Merge branch 'keys-asym-keyctl' into keys-next
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qed / qed_dev.c
1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/types.h>
10 #include <asm/byteorder.h>
11 #include <linux/io.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/vmalloc.h>
21 #include <linux/etherdevice.h>
22 #include <linux/qed/qed_chain.h>
23 #include <linux/qed/qed_if.h>
24 #include "qed.h"
25 #include "qed_cxt.h"
26 #include "qed_dcbx.h"
27 #include "qed_dev_api.h"
28 #include "qed_hsi.h"
29 #include "qed_hw.h"
30 #include "qed_init_ops.h"
31 #include "qed_int.h"
32 #include "qed_mcp.h"
33 #include "qed_reg_addr.h"
34 #include "qed_sp.h"
35 #include "qed_sriov.h"
36 #include "qed_vf.h"
37
38 static spinlock_t qm_lock;
39 static bool qm_lock_init = false;
40
41 /* API common to all protocols */
42 enum BAR_ID {
43 BAR_ID_0, /* used for GRC */
44 BAR_ID_1 /* Used for doorbells */
45 };
46
47 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn,
48 enum BAR_ID bar_id)
49 {
50 u32 bar_reg = (bar_id == BAR_ID_0 ?
51 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
52 u32 val;
53
54 if (IS_VF(p_hwfn->cdev))
55 return 1 << 17;
56
57 val = qed_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
58 if (val)
59 return 1 << (val + 15);
60
61 /* Old MFW initialized above registered only conditionally */
62 if (p_hwfn->cdev->num_hwfns > 1) {
63 DP_INFO(p_hwfn,
64 "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
65 return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
66 } else {
67 DP_INFO(p_hwfn,
68 "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
69 return 512 * 1024;
70 }
71 }
72
73 void qed_init_dp(struct qed_dev *cdev,
74 u32 dp_module, u8 dp_level)
75 {
76 u32 i;
77
78 cdev->dp_level = dp_level;
79 cdev->dp_module = dp_module;
80 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
81 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
82
83 p_hwfn->dp_level = dp_level;
84 p_hwfn->dp_module = dp_module;
85 }
86 }
87
88 void qed_init_struct(struct qed_dev *cdev)
89 {
90 u8 i;
91
92 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
93 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
94
95 p_hwfn->cdev = cdev;
96 p_hwfn->my_id = i;
97 p_hwfn->b_active = false;
98
99 mutex_init(&p_hwfn->dmae_info.mutex);
100 }
101
102 /* hwfn 0 is always active */
103 cdev->hwfns[0].b_active = true;
104
105 /* set the default cache alignment to 128 */
106 cdev->cache_shift = 7;
107 }
108
109 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
110 {
111 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
112
113 kfree(qm_info->qm_pq_params);
114 qm_info->qm_pq_params = NULL;
115 kfree(qm_info->qm_vport_params);
116 qm_info->qm_vport_params = NULL;
117 kfree(qm_info->qm_port_params);
118 qm_info->qm_port_params = NULL;
119 kfree(qm_info->wfq_data);
120 qm_info->wfq_data = NULL;
121 }
122
123 void qed_resc_free(struct qed_dev *cdev)
124 {
125 int i;
126
127 if (IS_VF(cdev))
128 return;
129
130 kfree(cdev->fw_data);
131 cdev->fw_data = NULL;
132
133 kfree(cdev->reset_stats);
134
135 for_each_hwfn(cdev, i) {
136 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
137
138 kfree(p_hwfn->p_tx_cids);
139 p_hwfn->p_tx_cids = NULL;
140 kfree(p_hwfn->p_rx_cids);
141 p_hwfn->p_rx_cids = NULL;
142 }
143
144 for_each_hwfn(cdev, i) {
145 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
146
147 qed_cxt_mngr_free(p_hwfn);
148 qed_qm_info_free(p_hwfn);
149 qed_spq_free(p_hwfn);
150 qed_eq_free(p_hwfn, p_hwfn->p_eq);
151 qed_consq_free(p_hwfn, p_hwfn->p_consq);
152 qed_int_free(p_hwfn);
153 qed_iov_free(p_hwfn);
154 qed_dmae_info_free(p_hwfn);
155 qed_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
156 }
157 }
158
159 static int qed_init_qm_info(struct qed_hwfn *p_hwfn, bool b_sleepable)
160 {
161 u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue = 0;
162 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
163 struct init_qm_port_params *p_qm_port;
164 bool init_rdma_offload_pq = false;
165 bool init_pure_ack_pq = false;
166 bool init_ooo_pq = false;
167 u16 num_pqs, multi_cos_tcs = 1;
168 u8 pf_wfq = qm_info->pf_wfq;
169 u32 pf_rl = qm_info->pf_rl;
170 u16 num_pf_rls = 0;
171 u16 num_vfs = 0;
172
173 #ifdef CONFIG_QED_SRIOV
174 if (p_hwfn->cdev->p_iov_info)
175 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
176 #endif
177 memset(qm_info, 0, sizeof(*qm_info));
178
179 num_pqs = multi_cos_tcs + num_vfs + 1; /* The '1' is for pure-LB */
180 num_vports = (u8)RESC_NUM(p_hwfn, QED_VPORT);
181
182 if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
183 num_pqs++; /* for RoCE queue */
184 init_rdma_offload_pq = true;
185 /* we subtract num_vfs because each require a rate limiter,
186 * and one default rate limiter
187 */
188 if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn)
189 num_pf_rls = RESC_NUM(p_hwfn, QED_RL) - num_vfs - 1;
190
191 num_pqs += num_pf_rls;
192 qm_info->num_pf_rls = (u8) num_pf_rls;
193 }
194
195 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
196 num_pqs += 2; /* for iSCSI pure-ACK / OOO queue */
197 init_pure_ack_pq = true;
198 init_ooo_pq = true;
199 }
200
201 /* Sanity checking that setup requires legal number of resources */
202 if (num_pqs > RESC_NUM(p_hwfn, QED_PQ)) {
203 DP_ERR(p_hwfn,
204 "Need too many Physical queues - 0x%04x when only %04x are available\n",
205 num_pqs, RESC_NUM(p_hwfn, QED_PQ));
206 return -EINVAL;
207 }
208
209 /* PQs will be arranged as follows: First per-TC PQ then pure-LB quete.
210 */
211 qm_info->qm_pq_params = kcalloc(num_pqs,
212 sizeof(struct init_qm_pq_params),
213 b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
214 if (!qm_info->qm_pq_params)
215 goto alloc_err;
216
217 qm_info->qm_vport_params = kcalloc(num_vports,
218 sizeof(struct init_qm_vport_params),
219 b_sleepable ? GFP_KERNEL
220 : GFP_ATOMIC);
221 if (!qm_info->qm_vport_params)
222 goto alloc_err;
223
224 qm_info->qm_port_params = kcalloc(MAX_NUM_PORTS,
225 sizeof(struct init_qm_port_params),
226 b_sleepable ? GFP_KERNEL
227 : GFP_ATOMIC);
228 if (!qm_info->qm_port_params)
229 goto alloc_err;
230
231 qm_info->wfq_data = kcalloc(num_vports, sizeof(struct qed_wfq_data),
232 b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
233 if (!qm_info->wfq_data)
234 goto alloc_err;
235
236 vport_id = (u8)RESC_START(p_hwfn, QED_VPORT);
237
238 /* First init rate limited queues */
239 for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) {
240 qm_info->qm_pq_params[curr_queue].vport_id = vport_id++;
241 qm_info->qm_pq_params[curr_queue].tc_id =
242 p_hwfn->hw_info.non_offload_tc;
243 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
244 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
245 }
246
247 /* First init per-TC PQs */
248 for (i = 0; i < multi_cos_tcs; i++) {
249 struct init_qm_pq_params *params =
250 &qm_info->qm_pq_params[curr_queue++];
251
252 if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE ||
253 p_hwfn->hw_info.personality == QED_PCI_ETH) {
254 params->vport_id = vport_id;
255 params->tc_id = p_hwfn->hw_info.non_offload_tc;
256 params->wrr_group = 1;
257 } else {
258 params->vport_id = vport_id;
259 params->tc_id = p_hwfn->hw_info.offload_tc;
260 params->wrr_group = 1;
261 }
262 }
263
264 /* Then init pure-LB PQ */
265 qm_info->pure_lb_pq = curr_queue;
266 qm_info->qm_pq_params[curr_queue].vport_id =
267 (u8) RESC_START(p_hwfn, QED_VPORT);
268 qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
269 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
270 curr_queue++;
271
272 qm_info->offload_pq = 0;
273 if (init_rdma_offload_pq) {
274 qm_info->offload_pq = curr_queue;
275 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
276 qm_info->qm_pq_params[curr_queue].tc_id =
277 p_hwfn->hw_info.offload_tc;
278 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
279 curr_queue++;
280 }
281
282 if (init_pure_ack_pq) {
283 qm_info->pure_ack_pq = curr_queue;
284 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
285 qm_info->qm_pq_params[curr_queue].tc_id =
286 p_hwfn->hw_info.offload_tc;
287 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
288 curr_queue++;
289 }
290
291 if (init_ooo_pq) {
292 qm_info->ooo_pq = curr_queue;
293 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
294 qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC;
295 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
296 curr_queue++;
297 }
298
299 /* Then init per-VF PQs */
300 vf_offset = curr_queue;
301 for (i = 0; i < num_vfs; i++) {
302 /* First vport is used by the PF */
303 qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
304 qm_info->qm_pq_params[curr_queue].tc_id =
305 p_hwfn->hw_info.non_offload_tc;
306 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
307 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
308 curr_queue++;
309 }
310
311 qm_info->vf_queues_offset = vf_offset;
312 qm_info->num_pqs = num_pqs;
313 qm_info->num_vports = num_vports;
314
315 /* Initialize qm port parameters */
316 num_ports = p_hwfn->cdev->num_ports_in_engines;
317 for (i = 0; i < num_ports; i++) {
318 p_qm_port = &qm_info->qm_port_params[i];
319 p_qm_port->active = 1;
320 if (num_ports == 4)
321 p_qm_port->active_phys_tcs = 0x7;
322 else
323 p_qm_port->active_phys_tcs = 0x9f;
324 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
325 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
326 }
327
328 qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
329
330 qm_info->start_pq = (u16)RESC_START(p_hwfn, QED_PQ);
331
332 qm_info->num_vf_pqs = num_vfs;
333 qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
334
335 for (i = 0; i < qm_info->num_vports; i++)
336 qm_info->qm_vport_params[i].vport_wfq = 1;
337
338 qm_info->vport_rl_en = 1;
339 qm_info->vport_wfq_en = 1;
340 qm_info->pf_rl = pf_rl;
341 qm_info->pf_wfq = pf_wfq;
342
343 return 0;
344
345 alloc_err:
346 DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
347 qed_qm_info_free(p_hwfn);
348 return -ENOMEM;
349 }
350
351 /* This function reconfigures the QM pf on the fly.
