raid5: allow arbitrary max_hw_sectors
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qed / qed_spq.c
1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/types.h>
10 #include <asm/byteorder.h>
11 #include <linux/io.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include "qed.h"
22 #include "qed_cxt.h"
23 #include "qed_dev_api.h"
24 #include "qed_hsi.h"
25 #include "qed_hw.h"
26 #include "qed_int.h"
27 #include "qed_mcp.h"
28 #include "qed_reg_addr.h"
29 #include "qed_sp.h"
30 #include "qed_sriov.h"
31
32 /***************************************************************************
33 * Structures & Definitions
34 ***************************************************************************/
35
36 #define SPQ_HIGH_PRI_RESERVE_DEFAULT (1)
37 #define SPQ_BLOCK_SLEEP_LENGTH (1000)
38
39 /***************************************************************************
40 * Blocking Imp. (BLOCK/EBLOCK mode)
41 ***************************************************************************/
42 static void qed_spq_blocking_cb(struct qed_hwfn *p_hwfn,
43 void *cookie,
44 union event_ring_data *data,
45 u8 fw_return_code)
46 {
47 struct qed_spq_comp_done *comp_done;
48
49 comp_done = (struct qed_spq_comp_done *)cookie;
50
51 comp_done->done = 0x1;
52 comp_done->fw_return_code = fw_return_code;
53
54 /* make update visible to waiting thread */
55 smp_wmb();
56 }
57
58 static int qed_spq_block(struct qed_hwfn *p_hwfn,
59 struct qed_spq_entry *p_ent,
60 u8 *p_fw_ret)
61 {
62 int sleep_count = SPQ_BLOCK_SLEEP_LENGTH;
63 struct qed_spq_comp_done *comp_done;
64 int rc;
65
66 comp_done = (struct qed_spq_comp_done *)p_ent->comp_cb.cookie;
67 while (sleep_count) {
68 /* validate we receive completion update */
69 smp_rmb();
70 if (comp_done->done == 1) {
71 if (p_fw_ret)
72 *p_fw_ret = comp_done->fw_return_code;
73 return 0;
74 }
75 usleep_range(5000, 10000);
76 sleep_count--;
77 }
78
79 DP_INFO(p_hwfn, "Ramrod is stuck, requesting MCP drain\n");
80 rc = qed_mcp_drain(p_hwfn, p_hwfn->p_main_ptt);
81 if (rc != 0)
82 DP_NOTICE(p_hwfn, "MCP drain failed\n");
83
84 /* Retry after drain */
85 sleep_count = SPQ_BLOCK_SLEEP_LENGTH;
86 while (sleep_count) {
87 /* validate we receive completion update */
88 smp_rmb();
89 if (comp_done->done == 1) {
90 if (p_fw_ret)
91 *p_fw_ret = comp_done->fw_return_code;
92 return 0;
93 }
94 usleep_range(5000, 10000);
95 sleep_count--;
96 }
97
98 if (comp_done->done == 1) {
99 if (p_fw_ret)
100 *p_fw_ret = comp_done->fw_return_code;
101 return 0;
102 }
103
104 DP_NOTICE(p_hwfn, "Ramrod is stuck, MCP drain failed\n");
105
106 return -EBUSY;
107 }
108
109 /***************************************************************************
110 * SPQ entries inner API
111 ***************************************************************************/
112 static int
113 qed_spq_fill_entry(struct qed_hwfn *p_hwfn,
114 struct qed_spq_entry *p_ent)
115 {
116 p_ent->flags = 0;
117
118 switch (p_ent->comp_mode) {
119 case QED_SPQ_MODE_EBLOCK:
120 case QED_SPQ_MODE_BLOCK:
121 p_ent->comp_cb.function = qed_spq_blocking_cb;
122 break;
123 case QED_SPQ_MODE_CB:
124 break;
125 default:
126 DP_NOTICE(p_hwfn, "Unknown SPQE completion mode %d\n",
127 p_ent->comp_mode);
128 return -EINVAL;
