlan(adapter, 0, true, vf);
6188
6189 igb_set_vmvir(adapter, 0, vf);
6190 igb_set_vmolr(adapter, vf, true);
6191
6192 /* Remove any PF assigned VLAN */
6193 if (adapter->vf_data[vf].pf_vlan)
6194 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6195 false, vf);
6196
6197 adapter->vf_data[vf].pf_vlan = 0;
6198 adapter->vf_data[vf].pf_qos = 0;
6199 igb_set_vf_vlan_strip(adapter, vf, false);
6200
6201 return 0;
6202 }
6203
6204 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6205 int vf, u16 vlan, u8 qos)
6206 {
6207 struct igb_adapter *adapter = netdev_priv(netdev);
6208
6209 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6210 return -EINVAL;
6211
6212 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6213 igb_disable_port_vlan(adapter, vf);
6214 }
6215
6216 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6217 {
6218 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6219 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6220 int ret;
6221
6222 if (adapter->vf_data[vf].pf_vlan)
6223 return -1;
6224
6225 /* VLAN 0 is a special case, don't allow it to be removed */
6226 if (!vid && !add)
6227 return 0;
6228
6229 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6230 if (!ret)
6231 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6232 return ret;
6233 }
6234
6235 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6236 {
6237 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6238
6239 /* clear flags - except flag that indicates PF has set the MAC */
6240 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6241 vf_data->last_nack = jiffies;
6242
6243 /* reset vlans for device */
6244 igb_clear_vf_vfta(adapter, vf);
6245 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6246 igb_set_vmvir(adapter, vf_data->pf_vlan |
6247 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6248 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6249 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6250
6251 /* reset multicast table array for vf */
6252 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6253
6254 /* Flush and reset the mta with the new values */
6255 igb_set_rx_mode(adapter->netdev);
6256 }
6257
6258 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6259 {
6260 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6261
6262 /* clear mac address as we were hotplug removed/added */
6263 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6264 eth_zero_addr(vf_mac);
6265
6266 /* process remaining reset events */
6267 igb_vf_reset(adapter, vf);
6268 }
6269
6270 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6271 {
6272 struct e1000_hw *hw = &adapter->hw;
6273 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6274 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6275 u32 reg, msgbuf[3];
6276 u8 *addr = (u8 *)(&msgbuf[1]);
6277
6278 /* process all the same items cleared in a function level reset */
6279 igb_vf_reset(adapter, vf);
6280
6281 /* set vf mac address */
6282 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6283
6284 /* enable transmit and receive for vf */
6285 reg = rd32(E1000_VFTE);
6286 wr32(E1000_VFTE, reg | BIT(vf));
6287 reg = rd32(E1000_VFRE);
6288 wr32(E1000_VFRE, reg | BIT(vf));
6289
6290 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6291
6292 /* reply to reset with ack and vf mac address */
6293 if (!is_zero_ether_addr(vf_mac)) {
6294 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6295 memcpy(addr, vf_mac, ETH_ALEN);
6296 } else {
6297 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6298 }
6299 igb_write_mbx(hw, msgbuf, 3, vf);
6300 }
6301
6302 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6303 {
6304 /* The VF MAC Address is stored in a packed array of bytes
6305 * starting at the second 32 bit word of the msg array
6306 */
6307 unsigned char *addr = (char *)&msg[1];
6308 int err = -1;
6309
6310 if (is_valid_ether_addr(addr))
6311 err = igb_set_vf_mac(adapter, vf, addr);
6312
6313 return err;
6314 }
6315
6316 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6317 {
6318 struct e1000_hw *hw = &adapter->hw;
6319 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6320 u32 msg = E1000_VT_MSGTYPE_NACK;
6321
6322 /* if device isn't clear to send it shouldn't be reading either */
6323 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6324 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6325 igb_write_mbx(hw, &msg, 1, vf);
6326 vf_data->last_nack = jiffies;
6327 }
6328 }
6329
6330 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6331 {
6332 struct pci_dev *pdev = adapter->pdev;
6333 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6334 struct e1000_hw *hw = &adapter->hw;
6335 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6336 s32 retval;
6337
6338 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6339
6340 if (retval) {
6341 /* if receive failed revoke VF CTS stats and restart init */
6342 dev_err(&pdev->dev, "Error receiving message from VF\n");
6343 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6344 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6345 return;
6346 goto out;
6347 }
6348
6349 /* this is a message we already processed, do nothing */
6350 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6351 return;
6352
6353 /* until the vf completes a reset it should not be
6354 * allowed to start any configuration.
6355 */
6356 if (msgbuf[0] == E1000_VF_RESET) {
6357 igb_vf_reset_msg(adapter, vf);
6358 return;
6359 }
6360
6361 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6362 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6363 return;
6364 retval = -1;
6365 goto out;
6366 }
6367
6368 switch ((msgbuf[0] & 0xFFFF)) {
6369 case E1000_VF_SET_MAC_ADDR:
6370 retval = -EINVAL;
6371 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6372 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6373 else
6374 dev_warn(&pdev->dev,
6375 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6376 vf);
6377 break;
6378 case E1000_VF_SET_PROMISC:
6379 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6380 break;
6381 case E1000_VF_SET_MULTICAST:
6382 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6383 break;
6384 case E1000_VF_SET_LPE:
6385 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6386 break;
6387 case E1000_VF_SET_VLAN:
6388 retval = -1;
6389 if (vf_data->pf_vlan)
6390 dev_warn(&pdev->dev,
6391 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6392 vf);
6393 else
6394 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6395 break;
6396 default:
6397 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6398 retval = -1;
6399 break;
6400 }
6401
6402 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6403 out:
6404 /* notify the VF of the results of what it sent us */
6405 if (retval)
6406 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6407 else
6408 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6409
6410 igb_write_mbx(hw, msgbuf, 1, vf);
6411 }
6412
6413 static void igb_msg_task(struct igb_adapter *adapter)
6414 {
6415 struct e1000_hw *hw = &adapter->hw;
6416 u32 vf;
6417
6418 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6419 /* process any reset requests */
6420 if (!igb_check_for_rst(hw, vf))
6421 igb_vf_reset_event(adapter, vf);
6422
6423 /* process any messages pending */
6424 if (!igb_check_for_msg(hw, vf))
6425 igb_rcv_msg_from_vf(adapter, vf);
6426
6427 /* process any acks */
6428 if (!igb_check_for_ack(hw, vf))
6429 igb_rcv_ack_from_vf(adapter, vf);
6430 }
6431 }
6432
6433 /**
6434 * igb_set_uta - Set unicast filter table address
6435 * @adapter: board private structure
6436 * @set: boolean indicating if we are setting or clearing bits
6437 *
6438 * The unicast table address is a register array of 32-bit registers.
