Merge remote-tracking branch 'mfd/for-mfd-next'
[deliverable/linux.git] / drivers / net / ethernet / marvell / mvneta.c
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/platform_device.h>
32 #include <linux/skbuff.h>
33 #include <net/hwbm.h>
34 #include "mvneta_bm.h"
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/tso.h>
38
39 /* Registers */
40 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
41 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
42 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
43 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
44 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
45 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
46 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
47 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
48 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
49 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
50 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
51 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
52 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
53 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
54 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
55 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
56 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
57 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
59 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
60 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
61 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
62 #define MVNETA_PORT_RX_RESET 0x1cc0
63 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
64 #define MVNETA_PHY_ADDR 0x2000
65 #define MVNETA_PHY_ADDR_MASK 0x1f
66 #define MVNETA_MBUS_RETRY 0x2010
67 #define MVNETA_UNIT_INTR_CAUSE 0x2080
68 #define MVNETA_UNIT_CONTROL 0x20B0
69 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
70 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
71 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
72 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
73 #define MVNETA_BASE_ADDR_ENABLE 0x2290
74 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
75 #define MVNETA_PORT_CONFIG 0x2400
76 #define MVNETA_UNI_PROMISC_MODE BIT(0)
77 #define MVNETA_DEF_RXQ(q) ((q) << 1)
78 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
79 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
80 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
81 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
82 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
83 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
84 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
85 MVNETA_DEF_RXQ_ARP(q) | \
86 MVNETA_DEF_RXQ_TCP(q) | \
87 MVNETA_DEF_RXQ_UDP(q) | \
88 MVNETA_DEF_RXQ_BPDU(q) | \
89 MVNETA_TX_UNSET_ERR_SUM | \
90 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
91 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
92 #define MVNETA_MAC_ADDR_LOW 0x2414
93 #define MVNETA_MAC_ADDR_HIGH 0x2418
94 #define MVNETA_SDMA_CONFIG 0x241c
95 #define MVNETA_SDMA_BRST_SIZE_16 4
96 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
97 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
98 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
99 #define MVNETA_DESC_SWAP BIT(6)
100 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
101 #define MVNETA_PORT_STATUS 0x2444
102 #define MVNETA_TX_IN_PRGRS BIT(1)
103 #define MVNETA_TX_FIFO_EMPTY BIT(8)
104 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
105 #define MVNETA_SERDES_CFG 0x24A0
106 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
107 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
108 #define MVNETA_TYPE_PRIO 0x24bc
109 #define MVNETA_FORCE_UNI BIT(21)
110 #define MVNETA_TXQ_CMD_1 0x24e4
111 #define MVNETA_TXQ_CMD 0x2448
112 #define MVNETA_TXQ_DISABLE_SHIFT 8
113 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
114 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
115 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
116 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
117 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
118 #define MVNETA_ACC_MODE 0x2500
119 #define MVNETA_BM_ADDRESS 0x2504
120 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
121 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
122 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
123 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
124 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
125 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
126
127 /* Exception Interrupt Port/Queue Cause register
128 *
129 * Their behavior depend of the mapping done using the PCPX2Q
130 * registers. For a given CPU if the bit associated to a queue is not
131 * set, then for the register a read from this CPU will always return
132 * 0 and a write won't do anything
133 */
134
135 #define MVNETA_INTR_NEW_CAUSE 0x25a0
136 #define MVNETA_INTR_NEW_MASK 0x25a4
137
138 /* bits 0..7 = TXQ SENT, one bit per queue.
139 * bits 8..15 = RXQ OCCUP, one bit per queue.
140 * bits 16..23 = RXQ FREE, one bit per queue.
141 * bit 29 = OLD_REG_SUM, see old reg ?
142 * bit 30 = TX_ERR_SUM, one bit for 4 ports
143 * bit 31 = MISC_SUM, one bit for 4 ports
144 */
145 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
146 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
147 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
148 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
149 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
150
151 #define MVNETA_INTR_OLD_CAUSE 0x25a8
152 #define MVNETA_INTR_OLD_MASK 0x25ac
153
154 /* Data Path Port/Queue Cause Register */
155 #define MVNETA_INTR_MISC_CAUSE 0x25b0
156 #define MVNETA_INTR_MISC_MASK 0x25b4
157
158 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
159 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
160 #define MVNETA_CAUSE_PTP BIT(4)
161
162 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
163 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
164 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
165 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
166 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
167 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
168 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
169 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
170
171 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
174
175 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
176 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
177 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
178
179 #define MVNETA_INTR_ENABLE 0x25b8
180 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
181 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
182
183 #define MVNETA_RXQ_CMD 0x2680
184 #define MVNETA_RXQ_DISABLE_SHIFT 8
185 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
186 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
187 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
188 #define MVNETA_GMAC_CTRL_0 0x2c00
189 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
190 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
191 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
192 #define MVNETA_GMAC_CTRL_2 0x2c08
193 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
194 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
195 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
196 #define MVNETA_GMAC2_PORT_RESET BIT(6)
197 #define MVNETA_GMAC_STATUS 0x2c10
198 #define MVNETA_GMAC_LINK_UP BIT(0)
199 #define MVNETA_GMAC_SPEED_1000 BIT(1)
200 #define MVNETA_GMAC_SPEED_100 BIT(2)
201 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
202 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
203 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
204 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
205 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
206 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
207 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
208 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
209 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
210 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
211 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
212 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
213 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
214 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
215 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
216 #define MVNETA_MIB_COUNTERS_BASE 0x3000
217 #define MVNETA_MIB_LATE_COLLISION 0x7c
218 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
219 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
220 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
221 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
222 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
223 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
224 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
225 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
226 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
227 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
228 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
229 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
230 #define MVNETA_PORT_TX_RESET 0x3cf0
231 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
232 #define MVNETA_TX_MTU 0x3e0c
233 #define MVNETA_TX_TOKEN_SIZE 0x3e14
234 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
235 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
236 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
237
238 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
239
240 /* Descriptor ring Macros */
241 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
242 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
243
244 /* Various constants */
245
246 /* Coalescing */
247 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
248 #define MVNETA_RX_COAL_PKTS 32
249 #define MVNETA_RX_COAL_USEC 100
250
251 /* The two bytes Marvell header. Either contains a special value used
252 * by Marvell switches when a specific hardware mode is enabled (not
253 * supported by this driver) or is filled automatically by zeroes on
254 * the RX side. Those two bytes being at the front of the Ethernet
255 * header, they allow to have the IP header aligned on a 4 bytes
256 * boundary automatically: the hardware skips those two bytes on its
257 * own.
258 */
259 #define MVNETA_MH_SIZE 2
260
261 #define MVNETA_VLAN_TAG_LEN 4
262
263 #define MVNETA_TX_CSUM_DEF_SIZE 1600
264 #define MVNETA_TX_CSUM_MAX_SIZE 9800
265 #define MVNETA_ACC_MODE_EXT1 1
266 #define MVNETA_ACC_MODE_EXT2 2
267
268 #define MVNETA_MAX_DECODE_WIN 6
269
270 /* Timeout constants */
271 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
272 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
273 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
274
275 #define MVNETA_TX_MTU_MAX 0x3ffff
276
277 /* The RSS lookup table actually has 256 entries but we do not use
278 * them yet
279 */
280 #define MVNETA_RSS_LU_TABLE_SIZE 1
281
282 /* TSO header size */
283 #define TSO_HEADER_SIZE 128
284
285 /* Max number of Rx descriptors */
286 #define MVNETA_MAX_RXD 128
287
288 /* Max number of Tx descriptors */
289 #define MVNETA_MAX_TXD 532
290
291 /* Max number of allowed TCP segments for software TSO */
292 #define MVNETA_MAX_TSO_SEGS 100
293
294 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
295
296 /* descriptor aligned size */
297 #define MVNETA_DESC_ALIGNED_SIZE 32
298
299 #define MVNETA_RX_PKT_SIZE(mtu) \
300 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
301 ETH_HLEN + ETH_FCS_LEN, \
302 cache_line_size())
303
304 #define IS_TSO_HEADER(txq, addr) \
305 ((addr >= txq->tso_hdrs_phys) && \
306 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
307
308 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
309 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
310
311 struct mvneta_statistic {
312 unsigned short offset;
313 unsigned short type;
314 const char name[ETH_GSTRING_LEN];
315 };
316
317 #define T_REG_32 32
318 #define T_REG_64 64
319
320 static const struct mvneta_statistic mvneta_statistics[] = {
321 { 0x3000, T_REG_64, "good_octets_received", },
322 { 0x3010, T_REG_32, "good_frames_received", },
323 { 0x3008, T_REG_32, "bad_octets_received", },
324 { 0x3014, T_REG_32, "bad_frames_received", },
325 { 0x3018, T_REG_32, "broadcast_frames_received", },
326 { 0x301c, T_REG_32, "multicast_frames_received", },
327 { 0x3050, T_REG_32, "unrec_mac_control_received", },
328 { 0x3058, T_REG_32, "good_fc_received", },
329 { 0x305c, T_REG_32, "bad_fc_received", },
330 { 0x3060, T_REG_32, "undersize_received", },
331 { 0x3064, T_REG_32, "fragments_received", },
332 { 0x3068, T_REG_32, "oversize_received", },
333 { 0x306c, T_REG_32, "jabber_received", },
334 { 0x3070, T_REG_32, "mac_receive_error", },
335 { 0x3074, T_REG_32, "bad_crc_event", },
336 { 0x3078, T_REG_32, "collision", },
337 { 0x307c, T_REG_32, "late_collision", },
338 { 0x2484, T_REG_32, "rx_discard", },
339 { 0x2488, T_REG_32, "rx_overrun", },
340 { 0x3020, T_REG_32, "frames_64_octets", },
341 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
342 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
343 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
344 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
345 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
346 { 0x3038, T_REG_64, "good_octets_sent", },
347 { 0x3040, T_REG_32, "good_frames_sent", },
348 { 0x3044, T_REG_32, "excessive_collision", },
349 { 0x3048, T_REG_32, "multicast_frames_sent", },
350 { 0x304c, T_REG_32, "broadcast_frames_sent", },
351 { 0x3054, T_REG_32, "fc_sent", },
352 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
353 };
354
355 struct mvneta_pcpu_stats {
356 struct u64_stats_sync syncp;
357 u64 rx_packets;
358 u64 rx_bytes;
359 u64 tx_packets;
360 u64 tx_bytes;
361 };
362
363 struct mvneta_pcpu_port {
364 /* Pointer to the shared port */
365 struct mvneta_port *pp;
366
367 /* Pointer to the CPU-local NAPI struct */
368 struct napi_struct napi;
369
370 /* Cause of the previous interrupt */
371 u32 cause_rx_tx;
372 };
373
374 struct mvneta_port {
375 u8 id;
376 struct mvneta_pcpu_port __percpu *ports;
377 struct mvneta_pcpu_stats __percpu *stats;
378
379 int pkt_size;
380 unsigned int frag_size;
381 void __iomem *base;
382 struct mvneta_rx_queue *rxqs;
383 struct mvneta_tx_queue *txqs;
384 struct net_device *dev;
385 struct notifier_block cpu_notifier;
386 int rxq_def;
387 /* Protect the access to the percpu interrupt registers,
388 * ensuring that the configuration remains coherent.
389 */
390 spinlock_t lock;
391 bool is_stopped;
392
393 /* Core clock */
394 struct clk *clk;
395 /* AXI clock */
396 struct clk *clk_bus;
397 u8 mcast_count[256];
398 u16 tx_ring_size;
399 u16 rx_ring_size;
400
401 struct mii_bus *mii_bus;
402 phy_interface_t phy_interface;
403 struct device_node *phy_node;
404 unsigned int link;
405 unsigned int duplex;
406 unsigned int speed;
407 unsigned int tx_csum_limit;
408 unsigned int use_inband_status:1;
409
410 struct mvneta_bm *bm_priv;
411 struct mvneta_bm_pool *pool_long;
412 struct mvneta_bm_pool *pool_short;
413 int bm_win_id;
414
415 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
416
417 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
418 };
419
420 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
421 * layout of the transmit and reception DMA descriptors, and their
422 * layout is therefore defined by the hardware design
423 */
424
425 #define MVNETA_TX_L3_OFF_SHIFT 0
426 #define MVNETA_TX_IP_HLEN_SHIFT 8
427 #define MVNETA_TX_L4_UDP BIT(16)
428 #define MVNETA_TX_L3_IP6 BIT(17)
429 #define MVNETA_TXD_IP_CSUM BIT(18)
430 #define MVNETA_TXD_Z_PAD BIT(19)
431 #define MVNETA_TXD_L_DESC BIT(20)
432 #define MVNETA_TXD_F_DESC BIT(21)
433 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
434 MVNETA_TXD_L_DESC | \
435 MVNETA_TXD_F_DESC)
436 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
437 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
438
439 #define MVNETA_RXD_ERR_CRC 0x0
440 #define MVNETA_RXD_BM_POOL_SHIFT 13
441 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
442 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
443 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
444 #define MVNETA_RXD_ERR_LEN BIT(18)
445 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
446 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
447 #define MVNETA_RXD_L3_IP4 BIT(25)
448 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
449 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
450
451 #if defined(__LITTLE_ENDIAN)
452 struct mvneta_tx_desc {
453 u32 command; /* Options used by HW for packet transmitting.*/
454 u16 reserverd1; /* csum_l4 (for future use) */
455 u16 data_size; /* Data size of transmitted packet in bytes */
456 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
457 u32 reserved2; /* hw_cmd - (for future use, PMT) */
458 u32 reserved3[4]; /* Reserved - (for future use) */
459 };
460
461 struct mvneta_rx_desc {
462 u32 status; /* Info about received packet */
463 u16 reserved1; /* pnc_info - (for future use, PnC) */
464 u16 data_size; /* Size of received packet in bytes */
465
466 u32 buf_phys_addr; /* Physical address of the buffer */
467 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
468
469 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
470 u16 reserved3; /* prefetch_cmd, for future use */
471 u16 reserved4; /* csum_l4 - (for future use, PnC) */
472
473 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
474 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
475 };
476 #else
477 struct mvneta_tx_desc {
478 u16 data_size; /* Data size of transmitted packet in bytes */
479 u16 reserverd1; /* csum_l4 (for future use) */
480 u32 command; /* Options used by HW for packet transmitting.*/
481 u32 reserved2; /* hw_cmd - (for future use, PMT) */
482 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
483 u32 reserved3[4]; /* Reserved - (for future use) */
484 };
485
486 struct mvneta_rx_desc {
487 u16 data_size; /* Size of received packet in bytes */
488 u16 reserved1; /* pnc_info - (for future use, PnC) */
489 u32 status; /* Info about received packet */
490
491 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
492 u32 buf_phys_addr; /* Physical address of the buffer */
493
494 u16 reserved4; /* csum_l4 - (for future use, PnC) */
495 u16 reserved3; /* prefetch_cmd, for future use */
496 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
497
498 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
499 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
500 };
501 #endif
502
503 struct mvneta_tx_queue {
504 /* Number of this TX queue, in the range 0-7 */
505 u8 id;
506
507 /* Number of TX DMA descriptors in the descriptor ring */
508 int size;
509
510 /* Number of currently used TX DMA descriptor in the
511 * descriptor ring
512 */
513 int count;
514 int tx_stop_threshold;
515 int tx_wake_threshold;
516
517 /* Array of transmitted skb */
518 struct sk_buff **tx_skb;
519
520 /* Index of last TX DMA descriptor that was inserted */
521 int txq_put_index;
522
523 /* Index of the TX DMA descriptor to be cleaned up */
524 int txq_get_index;
525
526 u32 done_pkts_coal;
527
528 /* Virtual address of the TX DMA descriptors array */
529 struct mvneta_tx_desc *descs;
530
531 /* DMA address of the TX DMA descriptors array */
532 dma_addr_t descs_phys;
533
534 /* Index of the last TX DMA descriptor */
535 int last_desc;
536
537 /* Index of the next TX DMA descriptor to process */
538 int next_desc_to_proc;
539
540 /* DMA buffers for TSO headers */
541 char *tso_hdrs;
542
543 /* DMA address of TSO headers */
544 dma_addr_t tso_hdrs_phys;
545
546 /* Affinity mask for CPUs*/
547 cpumask_t affinity_mask;
548 };
549
550 struct mvneta_rx_queue {
551 /* rx queue number, in the range 0-7 */
552 u8 id;
553
554 /* num of rx descriptors in the rx descriptor ring */
555 int size;
556
557 /* counter of times when mvneta_refill() failed */
558 int missed;
559
560 u32 pkts_coal;
561 u32 time_coal;
562
563 /* Virtual address of the RX DMA descriptors array */
564 struct mvneta_rx_desc *descs;
565
566 /* DMA address of the RX DMA descriptors array */
567 dma_addr_t descs_phys;
568
569 /* Index of the last RX DMA descriptor */
570 int last_desc;
571
572 /* Index of the next RX DMA descriptor to process */
573 int next_desc_to_proc;
574 };
575
576 /* The hardware supports eight (8) rx queues, but we are only allowing
577 * the first one to be used. Therefore, let's just allocate one queue.
