Merge remote-tracking branch 'selinux/next'
[deliverable/linux.git] / drivers / net / ethernet / netronome / nfp / nfp_net_common.c
1 /*
2 * Copyright (C) 2015 Netronome Systems, Inc.
3 *
4 * This software is dual licensed under the GNU General License Version 2,
5 * June 1991 as shown in the file COPYING in the top-level directory of this
6 * source tree or the BSD 2-Clause License provided below. You have the
7 * option to license this software under the complete terms of either license.
8 *
9 * The BSD 2-Clause License:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * 1. Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * 2. Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 /*
35 * nfp_net_common.c
36 * Netronome network device driver: Common functions between PF and VF
37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
38 * Jason McMullan <jason.mcmullan@netronome.com>
39 * Rolf Neugebauer <rolf.neugebauer@netronome.com>
40 * Brad Petrus <brad.petrus@netronome.com>
41 * Chris Telfer <chris.telfer@netronome.com>
42 */
43
44 #include <linux/module.h>
45 #include <linux/kernel.h>
46 #include <linux/init.h>
47 #include <linux/fs.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/interrupt.h>
51 #include <linux/ip.h>
52 #include <linux/ipv6.h>
53 #include <linux/pci.h>
54 #include <linux/pci_regs.h>
55 #include <linux/msi.h>
56 #include <linux/ethtool.h>
57 #include <linux/log2.h>
58 #include <linux/if_vlan.h>
59 #include <linux/random.h>
60
61 #include <linux/ktime.h>
62
63 #include <net/vxlan.h>
64
65 #include "nfp_net_ctrl.h"
66 #include "nfp_net.h"
67
68 /**
69 * nfp_net_get_fw_version() - Read and parse the FW version
70 * @fw_ver: Output fw_version structure to read to
71 * @ctrl_bar: Mapped address of the control BAR
72 */
73 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
74 void __iomem *ctrl_bar)
75 {
76 u32 reg;
77
78 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
79 put_unaligned_le32(reg, fw_ver);
80 }
81
82 /* Firmware reconfig
83 *
84 * Firmware reconfig may take a while so we have two versions of it -
85 * synchronous and asynchronous (posted). All synchronous callers are holding
86 * RTNL so we don't have to worry about serializing them.
87 */
88 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
89 {
90 nn_writel(nn, NFP_NET_CFG_UPDATE, update);
91 /* ensure update is written before pinging HW */
92 nn_pci_flush(nn);
93 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
94 }
95
96 /* Pass 0 as update to run posted reconfigs. */
97 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
98 {
99 update |= nn->reconfig_posted;
100 nn->reconfig_posted = 0;
101
102 nfp_net_reconfig_start(nn, update);
103
104 nn->reconfig_timer_active = true;
105 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
106 }
107
108 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
109 {
110 u32 reg;
111
112 reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
113 if (reg == 0)
114 return true;
115 if (reg & NFP_NET_CFG_UPDATE_ERR) {
116 nn_err(nn, "Reconfig error: 0x%08x\n", reg);
117 return true;
118 } else if (last_check) {
119 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
120 return true;
121 }
122
123 return false;
124 }
125
126 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
127 {
128 bool timed_out = false;
129
130 /* Poll update field, waiting for NFP to ack the config */
131 while (!nfp_net_reconfig_check_done(nn, timed_out)) {
132 msleep(1);
133 timed_out = time_is_before_eq_jiffies(deadline);
134 }
135
136 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
137 return -EIO;
138
139 return timed_out ? -EIO : 0;
140 }
141
142 static void nfp_net_reconfig_timer(unsigned long data)
143 {
144 struct nfp_net *nn = (void *)data;
145
146 spin_lock_bh(&nn->reconfig_lock);
147
148 nn->reconfig_timer_active = false;
149
150 /* If sync caller is present it will take over from us */
151 if (nn->reconfig_sync_present)
152 goto done;
153
154 /* Read reconfig status and report errors */
155 nfp_net_reconfig_check_done(nn, true);
156
157 if (nn->reconfig_posted)
158 nfp_net_reconfig_start_async(nn, 0);
159 done:
160 spin_unlock_bh(&nn->reconfig_lock);
161 }
162
163 /**
164 * nfp_net_reconfig_post() - Post async reconfig request
165 * @nn: NFP Net device to reconfigure
166 * @update: The value for the update field in the BAR config
167 *
168 * Record FW reconfiguration request. Reconfiguration will be kicked off
169 * whenever reconfiguration machinery is idle. Multiple requests can be
170 * merged together!
171 */
172 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
173 {
174 spin_lock_bh(&nn->reconfig_lock);
175
176 /* Sync caller will kick off async reconf when it's done, just post */
177 if (nn->reconfig_sync_present) {
178 nn->reconfig_posted |= update;
179 goto done;
180 }
181
182 /* Opportunistically check if the previous command is done */
183 if (!nn->reconfig_timer_active ||
184 nfp_net_reconfig_check_done(nn, false))
185 nfp_net_reconfig_start_async(nn, update);
186 else
187 nn->reconfig_posted |= update;
188 done:
189 spin_unlock_bh(&nn->reconfig_lock);
190 }
191
192 /**
193 * nfp_net_reconfig() - Reconfigure the firmware
194 * @nn: NFP Net device to reconfigure
195 * @update: The value for the update field in the BAR config
196 *
197 * Write the update word to the BAR and ping the reconfig queue. The
198 * poll until the firmware has acknowledged the update by zeroing the
199 * update word.
200 *
201 * Return: Negative errno on error, 0 on success
202 */
203 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
204 {
205 bool cancelled_timer = false;
206 u32 pre_posted_requests;
207 int ret;
208
209 spin_lock_bh(&nn->reconfig_lock);
210
211 nn->reconfig_sync_present = true;
212
213 if (nn->reconfig_timer_active) {
214 del_timer(&nn->reconfig_timer);
215 nn->reconfig_timer_active = false;
216 cancelled_timer = true;
217 }
218 pre_posted_requests = nn->reconfig_posted;
219 nn->reconfig_posted = 0;
220
221 spin_unlock_bh(&nn->reconfig_lock);
222
223 if (cancelled_timer)
224 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
225
226 /* Run the posted reconfigs which were issued before we started */
227 if (pre_posted_requests) {
228 nfp_net_reconfig_start(nn, pre_posted_requests);
229 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
230 }
231
232 nfp_net_reconfig_start(nn, update);
233 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
234
235 spin_lock_bh(&nn->reconfig_lock);
236
237 if (nn->reconfig_posted)
238 nfp_net_reconfig_start_async(nn, 0);
239
240 nn->reconfig_sync_present = false;
241
242 spin_unlock_bh(&nn->reconfig_lock);
243
244 return ret;
245 }
246
247 /* Interrupt configuration and handling
248 */
249
250 /**
251 * nfp_net_irq_unmask_msix() - Unmask MSI-X after automasking
252 * @nn: NFP Network structure
253 * @entry_nr: MSI-X table entry
254 *
255 * Clear the MSI-X table mask bit for the given entry bypassing Linux irq
256 * handling subsystem. Use *only* to reenable automasked vectors.
257 */
258 static void nfp_net_irq_unmask_msix(struct nfp_net *nn, unsigned int entry_nr)
259 {
260 struct list_head *msi_head = &nn->pdev->dev.msi_list;
261 struct msi_desc *entry;
262 u32 off;
263
264 /* All MSI-Xs have the same mask_base */
265 entry = list_first_entry(msi_head, struct msi_desc, list);
266
267 off = (PCI_MSIX_ENTRY_SIZE * entry_nr) +
268 PCI_MSIX_ENTRY_VECTOR_CTRL;
269 writel(0, entry->mask_base + off);
270 readl(entry->mask_base);
271 }
272
273 /**
274 * nfp_net_irq_unmask() - Unmask automasked interrupt
275 * @nn: NFP Network structure
276 * @entry_nr: MSI-X table entry
277 *
278 * If MSI-X auto-masking is enabled clear the mask bit, otherwise
279 * clear the ICR for the entry.
280 */
281 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
282 {
283 if (nn->ctrl & NFP_NET_CFG_CTRL_MSIXAUTO) {
284 nfp_net_irq_unmask_msix(nn, entry_nr);
285 return;
286 }
287
288 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
289 nn_pci_flush(nn);
290 }
291
292 /**
293 * nfp_net_msix_alloc() - Try to allocate MSI-X irqs
294 * @nn: NFP Network structure
295 * @nr_vecs: Number of MSI-X vectors to allocate
296 *
297 * For MSI-X we want at least NFP_NET_NON_Q_VECTORS + 1 vectors.
298 *
299 * Return: Number of MSI-X vectors obtained or 0 on error.
300 */
301 static int nfp_net_msix_alloc(struct nfp_net *nn, int nr_vecs)
302 {
303 struct pci_dev *pdev = nn->pdev;
304 int nvecs;
305 int i;
306
307 for (i = 0; i < nr_vecs; i++)
308 nn->irq_entries[i].entry = i;
309
310 nvecs = pci_enable_msix_range(pdev, nn->irq_entries,
311 NFP_NET_NON_Q_VECTORS + 1, nr_vecs);
312 if (nvecs < 0) {
313 nn_warn(nn, "Failed to enable MSI-X. Wanted %d-%d (err=%d)\n",
314 NFP_NET_NON_Q_VECTORS + 1, nr_vecs, nvecs);
315 return 0;
316 }
317
318 return nvecs;
319 }
320
321 /**
322 * nfp_net_irqs_wanted() - Work out how many interrupt vectors we want
323 * @nn: NFP Network structure
324 *
325 * We want a vector per CPU (or ring), whatever is smaller plus
326 * NFP_NET_NON_Q_VECTORS for LSC etc.
327 *
328 * Return: Number of interrupts wanted
329 */
330 static int nfp_net_irqs_wanted(struct nfp_net *nn)
331 {
332 int ncpus;
333 int vecs;
334
335 ncpus = num_online_cpus();
336
337 vecs = max_t(int, nn->num_tx_rings, nn->num_rx_rings);
338 vecs = min_t(int, vecs, ncpus);
339
340 return vecs + NFP_NET_NON_Q_VECTORS;
341 }
342
343 /**
344 * nfp_net_irqs_alloc() - allocates MSI-X irqs
345 * @nn: NFP Network structure
346 *
347 * Return: Number of irqs obtained or 0 on error.
348 */
349 int nfp_net_irqs_alloc(struct nfp_net *nn)
350 {
351 int wanted_irqs;
352
353 wanted_irqs = nfp_net_irqs_wanted(nn);
354
355 nn->num_irqs = nfp_net_msix_alloc(nn, wanted_irqs);
356 if (nn->num_irqs == 0) {
357 nn_err(nn, "Failed to allocate MSI-X IRQs\n");
358 return 0;
359 }
360
361 nn->num_r_vecs = nn->num_irqs - NFP_NET_NON_Q_VECTORS;
362
363 if (nn->num_irqs < wanted_irqs)
364 nn_warn(nn, "Unable to allocate %d vectors. Got %d instead\n",
365 wanted_irqs, nn->num_irqs);
366
367 return nn->num_irqs;
368 }
369
370 /**
371 * nfp_net_irqs_disable() - Disable interrupts
372 * @nn: NFP Network structure
373 *
374 * Undoes what @nfp_net_irqs_alloc() does.
375 */
376 void nfp_net_irqs_disable(struct nfp_net *nn)
377 {
378 pci_disable_msix(nn->pdev);
379 }
380
381 /**
382 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
383 * @irq: Interrupt
384 * @data: Opaque data structure
385 *
386 * Return: Indicate if the interrupt has been handled.
387 */
388 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
389 {
390 struct nfp_net_r_vector *r_vec = data;
391
392 napi_schedule_irqoff(&r_vec->napi);
393
394 /* The FW auto-masks any interrupt, either via the MASK bit in
395 * the MSI-X table or via the per entry ICR field. So there
396 * is no need to disable interrupts here.