6439 * The table is meant to be used in a way similar to how the MTA is used
6440 * however due to certain limitations in the hardware it is necessary to
6441 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6442 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6443 **/
6444 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6445 {
6446 struct e1000_hw *hw = &adapter->hw;
6447 u32 uta = set ? ~0 : 0;
6448 int i;
6449
6450 /* we only need to do this if VMDq is enabled */
6451 if (!adapter->vfs_allocated_count)
6452 return;
6453
6454 for (i = hw->mac.uta_reg_count; i--;)
6455 array_wr32(E1000_UTA, i, uta);
6456 }
6457
6458 /**
6459 * igb_intr_msi - Interrupt Handler
6460 * @irq: interrupt number
6461 * @data: pointer to a network interface device structure
6462 **/
6463 static irqreturn_t igb_intr_msi(int irq, void *data)
6464 {
6465 struct igb_adapter *adapter = data;
6466 struct igb_q_vector *q_vector = adapter->q_vector[0];
6467 struct e1000_hw *hw = &adapter->hw;
6468 /* read ICR disables interrupts using IAM */
6469 u32 icr = rd32(E1000_ICR);
6470
6471 igb_write_itr(q_vector);
6472
6473 if (icr & E1000_ICR_DRSTA)
6474 schedule_work(&adapter->reset_task);
6475
6476 if (icr & E1000_ICR_DOUTSYNC) {
6477 /* HW is reporting DMA is out of sync */
6478 adapter->stats.doosync++;
6479 }
6480
6481 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6482 hw->mac.get_link_status = 1;
6483 if (!test_bit(__IGB_DOWN, &adapter->state))
6484 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6485 }
6486
6487 if (icr & E1000_ICR_TS)
6488 igb_tsync_interrupt(adapter);
6489
6490 napi_schedule(&q_vector->napi);
6491
6492 return IRQ_HANDLED;
6493 }
6494
6495 /**
6496 * igb_intr - Legacy Interrupt Handler
6497 * @irq: interrupt number
6498 * @data: pointer to a network interface device structure
6499 **/
6500 static irqreturn_t igb_intr(int irq, void *data)
6501 {
6502 struct igb_adapter *adapter = data;
6503 struct igb_q_vector *q_vector = adapter->q_vector[0];
6504 struct e1000_hw *hw = &adapter->hw;
6505 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6506 * need for the IMC write
6507 */
6508 u32 icr = rd32(E1000_ICR);
6509
6510 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6511 * not set, then the adapter didn't send an interrupt
6512 */
6513 if (!(icr & E1000_ICR_INT_ASSERTED))
6514 return IRQ_NONE;
6515
6516 igb_write_itr(q_vector);
6517
6518 if (icr & E1000_ICR_DRSTA)
6519 schedule_work(&adapter->reset_task);
6520
6521 if (icr & E1000_ICR_DOUTSYNC) {
6522 /* HW is reporting DMA is out of sync */
6523 adapter->stats.doosync++;
6524 }
6525
6526 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6527 hw->mac.get_link_status = 1;
6528 /* guard against interrupt when we're going down */
6529 if (!test_bit(__IGB_DOWN, &adapter->state))
6530 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6531 }
6532
6533 if (icr & E1000_ICR_TS)
6534 igb_tsync_interrupt(adapter);
6535
6536 napi_schedule(&q_vector->napi);
6537
6538 return IRQ_HANDLED;
6539 }
6540
6541 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6542 {
6543 struct igb_adapter *adapter = q_vector->adapter;
6544 struct e1000_hw *hw = &adapter->hw;
6545
6546 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6547 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6548 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6549 igb_set_itr(q_vector);
6550 else
6551 igb_update_ring_itr(q_vector);
6552 }
6553
6554 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6555 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6556 wr32(E1000_EIMS, q_vector->eims_value);
6557 else
6558 igb_irq_enable(adapter);
6559 }
6560 }
6561
6562 /**
6563 * igb_poll - NAPI Rx polling callback
6564 * @napi: napi polling structure
6565 * @budget: count of how many packets we should handle
6566 **/
6567 static int igb_poll(struct napi_struct *napi, int budget)
6568 {
6569 struct igb_q_vector *q_vector = container_of(napi,
6570 struct igb_q_vector,
6571 napi);
6572 bool clean_complete = true;
6573 int work_done = 0;
6574
6575 #ifdef CONFIG_IGB_DCA
6576 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6577 igb_update_dca(q_vector);
6578 #endif
6579 if (q_vector->tx.ring)
6580 clean_complete = igb_clean_tx_irq(q_vector, budget);
6581
6582 if (q_vector->rx.ring) {
6583 int cleaned = igb_clean_rx_irq(q_vector, budget);
6584
6585 work_done += cleaned;
6586 if (cleaned >= budget)
6587 clean_complete = false;
6588 }
6589
6590 /* If all work not completed, return budget and keep polling */
6591 if (!clean_complete)
6592 return budget;
6593
6594 /* If not enough Rx work done, exit the polling mode */
6595 napi_complete_done(napi, work_done);
6596 igb_ring_irq_enable(q_vector);
6597
6598 return 0;
6599 }
6600
6601 /**
6602 * igb_clean_tx_irq - Reclaim resources after transmit completes
6603 * @q_vector: pointer to q_vector containing needed info
6604 * @napi_budget: Used to determine if we are in netpoll
6605 *
6606 * returns true if ring is completely cleaned
6607 **/
6608 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6609 {
6610 struct igb_adapter *adapter = q_vector->adapter;
6611 struct igb_ring *tx_ring = q_vector->tx.ring;
6612 struct igb_tx_buffer *tx_buffer;
6613 union e1000_adv_tx_desc *tx_desc;
6614 unsigned int total_bytes = 0, total_packets = 0;
6615 unsigned int budget = q_vector->tx.work_limit;
6616 unsigned int i = tx_ring->next_to_clean;
6617
6618 if (test_bit(__IGB_DOWN, &adapter->state))
6619 return true;
6620
6621 tx_buffer = &tx_ring->tx_buffer_info[i];
6622 tx_desc = IGB_TX_DESC(tx_ring, i);
6623 i -= tx_ring->count;
6624
6625 do {
6626 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6627
6628 /* if next_to_watch is not set then there is no work pending */
6629 if (!eop_desc)
6630 break;
6631
6632 /* prevent any other reads prior to eop_desc */
6633 read_barrier_depends();
6634
6635 /* if DD is not set pending work has not been completed */
6636 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6637 break;
6638
6639 /* clear next_to_watch to prevent false hangs */
6640 tx_buffer->next_to_watch = NULL;
6641
6642 /* update the statistics for this packet */
6643 total_bytes += tx_buffer->bytecount;
6644 total_packets += tx_buffer->gso_segs;
6645
6646 /* free the skb */
6647 napi_consume_skb(tx_buffer->skb, napi_budget);
6648
6649 /* unmap skb header data */
6650 dma_unmap_single(tx_ring->dev,
6651 dma_unmap_addr(tx_buffer, dma),
6652 dma_unmap_len(tx_buffer, len),
6653 DMA_TO_DEVICE);
6654
6655 /* clear tx_buffer data */
6656 tx_buffer->skb = NULL;
6657 dma_unmap_len_set(tx_buffer, len, 0);
6658
6659 /* clear last DMA location and unmap remaining buffers */
6660 while (tx_desc != eop_desc) {
6661 tx_buffer++;
6662 tx_desc++;
6663 i++;
6664 if (unlikely(!i)) {
6665 i -= tx_ring->count;
6666 tx_buffer = tx_ring->tx_buffer_info;
6667 tx_desc = IGB_TX_DESC(tx_ring, 0);
6668 }
6669
6670 /* unmap any remaining paged data */
6671 if (dma_unmap_len(tx_buffer, len)) {
6672 dma_unmap_page(tx_ring->dev,
6673 dma_unmap_addr(tx_buffer, dma),
6674 dma_unmap_len(tx_buffer, len),
6675 DMA_TO_DEVICE);
6676 dma_unmap_len_set(tx_buffer, len, 0);
6677 }
6678 }
6679
6680 /* move us one more past the eop_desc for start of next pkt */
6681 tx_buffer++;
6682 tx_desc++;
6683 i++;
6684 if (unlikely(!i)) {
6685 i -= tx_ring->count;
6686 tx_buffer = tx_ring->tx_buffer_info;
6687 tx_desc = IGB_TX_DESC(tx_ring, 0);
6688 }
6689
6690 /* issue prefetch for next Tx descriptor */
6691 prefetch(tx_desc);
6692
6693 /* update budget accounting */
6694 budget--;
6695 } while (likely(budget));
6696
6697 netdev_tx_completed_queue(txring_txq(tx_ring),
6698 total_packets, total_bytes);
6699 i += tx_ring->count;
6700 tx_ring->next_to_clean = i;
6701 u64_stats_update_begin(&tx_ring->tx_syncp);
6702 tx_ring->tx_stats.bytes += total_bytes;
6703 tx_ring->tx_stats.packets += total_packets;
6704 u64_stats_update_end(&tx_ring->tx_syncp);
6705 q_vector->tx.total_bytes += total_bytes;
6706 q_vector->tx.total_packets += total_packets;
6707
6708 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6709 struct e1000_hw *hw = &adapter->hw;
6710
6711 /* Detect a transmit hang in hardware, this serializes the
6712 * check with the clearing of time_stamp and movement of i
6713 */
6714 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6715 if (tx_buffer->next_to_watch &&
6716 time_after(jiffies, tx_buffer->time_stamp +
6717 (adapter->tx_timeout_factor * HZ)) &&
6718 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6719
6720 /* detected Tx unit hang */
6721 dev_err(tx_ring->dev,
6722 "Detected Tx Unit Hang\n"
6723 " Tx Queue <%d>\n"
6724 " TDH <%x>\n"
6725 " TDT <%x>\n"
6726 " next_to_use <%x>\n"
6727 " next_to_clean <%x>\n"
6728 "buffer_info[next_to_clean]\n"
6729 " time_stamp <%lx>\n"
6730 " next_to_watch <%p>\n"
6731 " jiffies <%lx>\n"
6732 " desc.status <%x>\n",
6733 tx_ring->queue_index,
6734 rd32(E1000_TDH(tx_ring->reg_idx)),
6735 readl(tx_ring->tail),
6736 tx_ring->next_to_use,
6737 tx_ring->next_to_clean,
6738 tx_buffer->time_stamp,
6739 tx_buffer->next_to_watch,
6740 jiffies,
6741 tx_buffer->next_to_watch->wb.status);
6742 netif_stop_subqueue(tx_ring->netdev,
6743 tx_ring->queue_index);
6744
6745 /* we are about to reset, no point in enabling stuff */
6746 return true;
6747 }
6748 }
6749
6750 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6751 if (unlikely(total_packets &&
6752 netif_carrier_ok(tx_ring->netdev) &&
6753 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6754 /* Make sure that anybody stopping the queue after this
6755 * sees the new next_to_clean.
