vfio/pci: Fix typos in comments
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qed / qed_hw.c
1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/types.h>
10 #include <linux/io.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/errno.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/qed/qed_chain.h>
22 #include "qed.h"
23 #include "qed_hsi.h"
24 #include "qed_hw.h"
25 #include "qed_reg_addr.h"
26 #include "qed_sriov.h"
27
28 #define QED_BAR_ACQUIRE_TIMEOUT 1000
29
30 /* Invalid values */
31 #define QED_BAR_INVALID_OFFSET (cpu_to_le32(-1))
32
33 struct qed_ptt {
34 struct list_head list_entry;
35 unsigned int idx;
36 struct pxp_ptt_entry pxp;
37 };
38
39 struct qed_ptt_pool {
40 struct list_head free_list;
41 spinlock_t lock; /* ptt synchronized access */
42 struct qed_ptt ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
43 };
44
45 int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
46 {
47 struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool),
48 GFP_KERNEL);
49 int i;
50
51 if (!p_pool)
52 return -ENOMEM;
53
54 INIT_LIST_HEAD(&p_pool->free_list);
55 for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
56 p_pool->ptts[i].idx = i;
57 p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
58 p_pool->ptts[i].pxp.pretend.control = 0;
59 if (i >= RESERVED_PTT_MAX)
60 list_add(&p_pool->ptts[i].list_entry,
61 &p_pool->free_list);
62 }
63
64 p_hwfn->p_ptt_pool = p_pool;
65 spin_lock_init(&p_pool->lock);
66
67 return 0;
68 }
69
70 void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
71 {
72 struct qed_ptt *p_ptt;
73 int i;
74
75 for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
76 p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
77 p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
78 }
79 }
80
81 void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
82 {
83 kfree(p_hwfn->p_ptt_pool);
84 p_hwfn->p_ptt_pool = NULL;
85 }
86
87 struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
88 {
89 struct qed_ptt *p_ptt;
90 unsigned int i;
91
92 /* Take the free PTT from the list */
93 for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) {
94 spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
95
96 if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
97 p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
98 struct qed_ptt, list_entry);
99 list_del(&p_ptt->list_entry);
100
101 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
102
103 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
104 "allocated ptt %d\n", p_ptt->idx);
105 return p_ptt;
106 }
107
108 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
109 usleep_range(1000, 2000);
110 }
111
112 DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
113 return NULL;
114 }
115
116 void qed_ptt_release(struct qed_hwfn *p_hwfn,
117 struct qed_ptt *p_ptt)
118 {
119 spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
120 list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
121 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
122 }
123
124 u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn,
125 struct qed_ptt *p_ptt)
126 {
127 /* The HW is using DWORDS and we need to translate it to Bytes */
128 return le32_to_cpu(p_ptt->pxp.offset) << 2;
129 }
130
131 static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
132 {
133 return PXP_PF_WINDOW_ADMIN_PER_PF_START +
134 p_ptt->idx * sizeof(struct pxp_ptt_entry);
135 }
136
137 u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
138 {
139 return PXP_EXTERNAL_BAR_PF_WINDOW_START +
140 p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
141 }
142
143 void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
144 struct qed_ptt *p_ptt,
145 u32 new_hw_addr)
146 {
147 u32 prev_hw_addr;
148
149 prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
150
151 if (new_hw_addr == prev_hw_addr)
152 return;
153
154 /* Update PTT entery in admin window */
155 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
156 "Updating PTT entry %d to offset 0x%x\n",
157 p_ptt->idx, new_hw_addr);
158
159 /* The HW is using DWORDS and the address is in Bytes */
160 p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
161
162 REG_WR(p_hwfn,
163 qed_ptt_config_addr(p_ptt) +
164 offsetof(struct pxp_ptt_entry, offset),
165 le32_to_cpu(p_ptt->pxp.offset));
166 }
167
168 static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
169 struct qed_ptt *p_ptt,
170 u32 hw_addr)
171 {
172 u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
173 u32 offset;
174
175 offset = hw_addr - win_hw_addr;
176
177 /* Verify the address is within the window */
178 if (hw_addr < win_hw_addr ||
179 offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
180 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
181 offset = 0;
182 }
183
184 return qed_ptt_get_bar_addr(p_ptt) + offset;
185 }
186
187 struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
188 enum reserved_ptts ptt_idx)
189 {
190 if (ptt_idx >= RESERVED_PTT_MAX) {
191 DP_NOTICE(p_hwfn,