352 * For this purpose we:
353 * 1. reconfigure the QM database
354 * 2. set new values to runtime arrat
355 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
356 * 4. activate init tool in QM_PF stage
357 * 5. send an sdm_qm_cmd through rbc interface to release the QM
358 */
359 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
360 {
361 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
362 bool b_rc;
363 int rc;
364
365 /* qm_info is allocated in qed_init_qm_info() which is already called
366 * from qed_resc_alloc() or previous call of qed_qm_reconf().
367 * The allocated size may change each init, so we free it before next
368 * allocation.
369 */
370 qed_qm_info_free(p_hwfn);
371
372 /* initialize qed's qm data structure */
373 rc = qed_init_qm_info(p_hwfn, false);
374 if (rc)
375 return rc;
376
377 /* stop PF's qm queues */
378 spin_lock_bh(&qm_lock);
379 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
380 qm_info->start_pq, qm_info->num_pqs);
381 spin_unlock_bh(&qm_lock);
382 if (!b_rc)
383 return -EINVAL;
384
385 /* clear the QM_PF runtime phase leftovers from previous init */
386 qed_init_clear_rt_data(p_hwfn);
387
388 /* prepare QM portion of runtime array */
389 qed_qm_init_pf(p_hwfn);
390
391 /* activate init tool on runtime array */
392 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
393 p_hwfn->hw_info.hw_mode);
394 if (rc)
395 return rc;
396
397 /* start PF's qm queues */
398 spin_lock_bh(&qm_lock);
399 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
400 qm_info->start_pq, qm_info->num_pqs);
401 spin_unlock_bh(&qm_lock);
402 if (!b_rc)
403 return -EINVAL;
404
405 return 0;
406 }
407
408 int qed_resc_alloc(struct qed_dev *cdev)
409 {
410 struct qed_consq *p_consq;
411 struct qed_eq *p_eq;
412 int i, rc = 0;
413
414 if (IS_VF(cdev))
415 return rc;
416
417 cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
418 if (!cdev->fw_data)
419 return -ENOMEM;
420
421 /* Allocate Memory for the Queue->CID mapping */
422 for_each_hwfn(cdev, i) {
423 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
424 int tx_size = sizeof(struct qed_hw_cid_data) *
425 RESC_NUM(p_hwfn, QED_L2_QUEUE);
426 int rx_size = sizeof(struct qed_hw_cid_data) *
427 RESC_NUM(p_hwfn, QED_L2_QUEUE);
428
429 p_hwfn->p_tx_cids = kzalloc(tx_size, GFP_KERNEL);
430 if (!p_hwfn->p_tx_cids) {
431 DP_NOTICE(p_hwfn,
432 "Failed to allocate memory for Tx Cids\n");
433 goto alloc_no_mem;
434 }
435
436 p_hwfn->p_rx_cids = kzalloc(rx_size, GFP_KERNEL);
437 if (!p_hwfn->p_rx_cids) {
438 DP_NOTICE(p_hwfn,
439 "Failed to allocate memory for Rx Cids\n");
440 goto alloc_no_mem;
441 }
442 }
443
444 for_each_hwfn(cdev, i) {
445 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
446 u32 n_eqes, num_cons;
447
448 /* First allocate the context manager structure */
449 rc = qed_cxt_mngr_alloc(p_hwfn);
450 if (rc)
451 goto alloc_err;
452
453 /* Set the HW cid/tid numbers (in the contest manager)
454 * Must be done prior to any further computations.
455 */
456 rc = qed_cxt_set_pf_params(p_hwfn);
457 if (rc)
458 goto alloc_err;
459
460 /* Prepare and process QM requirements */
461 rc = qed_init_qm_info(p_hwfn, true);
462 if (rc)
463 goto alloc_err;
464
465 /* Compute the ILT client partition */
466 rc = qed_cxt_cfg_ilt_compute(p_hwfn);
467 if (rc)
468 goto alloc_err;
469
470 /* CID map / ILT shadow table / T2
471 * The talbes sizes are determined by the computations above
472 */
473 rc = qed_cxt_tables_alloc(p_hwfn);
474 if (rc)
475 goto alloc_err;
476
477 /* SPQ, must follow ILT because initializes SPQ context */
478 rc = qed_spq_alloc(p_hwfn);
479 if (rc)
480 goto alloc_err;
481
482 /* SP status block allocation */
483 p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
484 RESERVED_PTT_DPC);
485
486 rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
487 if (rc)
488 goto alloc_err;
489
490 rc = qed_iov_alloc(p_hwfn);
491 if (rc)
492 goto alloc_err;
493
494 /* EQ */
495 n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain);
496 if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
497 num_cons = qed_cxt_get_proto_cid_count(p_hwfn,
498 PROTOCOLID_ROCE,
499 0) * 2;
500 n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
501 } else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
502 num_cons =
503 qed_cxt_get_proto_cid_count(p_hwfn,
504 PROTOCOLID_ISCSI, 0);
505 n_eqes += 2 * num_cons;
506 }
507
508 if (n_eqes > 0xFFFF) {
509 DP_ERR(p_hwfn,
510 "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
511 n_eqes, 0xFFFF);
512 rc = -EINVAL;
513 goto alloc_err;
514 }
515
516 p_eq = qed_eq_alloc(p_hwfn, (u16) n_eqes);
517 if (!p_eq)
518 goto alloc_no_mem;
519 p_hwfn->p_eq = p_eq;
520
521 p_consq = qed_consq_alloc(p_hwfn);
522 if (!p_consq)
523 goto alloc_no_mem;
524 p_hwfn->p_consq = p_consq;
525
526 /* DMA info initialization */
527 rc = qed_dmae_info_alloc(p_hwfn);
528 if (rc) {
529 DP_NOTICE(p_hwfn,
530 "Failed to allocate memory for dmae_info structure\n");
531 goto alloc_err;
532 }
533
534 /* DCBX initialization */
535 rc = qed_dcbx_info_alloc(p_hwfn);
536 if (rc) {
537 DP_NOTICE(p_hwfn,
538 "Failed to allocate memory for dcbx structure\n");
539 goto alloc_err;
540 }
541 }
542
543 cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
544 if (!cdev->reset_stats) {
545 DP_NOTICE(cdev, "Failed to allocate reset statistics\n");
546 rc = -ENOMEM;
547 goto alloc_err;
548 }
549
550 return 0;
551
552 alloc_no_mem:
553 rc = -ENOMEM;
554 alloc_err:
555 qed_resc_free(cdev);
556 return rc;
557 }
558
559 void qed_resc_setup(struct qed_dev *cdev)
560 {
561 int i;
562
563 if (IS_VF(cdev))
564 return;
565
566 for_each_hwfn(cdev, i) {
567 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
568
569 qed_cxt_mngr_setup(p_hwfn);
570 qed_spq_setup(p_hwfn);
571 qed_eq_setup(p_hwfn, p_hwfn->p_eq);
572 qed_consq_setup(p_hwfn, p_hwfn->p_consq);
573
574 /* Read shadow of current MFW mailbox */
575 qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
576 memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
577 p_hwfn->mcp_info->mfw_mb_cur,
578 p_hwfn->mcp_info->mfw_mb_length);
579
580 qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
581
582 qed_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
583 }
584 }
585
586 #define FINAL_CLEANUP_POLL_CNT (100)
587 #define FINAL_CLEANUP_POLL_TIME (10)
588 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
589 struct qed_ptt *p_ptt, u16 id, bool is_vf)
590 {
591 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
592 int rc = -EBUSY;
593
594 addr = GTT_BAR0_MAP_REG_USDM_RAM +
595 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
596
597 if (is_vf)
598 id += 0x10;
599
600 command |= X_FINAL_CLEANUP_AGG_INT <<
601 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
602 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
603 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
604 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
605
606 /* Make sure notification is not set before initiating final cleanup */
607 if (REG_RD(p_hwfn, addr)) {
608 DP_NOTICE(
609 p_hwfn,
610 "Unexpected; Found final cleanup notification before initiating final cleanup\n");
611 REG_WR(p_hwfn, addr, 0);
612 }
613
614 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
615 "Sending final cleanup for PFVF[%d] [Command %08x\n]",
616 id, command);
617
618 qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
619
620 /* Poll until completion */
621 while (!REG_RD(p_hwfn, addr) && count--)
622 msleep(FINAL_CLEANUP_POLL_TIME);
623
624 if (REG_RD(p_hwfn, addr))
625 rc = 0;
626 else
627 DP_NOTICE(p_hwfn,
628 "Failed to receive FW final cleanup notification\n");
629
630 /* Cleanup afterwards */
631 REG_WR(p_hwfn, addr, 0);
632
633 return rc;
634 }
635
636 static void qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
637 {
638 int hw_mode = 0;
639
640 hw_mode = (1 << MODE_BB_B0);
641
642 switch (p_hwfn->cdev->num_ports_in_engines) {
643 case 1:
644 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
645 break;
646 case 2:
647 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
648 break;
649 case 4:
650 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
651 break;
652 default:
653 DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
654 p_hwfn->cdev->num_ports_in_engines);
655 return;
656 }
657
658 switch (p_hwfn->cdev->mf_mode) {
659 case QED_MF_DEFAULT:
660 case QED_MF_NPAR:
661 hw_mode |= 1 << MODE_MF_SI;
662 break;
663 case QED_MF_OVLAN:
664 hw_mode |= 1 << MODE_MF_SD;
665 break;
666 default:
667 DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n");
668 hw_mode |= 1 << MODE_MF_SI;
669 }
670
671 hw_mode |= 1 << MODE_ASIC;
672
673 if (p_hwfn->cdev->num_hwfns > 1)
674 hw_mode |= 1 << MODE_100G;
675
676 p_hwfn->hw_info.hw_mode = hw_mode;
677
678 DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
679 "Configuring function for hw_mode: 0x%08x\n",
680 p_hwfn->hw_info.hw_mode);
681 }
682
683 /* Init run time data for all PFs on an engine. */
684 static void qed_init_cau_rt_data(struct qed_dev *cdev)
685 {
686 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
687 int i, sb_id;
688
689 for_each_hwfn(cdev, i) {
690 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
691 struct qed_igu_info *p_igu_info;
692 struct qed_igu_block *p_block;
693 struct cau_sb_entry sb_entry;
694
695 p_igu_info = p_hwfn->hw_info.p_igu_info;
696
697 for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(cdev);
698 sb_id++) {
699 p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
700 if (!p_block->is_pf)
701 continue;
702
703 qed_init_cau_sb_entry(p_hwfn, &sb_entry,
704 p_block->function_id,
705 0, 0);
706 STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2,
707 sb_entry);
708 }
709 }
710 }
711
712 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
713 struct qed_ptt *p_ptt,
714 int hw_mode)
715 {
716 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
717 struct qed_qm_common_rt_init_params params;
718 struct qed_dev *cdev = p_hwfn->cdev;
719 u16 num_pfs, pf_id;
720 u32 concrete_fid;
721 int rc = 0;
722 u8 vf_id;
723
724 qed_init_cau_rt_data(cdev);
725
726 /* Program GTT windows */
727 qed_gtt_init(p_hwfn);
728
729 if (p_hwfn->mcp_info) {
730 if (p_hwfn->mcp_info->func_info.bandwidth_max)
731 qm_info->pf_rl_en = 1;
732 if (p_hwfn->mcp_info->func_info.bandwidth_min)
733 qm_info->pf_wfq_en = 1;
734 }
735
736 memset(&params, 0, sizeof(params));
737 params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engines;
738 params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
739 params.pf_rl_en = qm_info->pf_rl_en;
740 params.pf_wfq_en = qm_info->pf_wfq_en;
741 params.vport_rl_en = qm_info->vport_rl_en;
742 params.vport_wfq_en = qm_info->vport_wfq_en;
743 params.port_params = qm_info->qm_port_params;
744
745 qed_qm_common_rt_init(p_hwfn, &params);
746
747 qed_cxt_hw_init_common(p_hwfn);
748
749 /* Close gate from NIG to BRB/Storm; By default they are open, but
750 * we close them to prevent NIG from passing data to reset blocks.