6756 */
6757 smp_mb();
6758 if (__netif_subqueue_stopped(tx_ring->netdev,
6759 tx_ring->queue_index) &&
6760 !(test_bit(__IGB_DOWN, &adapter->state))) {
6761 netif_wake_subqueue(tx_ring->netdev,
6762 tx_ring->queue_index);
6763
6764 u64_stats_update_begin(&tx_ring->tx_syncp);
6765 tx_ring->tx_stats.restart_queue++;
6766 u64_stats_update_end(&tx_ring->tx_syncp);
6767 }
6768 }
6769
6770 return !!budget;
6771 }
6772
6773 /**
6774 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6775 * @rx_ring: rx descriptor ring to store buffers on
6776 * @old_buff: donor buffer to have page reused
6777 *
6778 * Synchronizes page for reuse by the adapter
6779 **/
6780 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6781 struct igb_rx_buffer *old_buff)
6782 {
6783 struct igb_rx_buffer *new_buff;
6784 u16 nta = rx_ring->next_to_alloc;
6785
6786 new_buff = &rx_ring->rx_buffer_info[nta];
6787
6788 /* update, and store next to alloc */
6789 nta++;
6790 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6791
6792 /* transfer page from old buffer to new buffer */
6793 *new_buff = *old_buff;
6794
6795 /* sync the buffer for use by the device */
6796 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6797 old_buff->page_offset,
6798 IGB_RX_BUFSZ,
6799 DMA_FROM_DEVICE);
6800 }
6801
6802 static inline bool igb_page_is_reserved(struct page *page)
6803 {
6804 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6805 }
6806
6807 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6808 struct page *page,
6809 unsigned int truesize)
6810 {
6811 /* avoid re-using remote pages */
6812 if (unlikely(igb_page_is_reserved(page)))
6813 return false;
6814
6815 #if (PAGE_SIZE < 8192)
6816 /* if we are only owner of page we can reuse it */
6817 if (unlikely(page_count(page) != 1))
6818 return false;
6819
6820 /* flip page offset to other buffer */
6821 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6822 #else
6823 /* move offset up to the next cache line */
6824 rx_buffer->page_offset += truesize;
6825
6826 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6827 return false;
6828 #endif
6829
6830 /* Even if we own the page, we are not allowed to use atomic_set()
6831 * This would break get_page_unless_zero() users.
6832 */
6833 page_ref_inc(page);
6834
6835 return true;
6836 }
6837
6838 /**
6839 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6840 * @rx_ring: rx descriptor ring to transact packets on
6841 * @rx_buffer: buffer containing page to add
6842 * @rx_desc: descriptor containing length of buffer written by hardware
6843 * @skb: sk_buff to place the data into
6844 *
6845 * This function will add the data contained in rx_buffer->page to the skb.
6846 * This is done either through a direct copy if the data in the buffer is
6847 * less than the skb header size, otherwise it will just attach the page as
6848 * a frag to the skb.
6849 *
6850 * The function will then update the page offset if necessary and return
6851 * true if the buffer can be reused by the adapter.
6852 **/
6853 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6854 struct igb_rx_buffer *rx_buffer,
6855 unsigned int size,
6856 union e1000_adv_rx_desc *rx_desc,
6857 struct sk_buff *skb)
6858 {
6859 struct page *page = rx_buffer->page;
6860 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6861 #if (PAGE_SIZE < 8192)
6862 unsigned int truesize = IGB_RX_BUFSZ;
6863 #else
6864 unsigned int truesize = SKB_DATA_ALIGN(size);
6865 #endif
6866 unsigned int pull_len;
6867
6868 if (unlikely(skb_is_nonlinear(skb)))
6869 goto add_tail_frag;
6870
6871 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6872 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6873 va += IGB_TS_HDR_LEN;
6874 size -= IGB_TS_HDR_LEN;
6875 }
6876
6877 if (likely(size <= IGB_RX_HDR_LEN)) {
6878 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6879
6880 /* page is not reserved, we can reuse buffer as-is */
6881 if (likely(!igb_page_is_reserved(page)))
6882 return true;
6883
6884 /* this page cannot be reused so discard it */
6885 __free_page(page);
6886 return false;
6887 }
6888
6889 /* we need the header to contain the greater of either ETH_HLEN or
6890 * 60 bytes if the skb->len is less than 60 for skb_pad.
6891 */
6892 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6893
6894 /* align pull length to size of long to optimize memcpy performance */
6895 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6896
6897 /* update all of the pointers */
6898 va += pull_len;
6899 size -= pull_len;
6900
6901 add_tail_frag:
6902 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6903 (unsigned long)va & ~PAGE_MASK, size, truesize);
6904
6905 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6906 }
6907
6908 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6909 union e1000_adv_rx_desc *rx_desc,
6910 struct sk_buff *skb)
6911 {
6912 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6913 struct igb_rx_buffer *rx_buffer;
6914 struct page *page;
6915
6916 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6917 page = rx_buffer->page;
6918 prefetchw(page);
6919
6920 if (likely(!skb)) {
6921 void *page_addr = page_address(page) +
6922 rx_buffer->page_offset;
6923
6924 /* prefetch first cache line of first page */
6925 prefetch(page_addr);
6926 #if L1_CACHE_BYTES < 128
6927 prefetch(page_addr + L1_CACHE_BYTES);
6928 #endif
6929
6930 /* allocate a skb to store the frags */
6931 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6932 if (unlikely(!skb)) {
6933 rx_ring->rx_stats.alloc_failed++;
6934 return NULL;
6935 }
6936
6937 /* we will be copying header into skb->data in
6938 * pskb_may_pull so it is in our interest to prefetch
6939 * it now to avoid a possible cache miss
6940 */
6941 prefetchw(skb->data);
6942 }
6943
6944 /* we are reusing so sync this buffer for CPU use */
6945 dma_sync_single_range_for_cpu(rx_ring->dev,
6946 rx_buffer->dma,
6947 rx_buffer->page_offset,
6948 size,
6949 DMA_FROM_DEVICE);
6950
6951 /* pull page into skb */
6952 if (igb_add_rx_frag(rx_ring, rx_buffer, size, rx_desc, skb)) {
6953 /* hand second half of page back to the ring */
6954 igb_reuse_rx_page(rx_ring, rx_buffer);
6955 } else {
6956 /* we are not reusing the buffer so unmap it */
6957 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6958 PAGE_SIZE, DMA_FROM_DEVICE);
6959 }
6960
6961 /* clear contents of rx_buffer */
6962 rx_buffer->page = NULL;
6963
6964 return skb;
6965 }
6966
6967 static inline void igb_rx_checksum(struct igb_ring *ring,
6968 union e1000_adv_rx_desc *rx_desc,
6969 struct sk_buff *skb)
6970 {
6971 skb_checksum_none_assert(skb);
6972
6973 /* Ignore Checksum bit is set */
6974 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6975 return;
6976
6977 /* Rx checksum disabled via ethtool */
6978 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6979 return;
6980
6981 /* TCP/UDP checksum error bit is set */
6982 if (igb_test_staterr(rx_desc,
6983 E1000_RXDEXT_STATERR_TCPE |
6984 E1000_RXDEXT_STATERR_IPE)) {
6985 /* work around errata with sctp packets where the TCPE aka
6986 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6987 * packets, (aka let the stack check the crc32c)
6988 */
6989 if (!((skb->len == 60) &&
6990 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6991 u64_stats_update_begin(&ring->rx_syncp);
6992 ring->rx_stats.csum_err++;
6993 u64_stats_update_end(&ring->rx_syncp);
6994 }
6995 /* let the stack verify checksum errors */
6996 return;
6997 }
6998 /* It must be a TCP or UDP packet with a valid checksum */
6999 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7000 E1000_RXD_STAT_UDPCS))
7001 skb->ip_summed = CHECKSUM_UNNECESSARY;
7002
7003 dev_dbg(ring->dev, "cksum success: bits %08X\n",
7004 le32_to_cpu(rx_desc->wb.upper.status_error));
7005 }
7006
7007 static inline void igb_rx_hash(struct igb_ring *ring,
7008 union e1000_adv_rx_desc *rx_desc,
7009 struct sk_buff *skb)
7010 {
7011 if (ring->netdev->features & NETIF_F_RXHASH)
7012 skb_set_hash(skb,
7013 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7014 PKT_HASH_TYPE_L3);
7015 }
7016
7017 /**
7018 * igb_is_non_eop - process handling of non-EOP buffers
7019 * @rx_ring: Rx ring being processed
7020 * @rx_desc: Rx descriptor for current buffer
7021 * @skb: current socket buffer containing buffer in progress
7022 *
7023 * This function updates next to clean. If the buffer is an EOP buffer
7024 * this function exits returning false, otherwise it will place the
7025 * sk_buff in the next buffer to be chained and return true indicating
7026 * that this is in fact a non-EOP buffer.