578 */
579 static int rxq_number = 8;
580 static int txq_number = 8;
581
582 static int rxq_def;
583
584 static int rx_copybreak __read_mostly = 256;
585
586 /* HW BM need that each port be identify by a unique ID */
587 static int global_port_id;
588
589 #define MVNETA_DRIVER_NAME "mvneta"
590 #define MVNETA_DRIVER_VERSION "1.0"
591
592 /* Utility/helper methods */
593
594 /* Write helper method */
595 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
596 {
597 writel(data, pp->base + offset);
598 }
599
600 /* Read helper method */
601 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
602 {
603 return readl(pp->base + offset);
604 }
605
606 /* Increment txq get counter */
607 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
608 {
609 txq->txq_get_index++;
610 if (txq->txq_get_index == txq->size)
611 txq->txq_get_index = 0;
612 }
613
614 /* Increment txq put counter */
615 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
616 {
617 txq->txq_put_index++;
618 if (txq->txq_put_index == txq->size)
619 txq->txq_put_index = 0;
620 }
621
622
623 /* Clear all MIB counters */
624 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
625 {
626 int i;
627 u32 dummy;
628
629 /* Perform dummy reads from MIB counters */
630 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
631 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
632 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
633 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
634 }
635
636 /* Get System Network Statistics */
637 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
638 struct rtnl_link_stats64 *stats)
639 {
640 struct mvneta_port *pp = netdev_priv(dev);
641 unsigned int start;
642 int cpu;
643
644 for_each_possible_cpu(cpu) {
645 struct mvneta_pcpu_stats *cpu_stats;
646 u64 rx_packets;
647 u64 rx_bytes;
648 u64 tx_packets;
649 u64 tx_bytes;
650
651 cpu_stats = per_cpu_ptr(pp->stats, cpu);
652 do {
653 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
654 rx_packets = cpu_stats->rx_packets;
655 rx_bytes = cpu_stats->rx_bytes;
656 tx_packets = cpu_stats->tx_packets;
657 tx_bytes = cpu_stats->tx_bytes;
658 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
659
660 stats->rx_packets += rx_packets;
661 stats->rx_bytes += rx_bytes;
662 stats->tx_packets += tx_packets;
663 stats->tx_bytes += tx_bytes;
664 }
665
666 stats->rx_errors = dev->stats.rx_errors;
667 stats->rx_dropped = dev->stats.rx_dropped;
668
669 stats->tx_dropped = dev->stats.tx_dropped;
670
671 return stats;
672 }
673
674 /* Rx descriptors helper methods */
675
676 /* Checks whether the RX descriptor having this status is both the first
677 * and the last descriptor for the RX packet. Each RX packet is currently
678 * received through a single RX descriptor, so not having each RX
679 * descriptor with its first and last bits set is an error
680 */
681 static int mvneta_rxq_desc_is_first_last(u32 status)
682 {
683 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
684 MVNETA_RXD_FIRST_LAST_DESC;
685 }
686
687 /* Add number of descriptors ready to receive new packets */
688 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
689 struct mvneta_rx_queue *rxq,
690 int ndescs)
691 {
692 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
693 * be added at once
694 */
695 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
696 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
697 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
698 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
699 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
700 }
701
702 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
703 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
704 }
705
706 /* Get number of RX descriptors occupied by received packets */
707 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
708 struct mvneta_rx_queue *rxq)
709 {
710 u32 val;
711
712 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
713 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
714 }
715
716 /* Update num of rx desc called upon return from rx path or
717 * from mvneta_rxq_drop_pkts().
718 */
719 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
720 struct mvneta_rx_queue *rxq,
721 int rx_done, int rx_filled)
722 {
723 u32 val;
724
725 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
726 val = rx_done |
727 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
728 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
729 return;
730 }
731
732 /* Only 255 descriptors can be added at once */
733 while ((rx_done > 0) || (rx_filled > 0)) {
734 if (rx_done <= 0xff) {
735 val = rx_done;
736 rx_done = 0;
737 } else {
738 val = 0xff;
739 rx_done -= 0xff;
740 }
741 if (rx_filled <= 0xff) {
742 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
743 rx_filled = 0;
744 } else {
745 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
746 rx_filled -= 0xff;
747 }
748 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
749 }
750 }
751
752 /* Get pointer to next RX descriptor to be processed by SW */
753 static struct mvneta_rx_desc *
754 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
755 {
756 int rx_desc = rxq->next_desc_to_proc;
757
758 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
759 prefetch(rxq->descs + rxq->next_desc_to_proc);
760 return rxq->descs + rx_desc;
761 }
762
763 /* Change maximum receive size of the port. */
764 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
765 {
766 u32 val;
767
768 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
769 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
770 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
771 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
772 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
773 }
774
775
776 /* Set rx queue offset */
777 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
778 struct mvneta_rx_queue *rxq,
779 int offset)
780 {
781 u32 val;
782
783 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
784 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
785
786 /* Offset is in */
787 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
788 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
789 }
790
791
792 /* Tx descriptors helper methods */
793
794 /* Update HW with number of TX descriptors to be sent */
795 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
796 struct mvneta_tx_queue *txq,
797 int pend_desc)
798 {
799 u32 val;
800
801 /* Only 255 descriptors can be added at once ; Assume caller
802 * process TX desriptors in quanta less than 256
803 */
804 val = pend_desc;
805 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
806 }
807
808 /* Get pointer to next TX descriptor to be processed (send) by HW */
809 static struct mvneta_tx_desc *
810 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
811 {
812 int tx_desc = txq->next_desc_to_proc;
813
814 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
815 return txq->descs + tx_desc;
816 }
817
818 /* Release the last allocated TX descriptor. Useful to handle DMA
819 * mapping failures in the TX path.
820 */
821 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
822 {
823 if (txq->next_desc_to_proc == 0)
824 txq->next_desc_to_proc = txq->last_desc - 1;
825 else
826 txq->next_desc_to_proc--;
827 }
828
829 /* Set rxq buf size */
830 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
831 struct mvneta_rx_queue *rxq,
832 int buf_size)
833 {
834 u32 val;
835
836 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
837
838 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
839 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
840
841 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
842 }
843
844 /* Disable buffer management (BM) */
845 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
846 struct mvneta_rx_queue *rxq)
847 {
848 u32 val;
849
850 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
851 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
852 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
853 }
854
855 /* Enable buffer management (BM) */
856 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
857 struct mvneta_rx_queue *rxq)
858 {
859 u32 val;
860
861 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
862 val |= MVNETA_RXQ_HW_BUF_ALLOC;
863 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
864 }
865
866 /* Notify HW about port's assignment of pool for bigger packets */
867 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
868 struct mvneta_rx_queue *rxq)
869 {
870 u32 val;
871
872 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
873 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
874 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
875
876 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
877 }
878
879 /* Notify HW about port's assignment of pool for smaller packets */
880 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
881 struct mvneta_rx_queue *rxq)
882 {
883 u32 val;
884
885 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
886 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
887 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
888
889 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
890 }
891
892 /* Set port's receive buffer size for assigned BM pool */
893 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
894 int buf_size,
895 u8 pool_id)
896 {
897 u32 val;
898
899 if (!IS_ALIGNED(buf_size, 8)) {
900 dev_warn(pp->dev->dev.parent,
901 "illegal buf_size value %d, round to %d\n",
902 buf_size, ALIGN(buf_size, 8));
903 buf_size = ALIGN(buf_size, 8);
904 }
905
906 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
907 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
908 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
909 }
910
911 /* Configure MBUS window in order to enable access BM internal SRAM */
912 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
913 u8 target, u8 attr)
914 {
915 u32 win_enable, win_protect;
916 int i;
917
918 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
919
920 if (pp->bm_win_id < 0) {
921 /* Find first not occupied window */
922 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
923 if (win_enable & (1 << i)) {
924 pp->bm_win_id = i;
925 break;
926 }
927 }
928 if (i == MVNETA_MAX_DECODE_WIN)
929 return -ENOMEM;
930 } else {
931 i = pp->bm_win_id;
932 }
933
934 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
935 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
936
937 if (i < 4)
938 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
939
940 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
941 (attr << 8) | target);
942
943 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
944
945 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
946 win_protect |= 3 << (2 * i);
947 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
948
949 win_enable &= ~(1 << i);
950 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
951
952 return 0;
953 }
954
955 /* Assign and initialize pools for port. In case of fail
956 * buffer manager will remain disabled for current port.