751 * Should have been done in the ENGINE phase, but init-tool lacks
752 * proper port-pretend capabilities.
753 */
754 qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
755 qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
756 qed_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
757 qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
758 qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
759 qed_port_unpretend(p_hwfn, p_ptt);
760
761 rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
762 if (rc != 0)
763 return rc;
764
765 qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
766 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
767
768 if (QED_IS_BB(p_hwfn->cdev)) {
769 num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev);
770 for (pf_id = 0; pf_id < num_pfs; pf_id++) {
771 qed_fid_pretend(p_hwfn, p_ptt, pf_id);
772 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
773 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
774 }
775 /* pretend to original PF */
776 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
777 }
778
779 for (vf_id = 0; vf_id < MAX_NUM_VFS_BB; vf_id++) {
780 concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
781 qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
782 qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
783 }
784 /* pretend to original PF */
785 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
786
787 return rc;
788 }
789
790 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
791 struct qed_ptt *p_ptt,
792 int hw_mode)
793 {
794 int rc = 0;
795
796 rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode);
797 if (rc != 0)
798 return rc;
799
800 if (hw_mode & (1 << MODE_MF_SI)) {
801 u8 pf_id = 0;
802
803 if (!qed_hw_init_first_eth(p_hwfn, p_ptt, &pf_id)) {
804 DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
805 "PF[%08x] is first eth on engine\n", pf_id);
806
807 /* We should have configured BIT for ppfid, i.e., the
808 * relative function number in the port. But there's a
809 * bug in LLH in BB where the ppfid is actually engine
810 * based, so we need to take this into account.
811 */
812 qed_wr(p_hwfn, p_ptt,
813 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR, 1 << pf_id);
814 }
815
816 /* Take the protocol-based hit vector if there is a hit,
817 * otherwise take the other vector.
818 */
819 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_CLS_TYPE_DUALMODE, 0x2);
820 }
821 return rc;
822 }
823
824 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
825 struct qed_ptt *p_ptt,
826 struct qed_tunn_start_params *p_tunn,
827 int hw_mode,
828 bool b_hw_start,
829 enum qed_int_mode int_mode,
830 bool allow_npar_tx_switch)
831 {
832 u8 rel_pf_id = p_hwfn->rel_pf_id;
833 int rc = 0;
834
835 if (p_hwfn->mcp_info) {
836 struct qed_mcp_function_info *p_info;
837
838 p_info = &p_hwfn->mcp_info->func_info;
839 if (p_info->bandwidth_min)
840 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
841
842 /* Update rate limit once we'll actually have a link */
843 p_hwfn->qm_info.pf_rl = 100000;
844 }
845
846 qed_cxt_hw_init_pf(p_hwfn);
847
848 qed_int_igu_init_rt(p_hwfn);
849
850 /* Set VLAN in NIG if needed */
851 if (hw_mode & (1 << MODE_MF_SD)) {
852 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
853 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
854 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
855 p_hwfn->hw_info.ovlan);
856 }
857
858 /* Enable classification by MAC if needed */
859 if (hw_mode & (1 << MODE_MF_SI)) {
860 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
861 "Configuring TAGMAC_CLS_TYPE\n");
862 STORE_RT_REG(p_hwfn,
863 NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
864 }
865
866 /* Protocl Configuration */
867 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
868 (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0);
869 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 0);
870 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
871
872 /* Cleanup chip from previous driver if such remains exist */
873 rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
874 if (rc != 0)
875 return rc;
876
877 /* PF Init sequence */
878 rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
879 if (rc)
880 return rc;
881
882 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
883 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
884 if (rc)
885 return rc;
886
887 /* Pure runtime initializations - directly to the HW */
888 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
889
890 if (hw_mode & (1 << MODE_MF_SI)) {
891 u8 pf_id = 0;
892 u32 val = 0;
893
894 if (!qed_hw_init_first_eth(p_hwfn, p_ptt, &pf_id)) {
895 if (p_hwfn->rel_pf_id == pf_id) {
896 DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
897 "PF[%d] is first ETH on engine\n",
898 pf_id);
899 val = 1;
900 }
901 qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, val);
902 }
903 }
904
905 if (b_hw_start) {
906 /* enable interrupts */
907 qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
908
909 /* send function start command */
910 rc = qed_sp_pf_start(p_hwfn, p_tunn, p_hwfn->cdev->mf_mode,
911 allow_npar_tx_switch);
912 if (rc)
913 DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
914 }
915 return rc;
916 }
917
918 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn,
919 struct qed_ptt *p_ptt,
920 u8 enable)
921 {
922 u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
923
924 /* Change PF in PXP */
925 qed_wr(p_hwfn, p_ptt,
926 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
927
928 /* wait until value is set - try for 1 second every 50us */
929 for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
930 val = qed_rd(p_hwfn, p_ptt,
931 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
932 if (val == set_val)
933 break;
934
935 usleep_range(50, 60);
936 }
937
938 if (val != set_val) {
939 DP_NOTICE(p_hwfn,
940 "PFID_ENABLE_MASTER wasn't changed after a second\n");
941 return -EAGAIN;
942 }
943
944 return 0;
945 }
946
947 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
948 struct qed_ptt *p_main_ptt)
949 {
950 /* Read shadow of current MFW mailbox */
951 qed_mcp_read_mb(p_hwfn, p_main_ptt);
952 memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
953 p_hwfn->mcp_info->mfw_mb_cur,
954 p_hwfn->mcp_info->mfw_mb_length);
955 }
956
957 int qed_hw_init(struct qed_dev *cdev,
958 struct qed_tunn_start_params *p_tunn,
959 bool b_hw_start,
960 enum qed_int_mode int_mode,
961 bool allow_npar_tx_switch,
962 const u8 *bin_fw_data)
963 {
964 u32 load_code, param;
965 int rc, mfw_rc, i;
966
967 if ((int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
968 DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
969 return -EINVAL;
970 }
971
972 if (IS_PF(cdev)) {
973 rc = qed_init_fw_data(cdev, bin_fw_data);
974 if (rc != 0)
975 return rc;
976 }
977
978 for_each_hwfn(cdev, i) {
979 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
980
981 if (IS_VF(cdev)) {
982 p_hwfn->b_int_enabled = 1;
983 continue;
984 }
985
986 /* Enable DMAE in PXP */
987 rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
988
989 qed_calc_hw_mode(p_hwfn);
990
991 rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
992 &load_code);
993 if (rc) {
994 DP_NOTICE(p_hwfn, "Failed sending LOAD_REQ command\n");
995 return rc;
996 }
997
998 qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
999
1000 DP_VERBOSE(p_hwfn, QED_MSG_SP,
1001 "Load request was sent. Resp:0x%x, Load code: 0x%x\n",
1002 rc, load_code);
1003
1004 p_hwfn->first_on_engine = (load_code ==
1005 FW_MSG_CODE_DRV_LOAD_ENGINE);
1006
1007 if (!qm_lock_init) {
1008 spin_lock_init(&qm_lock);
1009 qm_lock_init = true;
1010 }
1011
1012 switch (load_code) {
1013 case FW_MSG_CODE_DRV_LOAD_ENGINE:
1014 rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
1015 p_hwfn->hw_info.hw_mode);
1016 if (rc)
1017 break;
1018 /* Fall into */
1019 case FW_MSG_CODE_DRV_LOAD_PORT:
1020 rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
1021 p_hwfn->hw_info.hw_mode);
1022 if (rc)
1023 break;
1024
1025 /* Fall into */
1026 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1027 rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
1028 p_tunn, p_hwfn->hw_info.hw_mode,
1029 b_hw_start, int_mode,
1030 allow_npar_tx_switch);
1031 break;
1032 default:
1033 rc = -EINVAL;
1034 break;
1035 }
1036
1037 if (rc)
1038 DP_NOTICE(p_hwfn,
1039 "init phase failed for loadcode 0x%x (rc %d)\n",
1040 load_code, rc);
1041
1042 /* ACK mfw regardless of success or failure of initialization */
1043 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1044 DRV_MSG_CODE_LOAD_DONE,
1045 0, &load_code, &param);
1046 if (rc)
1047 return rc;
1048 if (mfw_rc) {
1049 DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n");
1050 return mfw_rc;
1051 }
1052
1053 /* send DCBX attention request command */
1054 DP_VERBOSE(p_hwfn,
1055 QED_MSG_DCB,
1056 "sending phony dcbx set command to trigger DCBx attention handling\n");
1057 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1058 DRV_MSG_CODE_SET_DCBX,