397 */
398 return IRQ_HANDLED;
399 }
400
401 /**
402 * nfp_net_read_link_status() - Reread link status from control BAR
403 * @nn: NFP Network structure
404 */
405 static void nfp_net_read_link_status(struct nfp_net *nn)
406 {
407 unsigned long flags;
408 bool link_up;
409 u32 sts;
410
411 spin_lock_irqsave(&nn->link_status_lock, flags);
412
413 sts = nn_readl(nn, NFP_NET_CFG_STS);
414 link_up = !!(sts & NFP_NET_CFG_STS_LINK);
415
416 if (nn->link_up == link_up)
417 goto out;
418
419 nn->link_up = link_up;
420
421 if (nn->link_up) {
422 netif_carrier_on(nn->netdev);
423 netdev_info(nn->netdev, "NIC Link is Up\n");
424 } else {
425 netif_carrier_off(nn->netdev);
426 netdev_info(nn->netdev, "NIC Link is Down\n");
427 }
428 out:
429 spin_unlock_irqrestore(&nn->link_status_lock, flags);
430 }
431
432 /**
433 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
434 * @irq: Interrupt
435 * @data: Opaque data structure
436 *
437 * Return: Indicate if the interrupt has been handled.
438 */
439 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
440 {
441 struct nfp_net *nn = data;
442
443 nfp_net_read_link_status(nn);
444
445 nfp_net_irq_unmask(nn, NFP_NET_IRQ_LSC_IDX);
446
447 return IRQ_HANDLED;
448 }
449
450 /**
451 * nfp_net_irq_exn() - Interrupt service routine for exceptions
452 * @irq: Interrupt
453 * @data: Opaque data structure
454 *
455 * Return: Indicate if the interrupt has been handled.
456 */
457 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
458 {
459 struct nfp_net *nn = data;
460
461 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
462 /* XXX TO BE IMPLEMENTED */
463 return IRQ_HANDLED;
464 }
465
466 /**
467 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
468 * @tx_ring: TX ring structure
469 * @r_vec: IRQ vector servicing this ring
470 * @idx: Ring index
471 */
472 static void
473 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
474 struct nfp_net_r_vector *r_vec, unsigned int idx)
475 {
476 struct nfp_net *nn = r_vec->nfp_net;
477
478 tx_ring->idx = idx;
479 tx_ring->r_vec = r_vec;
480
481 tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
482 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
483 }
484
485 /**
486 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
487 * @rx_ring: RX ring structure
488 * @r_vec: IRQ vector servicing this ring
489 * @idx: Ring index
490 */
491 static void
492 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
493 struct nfp_net_r_vector *r_vec, unsigned int idx)
494 {
495 struct nfp_net *nn = r_vec->nfp_net;
496
497 rx_ring->idx = idx;
498 rx_ring->r_vec = r_vec;
499
500 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
501 rx_ring->rx_qcidx = rx_ring->fl_qcidx + (nn->stride_rx - 1);
502
503 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
504 rx_ring->qcp_rx = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->rx_qcidx);
505 }
506
507 /**
508 * nfp_net_irqs_assign() - Assign IRQs and setup rvecs.
509 * @netdev: netdev structure
510 */
511 static void nfp_net_irqs_assign(struct net_device *netdev)
512 {
513 struct nfp_net *nn = netdev_priv(netdev);
514 struct nfp_net_r_vector *r_vec;
515 int r;
516
517 /* Assumes nn->num_tx_rings == nn->num_rx_rings */
518 if (nn->num_tx_rings > nn->num_r_vecs) {
519 nn_warn(nn, "More rings (%d) than vectors (%d).\n",
520 nn->num_tx_rings, nn->num_r_vecs);
521 nn->num_tx_rings = nn->num_r_vecs;
522 nn->num_rx_rings = nn->num_r_vecs;
523 }
524
525 nn->lsc_handler = nfp_net_irq_lsc;
526 nn->exn_handler = nfp_net_irq_exn;
527
528 for (r = 0; r < nn->num_r_vecs; r++) {
529 r_vec = &nn->r_vecs[r];
530 r_vec->nfp_net = nn;
531 r_vec->handler = nfp_net_irq_rxtx;
532 r_vec->irq_idx = NFP_NET_NON_Q_VECTORS + r;
533
534 cpumask_set_cpu(r, &r_vec->affinity_mask);
535 }
536 }
537
538 /**
539 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
540 * @nn: NFP Network structure
541 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
542 * @format: printf-style format to construct the interrupt name
543 * @name: Pointer to allocated space for interrupt name
544 * @name_sz: Size of space for interrupt name
545 * @vector_idx: Index of MSI-X vector used for this interrupt
546 * @handler: IRQ handler to register for this interrupt
547 */
548 static int
549 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
550 const char *format, char *name, size_t name_sz,
551 unsigned int vector_idx, irq_handler_t handler)
552 {
553 struct msix_entry *entry;
554 int err;
555
556 entry = &nn->irq_entries[vector_idx];
557
558 snprintf(name, name_sz, format, netdev_name(nn->netdev));
559 err = request_irq(entry->vector, handler, 0, name, nn);
560 if (err) {
561 nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
562 entry->vector, err);
563 return err;
564 }
565 nn_writeb(nn, ctrl_offset, vector_idx);
566
567 return 0;
568 }
569
570 /**
571 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
572 * @nn: NFP Network structure
573 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
574 * @vector_idx: Index of MSI-X vector used for this interrupt
575 */
576 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
577 unsigned int vector_idx)
578 {
579 nn_writeb(nn, ctrl_offset, 0xff);
580 free_irq(nn->irq_entries[vector_idx].vector, nn);
581 }
582
583 /* Transmit
584 *
585 * One queue controller peripheral queue is used for transmit. The
586 * driver en-queues packets for transmit by advancing the write
587 * pointer. The device indicates that packets have transmitted by
588 * advancing the read pointer. The driver maintains a local copy of
589 * the read and write pointer in @struct nfp_net_tx_ring. The driver
590 * keeps @wr_p in sync with the queue controller write pointer and can
591 * determine how many packets have been transmitted by comparing its
592 * copy of the read pointer @rd_p with the read pointer maintained by
593 * the queue controller peripheral.
594 */
595
596 /**
597 * nfp_net_tx_full() - Check if the TX ring is full
598 * @tx_ring: TX ring to check
599 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1)
600 *
601 * This function checks, based on the *host copy* of read/write
602 * pointer if a given TX ring is full. The real TX queue may have
603 * some newly made available slots.
604 *
605 * Return: True if the ring is full.
606 */
607 static inline int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
608 {
609 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
610 }
611
612 /* Wrappers for deciding when to stop and restart TX queues */
613 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
614 {
615 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
616 }
617
618 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
619 {
620 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
621 }
622
623 /**
624 * nfp_net_tx_ring_stop() - stop tx ring
625 * @nd_q: netdev queue
626 * @tx_ring: driver tx queue structure
627 *
628 * Safely stop TX ring. Remember that while we are running .start_xmit()
629 * someone else may be cleaning the TX ring completions so we need to be
630 * extra careful here.
631 */
632 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
633 struct nfp_net_tx_ring *tx_ring)
634 {
635 netif_tx_stop_queue(nd_q);
636
637 /* We can race with the TX completion out of NAPI so recheck */
638 smp_mb();
639 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
640 netif_tx_start_queue(nd_q);
641 }
642
643 /**
644 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
645 * @nn: NFP Net device
646 * @r_vec: per-ring structure
647 * @txbuf: Pointer to driver soft TX descriptor
648 * @txd: Pointer to HW TX descriptor
649 * @skb: Pointer to SKB
650 *
651 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
652 * Return error on packet header greater than maximum supported LSO header size.
653 */
654 static void nfp_net_tx_tso(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
655 struct nfp_net_tx_buf *txbuf,
656 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
657 {
658 u32 hdrlen;
659 u16 mss;
660
661 if (!skb_is_gso(skb))
662 return;
663
664 if (!skb->encapsulation)
665 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
666 else
667 hdrlen = skb_inner_transport_header(skb) - skb->data +
668 inner_tcp_hdrlen(skb);
669
670 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
671 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
672
673 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
674 txd->l4_offset = hdrlen;
675 txd->mss = cpu_to_le16(mss);
676 txd->flags |= PCIE_DESC_TX_LSO;
677
678 u64_stats_update_begin(&r_vec->tx_sync);
679 r_vec->tx_lso++;
680 u64_stats_update_end(&r_vec->tx_sync);
681 }
682
683 /**
684 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
685 * @nn: NFP Net device
686 * @r_vec: per-ring structure
687 * @txbuf: Pointer to driver soft TX descriptor
688 * @txd: Pointer to TX descriptor
689 * @skb: Pointer to SKB
690 *
691 * This function sets the TX checksum flags in the TX descriptor based
692 * on the configuration and the protocol of the packet to be transmitted.
693 */
694 static void nfp_net_tx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
695 struct nfp_net_tx_buf *txbuf,
696 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
697 {
698 struct ipv6hdr *ipv6h;
699 struct iphdr *iph;
700 u8 l4_hdr;
701
702 if (!(nn->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
703 return;
704
705 if (skb->ip_summed != CHECKSUM_PARTIAL)
706 return;
707
708 txd->flags |= PCIE_DESC_TX_CSUM;
709 if (skb->encapsulation)
710 txd->flags |= PCIE_DESC_TX_ENCAP;
711
712 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
713 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
714
715 if (iph->version == 4) {
716 txd->flags |= PCIE_DESC_TX_IP4_CSUM;
717 l4_hdr = iph->protocol;
718 } else if (ipv6h->version == 6) {
719 l4_hdr = ipv6h->nexthdr;
720 } else {
721 nn_warn_ratelimit(nn, "partial checksum but ipv=%x!\n",
722 iph->version);
723 return;
724 }
725
726 switch (l4_hdr) {
727 case IPPROTO_TCP:
728 txd->flags |= PCIE_DESC_TX_TCP_CSUM;
729 break;
730 case IPPROTO_UDP:
731 txd->flags |= PCIE_DESC_TX_UDP_CSUM;
732 break;
733 default:
734 nn_warn_ratelimit(nn, "partial checksum but l4 proto=%x!\n",
735 l4_hdr);
736 return;
737 }
738
739 u64_stats_update_begin(&r_vec->tx_sync);
740 if (skb->encapsulation)
741 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
742 else
743 r_vec->hw_csum_tx += txbuf->pkt_cnt;
744 u64_stats_update_end(&r_vec->tx_sync);
745 }
746
747 /**
748 * nfp_net_tx() - Main transmit entry point
749 * @skb: SKB to transmit
750 * @netdev: netdev structure
751 *
752 * Return: NETDEV_TX_OK on success.