957 */
958 static int mvneta_bm_port_init(struct platform_device *pdev,
959 struct mvneta_port *pp)
960 {
961 struct device_node *dn = pdev->dev.of_node;
962 u32 long_pool_id, short_pool_id, wsize;
963 u8 target, attr;
964 int err;
965
966 /* Get BM window information */
967 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
968 &target, &attr);
969 if (err < 0)
970 return err;
971
972 pp->bm_win_id = -1;
973
974 /* Open NETA -> BM window */
975 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
976 target, attr);
977 if (err < 0) {
978 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
979 return err;
980 }
981
982 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
983 netdev_info(pp->dev, "missing long pool id\n");
984 return -EINVAL;
985 }
986
987 /* Create port's long pool depending on mtu */
988 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
989 MVNETA_BM_LONG, pp->id,
990 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
991 if (!pp->pool_long) {
992 netdev_info(pp->dev, "fail to obtain long pool for port\n");
993 return -ENOMEM;
994 }
995
996 pp->pool_long->port_map |= 1 << pp->id;
997
998 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
999 pp->pool_long->id);
1000
1001 /* If short pool id is not defined, assume using single pool */
1002 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1003 short_pool_id = long_pool_id;
1004
1005 /* Create port's short pool */
1006 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1007 MVNETA_BM_SHORT, pp->id,
1008 MVNETA_BM_SHORT_PKT_SIZE);
1009 if (!pp->pool_short) {
1010 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1011 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1012 return -ENOMEM;
1013 }
1014
1015 if (short_pool_id != long_pool_id) {
1016 pp->pool_short->port_map |= 1 << pp->id;
1017 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1018 pp->pool_short->id);
1019 }
1020
1021 return 0;
1022 }
1023
1024 /* Update settings of a pool for bigger packets */
1025 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1026 {
1027 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1028 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1029 int num;
1030
1031 /* Release all buffers from long pool */
1032 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1033 if (hwbm_pool->buf_num) {
1034 WARN(1, "cannot free all buffers in pool %d\n",
1035 bm_pool->id);
1036 goto bm_mtu_err;
1037 }
1038
1039 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1040 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1041 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1042 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1043
1044 /* Fill entire long pool */
1045 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1046 if (num != hwbm_pool->size) {
1047 WARN(1, "pool %d: %d of %d allocated\n",
1048 bm_pool->id, num, hwbm_pool->size);
1049 goto bm_mtu_err;
1050 }
1051 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1052
1053 return;
1054
1055 bm_mtu_err:
1056 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1057 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1058
1059 pp->bm_priv = NULL;
1060 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1061 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1062 }
1063
1064 /* Start the Ethernet port RX and TX activity */
1065 static void mvneta_port_up(struct mvneta_port *pp)
1066 {
1067 int queue;
1068 u32 q_map;
1069
1070 /* Enable all initialized TXs. */
1071 q_map = 0;
1072 for (queue = 0; queue < txq_number; queue++) {
1073 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1074 if (txq->descs != NULL)
1075 q_map |= (1 << queue);
1076 }
1077 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1078
1079 /* Enable all initialized RXQs. */
1080 for (queue = 0; queue < rxq_number; queue++) {
1081 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1082
1083 if (rxq->descs != NULL)
1084 q_map |= (1 << queue);
1085 }
1086 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1087 }
1088
1089 /* Stop the Ethernet port activity */
1090 static void mvneta_port_down(struct mvneta_port *pp)
1091 {
1092 u32 val;
1093 int count;
1094
1095 /* Stop Rx port activity. Check port Rx activity. */
1096 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1097
1098 /* Issue stop command for active channels only */
1099 if (val != 0)
1100 mvreg_write(pp, MVNETA_RXQ_CMD,
1101 val << MVNETA_RXQ_DISABLE_SHIFT);
1102
1103 /* Wait for all Rx activity to terminate. */
1104 count = 0;
1105 do {
1106 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1107 netdev_warn(pp->dev,
1108 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1109 val);
1110 break;
1111 }
1112 mdelay(1);
1113
1114 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1115 } while (val & MVNETA_RXQ_ENABLE_MASK);
1116
1117 /* Stop Tx port activity. Check port Tx activity. Issue stop
1118 * command for active channels only
1119 */
1120 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1121
1122 if (val != 0)
1123 mvreg_write(pp, MVNETA_TXQ_CMD,
1124 (val << MVNETA_TXQ_DISABLE_SHIFT));
1125
1126 /* Wait for all Tx activity to terminate. */
1127 count = 0;
1128 do {
1129 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1130 netdev_warn(pp->dev,
1131 "TIMEOUT for TX stopped status=0x%08x\n",
1132 val);
1133 break;
1134 }
1135 mdelay(1);
1136
1137 /* Check TX Command reg that all Txqs are stopped */
1138 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1139
1140 } while (val & MVNETA_TXQ_ENABLE_MASK);
1141
1142 /* Double check to verify that TX FIFO is empty */
1143 count = 0;
1144 do {
1145 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1146 netdev_warn(pp->dev,
1147 "TX FIFO empty timeout status=0x%08x\n",
1148 val);
1149 break;
1150 }
1151 mdelay(1);
1152
1153 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1154 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1155 (val & MVNETA_TX_IN_PRGRS));
1156
1157 udelay(200);
1158 }
1159
1160 /* Enable the port by setting the port enable bit of the MAC control register */
1161 static void mvneta_port_enable(struct mvneta_port *pp)
1162 {
1163 u32 val;
1164
1165 /* Enable port */
1166 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1167 val |= MVNETA_GMAC0_PORT_ENABLE;
1168 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1169 }
1170
1171 /* Disable the port and wait for about 200 usec before retuning */
1172 static void mvneta_port_disable(struct mvneta_port *pp)
1173 {
1174 u32 val;
1175
1176 /* Reset the Enable bit in the Serial Control Register */
1177 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1178 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1179 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1180
1181 udelay(200);
1182 }
1183
1184 /* Multicast tables methods */
1185
1186 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1187 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1188 {
1189 int offset;
1190 u32 val;
1191
1192 if (queue == -1) {
1193 val = 0;
1194 } else {
1195 val = 0x1 | (queue << 1);
1196 val |= (val << 24) | (val << 16) | (val << 8);
1197 }
1198
1199 for (offset = 0; offset <= 0xc; offset += 4)
1200 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1201 }
1202
1203 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1204 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1205 {
1206 int offset;
1207 u32 val;
1208
1209 if (queue == -1) {
1210 val = 0;
1211 } else {
1212 val = 0x1 | (queue << 1);
1213 val |= (val << 24) | (val << 16) | (val << 8);
1214 }
1215
1216 for (offset = 0; offset <= 0xfc; offset += 4)
1217 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1218
1219 }
1220
1221 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1222 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1223 {
1224 int offset;
1225 u32 val;
1226
1227 if (queue == -1) {
1228 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1229 val = 0;
1230 } else {
1231 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1232 val = 0x1 | (queue << 1);
1233 val |= (val << 24) | (val << 16) | (val << 8);
1234 }
1235
1236 for (offset = 0; offset <= 0xfc; offset += 4)
1237 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1238 }
1239
1240 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1241 {
1242 u32 val;
1243
1244 if (enable) {
1245 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1246 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1247 MVNETA_GMAC_FORCE_LINK_DOWN |
1248 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1249 val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1250 MVNETA_GMAC_AN_SPEED_EN |
1251 MVNETA_GMAC_AN_DUPLEX_EN;
1252 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1253
1254 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1255 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1256 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1257
1258 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1259 val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1260 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1261 } else {
1262 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1263 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1264 MVNETA_GMAC_AN_SPEED_EN |
1265 MVNETA_GMAC_AN_DUPLEX_EN);
1266 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1267
1268 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1269 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1270 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1271
1272 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1273 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1274 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1275 }
1276 }
1277
1278 static void mvneta_percpu_unmask_interrupt(void *arg)
1279 {
1280 struct mvneta_port *pp = arg;
1281
1282 /* All the queue are unmasked, but actually only the ones
1283 * mapped to this CPU will be unmasked
1284 */
1285 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1286 MVNETA_RX_INTR_MASK_ALL |
1287 MVNETA_TX_INTR_MASK_ALL |
1288 MVNETA_MISCINTR_INTR_MASK);
1289 }
1290
1291 static void mvneta_percpu_mask_interrupt(void *arg)
1292 {
1293 struct mvneta_port *pp = arg;
1294
1295 /* All the queue are masked, but actually only the ones
1296 * mapped to this CPU will be masked
1297 */
1298 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1299 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1300 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1301 }
1302
1303 static void mvneta_percpu_clear_intr_cause(void *arg)
1304 {
1305 struct mvneta_port *pp = arg;
1306
1307 /* All the queue are cleared, but actually only the ones
1308 * mapped to this CPU will be cleared
1309 */
1310 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1311 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1312 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1313 }
1314
1315 /* This method sets defaults to the NETA port:
1316 * Clears interrupt Cause and Mask registers.
1317 * Clears all MAC tables.
1318 * Sets defaults to all registers.
1319 * Resets RX and TX descriptor rings.
1320 * Resets PHY.
1321 * This method can be called after mvneta_port_down() to return the port
1322 * settings to defaults.
1323 */
1324 static void mvneta_defaults_set(struct mvneta_port *pp)
1325 {
1326 int cpu;
1327 int queue;
1328 u32 val;
1329 int max_cpu = num_present_cpus();
1330
1331 /* Clear all Cause registers */
1332 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1333
1334 /* Mask all interrupts */
1335 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1336 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1337
1338 /* Enable MBUS Retry bit16 */
1339 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1340
1341 /* Set CPU queue access map. CPUs are assigned to the RX and
1342 * TX queues modulo their number. If there is only one TX
1343 * queue then it is assigned to the CPU associated to the
1344 * default RX queue.
1345 */
1346 for_each_present_cpu(cpu) {
1347 int rxq_map = 0, txq_map = 0;
1348 int rxq, txq;
1349
1350 for (rxq = 0; rxq < rxq_number; rxq++)
1351 if ((rxq % max_cpu) == cpu)
1352 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1353
1354 for (txq = 0; txq < txq_number; txq++)
1355 if ((txq % max_cpu) == cpu)
1356 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1357
1358 /* With only one TX queue we configure a special case
1359 * which will allow to get all the irq on a single
1360 * CPU
1361 */
1362 if (txq_number == 1)
1363 txq_map = (cpu == pp->rxq_def) ?
1364 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1365
1366 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1367 }
1368
1369 /* Reset RX and TX DMAs */
1370 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1371 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1372
1373 /* Disable Legacy WRR, Disable EJP, Release from reset */
1374 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1375 for (queue = 0; queue < txq_number; queue++) {
1376 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1377 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1378 }
1379
1380 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1381 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1382
1383 /* Set Port Acceleration Mode */
1384 if (pp->bm_priv)
1385 /* HW buffer management + legacy parser */
1386 val = MVNETA_ACC_MODE_EXT2;
1387 else
1388 /* SW buffer management + legacy parser */
1389 val = MVNETA_ACC_MODE_EXT1;
1390 mvreg_write(pp, MVNETA_ACC_MODE, val);
1391
1392 if (pp->bm_priv)
1393 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1394
1395 /* Update val of portCfg register accordingly with all RxQueue types */
1396 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1397 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1398
1399 val = 0;
1400 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1401 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1402
1403 /* Build PORT_SDMA_CONFIG_REG */
1404 val = 0;
1405
1406 /* Default burst size */
1407 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1408 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1409 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1410
1411 #if defined(__BIG_ENDIAN)
1412 val |= MVNETA_DESC_SWAP;
1413 #endif
1414
1415 /* Assign port SDMA configuration */
1416 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1417
1418 /* Disable PHY polling in hardware, since we're using the
1419 * kernel phylib to do this.
1420 */
1421 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1422 val &= ~MVNETA_PHY_POLLING_ENABLE;
1423 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1424
1425 mvneta_set_autoneg(pp, pp->use_inband_status);
1426 mvneta_set_ucast_table(pp, -1);
1427 mvneta_set_special_mcast_table(pp, -1);
1428 mvneta_set_other_mcast_table(pp, -1);
1429
1430 /* Set port interrupt enable register - default enable all */
1431 mvreg_write(pp, MVNETA_INTR_ENABLE,
1432 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1433 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1434
1435 mvneta_mib_counters_clear(pp);
1436 }
1437
1438 /* Set max sizes for tx queues */
1439 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1440
1441 {
1442 u32 val, size, mtu;
1443 int queue;
1444
1445 mtu = max_tx_size * 8;
1446 if (mtu > MVNETA_TX_MTU_MAX)
1447 mtu = MVNETA_TX_MTU_MAX;
1448
1449 /* Set MTU */
1450 val = mvreg_read(pp, MVNETA_TX_MTU);
1451 val &= ~MVNETA_TX_MTU_MAX;
1452 val |= mtu;
1453 mvreg_write(pp, MVNETA_TX_MTU, val);
1454
1455 /* TX token size and all TXQs token size must be larger that MTU */
1456 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1457
1458 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1459 if (size < mtu) {
1460 size = mtu;
1461 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1462 val |= size;
1463 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1464 }
1465 for (queue = 0; queue < txq_number; queue++) {
1466 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1467
1468 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1469 if (size < mtu) {
1470 size = mtu;
1471 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1472 val |= size;
1473 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1474 }
1475 }
1476 }
1477
1478 /* Set unicast address */
1479 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1480 int queue)
1481 {
1482 unsigned int unicast_reg;
1483 unsigned int tbl_offset;
1484 unsigned int reg_offset;
1485
1486 /* Locate the Unicast table entry */
1487 last_nibble = (0xf & last_nibble);
1488
1489 /* offset from unicast tbl base */
1490 tbl_offset = (last_nibble / 4) * 4;
1491
1492 /* offset within the above reg */
1493 reg_offset = last_nibble % 4;
1494
1495 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1496
1497 if (queue == -1) {
1498 /* Clear accepts frame bit at specified unicast DA tbl entry */
1499 unicast_reg &= ~(0xff << (8 * reg_offset));
1500 } else {
1501 unicast_reg &= ~(0xff << (8 * reg_offset));
1502 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1503 }
1504
1505 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1506 }
1507
1508 /* Set mac address */
1509 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1510 int queue)
1511 {
1512 unsigned int mac_h;
1513 unsigned int mac_l;
1514
1515 if (queue != -1) {
1516 mac_l = (addr[4] << 8) | (addr[5]);
1517 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1518 (addr[2] << 8) | (addr[3] << 0);
1519
1520 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1521 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1522 }
1523
1524 /* Accept frames of this address */
1525 mvneta_set_ucast_addr(pp, addr[5], queue);
1526 }
1527
1528 /* Set the number of packets that will be received before RX interrupt
1529 * will be generated by HW.
1530 */
1531 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1532 struct mvneta_rx_queue *rxq, u32 value)
1533 {
1534 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1535 value | MVNETA_RXQ_NON_OCCUPIED(0));
1536 rxq->pkts_coal = value;
1537 }
1538
1539 /* Set the time delay in usec before RX interrupt will be generated by
1540 * HW.
1541 */
1542 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1543 struct mvneta_rx_queue *rxq, u32 value)
1544 {
1545 u32 val;
1546 unsigned long clk_rate;
1547
1548 clk_rate = clk_get_rate(pp->clk);
1549 val = (clk_rate / 1000000) * value;
1550
1551 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1552 rxq->time_coal = value;
1553 }
1554
1555 /* Set threshold for TX_DONE pkts coalescing */
1556 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1557 struct mvneta_tx_queue *txq, u32 value)
1558 {
1559 u32 val;
1560
1561 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1562
1563 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1564 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1565
1566 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1567
1568 txq->done_pkts_coal = value;
1569 }
1570
1571 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1572 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1573 u32 phys_addr, u32 cookie)
1574 {
1575 rx_desc->buf_cookie = cookie;
1576 rx_desc->buf_phys_addr = phys_addr;
1577 }
1578
1579 /* Decrement sent descriptors counter */
1580 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1581 struct mvneta_tx_queue *txq,
1582 int sent_desc)
1583 {
1584 u32 val;
1585
1586 /* Only 255 TX descriptors can be updated at once */
1587 while (sent_desc > 0xff) {
1588 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1589 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1590 sent_desc = sent_desc - 0xff;
1591 }
1592
1593 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1594 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1595 }
1596
1597 /* Get number of TX descriptors already sent by HW */
1598 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1599 struct mvneta_tx_queue *txq)
1600 {
1601 u32 val;
1602 int sent_desc;
1603
1604 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1605 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1606 MVNETA_TXQ_SENT_DESC_SHIFT;
1607
1608 return sent_desc;
1609 }
1610
1611 /* Get number of sent descriptors and decrement counter.
1612 * The number of sent descriptors is returned.
1613 */
1614 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1615 struct mvneta_tx_queue *txq)
1616 {
1617 int sent_desc;
1618
1619 /* Get number of sent descriptors */
1620 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1621
1622 /* Decrement sent descriptors counter */
1623 if (sent_desc)
1624 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1625
1626 return sent_desc;
1627 }
1628
1629 /* Set TXQ descriptors fields relevant for CSUM calculation */
1630 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1631 int ip_hdr_len, int l4_proto)
1632 {
1633 u32 command;
1634
1635 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1636 * G_L4_chk, L4_type; required only for checksum
1637 * calculation
1638 */
1639 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1640 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1641
1642 if (l3_proto == htons(ETH_P_IP))
1643 command |= MVNETA_TXD_IP_CSUM;
1644 else
1645 command |= MVNETA_TX_L3_IP6;
1646
1647 if (l4_proto == IPPROTO_TCP)
1648 command |= MVNETA_TX_L4_CSUM_FULL;
1649 else if (l4_proto == IPPROTO_UDP)
1650 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1651 else
1652 command |= MVNETA_TX_L4_CSUM_NOT;
1653
1654 return command;
1655 }
1656
1657
1658 /* Display more error info */
1659 static void mvneta_rx_error(struct mvneta_port *pp,
1660 struct mvneta_rx_desc *rx_desc)
1661 {
1662 u32 status = rx_desc->status;
1663
1664 if (!mvneta_rxq_desc_is_first_last(status)) {
1665 netdev_err(pp->dev,
1666 "bad rx status %08x (buffer oversize), size=%d\n",
1667 status, rx_desc->data_size);
1668 return;
1669 }
1670
1671 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1672 case MVNETA_RXD_ERR_CRC:
1673 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1674 status, rx_desc->data_size);
1675 break;
1676 case MVNETA_RXD_ERR_OVERRUN:
1677 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1678 status, rx_desc->data_size);
1679 break;
1680 case MVNETA_RXD_ERR_LEN:
1681 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1682 status, rx_desc->data_size);
1683 break;
1684 case MVNETA_RXD_ERR_RESOURCE:
1685 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1686 status, rx_desc->data_size);
1687 break;
1688 }
1689 }
1690
1691 /* Handle RX checksum offload based on the descriptor's status */
1692 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1693 struct sk_buff *skb)
1694 {
1695 if ((status & MVNETA_RXD_L3_IP4) &&
1696 (status & MVNETA_RXD_L4_CSUM_OK)) {
1697 skb->csum = 0;
1698 skb->ip_summed = CHECKSUM_UNNECESSARY;
1699 return;
1700 }
1701
1702 skb->ip_summed = CHECKSUM_NONE;
1703 }
1704
1705 /* Return tx queue pointer (find last set bit) according to <cause> returned
1706 * form tx_done reg. <cause> must not be null. The return value is always a
1707 * valid queue for matching the first one found in <cause>.