192 "Requested PTT %d is out of range\n", ptt_idx);
193 return NULL;
194 }
195
196 return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
197 }
198
199 void qed_wr(struct qed_hwfn *p_hwfn,
200 struct qed_ptt *p_ptt,
201 u32 hw_addr, u32 val)
202 {
203 u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
204
205 REG_WR(p_hwfn, bar_addr, val);
206 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
207 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
208 bar_addr, hw_addr, val);
209 }
210
211 u32 qed_rd(struct qed_hwfn *p_hwfn,
212 struct qed_ptt *p_ptt,
213 u32 hw_addr)
214 {
215 u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
216 u32 val = REG_RD(p_hwfn, bar_addr);
217
218 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
219 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
220 bar_addr, hw_addr, val);
221
222 return val;
223 }
224
225 static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
226 struct qed_ptt *p_ptt,
227 void *addr,
228 u32 hw_addr,
229 size_t n,
230 bool to_device)
231 {
232 u32 dw_count, *host_addr, hw_offset;
233 size_t quota, done = 0;
234 u32 __iomem *reg_addr;
235
236 while (done < n) {
237 quota = min_t(size_t, n - done,
238 PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
239
240 if (IS_PF(p_hwfn->cdev)) {
241 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
242 hw_offset = qed_ptt_get_bar_addr(p_ptt);
243 } else {
244 hw_offset = hw_addr + done;
245 }
246
247 dw_count = quota / 4;
248 host_addr = (u32 *)((u8 *)addr + done);
249 reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
250 if (to_device)
251 while (dw_count--)
252 DIRECT_REG_WR(reg_addr++, *host_addr++);
253 else
254 while (dw_count--)
255 *host_addr++ = DIRECT_REG_RD(reg_addr++);
256
257 done += quota;
258 }
259 }
260
261 void qed_memcpy_from(struct qed_hwfn *p_hwfn,
262 struct qed_ptt *p_ptt,
263 void *dest, u32 hw_addr, size_t n)
264 {
265 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
266 "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
267 hw_addr, dest, hw_addr, (unsigned long)n);
268
269 qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
270 }
271
272 void qed_memcpy_to(struct qed_hwfn *p_hwfn,
273 struct qed_ptt *p_ptt,
274 u32 hw_addr, void *src, size_t n)
275 {
276 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
277 "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
278 hw_addr, hw_addr, src, (unsigned long)n);
279
280 qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
281 }
282
283 void qed_fid_pretend(struct qed_hwfn *p_hwfn,
284 struct qed_ptt *p_ptt,
285 u16 fid)
286 {
287 u16 control = 0;
288
289 SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
290 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
291
292 /* Every pretend undos previous pretends, including
293 * previous port pretend.
294 */
295 SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
296 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
297 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
298
299 if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
300 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
301
302 p_ptt->pxp.pretend.control = cpu_to_le16(control);
303 p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
304
305 REG_WR(p_hwfn,
306 qed_ptt_config_addr(p_ptt) +
307 offsetof(struct pxp_ptt_entry, pretend),
308 *(u32 *)&p_ptt->pxp.pretend);
309 }
310
311 void qed_port_pretend(struct qed_hwfn *p_hwfn,
312 struct qed_ptt *p_ptt,
313 u8 port_id)
314 {
315 u16 control = 0;
316
317 SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
318 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
319 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
320
321 p_ptt->pxp.pretend.control = cpu_to_le16(control);
322
323 REG_WR(p_hwfn,
324 qed_ptt_config_addr(p_ptt) +
325 offsetof(struct pxp_ptt_entry, pretend),
326 *(u32 *)&p_ptt->pxp.pretend);
327 }
328
329 void qed_port_unpretend(struct qed_hwfn *p_hwfn,
330 struct qed_ptt *p_ptt)
331 {
332 u16 control = 0;
333
334 SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
335 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
336 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
337
338 p_ptt->pxp.pretend.control = cpu_to_le16(control);
339
340 REG_WR(p_hwfn,
341 qed_ptt_config_addr(p_ptt) +
342 offsetof(struct pxp_ptt_entry, pretend),
343 *(u32 *)&p_ptt->pxp.pretend);
344 }
345
346 u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid)
347 {
348 u32 concrete_fid = 0;
349
350 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
351 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
352 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
353
354 return concrete_fid;
355 }
356
357 /* DMAE */
358 static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
359 const u8 is_src_type_grc,
360 const u8 is_dst_type_grc,
361 struct qed_dmae_params *p_params)
362 {
363 u16 opcode_b = 0;
364 u32 opcode = 0;
365
366 /* Whether the source is the PCIe or the GRC.