1059 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
1060 &load_code, &param);
1061 if (mfw_rc) {
1062 DP_NOTICE(p_hwfn,
1063 "Failed to send DCBX attention request\n");
1064 return mfw_rc;
1065 }
1066
1067 p_hwfn->hw_init_done = true;
1068 }
1069
1070 return 0;
1071 }
1072
1073 #define QED_HW_STOP_RETRY_LIMIT (10)
1074 static inline void qed_hw_timers_stop(struct qed_dev *cdev,
1075 struct qed_hwfn *p_hwfn,
1076 struct qed_ptt *p_ptt)
1077 {
1078 int i;
1079
1080 /* close timers */
1081 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
1082 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
1083
1084 for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
1085 if ((!qed_rd(p_hwfn, p_ptt,
1086 TM_REG_PF_SCAN_ACTIVE_CONN)) &&
1087 (!qed_rd(p_hwfn, p_ptt,
1088 TM_REG_PF_SCAN_ACTIVE_TASK)))
1089 break;
1090
1091 /* Dependent on number of connection/tasks, possibly
1092 * 1ms sleep is required between polls
1093 */
1094 usleep_range(1000, 2000);
1095 }
1096
1097 if (i < QED_HW_STOP_RETRY_LIMIT)
1098 return;
1099
1100 DP_NOTICE(p_hwfn,
1101 "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
1102 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
1103 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
1104 }
1105
1106 void qed_hw_timers_stop_all(struct qed_dev *cdev)
1107 {
1108 int j;
1109
1110 for_each_hwfn(cdev, j) {
1111 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1112 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1113
1114 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1115 }
1116 }
1117
1118 int qed_hw_stop(struct qed_dev *cdev)
1119 {
1120 int rc = 0, t_rc;
1121 int j;
1122
1123 for_each_hwfn(cdev, j) {
1124 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1125 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1126
1127 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
1128
1129 if (IS_VF(cdev)) {
1130 qed_vf_pf_int_cleanup(p_hwfn);
1131 continue;
1132 }
1133
1134 /* mark the hw as uninitialized... */
1135 p_hwfn->hw_init_done = false;
1136
1137 rc = qed_sp_pf_stop(p_hwfn);
1138 if (rc)
1139 DP_NOTICE(p_hwfn,
1140 "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
1141
1142 qed_wr(p_hwfn, p_ptt,
1143 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1144
1145 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1146 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1147 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1148 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1149 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1150
1151 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1152
1153 /* Disable Attention Generation */
1154 qed_int_igu_disable_int(p_hwfn, p_ptt);
1155
1156 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1157 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1158
1159 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1160
1161 /* Need to wait 1ms to guarantee SBs are cleared */
1162 usleep_range(1000, 2000);
1163 }
1164
1165 if (IS_PF(cdev)) {
1166 /* Disable DMAE in PXP - in CMT, this should only be done for
1167 * first hw-function, and only after all transactions have
1168 * stopped for all active hw-functions.
1169 */
1170 t_rc = qed_change_pci_hwfn(&cdev->hwfns[0],
1171 cdev->hwfns[0].p_main_ptt, false);
1172 if (t_rc != 0)
1173 rc = t_rc;
1174 }
1175
1176 return rc;
1177 }
1178
1179 void qed_hw_stop_fastpath(struct qed_dev *cdev)
1180 {
1181 int j;
1182
1183 for_each_hwfn(cdev, j) {
1184 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1185 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1186
1187 if (IS_VF(cdev)) {
1188 qed_vf_pf_int_cleanup(p_hwfn);
1189 continue;
1190 }
1191
1192 DP_VERBOSE(p_hwfn,
1193 NETIF_MSG_IFDOWN,
1194 "Shutting down the fastpath\n");
1195
1196 qed_wr(p_hwfn, p_ptt,
1197 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1198
1199 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1200 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1201 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1202 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1203 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1204
1205 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1206
1207 /* Need to wait 1ms to guarantee SBs are cleared */
1208 usleep_range(1000, 2000);
1209 }
1210 }
1211
1212 void qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
1213 {
1214 if (IS_VF(p_hwfn->cdev))
1215 return;
1216
1217 /* Re-open incoming traffic */
1218 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1219 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1220 }
1221
1222 static int qed_reg_assert(struct qed_hwfn *hwfn,
1223 struct qed_ptt *ptt, u32 reg,
1224 bool expected)
1225 {
1226 u32 assert_val = qed_rd(hwfn, ptt, reg);
1227
1228 if (assert_val != expected) {
1229 DP_NOTICE(hwfn, "Value at address 0x%x != 0x%08x\n",
1230 reg, expected);
1231 return -EINVAL;
1232 }
1233
1234 return 0;
1235 }
1236
1237 int qed_hw_reset(struct qed_dev *cdev)
1238 {
1239 int rc = 0;
1240 u32 unload_resp, unload_param;
1241 int i;
1242
1243 for_each_hwfn(cdev, i) {
1244 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1245
1246 if (IS_VF(cdev)) {
1247 rc = qed_vf_pf_reset(p_hwfn);
1248 if (rc)
1249 return rc;
1250 continue;
1251 }
1252
1253 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Resetting hw/fw\n");
1254
1255 /* Check for incorrect states */
1256 qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1257 QM_REG_USG_CNT_PF_TX, 0);
1258 qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1259 QM_REG_USG_CNT_PF_OTHER, 0);
1260
1261 /* Disable PF in HW blocks */
1262 qed_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1263 qed_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
1264 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1265 TCFC_REG_STRONG_ENABLE_PF, 0);
1266 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1267 CCFC_REG_STRONG_ENABLE_PF, 0);
1268
1269 /* Send unload command to MCP */
1270 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1271 DRV_MSG_CODE_UNLOAD_REQ,
1272 DRV_MB_PARAM_UNLOAD_WOL_MCP,
1273 &unload_resp, &unload_param);
1274 if (rc) {
1275 DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_REQ failed\n");
1276 unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
1277 }
1278
1279 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1280 DRV_MSG_CODE_UNLOAD_DONE,
1281 0, &unload_resp, &unload_param);
1282 if (rc) {
1283 DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_DONE failed\n");
1284 return rc;
1285 }
1286 }
1287
1288 return rc;
1289 }
1290
1291 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
1292 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
1293 {
1294 qed_ptt_pool_free(p_hwfn);
1295 kfree(p_hwfn->hw_info.p_igu_info);
1296 }
1297
1298 /* Setup bar access */
1299 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
1300 {
1301 /* clear indirect access */
1302 qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_88_F0, 0);
1303 qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
1304 qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_90_F0, 0);
1305 qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_94_F0, 0);
1306
1307 /* Clean Previous errors if such exist */
1308 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1309 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
1310 1 << p_hwfn->abs_pf_id);
1311
1312 /* enable internal target-read */
1313 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1314 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1315 }
1316
1317 static void get_function_id(struct qed_hwfn *p_hwfn)
1318 {
1319 /* ME Register */
1320 p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR);
1321
1322 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
1323
1324 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
1325 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1326 PXP_CONCRETE_FID_PFID);
1327 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1328 PXP_CONCRETE_FID_PORT);
1329 }
1330
1331 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
1332 {
1333 u32 *feat_num = p_hwfn->hw_info.feat_num;
1334 int num_features = 1;
1335
1336 feat_num[QED_PF_L2_QUE] = min_t(u32, RESC_NUM(p_hwfn, QED_SB) /
1337 num_features,
1338 RESC_NUM(p_hwfn, QED_L2_QUEUE));
1339 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1340 "#PF_L2_QUEUES=%d #SBS=%d num_features=%d\n",
1341 feat_num[QED_PF_L2_QUE], RESC_NUM(p_hwfn, QED_SB),
1342 num_features);
1343 }
1344
1345 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn)
1346 {
1347 u8 enabled_func_idx = p_hwfn->enabled_func_idx;
1348 u32 *resc_start = p_hwfn->hw_info.resc_start;
1349 u8 num_funcs = p_hwfn->num_funcs_on_engine;
1350 u32 *resc_num = p_hwfn->hw_info.resc_num;
1351 struct qed_sb_cnt_info sb_cnt_info;
1352 int i, max_vf_vlan_filters;
1353
1354 memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
1355
1356 #ifdef CONFIG_QED_SRIOV
1357 max_vf_vlan_filters = QED_ETH_MAX_VF_NUM_VLAN_FILTERS;