1708 */
1709 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1710 u32 cause)
1711 {
1712 int queue = fls(cause) - 1;
1713
1714 return &pp->txqs[queue];
1715 }
1716
1717 /* Free tx queue skbuffs */
1718 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1719 struct mvneta_tx_queue *txq, int num)
1720 {
1721 int i;
1722
1723 for (i = 0; i < num; i++) {
1724 struct mvneta_tx_desc *tx_desc = txq->descs +
1725 txq->txq_get_index;
1726 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1727
1728 mvneta_txq_inc_get(txq);
1729
1730 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1731 dma_unmap_single(pp->dev->dev.parent,
1732 tx_desc->buf_phys_addr,
1733 tx_desc->data_size, DMA_TO_DEVICE);
1734 if (!skb)
1735 continue;
1736 dev_kfree_skb_any(skb);
1737 }
1738 }
1739
1740 /* Handle end of transmission */
1741 static void mvneta_txq_done(struct mvneta_port *pp,
1742 struct mvneta_tx_queue *txq)
1743 {
1744 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1745 int tx_done;
1746
1747 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1748 if (!tx_done)
1749 return;
1750
1751 mvneta_txq_bufs_free(pp, txq, tx_done);
1752
1753 txq->count -= tx_done;
1754
1755 if (netif_tx_queue_stopped(nq)) {
1756 if (txq->count <= txq->tx_wake_threshold)
1757 netif_tx_wake_queue(nq);
1758 }
1759 }
1760
1761 void *mvneta_frag_alloc(unsigned int frag_size)
1762 {
1763 if (likely(frag_size <= PAGE_SIZE))
1764 return netdev_alloc_frag(frag_size);
1765 else
1766 return kmalloc(frag_size, GFP_ATOMIC);
1767 }
1768 EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1769
1770 void mvneta_frag_free(unsigned int frag_size, void *data)
1771 {
1772 if (likely(frag_size <= PAGE_SIZE))
1773 skb_free_frag(data);
1774 else
1775 kfree(data);
1776 }
1777 EXPORT_SYMBOL_GPL(mvneta_frag_free);
1778
1779 /* Refill processing for SW buffer management */
1780 static int mvneta_rx_refill(struct mvneta_port *pp,
1781 struct mvneta_rx_desc *rx_desc)
1782
1783 {
1784 dma_addr_t phys_addr;
1785 void *data;
1786
1787 data = mvneta_frag_alloc(pp->frag_size);
1788 if (!data)
1789 return -ENOMEM;
1790
1791 phys_addr = dma_map_single(pp->dev->dev.parent, data,
1792 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1793 DMA_FROM_DEVICE);
1794 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1795 mvneta_frag_free(pp->frag_size, data);
1796 return -ENOMEM;
1797 }
1798
1799 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1800 return 0;
1801 }
1802
1803 /* Handle tx checksum */
1804 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1805 {
1806 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1807 int ip_hdr_len = 0;
1808 __be16 l3_proto = vlan_get_protocol(skb);
1809 u8 l4_proto;
1810
1811 if (l3_proto == htons(ETH_P_IP)) {
1812 struct iphdr *ip4h = ip_hdr(skb);
1813
1814 /* Calculate IPv4 checksum and L4 checksum */
1815 ip_hdr_len = ip4h->ihl;
1816 l4_proto = ip4h->protocol;
1817 } else if (l3_proto == htons(ETH_P_IPV6)) {
1818 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1819
1820 /* Read l4_protocol from one of IPv6 extra headers */
1821 if (skb_network_header_len(skb) > 0)
1822 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1823 l4_proto = ip6h->nexthdr;
1824 } else
1825 return MVNETA_TX_L4_CSUM_NOT;
1826
1827 return mvneta_txq_desc_csum(skb_network_offset(skb),
1828 l3_proto, ip_hdr_len, l4_proto);
1829 }
1830
1831 return MVNETA_TX_L4_CSUM_NOT;
1832 }
1833
1834 /* Drop packets received by the RXQ and free buffers */
1835 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1836 struct mvneta_rx_queue *rxq)
1837 {
1838 int rx_done, i;
1839
1840 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1841 if (rx_done)
1842 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1843
1844 if (pp->bm_priv) {
1845 for (i = 0; i < rx_done; i++) {
1846 struct mvneta_rx_desc *rx_desc =
1847 mvneta_rxq_next_desc_get(rxq);
1848 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1849 struct mvneta_bm_pool *bm_pool;
1850
1851 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1852 /* Return dropped buffer to the pool */
1853 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1854 rx_desc->buf_phys_addr);
1855 }
1856 return;
1857 }
1858
1859 for (i = 0; i < rxq->size; i++) {
1860 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1861 void *data = (void *)rx_desc->buf_cookie;
1862
1863 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1864 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1865 mvneta_frag_free(pp->frag_size, data);
1866 }
1867 }
1868
1869 /* Main rx processing when using software buffer management */
1870 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1871 struct mvneta_rx_queue *rxq)
1872 {
1873 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1874 struct net_device *dev = pp->dev;
1875 int rx_done;
1876 u32 rcvd_pkts = 0;
1877 u32 rcvd_bytes = 0;
1878
1879 /* Get number of received packets */
1880 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1881
1882 if (rx_todo > rx_done)
1883 rx_todo = rx_done;
1884
1885 rx_done = 0;
1886
1887 /* Fairness NAPI loop */
1888 while (rx_done < rx_todo) {
1889 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1890 struct sk_buff *skb;
1891 unsigned char *data;
1892 dma_addr_t phys_addr;
1893 u32 rx_status, frag_size;
1894 int rx_bytes, err;
1895
1896 rx_done++;
1897 rx_status = rx_desc->status;
1898 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1899 data = (unsigned char *)rx_desc->buf_cookie;
1900 phys_addr = rx_desc->buf_phys_addr;
1901
1902 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1903 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1904 err_drop_frame:
1905 dev->stats.rx_errors++;
1906 mvneta_rx_error(pp, rx_desc);
1907 /* leave the descriptor untouched */
1908 continue;
1909 }
1910
1911 if (rx_bytes <= rx_copybreak) {
1912 /* better copy a small frame and not unmap the DMA region */
1913 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1914 if (unlikely(!skb))
1915 goto err_drop_frame;
1916
1917 dma_sync_single_range_for_cpu(dev->dev.parent,
1918 rx_desc->buf_phys_addr,
1919 MVNETA_MH_SIZE + NET_SKB_PAD,
1920 rx_bytes,
1921 DMA_FROM_DEVICE);
1922 memcpy(skb_put(skb, rx_bytes),
1923 data + MVNETA_MH_SIZE + NET_SKB_PAD,
1924 rx_bytes);
1925
1926 skb->protocol = eth_type_trans(skb, dev);
1927 mvneta_rx_csum(pp, rx_status, skb);
1928 napi_gro_receive(&port->napi, skb);
1929
1930 rcvd_pkts++;
1931 rcvd_bytes += rx_bytes;
1932
1933 /* leave the descriptor and buffer untouched */
1934 continue;
1935 }
1936
1937 /* Refill processing */
1938 err = mvneta_rx_refill(pp, rx_desc);
1939 if (err) {
1940 netdev_err(dev, "Linux processing - Can't refill\n");
1941 rxq->missed++;
1942 goto err_drop_frame;
1943 }
1944
1945 frag_size = pp->frag_size;
1946
1947 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
1948
1949 /* After refill old buffer has to be unmapped regardless
1950 * the skb is successfully built or not.
1951 */
1952 dma_unmap_single(dev->dev.parent, phys_addr,
1953 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1954 DMA_FROM_DEVICE);
1955
1956 if (!skb)
1957 goto err_drop_frame;
1958
1959 rcvd_pkts++;
1960 rcvd_bytes += rx_bytes;
1961
1962 /* Linux processing */
1963 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1964 skb_put(skb, rx_bytes);
1965
1966 skb->protocol = eth_type_trans(skb, dev);
1967
1968 mvneta_rx_csum(pp, rx_status, skb);
1969
1970 napi_gro_receive(&port->napi, skb);
1971 }
1972
1973 if (rcvd_pkts) {
1974 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1975
1976 u64_stats_update_begin(&stats->syncp);
1977 stats->rx_packets += rcvd_pkts;
1978 stats->rx_bytes += rcvd_bytes;
1979 u64_stats_update_end(&stats->syncp);
1980 }
1981
1982 /* Update rxq management counters */
1983 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1984
1985 return rx_done;
1986 }
1987
1988 /* Main rx processing when using hardware buffer management */
1989 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
1990 struct mvneta_rx_queue *rxq)
1991 {
1992 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1993 struct net_device *dev = pp->dev;
1994 int rx_done;
1995 u32 rcvd_pkts = 0;
1996 u32 rcvd_bytes = 0;
1997
1998 /* Get number of received packets */
1999 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2000
2001 if (rx_todo > rx_done)
2002 rx_todo = rx_done;
2003
2004 rx_done = 0;
2005
2006 /* Fairness NAPI loop */
2007 while (rx_done < rx_todo) {
2008 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2009 struct mvneta_bm_pool *bm_pool = NULL;
2010 struct sk_buff *skb;
2011 unsigned char *data;
2012 dma_addr_t phys_addr;
2013 u32 rx_status, frag_size;
2014 int rx_bytes, err;
2015 u8 pool_id;
2016
2017 rx_done++;
2018 rx_status = rx_desc->status;
2019 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2020 data = (unsigned char *)rx_desc->buf_cookie;
2021 phys_addr = rx_desc->buf_phys_addr;
2022 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2023 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2024
2025 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2026 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2027 err_drop_frame_ret_pool:
2028 /* Return the buffer to the pool */
2029 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2030 rx_desc->buf_phys_addr);
2031 err_drop_frame:
2032 dev->stats.rx_errors++;
2033 mvneta_rx_error(pp, rx_desc);
2034 /* leave the descriptor untouched */
2035 continue;
2036 }
2037
2038 if (rx_bytes <= rx_copybreak) {
2039 /* better copy a small frame and not unmap the DMA region */
2040 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2041 if (unlikely(!skb))
2042 goto err_drop_frame_ret_pool;
2043
2044 dma_sync_single_range_for_cpu(dev->dev.parent,
2045 rx_desc->buf_phys_addr,
2046 MVNETA_MH_SIZE + NET_SKB_PAD,
2047 rx_bytes,
2048 DMA_FROM_DEVICE);
2049 memcpy(skb_put(skb, rx_bytes),
2050 data + MVNETA_MH_SIZE + NET_SKB_PAD,
2051 rx_bytes);
2052
2053 skb->protocol = eth_type_trans(skb, dev);
2054 mvneta_rx_csum(pp, rx_status, skb);
2055 napi_gro_receive(&port->napi, skb);
2056
2057 rcvd_pkts++;
2058 rcvd_bytes += rx_bytes;
2059
2060 /* Return the buffer to the pool */
2061 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2062 rx_desc->buf_phys_addr);
2063
2064 /* leave the descriptor and buffer untouched */
2065 continue;
2066 }
2067
2068 /* Refill processing */
2069 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2070 if (err) {
2071 netdev_err(dev, "Linux processing - Can't refill\n");
2072 rxq->missed++;
2073 goto err_drop_frame_ret_pool;
2074 }
2075
2076 frag_size = bm_pool->hwbm_pool.frag_size;
2077
2078 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2079
2080 /* After refill old buffer has to be unmapped regardless
2081 * the skb is successfully built or not.
2082 */
2083 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2084 bm_pool->buf_size, DMA_FROM_DEVICE);
2085 if (!skb)
2086 goto err_drop_frame;
2087
2088 rcvd_pkts++;
2089 rcvd_bytes += rx_bytes;
2090
2091 /* Linux processing */
2092 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2093 skb_put(skb, rx_bytes);
2094
2095 skb->protocol = eth_type_trans(skb, dev);
2096
2097 mvneta_rx_csum(pp, rx_status, skb);
2098
2099 napi_gro_receive(&port->napi, skb);
2100 }
2101
2102 if (rcvd_pkts) {
2103 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2104
2105 u64_stats_update_begin(&stats->syncp);
2106 stats->rx_packets += rcvd_pkts;
2107 stats->rx_bytes += rcvd_bytes;
2108 u64_stats_update_end(&stats->syncp);
2109 }
2110
2111 /* Update rxq management counters */
2112 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2113
2114 return rx_done;
2115 }
2116
2117 static inline void
2118 mvneta_tso_put_hdr(struct sk_buff *skb,
2119 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2120 {
2121 struct mvneta_tx_desc *tx_desc;
2122 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2123
2124 txq->tx_skb[txq->txq_put_index] = NULL;
2125 tx_desc = mvneta_txq_next_desc_get(txq);
2126 tx_desc->data_size = hdr_len;
2127 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2128 tx_desc->command |= MVNETA_TXD_F_DESC;
2129 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2130 txq->txq_put_index * TSO_HEADER_SIZE;
2131 mvneta_txq_inc_put(txq);
2132 }
2133
2134 static inline int
2135 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2136 struct sk_buff *skb, char *data, int size,
2137 bool last_tcp, bool is_last)
2138 {
2139 struct mvneta_tx_desc *tx_desc;
2140
2141 tx_desc = mvneta_txq_next_desc_get(txq);
2142 tx_desc->data_size = size;
2143 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2144 size, DMA_TO_DEVICE);
2145 if (unlikely(dma_mapping_error(dev->dev.parent,
2146 tx_desc->buf_phys_addr))) {
2147 mvneta_txq_desc_put(txq);
2148 return -ENOMEM;
2149 }
2150
2151 tx_desc->command = 0;
2152 txq->tx_skb[txq->txq_put_index] = NULL;
2153
2154 if (last_tcp) {
2155 /* last descriptor in the TCP packet */
2156 tx_desc->command = MVNETA_TXD_L_DESC;
2157
2158 /* last descriptor in SKB */
2159 if (is_last)
2160 txq->tx_skb[txq->txq_put_index] = skb;
2161 }
2162 mvneta_txq_inc_put(txq);
2163 return 0;
2164 }
2165
2166 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2167 struct mvneta_tx_queue *txq)
2168 {
2169 int total_len, data_left;
2170 int desc_count = 0;
2171 struct mvneta_port *pp = netdev_priv(dev);
2172 struct tso_t tso;
2173 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2174 int i;
2175
2176 /* Count needed descriptors */
2177 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2178 return 0;
2179
2180 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2181 pr_info("*** Is this even possible???!?!?\n");
2182 return 0;
2183 }
2184
2185 /* Initialize the TSO handler, and prepare the first payload */
2186 tso_start(skb, &tso);
2187
2188 total_len = skb->len - hdr_len;
2189 while (total_len > 0) {
2190 char *hdr;
2191
2192 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2193 total_len -= data_left;
2194 desc_count++;
2195
2196 /* prepare packet headers: MAC + IP + TCP */
2197 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2198 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2199
2200 mvneta_tso_put_hdr(skb, pp, txq);
2201
2202 while (data_left > 0) {
2203 int size;
2204 desc_count++;
2205
2206 size = min_t(int, tso.size, data_left);
2207
2208 if (mvneta_tso_put_data(dev, txq, skb,
2209 tso.data, size,
2210 size == data_left,
2211 total_len == 0))
2212 goto err_release;
2213 data_left -= size;
2214
2215 tso_build_data(skb, &tso, size);
2216 }
2217 }
2218
2219 return desc_count;
2220
2221 err_release:
2222 /* Release all used data descriptors; header descriptors must not
2223 * be DMA-unmapped.