753 */
754 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
755 {
756 struct nfp_net *nn = netdev_priv(netdev);
757 const struct skb_frag_struct *frag;
758 struct nfp_net_r_vector *r_vec;
759 struct nfp_net_tx_desc *txd, txdg;
760 struct nfp_net_tx_buf *txbuf;
761 struct nfp_net_tx_ring *tx_ring;
762 struct netdev_queue *nd_q;
763 dma_addr_t dma_addr;
764 unsigned int fsize;
765 int f, nr_frags;
766 int wr_idx;
767 u16 qidx;
768
769 qidx = skb_get_queue_mapping(skb);
770 tx_ring = &nn->tx_rings[qidx];
771 r_vec = tx_ring->r_vec;
772 nd_q = netdev_get_tx_queue(nn->netdev, qidx);
773
774 nr_frags = skb_shinfo(skb)->nr_frags;
775
776 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
777 nn_warn_ratelimit(nn, "TX ring %d busy. wrp=%u rdp=%u\n",
778 qidx, tx_ring->wr_p, tx_ring->rd_p);
779 netif_tx_stop_queue(nd_q);
780 u64_stats_update_begin(&r_vec->tx_sync);
781 r_vec->tx_busy++;
782 u64_stats_update_end(&r_vec->tx_sync);
783 return NETDEV_TX_BUSY;
784 }
785
786 /* Start with the head skbuf */
787 dma_addr = dma_map_single(&nn->pdev->dev, skb->data, skb_headlen(skb),
788 DMA_TO_DEVICE);
789 if (dma_mapping_error(&nn->pdev->dev, dma_addr))
790 goto err_free;
791
792 wr_idx = tx_ring->wr_p % tx_ring->cnt;
793
794 /* Stash the soft descriptor of the head then initialize it */
795 txbuf = &tx_ring->txbufs[wr_idx];
796 txbuf->skb = skb;
797 txbuf->dma_addr = dma_addr;
798 txbuf->fidx = -1;
799 txbuf->pkt_cnt = 1;
800 txbuf->real_len = skb->len;
801
802 /* Build TX descriptor */
803 txd = &tx_ring->txds[wr_idx];
804 txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
805 txd->dma_len = cpu_to_le16(skb_headlen(skb));
806 nfp_desc_set_dma_addr(txd, dma_addr);
807 txd->data_len = cpu_to_le16(skb->len);
808
809 txd->flags = 0;
810 txd->mss = 0;
811 txd->l4_offset = 0;
812
813 nfp_net_tx_tso(nn, r_vec, txbuf, txd, skb);
814
815 nfp_net_tx_csum(nn, r_vec, txbuf, txd, skb);
816
817 if (skb_vlan_tag_present(skb) && nn->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
818 txd->flags |= PCIE_DESC_TX_VLAN;
819 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
820 }
821
822 /* Gather DMA */
823 if (nr_frags > 0) {
824 /* all descs must match except for in addr, length and eop */
825 txdg = *txd;
826
827 for (f = 0; f < nr_frags; f++) {
828 frag = &skb_shinfo(skb)->frags[f];
829 fsize = skb_frag_size(frag);
830
831 dma_addr = skb_frag_dma_map(&nn->pdev->dev, frag, 0,
832 fsize, DMA_TO_DEVICE);
833 if (dma_mapping_error(&nn->pdev->dev, dma_addr))
834 goto err_unmap;
835
836 wr_idx = (wr_idx + 1) % tx_ring->cnt;
837 tx_ring->txbufs[wr_idx].skb = skb;
838 tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
839 tx_ring->txbufs[wr_idx].fidx = f;
840
841 txd = &tx_ring->txds[wr_idx];
842 *txd = txdg;
843 txd->dma_len = cpu_to_le16(fsize);
844 nfp_desc_set_dma_addr(txd, dma_addr);
845 txd->offset_eop =
846 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
847 }
848
849 u64_stats_update_begin(&r_vec->tx_sync);
850 r_vec->tx_gather++;
851 u64_stats_update_end(&r_vec->tx_sync);
852 }
853
854 netdev_tx_sent_queue(nd_q, txbuf->real_len);
855
856 tx_ring->wr_p += nr_frags + 1;
857 if (nfp_net_tx_ring_should_stop(tx_ring))
858 nfp_net_tx_ring_stop(nd_q, tx_ring);
859
860 tx_ring->wr_ptr_add += nr_frags + 1;
861 if (!skb->xmit_more || netif_xmit_stopped(nd_q)) {
862 /* force memory write before we let HW know */
863 wmb();
864 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
865 tx_ring->wr_ptr_add = 0;
866 }
867
868 skb_tx_timestamp(skb);
869
870 return NETDEV_TX_OK;
871
872 err_unmap:
873 --f;
874 while (f >= 0) {
875 frag = &skb_shinfo(skb)->frags[f];
876 dma_unmap_page(&nn->pdev->dev,
877 tx_ring->txbufs[wr_idx].dma_addr,
878 skb_frag_size(frag), DMA_TO_DEVICE);
879 tx_ring->txbufs[wr_idx].skb = NULL;
880 tx_ring->txbufs[wr_idx].dma_addr = 0;
881 tx_ring->txbufs[wr_idx].fidx = -2;
882 wr_idx = wr_idx - 1;
883 if (wr_idx < 0)
884 wr_idx += tx_ring->cnt;
885 }
886 dma_unmap_single(&nn->pdev->dev, tx_ring->txbufs[wr_idx].dma_addr,
887 skb_headlen(skb), DMA_TO_DEVICE);
888 tx_ring->txbufs[wr_idx].skb = NULL;
889 tx_ring->txbufs[wr_idx].dma_addr = 0;
890 tx_ring->txbufs[wr_idx].fidx = -2;
891 err_free:
892 nn_warn_ratelimit(nn, "Failed to map DMA TX buffer\n");
893 u64_stats_update_begin(&r_vec->tx_sync);
894 r_vec->tx_errors++;
895 u64_stats_update_end(&r_vec->tx_sync);
896 dev_kfree_skb_any(skb);
897 return NETDEV_TX_OK;
898 }
899
900 /**
901 * nfp_net_tx_complete() - Handled completed TX packets
902 * @tx_ring: TX ring structure
903 *
904 * Return: Number of completed TX descriptors
905 */
906 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
907 {
908 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
909 struct nfp_net *nn = r_vec->nfp_net;
910 const struct skb_frag_struct *frag;
911 struct netdev_queue *nd_q;
912 u32 done_pkts = 0, done_bytes = 0;
913 struct sk_buff *skb;
914 int todo, nr_frags;
915 u32 qcp_rd_p;
916 int fidx;
917 int idx;
918
919 /* Work out how many descriptors have been transmitted */
920 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
921
922 if (qcp_rd_p == tx_ring->qcp_rd_p)
923 return;
924
925 if (qcp_rd_p > tx_ring->qcp_rd_p)
926 todo = qcp_rd_p - tx_ring->qcp_rd_p;
927 else
928 todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;
929
930 while (todo--) {
931 idx = tx_ring->rd_p % tx_ring->cnt;
932 tx_ring->rd_p++;
933
934 skb = tx_ring->txbufs[idx].skb;
935 if (!skb)
936 continue;
937
938 nr_frags = skb_shinfo(skb)->nr_frags;
939 fidx = tx_ring->txbufs[idx].fidx;
940
941 if (fidx == -1) {
942 /* unmap head */
943 dma_unmap_single(&nn->pdev->dev,
944 tx_ring->txbufs[idx].dma_addr,
945 skb_headlen(skb), DMA_TO_DEVICE);
946
947 done_pkts += tx_ring->txbufs[idx].pkt_cnt;
948 done_bytes += tx_ring->txbufs[idx].real_len;
949 } else {
950 /* unmap fragment */
951 frag = &skb_shinfo(skb)->frags[fidx];
952 dma_unmap_page(&nn->pdev->dev,
953 tx_ring->txbufs[idx].dma_addr,
954 skb_frag_size(frag), DMA_TO_DEVICE);
955 }
956
957 /* check for last gather fragment */
958 if (fidx == nr_frags - 1)
959 dev_kfree_skb_any(skb);
960
961 tx_ring->txbufs[idx].dma_addr = 0;
962 tx_ring->txbufs[idx].skb = NULL;
963 tx_ring->txbufs[idx].fidx = -2;
964 }
965
966 tx_ring->qcp_rd_p = qcp_rd_p;
967
968 u64_stats_update_begin(&r_vec->tx_sync);
969 r_vec->tx_bytes += done_bytes;
970 r_vec->tx_pkts += done_pkts;
971 u64_stats_update_end(&r_vec->tx_sync);
972
973 nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
974 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
975 if (nfp_net_tx_ring_should_wake(tx_ring)) {
976 /* Make sure TX thread will see updated tx_ring->rd_p */
977 smp_mb();
978
979 if (unlikely(netif_tx_queue_stopped(nd_q)))
980 netif_tx_wake_queue(nd_q);
981 }
982
983 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
984 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
985 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
986 }
987
988 /**
989 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
990 * @nn: NFP Net device
991 * @tx_ring: TX ring structure
992 *
993 * Assumes that the device is stopped
994 */
995 static void
996 nfp_net_tx_ring_reset(struct nfp_net *nn, struct nfp_net_tx_ring *tx_ring)
997 {
998 const struct skb_frag_struct *frag;
999 struct netdev_queue *nd_q;
1000 struct pci_dev *pdev = nn->pdev;
1001
1002 while (tx_ring->rd_p != tx_ring->wr_p) {
1003 int nr_frags, fidx, idx;
1004 struct sk_buff *skb;
1005
1006 idx = tx_ring->rd_p % tx_ring->cnt;
1007 skb = tx_ring->txbufs[idx].skb;
1008 nr_frags = skb_shinfo(skb)->nr_frags;
1009 fidx = tx_ring->txbufs[idx].fidx;
1010
1011 if (fidx == -1) {
1012 /* unmap head */
1013 dma_unmap_single(&pdev->dev,
1014 tx_ring->txbufs[idx].dma_addr,
1015 skb_headlen(skb), DMA_TO_DEVICE);
1016 } else {
1017 /* unmap fragment */
1018 frag = &skb_shinfo(skb)->frags[fidx];
1019 dma_unmap_page(&pdev->dev,
1020 tx_ring->txbufs[idx].dma_addr,
1021 skb_frag_size(frag), DMA_TO_DEVICE);
1022 }
1023
1024 /* check for last gather fragment */
1025 if (fidx == nr_frags - 1)
1026 dev_kfree_skb_any(skb);
1027
1028 tx_ring->txbufs[idx].dma_addr = 0;
1029 tx_ring->txbufs[idx].skb = NULL;
1030 tx_ring->txbufs[idx].fidx = -2;
1031
1032 tx_ring->qcp_rd_p++;
1033 tx_ring->rd_p++;
1034 }
1035
1036 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
1037 tx_ring->wr_p = 0;
1038 tx_ring->rd_p = 0;
1039 tx_ring->qcp_rd_p = 0;
1040 tx_ring->wr_ptr_add = 0;
1041
1042 nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
1043 netdev_tx_reset_queue(nd_q);
1044 }
1045
1046 static void nfp_net_tx_timeout(struct net_device *netdev)
1047 {
1048 struct nfp_net *nn = netdev_priv(netdev);
1049 int i;
1050
1051 for (i = 0; i < nn->num_tx_rings; i++) {
1052 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1053 continue;
1054 nn_warn(nn, "TX timeout on ring: %d\n", i);
1055 }
1056 nn_warn(nn, "TX watchdog timeout\n");
1057 }
1058
1059 /* Receive processing
1060 */
1061
1062 /**
1063 * nfp_net_rx_space() - return the number of free slots on the RX ring
1064 * @rx_ring: RX ring structure
1065 *
1066 * Make sure we leave at least one slot free.
1067 *
1068 * Return: True if there is space on the RX ring
1069 */
1070 static inline int nfp_net_rx_space(struct nfp_net_rx_ring *rx_ring)
1071 {
1072 return (rx_ring->cnt - 1) - (rx_ring->wr_p - rx_ring->rd_p);
1073 }
1074
1075 /**
1076 * nfp_net_rx_alloc_one() - Allocate and map skb for RX
1077 * @rx_ring: RX ring structure of the skb
1078 * @dma_addr: Pointer to storage for DMA address (output param)
1079 * @fl_bufsz: size of freelist buffers
1080 *
1081 * This function will allcate a new skb, map it for DMA.
1082 *
1083 * Return: allocated skb or NULL on failure.