1358 #else
1359 max_vf_vlan_filters = 0;
1360 #endif
1361
1362 qed_int_get_num_sbs(p_hwfn, &sb_cnt_info);
1363
1364 resc_num[QED_SB] = min_t(u32,
1365 (MAX_SB_PER_PATH_BB / num_funcs),
1366 sb_cnt_info.sb_cnt);
1367 resc_num[QED_L2_QUEUE] = MAX_NUM_L2_QUEUES_BB / num_funcs;
1368 resc_num[QED_VPORT] = MAX_NUM_VPORTS_BB / num_funcs;
1369 resc_num[QED_RSS_ENG] = ETH_RSS_ENGINE_NUM_BB / num_funcs;
1370 resc_num[QED_PQ] = MAX_QM_TX_QUEUES_BB / num_funcs;
1371 resc_num[QED_RL] = min_t(u32, 64, resc_num[QED_VPORT]);
1372 resc_num[QED_MAC] = ETH_NUM_MAC_FILTERS / num_funcs;
1373 resc_num[QED_VLAN] = (ETH_NUM_VLAN_FILTERS - 1 /*For vlan0*/) /
1374 num_funcs;
1375 resc_num[QED_ILT] = PXP_NUM_ILT_RECORDS_BB / num_funcs;
1376
1377 for (i = 0; i < QED_MAX_RESC; i++)
1378 resc_start[i] = resc_num[i] * enabled_func_idx;
1379
1380 /* Sanity for ILT */
1381 if (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB) {
1382 DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n",
1383 RESC_START(p_hwfn, QED_ILT),
1384 RESC_END(p_hwfn, QED_ILT) - 1);
1385 return -EINVAL;
1386 }
1387
1388 qed_hw_set_feat(p_hwfn);
1389
1390 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1391 "The numbers for each resource are:\n"
1392 "SB = %d start = %d\n"
1393 "L2_QUEUE = %d start = %d\n"
1394 "VPORT = %d start = %d\n"
1395 "PQ = %d start = %d\n"
1396 "RL = %d start = %d\n"
1397 "MAC = %d start = %d\n"
1398 "VLAN = %d start = %d\n"
1399 "ILT = %d start = %d\n",
1400 p_hwfn->hw_info.resc_num[QED_SB],
1401 p_hwfn->hw_info.resc_start[QED_SB],
1402 p_hwfn->hw_info.resc_num[QED_L2_QUEUE],
1403 p_hwfn->hw_info.resc_start[QED_L2_QUEUE],
1404 p_hwfn->hw_info.resc_num[QED_VPORT],
1405 p_hwfn->hw_info.resc_start[QED_VPORT],
1406 p_hwfn->hw_info.resc_num[QED_PQ],
1407 p_hwfn->hw_info.resc_start[QED_PQ],
1408 p_hwfn->hw_info.resc_num[QED_RL],
1409 p_hwfn->hw_info.resc_start[QED_RL],
1410 p_hwfn->hw_info.resc_num[QED_MAC],
1411 p_hwfn->hw_info.resc_start[QED_MAC],
1412 p_hwfn->hw_info.resc_num[QED_VLAN],
1413 p_hwfn->hw_info.resc_start[QED_VLAN],
1414 p_hwfn->hw_info.resc_num[QED_ILT],
1415 p_hwfn->hw_info.resc_start[QED_ILT]);
1416
1417 return 0;
1418 }
1419
1420 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn,
1421 struct qed_ptt *p_ptt)
1422 {
1423 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
1424 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
1425 struct qed_mcp_link_params *link;
1426
1427 /* Read global nvm_cfg address */
1428 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1429
1430 /* Verify MCP has initialized it */
1431 if (!nvm_cfg_addr) {
1432 DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1433 return -EINVAL;
1434 }
1435
1436 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
1437 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1438
1439 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1440 offsetof(struct nvm_cfg1, glob) +
1441 offsetof(struct nvm_cfg1_glob, core_cfg);
1442
1443 core_cfg = qed_rd(p_hwfn, p_ptt, addr);
1444
1445 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
1446 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
1447 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
1448 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
1449 break;
1450 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
1451 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
1452 break;
1453 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
1454 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
1455 break;
1456 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
1457 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
1458 break;
1459 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
1460 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
1461 break;
1462 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
1463 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
1464 break;
1465 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
1466 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
1467 break;
1468 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
1469 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
1470 break;
1471 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
1472 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
1473 break;
1474 default:
1475 DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n",
1476 core_cfg);
1477 break;
1478 }
1479
1480 /* Read default link configuration */
1481 link = &p_hwfn->mcp_info->link_input;
1482 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1483 offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
1484 link_temp = qed_rd(p_hwfn, p_ptt,
1485 port_cfg_addr +
1486 offsetof(struct nvm_cfg1_port, speed_cap_mask));
1487 link->speed.advertised_speeds =
1488 link_temp & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
1489
1490 p_hwfn->mcp_info->link_capabilities.speed_capabilities =
1491 link->speed.advertised_speeds;
1492
1493 link_temp = qed_rd(p_hwfn, p_ptt,
1494 port_cfg_addr +
1495 offsetof(struct nvm_cfg1_port, link_settings));
1496 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
1497 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
1498 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
1499 link->speed.autoneg = true;
1500 break;
1501 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
1502 link->speed.forced_speed = 1000;
1503 break;
1504 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
1505 link->speed.forced_speed = 10000;
1506 break;
1507 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
1508 link->speed.forced_speed = 25000;
1509 break;
1510 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
1511 link->speed.forced_speed = 40000;
1512 break;
1513 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
1514 link->speed.forced_speed = 50000;
1515 break;
1516 case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
1517 link->speed.forced_speed = 100000;
1518 break;
1519 default:
1520 DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n",
1521 link_temp);
1522 }
1523
1524 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
1525 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
1526 link->pause.autoneg = !!(link_temp &
1527 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
1528 link->pause.forced_rx = !!(link_temp &
1529 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
1530 link->pause.forced_tx = !!(link_temp &
1531 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
1532 link->loopback_mode = 0;
1533
1534 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1535 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
1536 link->speed.forced_speed, link->speed.advertised_speeds,
1537 link->speed.autoneg, link->pause.autoneg);
1538
1539 /* Read Multi-function information from shmem */
1540 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1541 offsetof(struct nvm_cfg1, glob) +
1542 offsetof(struct nvm_cfg1_glob, generic_cont0);
1543
1544 generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
1545
1546 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
1547 NVM_CFG1_GLOB_MF_MODE_OFFSET;
1548
1549 switch (mf_mode) {
1550 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
1551 p_hwfn->cdev->mf_mode = QED_MF_OVLAN;
1552 break;
1553 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
1554 p_hwfn->cdev->mf_mode = QED_MF_NPAR;
1555 break;
1556 case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
1557 p_hwfn->cdev->mf_mode = QED_MF_DEFAULT;
1558 break;
1559 }
1560 DP_INFO(p_hwfn, "Multi function mode is %08x\n",
1561 p_hwfn->cdev->mf_mode);
1562
1563 /* Read Multi-function information from shmem */
1564 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1565 offsetof(struct nvm_cfg1, glob) +
1566 offsetof(struct nvm_cfg1_glob, device_capabilities);
1567
1568 device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
1569 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
1570 __set_bit(QED_DEV_CAP_ETH,
1571 &p_hwfn->hw_info.device_capabilities);
1572 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
1573 __set_bit(QED_DEV_CAP_ISCSI,
1574 &p_hwfn->hw_info.device_capabilities);
1575 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
1576 __set_bit(QED_DEV_CAP_ROCE,
1577 &p_hwfn->hw_info.device_capabilities);
1578
1579 return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
1580 }
1581
1582 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1583 {
1584 u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
1585 u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
1586
1587 num_funcs = MAX_NUM_PFS_BB;
1588
1589 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
1590 * in the other bits are selected.
1591 * Bits 1-15 are for functions 1-15, respectively, and their value is
1592 * '0' only for enabled functions (function 0 always exists and
1593 * enabled).
1594 * In case of CMT, only the "even" functions are enabled, and thus the
1595 * number of functions for both hwfns is learnt from the same bits.