367 * 0- The source is the PCIe
368 * 1- The source is the GRC.
369 */
370 opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
371 : DMAE_CMD_SRC_MASK_PCIE) <<
372 DMAE_CMD_SRC_SHIFT;
373 opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_SRC_PF_ID_MASK) <<
374 DMAE_CMD_SRC_PF_ID_SHIFT);
375
376 /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
377 opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
378 : DMAE_CMD_DST_MASK_PCIE) <<
379 DMAE_CMD_DST_SHIFT;
380 opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_DST_PF_ID_MASK) <<
381 DMAE_CMD_DST_PF_ID_SHIFT);
382
383 /* Whether to write a completion word to the completion destination:
384 * 0-Do not write a completion word
385 * 1-Write the completion word
386 */
387 opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT);
388 opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
389 DMAE_CMD_SRC_ADDR_RESET_SHIFT);
390
391 if (p_params->flags & QED_DMAE_FLAG_COMPLETION_DST)
392 opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT);
393
394 opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT);
395
396 opcode |= ((p_hwfn->port_id) << DMAE_CMD_PORT_ID_SHIFT);
397
398 /* reset source address in next go */
399 opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
400 DMAE_CMD_SRC_ADDR_RESET_SHIFT);
401
402 /* reset dest address in next go */
403 opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK <<
404 DMAE_CMD_DST_ADDR_RESET_SHIFT);
405
406 /* SRC/DST VFID: all 1's - pf, otherwise VF id */
407 if (p_params->flags & QED_DMAE_FLAG_VF_SRC) {
408 opcode |= 1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT;
409 opcode_b |= p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT;
410 } else {
411 opcode_b |= DMAE_CMD_SRC_VF_ID_MASK <<
412 DMAE_CMD_SRC_VF_ID_SHIFT;
413 }
414
415 if (p_params->flags & QED_DMAE_FLAG_VF_DST) {
416 opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
417 opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
418 } else {
419 opcode_b |= DMAE_CMD_DST_VF_ID_MASK << DMAE_CMD_DST_VF_ID_SHIFT;
420 }
421
422 p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
423 p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b);
424 }
425
426 u32 qed_dmae_idx_to_go_cmd(u8 idx)
427 {
428 /* All the DMAE 'go' registers form an array in internal memory */
429 return DMAE_REG_GO_C0 + (idx << 2);
430 }
431
432 static int
433 qed_dmae_post_command(struct qed_hwfn *p_hwfn,
434 struct qed_ptt *p_ptt)
435 {
436 struct dmae_cmd *command = p_hwfn->dmae_info.p_dmae_cmd;
437 u8 idx_cmd = p_hwfn->dmae_info.channel, i;
438 int qed_status = 0;
439
440 /* verify address is not NULL */
441 if ((((command->dst_addr_lo == 0) && (command->dst_addr_hi == 0)) ||
442 ((command->src_addr_lo == 0) && (command->src_addr_hi == 0)))) {
443 DP_NOTICE(p_hwfn,
444 "source or destination address 0 idx_cmd=%d\n"
445 "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
446 idx_cmd,
447 le32_to_cpu(command->opcode),
448 le16_to_cpu(command->opcode_b),
449 le16_to_cpu(command->length_dw),
450 le32_to_cpu(command->src_addr_hi),
451 le32_to_cpu(command->src_addr_lo),
452 le32_to_cpu(command->dst_addr_hi),
453 le32_to_cpu(command->dst_addr_lo));
454
455 return -EINVAL;
456 }
457
458 DP_VERBOSE(p_hwfn,
459 NETIF_MSG_HW,
460 "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
461 idx_cmd,
462 le32_to_cpu(command->opcode),
463 le16_to_cpu(command->opcode_b),
464 le16_to_cpu(command->length_dw),
465 le32_to_cpu(command->src_addr_hi),
466 le32_to_cpu(command->src_addr_lo),
467 le32_to_cpu(command->dst_addr_hi),
468 le32_to_cpu(command->dst_addr_lo));
469
470 /* Copy the command to DMAE - need to do it before every call
471 * for source/dest address no reset.