129 }
130
131 DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
132 "Ramrod header: [CID 0x%08x CMD 0x%02x protocol 0x%02x] Data pointer: [%08x:%08x] Completion Mode: %s\n",
133 p_ent->elem.hdr.cid,
134 p_ent->elem.hdr.cmd_id,
135 p_ent->elem.hdr.protocol_id,
136 p_ent->elem.data_ptr.hi,
137 p_ent->elem.data_ptr.lo,
138 D_TRINE(p_ent->comp_mode, QED_SPQ_MODE_EBLOCK,
139 QED_SPQ_MODE_BLOCK, "MODE_EBLOCK", "MODE_BLOCK",
140 "MODE_CB"));
141
142 return 0;
143 }
144
145 /***************************************************************************
146 * HSI access
147 ***************************************************************************/
148 static void qed_spq_hw_initialize(struct qed_hwfn *p_hwfn,
149 struct qed_spq *p_spq)
150 {
151 u16 pq;
152 struct qed_cxt_info cxt_info;
153 struct core_conn_context *p_cxt;
154 union qed_qm_pq_params pq_params;
155 int rc;
156
157 cxt_info.iid = p_spq->cid;
158
159 rc = qed_cxt_get_cid_info(p_hwfn, &cxt_info);
160
161 if (rc < 0) {
162 DP_NOTICE(p_hwfn, "Cannot find context info for cid=%d\n",
163 p_spq->cid);
164 return;
165 }
166
167 p_cxt = cxt_info.p_cxt;
168
169 SET_FIELD(p_cxt->xstorm_ag_context.flags10,
170 XSTORM_CORE_CONN_AG_CTX_DQ_CF_EN, 1);
171 SET_FIELD(p_cxt->xstorm_ag_context.flags1,
172 XSTORM_CORE_CONN_AG_CTX_DQ_CF_ACTIVE, 1);
173 SET_FIELD(p_cxt->xstorm_ag_context.flags9,
174 XSTORM_CORE_CONN_AG_CTX_CONSOLID_PROD_CF_EN, 1);
175
176 /* QM physical queue */
177 memset(&pq_params, 0, sizeof(pq_params));
178 pq_params.core.tc = LB_TC;
179 pq = qed_get_qm_pq(p_hwfn, PROTOCOLID_CORE, &pq_params);
180 p_cxt->xstorm_ag_context.physical_q0 = cpu_to_le16(pq);
181
182 p_cxt->xstorm_st_context.spq_base_lo =
183 DMA_LO_LE(p_spq->chain.p_phys_addr);
184 p_cxt->xstorm_st_context.spq_base_hi =
185 DMA_HI_LE(p_spq->chain.p_phys_addr);
186
187 DMA_REGPAIR_LE(p_cxt->xstorm_st_context.consolid_base_addr,
188 p_hwfn->p_consq->chain.p_phys_addr);
189 }
190
191 static int qed_spq_hw_post(struct qed_hwfn *p_hwfn,
192 struct qed_spq *p_spq,
193 struct qed_spq_entry *p_ent)
194 {
195 struct qed_chain *p_chain = &p_hwfn->p_spq->chain;
196 u16 echo = qed_chain_get_prod_idx(p_chain);
197 struct slow_path_element *elem;
198 struct core_db_data db;
199
200 p_ent->elem.hdr.echo = cpu_to_le16(echo);
201 elem = qed_chain_produce(p_chain);
202 if (!elem) {
203 DP_NOTICE(p_hwfn, "Failed to produce from SPQ chain\n");
204 return -EINVAL;
205 }
206
207 *elem = p_ent->elem; /* struct assignment */
208
209 /* send a doorbell on the slow hwfn session */
210 memset(&db, 0, sizeof(db));
211 SET_FIELD(db.params, CORE_DB_DATA_DEST, DB_DEST_XCM);
212 SET_FIELD(db.params, CORE_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
213 SET_FIELD(db.params, CORE_DB_DATA_AGG_VAL_SEL,
214 DQ_XCM_CORE_SPQ_PROD_CMD);
215 db.agg_flags = DQ_XCM_CORE_DQ_CF_CMD;
216 db.spq_prod = cpu_to_le16(qed_chain_get_prod_idx(p_chain));
217
218 /* make sure the SPQE is updated before the doorbell */
219 wmb();
220
221 DOORBELL(p_hwfn, qed_db_addr(p_spq->cid, DQ_DEMS_LEGACY), *(u32 *)&db);
222
223 /* make sure doorbell is rang */
224 wmb();
225
226 DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
227 "Doorbelled [0x%08x, CID 0x%08x] with Flags: %02x agg_params: %02x, prod: %04x\n",