1084 */
1085 static struct sk_buff *
1086 nfp_net_rx_alloc_one(struct nfp_net_rx_ring *rx_ring, dma_addr_t *dma_addr,
1087 unsigned int fl_bufsz)
1088 {
1089 struct nfp_net *nn = rx_ring->r_vec->nfp_net;
1090 struct sk_buff *skb;
1091
1092 skb = netdev_alloc_skb(nn->netdev, fl_bufsz);
1093 if (!skb) {
1094 nn_warn_ratelimit(nn, "Failed to alloc receive SKB\n");
1095 return NULL;
1096 }
1097
1098 *dma_addr = dma_map_single(&nn->pdev->dev, skb->data,
1099 fl_bufsz, DMA_FROM_DEVICE);
1100 if (dma_mapping_error(&nn->pdev->dev, *dma_addr)) {
1101 dev_kfree_skb_any(skb);
1102 nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n");
1103 return NULL;
1104 }
1105
1106 return skb;
1107 }
1108
1109 /**
1110 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1111 * @rx_ring: RX ring structure
1112 * @skb: Skb to put on rings
1113 * @dma_addr: DMA address of skb mapping
1114 */
1115 static void nfp_net_rx_give_one(struct nfp_net_rx_ring *rx_ring,
1116 struct sk_buff *skb, dma_addr_t dma_addr)
1117 {
1118 unsigned int wr_idx;
1119
1120 wr_idx = rx_ring->wr_p % rx_ring->cnt;
1121
1122 /* Stash SKB and DMA address away */
1123 rx_ring->rxbufs[wr_idx].skb = skb;
1124 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1125
1126 /* Fill freelist descriptor */
1127 rx_ring->rxds[wr_idx].fld.reserved = 0;
1128 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1129 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, dma_addr);
1130
1131 rx_ring->wr_p++;
1132 rx_ring->wr_ptr_add++;
1133 if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) {
1134 /* Update write pointer of the freelist queue. Make
1135 * sure all writes are flushed before telling the hardware.
1136 */
1137 wmb();
1138 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add);
1139 rx_ring->wr_ptr_add = 0;
1140 }
1141 }
1142
1143 /**
1144 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1145 * @rx_ring: RX ring structure
1146 *
1147 * Warning: Do *not* call if ring buffers were never put on the FW freelist
1148 * (i.e. device was not enabled)!
1149 */
1150 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1151 {
1152 unsigned int wr_idx, last_idx;
1153
1154 /* Move the empty entry to the end of the list */
1155 wr_idx = rx_ring->wr_p % rx_ring->cnt;
1156 last_idx = rx_ring->cnt - 1;
1157 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1158 rx_ring->rxbufs[wr_idx].skb = rx_ring->rxbufs[last_idx].skb;
1159 rx_ring->rxbufs[last_idx].dma_addr = 0;
1160 rx_ring->rxbufs[last_idx].skb = NULL;
1161
1162 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
1163 rx_ring->wr_p = 0;
1164 rx_ring->rd_p = 0;
1165 rx_ring->wr_ptr_add = 0;
1166 }
1167
1168 /**
1169 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1170 * @nn: NFP Net device
1171 * @rx_ring: RX ring to remove buffers from
1172 *
1173 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1174 * entries. After device is disabled nfp_net_rx_ring_reset() must be called
1175 * to restore required ring geometry.
1176 */
1177 static void
1178 nfp_net_rx_ring_bufs_free(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring)
1179 {
1180 struct pci_dev *pdev = nn->pdev;
1181 unsigned int i;
1182
1183 for (i = 0; i < rx_ring->cnt - 1; i++) {
1184 /* NULL skb can only happen when initial filling of the ring
1185 * fails to allocate enough buffers and calls here to free
1186 * already allocated ones.
1187 */
1188 if (!rx_ring->rxbufs[i].skb)
1189 continue;
1190
1191 dma_unmap_single(&pdev->dev, rx_ring->rxbufs[i].dma_addr,
1192 rx_ring->bufsz, DMA_FROM_DEVICE);
1193 dev_kfree_skb_any(rx_ring->rxbufs[i].skb);
1194 rx_ring->rxbufs[i].dma_addr = 0;
1195 rx_ring->rxbufs[i].skb = NULL;
1196 }
1197 }
1198
1199 /**
1200 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1201 * @nn: NFP Net device
1202 * @rx_ring: RX ring to remove buffers from
1203 */
1204 static int
1205 nfp_net_rx_ring_bufs_alloc(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring)
1206 {
1207 struct nfp_net_rx_buf *rxbufs;
1208 unsigned int i;
1209
1210 rxbufs = rx_ring->rxbufs;
1211
1212 for (i = 0; i < rx_ring->cnt - 1; i++) {
1213 rxbufs[i].skb =
1214 nfp_net_rx_alloc_one(rx_ring, &rxbufs[i].dma_addr,
1215 rx_ring->bufsz);
1216 if (!rxbufs[i].skb) {
1217 nfp_net_rx_ring_bufs_free(nn, rx_ring);
1218 return -ENOMEM;
1219 }
1220 }
1221
1222 return 0;
1223 }
1224
1225 /**
1226 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1227 * @rx_ring: RX ring to fill
1228 */
1229 static void nfp_net_rx_ring_fill_freelist(struct nfp_net_rx_ring *rx_ring)
1230 {
1231 unsigned int i;
1232
1233 for (i = 0; i < rx_ring->cnt - 1; i++)
1234 nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[i].skb,
1235 rx_ring->rxbufs[i].dma_addr);
1236 }
1237
1238 /**
1239 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1240 * @flags: RX descriptor flags field in CPU byte order
1241 */
1242 static int nfp_net_rx_csum_has_errors(u16 flags)
1243 {
1244 u16 csum_all_checked, csum_all_ok;
1245
1246 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1247 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1248
1249 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1250 }
1251
1252 /**
1253 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1254 * @nn: NFP Net device
1255 * @r_vec: per-ring structure
1256 * @rxd: Pointer to RX descriptor
1257 * @skb: Pointer to SKB
1258 */
1259 static void nfp_net_rx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1260 struct nfp_net_rx_desc *rxd, struct sk_buff *skb)
1261 {
1262 skb_checksum_none_assert(skb);
1263
1264 if (!(nn->netdev->features & NETIF_F_RXCSUM))
1265 return;
1266
1267 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1268 u64_stats_update_begin(&r_vec->rx_sync);
1269 r_vec->hw_csum_rx_error++;
1270 u64_stats_update_end(&r_vec->rx_sync);
1271 return;
1272 }
1273
1274 /* Assume that the firmware will never report inner CSUM_OK unless outer
1275 * L4 headers were successfully parsed. FW will always report zero UDP
1276 * checksum as CSUM_OK.
1277 */
1278 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1279 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1280 __skb_incr_checksum_unnecessary(skb);
1281 u64_stats_update_begin(&r_vec->rx_sync);
1282 r_vec->hw_csum_rx_ok++;
1283 u64_stats_update_end(&r_vec->rx_sync);
1284 }
1285
1286 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1287 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1288 __skb_incr_checksum_unnecessary(skb);
1289 u64_stats_update_begin(&r_vec->rx_sync);
1290 r_vec->hw_csum_rx_inner_ok++;
1291 u64_stats_update_end(&r_vec->rx_sync);
1292 }
1293 }
1294
1295 /**
1296 * nfp_net_set_hash() - Set SKB hash data
1297 * @netdev: adapter's net_device structure
1298 * @skb: SKB to set the hash data on
1299 * @rxd: RX descriptor
1300 *
1301 * The RSS hash and hash-type are pre-pended to the packet data.
1302 * Extract and decode it and set the skb fields.
1303 */
1304 static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb,
1305 struct nfp_net_rx_desc *rxd)
1306 {
1307 struct nfp_net_rx_hash *rx_hash;
1308
1309 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS) ||
1310 !(netdev->features & NETIF_F_RXHASH))
1311 return;
1312
1313 rx_hash = (struct nfp_net_rx_hash *)(skb->data - sizeof(*rx_hash));
1314
1315 switch (be32_to_cpu(rx_hash->hash_type)) {
1316 case NFP_NET_RSS_IPV4:
1317 case NFP_NET_RSS_IPV6:
1318 case NFP_NET_RSS_IPV6_EX:
1319 skb_set_hash(skb, be32_to_cpu(rx_hash->hash), PKT_HASH_TYPE_L3);
1320 break;
1321 default:
1322 skb_set_hash(skb, be32_to_cpu(rx_hash->hash), PKT_HASH_TYPE_L4);
1323 break;
1324 }
1325 }
1326
1327 /**
1328 * nfp_net_rx() - receive up to @budget packets on @rx_ring
1329 * @rx_ring: RX ring to receive from
1330 * @budget: NAPI budget
1331 *
1332 * Note, this function is separated out from the napi poll function to
1333 * more cleanly separate packet receive code from other bookkeeping
1334 * functions performed in the napi poll function.
1335 *
1336 * There are differences between the NFP-3200 firmware and the
1337 * NFP-6000 firmware. The NFP-3200 firmware uses a dedicated RX queue
1338 * to indicate that new packets have arrived. The NFP-6000 does not
1339 * have this queue and uses the DD bit in the RX descriptor. This
1340 * method cannot be used on the NFP-3200 as it causes a race
1341 * condition: The RX ring write pointer on the NFP-3200 is updated
1342 * after packets (and descriptors) have been DMAed. If the DD bit is
1343 * used and subsequently the read pointer is updated this may lead to
1344 * the RX queue to underflow (if the firmware has not yet update the
1345 * write pointer). Therefore we use slightly ugly conditional code
1346 * below to handle the differences. We may, in the future update the
1347 * NFP-3200 firmware to behave the same as the firmware on the
1348 * NFP-6000.
1349 *
1350 * Return: Number of packets received.
1351 */
1352 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1353 {
1354 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1355 struct nfp_net *nn = r_vec->nfp_net;
1356 unsigned int data_len, meta_len;
1357 int avail = 0, pkts_polled = 0;
1358 struct sk_buff *skb, *new_skb;
1359 struct nfp_net_rx_desc *rxd;
1360 dma_addr_t new_dma_addr;
1361 u32 qcp_wr_p;
1362 int idx;
1363
1364 if (nn->is_nfp3200) {
1365 /* Work out how many packets arrived */
1366 qcp_wr_p = nfp_qcp_wr_ptr_read(rx_ring->qcp_rx);
1367 idx = rx_ring->rd_p % rx_ring->cnt;
1368
1369 if (qcp_wr_p == idx)
1370 /* No new packets */
1371 return 0;
1372
1373 if (qcp_wr_p > idx)
1374 avail = qcp_wr_p - idx;
1375 else
1376 avail = qcp_wr_p + rx_ring->cnt - idx;
1377 } else {
1378 avail = budget + 1;
1379 }
1380
1381 while (avail > 0 && pkts_polled < budget) {
1382 idx = rx_ring->rd_p % rx_ring->cnt;
1383
1384 rxd = &rx_ring->rxds[idx];
1385 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) {
1386 if (nn->is_nfp3200)
1387 nn_dbg(nn, "RX descriptor not valid (DD)%d:%u rxd[0]=%#x rxd[1]=%#x\n",
1388 rx_ring->idx, idx,
1389 rxd->vals[0], rxd->vals[1]);
1390 break;
1391 }
1392 /* Memory barrier to ensure that we won't do other reads
1393 * before the DD bit.
1394 */
1395 dma_rmb();
1396
1397 rx_ring->rd_p++;
1398 pkts_polled++;
1399 avail--;
1400
1401 skb = rx_ring->rxbufs[idx].skb;
1402
1403 new_skb = nfp_net_rx_alloc_one(rx_ring, &new_dma_addr,
1404 nn->fl_bufsz);
1405 if (!new_skb) {
1406 nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[idx].skb,
1407 rx_ring->rxbufs[idx].dma_addr);
1408 u64_stats_update_begin(&r_vec->rx_sync);
1409 r_vec->rx_drops++;
1410 u64_stats_update_end(&r_vec->rx_sync);
1411 continue;
1412 }
1413
1414 dma_unmap_single(&nn->pdev->dev,
1415 rx_ring->rxbufs[idx].dma_addr,
1416 nn->fl_bufsz, DMA_FROM_DEVICE);
1417
1418 nfp_net_rx_give_one(rx_ring, new_skb, new_dma_addr);
1419
1420 /* < meta_len >
1421 * <-- [rx_offset] -->
1422 * ---------------------------------------------------------
1423 * | [XX] | metadata | packet | XXXX |
1424 * ---------------------------------------------------------
1425 * <---------------- data_len --------------->
1426 *
1427 * The rx_offset is fixed for all packets, the meta_len can vary
1428 * on a packet by packet basis. If rx_offset is set to zero
1429 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1430 * buffer and is immediately followed by the packet (no [XX]).