472 * The first 9 DWs are the command registers, the 10 DW is the
473 * GO register, and the rest are result registers
474 * (which are read only by the client).
475 */
476 for (i = 0; i < DMAE_CMD_SIZE; i++) {
477 u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
478 *(((u32 *)command) + i) : 0;
479
480 qed_wr(p_hwfn, p_ptt,
481 DMAE_REG_CMD_MEM +
482 (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
483 (i * sizeof(u32)), data);
484 }
485
486 qed_wr(p_hwfn, p_ptt,
487 qed_dmae_idx_to_go_cmd(idx_cmd),
488 DMAE_GO_VALUE);
489
490 return qed_status;
491 }
492
493 int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
494 {
495 dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
496 struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
497 u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
498 u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
499
500 *p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
501 sizeof(u32),
502 p_addr,
503 GFP_KERNEL);
504 if (!*p_comp) {
505 DP_NOTICE(p_hwfn, "Failed to allocate `p_completion_word'\n");
506 goto err;
507 }
508
509 p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
510 *p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
511 sizeof(struct dmae_cmd),
512 p_addr, GFP_KERNEL);
513 if (!*p_cmd) {
514 DP_NOTICE(p_hwfn, "Failed to allocate `struct dmae_cmd'\n");
515 goto err;
516 }
517
518 p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
519 *p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
520 sizeof(u32) * DMAE_MAX_RW_SIZE,
521 p_addr, GFP_KERNEL);
522 if (!*p_buff) {
523 DP_NOTICE(p_hwfn, "Failed to allocate `intermediate_buffer'\n");
524 goto err;
525 }
526
527 p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
528
529 return 0;
530 err:
531 qed_dmae_info_free(p_hwfn);
532 return -ENOMEM;
533 }
534
535 void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
536 {
537 dma_addr_t p_phys;
538
539 /* Just make sure no one is in the middle */
540 mutex_lock(&p_hwfn->dmae_info.mutex);
541
542 if (p_hwfn->dmae_info.p_completion_word) {
543 p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
544 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
545 sizeof(u32),
546 p_hwfn->dmae_info.p_completion_word,
547 p_phys);
548 p_hwfn->dmae_info.p_completion_word = NULL;
549 }
550
551 if (p_hwfn->dmae_info.p_dmae_cmd) {
552 p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
553 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
554 sizeof(struct dmae_cmd),
555 p_hwfn->dmae_info.p_dmae_cmd,
556 p_phys);
557 p_hwfn->dmae_info.p_dmae_cmd = NULL;
558 }
559
560 if (p_hwfn->dmae_info.p_intermediate_buffer) {
561 p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
562 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
563 sizeof(u32) * DMAE_MAX_RW_SIZE,
564 p_hwfn->dmae_info.p_intermediate_buffer,
565 p_phys);
566 p_hwfn->dmae_info.p_intermediate_buffer = NULL;
567 }
568
569 mutex_unlock(&p_hwfn->dmae_info.mutex);
570 }
571
572 static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
573 {
574 u32 wait_cnt = 0;
575 u32 wait_cnt_limit = 10000;
576
577 int qed_status = 0;
578
579 barrier();
580 while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
581 udelay(DMAE_MIN_WAIT_TIME);
582 if (++wait_cnt > wait_cnt_limit) {
583 DP_NOTICE(p_hwfn->cdev,
584 "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
585 *p_hwfn->dmae_info.p_completion_word,
586 DMAE_COMPLETION_VAL);
587 qed_status = -EBUSY;
588 break;
589 }
590
591 /* to sync the completion_word since we are not
592 * using the volatile keyword for p_completion_word
593 */
594 barrier();
595 }
596