228 qed_db_addr(p_spq->cid, DQ_DEMS_LEGACY),
229 p_spq->cid, db.params, db.agg_flags,
230 qed_chain_get_prod_idx(p_chain));
231
232 return 0;
233 }
234
235 /***************************************************************************
236 * Asynchronous events
237 ***************************************************************************/
238 static int
239 qed_async_event_completion(struct qed_hwfn *p_hwfn,
240 struct event_ring_entry *p_eqe)
241 {
242 switch (p_eqe->protocol_id) {
243 case PROTOCOLID_COMMON:
244 return qed_sriov_eqe_event(p_hwfn,
245 p_eqe->opcode,
246 p_eqe->echo, &p_eqe->data);
247 default:
248 DP_NOTICE(p_hwfn,
249 "Unknown Async completion for protocol: %d\n",
250 p_eqe->protocol_id);
251 return -EINVAL;
252 }
253 }
254
255 /***************************************************************************
256 * EQ API
257 ***************************************************************************/
258 void qed_eq_prod_update(struct qed_hwfn *p_hwfn,
259 u16 prod)
260 {
261 u32 addr = GTT_BAR0_MAP_REG_USDM_RAM +
262 USTORM_EQE_CONS_OFFSET(p_hwfn->rel_pf_id);
263
264 REG_WR16(p_hwfn, addr, prod);
265
266 /* keep prod updates ordered */
267 mmiowb();
268 }
269
270 int qed_eq_completion(struct qed_hwfn *p_hwfn,
271 void *cookie)
272
273 {
274 struct qed_eq *p_eq = cookie;
275 struct qed_chain *p_chain = &p_eq->chain;
276 int rc = 0;
277
278 /* take a snapshot of the FW consumer */
279 u16 fw_cons_idx = le16_to_cpu(*p_eq->p_fw_cons);
280
281 DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "fw_cons_idx %x\n", fw_cons_idx);
282
283 /* Need to guarantee the fw_cons index we use points to a usuable
284 * element (to comply with our chain), so our macros would comply
285 */
286 if ((fw_cons_idx & qed_chain_get_usable_per_page(p_chain)) ==
287 qed_chain_get_usable_per_page(p_chain))
288 fw_cons_idx += qed_chain_get_unusable_per_page(p_chain);
289
290 /* Complete current segment of eq entries */
291 while (fw_cons_idx != qed_chain_get_cons_idx(p_chain)) {
292 struct event_ring_entry *p_eqe = qed_chain_consume(p_chain);
293
294 if (!p_eqe) {
295 rc = -EINVAL;
296 break;
297 }
298
299 DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
300 "op %x prot %x res0 %x echo %x fwret %x flags %x\n",
301 p_eqe->opcode,
302 p_eqe->protocol_id,
303 p_eqe->reserved0,
304 le16_to_cpu(p_eqe->echo),
305 p_eqe->fw_return_code,
306 p_eqe->flags);
307
308 if (GET_FIELD(p_eqe->flags, EVENT_RING_ENTRY_ASYNC)) {
309 if (qed_async_event_completion(p_hwfn, p_eqe))
310 rc = -EINVAL;
311 } else if (qed_spq_completion(p_hwfn,
312 p_eqe->echo,
313 p_eqe->fw_return_code,
314 &p_eqe->data)) {
315 rc = -EINVAL;
316 }
317
318 qed_chain_recycle_consumed(p_chain);
319 }
320
321 qed_eq_prod_update(p_hwfn, qed_chain_get_prod_idx(p_chain));
322
323 return rc;
324 }
325
326 struct qed_eq *qed_eq_alloc(struct qed_hwfn *p_hwfn,
327 u16 num_elem)
328 {
329 struct qed_eq *p_eq;
330
331 /* Allocate EQ struct */
332 p_eq = kzalloc(sizeof(*p_eq), GFP_KERNEL);
333 if (!p_eq) {
334 DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_eq'\n");
335 return NULL;
336 }
337
338 /* Allocate and initialize EQ chain*/
339 if (qed_chain_alloc(p_hwfn->cdev,
340 QED_CHAIN_USE_TO_PRODUCE,