1431 */
1432 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1433 data_len = le16_to_cpu(rxd->rxd.data_len);
1434
1435 if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1436 skb_reserve(skb, meta_len);
1437 else
1438 skb_reserve(skb, nn->rx_offset);
1439 skb_put(skb, data_len - meta_len);
1440
1441 nfp_net_set_hash(nn->netdev, skb, rxd);
1442
1443 /* Stats update */
1444 u64_stats_update_begin(&r_vec->rx_sync);
1445 r_vec->rx_pkts++;
1446 r_vec->rx_bytes += skb->len;
1447 u64_stats_update_end(&r_vec->rx_sync);
1448
1449 skb_record_rx_queue(skb, rx_ring->idx);
1450 skb->protocol = eth_type_trans(skb, nn->netdev);
1451
1452 nfp_net_rx_csum(nn, r_vec, rxd, skb);
1453
1454 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
1455 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1456 le16_to_cpu(rxd->rxd.vlan));
1457
1458 napi_gro_receive(&rx_ring->r_vec->napi, skb);
1459 }
1460
1461 if (nn->is_nfp3200)
1462 nfp_qcp_rd_ptr_add(rx_ring->qcp_rx, pkts_polled);
1463
1464 return pkts_polled;
1465 }
1466
1467 /**
1468 * nfp_net_poll() - napi poll function
1469 * @napi: NAPI structure
1470 * @budget: NAPI budget
1471 *
1472 * Return: number of packets polled.
1473 */
1474 static int nfp_net_poll(struct napi_struct *napi, int budget)
1475 {
1476 struct nfp_net_r_vector *r_vec =
1477 container_of(napi, struct nfp_net_r_vector, napi);
1478 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
1479 struct nfp_net_tx_ring *tx_ring = r_vec->tx_ring;
1480 struct nfp_net *nn = r_vec->nfp_net;
1481 struct netdev_queue *txq;
1482 unsigned int pkts_polled;
1483
1484 tx_ring = &nn->tx_rings[rx_ring->idx];
1485 txq = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
1486 nfp_net_tx_complete(tx_ring);
1487
1488 pkts_polled = nfp_net_rx(rx_ring, budget);
1489
1490 if (pkts_polled < budget) {
1491 napi_complete_done(napi, pkts_polled);
1492 nfp_net_irq_unmask(nn, r_vec->irq_idx);
1493 }
1494
1495 return pkts_polled;
1496 }
1497
1498 /* Setup and Configuration
1499 */
1500
1501 /**
1502 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
1503 * @tx_ring: TX ring to free
1504 */
1505 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
1506 {
1507 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1508 struct nfp_net *nn = r_vec->nfp_net;
1509 struct pci_dev *pdev = nn->pdev;
1510
1511 kfree(tx_ring->txbufs);
1512
1513 if (tx_ring->txds)
1514 dma_free_coherent(&pdev->dev, tx_ring->size,
1515 tx_ring->txds, tx_ring->dma);
1516
1517 tx_ring->cnt = 0;
1518 tx_ring->txbufs = NULL;
1519 tx_ring->txds = NULL;
1520 tx_ring->dma = 0;
1521 tx_ring->size = 0;
1522 }
1523
1524 /**
1525 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
1526 * @tx_ring: TX Ring structure to allocate
1527 * @cnt: Ring buffer count
1528 *
1529 * Return: 0 on success, negative errno otherwise.
1530 */
1531 static int nfp_net_tx_ring_alloc(struct nfp_net_tx_ring *tx_ring, u32 cnt)
1532 {
1533 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1534 struct nfp_net *nn = r_vec->nfp_net;
1535 struct pci_dev *pdev = nn->pdev;
1536 int sz;
1537
1538 tx_ring->cnt = cnt;
1539
1540 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
1541 tx_ring->txds = dma_zalloc_coherent(&pdev->dev, tx_ring->size,
1542 &tx_ring->dma, GFP_KERNEL);
1543 if (!tx_ring->txds)
1544 goto err_alloc;
1545
1546 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
1547 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
1548 if (!tx_ring->txbufs)
1549 goto err_alloc;
1550
1551 netif_set_xps_queue(nn->netdev, &r_vec->affinity_mask, tx_ring->idx);
1552
1553 nn_dbg(nn, "TxQ%02d: QCidx=%02d cnt=%d dma=%#llx host=%p\n",
1554 tx_ring->idx, tx_ring->qcidx,
1555 tx_ring->cnt, (unsigned long long)tx_ring->dma, tx_ring->txds);
1556
1557 return 0;
1558
1559 err_alloc:
1560 nfp_net_tx_ring_free(tx_ring);
1561 return -ENOMEM;
1562 }
1563
1564 static struct nfp_net_tx_ring *
1565 nfp_net_shadow_tx_rings_prepare(struct nfp_net *nn, u32 buf_cnt)
1566 {
1567 struct nfp_net_tx_ring *rings;
1568 unsigned int r;
1569
1570 rings = kcalloc(nn->num_tx_rings, sizeof(*rings), GFP_KERNEL);
1571 if (!rings)
1572 return NULL;
1573
1574 for (r = 0; r < nn->num_tx_rings; r++) {
1575 nfp_net_tx_ring_init(&rings[r], nn->tx_rings[r].r_vec, r);
1576
1577 if (nfp_net_tx_ring_alloc(&rings[r], buf_cnt))
1578 goto err_free_prev;
1579 }
1580
1581 return rings;
1582
1583 err_free_prev:
1584 while (r--)
1585 nfp_net_tx_ring_free(&rings[r]);
1586 kfree(rings);
1587 return NULL;
1588 }
1589
1590 static struct nfp_net_tx_ring *
1591 nfp_net_shadow_tx_rings_swap(struct nfp_net *nn, struct nfp_net_tx_ring *rings)
1592 {
1593 struct nfp_net_tx_ring *old = nn->tx_rings;
1594 unsigned int r;
1595
1596 for (r = 0; r < nn->num_tx_rings; r++)
1597 old[r].r_vec->tx_ring = &rings[r];
1598
1599 nn->tx_rings = rings;
1600 return old;
1601 }
1602
1603 static void
1604 nfp_net_shadow_tx_rings_free(struct nfp_net *nn, struct nfp_net_tx_ring *rings)
1605 {
1606 unsigned int r;
1607
1608 if (!rings)
1609 return;
1610
1611 for (r = 0; r < nn->num_tx_rings; r++)
1612 nfp_net_tx_ring_free(&rings[r]);
1613
1614 kfree(rings);
1615 }
1616
1617 /**
1618 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
1619 * @rx_ring: RX ring to free
1620 */
1621 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
1622 {
1623 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1624 struct nfp_net *nn = r_vec->nfp_net;
1625 struct pci_dev *pdev = nn->pdev;
1626
1627 kfree(rx_ring->rxbufs);
1628
1629 if (rx_ring->rxds)
1630 dma_free_coherent(&pdev->dev, rx_ring->size,
1631 rx_ring->rxds, rx_ring->dma);
1632
1633 rx_ring->cnt = 0;
1634 rx_ring->rxbufs = NULL;
1635 rx_ring->rxds = NULL;
1636 rx_ring->dma = 0;
1637 rx_ring->size = 0;
1638 }
1639
1640 /**
1641 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
1642 * @rx_ring: RX ring to allocate
1643 * @fl_bufsz: Size of buffers to allocate
1644 * @cnt: Ring buffer count
1645 *
1646 * Return: 0 on success, negative errno otherwise.
1647 */
1648 static int
1649 nfp_net_rx_ring_alloc(struct nfp_net_rx_ring *rx_ring, unsigned int fl_bufsz,
1650 u32 cnt)
1651 {
1652 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1653 struct nfp_net *nn = r_vec->nfp_net;
1654 struct pci_dev *pdev = nn->pdev;
1655 int sz;
1656
1657 rx_ring->cnt = cnt;
1658 rx_ring->bufsz = fl_bufsz;
1659
1660 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
1661 rx_ring->rxds = dma_zalloc_coherent(&pdev->dev, rx_ring->size,
1662 &rx_ring->dma, GFP_KERNEL);
1663 if (!rx_ring->rxds)
1664 goto err_alloc;
1665
1666 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
1667 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
1668 if (!rx_ring->rxbufs)
1669 goto err_alloc;
1670
1671 nn_dbg(nn, "RxQ%02d: FlQCidx=%02d RxQCidx=%02d cnt=%d dma=%#llx host=%p\n",
1672 rx_ring->idx, rx_ring->fl_qcidx, rx_ring->rx_qcidx,
1673 rx_ring->cnt, (unsigned long long)rx_ring->dma, rx_ring->rxds);
1674
1675 return 0;
1676
1677 err_alloc:
1678 nfp_net_rx_ring_free(rx_ring);
1679 return -ENOMEM;
1680 }
1681
1682 static struct nfp_net_rx_ring *
1683 nfp_net_shadow_rx_rings_prepare(struct nfp_net *nn, unsigned int fl_bufsz,
1684 u32 buf_cnt)
1685 {
1686 struct nfp_net_rx_ring *rings;
1687 unsigned int r;
1688
1689 rings = kcalloc(nn->num_rx_rings, sizeof(*rings), GFP_KERNEL);
1690 if (!rings)
1691 return NULL;
1692
1693 for (r = 0; r < nn->num_rx_rings; r++) {
1694 nfp_net_rx_ring_init(&rings[r], nn->rx_rings[r].r_vec, r);
1695
1696 if (nfp_net_rx_ring_alloc(&rings[r], fl_bufsz, buf_cnt))
1697 goto err_free_prev;
1698
1699 if (nfp_net_rx_ring_bufs_alloc(nn, &rings[r]))
1700 goto err_free_ring;
1701 }
1702
1703 return rings;
1704
1705 err_free_prev:
1706 while (r--) {
1707 nfp_net_rx_ring_bufs_free(nn, &rings[r]);
1708 err_free_ring:
1709 nfp_net_rx_ring_free(&rings[r]);
1710 }
1711 kfree(rings);
1712 return NULL;
1713 }
1714
1715 static struct nfp_net_rx_ring *
1716 nfp_net_shadow_rx_rings_swap(struct nfp_net *nn, struct nfp_net_rx_ring *rings)
1717 {
1718 struct nfp_net_rx_ring *old = nn->rx_rings;
1719 unsigned int r;
1720
1721 for (r = 0; r < nn->num_rx_rings; r++)
1722 old[r].r_vec->rx_ring = &rings[r];
1723
1724 nn->rx_rings = rings;
1725 return old;
1726 }
1727
1728 static void
1729 nfp_net_shadow_rx_rings_free(struct nfp_net *nn, struct nfp_net_rx_ring *rings)
1730 {
1731 unsigned int r;
1732
1733 if (!rings)
1734 return;
1735
1736 for (r = 0; r < nn->num_r_vecs; r++) {
1737 nfp_net_rx_ring_bufs_free(nn, &rings[r]);
1738 nfp_net_rx_ring_free(&rings[r]);
1739 }
1740
1741 kfree(rings);
1742 }
1743
1744 static int
1745 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1746 int idx)
1747 {
1748 struct msix_entry *entry = &nn->irq_entries[r_vec->irq_idx];
1749 int err;
1750
1751 r_vec->tx_ring = &nn->tx_rings[idx];
1752 nfp_net_tx_ring_init(r_vec->tx_ring, r_vec, idx);
1753
1754 r_vec->rx_ring = &nn->rx_rings[idx];
1755 nfp_net_rx_ring_init(r_vec->rx_ring, r_vec, idx);
1756
1757 snprintf(r_vec->name, sizeof(r_vec->name),
1758 "%s-rxtx-%d", nn->netdev->name, idx);
1759 err = request_irq(entry->vector, r_vec->handler, 0, r_vec->name, r_vec);
1760 if (err) {
1761 nn_err(nn, "Error requesting IRQ %d\n", entry->vector);
1762 return err;
1763 }
1764 disable_irq(entry->vector);
1765
1766 /* Setup NAPI */
1767 netif_napi_add(nn->netdev, &r_vec->napi,
1768 nfp_net_poll, NAPI_POLL_WEIGHT);
1769
1770 irq_set_affinity_hint(entry->vector, &r_vec->affinity_mask);
1771
1772 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, entry->vector, entry->entry);
1773
1774 return 0;
1775 }
1776
1777 static void
1778 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
1779 {
1780 struct msix_entry *entry = &nn->irq_entries[r_vec->irq_idx];
1781
1782 irq_set_affinity_hint(entry->vector, NULL);
1783 netif_napi_del(&r_vec->napi);
1784 free_irq(entry->vector, r_vec);
1785 }
1786
1787 /**
1788 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
1789 * @nn: NFP Net device to reconfigure
1790 */
1791 void nfp_net_rss_write_itbl(struct nfp_net *nn)
1792 {
1793 int i;
1794
1795 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
1796 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
1797 get_unaligned_le32(nn->rss_itbl + i));
1798 }
1799
1800 /**
1801 * nfp_net_rss_write_key() - Write RSS hash key to device
1802 * @nn: NFP Net device to reconfigure
1803 */
1804 void nfp_net_rss_write_key(struct nfp_net *nn)
1805 {
1806 int i;
1807
1808 for (i = 0; i < NFP_NET_CFG_RSS_KEY_SZ; i += 4)
1809 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
1810 get_unaligned_le32(nn->rss_key + i));
1811 }
1812
1813 /**
1814 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
1815 * @nn: NFP Net device to reconfigure
1816 */
1817 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
1818 {
1819 u8 i;
1820 u32 factor;
1821 u32 value;
1822
1823 /* Compute factor used to convert coalesce '_usecs' parameters to
1824 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp
1825 * count.