1596 */
1597 reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
1598
1599 if (reg_function_hide & 0x1) {
1600 if (QED_PATH_ID(p_hwfn) && p_hwfn->cdev->num_hwfns == 1) {
1601 num_funcs = 0;
1602 eng_mask = 0xaaaa;
1603 } else {
1604 num_funcs = 1;
1605 eng_mask = 0x5554;
1606 }
1607
1608 /* Get the number of the enabled functions on the engine */
1609 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
1610 while (tmp) {
1611 if (tmp & 0x1)
1612 num_funcs++;
1613 tmp >>= 0x1;
1614 }
1615
1616 /* Get the PF index within the enabled functions */
1617 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
1618 tmp = reg_function_hide & eng_mask & low_pfs_mask;
1619 while (tmp) {
1620 if (tmp & 0x1)
1621 enabled_func_idx--;
1622 tmp >>= 0x1;
1623 }
1624 }
1625
1626 p_hwfn->num_funcs_on_engine = num_funcs;
1627 p_hwfn->enabled_func_idx = enabled_func_idx;
1628
1629 DP_VERBOSE(p_hwfn,
1630 NETIF_MSG_PROBE,
1631 "PF [rel_id %d, abs_id %d] within the %d enabled functions on the engine\n",
1632 p_hwfn->rel_pf_id,
1633 p_hwfn->abs_pf_id,
1634 p_hwfn->num_funcs_on_engine);
1635 }
1636
1637 static int
1638 qed_get_hw_info(struct qed_hwfn *p_hwfn,
1639 struct qed_ptt *p_ptt,
1640 enum qed_pci_personality personality)
1641 {
1642 u32 port_mode;
1643 int rc;
1644
1645 /* Since all information is common, only first hwfns should do this */
1646 if (IS_LEAD_HWFN(p_hwfn)) {
1647 rc = qed_iov_hw_info(p_hwfn);
1648 if (rc)
1649 return rc;
1650 }
1651
1652 /* Read the port mode */
1653 port_mode = qed_rd(p_hwfn, p_ptt,
1654 CNIG_REG_NW_PORT_MODE_BB_B0);
1655
1656 if (port_mode < 3) {
1657 p_hwfn->cdev->num_ports_in_engines = 1;
1658 } else if (port_mode <= 5) {
1659 p_hwfn->cdev->num_ports_in_engines = 2;
1660 } else {
1661 DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n",
1662 p_hwfn->cdev->num_ports_in_engines);
1663
1664 /* Default num_ports_in_engines to something */
1665 p_hwfn->cdev->num_ports_in_engines = 1;
1666 }
1667
1668 qed_hw_get_nvm_info(p_hwfn, p_ptt);
1669
1670 rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
1671 if (rc)
1672 return rc;
1673
1674 if (qed_mcp_is_init(p_hwfn))
1675 ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
1676 p_hwfn->mcp_info->func_info.mac);
1677 else
1678 eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
1679
1680 if (qed_mcp_is_init(p_hwfn)) {
1681 if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
1682 p_hwfn->hw_info.ovlan =
1683 p_hwfn->mcp_info->func_info.ovlan;
1684
1685 qed_mcp_cmd_port_init(p_hwfn, p_ptt);
1686 }
1687
1688 if (qed_mcp_is_init(p_hwfn)) {
1689 enum qed_pci_personality protocol;
1690
1691 protocol = p_hwfn->mcp_info->func_info.protocol;
1692 p_hwfn->hw_info.personality = protocol;
1693 }
1694
1695 qed_get_num_funcs(p_hwfn, p_ptt);
1696
1697 return qed_hw_get_resc(p_hwfn);
1698 }
1699
1700 static int qed_get_dev_info(struct qed_dev *cdev)
1701 {
1702 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1703 u32 tmp;
1704
1705 /* Read Vendor Id / Device Id */
1706 pci_read_config_word(cdev->pdev, PCI_VENDOR_ID,
1707 &cdev->vendor_id);
1708 pci_read_config_word(cdev->pdev, PCI_DEVICE_ID,
1709 &cdev->device_id);
1710 cdev->chip_num = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1711 MISCS_REG_CHIP_NUM);
1712 cdev->chip_rev = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1713 MISCS_REG_CHIP_REV);
1714 MASK_FIELD(CHIP_REV, cdev->chip_rev);
1715
1716 cdev->type = QED_DEV_TYPE_BB;
1717 /* Learn number of HW-functions */
1718 tmp = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1719 MISCS_REG_CMT_ENABLED_FOR_PAIR);
1720
1721 if (tmp & (1 << p_hwfn->rel_pf_id)) {
1722 DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
1723 cdev->num_hwfns = 2;
1724 } else {
1725 cdev->num_hwfns = 1;
1726 }
1727
1728 cdev->chip_bond_id = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1729 MISCS_REG_CHIP_TEST_REG) >> 4;
1730 MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
1731 cdev->chip_metal = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1732 MISCS_REG_CHIP_METAL);
1733 MASK_FIELD(CHIP_METAL, cdev->chip_metal);
1734
1735 DP_INFO(cdev->hwfns,
1736 "Chip details - Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
1737 cdev->chip_num, cdev->chip_rev,
1738 cdev->chip_bond_id, cdev->chip_metal);
1739
1740 if (QED_IS_BB(cdev) && CHIP_REV_IS_A0(cdev)) {
1741 DP_NOTICE(cdev->hwfns,
1742 "The chip type/rev (BB A0) is not supported!\n");
1743 return -EINVAL;
1744 }
1745
1746 return 0;
1747 }
1748
1749 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
1750 void __iomem *p_regview,
1751 void __iomem *p_doorbells,
1752 enum qed_pci_personality personality)
1753 {
1754 int rc = 0;
1755
1756 /* Split PCI bars evenly between hwfns */
1757 p_hwfn->regview = p_regview;
1758 p_hwfn->doorbells = p_doorbells;
1759
1760 if (IS_VF(p_hwfn->cdev))
1761 return qed_vf_hw_prepare(p_hwfn);
1762
1763 /* Validate that chip access is feasible */
1764 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
1765 DP_ERR(p_hwfn,
1766 "Reading the ME register returns all Fs; Preventing further chip access\n");
1767 return -EINVAL;
1768 }
1769
1770 get_function_id(p_hwfn);
1771
1772 /* Allocate PTT pool */
1773 rc = qed_ptt_pool_alloc(p_hwfn);
1774 if (rc) {
1775 DP_NOTICE(p_hwfn, "Failed to prepare hwfn's hw\n");
1776 goto err0;
1777 }
1778
1779 /* Allocate the main PTT */
1780 p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
1781
1782 /* First hwfn learns basic information, e.g., number of hwfns */
1783 if (!p_hwfn->my_id) {
1784 rc = qed_get_dev_info(p_hwfn->cdev);
1785 if (rc != 0)
1786 goto err1;
1787 }
1788
1789 qed_hw_hwfn_prepare(p_hwfn);
1790
1791 /* Initialize MCP structure */
1792 rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
1793 if (rc) {
1794 DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
1795 goto err1;
1796 }
1797
1798 /* Read the device configuration information from the HW and SHMEM */
1799 rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
1800 if (rc) {
1801 DP_NOTICE(p_hwfn, "Failed to get HW information\n");
1802 goto err2;
1803 }
1804
1805 /* Allocate the init RT array and initialize the init-ops engine */
1806 rc = qed_init_alloc(p_hwfn);
1807 if (rc) {
1808 DP_NOTICE(p_hwfn, "Failed to allocate the init array\n");
1809 goto err2;
1810 }
1811
1812 return rc;
1813 err2:
1814 if (IS_LEAD_HWFN(p_hwfn))
1815 qed_iov_free_hw_info(p_hwfn->cdev);
1816 qed_mcp_free(p_hwfn);
1817 err1:
1818 qed_hw_hwfn_free(p_hwfn);
1819 err0:
1820 return rc;
1821 }
1822
1823 int qed_hw_prepare(struct qed_dev *cdev,
1824 int personality)
1825 {
1826 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1827 int rc;
1828
1829 /* Store the precompiled init data ptrs */
1830 if (IS_PF(cdev))
1831 qed_init_iro_array(cdev);
1832
1833 /* Initialize the first hwfn - will learn number of hwfns */
1834 rc = qed_hw_prepare_single(p_hwfn,
1835 cdev->regview,
1836 cdev->doorbells, personality);
1837 if (rc)
1838 return rc;
1839
1840 personality = p_hwfn->hw_info.personality;
1841
1842 /* Initialize the rest of the hwfns */
1843 if (cdev->num_hwfns > 1) {
1844 void __iomem *p_regview, *p_doorbell;
1845 u8 __iomem *addr;
1846
1847 /* adjust bar offset for second engine */
1848 addr = cdev->regview + qed_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
1849 p_regview = addr;
1850
1851 /* adjust doorbell bar offset for second engine */
1852 addr = cdev->doorbells + qed_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
1853 p_doorbell = addr;
1854
1855 /* prepare second hw function */
1856 rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
1857 p_doorbell, personality);
1858
1859 /* in case of error, need to free the previously
1860 * initiliazed hwfn 0.
1861 */
1862 if (rc) {
1863 if (IS_PF(cdev)) {
1864 qed_init_free(p_hwfn);
1865 qed_mcp_free(p_hwfn);
1866 qed_hw_hwfn_free(p_hwfn);
1867 }
1868 }
1869 }
1870
1871 return rc;
1872 }
1873
1874 void qed_hw_remove(struct qed_dev *cdev)
1875 {
1876 int i;
1877
1878 for_each_hwfn(cdev, i) {
1879 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1880
1881 if (IS_VF(cdev)) {
1882 qed_vf_pf_release(p_hwfn);
1883 continue;
1884 }
1885
1886 qed_init_free(p_hwfn);
1887 qed_hw_hwfn_free(p_hwfn);
1888 qed_mcp_free(p_hwfn);
1889 }
1890
1891 qed_iov_free_hw_info(cdev);
1892 }
1893
1894 static void qed_chain_free_next_ptr(struct qed_dev *cdev,
1895 struct qed_chain *p_chain)
1896 {
1897 void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL;
1898 dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
1899 struct qed_chain_next *p_next;
1900 u32 size, i;
1901
1902 if (!p_virt)
1903 return;
1904
1905 size = p_chain->elem_size * p_chain->usable_per_page;
1906
1907 for (i = 0; i < p_chain->page_cnt; i++) {
1908 if (!p_virt)
1909 break;
1910
1911 p_next = (struct qed_chain_next *)((u8 *)p_virt + size);
1912 p_virt_next = p_next->next_virt;
1913 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
1914
1915 dma_free_coherent(&cdev->pdev->dev,
1916 QED_CHAIN_PAGE_SIZE, p_virt, p_phys);
1917
1918 p_virt = p_virt_next;
1919 p_phys = p_phys_next;
1920 }
1921 }
1922
1923 static void qed_chain_free_single(struct qed_dev *cdev,
1924 struct qed_chain *p_chain)
1925 {
1926 if (!p_chain->p_virt_addr)
1927 return;
1928
1929 dma_free_coherent(&cdev->pdev->dev,
1930 QED_CHAIN_PAGE_SIZE,
1931 p_chain->p_virt_addr, p_chain->p_phys_addr);
1932 }
1933
1934 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
1935 {
1936 void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
1937 u32 page_cnt = p_chain->page_cnt, i, pbl_size;
1938 u8 *p_pbl_virt = p_chain->pbl.p_virt_table;
1939
1940 if (!pp_virt_addr_tbl)
1941 return;
1942
1943 if (!p_chain->pbl.p_virt_table)
1944 goto out;
1945
1946 for (i = 0; i < page_cnt; i++) {
1947 if (!pp_virt_addr_tbl[i])
1948 break;
1949
1950 dma_free_coherent(&cdev->pdev->dev,
1951 QED_CHAIN_PAGE_SIZE,
1952 pp_virt_addr_tbl[i],
1953 *(dma_addr_t *)p_pbl_virt);
1954
1955 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
1956 }
1957
1958 pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
1959 dma_free_coherent(&cdev->pdev->dev,
1960 pbl_size,
1961 p_chain->pbl.p_virt_table, p_chain->pbl.p_phys_table);
1962 out:
1963 vfree(p_chain->pbl.pp_virt_addr_tbl);
1964 }
1965
1966 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain)
1967 {
1968 switch (p_chain->mode) {
1969 case QED_CHAIN_MODE_NEXT_PTR:
1970 qed_chain_free_next_ptr(cdev, p_chain);
1971 break;
1972 case QED_CHAIN_MODE_SINGLE:
1973 qed_chain_free_single(cdev, p_chain);
1974 break;
1975 case QED_CHAIN_MODE_PBL:
1976 qed_chain_free_pbl(cdev, p_chain);
1977 break;
1978 }
1979 }
1980
1981 static int
1982 qed_chain_alloc_sanity_check(struct qed_dev *cdev,
1983 enum qed_chain_cnt_type cnt_type,
1984 size_t elem_size, u32 page_cnt)
1985 {
1986 u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
1987
1988 /* The actual chain size can be larger than the maximal possible value
1989 * after rounding up the requested elements number to pages, and after
1990 * taking into acount the unusuable elements (next-ptr elements).