341 QED_CHAIN_MODE_PBL,
342 QED_CHAIN_CNT_TYPE_U16,
343 num_elem,
344 sizeof(union event_ring_element),
345 &p_eq->chain)) {
346 DP_NOTICE(p_hwfn, "Failed to allocate eq chain\n");
347 goto eq_allocate_fail;
348 }
349
350 /* register EQ completion on the SP SB */
351 qed_int_register_cb(p_hwfn,
352 qed_eq_completion,
353 p_eq,
354 &p_eq->eq_sb_index,
355 &p_eq->p_fw_cons);
356
357 return p_eq;
358
359 eq_allocate_fail:
360 qed_eq_free(p_hwfn, p_eq);
361 return NULL;
362 }
363
364 void qed_eq_setup(struct qed_hwfn *p_hwfn,
365 struct qed_eq *p_eq)
366 {
367 qed_chain_reset(&p_eq->chain);
368 }
369
370 void qed_eq_free(struct qed_hwfn *p_hwfn,
371 struct qed_eq *p_eq)
372 {
373 if (!p_eq)
374 return;
375 qed_chain_free(p_hwfn->cdev, &p_eq->chain);
376 kfree(p_eq);
377 }
378
379 /***************************************************************************
380 * CQE API - manipulate EQ functionality
381 ***************************************************************************/
382 static int qed_cqe_completion(
383 struct qed_hwfn *p_hwfn,
384 struct eth_slow_path_rx_cqe *cqe,
385 enum protocol_type protocol)
386 {
387 if (IS_VF(p_hwfn->cdev))
388 return 0;
389
390 /* @@@tmp - it's possible we'll eventually want to handle some
391 * actual commands that can arrive here, but for now this is only
392 * used to complete the ramrod using the echo value on the cqe
393 */
394 return qed_spq_completion(p_hwfn, cqe->echo, 0, NULL);
395 }
396
397 int qed_eth_cqe_completion(struct qed_hwfn *p_hwfn,
398 struct eth_slow_path_rx_cqe *cqe)
399 {
400 int rc;
401
402 rc = qed_cqe_completion(p_hwfn, cqe, PROTOCOLID_ETH);
403 if (rc)
404 DP_NOTICE(p_hwfn,
405 "Failed to handle RXQ CQE [cmd 0x%02x]\n",
406 cqe->ramrod_cmd_id);
407
408 return rc;
409 }
410
411 /***************************************************************************
412 * Slow hwfn Queue (spq)
413 ***************************************************************************/
414 void qed_spq_setup(struct qed_hwfn *p_hwfn)
415 {
416 struct qed_spq *p_spq = p_hwfn->p_spq;
417 struct qed_spq_entry *p_virt = NULL;
418 dma_addr_t p_phys = 0;
419 u32 i, capacity;
420
421 INIT_LIST_HEAD(&p_spq->pending);
422 INIT_LIST_HEAD(&p_spq->completion_pending);
423 INIT_LIST_HEAD(&p_spq->free_pool);
424 INIT_LIST_HEAD(&p_spq->unlimited_pending);
425 spin_lock_init(&p_spq->lock);
426
427 /* SPQ empty pool */
428 p_phys = p_spq->p_phys + offsetof(struct qed_spq_entry, ramrod);
429 p_virt = p_spq->p_virt;
430
431 capacity = qed_chain_get_capacity(&p_spq->chain);
432 for (i = 0; i < capacity; i++) {
433 DMA_REGPAIR_LE(p_virt->elem.data_ptr, p_phys);
434
435 list_add_tail(&p_virt->list, &p_spq->free_pool);
436
437 p_virt++;
438 p_phys += sizeof(struct qed_spq_entry);
439 }
440
441 /* Statistics */
442 p_spq->normal_count = 0;
443 p_spq->comp_count = 0;
444 p_spq->comp_sent_count = 0;
445 p_spq->unlimited_pending_count = 0;
446
447 bitmap_zero(p_spq->p_comp_bitmap, SPQ_RING_SIZE);
448 p_spq->comp_bitmap_idx = 0;
449
450 /* SPQ cid, cannot fail */
451 qed_cxt_acquire_cid(p_hwfn, PROTOCOLID_CORE, &p_spq->cid);
452 qed_spq_hw_initialize(p_hwfn, p_spq);
453
454 /* reset the chain itself */
455 qed_chain_reset(&p_spq->chain);
456 }
457