1826 */
1827 factor = nn->me_freq_mhz / 16;
1828
1829 /* copy RX interrupt coalesce parameters */
1830 value = (nn->rx_coalesce_max_frames << 16) |
1831 (factor * nn->rx_coalesce_usecs);
1832 for (i = 0; i < nn->num_r_vecs; i++)
1833 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
1834
1835 /* copy TX interrupt coalesce parameters */
1836 value = (nn->tx_coalesce_max_frames << 16) |
1837 (factor * nn->tx_coalesce_usecs);
1838 for (i = 0; i < nn->num_r_vecs; i++)
1839 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
1840 }
1841
1842 /**
1843 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
1844 * @nn: NFP Net device to reconfigure
1845 *
1846 * Writes the MAC address from the netdev to the device control BAR. Does not
1847 * perform the required reconfig. We do a bit of byte swapping dance because
1848 * firmware is LE.
1849 */
1850 static void nfp_net_write_mac_addr(struct nfp_net *nn)
1851 {
1852 nn_writel(nn, NFP_NET_CFG_MACADDR + 0,
1853 get_unaligned_be32(nn->netdev->dev_addr));
1854 /* We can't do writew for NFP-3200 compatibility */
1855 nn_writel(nn, NFP_NET_CFG_MACADDR + 4,
1856 get_unaligned_be16(nn->netdev->dev_addr + 4) << 16);
1857 }
1858
1859 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
1860 {
1861 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
1862 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
1863 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
1864
1865 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
1866 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
1867 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
1868 }
1869
1870 /**
1871 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
1872 * @nn: NFP Net device to reconfigure
1873 */
1874 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
1875 {
1876 u32 new_ctrl, update;
1877 unsigned int r;
1878 int err;
1879
1880 new_ctrl = nn->ctrl;
1881 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
1882 update = NFP_NET_CFG_UPDATE_GEN;
1883 update |= NFP_NET_CFG_UPDATE_MSIX;
1884 update |= NFP_NET_CFG_UPDATE_RING;
1885
1886 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
1887 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
1888
1889 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
1890 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
1891
1892 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
1893 err = nfp_net_reconfig(nn, update);
1894 if (err)
1895 nn_err(nn, "Could not disable device: %d\n", err);
1896
1897 for (r = 0; r < nn->num_r_vecs; r++) {
1898 nfp_net_rx_ring_reset(nn->r_vecs[r].rx_ring);
1899 nfp_net_tx_ring_reset(nn, nn->r_vecs[r].tx_ring);
1900 nfp_net_vec_clear_ring_data(nn, r);
1901 }
1902
1903 nn->ctrl = new_ctrl;
1904 }
1905
1906 static void
1907 nfp_net_vec_write_ring_data(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1908 unsigned int idx)
1909 {
1910 /* Write the DMA address, size and MSI-X info to the device */
1911 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), r_vec->rx_ring->dma);
1912 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(r_vec->rx_ring->cnt));
1913 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), r_vec->irq_idx);
1914
1915 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), r_vec->tx_ring->dma);
1916 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(r_vec->tx_ring->cnt));
1917 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), r_vec->irq_idx);
1918 }
1919
1920 static int __nfp_net_set_config_and_enable(struct nfp_net *nn)
1921 {
1922 u32 new_ctrl, update = 0;
1923 unsigned int r;
1924 int err;
1925
1926 new_ctrl = nn->ctrl;
1927
1928 if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
1929 nfp_net_rss_write_key(nn);
1930 nfp_net_rss_write_itbl(nn);
1931 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
1932 update |= NFP_NET_CFG_UPDATE_RSS;
1933 }
1934
1935 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
1936 nfp_net_coalesce_write_cfg(nn);
1937
1938 new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
1939 update |= NFP_NET_CFG_UPDATE_IRQMOD;
1940 }
1941
1942 for (r = 0; r < nn->num_r_vecs; r++)
1943 nfp_net_vec_write_ring_data(nn, &nn->r_vecs[r], r);
1944
1945 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->num_tx_rings == 64 ?
1946 0xffffffffffffffffULL : ((u64)1 << nn->num_tx_rings) - 1);
1947
1948 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->num_rx_rings == 64 ?
1949 0xffffffffffffffffULL : ((u64)1 << nn->num_rx_rings) - 1);
1950
1951 nfp_net_write_mac_addr(nn);
1952
1953 nn_writel(nn, NFP_NET_CFG_MTU, nn->netdev->mtu);
1954 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, nn->fl_bufsz);
1955
1956 /* Enable device */
1957 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
1958 update |= NFP_NET_CFG_UPDATE_GEN;
1959 update |= NFP_NET_CFG_UPDATE_MSIX;
1960 update |= NFP_NET_CFG_UPDATE_RING;
1961 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
1962 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
1963
1964 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
1965 err = nfp_net_reconfig(nn, update);
1966
1967 nn->ctrl = new_ctrl;
1968
1969 for (r = 0; r < nn->num_r_vecs; r++)
1970 nfp_net_rx_ring_fill_freelist(nn->r_vecs[r].rx_ring);
1971
1972 /* Since reconfiguration requests while NFP is down are ignored we
1973 * have to wipe the entire VXLAN configuration and reinitialize it.
1974 */
1975 if (nn->ctrl & NFP_NET_CFG_CTRL_VXLAN) {
1976 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
1977 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
1978 udp_tunnel_get_rx_info(nn->netdev);
1979 }
1980
1981 return err;
1982 }
1983
1984 /**
1985 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
1986 * @nn: NFP Net device to reconfigure
1987 */
1988 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
1989 {
1990 int err;
1991
1992 err = __nfp_net_set_config_and_enable(nn);
1993 if (err)
1994 nfp_net_clear_config_and_disable(nn);
1995
1996 return err;
1997 }
1998
1999 /**
2000 * nfp_net_open_stack() - Start the device from stack's perspective
2001 * @nn: NFP Net device to reconfigure
2002 */
2003 static void nfp_net_open_stack(struct nfp_net *nn)
2004 {
2005 unsigned int r;
2006
2007 for (r = 0; r < nn->num_r_vecs; r++) {
2008 napi_enable(&nn->r_vecs[r].napi);
2009 enable_irq(nn->irq_entries[nn->r_vecs[r].irq_idx].vector);
2010 }
2011
2012 netif_tx_wake_all_queues(nn->netdev);
2013
2014 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2015 nfp_net_read_link_status(nn);
2016 }
2017
2018 static int nfp_net_netdev_open(struct net_device *netdev)
2019 {
2020 struct nfp_net *nn = netdev_priv(netdev);
2021 int err, r;
2022
2023 if (nn->ctrl & NFP_NET_CFG_CTRL_ENABLE) {
2024 nn_err(nn, "Dev is already enabled: 0x%08x\n", nn->ctrl);
2025 return -EBUSY;
2026 }
2027
2028 /* Step 1: Allocate resources for rings and the like
2029 * - Request interrupts
2030 * - Allocate RX and TX ring resources
2031 * - Setup initial RSS table
2032 */
2033 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2034 nn->exn_name, sizeof(nn->exn_name),
2035 NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2036 if (err)
2037 return err;
2038 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2039 nn->lsc_name, sizeof(nn->lsc_name),
2040 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2041 if (err)
2042 goto err_free_exn;
2043 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2044
2045 nn->rx_rings = kcalloc(nn->num_rx_rings, sizeof(*nn->rx_rings),
2046 GFP_KERNEL);
2047 if (!nn->rx_rings)
2048 goto err_free_lsc;
2049 nn->tx_rings = kcalloc(nn->num_tx_rings, sizeof(*nn->tx_rings),
2050 GFP_KERNEL);
2051 if (!nn->tx_rings)
2052 goto err_free_rx_rings;
2053
2054 for (r = 0; r < nn->num_r_vecs; r++) {
2055 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2056 if (err)
2057 goto err_free_prev_vecs;
2058
2059 err = nfp_net_tx_ring_alloc(nn->r_vecs[r].tx_ring, nn->txd_cnt);
2060 if (err)
2061 goto err_cleanup_vec_p;
2062
2063 err = nfp_net_rx_ring_alloc(nn->r_vecs[r].rx_ring,
2064 nn->fl_bufsz, nn->rxd_cnt);
2065 if (err)
2066 goto err_free_tx_ring_p;
2067
2068 err = nfp_net_rx_ring_bufs_alloc(nn, nn->r_vecs[r].rx_ring);
2069 if (err)
2070 goto err_flush_rx_ring_p;
2071 }
2072
2073 err = netif_set_real_num_tx_queues(netdev, nn->num_tx_rings);
2074 if (err)
2075 goto err_free_rings;
2076
2077 err = netif_set_real_num_rx_queues(netdev, nn->num_rx_rings);
2078 if (err)
2079 goto err_free_rings;
2080
2081 /* Step 2: Configure the NFP
2082 * - Enable rings from 0 to tx_rings/rx_rings - 1.