1991 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
1992 * size/capacity fields are of a u32 type.
1993 */
1994 if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 &&
1995 chain_size > 0x10000) ||
1996 (cnt_type == QED_CHAIN_CNT_TYPE_U32 &&
1997 chain_size > 0x100000000ULL)) {
1998 DP_NOTICE(cdev,
1999 "The actual chain size (0x%llx) is larger than the maximal possible value\n",
2000 chain_size);
2001 return -EINVAL;
2002 }
2003
2004 return 0;
2005 }
2006
2007 static int
2008 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain)
2009 {
2010 void *p_virt = NULL, *p_virt_prev = NULL;
2011 dma_addr_t p_phys = 0;
2012 u32 i;
2013
2014 for (i = 0; i < p_chain->page_cnt; i++) {
2015 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2016 QED_CHAIN_PAGE_SIZE,
2017 &p_phys, GFP_KERNEL);
2018 if (!p_virt) {
2019 DP_NOTICE(cdev, "Failed to allocate chain memory\n");
2020 return -ENOMEM;
2021 }
2022
2023 if (i == 0) {
2024 qed_chain_init_mem(p_chain, p_virt, p_phys);
2025 qed_chain_reset(p_chain);
2026 } else {
2027 qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
2028 p_virt, p_phys);
2029 }
2030
2031 p_virt_prev = p_virt;
2032 }
2033 /* Last page's next element should point to the beginning of the
2034 * chain.
2035 */
2036 qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
2037 p_chain->p_virt_addr,
2038 p_chain->p_phys_addr);
2039
2040 return 0;
2041 }
2042
2043 static int
2044 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain)
2045 {
2046 dma_addr_t p_phys = 0;
2047 void *p_virt = NULL;
2048
2049 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2050 QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL);
2051 if (!p_virt) {
2052 DP_NOTICE(cdev, "Failed to allocate chain memory\n");
2053 return -ENOMEM;
2054 }
2055
2056 qed_chain_init_mem(p_chain, p_virt, p_phys);
2057 qed_chain_reset(p_chain);
2058
2059 return 0;
2060 }
2061
2062 static int qed_chain_alloc_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
2063 {
2064 u32 page_cnt = p_chain->page_cnt, size, i;
2065 dma_addr_t p_phys = 0, p_pbl_phys = 0;
2066 void **pp_virt_addr_tbl = NULL;
2067 u8 *p_pbl_virt = NULL;
2068 void *p_virt = NULL;
2069
2070 size = page_cnt * sizeof(*pp_virt_addr_tbl);
2071 pp_virt_addr_tbl = vmalloc(size);
2072 if (!pp_virt_addr_tbl) {
2073 DP_NOTICE(cdev,
2074 "Failed to allocate memory for the chain virtual addresses table\n");
2075 return -ENOMEM;
2076 }
2077 memset(pp_virt_addr_tbl, 0, size);
2078
2079 /* The allocation of the PBL table is done with its full size, since it
2080 * is expected to be successive.
2081 * qed_chain_init_pbl_mem() is called even in a case of an allocation
2082 * failure, since pp_virt_addr_tbl was previously allocated, and it
2083 * should be saved to allow its freeing during the error flow.
2084 */
2085 size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
2086 p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
2087 size, &p_pbl_phys, GFP_KERNEL);
2088 qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
2089 pp_virt_addr_tbl);
2090 if (!p_pbl_virt) {
2091 DP_NOTICE(cdev, "Failed to allocate chain pbl memory\n");
2092 return -ENOMEM;
2093 }
2094
2095 for (i = 0; i < page_cnt; i++) {
2096 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2097 QED_CHAIN_PAGE_SIZE,
2098 &p_phys, GFP_KERNEL);
2099 if (!p_virt) {
2100 DP_NOTICE(cdev, "Failed to allocate chain memory\n");
2101 return -ENOMEM;
2102 }
2103
2104 if (i == 0) {
2105 qed_chain_init_mem(p_chain, p_virt, p_phys);
2106 qed_chain_reset(p_chain);
2107 }
2108
2109 /* Fill the PBL table with the physical address of the page */
2110 *(dma_addr_t *)p_pbl_virt = p_phys;
2111 /* Keep the virtual address of the page */
2112 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
2113
2114 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
2115 }
2116
2117 return 0;
2118 }
2119
2120 int qed_chain_alloc(struct qed_dev *cdev,
2121 enum qed_chain_use_mode intended_use,
2122 enum qed_chain_mode mode,
2123 enum qed_chain_cnt_type cnt_type,
2124 u32 num_elems, size_t elem_size, struct qed_chain *p_chain)
2125 {
2126 u32 page_cnt;
2127 int rc = 0;
2128
2129 if (mode == QED_CHAIN_MODE_SINGLE)
2130 page_cnt = 1;
2131 else
2132 page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
2133
2134 rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt);
2135 if (rc) {
2136 DP_NOTICE(cdev,
2137 "Cannot allocate a chain with the given arguments:\n"
2138 "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
2139 intended_use, mode, cnt_type, num_elems, elem_size);
2140 return rc;
2141 }
2142
2143 qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use,
2144 mode, cnt_type);
2145
2146 switch (mode) {
2147 case QED_CHAIN_MODE_NEXT_PTR:
2148 rc = qed_chain_alloc_next_ptr(cdev, p_chain);
2149 break;
2150 case QED_CHAIN_MODE_SINGLE:
2151 rc = qed_chain_alloc_single(cdev, p_chain);
2152 break;
2153 case QED_CHAIN_MODE_PBL:
2154 rc = qed_chain_alloc_pbl(cdev, p_chain);
2155 break;
2156 }
2157 if (rc)
2158 goto nomem;
2159
2160 return 0;
2161
2162 nomem:
2163 qed_chain_free(cdev, p_chain);
2164 return rc;
2165 }
2166
2167 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
2168 {
2169 if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
2170 u16 min, max;
2171
2172 min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
2173 max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
2174 DP_NOTICE(p_hwfn,
2175 "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
2176 src_id, min, max);
2177
2178 return -EINVAL;
2179 }
2180
2181 *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
2182
2183 return 0;
2184 }
2185
2186 int qed_fw_vport(struct qed_hwfn *p_hwfn,
2187 u8 src_id, u8 *dst_id)
2188 {
2189 if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
2190 u8 min, max;
2191
2192 min = (u8)RESC_START(p_hwfn, QED_VPORT);
2193 max = min + RESC_NUM(p_hwfn, QED_VPORT);
2194 DP_NOTICE(p_hwfn,
2195 "vport id [%d] is not valid, available indices [%d - %d]\n",
2196 src_id, min, max);
2197
2198 return -EINVAL;
2199 }
2200
2201 *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
2202
2203 return 0;
2204 }
2205
2206 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn,
2207 u8 src_id, u8 *dst_id)
2208 {
2209 if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
2210 u8 min, max;
2211
2212 min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
2213 max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
2214 DP_NOTICE(p_hwfn,
2215 "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
2216 src_id, min, max);
2217
2218 return -EINVAL;
2219 }
2220
2221 *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
2222
2223 return 0;
2224 }
2225
2226 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2227 u32 hw_addr, void *p_eth_qzone,
2228 size_t eth_qzone_size, u8 timeset)
2229 {
2230 struct coalescing_timeset *p_coal_timeset;
2231
2232 if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) {
2233 DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n");
2234 return -EINVAL;
2235 }
2236
2237 p_coal_timeset = p_eth_qzone;
2238 memset(p_coal_timeset, 0, eth_qzone_size);
2239 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
2240 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
2241 qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
2242
2243 return 0;
2244 }
2245
2246 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2247 u16 coalesce, u8 qid, u16 sb_id)
2248 {
2249 struct ustorm_eth_queue_zone eth_qzone;
2250 u8 timeset, timer_res;
2251 u16 fw_qid = 0;
2252 u32 address;
2253 int rc;
2254
2255 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
2256 if (coalesce <= 0x7F) {
2257 timer_res = 0;
2258 } else if (coalesce <= 0xFF) {
2259 timer_res = 1;
2260 } else if (coalesce <= 0x1FF) {
2261 timer_res = 2;
2262 } else {
2263 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
2264 return -EINVAL;
2265 }
2266 timeset = (u8)(coalesce >> timer_res);
2267
2268 rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
2269 if (rc)
2270 return rc;
2271
2272 rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false);
2273 if (rc)
2274 goto out;
2275
2276 address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
2277
2278 rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
2279 sizeof(struct ustorm_eth_queue_zone), timeset);
2280 if (rc)
2281 goto out;
2282
2283 p_hwfn->cdev->rx_coalesce_usecs = coalesce;
2284 out:
2285 return rc;
2286 }
2287
2288 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2289 u16 coalesce, u8 qid, u16 sb_id)
2290 {
2291 struct xstorm_eth_queue_zone eth_qzone;
2292 u8 timeset, timer_res;
2293 u16 fw_qid = 0;
2294 u32 address;
2295 int rc;
2296
2297 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
2298 if (coalesce <= 0x7F) {
2299 timer_res = 0;
2300 } else if (coalesce <= 0xFF) {
2301 timer_res = 1;
2302 } else if (coalesce <= 0x1FF) {
2303 timer_res = 2;
2304 } else {
2305 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
2306 return -EINVAL;
2307 }
2308 timeset = (u8)(coalesce >> timer_res);
2309
2310 rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
2311 if (rc)
2312 return rc;
2313
2314 rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true);
2315 if (rc)
2316 goto out;
2317
2318 address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
2319
2320 rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
2321 sizeof(struct xstorm_eth_queue_zone), timeset);
2322 if (rc)
2323 goto out;
2324
2325 p_hwfn->cdev->tx_coalesce_usecs = coalesce;
2326 out:
2327 return rc;
2328 }
2329
2330 /* Calculate final WFQ values for all vports and configure them.