7027 **/
7028 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7029 union e1000_adv_rx_desc *rx_desc)
7030 {
7031 u32 ntc = rx_ring->next_to_clean + 1;
7032
7033 /* fetch, update, and store next to clean */
7034 ntc = (ntc < rx_ring->count) ? ntc : 0;
7035 rx_ring->next_to_clean = ntc;
7036
7037 prefetch(IGB_RX_DESC(rx_ring, ntc));
7038
7039 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7040 return false;
7041
7042 return true;
7043 }
7044
7045 /**
7046 * igb_cleanup_headers - Correct corrupted or empty headers
7047 * @rx_ring: rx descriptor ring packet is being transacted on
7048 * @rx_desc: pointer to the EOP Rx descriptor
7049 * @skb: pointer to current skb being fixed
7050 *
7051 * Address the case where we are pulling data in on pages only
7052 * and as such no data is present in the skb header.
7053 *
7054 * In addition if skb is not at least 60 bytes we need to pad it so that
7055 * it is large enough to qualify as a valid Ethernet frame.
7056 *
7057 * Returns true if an error was encountered and skb was freed.
7058 **/
7059 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7060 union e1000_adv_rx_desc *rx_desc,
7061 struct sk_buff *skb)
7062 {
7063 if (unlikely((igb_test_staterr(rx_desc,
7064 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7065 struct net_device *netdev = rx_ring->netdev;
7066 if (!(netdev->features & NETIF_F_RXALL)) {
7067 dev_kfree_skb_any(skb);
7068 return true;
7069 }
7070 }
7071
7072 /* if eth_skb_pad returns an error the skb was freed */
7073 if (eth_skb_pad(skb))
7074 return true;
7075
7076 return false;
7077 }
7078
7079 /**
7080 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7081 * @rx_ring: rx descriptor ring packet is being transacted on
7082 * @rx_desc: pointer to the EOP Rx descriptor
7083 * @skb: pointer to current skb being populated
7084 *
7085 * This function checks the ring, descriptor, and packet information in
7086 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7087 * other fields within the skb.
7088 **/
7089 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7090 union e1000_adv_rx_desc *rx_desc,
7091 struct sk_buff *skb)
7092 {
7093 struct net_device *dev = rx_ring->netdev;
7094
7095 igb_rx_hash(rx_ring, rx_desc, skb);
7096
7097 igb_rx_checksum(rx_ring, rx_desc, skb);
7098
7099 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7100 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7101 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7102
7103 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7104 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7105 u16 vid;
7106
7107 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7108 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7109 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7110 else
7111 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7112
7113 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7114 }
7115
7116 skb_record_rx_queue(skb, rx_ring->queue_index);
7117
7118 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7119 }
7120
7121 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7122 {
7123 struct igb_ring *rx_ring = q_vector->rx.ring;
7124 struct sk_buff *skb = rx_ring->skb;
7125 unsigned int total_bytes = 0, total_packets = 0;
7126 u16 cleaned_count = igb_desc_unused(rx_ring);
7127
7128 while (likely(total_packets < budget)) {
7129 union e1000_adv_rx_desc *rx_desc;
7130
7131 /* return some buffers to hardware, one at a time is too slow */
7132 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7133 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7134 cleaned_count = 0;
7135 }
7136
7137 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7138
7139 if (!rx_desc->wb.upper.status_error)
7140 break;
7141
7142 /* This memory barrier is needed to keep us from reading
7143 * any other fields out of the rx_desc until we know the
7144 * descriptor has been written back
7145 */
7146 dma_rmb();
7147
7148 /* retrieve a buffer from the ring */
7149 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7150
7151 /* exit if we failed to retrieve a buffer */
7152 if (!skb)
7153 break;
7154
7155 cleaned_count++;
7156
7157 /* fetch next buffer in frame if non-eop */
7158 if (igb_is_non_eop(rx_ring, rx_desc))
7159 continue;
7160
7161 /* verify the packet layout is correct */
7162 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7163 skb = NULL;
7164 continue;
7165 }
7166
7167 /* probably a little skewed due to removing CRC */
7168 total_bytes += skb->len;
7169
7170 /* populate checksum, timestamp, VLAN, and protocol */
7171 igb_process_skb_fields(rx_ring, rx_desc, skb);
7172
7173 napi_gro_receive(&q_vector->napi, skb);
7174
7175 /* reset skb pointer */
7176 skb = NULL;
7177
7178 /* update budget accounting */
7179 total_packets++;
7180 }
7181
7182 /* place incomplete frames back on ring for completion */
7183 rx_ring->skb = skb;
7184
7185 u64_stats_update_begin(&rx_ring->rx_syncp);
7186 rx_ring->rx_stats.packets += total_packets;
7187 rx_ring->rx_stats.bytes += total_bytes;
7188 u64_stats_update_end(&rx_ring->rx_syncp);
7189 q_vector->rx.total_packets += total_packets;
7190 q_vector->rx.total_bytes += total_bytes;
7191
7192 if (cleaned_count)
7193 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7194
7195 return total_packets;
7196 }
7197
7198 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7199 struct igb_rx_buffer *bi)
7200 {
7201 struct page *page = bi->page;
7202 dma_addr_t dma;
7203
7204 /* since we are recycling buffers we should seldom need to alloc */
7205 if (likely(page))
7206 return true;
7207
7208 /* alloc new page for storage */
7209 page = dev_alloc_page();
7210 if (unlikely(!page)) {
7211 rx_ring->rx_stats.alloc_failed++;
7212 return false;
7213 }
7214
7215 /* map page for use */
7216 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7217
7218 /* if mapping failed free memory back to system since
7219 * there isn't much point in holding memory we can't use
7220 */
7221 if (dma_mapping_error(rx_ring->dev, dma)) {
7222 __free_page(page);
7223
7224 rx_ring->rx_stats.alloc_failed++;
7225 return false;
7226 }
7227
7228 bi->dma = dma;
7229 bi->page = page;
7230 bi->page_offset = 0;
7231
7232 return true;
7233 }
7234
7235 /**
7236 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7237 * @adapter: address of board private structure
7238 **/
7239 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7240 {
7241 union e1000_adv_rx_desc *rx_desc;
7242 struct igb_rx_buffer *bi;
7243 u16 i = rx_ring->next_to_use;
7244
7245 /* nothing to do */
7246 if (!cleaned_count)
7247 return;
7248
7249 rx_desc = IGB_RX_DESC(rx_ring, i);
7250 bi = &rx_ring->rx_buffer_info[i];
7251 i -= rx_ring->count;
7252
7253 do {
7254 if (!igb_alloc_mapped_page(rx_ring, bi))
7255 break;
7256
7257 /* Refresh the desc even if buffer_addrs didn't change
7258 * because each write-back erases this info.