2083 * - Write MAC address (in case it changed)
2084 * - Set the MTU
2085 * - Set the Freelist buffer size
2086 * - Enable the FW
2087 */
2088 err = nfp_net_set_config_and_enable(nn);
2089 if (err)
2090 goto err_free_rings;
2091
2092 /* Step 3: Enable for kernel
2093 * - put some freelist descriptors on each RX ring
2094 * - enable NAPI on each ring
2095 * - enable all TX queues
2096 * - set link state
2097 */
2098 nfp_net_open_stack(nn);
2099
2100 return 0;
2101
2102 err_free_rings:
2103 r = nn->num_r_vecs;
2104 err_free_prev_vecs:
2105 while (r--) {
2106 nfp_net_rx_ring_bufs_free(nn, nn->r_vecs[r].rx_ring);
2107 err_flush_rx_ring_p:
2108 nfp_net_rx_ring_free(nn->r_vecs[r].rx_ring);
2109 err_free_tx_ring_p:
2110 nfp_net_tx_ring_free(nn->r_vecs[r].tx_ring);
2111 err_cleanup_vec_p:
2112 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2113 }
2114 kfree(nn->tx_rings);
2115 err_free_rx_rings:
2116 kfree(nn->rx_rings);
2117 err_free_lsc:
2118 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2119 err_free_exn:
2120 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2121 return err;
2122 }
2123
2124 /**
2125 * nfp_net_close_stack() - Quiescent the stack (part of close)
2126 * @nn: NFP Net device to reconfigure
2127 */
2128 static void nfp_net_close_stack(struct nfp_net *nn)
2129 {
2130 unsigned int r;
2131
2132 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2133 netif_carrier_off(nn->netdev);
2134 nn->link_up = false;
2135
2136 for (r = 0; r < nn->num_r_vecs; r++) {
2137 disable_irq(nn->irq_entries[nn->r_vecs[r].irq_idx].vector);
2138 napi_disable(&nn->r_vecs[r].napi);
2139 }
2140
2141 netif_tx_disable(nn->netdev);
2142 }
2143
2144 /**
2145 * nfp_net_close_free_all() - Free all runtime resources
2146 * @nn: NFP Net device to reconfigure
2147 */
2148 static void nfp_net_close_free_all(struct nfp_net *nn)
2149 {
2150 unsigned int r;
2151
2152 for (r = 0; r < nn->num_r_vecs; r++) {
2153 nfp_net_rx_ring_bufs_free(nn, nn->r_vecs[r].rx_ring);
2154 nfp_net_rx_ring_free(nn->r_vecs[r].rx_ring);
2155 nfp_net_tx_ring_free(nn->r_vecs[r].tx_ring);
2156 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2157 }
2158
2159 kfree(nn->rx_rings);
2160 kfree(nn->tx_rings);
2161
2162 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2163 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2164 }
2165
2166 /**
2167 * nfp_net_netdev_close() - Called when the device is downed
2168 * @netdev: netdev structure
2169 */
2170 static int nfp_net_netdev_close(struct net_device *netdev)
2171 {
2172 struct nfp_net *nn = netdev_priv(netdev);
2173
2174 if (!(nn->ctrl & NFP_NET_CFG_CTRL_ENABLE)) {
2175 nn_err(nn, "Dev is not up: 0x%08x\n", nn->ctrl);
2176 return 0;
2177 }
2178
2179 /* Step 1: Disable RX and TX rings from the Linux kernel perspective
2180 */
2181 nfp_net_close_stack(nn);
2182
2183 /* Step 2: Tell NFP
2184 */
2185 nfp_net_clear_config_and_disable(nn);
2186
2187 /* Step 3: Free resources
2188 */
2189 nfp_net_close_free_all(nn);
2190
2191 nn_dbg(nn, "%s down", netdev->name);
2192 return 0;
2193 }
2194
2195 static void nfp_net_set_rx_mode(struct net_device *netdev)
2196 {
2197 struct nfp_net *nn = netdev_priv(netdev);
2198 u32 new_ctrl;
2199
2200 new_ctrl = nn->ctrl;
2201
2202 if (netdev->flags & IFF_PROMISC) {
2203 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
2204 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
2205 else
2206 nn_warn(nn, "FW does not support promiscuous mode\n");
2207 } else {
2208 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
2209 }
2210
2211 if (new_ctrl == nn->ctrl)
2212 return;
2213
2214 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2215 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2216
2217 nn->ctrl = new_ctrl;
2218 }
2219
2220 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
2221 {
2222 unsigned int old_mtu, old_fl_bufsz, new_fl_bufsz;
2223 struct nfp_net *nn = netdev_priv(netdev);
2224 struct nfp_net_rx_ring *tmp_rings;
2225 int err;
2226
2227 if (new_mtu < 68 || new_mtu > nn->max_mtu) {
2228 nn_err(nn, "New MTU (%d) is not valid\n", new_mtu);
2229 return -EINVAL;
2230 }
2231
2232 old_mtu = netdev->mtu;
2233 old_fl_bufsz = nn->fl_bufsz;
2234 new_fl_bufsz = NFP_NET_MAX_PREPEND + ETH_HLEN + VLAN_HLEN * 2 + new_mtu;
2235
2236 if (!netif_running(netdev)) {
2237 netdev->mtu = new_mtu;
2238 nn->fl_bufsz = new_fl_bufsz;
2239 return 0;
2240 }
2241
2242 /* Prepare new rings */
2243 tmp_rings = nfp_net_shadow_rx_rings_prepare(nn, new_fl_bufsz,
2244 nn->rxd_cnt);
2245 if (!tmp_rings)
2246 return -ENOMEM;
2247
2248 /* Stop device, swap in new rings, try to start the firmware */
2249 nfp_net_close_stack(nn);
2250 nfp_net_clear_config_and_disable(nn);
2251
2252 tmp_rings = nfp_net_shadow_rx_rings_swap(nn, tmp_rings);
2253
2254 netdev->mtu = new_mtu;
2255 nn->fl_bufsz = new_fl_bufsz;
2256
2257 err = nfp_net_set_config_and_enable(nn);
2258 if (err) {
2259 const int err_new = err;
2260
2261 /* Try with old configuration and old rings */
2262 tmp_rings = nfp_net_shadow_rx_rings_swap(nn, tmp_rings);
2263
2264 netdev->mtu = old_mtu;
2265 nn->fl_bufsz = old_fl_bufsz;
2266
2267 err = __nfp_net_set_config_and_enable(nn);
2268 if (err)
2269 nn_err(nn, "Can't restore MTU - FW communication failed (%d,%d)\n",
2270 err_new, err);
2271 }
2272
2273 nfp_net_shadow_rx_rings_free(nn, tmp_rings);
2274
2275 nfp_net_open_stack(nn);
2276
2277 return err;
2278 }
2279
2280 int nfp_net_set_ring_size(struct nfp_net *nn, u32 rxd_cnt, u32 txd_cnt)
2281 {
2282 struct nfp_net_tx_ring *tx_rings = NULL;
2283 struct nfp_net_rx_ring *rx_rings = NULL;
2284 u32 old_rxd_cnt, old_txd_cnt;
2285 int err;
2286
2287 if (!netif_running(nn->netdev)) {
2288 nn->rxd_cnt = rxd_cnt;
2289 nn->txd_cnt = txd_cnt;
2290 return 0;
2291 }
2292
2293 old_rxd_cnt = nn->rxd_cnt;
2294 old_txd_cnt = nn->txd_cnt;
2295
2296 /* Prepare new rings */
2297 if (nn->rxd_cnt != rxd_cnt) {
2298 rx_rings = nfp_net_shadow_rx_rings_prepare(nn, nn->fl_bufsz,
2299 rxd_cnt);
2300 if (!rx_rings)
2301 return -ENOMEM;
2302 }
2303 if (nn->txd_cnt != txd_cnt) {
2304 tx_rings = nfp_net_shadow_tx_rings_prepare(nn, txd_cnt);
2305 if (!tx_rings) {
2306 nfp_net_shadow_rx_rings_free(nn, rx_rings);
2307 return -ENOMEM;
2308 }
2309 }
2310
2311 /* Stop device, swap in new rings, try to start the firmware */
2312 nfp_net_close_stack(nn);
2313 nfp_net_clear_config_and_disable(nn);
2314
2315 if (rx_rings)
2316 rx_rings = nfp_net_shadow_rx_rings_swap(nn, rx_rings);
2317 if (tx_rings)
2318 tx_rings = nfp_net_shadow_tx_rings_swap(nn, tx_rings);
2319
2320 nn->rxd_cnt = rxd_cnt;
2321 nn->txd_cnt = txd_cnt;
2322
2323 err = nfp_net_set_config_and_enable(nn);
2324 if (err) {
2325 const int err_new = err;
2326
2327 /* Try with old configuration and old rings */
2328 if (rx_rings)
2329 rx_rings = nfp_net_shadow_rx_rings_swap(nn, rx_rings);
2330 if (tx_rings)
2331 tx_rings = nfp_net_shadow_tx_rings_swap(nn, tx_rings);
2332
2333 nn->rxd_cnt = old_rxd_cnt;
2334 nn->txd_cnt = old_txd_cnt;
2335
2336 err = __nfp_net_set_config_and_enable(nn);
2337 if (err)
2338 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2339 err_new, err);
2340 }
2341
2342 nfp_net_shadow_rx_rings_free(nn, rx_rings);
2343 nfp_net_shadow_tx_rings_free(nn, tx_rings);
2344
2345 nfp_net_open_stack(nn);
2346
2347 return err;
2348 }
2349
2350 static struct rtnl_link_stats64 *nfp_net_stat64(struct net_device *netdev,
2351 struct rtnl_link_stats64 *stats)
2352 {
2353 struct nfp_net *nn = netdev_priv(netdev);
2354 int r;
2355
2356 for (r = 0; r < nn->num_r_vecs; r++) {
2357 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
2358 u64 data[3];
2359 unsigned int start;
2360
2361 do {
2362 start = u64_stats_fetch_begin(&r_vec->rx_sync);
2363 data[0] = r_vec->rx_pkts;
2364 data[1] = r_vec->rx_bytes;
2365 data[2] = r_vec->rx_drops;
2366 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
2367 stats->rx_packets += data[0];
2368 stats->rx_bytes += data[1];
2369 stats->rx_dropped += data[2];
2370
2371 do {
2372 start = u64_stats_fetch_begin(&r_vec->tx_sync);
2373 data[0] = r_vec->tx_pkts;
2374 data[1] = r_vec->tx_bytes;
2375 data[2] = r_vec->tx_errors;
2376 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
2377 stats->tx_packets += data[0];
2378 stats->tx_bytes += data[1];
2379 stats->tx_errors += data[2];
2380 }
2381
2382 return stats;
2383 }
2384
2385 static int nfp_net_set_features(struct net_device *netdev,
2386 netdev_features_t features)
2387 {
2388 netdev_features_t changed = netdev->features ^ features;
2389 struct nfp_net *nn = netdev_priv(netdev);
2390 u32 new_ctrl;
2391 int err;
2392
2393 /* Assume this is not called with features we have not advertised */
2394
2395 new_ctrl = nn->ctrl;
2396
2397 if (changed & NETIF_F_RXCSUM) {
2398 if (features & NETIF_F_RXCSUM)
2399 new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
2400 else
2401 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM;
2402 }
2403
2404 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
2405 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
2406 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
2407 else
2408 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
2409 }
2410
2411 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
2412 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
2413 new_ctrl |= NFP_NET_CFG_CTRL_LSO;
2414 else
2415 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO;
2416 }
2417
2418 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
2419 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2420 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
2421 else
2422 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
2423 }
2424
2425 if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
2426 if (features & NETIF_F_HW_VLAN_CTAG_TX)
2427 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
2428 else
2429 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
2430 }
2431
2432 if (changed & NETIF_F_SG) {
2433 if (features & NETIF_F_SG)
2434 new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
2435 else
2436 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
2437 }
2438
2439 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
2440 netdev->features, features, changed);
2441
2442 if (new_ctrl == nn->ctrl)
2443 return 0;
2444
2445 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->ctrl, new_ctrl);
2446 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2447 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
2448 if (err)
2449 return err;
2450
2451 nn->ctrl = new_ctrl;
2452
2453 return 0;
2454 }
2455
2456 static netdev_features_t
2457 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
2458 netdev_features_t features)
2459 {
2460 u8 l4_hdr;
2461
2462 /* We can't do TSO over double tagged packets (802.1AD) */
2463 features &= vlan_features_check(skb, features);
2464
2465 if (!skb->encapsulation)
2466 return features;
2467
2468 /* Ensure that inner L4 header offset fits into TX descriptor field */
2469 if (skb_is_gso(skb)) {
2470 u32 hdrlen;
2471
2472 hdrlen = skb_inner_transport_header(skb) - skb->data +
2473 inner_tcp_hdrlen(skb);
2474
2475 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
2476 features &= ~NETIF_F_GSO_MASK;
2477 }
2478
2479 /* VXLAN/GRE check */
2480 switch (vlan_get_protocol(skb)) {
2481 case htons(ETH_P_IP):
2482 l4_hdr = ip_hdr(skb)->protocol;
2483 break;
2484 case htons(ETH_P_IPV6):
2485 l4_hdr = ipv6_hdr(skb)->nexthdr;
2486 break;
2487 default:
2488 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2489 }
2490
2491 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
2492 skb->inner_protocol != htons(ETH_P_TEB) ||
2493 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
2494 (l4_hdr == IPPROTO_UDP &&
2495 (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
2496 sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2497 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2498
2499 return features;
2500 }
2501
2502 /**
2503 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
2504 * @nn: NFP Net device to reconfigure
2505 * @idx: Index into the port table where new port should be written
2506 * @port: UDP port to configure (pass zero to remove VXLAN port)
2507 */
2508 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
2509 {
2510 int i;
2511
2512 nn->vxlan_ports[idx] = port;
2513
2514 if (!(nn->ctrl & NFP_NET_CFG_CTRL_VXLAN))
2515 return;
2516
2517 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
2518 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
2519 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
2520 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
2521 be16_to_cpu(nn->vxlan_ports[i]));
2522
2523 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2524 }
2525
2526 /**
2527 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
2528 * @nn: NFP Network structure
2529 * @port: UDP port to look for
2530 *
2531 * Return: if the port is already in the table -- it's position;
2532 * if the port is not in the table -- free position to use;
2533 * if the table is full -- -ENOSPC.