2331 * After this configuration each vport will have
2332 * approx min rate = min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
2333 */
2334 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
2335 struct qed_ptt *p_ptt,
2336 u32 min_pf_rate)
2337 {
2338 struct init_qm_vport_params *vport_params;
2339 int i;
2340
2341 vport_params = p_hwfn->qm_info.qm_vport_params;
2342
2343 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2344 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
2345
2346 vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) /
2347 min_pf_rate;
2348 qed_init_vport_wfq(p_hwfn, p_ptt,
2349 vport_params[i].first_tx_pq_id,
2350 vport_params[i].vport_wfq);
2351 }
2352 }
2353
2354 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
2355 u32 min_pf_rate)
2356
2357 {
2358 int i;
2359
2360 for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
2361 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
2362 }
2363
2364 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
2365 struct qed_ptt *p_ptt,
2366 u32 min_pf_rate)
2367 {
2368 struct init_qm_vport_params *vport_params;
2369 int i;
2370
2371 vport_params = p_hwfn->qm_info.qm_vport_params;
2372
2373 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2374 qed_init_wfq_default_param(p_hwfn, min_pf_rate);
2375 qed_init_vport_wfq(p_hwfn, p_ptt,
2376 vport_params[i].first_tx_pq_id,
2377 vport_params[i].vport_wfq);
2378 }
2379 }
2380
2381 /* This function performs several validations for WFQ
2382 * configuration and required min rate for a given vport
2383 * 1. req_rate must be greater than one percent of min_pf_rate.
2384 * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
2385 * rates to get less than one percent of min_pf_rate.
2386 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
2387 */
2388 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
2389 u16 vport_id, u32 req_rate,
2390 u32 min_pf_rate)
2391 {
2392 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
2393 int non_requested_count = 0, req_count = 0, i, num_vports;
2394
2395 num_vports = p_hwfn->qm_info.num_vports;
2396
2397 /* Accounting for the vports which are configured for WFQ explicitly */
2398 for (i = 0; i < num_vports; i++) {
2399 u32 tmp_speed;
2400
2401 if ((i != vport_id) &&
2402 p_hwfn->qm_info.wfq_data[i].configured) {
2403 req_count++;
2404 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
2405 total_req_min_rate += tmp_speed;
2406 }
2407 }
2408
2409 /* Include current vport data as well */
2410 req_count++;
2411 total_req_min_rate += req_rate;
2412 non_requested_count = num_vports - req_count;
2413
2414 if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
2415 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2416 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
2417 vport_id, req_rate, min_pf_rate);
2418 return -EINVAL;
2419 }
2420
2421 if (num_vports > QED_WFQ_UNIT) {
2422 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2423 "Number of vports is greater than %d\n",
2424 QED_WFQ_UNIT);
2425 return -EINVAL;
2426 }
2427
2428 if (total_req_min_rate > min_pf_rate) {
2429 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2430 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
2431 total_req_min_rate, min_pf_rate);
2432 return -EINVAL;
2433 }
2434
2435 total_left_rate = min_pf_rate - total_req_min_rate;
2436
2437 left_rate_per_vp = total_left_rate / non_requested_count;
2438 if (left_rate_per_vp < min_pf_rate / QED_WFQ_UNIT) {
2439 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2440 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
2441 left_rate_per_vp, min_pf_rate);
2442 return -EINVAL;
2443 }
2444
2445 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
2446 p_hwfn->qm_info.wfq_data[vport_id].configured = true;
2447
2448 for (i = 0; i < num_vports; i++) {
2449 if (p_hwfn->qm_info.wfq_data[i].configured)
2450 continue;
2451
2452 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
2453 }
2454
2455 return 0;
2456 }
2457
2458 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
2459 struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
2460 {
2461 struct qed_mcp_link_state *p_link;
2462 int rc = 0;
2463
2464 p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
2465
2466 if (!p_link->min_pf_rate) {
2467 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
2468 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
2469 return rc;
2470 }
2471
2472 rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
2473
2474 if (rc == 0)
2475 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
2476 p_link->min_pf_rate);
2477 else
2478 DP_NOTICE(p_hwfn,
2479 "Validation failed while configuring min rate\n");
2480
2481 return rc;
2482 }
2483
2484 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
2485 struct qed_ptt *p_ptt,
2486 u32 min_pf_rate)
2487 {
2488 bool use_wfq = false;
2489 int rc = 0;
2490 u16 i;
2491
2492 /* Validate all pre configured vports for wfq */
2493 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2494 u32 rate;
2495
2496 if (!p_hwfn->qm_info.wfq_data[i].configured)
2497 continue;
2498
2499 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
2500 use_wfq = true;
2501
2502 rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
2503 if (rc) {
2504 DP_NOTICE(p_hwfn,
2505 "WFQ validation failed while configuring min rate\n");
2506 break;
2507 }
2508 }
2509
2510 if (!rc && use_wfq)
2511 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2512 else
2513 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2514
2515 return rc;
2516 }
2517
2518 /* Main API for qed clients to configure vport min rate.
2519 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
2520 * rate - Speed in Mbps needs to be assigned to a given vport.
2521 */
2522 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
2523 {
2524 int i, rc = -EINVAL;
2525
2526 /* Currently not supported; Might change in future */
2527 if (cdev->num_hwfns > 1) {
2528 DP_NOTICE(cdev,
2529 "WFQ configuration is not supported for this device\n");
2530 return rc;
2531 }
2532
2533 for_each_hwfn(cdev, i) {
2534 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2535 struct qed_ptt *p_ptt;
2536
2537 p_ptt = qed_ptt_acquire(p_hwfn);
2538 if (!p_ptt)
2539 return -EBUSY;
2540
2541 rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
2542
2543 if (rc) {
2544 qed_ptt_release(p_hwfn, p_ptt);
2545 return rc;
2546 }
2547
2548 qed_ptt_release(p_hwfn, p_ptt);
2549 }
2550
2551 return rc;
2552 }
2553
2554 /* API to configure WFQ from mcp link change */
2555 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, u32 min_pf_rate)
2556 {
2557 int i;
2558
2559 if (cdev->num_hwfns > 1) {
2560 DP_VERBOSE(cdev,
2561 NETIF_MSG_LINK,
2562 "WFQ configuration is not supported for this device\n");
2563 return;
2564 }
2565
2566 for_each_hwfn(cdev, i) {
2567 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2568
2569 __qed_configure_vp_wfq_on_link_change(p_hwfn,
2570 p_hwfn->p_dpc_ptt,
2571 min_pf_rate);
2572 }
2573 }
2574
2575 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
2576 struct qed_ptt *p_ptt,
2577 struct qed_mcp_link_state *p_link,
2578 u8 max_bw)
2579 {
2580 int rc = 0;
2581
2582 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
2583
2584 if (!p_link->line_speed && (max_bw != 100))
2585 return rc;
2586
2587 p_link->speed = (p_link->line_speed * max_bw) / 100;
2588 p_hwfn->qm_info.pf_rl = p_link->speed;
2589
2590 /* Since the limiter also affects Tx-switched traffic, we don't want it
2591 * to limit such traffic in case there's no actual limit.
2592 * In that case, set limit to imaginary high boundary.
2593 */
2594 if (max_bw == 100)
2595 p_hwfn->qm_info.pf_rl = 100000;
2596
2597 rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
2598 p_hwfn->qm_info.pf_rl);
2599
2600 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2601 "Configured MAX bandwidth to be %08x Mb/sec\n",
2602 p_link->speed);
2603
2604 return rc;
2605 }
2606
2607 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
2608 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
2609 {
2610 int i, rc = -EINVAL;
2611
2612 if (max_bw < 1 || max_bw > 100) {
2613 DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
2614 return rc;
2615 }
2616
2617 for_each_hwfn(cdev, i) {
2618 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2619 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2620 struct qed_mcp_link_state *p_link;
2621 struct qed_ptt *p_ptt;
2622
2623 p_link = &p_lead->mcp_info->link_output;
2624
2625 p_ptt = qed_ptt_acquire(p_hwfn);
2626 if (!p_ptt)
2627 return -EBUSY;
2628
2629 rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
2630 p_link, max_bw);
2631
2632 qed_ptt_release(p_hwfn, p_ptt);
2633
2634 if (rc)
2635 break;
2636 }
2637
2638 return rc;
2639 }
2640
2641 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
2642 struct qed_ptt *p_ptt,
2643 struct qed_mcp_link_state *p_link,
2644 u8 min_bw)
2645 {
2646 int rc = 0;
2647
2648 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
2649 p_hwfn->qm_info.pf_wfq = min_bw;
2650
2651 if (!p_link->line_speed)
2652 return rc;
2653
2654 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
2655
2656 rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
2657
2658 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2659 "Configured MIN bandwidth to be %d Mb/sec\n",
2660 p_link->min_pf_rate);
2661
2662 return rc;
2663 }
2664
2665 /* Main API to configure PF min bandwidth where bw range is [1-100] */
2666 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
2667 {
2668 int i, rc = -EINVAL;
2669
2670 if (min_bw < 1 || min_bw > 100) {
2671 DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
2672 return rc;
2673 }
2674
2675 for_each_hwfn(cdev, i) {
2676 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2677 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2678 struct qed_mcp_link_state *p_link;
2679 struct qed_ptt *p_ptt;
2680
2681 p_link = &p_lead->mcp_info->link_output;
2682
2683 p_ptt = qed_ptt_acquire(p_hwfn);
2684 if (!p_ptt)
2685 return -EBUSY;
2686
2687 rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
2688 p_link, min_bw);
2689 if (rc) {
2690 qed_ptt_release(p_hwfn, p_ptt);
2691 return rc;
2692 }
2693
2694 if (p_link->min_pf_rate) {
2695 u32 min_rate = p_link->min_pf_rate;
2696
2697 rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
2698 p_ptt,
2699 min_rate);
2700 }
2701
2702 qed_ptt_release(p_hwfn, p_ptt);
2703 }
2704
2705 return rc;
2706 }
2707
2708 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2709 {
2710 struct qed_mcp_link_state *p_link;
2711
2712 p_link = &p_hwfn->mcp_info->link_output;
2713
2714 if (p_link->min_pf_rate)
2715 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
2716 p_link->min_pf_rate);
2717
2718 memset(p_hwfn->qm_info.wfq_data, 0,
2719 sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
2720 }
This page took 0.090469 seconds and 5 git commands to generate.