7259 */
7260 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7261
7262 rx_desc++;
7263 bi++;
7264 i++;
7265 if (unlikely(!i)) {
7266 rx_desc = IGB_RX_DESC(rx_ring, 0);
7267 bi = rx_ring->rx_buffer_info;
7268 i -= rx_ring->count;
7269 }
7270
7271 /* clear the status bits for the next_to_use descriptor */
7272 rx_desc->wb.upper.status_error = 0;
7273
7274 cleaned_count--;
7275 } while (cleaned_count);
7276
7277 i += rx_ring->count;
7278
7279 if (rx_ring->next_to_use != i) {
7280 /* record the next descriptor to use */
7281 rx_ring->next_to_use = i;
7282
7283 /* update next to alloc since we have filled the ring */
7284 rx_ring->next_to_alloc = i;
7285
7286 /* Force memory writes to complete before letting h/w
7287 * know there are new descriptors to fetch. (Only
7288 * applicable for weak-ordered memory model archs,
7289 * such as IA-64).
7290 */
7291 wmb();
7292 writel(i, rx_ring->tail);
7293 }
7294 }
7295
7296 /**
7297 * igb_mii_ioctl -
7298 * @netdev:
7299 * @ifreq:
7300 * @cmd:
7301 **/
7302 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7303 {
7304 struct igb_adapter *adapter = netdev_priv(netdev);
7305 struct mii_ioctl_data *data = if_mii(ifr);
7306
7307 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7308 return -EOPNOTSUPP;
7309
7310 switch (cmd) {
7311 case SIOCGMIIPHY:
7312 data->phy_id = adapter->hw.phy.addr;
7313 break;
7314 case SIOCGMIIREG:
7315 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7316 &data->val_out))
7317 return -EIO;
7318 break;
7319 case SIOCSMIIREG:
7320 default:
7321 return -EOPNOTSUPP;
7322 }
7323 return 0;
7324 }
7325
7326 /**
7327 * igb_ioctl -
7328 * @netdev:
7329 * @ifreq:
7330 * @cmd:
7331 **/
7332 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7333 {
7334 switch (cmd) {
7335 case SIOCGMIIPHY:
7336 case SIOCGMIIREG:
7337 case SIOCSMIIREG:
7338 return igb_mii_ioctl(netdev, ifr, cmd);
7339 case SIOCGHWTSTAMP:
7340 return igb_ptp_get_ts_config(netdev, ifr);
7341 case SIOCSHWTSTAMP:
7342 return igb_ptp_set_ts_config(netdev, ifr);
7343 default:
7344 return -EOPNOTSUPP;
7345 }
7346 }
7347
7348 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7349 {
7350 struct igb_adapter *adapter = hw->back;
7351
7352 pci_read_config_word(adapter->pdev, reg, value);
7353 }
7354
7355 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7356 {
7357 struct igb_adapter *adapter = hw->back;
7358
7359 pci_write_config_word(adapter->pdev, reg, *value);
7360 }
7361
7362 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7363 {
7364 struct igb_adapter *adapter = hw->back;
7365
7366 if (pcie_capability_read_word(adapter->pdev, reg, value))
7367 return -E1000_ERR_CONFIG;
7368
7369 return 0;
7370 }
7371
7372 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7373 {
7374 struct igb_adapter *adapter = hw->back;
7375
7376 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7377 return -E1000_ERR_CONFIG;
7378
7379 return 0;
7380 }
7381
7382 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7383 {
7384 struct igb_adapter *adapter = netdev_priv(netdev);
7385 struct e1000_hw *hw = &adapter->hw;
7386 u32 ctrl, rctl;
7387 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7388
7389 if (enable) {
7390 /* enable VLAN tag insert/strip */
7391 ctrl = rd32(E1000_CTRL);
7392 ctrl |= E1000_CTRL_VME;
7393 wr32(E1000_CTRL, ctrl);
7394
7395 /* Disable CFI check */
7396 rctl = rd32(E1000_RCTL);
7397 rctl &= ~E1000_RCTL_CFIEN;
7398 wr32(E1000_RCTL, rctl);
7399 } else {
7400 /* disable VLAN tag insert/strip */
7401 ctrl = rd32(E1000_CTRL);
7402 ctrl &= ~E1000_CTRL_VME;
7403 wr32(E1000_CTRL, ctrl);
7404 }
7405
7406 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7407 }
7408
7409 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7410 __be16 proto, u16 vid)
7411 {
7412 struct igb_adapter *adapter = netdev_priv(netdev);
7413 struct e1000_hw *hw = &adapter->hw;
7414 int pf_id = adapter->vfs_allocated_count;
7415
7416 /* add the filter since PF can receive vlans w/o entry in vlvf */
7417 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7418 igb_vfta_set(hw, vid, pf_id, true, !!vid);
7419
7420 set_bit(vid, adapter->active_vlans);
7421
7422 return 0;
7423 }
7424
7425 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7426 __be16 proto, u16 vid)
7427 {
7428 struct igb_adapter *adapter = netdev_priv(netdev);
7429 int pf_id = adapter->vfs_allocated_count;
7430 struct e1000_hw *hw = &adapter->hw;
7431
7432 /* remove VID from filter table */
7433 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7434 igb_vfta_set(hw, vid, pf_id, false, true);
7435
7436 clear_bit(vid, adapter->active_vlans);
7437
7438 return 0;
7439 }
7440
7441 static void igb_restore_vlan(struct igb_adapter *adapter)
7442 {
7443 u16 vid = 1;
7444
7445 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7446 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7447
7448 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7449 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7450 }
7451
7452 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7453 {
7454 struct pci_dev *pdev = adapter->pdev;
7455 struct e1000_mac_info *mac = &adapter->hw.mac;
7456
7457 mac->autoneg = 0;
7458
7459 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7460 * for the switch() below to work
7461 */
7462 if ((spd & 1) || (dplx & ~1))
7463 goto err_inval;
7464
7465 /* Fiber NIC's only allow 1000 gbps Full duplex
7466 * and 100Mbps Full duplex for 100baseFx sfp
7467 */
7468 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7469 switch (spd + dplx) {
7470 case SPEED_10 + DUPLEX_HALF:
7471 case SPEED_10 + DUPLEX_FULL:
7472 case SPEED_100 + DUPLEX_HALF:
7473 goto err_inval;
7474 default:
7475 break;
7476 }
7477 }
7478
7479 switch (spd + dplx) {
7480 case SPEED_10 + DUPLEX_HALF:
7481 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7482 break;
7483 case SPEED_10 + DUPLEX_FULL:
7484 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7485 break;
7486 case SPEED_100 + DUPLEX_HALF:
7487 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7488 break;
7489 case SPEED_100 + DUPLEX_FULL:
7490 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7491 break;
7492 case SPEED_1000 + DUPLEX_FULL:
7493 mac->autoneg = 1;
7494 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7495 break;
7496 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7497 default:
7498 goto err_inval;
7499 }
7500
7501 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7502 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7503
7504 return 0;
7505
7506 err_inval:
7507 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7508 return -EINVAL;
7509 }
7510
7511 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7512 bool runtime)
7513 {
7514 struct net_device *netdev = pci_get_drvdata(pdev);
7515 struct igb_adapter *adapter = netdev_priv(netdev);
7516 struct e1000_hw *hw = &adapter->hw;
7517 u32 ctrl, rctl, status;
7518 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7519 #ifdef CONFIG_PM
7520 int retval = 0;
7521 #endif
7522
7523 netif_device_detach(netdev);
7524
7525 if (netif_running(netdev))
7526 __igb_close(netdev, true);
7527
7528 igb_ptp_suspend(adapter);
7529
7530 igb_clear_interrupt_scheme(adapter);
7531
7532 #ifdef CONFIG_PM
7533 retval = pci_save_state(pdev);
7534 if (retval)
7535 return retval;
7536 #endif
7537
7538 status = rd32(E1000_STATUS);
7539 if (status & E1000_STATUS_LU)
7540 wufc &= ~E1000_WUFC_LNKC;
7541
7542 if (wufc) {
7543 igb_setup_rctl(adapter);
7544 igb_set_rx_mode(netdev);
7545
7546 /* turn on all-multi mode if wake on multicast is enabled */
7547 if (wufc & E1000_WUFC_MC) {
7548 rctl = rd32(E1000_RCTL);
7549 rctl |= E1000_RCTL_MPE;
7550 wr32(E1000_RCTL, rctl);
7551 }
7552
7553 ctrl = rd32(E1000_CTRL);
7554 /* advertise wake from D3Cold */
7555 #define E1000_CTRL_ADVD3WUC 0x00100000
7556 /* phy power management enable */
7557 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7558 ctrl |= E1000_CTRL_ADVD3WUC;
7559 wr32(E1000_CTRL, ctrl);
7560
7561 /* Allow time for pending master requests to run */
7562 igb_disable_pcie_master(hw);
7563
7564 wr32(E1000_WUC, E1000_WUC_PME_EN);
7565 wr32(E1000_WUFC, wufc);
7566 } else {
7567 wr32(E1000_WUC, 0);
7568 wr32(E1000_WUFC, 0);
7569 }
7570
7571 *enable_wake = wufc || adapter->en_mng_pt;
7572 if (!*enable_wake)
7573 igb_power_down_link(adapter);
7574 else
7575 igb_power_up_link(adapter);
7576
7577 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7578 * would have already happened in close and is redundant.