2224 */
2225 for (i = desc_count - 1; i >= 0; i--) {
2226 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2227 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2228 dma_unmap_single(pp->dev->dev.parent,
2229 tx_desc->buf_phys_addr,
2230 tx_desc->data_size,
2231 DMA_TO_DEVICE);
2232 mvneta_txq_desc_put(txq);
2233 }
2234 return 0;
2235 }
2236
2237 /* Handle tx fragmentation processing */
2238 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2239 struct mvneta_tx_queue *txq)
2240 {
2241 struct mvneta_tx_desc *tx_desc;
2242 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2243
2244 for (i = 0; i < nr_frags; i++) {
2245 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2246 void *addr = page_address(frag->page.p) + frag->page_offset;
2247
2248 tx_desc = mvneta_txq_next_desc_get(txq);
2249 tx_desc->data_size = frag->size;
2250
2251 tx_desc->buf_phys_addr =
2252 dma_map_single(pp->dev->dev.parent, addr,
2253 tx_desc->data_size, DMA_TO_DEVICE);
2254
2255 if (dma_mapping_error(pp->dev->dev.parent,
2256 tx_desc->buf_phys_addr)) {
2257 mvneta_txq_desc_put(txq);
2258 goto error;
2259 }
2260
2261 if (i == nr_frags - 1) {
2262 /* Last descriptor */
2263 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2264 txq->tx_skb[txq->txq_put_index] = skb;
2265 } else {
2266 /* Descriptor in the middle: Not First, Not Last */
2267 tx_desc->command = 0;
2268 txq->tx_skb[txq->txq_put_index] = NULL;
2269 }
2270 mvneta_txq_inc_put(txq);
2271 }
2272
2273 return 0;
2274
2275 error:
2276 /* Release all descriptors that were used to map fragments of
2277 * this packet, as well as the corresponding DMA mappings
2278 */
2279 for (i = i - 1; i >= 0; i--) {
2280 tx_desc = txq->descs + i;
2281 dma_unmap_single(pp->dev->dev.parent,
2282 tx_desc->buf_phys_addr,
2283 tx_desc->data_size,
2284 DMA_TO_DEVICE);
2285 mvneta_txq_desc_put(txq);
2286 }
2287
2288 return -ENOMEM;
2289 }
2290
2291 /* Main tx processing */
2292 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2293 {
2294 struct mvneta_port *pp = netdev_priv(dev);
2295 u16 txq_id = skb_get_queue_mapping(skb);
2296 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2297 struct mvneta_tx_desc *tx_desc;
2298 int len = skb->len;
2299 int frags = 0;
2300 u32 tx_cmd;
2301
2302 if (!netif_running(dev))
2303 goto out;
2304
2305 if (skb_is_gso(skb)) {
2306 frags = mvneta_tx_tso(skb, dev, txq);
2307 goto out;
2308 }
2309
2310 frags = skb_shinfo(skb)->nr_frags + 1;
2311
2312 /* Get a descriptor for the first part of the packet */
2313 tx_desc = mvneta_txq_next_desc_get(txq);
2314
2315 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2316
2317 tx_desc->data_size = skb_headlen(skb);
2318
2319 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2320 tx_desc->data_size,
2321 DMA_TO_DEVICE);
2322 if (unlikely(dma_mapping_error(dev->dev.parent,
2323 tx_desc->buf_phys_addr))) {
2324 mvneta_txq_desc_put(txq);
2325 frags = 0;
2326 goto out;
2327 }
2328
2329 if (frags == 1) {
2330 /* First and Last descriptor */
2331 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2332 tx_desc->command = tx_cmd;
2333 txq->tx_skb[txq->txq_put_index] = skb;
2334 mvneta_txq_inc_put(txq);
2335 } else {
2336 /* First but not Last */
2337 tx_cmd |= MVNETA_TXD_F_DESC;
2338 txq->tx_skb[txq->txq_put_index] = NULL;
2339 mvneta_txq_inc_put(txq);
2340 tx_desc->command = tx_cmd;
2341 /* Continue with other skb fragments */
2342 if (mvneta_tx_frag_process(pp, skb, txq)) {
2343 dma_unmap_single(dev->dev.parent,
2344 tx_desc->buf_phys_addr,
2345 tx_desc->data_size,
2346 DMA_TO_DEVICE);
2347 mvneta_txq_desc_put(txq);
2348 frags = 0;
2349 goto out;
2350 }
2351 }
2352
2353 out:
2354 if (frags > 0) {
2355 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2356 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2357
2358 txq->count += frags;
2359 mvneta_txq_pend_desc_add(pp, txq, frags);
2360
2361 if (txq->count >= txq->tx_stop_threshold)
2362 netif_tx_stop_queue(nq);
2363
2364 u64_stats_update_begin(&stats->syncp);
2365 stats->tx_packets++;
2366 stats->tx_bytes += len;
2367 u64_stats_update_end(&stats->syncp);
2368 } else {
2369 dev->stats.tx_dropped++;
2370 dev_kfree_skb_any(skb);
2371 }
2372
2373 return NETDEV_TX_OK;
2374 }
2375
2376
2377 /* Free tx resources, when resetting a port */
2378 static void mvneta_txq_done_force(struct mvneta_port *pp,
2379 struct mvneta_tx_queue *txq)
2380
2381 {
2382 int tx_done = txq->count;
2383
2384 mvneta_txq_bufs_free(pp, txq, tx_done);
2385
2386 /* reset txq */
2387 txq->count = 0;
2388 txq->txq_put_index = 0;
2389 txq->txq_get_index = 0;
2390 }
2391
2392 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2393 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2394 */
2395 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2396 {
2397 struct mvneta_tx_queue *txq;
2398 struct netdev_queue *nq;
2399
2400 while (cause_tx_done) {
2401 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2402
2403 nq = netdev_get_tx_queue(pp->dev, txq->id);
2404 __netif_tx_lock(nq, smp_processor_id());
2405
2406 if (txq->count)
2407 mvneta_txq_done(pp, txq);
2408
2409 __netif_tx_unlock(nq);
2410 cause_tx_done &= ~((1 << txq->id));
2411 }
2412 }
2413
2414 /* Compute crc8 of the specified address, using a unique algorithm ,
2415 * according to hw spec, different than generic crc8 algorithm
2416 */
2417 static int mvneta_addr_crc(unsigned char *addr)
2418 {
2419 int crc = 0;
2420 int i;
2421
2422 for (i = 0; i < ETH_ALEN; i++) {
2423 int j;
2424
2425 crc = (crc ^ addr[i]) << 8;
2426 for (j = 7; j >= 0; j--) {
2427 if (crc & (0x100 << j))
2428 crc ^= 0x107 << j;
2429 }
2430 }
2431
2432 return crc;
2433 }
2434
2435 /* This method controls the net device special MAC multicast support.
2436 * The Special Multicast Table for MAC addresses supports MAC of the form
2437 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2438 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2439 * Table entries in the DA-Filter table. This method set the Special
2440 * Multicast Table appropriate entry.
2441 */
2442 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2443 unsigned char last_byte,
2444 int queue)
2445 {
2446 unsigned int smc_table_reg;
2447 unsigned int tbl_offset;
2448 unsigned int reg_offset;
2449
2450 /* Register offset from SMC table base */
2451 tbl_offset = (last_byte / 4);
2452 /* Entry offset within the above reg */
2453 reg_offset = last_byte % 4;
2454
2455 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2456 + tbl_offset * 4));
2457
2458 if (queue == -1)
2459 smc_table_reg &= ~(0xff << (8 * reg_offset));
2460 else {
2461 smc_table_reg &= ~(0xff << (8 * reg_offset));
2462 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2463 }
2464
2465 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2466 smc_table_reg);
2467 }
2468
2469 /* This method controls the network device Other MAC multicast support.
2470 * The Other Multicast Table is used for multicast of another type.
2471 * A CRC-8 is used as an index to the Other Multicast Table entries
2472 * in the DA-Filter table.
2473 * The method gets the CRC-8 value from the calling routine and
2474 * sets the Other Multicast Table appropriate entry according to the
2475 * specified CRC-8 .
2476 */
2477 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2478 unsigned char crc8,
2479 int queue)
2480 {
2481 unsigned int omc_table_reg;
2482 unsigned int tbl_offset;
2483 unsigned int reg_offset;
2484
2485 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2486 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2487
2488 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2489
2490 if (queue == -1) {
2491 /* Clear accepts frame bit at specified Other DA table entry */
2492 omc_table_reg &= ~(0xff << (8 * reg_offset));
2493 } else {
2494 omc_table_reg &= ~(0xff << (8 * reg_offset));
2495 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2496 }
2497
2498 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2499 }
2500
2501 /* The network device supports multicast using two tables:
2502 * 1) Special Multicast Table for MAC addresses of the form
2503 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2504 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2505 * Table entries in the DA-Filter table.
2506 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2507 * is used as an index to the Other Multicast Table entries in the
2508 * DA-Filter table.
2509 */
2510 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2511 int queue)
2512 {
2513 unsigned char crc_result = 0;
2514
2515 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2516 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2517 return 0;
2518 }
2519
2520 crc_result = mvneta_addr_crc(p_addr);
2521 if (queue == -1) {
2522 if (pp->mcast_count[crc_result] == 0) {
2523 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2524 crc_result);
2525 return -EINVAL;
2526 }
2527
2528 pp->mcast_count[crc_result]--;
2529 if (pp->mcast_count[crc_result] != 0) {
2530 netdev_info(pp->dev,
2531 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2532 pp->mcast_count[crc_result], crc_result);
2533 return -EINVAL;
2534 }
2535 } else
2536 pp->mcast_count[crc_result]++;
2537
2538 mvneta_set_other_mcast_addr(pp, crc_result, queue);
2539
2540 return 0;
2541 }
2542
2543 /* Configure Fitering mode of Ethernet port */
2544 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2545 int is_promisc)
2546 {
2547 u32 port_cfg_reg, val;
2548
2549 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2550
2551 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2552
2553 /* Set / Clear UPM bit in port configuration register */
2554 if (is_promisc) {
2555 /* Accept all Unicast addresses */
2556 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2557 val |= MVNETA_FORCE_UNI;
2558 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2559 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2560 } else {
2561 /* Reject all Unicast addresses */
2562 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2563 val &= ~MVNETA_FORCE_UNI;
2564 }
2565
2566 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2567 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2568 }
2569
2570 /* register unicast and multicast addresses */
2571 static void mvneta_set_rx_mode(struct net_device *dev)
2572 {
2573 struct mvneta_port *pp = netdev_priv(dev);
2574 struct netdev_hw_addr *ha;
2575
2576 if (dev->flags & IFF_PROMISC) {
2577 /* Accept all: Multicast + Unicast */
2578 mvneta_rx_unicast_promisc_set(pp, 1);
2579 mvneta_set_ucast_table(pp, pp->rxq_def);
2580 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2581 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2582 } else {
2583 /* Accept single Unicast */
2584 mvneta_rx_unicast_promisc_set(pp, 0);
2585 mvneta_set_ucast_table(pp, -1);
2586 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2587
2588 if (dev->flags & IFF_ALLMULTI) {
2589 /* Accept all multicast */
2590 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2591 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2592 } else {
2593 /* Accept only initialized multicast */
2594 mvneta_set_special_mcast_table(pp, -1);
2595 mvneta_set_other_mcast_table(pp, -1);
2596
2597 if (!netdev_mc_empty(dev)) {
2598 netdev_for_each_mc_addr(ha, dev) {
2599 mvneta_mcast_addr_set(pp, ha->addr,
2600 pp->rxq_def);
2601 }
2602 }
2603 }
2604 }
2605 }
2606
2607 /* Interrupt handling - the callback for request_irq() */
2608 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2609 {
2610 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2611
2612 disable_percpu_irq(port->pp->dev->irq);
2613 napi_schedule(&port->napi);
2614
2615 return IRQ_HANDLED;
2616 }
2617
2618 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2619 struct phy_device *phy)
2620 {
2621 struct fixed_phy_status status;
2622 struct fixed_phy_status changed = {};
2623 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2624
2625 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2626 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2627 status.speed = SPEED_1000;
2628 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2629 status.speed = SPEED_100;
2630 else
2631 status.speed = SPEED_10;
2632 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2633 changed.link = 1;
2634 changed.speed = 1;
2635 changed.duplex = 1;
2636 fixed_phy_update_state(phy, &status, &changed);
2637 return 0;
2638 }
2639
2640 /* NAPI handler
2641 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2642 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2643 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2644 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2645 * Each CPU has its own causeRxTx register
2646 */
2647 static int mvneta_poll(struct napi_struct *napi, int budget)
2648 {
2649 int rx_done = 0;
2650 u32 cause_rx_tx;
2651 int rx_queue;
2652 struct mvneta_port *pp = netdev_priv(napi->dev);
2653 struct net_device *ndev = pp->dev;
2654 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2655
2656 if (!netif_running(pp->dev)) {
2657 napi_complete(&port->napi);
2658 return rx_done;
2659 }
2660
2661 /* Read cause register */
2662 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2663 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2664 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2665
2666 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2667 if (pp->use_inband_status && (cause_misc &
2668 (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2669 MVNETA_CAUSE_LINK_CHANGE |
2670 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2671 mvneta_fixed_link_update(pp, ndev->phydev);
2672 }
2673 }
2674
2675 /* Release Tx descriptors */
2676 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2677 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2678 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2679 }
2680
2681 /* For the case where the last mvneta_poll did not process all
2682 * RX packets
2683 */
2684 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2685
2686 cause_rx_tx |= port->cause_rx_tx;
2687
2688 if (rx_queue) {
2689 rx_queue = rx_queue - 1;
2690 if (pp->bm_priv)
2691 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2692 else
2693 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2694 }
2695
2696 budget -= rx_done;
2697
2698 if (budget > 0) {
2699 cause_rx_tx = 0;
2700 napi_complete(&port->napi);
2701 enable_percpu_irq(pp->dev->irq, 0);
2702 }
2703
2704 port->cause_rx_tx = cause_rx_tx;
2705 return rx_done;
2706 }
2707
2708 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2709 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2710 int num)
2711 {
2712 int i;
2713
2714 for (i = 0; i < num; i++) {
2715 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2716 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2717 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
2718 __func__, rxq->id, i, num);
2719 break;
2720 }
2721 }
2722
2723 /* Add this number of RX descriptors as non occupied (ready to
2724 * get packets)
2725 */
2726 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2727
2728 return i;
2729 }
2730
2731 /* Free all packets pending transmit from all TXQs and reset TX port */
2732 static void mvneta_tx_reset(struct mvneta_port *pp)
2733 {
2734 int queue;
2735
2736 /* free the skb's in the tx ring */
2737 for (queue = 0; queue < txq_number; queue++)
2738 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2739
2740 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2741 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2742 }
2743
2744 static void mvneta_rx_reset(struct mvneta_port *pp)
2745 {
2746 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2747 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2748 }
2749
2750 /* Rx/Tx queue initialization/cleanup methods */
2751
2752 /* Create a specified RX queue */
2753 static int mvneta_rxq_init(struct mvneta_port *pp,
2754 struct mvneta_rx_queue *rxq)
2755
2756 {
2757 rxq->size = pp->rx_ring_size;
2758
2759 /* Allocate memory for RX descriptors */
2760 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2761 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2762 &rxq->descs_phys, GFP_KERNEL);
2763 if (rxq->descs == NULL)
2764 return -ENOMEM;
2765
2766 rxq->last_desc = rxq->size - 1;
2767
2768 /* Set Rx descriptors queue starting address */
2769 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2770 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2771
2772 /* Set Offset */
2773 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2774
2775 /* Set coalescing pkts and time */
2776 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2777 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2778
2779 if (!pp->bm_priv) {
2780 /* Fill RXQ with buffers from RX pool */
2781 mvneta_rxq_buf_size_set(pp, rxq,
2782 MVNETA_RX_BUF_SIZE(pp->pkt_size));
2783 mvneta_rxq_bm_disable(pp, rxq);
2784 } else {
2785 mvneta_rxq_bm_enable(pp, rxq);
2786 mvneta_rxq_long_pool_set(pp, rxq);
2787 mvneta_rxq_short_pool_set(pp, rxq);
2788 }
2789
2790 mvneta_rxq_fill(pp, rxq, rxq->size);
2791
2792 return 0;
2793 }
2794
2795 /* Cleanup Rx queue */
2796 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2797 struct mvneta_rx_queue *rxq)
2798 {
2799 mvneta_rxq_drop_pkts(pp, rxq);
2800
2801 if (rxq->descs)
2802 dma_free_coherent(pp->dev->dev.parent,
2803 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2804 rxq->descs,
2805 rxq->descs_phys);
2806
2807 rxq->descs = NULL;
2808 rxq->last_desc = 0;
2809 rxq->next_desc_to_proc = 0;
2810 rxq->descs_phys = 0;
2811 }
2812
2813 /* Create and initialize a tx queue */
2814 static int mvneta_txq_init(struct mvneta_port *pp,
2815 struct mvneta_tx_queue *txq)
2816 {
2817 int cpu;
2818
2819 txq->size = pp->tx_ring_size;
2820
2821 /* A queue must always have room for at least one skb.