597 if (qed_status == 0)
598 *p_hwfn->dmae_info.p_completion_word = 0;
599
600 return qed_status;
601 }
602
603 static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
604 struct qed_ptt *p_ptt,
605 u64 src_addr,
606 u64 dst_addr,
607 u8 src_type,
608 u8 dst_type,
609 u32 length)
610 {
611 dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
612 struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
613 int qed_status = 0;
614
615 switch (src_type) {
616 case QED_DMAE_ADDRESS_GRC:
617 case QED_DMAE_ADDRESS_HOST_PHYS:
618 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
619 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
620 break;
621 /* for virtual source addresses we use the intermediate buffer. */
622 case QED_DMAE_ADDRESS_HOST_VIRT:
623 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
624 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
625 memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
626 (void *)(uintptr_t)src_addr,
627 length * sizeof(u32));
628 break;
629 default:
630 return -EINVAL;
631 }
632
633 switch (dst_type) {
634 case QED_DMAE_ADDRESS_GRC:
635 case QED_DMAE_ADDRESS_HOST_PHYS:
636 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
637 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
638 break;
639 /* for virtual source addresses we use the intermediate buffer. */
640 case QED_DMAE_ADDRESS_HOST_VIRT:
641 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
642 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
643 break;
644 default:
645 return -EINVAL;
646 }
647
648 cmd->length_dw = cpu_to_le16((u16)length);
649
650 qed_dmae_post_command(p_hwfn, p_ptt);
651
652 qed_status = qed_dmae_operation_wait(p_hwfn);
653
654 if (qed_status) {
655 DP_NOTICE(p_hwfn,
656 "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
657 src_addr,
658 dst_addr,
659 length);
660 return qed_status;
661 }
662
663 if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
664 memcpy((void *)(uintptr_t)(dst_addr),
665 &p_hwfn->dmae_info.p_intermediate_buffer[0],
666 length * sizeof(u32));
667
668 return 0;
669 }
670
671 static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
672 struct qed_ptt *p_ptt,
673 u64 src_addr, u64 dst_addr,
674 u8 src_type, u8 dst_type,
675 u32 size_in_dwords,
676 struct qed_dmae_params *p_params)
677 {
678 dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
679 u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
680 struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
681 u64 src_addr_split = 0, dst_addr_split = 0;
682 u16 length_limit = DMAE_MAX_RW_SIZE;
683 int qed_status = 0;
684 u32 offset = 0;
685
686 qed_dmae_opcode(p_hwfn,
687 (src_type == QED_DMAE_ADDRESS_GRC),
688 (dst_type == QED_DMAE_ADDRESS_GRC),
689 p_params);
690
691 cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
692 cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
693 cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
694
695 /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
696 cnt_split = size_in_dwords / length_limit;
697 length_mod = size_in_dwords % length_limit;
698
699 src_addr_split = src_addr;
700 dst_addr_split = dst_addr;
701
702 for (i = 0; i <= cnt_split; i++) {
703 offset = length_limit * i;
704
705 if (!(p_params->flags & QED_DMAE_FLAG_RW_REPL_SRC)) {
706 if (src_type == QED_DMAE_ADDRESS_GRC)
707 src_addr_split = src_addr + offset;
708 else
709 src_addr_split = src_addr + (offset * 4);
710 }
711
712 if (dst_type == QED_DMAE_ADDRESS_GRC)
713 dst_addr_split = dst_addr + offset;
714 else
715 dst_addr_split = dst_addr + (offset * 4);
716
717 length_cur = (cnt_split == i) ? length_mod : length_limit;