7579 */
7580 igb_release_hw_control(adapter);
7581
7582 pci_disable_device(pdev);
7583
7584 return 0;
7585 }
7586
7587 #ifdef CONFIG_PM
7588 #ifdef CONFIG_PM_SLEEP
7589 static int igb_suspend(struct device *dev)
7590 {
7591 int retval;
7592 bool wake;
7593 struct pci_dev *pdev = to_pci_dev(dev);
7594
7595 retval = __igb_shutdown(pdev, &wake, 0);
7596 if (retval)
7597 return retval;
7598
7599 if (wake) {
7600 pci_prepare_to_sleep(pdev);
7601 } else {
7602 pci_wake_from_d3(pdev, false);
7603 pci_set_power_state(pdev, PCI_D3hot);
7604 }
7605
7606 return 0;
7607 }
7608 #endif /* CONFIG_PM_SLEEP */
7609
7610 static int igb_resume(struct device *dev)
7611 {
7612 struct pci_dev *pdev = to_pci_dev(dev);
7613 struct net_device *netdev = pci_get_drvdata(pdev);
7614 struct igb_adapter *adapter = netdev_priv(netdev);
7615 struct e1000_hw *hw = &adapter->hw;
7616 u32 err;
7617
7618 pci_set_power_state(pdev, PCI_D0);
7619 pci_restore_state(pdev);
7620 pci_save_state(pdev);
7621
7622 if (!pci_device_is_present(pdev))
7623 return -ENODEV;
7624 err = pci_enable_device_mem(pdev);
7625 if (err) {
7626 dev_err(&pdev->dev,
7627 "igb: Cannot enable PCI device from suspend\n");
7628 return err;
7629 }
7630 pci_set_master(pdev);
7631
7632 pci_enable_wake(pdev, PCI_D3hot, 0);
7633 pci_enable_wake(pdev, PCI_D3cold, 0);
7634
7635 if (igb_init_interrupt_scheme(adapter, true)) {
7636 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7637 return -ENOMEM;
7638 }
7639
7640 igb_reset(adapter);
7641
7642 /* let the f/w know that the h/w is now under the control of the
7643 * driver.
7644 */
7645 igb_get_hw_control(adapter);
7646
7647 wr32(E1000_WUS, ~0);
7648
7649 if (netdev->flags & IFF_UP) {
7650 rtnl_lock();
7651 err = __igb_open(netdev, true);
7652 rtnl_unlock();
7653 if (err)
7654 return err;
7655 }
7656
7657 netif_device_attach(netdev);
7658 return 0;
7659 }
7660
7661 static int igb_runtime_idle(struct device *dev)
7662 {
7663 struct pci_dev *pdev = to_pci_dev(dev);
7664 struct net_device *netdev = pci_get_drvdata(pdev);
7665 struct igb_adapter *adapter = netdev_priv(netdev);
7666
7667 if (!igb_has_link(adapter))
7668 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7669
7670 return -EBUSY;
7671 }
7672
7673 static int igb_runtime_suspend(struct device *dev)
7674 {
7675 struct pci_dev *pdev = to_pci_dev(dev);
7676 int retval;
7677 bool wake;
7678
7679 retval = __igb_shutdown(pdev, &wake, 1);
7680 if (retval)
7681 return retval;
7682
7683 if (wake) {
7684 pci_prepare_to_sleep(pdev);
7685 } else {
7686 pci_wake_from_d3(pdev, false);
7687 pci_set_power_state(pdev, PCI_D3hot);
7688 }
7689
7690 return 0;
7691 }
7692
7693 static int igb_runtime_resume(struct device *dev)
7694 {
7695 return igb_resume(dev);
7696 }
7697 #endif /* CONFIG_PM */
7698
7699 static void igb_shutdown(struct pci_dev *pdev)
7700 {
7701 bool wake;
7702
7703 __igb_shutdown(pdev, &wake, 0);
7704
7705 if (system_state == SYSTEM_POWER_OFF) {
7706 pci_wake_from_d3(pdev, wake);
7707 pci_set_power_state(pdev, PCI_D3hot);
7708 }
7709 }
7710
7711 #ifdef CONFIG_PCI_IOV
7712 static int igb_sriov_reinit(struct pci_dev *dev)
7713 {
7714 struct net_device *netdev = pci_get_drvdata(dev);
7715 struct igb_adapter *adapter = netdev_priv(netdev);
7716 struct pci_dev *pdev = adapter->pdev;
7717
7718 rtnl_lock();
7719
7720 if (netif_running(netdev))
7721 igb_close(netdev);
7722 else
7723 igb_reset(adapter);
7724
7725 igb_clear_interrupt_scheme(adapter);
7726
7727 igb_init_queue_configuration(adapter);
7728
7729 if (igb_init_interrupt_scheme(adapter, true)) {
7730 rtnl_unlock();
7731 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7732 return -ENOMEM;
7733 }
7734
7735 if (netif_running(netdev))
7736 igb_open(netdev);
7737
7738 rtnl_unlock();
7739
7740 return 0;
7741 }
7742
7743 static int igb_pci_disable_sriov(struct pci_dev *dev)
7744 {
7745 int err = igb_disable_sriov(dev);
7746
7747 if (!err)
7748 err = igb_sriov_reinit(dev);
7749
7750 return err;
7751 }
7752
7753 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7754 {
7755 int err = igb_enable_sriov(dev, num_vfs);
7756
7757 if (err)
7758 goto out;
7759
7760 err = igb_sriov_reinit(dev);
7761 if (!err)
7762 return num_vfs;
7763
7764 out:
7765 return err;
7766 }
7767
7768 #endif
7769 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7770 {
7771 #ifdef CONFIG_PCI_IOV
7772 if (num_vfs == 0)
7773 return igb_pci_disable_sriov(dev);
7774 else
7775 return igb_pci_enable_sriov(dev, num_vfs);
7776 #endif
7777 return 0;
7778 }
7779
7780 #ifdef CONFIG_NET_POLL_CONTROLLER
7781 /* Polling 'interrupt' - used by things like netconsole to send skbs
7782 * without having to re-enable interrupts. It's not called while
7783 * the interrupt routine is executing.
7784 */
7785 static void igb_netpoll(struct net_device *netdev)
7786 {
7787 struct igb_adapter *adapter = netdev_priv(netdev);
7788 struct e1000_hw *hw = &adapter->hw;
7789 struct igb_q_vector *q_vector;
7790 int i;
7791
7792 for (i = 0; i < adapter->num_q_vectors; i++) {
7793 q_vector = adapter->q_vector[i];
7794 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7795 wr32(E1000_EIMC, q_vector->eims_value);
7796 else
7797 igb_irq_disable(adapter);
7798 napi_schedule(&q_vector->napi);
7799 }
7800 }
7801 #endif /* CONFIG_NET_POLL_CONTROLLER */
7802
7803 /**
7804 * igb_io_error_detected - called when PCI error is detected
7805 * @pdev: Pointer to PCI device
7806 * @state: The current pci connection state
7807 *
7808 * This function is called after a PCI bus error affecting
7809 * this device has been detected.