2822 * Therefore, stop the queue when the free entries reaches
2823 * the maximum number of descriptors per skb.
2824 */
2825 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2826 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2827
2828
2829 /* Allocate memory for TX descriptors */
2830 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2831 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2832 &txq->descs_phys, GFP_KERNEL);
2833 if (txq->descs == NULL)
2834 return -ENOMEM;
2835
2836 txq->last_desc = txq->size - 1;
2837
2838 /* Set maximum bandwidth for enabled TXQs */
2839 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2840 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2841
2842 /* Set Tx descriptors queue starting address */
2843 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2844 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2845
2846 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2847 if (txq->tx_skb == NULL) {
2848 dma_free_coherent(pp->dev->dev.parent,
2849 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2850 txq->descs, txq->descs_phys);
2851 return -ENOMEM;
2852 }
2853
2854 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2855 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2856 txq->size * TSO_HEADER_SIZE,
2857 &txq->tso_hdrs_phys, GFP_KERNEL);
2858 if (txq->tso_hdrs == NULL) {
2859 kfree(txq->tx_skb);
2860 dma_free_coherent(pp->dev->dev.parent,
2861 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2862 txq->descs, txq->descs_phys);
2863 return -ENOMEM;
2864 }
2865 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2866
2867 /* Setup XPS mapping */
2868 if (txq_number > 1)
2869 cpu = txq->id % num_present_cpus();
2870 else
2871 cpu = pp->rxq_def % num_present_cpus();
2872 cpumask_set_cpu(cpu, &txq->affinity_mask);
2873 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2874
2875 return 0;
2876 }
2877
2878 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2879 static void mvneta_txq_deinit(struct mvneta_port *pp,
2880 struct mvneta_tx_queue *txq)
2881 {
2882 kfree(txq->tx_skb);
2883
2884 if (txq->tso_hdrs)
2885 dma_free_coherent(pp->dev->dev.parent,
2886 txq->size * TSO_HEADER_SIZE,
2887 txq->tso_hdrs, txq->tso_hdrs_phys);
2888 if (txq->descs)
2889 dma_free_coherent(pp->dev->dev.parent,
2890 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2891 txq->descs, txq->descs_phys);
2892
2893 txq->descs = NULL;
2894 txq->last_desc = 0;
2895 txq->next_desc_to_proc = 0;
2896 txq->descs_phys = 0;
2897
2898 /* Set minimum bandwidth for disabled TXQs */
2899 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2900 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2901
2902 /* Set Tx descriptors queue starting address and size */
2903 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2904 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2905 }
2906
2907 /* Cleanup all Tx queues */
2908 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2909 {
2910 int queue;
2911
2912 for (queue = 0; queue < txq_number; queue++)
2913 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2914 }
2915
2916 /* Cleanup all Rx queues */
2917 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2918 {
2919 int queue;
2920
2921 for (queue = 0; queue < txq_number; queue++)
2922 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2923 }
2924
2925
2926 /* Init all Rx queues */
2927 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2928 {
2929 int queue;
2930
2931 for (queue = 0; queue < rxq_number; queue++) {
2932 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2933
2934 if (err) {
2935 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2936 __func__, queue);
2937 mvneta_cleanup_rxqs(pp);
2938 return err;
2939 }
2940 }
2941
2942 return 0;
2943 }
2944
2945 /* Init all tx queues */
2946 static int mvneta_setup_txqs(struct mvneta_port *pp)
2947 {
2948 int queue;
2949
2950 for (queue = 0; queue < txq_number; queue++) {
2951 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2952 if (err) {
2953 netdev_err(pp->dev, "%s: can't create txq=%d\n",
2954 __func__, queue);
2955 mvneta_cleanup_txqs(pp);
2956 return err;
2957 }
2958 }
2959
2960 return 0;
2961 }
2962
2963 static void mvneta_start_dev(struct mvneta_port *pp)
2964 {
2965 int cpu;
2966 struct net_device *ndev = pp->dev;
2967
2968 mvneta_max_rx_size_set(pp, pp->pkt_size);
2969 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2970
2971 /* start the Rx/Tx activity */
2972 mvneta_port_enable(pp);
2973
2974 /* Enable polling on the port */
2975 for_each_online_cpu(cpu) {
2976 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2977
2978 napi_enable(&port->napi);
2979 }
2980
2981 /* Unmask interrupts. It has to be done from each CPU */
2982 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
2983
2984 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2985 MVNETA_CAUSE_PHY_STATUS_CHANGE |
2986 MVNETA_CAUSE_LINK_CHANGE |
2987 MVNETA_CAUSE_PSC_SYNC_CHANGE);
2988
2989 phy_start(ndev->phydev);
2990 netif_tx_start_all_queues(pp->dev);
2991 }
2992
2993 static void mvneta_stop_dev(struct mvneta_port *pp)
2994 {
2995 unsigned int cpu;
2996 struct net_device *ndev = pp->dev;
2997
2998 phy_stop(ndev->phydev);
2999
3000 for_each_online_cpu(cpu) {
3001 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3002
3003 napi_disable(&port->napi);
3004 }
3005
3006 netif_carrier_off(pp->dev);
3007
3008 mvneta_port_down(pp);
3009 netif_tx_stop_all_queues(pp->dev);
3010
3011 /* Stop the port activity */
3012 mvneta_port_disable(pp);
3013
3014 /* Clear all ethernet port interrupts */
3015 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3016
3017 /* Mask all ethernet port interrupts */
3018 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3019
3020 mvneta_tx_reset(pp);
3021 mvneta_rx_reset(pp);
3022 }
3023
3024 /* Return positive if MTU is valid */
3025 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
3026 {
3027 if (mtu < 68) {
3028 netdev_err(dev, "cannot change mtu to less than 68\n");
3029 return -EINVAL;
3030 }
3031
3032 /* 9676 == 9700 - 20 and rounding to 8 */
3033 if (mtu > 9676) {
3034 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
3035 mtu = 9676;
3036 }
3037
3038 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3039 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3040 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3041 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3042 }
3043
3044 return mtu;
3045 }
3046
3047 static void mvneta_percpu_enable(void *arg)
3048 {
3049 struct mvneta_port *pp = arg;
3050
3051 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3052 }
3053
3054 static void mvneta_percpu_disable(void *arg)
3055 {
3056 struct mvneta_port *pp = arg;
3057
3058 disable_percpu_irq(pp->dev->irq);
3059 }
3060
3061 /* Change the device mtu */
3062 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3063 {
3064 struct mvneta_port *pp = netdev_priv(dev);
3065 int ret;
3066
3067 mtu = mvneta_check_mtu_valid(dev, mtu);
3068 if (mtu < 0)
3069 return -EINVAL;
3070
3071 dev->mtu = mtu;
3072
3073 if (!netif_running(dev)) {
3074 if (pp->bm_priv)
3075 mvneta_bm_update_mtu(pp, mtu);
3076
3077 netdev_update_features(dev);
3078 return 0;
3079 }
3080
3081 /* The interface is running, so we have to force a
3082 * reallocation of the queues
3083 */
3084 mvneta_stop_dev(pp);
3085 on_each_cpu(mvneta_percpu_disable, pp, true);
3086
3087 mvneta_cleanup_txqs(pp);
3088 mvneta_cleanup_rxqs(pp);
3089
3090 if (pp->bm_priv)
3091 mvneta_bm_update_mtu(pp, mtu);
3092
3093 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3094 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3095 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3096
3097 ret = mvneta_setup_rxqs(pp);
3098 if (ret) {
3099 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3100 return ret;
3101 }
3102
3103 ret = mvneta_setup_txqs(pp);
3104 if (ret) {
3105 netdev_err(dev, "unable to setup txqs after MTU change\n");
3106 return ret;
3107 }
3108
3109 on_each_cpu(mvneta_percpu_enable, pp, true);
3110 mvneta_start_dev(pp);
3111 mvneta_port_up(pp);
3112
3113 netdev_update_features(dev);
3114
3115 return 0;
3116 }
3117
3118 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3119 netdev_features_t features)
3120 {
3121 struct mvneta_port *pp = netdev_priv(dev);
3122
3123 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3124 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3125 netdev_info(dev,
3126 "Disable IP checksum for MTU greater than %dB\n",
3127 pp->tx_csum_limit);
3128 }
3129
3130 return features;
3131 }
3132
3133 /* Get mac address */
3134 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3135 {
3136 u32 mac_addr_l, mac_addr_h;
3137
3138 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3139 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3140 addr[0] = (mac_addr_h >> 24) & 0xFF;
3141 addr[1] = (mac_addr_h >> 16) & 0xFF;
3142 addr[2] = (mac_addr_h >> 8) & 0xFF;
3143 addr[3] = mac_addr_h & 0xFF;
3144 addr[4] = (mac_addr_l >> 8) & 0xFF;
3145 addr[5] = mac_addr_l & 0xFF;
3146 }
3147
3148 /* Handle setting mac address */
3149 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3150 {
3151 struct mvneta_port *pp = netdev_priv(dev);
3152 struct sockaddr *sockaddr = addr;
3153 int ret;
3154
3155 ret = eth_prepare_mac_addr_change(dev, addr);
3156 if (ret < 0)
3157 return ret;
3158 /* Remove previous address table entry */
3159 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3160
3161 /* Set new addr in hw */
3162 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3163
3164 eth_commit_mac_addr_change(dev, addr);
3165 return 0;
3166 }
3167
3168 static void mvneta_adjust_link(struct net_device *ndev)
3169 {
3170 struct mvneta_port *pp = netdev_priv(ndev);
3171 struct phy_device *phydev = ndev->phydev;
3172 int status_change = 0;
3173
3174 if (phydev->link) {
3175 if ((pp->speed != phydev->speed) ||
3176 (pp->duplex != phydev->duplex)) {
3177 u32 val;
3178
3179 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3180 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3181 MVNETA_GMAC_CONFIG_GMII_SPEED |
3182 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3183
3184 if (phydev->duplex)
3185 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3186
3187 if (phydev->speed == SPEED_1000)
3188 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3189 else if (phydev->speed == SPEED_100)
3190 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3191
3192 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3193
3194 pp->duplex = phydev->duplex;
3195 pp->speed = phydev->speed;
3196 }
3197 }
3198
3199 if (phydev->link != pp->link) {
3200 if (!phydev->link) {
3201 pp->duplex = -1;
3202 pp->speed = 0;
3203 }
3204
3205 pp->link = phydev->link;
3206 status_change = 1;
3207 }
3208
3209 if (status_change) {
3210 if (phydev->link) {
3211 if (!pp->use_inband_status) {
3212 u32 val = mvreg_read(pp,
3213 MVNETA_GMAC_AUTONEG_CONFIG);
3214 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3215 val |= MVNETA_GMAC_FORCE_LINK_PASS;
3216 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3217 val);
3218 }
3219 mvneta_port_up(pp);
3220 } else {
3221 if (!pp->use_inband_status) {
3222 u32 val = mvreg_read(pp,
3223 MVNETA_GMAC_AUTONEG_CONFIG);
3224 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3225 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3226 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3227 val);
3228 }
3229 mvneta_port_down(pp);
3230 }
3231 phy_print_status(phydev);
3232 }
3233 }
3234
3235 static int mvneta_mdio_probe(struct mvneta_port *pp)
3236 {
3237 struct phy_device *phy_dev;
3238
3239 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3240 pp->phy_interface);
3241 if (!phy_dev) {
3242 netdev_err(pp->dev, "could not find the PHY\n");
3243 return -ENODEV;
3244 }
3245
3246 phy_dev->supported &= PHY_GBIT_FEATURES;
3247 phy_dev->advertising = phy_dev->supported;
3248
3249 pp->link = 0;
3250 pp->duplex = 0;
3251 pp->speed = 0;
3252
3253 return 0;
3254 }
3255
3256 static void mvneta_mdio_remove(struct mvneta_port *pp)
3257 {
3258 struct net_device *ndev = pp->dev;
3259
3260 phy_disconnect(ndev->phydev);
3261 }
3262
3263 /* Electing a CPU must be done in an atomic way: it should be done
3264 * after or before the removal/insertion of a CPU and this function is
3265 * not reentrant.