718
719 /* might be zero on last iteration */
720 if (!length_cur)
721 continue;
722
723 qed_status = qed_dmae_execute_sub_operation(p_hwfn,
724 p_ptt,
725 src_addr_split,
726 dst_addr_split,
727 src_type,
728 dst_type,
729 length_cur);
730 if (qed_status) {
731 DP_NOTICE(p_hwfn,
732 "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
733 qed_status,
734 src_addr,
735 dst_addr,
736 length_cur);
737 break;
738 }
739 }
740
741 return qed_status;
742 }
743
744 int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
745 struct qed_ptt *p_ptt,
746 u64 source_addr,
747 u32 grc_addr,
748 u32 size_in_dwords,
749 u32 flags)
750 {
751 u32 grc_addr_in_dw = grc_addr / sizeof(u32);
752 struct qed_dmae_params params;
753 int rc;
754
755 memset(&params, 0, sizeof(struct qed_dmae_params));
756 params.flags = flags;
757
758 mutex_lock(&p_hwfn->dmae_info.mutex);
759
760 rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
761 grc_addr_in_dw,
762 QED_DMAE_ADDRESS_HOST_VIRT,
763 QED_DMAE_ADDRESS_GRC,
764 size_in_dwords, &params);
765
766 mutex_unlock(&p_hwfn->dmae_info.mutex);
767
768 return rc;
769 }
770
771 int
772 qed_dmae_grc2host(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 grc_addr,
773 dma_addr_t dest_addr, u32 size_in_dwords, u32 flags)
774 {
775 u32 grc_addr_in_dw = grc_addr / sizeof(u32);
776 struct qed_dmae_params params;
777 int rc;
778
779 memset(&params, 0, sizeof(struct qed_dmae_params));
780 params.flags = flags;
781
782 mutex_lock(&p_hwfn->dmae_info.mutex);
783
784 rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
785 dest_addr, QED_DMAE_ADDRESS_GRC,
786 QED_DMAE_ADDRESS_HOST_VIRT,
787 size_in_dwords, &params);
788
789 mutex_unlock(&p_hwfn->dmae_info.mutex);
790
791 return rc;
792 }
793
794 int
795 qed_dmae_host2host(struct qed_hwfn *p_hwfn,
796 struct qed_ptt *p_ptt,
797 dma_addr_t source_addr,
798 dma_addr_t dest_addr,
799 u32 size_in_dwords, struct qed_dmae_params *p_params)
800 {
801 int rc;
802
803 mutex_lock(&(p_hwfn->dmae_info.mutex));
804
805 rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
806 dest_addr,
807 QED_DMAE_ADDRESS_HOST_PHYS,
808 QED_DMAE_ADDRESS_HOST_PHYS,
809 size_in_dwords, p_params);
810
811 mutex_unlock(&(p_hwfn->dmae_info.mutex));
812
813 return rc;
814 }
815
816 u16 qed_get_qm_pq(struct qed_hwfn *p_hwfn,
817 enum protocol_type proto, union qed_qm_pq_params *p_params)
818 {
819 u16 pq_id = 0;
820
821 if ((proto == PROTOCOLID_CORE ||
822 proto == PROTOCOLID_ETH ||
823 proto == PROTOCOLID_ISCSI ||
824 proto == PROTOCOLID_ROCE) && !p_params) {
825 DP_NOTICE(p_hwfn,
826 "Protocol %d received NULL PQ params\n", proto);
827 return 0;
828 }
829
830 switch (proto) {
831 case PROTOCOLID_CORE:
832 if (p_params->core.tc == LB_TC)
833 pq_id = p_hwfn->qm_info.pure_lb_pq;
834 else if (p_params->core.tc == OOO_LB_TC)
835 pq_id = p_hwfn->qm_info.ooo_pq;
836 else
837 pq_id = p_hwfn->qm_info.offload_pq;
838 break;
839 case PROTOCOLID_ETH:
840 pq_id = p_params->eth.tc;
841 if (p_params->eth.is_vf)
842 pq_id += p_hwfn->qm_info.vf_queues_offset +
843 p_params->eth.vf_id;
844 break;
845 case PROTOCOLID_ISCSI:
846 if (p_params->iscsi.q_idx == 1)
847 pq_id = p_hwfn->qm_info.pure_ack_pq;
848 break;
849 case PROTOCOLID_ROCE:
850 if (p_params->roce.dcqcn)
851 pq_id = p_params->roce.qpid;
852 else
853 pq_id = p_hwfn->qm_info.offload_pq;
854 if (pq_id > p_hwfn->qm_info.num_pf_rls)
855 pq_id = p_hwfn->qm_info.offload_pq;
856 break;
857 default:
858 pq_id = 0;
859 }
860
861 pq_id = CM_TX_PQ_BASE + pq_id + RESC_START(p_hwfn, QED_PQ);
862
863 return pq_id;
864 }
This page took 0.048554 seconds and 5 git commands to generate.