2534 */
2535 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
2536 {
2537 int i, free_idx = -ENOSPC;
2538
2539 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
2540 if (nn->vxlan_ports[i] == port)
2541 return i;
2542 if (!nn->vxlan_usecnt[i])
2543 free_idx = i;
2544 }
2545
2546 return free_idx;
2547 }
2548
2549 static void nfp_net_add_vxlan_port(struct net_device *netdev,
2550 struct udp_tunnel_info *ti)
2551 {
2552 struct nfp_net *nn = netdev_priv(netdev);
2553 int idx;
2554
2555 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
2556 return;
2557
2558 idx = nfp_net_find_vxlan_idx(nn, ti->port);
2559 if (idx == -ENOSPC)
2560 return;
2561
2562 if (!nn->vxlan_usecnt[idx]++)
2563 nfp_net_set_vxlan_port(nn, idx, ti->port);
2564 }
2565
2566 static void nfp_net_del_vxlan_port(struct net_device *netdev,
2567 struct udp_tunnel_info *ti)
2568 {
2569 struct nfp_net *nn = netdev_priv(netdev);
2570 int idx;
2571
2572 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
2573 return;
2574
2575 idx = nfp_net_find_vxlan_idx(nn, ti->port);
2576 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2577 return;
2578
2579 if (!--nn->vxlan_usecnt[idx])
2580 nfp_net_set_vxlan_port(nn, idx, 0);
2581 }
2582
2583 static const struct net_device_ops nfp_net_netdev_ops = {
2584 .ndo_open = nfp_net_netdev_open,
2585 .ndo_stop = nfp_net_netdev_close,
2586 .ndo_start_xmit = nfp_net_tx,
2587 .ndo_get_stats64 = nfp_net_stat64,
2588 .ndo_tx_timeout = nfp_net_tx_timeout,
2589 .ndo_set_rx_mode = nfp_net_set_rx_mode,
2590 .ndo_change_mtu = nfp_net_change_mtu,
2591 .ndo_set_mac_address = eth_mac_addr,
2592 .ndo_set_features = nfp_net_set_features,
2593 .ndo_features_check = nfp_net_features_check,
2594 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port,
2595 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port,
2596 };
2597
2598 /**
2599 * nfp_net_info() - Print general info about the NIC
2600 * @nn: NFP Net device to reconfigure
2601 */
2602 void nfp_net_info(struct nfp_net *nn)
2603 {
2604 nn_info(nn, "Netronome %s %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
2605 nn->is_nfp3200 ? "NFP-32xx" : "NFP-6xxx",
2606 nn->is_vf ? "VF " : "",
2607 nn->num_tx_rings, nn->max_tx_rings,
2608 nn->num_rx_rings, nn->max_rx_rings);
2609 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
2610 nn->fw_ver.resv, nn->fw_ver.class,
2611 nn->fw_ver.major, nn->fw_ver.minor,
2612 nn->max_mtu);
2613 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2614 nn->cap,
2615 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "",
2616 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "",
2617 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "",
2618 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "",
2619 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "",
2620 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "",
2621 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "",
2622 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "",
2623 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "",
2624 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO " : "",
2625 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS " : "",
2626 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
2627 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
2628 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "",
2629 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "",
2630 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "");
2631 }
2632
2633 /**
2634 * nfp_net_netdev_alloc() - Allocate netdev and related structure
2635 * @pdev: PCI device
2636 * @max_tx_rings: Maximum number of TX rings supported by device
2637 * @max_rx_rings: Maximum number of RX rings supported by device
2638 *
2639 * This function allocates a netdev device and fills in the initial
2640 * part of the @struct nfp_net structure.
2641 *
2642 * Return: NFP Net device structure, or ERR_PTR on error.
2643 */
2644 struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev,
2645 int max_tx_rings, int max_rx_rings)
2646 {
2647 struct net_device *netdev;
2648 struct nfp_net *nn;
2649 int nqs;
2650
2651 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
2652 max_tx_rings, max_rx_rings);
2653 if (!netdev)
2654 return ERR_PTR(-ENOMEM);
2655
2656 SET_NETDEV_DEV(netdev, &pdev->dev);
2657 nn = netdev_priv(netdev);
2658
2659 nn->netdev = netdev;
2660 nn->pdev = pdev;
2661
2662 nn->max_tx_rings = max_tx_rings;
2663 nn->max_rx_rings = max_rx_rings;
2664
2665 nqs = netif_get_num_default_rss_queues();
2666 nn->num_tx_rings = min_t(int, nqs, max_tx_rings);
2667 nn->num_rx_rings = min_t(int, nqs, max_rx_rings);
2668
2669 nn->txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
2670 nn->rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
2671
2672 spin_lock_init(&nn->reconfig_lock);
2673 spin_lock_init(&nn->link_status_lock);
2674
2675 setup_timer(&nn->reconfig_timer,
2676 nfp_net_reconfig_timer, (unsigned long)nn);
2677
2678 return nn;
2679 }
2680
2681 /**
2682 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did
2683 * @nn: NFP Net device to reconfigure
2684 */
2685 void nfp_net_netdev_free(struct nfp_net *nn)
2686 {
2687 free_netdev(nn->netdev);
2688 }
2689
2690 /**
2691 * nfp_net_rss_init() - Set the initial RSS parameters
2692 * @nn: NFP Net device to reconfigure
2693 */
2694 static void nfp_net_rss_init(struct nfp_net *nn)
2695 {
2696 int i;
2697
2698 netdev_rss_key_fill(nn->rss_key, NFP_NET_CFG_RSS_KEY_SZ);
2699
2700 for (i = 0; i < sizeof(nn->rss_itbl); i++)
2701 nn->rss_itbl[i] =
2702 ethtool_rxfh_indir_default(i, nn->num_rx_rings);
2703
2704 /* Enable IPv4/IPv6 TCP by default */
2705 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
2706 NFP_NET_CFG_RSS_IPV6_TCP |
2707 NFP_NET_CFG_RSS_TOEPLITZ |
2708 NFP_NET_CFG_RSS_MASK;
2709 }
2710
2711 /**
2712 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
2713 * @nn: NFP Net device to reconfigure
2714 */
2715 static void nfp_net_irqmod_init(struct nfp_net *nn)
2716 {
2717 nn->rx_coalesce_usecs = 50;
2718 nn->rx_coalesce_max_frames = 64;
2719 nn->tx_coalesce_usecs = 50;
2720 nn->tx_coalesce_max_frames = 64;
2721 }
2722
2723 /**
2724 * nfp_net_netdev_init() - Initialise/finalise the netdev structure
2725 * @netdev: netdev structure
2726 *
2727 * Return: 0 on success or negative errno on error.
2728 */
2729 int nfp_net_netdev_init(struct net_device *netdev)
2730 {
2731 struct nfp_net *nn = netdev_priv(netdev);
2732 int err;
2733
2734 /* Get some of the read-only fields from the BAR */
2735 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
2736 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
2737
2738 nfp_net_write_mac_addr(nn);
2739
2740 /* Set default MTU and Freelist buffer size */
2741 if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
2742 netdev->mtu = nn->max_mtu;
2743 else
2744 netdev->mtu = NFP_NET_DEFAULT_MTU;
2745 nn->fl_bufsz = NFP_NET_DEFAULT_RX_BUFSZ;
2746
2747 /* Advertise/enable offloads based on capabilities
2748 *
2749 * Note: netdev->features show the currently enabled features
2750 * and netdev->hw_features advertises which features are
2751 * supported. By default we enable most features.
2752 */
2753 netdev->hw_features = NETIF_F_HIGHDMA;
2754 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) {
2755 netdev->hw_features |= NETIF_F_RXCSUM;
2756 nn->ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
2757 }
2758 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
2759 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2760 nn->ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
2761 }
2762 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
2763 netdev->hw_features |= NETIF_F_SG;
2764 nn->ctrl |= NFP_NET_CFG_CTRL_GATHER;
2765 }
2766 if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) {
2767 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
2768 nn->ctrl |= NFP_NET_CFG_CTRL_LSO;
2769 }
2770 if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
2771 netdev->hw_features |= NETIF_F_RXHASH;
2772 nfp_net_rss_init(nn);
2773 nn->ctrl |= NFP_NET_CFG_CTRL_RSS;
2774 }
2775 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
2776 nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
2777 if (nn->cap & NFP_NET_CFG_CTRL_LSO)
2778 netdev->hw_features |= NETIF_F_GSO_GRE |
2779 NETIF_F_GSO_UDP_TUNNEL;
2780 nn->ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
2781
2782 netdev->hw_enc_features = netdev->hw_features;
2783 }
2784
2785 netdev->vlan_features = netdev->hw_features;
2786
2787 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
2788 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
2789 nn->ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
2790 }
2791 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
2792 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
2793 nn->ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
2794 }
2795
2796 netdev->features = netdev->hw_features;
2797
2798 /* Advertise but disable TSO by default. */
2799 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
2800
2801 /* Allow L2 Broadcast and Multicast through by default, if supported */
2802 if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
2803 nn->ctrl |= NFP_NET_CFG_CTRL_L2BC;
2804 if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
2805 nn->ctrl |= NFP_NET_CFG_CTRL_L2MC;
2806
2807 /* Allow IRQ moderation, if supported */
2808 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
2809 nfp_net_irqmod_init(nn);
2810 nn->ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
2811 }
2812
2813 /* On NFP-3200 enable MSI-X auto-masking, if supported and the
2814 * interrupts are not shared.
2815 */
2816 if (nn->is_nfp3200 && nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO)
2817 nn->ctrl |= NFP_NET_CFG_CTRL_MSIXAUTO;
2818
2819 /* On NFP4000/NFP6000, determine RX packet/metadata boundary offset */
2820 if (nn->fw_ver.major >= 2)
2821 nn->rx_offset = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
2822 else
2823 nn->rx_offset = NFP_NET_RX_OFFSET;
2824
2825 /* Stash the re-configuration queue away. First odd queue in TX Bar */
2826 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
2827
2828 /* Make sure the FW knows the netdev is supposed to be disabled here */
2829 nn_writel(nn, NFP_NET_CFG_CTRL, 0);
2830 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2831 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2832 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
2833 NFP_NET_CFG_UPDATE_GEN);
2834 if (err)
2835 return err;
2836
2837 /* Finalise the netdev setup */
2838 ether_setup(netdev);
2839 netdev->netdev_ops = &nfp_net_netdev_ops;
2840 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
2841 netif_carrier_off(netdev);
2842
2843 nfp_net_set_ethtool_ops(netdev);
2844 nfp_net_irqs_assign(netdev);
2845
2846 return register_netdev(netdev);
2847 }
2848
2849 /**
2850 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did.
2851 * @netdev: netdev structure
2852 */
2853 void nfp_net_netdev_clean(struct net_device *netdev)
2854 {
2855 unregister_netdev(netdev);
2856 }
This page took 0.097812 seconds and 5 git commands to generate.