3266 */
3267 static void mvneta_percpu_elect(struct mvneta_port *pp)
3268 {
3269 int elected_cpu = 0, max_cpu, cpu, i = 0;
3270
3271 /* Use the cpu associated to the rxq when it is online, in all
3272 * the other cases, use the cpu 0 which can't be offline.
3273 */
3274 if (cpu_online(pp->rxq_def))
3275 elected_cpu = pp->rxq_def;
3276
3277 max_cpu = num_present_cpus();
3278
3279 for_each_online_cpu(cpu) {
3280 int rxq_map = 0, txq_map = 0;
3281 int rxq;
3282
3283 for (rxq = 0; rxq < rxq_number; rxq++)
3284 if ((rxq % max_cpu) == cpu)
3285 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3286
3287 if (cpu == elected_cpu)
3288 /* Map the default receive queue queue to the
3289 * elected CPU
3290 */
3291 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3292
3293 /* We update the TX queue map only if we have one
3294 * queue. In this case we associate the TX queue to
3295 * the CPU bound to the default RX queue
3296 */
3297 if (txq_number == 1)
3298 txq_map = (cpu == elected_cpu) ?
3299 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3300 else
3301 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3302 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3303
3304 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3305
3306 /* Update the interrupt mask on each CPU according the
3307 * new mapping
3308 */
3309 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3310 pp, true);
3311 i++;
3312
3313 }
3314 };
3315
3316 static int mvneta_percpu_notifier(struct notifier_block *nfb,
3317 unsigned long action, void *hcpu)
3318 {
3319 struct mvneta_port *pp = container_of(nfb, struct mvneta_port,
3320 cpu_notifier);
3321 int cpu = (unsigned long)hcpu, other_cpu;
3322 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3323
3324 switch (action) {
3325 case CPU_ONLINE:
3326 case CPU_ONLINE_FROZEN:
3327 case CPU_DOWN_FAILED:
3328 case CPU_DOWN_FAILED_FROZEN:
3329 spin_lock(&pp->lock);
3330 /* Configuring the driver for a new CPU while the
3331 * driver is stopping is racy, so just avoid it.
3332 */
3333 if (pp->is_stopped) {
3334 spin_unlock(&pp->lock);
3335 break;
3336 }
3337 netif_tx_stop_all_queues(pp->dev);
3338
3339 /* We have to synchronise on tha napi of each CPU
3340 * except the one just being waked up
3341 */
3342 for_each_online_cpu(other_cpu) {
3343 if (other_cpu != cpu) {
3344 struct mvneta_pcpu_port *other_port =
3345 per_cpu_ptr(pp->ports, other_cpu);
3346
3347 napi_synchronize(&other_port->napi);
3348 }
3349 }
3350
3351 /* Mask all ethernet port interrupts */
3352 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3353 napi_enable(&port->napi);
3354
3355
3356 /* Enable per-CPU interrupts on the CPU that is
3357 * brought up.
3358 */
3359 mvneta_percpu_enable(pp);
3360
3361 /* Enable per-CPU interrupt on the one CPU we care
3362 * about.
3363 */
3364 mvneta_percpu_elect(pp);
3365
3366 /* Unmask all ethernet port interrupts */
3367 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3368 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3369 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3370 MVNETA_CAUSE_LINK_CHANGE |
3371 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3372 netif_tx_start_all_queues(pp->dev);
3373 spin_unlock(&pp->lock);
3374 break;
3375 case CPU_DOWN_PREPARE:
3376 case CPU_DOWN_PREPARE_FROZEN:
3377 netif_tx_stop_all_queues(pp->dev);
3378 /* Thanks to this lock we are sure that any pending
3379 * cpu election is done
3380 */
3381 spin_lock(&pp->lock);
3382 /* Mask all ethernet port interrupts */
3383 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3384 spin_unlock(&pp->lock);
3385
3386 napi_synchronize(&port->napi);
3387 napi_disable(&port->napi);
3388 /* Disable per-CPU interrupts on the CPU that is
3389 * brought down.
3390 */
3391 mvneta_percpu_disable(pp);
3392
3393 break;
3394 case CPU_DEAD:
3395 case CPU_DEAD_FROZEN:
3396 /* Check if a new CPU must be elected now this on is down */
3397 spin_lock(&pp->lock);
3398 mvneta_percpu_elect(pp);
3399 spin_unlock(&pp->lock);
3400 /* Unmask all ethernet port interrupts */
3401 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3402 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3403 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3404 MVNETA_CAUSE_LINK_CHANGE |
3405 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3406 netif_tx_start_all_queues(pp->dev);
3407 break;
3408 }
3409
3410 return NOTIFY_OK;
3411 }
3412
3413 static int mvneta_open(struct net_device *dev)
3414 {
3415 struct mvneta_port *pp = netdev_priv(dev);
3416 int ret;
3417
3418 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3419 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3420 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3421
3422 ret = mvneta_setup_rxqs(pp);
3423 if (ret)
3424 return ret;
3425
3426 ret = mvneta_setup_txqs(pp);
3427 if (ret)
3428 goto err_cleanup_rxqs;
3429
3430 /* Connect to port interrupt line */
3431 ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
3432 MVNETA_DRIVER_NAME, pp->ports);
3433 if (ret) {
3434 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3435 goto err_cleanup_txqs;
3436 }
3437
3438 /* Enable per-CPU interrupt on all the CPU to handle our RX
3439 * queue interrupts
3440 */
3441 on_each_cpu(mvneta_percpu_enable, pp, true);
3442
3443 pp->is_stopped = false;
3444 /* Register a CPU notifier to handle the case where our CPU
3445 * might be taken offline.
3446 */
3447 register_cpu_notifier(&pp->cpu_notifier);
3448
3449 /* In default link is down */
3450 netif_carrier_off(pp->dev);
3451
3452 ret = mvneta_mdio_probe(pp);
3453 if (ret < 0) {
3454 netdev_err(dev, "cannot probe MDIO bus\n");
3455 goto err_free_irq;
3456 }
3457
3458 mvneta_start_dev(pp);
3459
3460 return 0;
3461
3462 err_free_irq:
3463 unregister_cpu_notifier(&pp->cpu_notifier);
3464 on_each_cpu(mvneta_percpu_disable, pp, true);
3465 free_percpu_irq(pp->dev->irq, pp->ports);
3466 err_cleanup_txqs:
3467 mvneta_cleanup_txqs(pp);
3468 err_cleanup_rxqs:
3469 mvneta_cleanup_rxqs(pp);
3470 return ret;
3471 }
3472
3473 /* Stop the port, free port interrupt line */
3474 static int mvneta_stop(struct net_device *dev)
3475 {
3476 struct mvneta_port *pp = netdev_priv(dev);
3477
3478 /* Inform that we are stopping so we don't want to setup the
3479 * driver for new CPUs in the notifiers. The code of the
3480 * notifier for CPU online is protected by the same spinlock,
3481 * so when we get the lock, the notifer work is done.
3482 */
3483 spin_lock(&pp->lock);
3484 pp->is_stopped = true;
3485 spin_unlock(&pp->lock);
3486
3487 mvneta_stop_dev(pp);
3488 mvneta_mdio_remove(pp);
3489 unregister_cpu_notifier(&pp->cpu_notifier);
3490 on_each_cpu(mvneta_percpu_disable, pp, true);
3491 free_percpu_irq(dev->irq, pp->ports);
3492 mvneta_cleanup_rxqs(pp);
3493 mvneta_cleanup_txqs(pp);
3494
3495 return 0;
3496 }
3497
3498 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3499 {
3500 if (!dev->phydev)
3501 return -ENOTSUPP;
3502
3503 return phy_mii_ioctl(dev->phydev, ifr, cmd);
3504 }
3505
3506 /* Ethtool methods */
3507
3508 /* Set link ksettings (phy address, speed) for ethtools */
3509 int mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3510 const struct ethtool_link_ksettings *cmd)
3511 {
3512 struct mvneta_port *pp = netdev_priv(ndev);
3513 struct phy_device *phydev = ndev->phydev;
3514
3515 if (!phydev)
3516 return -ENODEV;
3517
3518 if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3519 u32 val;
3520
3521 mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE);
3522
3523 if (cmd->base.autoneg == AUTONEG_DISABLE) {
3524 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3525 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3526 MVNETA_GMAC_CONFIG_GMII_SPEED |
3527 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3528
3529 if (phydev->duplex)
3530 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3531
3532 if (phydev->speed == SPEED_1000)
3533 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3534 else if (phydev->speed == SPEED_100)
3535 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3536
3537 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3538 }
3539
3540 pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE);
3541 netdev_info(pp->dev, "autoneg status set to %i\n",
3542 pp->use_inband_status);
3543
3544 if (netif_running(ndev)) {
3545 mvneta_port_down(pp);
3546 mvneta_port_up(pp);
3547 }
3548 }
3549
3550 return phy_ethtool_ksettings_set(ndev->phydev, cmd);
3551 }
3552
3553 /* Set interrupt coalescing for ethtools */
3554 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3555 struct ethtool_coalesce *c)
3556 {
3557 struct mvneta_port *pp = netdev_priv(dev);
3558 int queue;
3559
3560 for (queue = 0; queue < rxq_number; queue++) {
3561 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3562 rxq->time_coal = c->rx_coalesce_usecs;
3563 rxq->pkts_coal = c->rx_max_coalesced_frames;
3564 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3565 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3566 }
3567
3568 for (queue = 0; queue < txq_number; queue++) {
3569 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3570 txq->done_pkts_coal = c->tx_max_coalesced_frames;
3571 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3572 }
3573
3574 return 0;
3575 }
3576
3577 /* get coalescing for ethtools */
3578 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3579 struct ethtool_coalesce *c)
3580 {
3581 struct mvneta_port *pp = netdev_priv(dev);
3582
3583 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
3584 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
3585
3586 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
3587 return 0;
3588 }
3589
3590
3591 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3592 struct ethtool_drvinfo *drvinfo)
3593 {
3594 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3595 sizeof(drvinfo->driver));
3596 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3597 sizeof(drvinfo->version));
3598 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3599 sizeof(drvinfo->bus_info));
3600 }
3601
3602
3603 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3604 struct ethtool_ringparam *ring)
3605 {
3606 struct mvneta_port *pp = netdev_priv(netdev);
3607
3608 ring->rx_max_pending = MVNETA_MAX_RXD;
3609 ring->tx_max_pending = MVNETA_MAX_TXD;
3610 ring->rx_pending = pp->rx_ring_size;
3611 ring->tx_pending = pp->tx_ring_size;
3612 }
3613
3614 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3615 struct ethtool_ringparam *ring)
3616 {
3617 struct mvneta_port *pp = netdev_priv(dev);
3618
3619 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3620 return -EINVAL;
3621 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3622 ring->rx_pending : MVNETA_MAX_RXD;
3623
3624 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3625 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3626 if (pp->tx_ring_size != ring->tx_pending)
3627 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3628 pp->tx_ring_size, ring->tx_pending);
3629
3630 if (netif_running(dev)) {
3631 mvneta_stop(dev);
3632 if (mvneta_open(dev)) {
3633 netdev_err(dev,
3634 "error on opening device after ring param change\n");
3635 return -ENOMEM;
3636 }
3637 }
3638
3639 return 0;
3640 }
3641
3642 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3643 u8 *data)
3644 {
3645 if (sset == ETH_SS_STATS) {
3646 int i;
3647
3648 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3649 memcpy(data + i * ETH_GSTRING_LEN,
3650 mvneta_statistics[i].name, ETH_GSTRING_LEN);
3651 }
3652 }
3653
3654 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3655 {
3656 const struct mvneta_statistic *s;
3657 void __iomem *base = pp->base;
3658 u32 high, low, val;
3659 u64 val64;
3660 int i;
3661
3662 for (i = 0, s = mvneta_statistics;
3663 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3664 s++, i++) {
3665 switch (s->type) {
3666 case T_REG_32:
3667 val = readl_relaxed(base + s->offset);
3668 pp->ethtool_stats[i] += val;
3669 break;
3670 case T_REG_64:
3671 /* Docs say to read low 32-bit then high */
3672 low = readl_relaxed(base + s->offset);
3673 high = readl_relaxed(base + s->offset + 4);
3674 val64 = (u64)high << 32 | low;
3675 pp->ethtool_stats[i] += val64;
3676 break;
3677 }
3678 }
3679 }
3680
3681 static void mvneta_ethtool_get_stats(struct net_device *dev,
3682 struct ethtool_stats *stats, u64 *data)
3683 {
3684 struct mvneta_port *pp = netdev_priv(dev);
3685 int i;
3686
3687 mvneta_ethtool_update_stats(pp);
3688
3689 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3690 *data++ = pp->ethtool_stats[i];
3691 }
3692
3693 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3694 {
3695 if (sset == ETH_SS_STATS)
3696 return ARRAY_SIZE(mvneta_statistics);
3697 return -EOPNOTSUPP;
3698 }
3699
3700 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3701 {
3702 return MVNETA_RSS_LU_TABLE_SIZE;
3703 }
3704
3705 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3706 struct ethtool_rxnfc *info,
3707 u32 *rules __always_unused)
3708 {
3709 switch (info->cmd) {
3710 case ETHTOOL_GRXRINGS:
3711 info->data = rxq_number;
3712 return 0;
3713 case ETHTOOL_GRXFH:
3714 return -EOPNOTSUPP;
3715 default:
3716 return -EOPNOTSUPP;
3717 }
3718 }
3719
3720 static int mvneta_config_rss(struct mvneta_port *pp)
3721 {
3722 int cpu;
3723 u32 val;
3724
3725 netif_tx_stop_all_queues(pp->dev);
3726
3727 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3728
3729 /* We have to synchronise on the napi of each CPU */
3730 for_each_online_cpu(cpu) {
3731 struct mvneta_pcpu_port *pcpu_port =
3732 per_cpu_ptr(pp->ports, cpu);
3733
3734 napi_synchronize(&pcpu_port->napi);
3735 napi_disable(&pcpu_port->napi);
3736 }
3737
3738 pp->rxq_def = pp->indir[0];
3739
3740 /* Update unicast mapping */
3741 mvneta_set_rx_mode(pp->dev);
3742
3743 /* Update val of portCfg register accordingly with all RxQueue types */
3744 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3745 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3746