7810 **/
7811 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7812 pci_channel_state_t state)
7813 {
7814 struct net_device *netdev = pci_get_drvdata(pdev);
7815 struct igb_adapter *adapter = netdev_priv(netdev);
7816
7817 netif_device_detach(netdev);
7818
7819 if (state == pci_channel_io_perm_failure)
7820 return PCI_ERS_RESULT_DISCONNECT;
7821
7822 if (netif_running(netdev))
7823 igb_down(adapter);
7824 pci_disable_device(pdev);
7825
7826 /* Request a slot slot reset. */
7827 return PCI_ERS_RESULT_NEED_RESET;
7828 }
7829
7830 /**
7831 * igb_io_slot_reset - called after the pci bus has been reset.
7832 * @pdev: Pointer to PCI device
7833 *
7834 * Restart the card from scratch, as if from a cold-boot. Implementation
7835 * resembles the first-half of the igb_resume routine.
7836 **/
7837 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7838 {
7839 struct net_device *netdev = pci_get_drvdata(pdev);
7840 struct igb_adapter *adapter = netdev_priv(netdev);
7841 struct e1000_hw *hw = &adapter->hw;
7842 pci_ers_result_t result;
7843 int err;
7844
7845 if (pci_enable_device_mem(pdev)) {
7846 dev_err(&pdev->dev,
7847 "Cannot re-enable PCI device after reset.\n");
7848 result = PCI_ERS_RESULT_DISCONNECT;
7849 } else {
7850 pci_set_master(pdev);
7851 pci_restore_state(pdev);
7852 pci_save_state(pdev);
7853
7854 pci_enable_wake(pdev, PCI_D3hot, 0);
7855 pci_enable_wake(pdev, PCI_D3cold, 0);
7856
7857 igb_reset(adapter);
7858 wr32(E1000_WUS, ~0);
7859 result = PCI_ERS_RESULT_RECOVERED;
7860 }
7861
7862 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7863 if (err) {
7864 dev_err(&pdev->dev,
7865 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7866 err);
7867 /* non-fatal, continue */
7868 }
7869
7870 return result;
7871 }
7872
7873 /**
7874 * igb_io_resume - called when traffic can start flowing again.
7875 * @pdev: Pointer to PCI device
7876 *
7877 * This callback is called when the error recovery driver tells us that
7878 * its OK to resume normal operation. Implementation resembles the
7879 * second-half of the igb_resume routine.
7880 */
7881 static void igb_io_resume(struct pci_dev *pdev)
7882 {
7883 struct net_device *netdev = pci_get_drvdata(pdev);
7884 struct igb_adapter *adapter = netdev_priv(netdev);
7885
7886 if (netif_running(netdev)) {
7887 if (igb_up(adapter)) {
7888 dev_err(&pdev->dev, "igb_up failed after reset\n");
7889 return;
7890 }
7891 }
7892
7893 netif_device_attach(netdev);
7894
7895 /* let the f/w know that the h/w is now under the control of the
7896 * driver.
7897 */
7898 igb_get_hw_control(adapter);
7899 }
7900
7901 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7902 u8 qsel)
7903 {
7904 struct e1000_hw *hw = &adapter->hw;
7905 u32 rar_low, rar_high;
7906
7907 /* HW expects these to be in network order when they are plugged
7908 * into the registers which are little endian. In order to guarantee
7909 * that ordering we need to do an leXX_to_cpup here in order to be
7910 * ready for the byteswap that occurs with writel
7911 */
7912 rar_low = le32_to_cpup((__le32 *)(addr));
7913 rar_high = le16_to_cpup((__le16 *)(addr + 4));
7914
7915 /* Indicate to hardware the Address is Valid. */
7916 rar_high |= E1000_RAH_AV;
7917
7918 if (hw->mac.type == e1000_82575)
7919 rar_high |= E1000_RAH_POOL_1 * qsel;
7920 else
7921 rar_high |= E1000_RAH_POOL_1 << qsel;
7922
7923 wr32(E1000_RAL(index), rar_low);
7924 wrfl();
7925 wr32(E1000_RAH(index), rar_high);
7926 wrfl();
7927 }
7928
7929 static int igb_set_vf_mac(struct igb_adapter *adapter,
7930 int vf, unsigned char *mac_addr)
7931 {
7932 struct e1000_hw *hw = &adapter->hw;
7933 /* VF MAC addresses start at end of receive addresses and moves
7934 * towards the first, as a result a collision should not be possible
7935 */
7936 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7937
7938 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7939
7940 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7941
7942 return 0;
7943 }
7944
7945 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7946 {
7947 struct igb_adapter *adapter = netdev_priv(netdev);
7948 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7949 return -EINVAL;
7950 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7951 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7952 dev_info(&adapter->pdev->dev,
7953 "Reload the VF driver to make this change effective.");
7954 if (test_bit(__IGB_DOWN, &adapter->state)) {
7955 dev_warn(&adapter->pdev->dev,
7956 "The VF MAC address has been set, but the PF device is not up.\n");
7957 dev_warn(&adapter->pdev->dev,
7958 "Bring the PF device up before attempting to use the VF device.\n");
7959 }
7960 return igb_set_vf_mac(adapter, vf, mac);
7961 }
7962
7963 static int igb_link_mbps(int internal_link_speed)
7964 {
7965 switch (internal_link_speed) {
7966 case SPEED_100:
7967 return 100;
7968 case SPEED_1000:
7969 return 1000;
7970 default:
7971 return 0;
7972 }
7973 }
7974
7975 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7976 int link_speed)
7977 {
7978 int rf_dec, rf_int;
7979 u32 bcnrc_val;
7980
7981 if (tx_rate != 0) {
7982 /* Calculate the rate factor values to set */
7983 rf_int = link_speed / tx_rate;
7984 rf_dec = (link_speed - (rf_int * tx_rate));
7985 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
7986 tx_rate;
7987
7988 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7989 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7990 E1000_RTTBCNRC_RF_INT_MASK);
7991 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7992 } else {
7993 bcnrc_val = 0;
7994 }
7995
7996 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7997 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7998 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7999 */
8000 wr32(E1000_RTTBCNRM, 0x14);
8001 wr32(E1000_RTTBCNRC, bcnrc_val);
8002 }
8003
8004 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8005 {
8006 int actual_link_speed, i;
8007 bool reset_rate = false;
8008
8009 /* VF TX rate limit was not set or not supported */
8010 if ((adapter->vf_rate_link_speed == 0) ||
8011 (adapter->hw.mac.type != e1000_82576))
8012 return;
8013
8014 actual_link_speed = igb_link_mbps(adapter->link_speed);
8015 if (actual_link_speed != adapter->vf_rate_link_speed) {
8016 reset_rate = true;
8017 adapter->vf_rate_link_speed = 0;
8018 dev_info(&adapter->pdev->dev,
8019 "Link speed has been changed. VF Transmit rate is disabled\n");
8020 }
8021
8022 for (i = 0; i < adapter->vfs_allocated_count; i++) {
8023 if (reset_rate)
8024 adapter->vf_data[i].tx_rate = 0;
8025
8026 igb_set_vf_rate_limit(&adapter->hw, i,
8027 adapter->vf_data[i].tx_rate,
8028 actual_link_speed);
8029 }
8030 }
8031
8032 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8033 int min_tx_rate, int max_tx_rate)
8034 {
8035 struct igb_adapter *adapter = netdev_priv(netdev);
8036 struct e1000_hw *hw = &adapter->hw;
8037 int actual_link_speed;
8038
8039 if (hw->mac.type != e1000_82576)
8040 return -EOPNOTSUPP;
8041
8042 if (min_tx_rate)
8043 return -EINVAL;
8044
8045 actual_link_speed = igb_link_mbps(adapter->link_speed);
8046 if ((vf >= adapter->vfs_allocated_count) ||
8047 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8048 (max_tx_rate < 0) ||
8049 (max_tx_rate > actual_link_speed))
8050 return -EINVAL;
8051
8052 adapter->vf_rate_link_speed = actual_link_speed;