3747 /* Update the elected CPU matching the new rxq_def */
3748 spin_lock(&pp->lock);
3749 mvneta_percpu_elect(pp);
3750 spin_unlock(&pp->lock);
3751
3752 /* We have to synchronise on the napi of each CPU */
3753 for_each_online_cpu(cpu) {
3754 struct mvneta_pcpu_port *pcpu_port =
3755 per_cpu_ptr(pp->ports, cpu);
3756
3757 napi_enable(&pcpu_port->napi);
3758 }
3759
3760 netif_tx_start_all_queues(pp->dev);
3761
3762 return 0;
3763 }
3764
3765 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3766 const u8 *key, const u8 hfunc)
3767 {
3768 struct mvneta_port *pp = netdev_priv(dev);
3769 /* We require at least one supported parameter to be changed
3770 * and no change in any of the unsupported parameters
3771 */
3772 if (key ||
3773 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3774 return -EOPNOTSUPP;
3775
3776 if (!indir)
3777 return 0;
3778
3779 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3780
3781 return mvneta_config_rss(pp);
3782 }
3783
3784 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3785 u8 *hfunc)
3786 {
3787 struct mvneta_port *pp = netdev_priv(dev);
3788
3789 if (hfunc)
3790 *hfunc = ETH_RSS_HASH_TOP;
3791
3792 if (!indir)
3793 return 0;
3794
3795 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3796
3797 return 0;
3798 }
3799
3800 static const struct net_device_ops mvneta_netdev_ops = {
3801 .ndo_open = mvneta_open,
3802 .ndo_stop = mvneta_stop,
3803 .ndo_start_xmit = mvneta_tx,
3804 .ndo_set_rx_mode = mvneta_set_rx_mode,
3805 .ndo_set_mac_address = mvneta_set_mac_addr,
3806 .ndo_change_mtu = mvneta_change_mtu,
3807 .ndo_fix_features = mvneta_fix_features,
3808 .ndo_get_stats64 = mvneta_get_stats64,
3809 .ndo_do_ioctl = mvneta_ioctl,
3810 };
3811
3812 const struct ethtool_ops mvneta_eth_tool_ops = {
3813 .get_link = ethtool_op_get_link,
3814 .set_coalesce = mvneta_ethtool_set_coalesce,
3815 .get_coalesce = mvneta_ethtool_get_coalesce,
3816 .get_drvinfo = mvneta_ethtool_get_drvinfo,
3817 .get_ringparam = mvneta_ethtool_get_ringparam,
3818 .set_ringparam = mvneta_ethtool_set_ringparam,
3819 .get_strings = mvneta_ethtool_get_strings,
3820 .get_ethtool_stats = mvneta_ethtool_get_stats,
3821 .get_sset_count = mvneta_ethtool_get_sset_count,
3822 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3823 .get_rxnfc = mvneta_ethtool_get_rxnfc,
3824 .get_rxfh = mvneta_ethtool_get_rxfh,
3825 .set_rxfh = mvneta_ethtool_set_rxfh,
3826 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3827 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
3828 };
3829
3830 /* Initialize hw */
3831 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3832 {
3833 int queue;
3834
3835 /* Disable port */
3836 mvneta_port_disable(pp);
3837
3838 /* Set port default values */
3839 mvneta_defaults_set(pp);
3840
3841 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3842 GFP_KERNEL);
3843 if (!pp->txqs)
3844 return -ENOMEM;
3845
3846 /* Initialize TX descriptor rings */
3847 for (queue = 0; queue < txq_number; queue++) {
3848 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3849 txq->id = queue;
3850 txq->size = pp->tx_ring_size;
3851 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3852 }
3853
3854 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3855 GFP_KERNEL);
3856 if (!pp->rxqs)
3857 return -ENOMEM;
3858
3859 /* Create Rx descriptor rings */
3860 for (queue = 0; queue < rxq_number; queue++) {
3861 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3862 rxq->id = queue;
3863 rxq->size = pp->rx_ring_size;
3864 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3865 rxq->time_coal = MVNETA_RX_COAL_USEC;
3866 }
3867
3868 return 0;
3869 }
3870
3871 /* platform glue : initialize decoding windows */
3872 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3873 const struct mbus_dram_target_info *dram)
3874 {
3875 u32 win_enable;
3876 u32 win_protect;
3877 int i;
3878
3879 for (i = 0; i < 6; i++) {
3880 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3881 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3882
3883 if (i < 4)
3884 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3885 }
3886
3887 win_enable = 0x3f;
3888 win_protect = 0;
3889
3890 for (i = 0; i < dram->num_cs; i++) {
3891 const struct mbus_dram_window *cs = dram->cs + i;
3892 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3893 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3894
3895 mvreg_write(pp, MVNETA_WIN_SIZE(i),
3896 (cs->size - 1) & 0xffff0000);
3897
3898 win_enable &= ~(1 << i);
3899 win_protect |= 3 << (2 * i);
3900 }
3901
3902 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3903 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
3904 }
3905
3906 /* Power up the port */
3907 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3908 {
3909 u32 ctrl;
3910
3911 /* MAC Cause register should be cleared */
3912 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3913
3914 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3915
3916 /* Even though it might look weird, when we're configured in
3917 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3918 */
3919 switch(phy_mode) {
3920 case PHY_INTERFACE_MODE_QSGMII:
3921 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3922 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3923 break;
3924 case PHY_INTERFACE_MODE_SGMII:
3925 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3926 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3927 break;
3928 case PHY_INTERFACE_MODE_RGMII:
3929 case PHY_INTERFACE_MODE_RGMII_ID:
3930 ctrl |= MVNETA_GMAC2_PORT_RGMII;
3931 break;
3932 default:
3933 return -EINVAL;
3934 }
3935
3936 /* Cancel Port Reset */
3937 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3938 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3939
3940 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3941 MVNETA_GMAC2_PORT_RESET) != 0)
3942 continue;
3943
3944 return 0;
3945 }
3946
3947 /* Device initialization routine */
3948 static int mvneta_probe(struct platform_device *pdev)
3949 {
3950 const struct mbus_dram_target_info *dram_target_info;
3951 struct resource *res;
3952 struct device_node *dn = pdev->dev.of_node;
3953 struct device_node *phy_node;
3954 struct device_node *bm_node;
3955 struct mvneta_port *pp;
3956 struct net_device *dev;
3957 const char *dt_mac_addr;
3958 char hw_mac_addr[ETH_ALEN];
3959 const char *mac_from;
3960 const char *managed;
3961 int tx_csum_limit;
3962 int phy_mode;
3963 int err;
3964 int cpu;
3965
3966 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3967 if (!dev)
3968 return -ENOMEM;
3969
3970 dev->irq = irq_of_parse_and_map(dn, 0);
3971 if (dev->irq == 0) {
3972 err = -EINVAL;
3973 goto err_free_netdev;
3974 }
3975
3976 phy_node = of_parse_phandle(dn, "phy", 0);
3977 if (!phy_node) {
3978 if (!of_phy_is_fixed_link(dn)) {
3979 dev_err(&pdev->dev, "no PHY specified\n");
3980 err = -ENODEV;
3981 goto err_free_irq;
3982 }
3983
3984 err = of_phy_register_fixed_link(dn);
3985 if (err < 0) {
3986 dev_err(&pdev->dev, "cannot register fixed PHY\n");
3987 goto err_free_irq;
3988 }
3989
3990 /* In the case of a fixed PHY, the DT node associated
3991 * to the PHY is the Ethernet MAC DT node.
3992 */
3993 phy_node = of_node_get(dn);
3994 }
3995
3996 phy_mode = of_get_phy_mode(dn);
3997 if (phy_mode < 0) {
3998 dev_err(&pdev->dev, "incorrect phy-mode\n");
3999 err = -EINVAL;
4000 goto err_put_phy_node;
4001 }
4002
4003 dev->tx_queue_len = MVNETA_MAX_TXD;
4004 dev->watchdog_timeo = 5 * HZ;
4005 dev->netdev_ops = &mvneta_netdev_ops;
4006
4007 dev->ethtool_ops = &mvneta_eth_tool_ops;
4008
4009 pp = netdev_priv(dev);
4010 spin_lock_init(&pp->lock);
4011 pp->phy_node = phy_node;
4012 pp->phy_interface = phy_mode;
4013
4014 err = of_property_read_string(dn, "managed", &managed);
4015 pp->use_inband_status = (err == 0 &&
4016 strcmp(managed, "in-band-status") == 0);
4017 pp->cpu_notifier.notifier_call = mvneta_percpu_notifier;
4018
4019 pp->rxq_def = rxq_def;
4020
4021 pp->indir[0] = rxq_def;
4022
4023 pp->clk = devm_clk_get(&pdev->dev, "core");
4024 if (IS_ERR(pp->clk))
4025 pp->clk = devm_clk_get(&pdev->dev, NULL);
4026 if (IS_ERR(pp->clk)) {
4027 err = PTR_ERR(pp->clk);
4028 goto err_put_phy_node;
4029 }
4030
4031 clk_prepare_enable(pp->clk);
4032
4033 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4034 if (!IS_ERR(pp->clk_bus))
4035 clk_prepare_enable(pp->clk_bus);
4036
4037 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4038 pp->base = devm_ioremap_resource(&pdev->dev, res);
4039 if (IS_ERR(pp->base)) {
4040 err = PTR_ERR(pp->base);
4041 goto err_clk;
4042 }
4043
4044 /* Alloc per-cpu port structure */
4045 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4046 if (!pp->ports) {
4047 err = -ENOMEM;
4048 goto err_clk;
4049 }
4050
4051 /* Alloc per-cpu stats */
4052 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4053 if (!pp->stats) {
4054 err = -ENOMEM;
4055 goto err_free_ports;
4056 }
4057
4058 dt_mac_addr = of_get_mac_address(dn);
4059 if (dt_mac_addr) {
4060 mac_from = "device tree";
4061 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4062 } else {
4063 mvneta_get_mac_addr(pp, hw_mac_addr);
4064 if (is_valid_ether_addr(hw_mac_addr)) {
4065 mac_from = "hardware";
4066 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4067 } else {
4068 mac_from = "random";
4069 eth_hw_addr_random(dev);
4070 }
4071 }
4072
4073 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4074 if (tx_csum_limit < 0 ||
4075 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4076 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4077 dev_info(&pdev->dev,
4078 "Wrong TX csum limit in DT, set to %dB\n",
4079 MVNETA_TX_CSUM_DEF_SIZE);
4080 }
4081 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4082 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4083 } else {
4084 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4085 }
4086
4087 pp->tx_csum_limit = tx_csum_limit;
4088
4089 dram_target_info = mv_mbus_dram_info();
4090 if (dram_target_info)
4091 mvneta_conf_mbus_windows(pp, dram_target_info);
4092
4093 pp->tx_ring_size = MVNETA_MAX_TXD;
4094 pp->rx_ring_size = MVNETA_MAX_RXD;
4095
4096 pp->dev = dev;
4097 SET_NETDEV_DEV(dev, &pdev->dev);
4098
4099 pp->id = global_port_id++;
4100
4101 /* Obtain access to BM resources if enabled and already initialized */
4102 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4103 if (bm_node && bm_node->data) {
4104 pp->bm_priv = bm_node->data;
4105 err = mvneta_bm_port_init(pdev, pp);
4106 if (err < 0) {
4107 dev_info(&pdev->dev, "use SW buffer management\n");
4108 pp->bm_priv = NULL;
4109 }
4110 }
4111 of_node_put(bm_node);
4112
4113 err = mvneta_init(&pdev->dev, pp);
4114 if (err < 0)
4115 goto err_netdev;
4116
4117 err = mvneta_port_power_up(pp, phy_mode);
4118 if (err < 0) {
4119 dev_err(&pdev->dev, "can't power up port\n");
4120 goto err_netdev;
4121 }
4122
4123 for_each_present_cpu(cpu) {
4124 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4125
4126 netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4127 port->pp = pp;
4128 }
4129
4130 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4131 dev->hw_features |= dev->features;
4132 dev->vlan_features |= dev->features;
4133 dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE;
4134 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4135
4136 err = register_netdev(dev);
4137 if (err < 0) {
4138 dev_err(&pdev->dev, "failed to register\n");
4139 goto err_free_stats;
4140 }
4141
4142 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4143 dev->dev_addr);
4144
4145 platform_set_drvdata(pdev, pp->dev);
4146
4147 if (pp->use_inband_status) {
4148 struct phy_device *phy = of_phy_find_device(dn);
4149
4150 mvneta_fixed_link_update(pp, phy);
4151
4152 put_device(&phy->mdio.dev);
4153 }
4154
4155 return 0;
4156
4157 err_netdev:
4158 unregister_netdev(dev);
4159 if (pp->bm_priv) {
4160 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4161 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4162 1 << pp->id);
4163 }
4164 err_free_stats:
4165 free_percpu(pp->stats);
4166 err_free_ports:
4167 free_percpu(pp->ports);
4168 err_clk:
4169 clk_disable_unprepare(pp->clk_bus);
4170 clk_disable_unprepare(pp->clk);
4171 err_put_phy_node:
4172 of_node_put(phy_node);
4173 err_free_irq:
4174 irq_dispose_mapping(dev->irq);
4175 err_free_netdev:
4176 free_netdev(dev);
4177 return err;
4178 }
4179
4180 /* Device removal routine */
4181 static int mvneta_remove(struct platform_device *pdev)
4182 {
4183 struct net_device *dev = platform_get_drvdata(pdev);
4184 struct mvneta_port *pp = netdev_priv(dev);
4185
4186 unregister_netdev(dev);
4187 clk_disable_unprepare(pp->clk_bus);
4188 clk_disable_unprepare(pp->clk);
4189 free_percpu(pp->ports);
4190 free_percpu(pp->stats);
4191 irq_dispose_mapping(dev->irq);
4192 of_node_put(pp->phy_node);
4193 free_netdev(dev);
4194
4195 if (pp->bm_priv) {
4196 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4197 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4198 1 << pp->id);
4199 }
4200
4201 return 0;
4202 }
4203
4204 static const struct of_device_id mvneta_match[] = {
4205 { .compatible = "marvell,armada-370-neta" },
4206 { .compatible = "marvell,armada-xp-neta" },
4207 { }
4208 };
4209 MODULE_DEVICE_TABLE(of, mvneta_match);
4210
4211 static struct platform_driver mvneta_driver = {
4212 .probe = mvneta_probe,
4213 .remove = mvneta_remove,
4214 .driver = {
4215 .name = MVNETA_DRIVER_NAME,
4216 .of_match_table = mvneta_match,
4217 },
4218 };
4219
4220 module_platform_driver(mvneta_driver);
4221
4222 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4223 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4224 MODULE_LICENSE("GPL");
4225
4226 module_param(rxq_number, int, S_IRUGO);
4227 module_param(txq_number, int, S_IRUGO);
4228
4229 module_param(rxq_def, int, S_IRUGO);
4230 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
This page took 0.123814 seconds and 6 git commands to generate.