8053 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8054 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8055
8056 return 0;
8057 }
8058
8059 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8060 bool setting)
8061 {
8062 struct igb_adapter *adapter = netdev_priv(netdev);
8063 struct e1000_hw *hw = &adapter->hw;
8064 u32 reg_val, reg_offset;
8065
8066 if (!adapter->vfs_allocated_count)
8067 return -EOPNOTSUPP;
8068
8069 if (vf >= adapter->vfs_allocated_count)
8070 return -EINVAL;
8071
8072 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8073 reg_val = rd32(reg_offset);
8074 if (setting)
8075 reg_val |= (BIT(vf) |
8076 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8077 else
8078 reg_val &= ~(BIT(vf) |
8079 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8080 wr32(reg_offset, reg_val);
8081
8082 adapter->vf_data[vf].spoofchk_enabled = setting;
8083 return 0;
8084 }
8085
8086 static int igb_ndo_get_vf_config(struct net_device *netdev,
8087 int vf, struct ifla_vf_info *ivi)
8088 {
8089 struct igb_adapter *adapter = netdev_priv(netdev);
8090 if (vf >= adapter->vfs_allocated_count)
8091 return -EINVAL;
8092 ivi->vf = vf;
8093 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8094 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8095 ivi->min_tx_rate = 0;
8096 ivi->vlan = adapter->vf_data[vf].pf_vlan;
8097 ivi->qos = adapter->vf_data[vf].pf_qos;
8098 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8099 return 0;
8100 }
8101
8102 static void igb_vmm_control(struct igb_adapter *adapter)
8103 {
8104 struct e1000_hw *hw = &adapter->hw;
8105 u32 reg;
8106
8107 switch (hw->mac.type) {
8108 case e1000_82575:
8109 case e1000_i210:
8110 case e1000_i211:
8111 case e1000_i354:
8112 default:
8113 /* replication is not supported for 82575 */
8114 return;
8115 case e1000_82576:
8116 /* notify HW that the MAC is adding vlan tags */
8117 reg = rd32(E1000_DTXCTL);
8118 reg |= E1000_DTXCTL_VLAN_ADDED;
8119 wr32(E1000_DTXCTL, reg);
8120 /* Fall through */
8121 case e1000_82580:
8122 /* enable replication vlan tag stripping */
8123 reg = rd32(E1000_RPLOLR);
8124 reg |= E1000_RPLOLR_STRVLAN;
8125 wr32(E1000_RPLOLR, reg);
8126 /* Fall through */
8127 case e1000_i350:
8128 /* none of the above registers are supported by i350 */
8129 break;
8130 }
8131
8132 if (adapter->vfs_allocated_count) {
8133 igb_vmdq_set_loopback_pf(hw, true);
8134 igb_vmdq_set_replication_pf(hw, true);
8135 igb_vmdq_set_anti_spoofing_pf(hw, true,
8136 adapter->vfs_allocated_count);
8137 } else {
8138 igb_vmdq_set_loopback_pf(hw, false);
8139 igb_vmdq_set_replication_pf(hw, false);
8140 }
8141 }
8142
8143 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8144 {
8145 struct e1000_hw *hw = &adapter->hw;
8146 u32 dmac_thr;
8147 u16 hwm;
8148
8149 if (hw->mac.type > e1000_82580) {
8150 if (adapter->flags & IGB_FLAG_DMAC) {
8151 u32 reg;
8152
8153 /* force threshold to 0. */
8154 wr32(E1000_DMCTXTH, 0);
8155
8156 /* DMA Coalescing high water mark needs to be greater
8157 * than the Rx threshold. Set hwm to PBA - max frame
8158 * size in 16B units, capping it at PBA - 6KB.
8159 */
8160 hwm = 64 * (pba - 6);
8161 reg = rd32(E1000_FCRTC);
8162 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8163 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8164 & E1000_FCRTC_RTH_COAL_MASK);
8165 wr32(E1000_FCRTC, reg);
8166
8167 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8168 * frame size, capping it at PBA - 10KB.
8169 */
8170 dmac_thr = pba - 10;
8171 reg = rd32(E1000_DMACR);
8172 reg &= ~E1000_DMACR_DMACTHR_MASK;
8173 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8174 & E1000_DMACR_DMACTHR_MASK);
8175
8176 /* transition to L0x or L1 if available..*/
8177 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8178
8179 /* watchdog timer= +-1000 usec in 32usec intervals */
8180 reg |= (1000 >> 5);
8181
8182 /* Disable BMC-to-OS Watchdog Enable */
8183 if (hw->mac.type != e1000_i354)
8184 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8185
8186 wr32(E1000_DMACR, reg);
8187
8188 /* no lower threshold to disable
8189 * coalescing(smart fifb)-UTRESH=0
8190 */
8191 wr32(E1000_DMCRTRH, 0);
8192
8193 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8194
8195 wr32(E1000_DMCTLX, reg);
8196
8197 /* free space in tx packet buffer to wake from
8198 * DMA coal
8199 */
8200 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8201 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8202
8203 /* make low power state decision controlled
8204 * by DMA coal
8205 */
8206 reg = rd32(E1000_PCIEMISC);
8207 reg &= ~E1000_PCIEMISC_LX_DECISION;
8208 wr32(E1000_PCIEMISC, reg);
8209 } /* endif adapter->dmac is not disabled */
8210 } else if (hw->mac.type == e1000_82580) {
8211 u32 reg = rd32(E1000_PCIEMISC);
8212
8213 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8214 wr32(E1000_DMACR, 0);
8215 }
8216 }
8217
8218 /**
8219 * igb_read_i2c_byte - Reads 8 bit word over I2C
8220 * @hw: pointer to hardware structure
8221 * @byte_offset: byte offset to read
8222 * @dev_addr: device address
8223 * @data: value read
8224 *
8225 * Performs byte read operation over I2C interface at
8226 * a specified device address.
8227 **/
8228 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8229 u8 dev_addr, u8 *data)
8230 {
8231 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8232 struct i2c_client *this_client = adapter->i2c_client;
8233 s32 status;
8234 u16 swfw_mask = 0;
8235
8236 if (!this_client)
8237 return E1000_ERR_I2C;
8238
8239 swfw_mask = E1000_SWFW_PHY0_SM;
8240
8241 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8242 return E1000_ERR_SWFW_SYNC;
8243
8244 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8245 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8246
8247 if (status < 0)
8248 return E1000_ERR_I2C;
8249 else {
8250 *data = status;
8251 return 0;
8252 }
8253 }
8254
8255 /**
8256 * igb_write_i2c_byte - Writes 8 bit word over I2C
8257 * @hw: pointer to hardware structure
8258 * @byte_offset: byte offset to write
8259 * @dev_addr: device address
8260 * @data: value to write
8261 *
8262 * Performs byte write operation over I2C interface at
8263 * a specified device address.
8264 **/
8265 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8266 u8 dev_addr, u8 data)
8267 {
8268 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8269 struct i2c_client *this_client = adapter->i2c_client;
8270 s32 status;
8271 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8272
8273 if (!this_client)
8274 return E1000_ERR_I2C;
8275
8276 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8277 return E1000_ERR_SWFW_SYNC;
8278 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8279 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8280
8281 if (status)
8282 return E1000_ERR_I2C;
8283 else
8284 return 0;
8285
8286 }
8287
8288 int igb_reinit_queues(struct igb_adapter *adapter)
8289 {
8290 struct net_device *netdev = adapter->netdev;
8291 struct pci_dev *pdev = adapter->pdev;
8292 int err = 0;
8293
8294 if (netif_running(netdev))
8295 igb_close(netdev);
8296
8297 igb_reset_interrupt_capability(adapter);
8298
8299 if (igb_init_interrupt_scheme(adapter, true)) {
8300 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8301 return -ENOMEM;
8302 }
8303
8304 if (netif_running(netdev))
8305 err = igb_open(netdev);
8306
8307 return err;
8308 }
8309 /* igb_main.c */
This page took 0.228546 seconds and 5 git commands to generate.