458 int qed_spq_alloc(struct qed_hwfn *p_hwfn)
459 {
460 struct qed_spq_entry *p_virt = NULL;
461 struct qed_spq *p_spq = NULL;
462 dma_addr_t p_phys = 0;
463 u32 capacity;
464
465 /* SPQ struct */
466 p_spq =
467 kzalloc(sizeof(struct qed_spq), GFP_KERNEL);
468 if (!p_spq) {
469 DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_spq'\n");
470 return -ENOMEM;
471 }
472
473 /* SPQ ring */
474 if (qed_chain_alloc(p_hwfn->cdev,
475 QED_CHAIN_USE_TO_PRODUCE,
476 QED_CHAIN_MODE_SINGLE,
477 QED_CHAIN_CNT_TYPE_U16,
478 0, /* N/A when the mode is SINGLE */
479 sizeof(struct slow_path_element),
480 &p_spq->chain)) {
481 DP_NOTICE(p_hwfn, "Failed to allocate spq chain\n");
482 goto spq_allocate_fail;
483 }
484
485 /* allocate and fill the SPQ elements (incl. ramrod data list) */
486 capacity = qed_chain_get_capacity(&p_spq->chain);
487 p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
488 capacity *
489 sizeof(struct qed_spq_entry),
490 &p_phys, GFP_KERNEL);
491
492 if (!p_virt)
493 goto spq_allocate_fail;
494
495 p_spq->p_virt = p_virt;
496 p_spq->p_phys = p_phys;
497 p_hwfn->p_spq = p_spq;
498
499 return 0;
500
501 spq_allocate_fail:
502 qed_chain_free(p_hwfn->cdev, &p_spq->chain);
503 kfree(p_spq);
504 return -ENOMEM;
505 }
506
507 void qed_spq_free(struct qed_hwfn *p_hwfn)
508 {
509 struct qed_spq *p_spq = p_hwfn->p_spq;
510 u32 capacity;
511
512 if (!p_spq)
513 return;
514
515 if (p_spq->p_virt) {
516 capacity = qed_chain_get_capacity(&p_spq->chain);
517 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
518 capacity *
519 sizeof(struct qed_spq_entry),
520 p_spq->p_virt, p_spq->p_phys);
521 }
522
523 qed_chain_free(p_hwfn->cdev, &p_spq->chain);
524 ;
525 kfree(p_spq);
526 }
527
528 int
529 qed_spq_get_entry(struct qed_hwfn *p_hwfn,
530 struct qed_spq_entry **pp_ent)
531 {
532 struct qed_spq *p_spq = p_hwfn->p_spq;
533 struct qed_spq_entry *p_ent = NULL;
534 int rc = 0;
535
536 spin_lock_bh(&p_spq->lock);
537
538 if (list_empty(&p_spq->free_pool)) {
539 p_ent = kzalloc(sizeof(*p_ent), GFP_ATOMIC);
540 if (!p_ent) {
541 rc = -ENOMEM;
542 goto out_unlock;
543 }
544 p_ent->queue = &p_spq->unlimited_pending;
545 } else {
546 p_ent = list_first_entry(&p_spq->free_pool,
547 struct qed_spq_entry,
548 list);
549 list_del(&p_ent->list);
550 p_ent->queue = &p_spq->pending;
551 }
552
553 *pp_ent = p_ent;
554
555 out_unlock:
556 spin_unlock_bh(&p_spq->lock);
557 return rc;
558 }
559
560 /* Locked variant; Should be called while the SPQ lock is taken */
561 static void __qed_spq_return_entry(struct qed_hwfn *p_hwfn,
562 struct qed_spq_entry *p_ent)
563 {
564 list_add_tail(&p_ent->list, &p_hwfn->p_spq->free_pool);
565 }
566
567 void qed_spq_return_entry(struct qed_hwfn *p_hwfn,
568 struct qed_spq_entry *p_ent)
569 {
570 spin_lock_bh(&p_hwfn->p_spq->lock);
571 __qed_spq_return_entry(p_hwfn, p_ent);
572 spin_unlock_bh(&p_hwfn->p_spq->lock);
573 }
574
575 /**
576 * @brief qed_spq_add_entry - adds a new entry to the pending
577 * list. Should be used while lock is being held.
578 *
579 * Addes an entry to the pending list is there is room (en empty
580 * element is available in the free_pool), or else places the
581 * entry in the unlimited_pending pool.
582 *
583 * @param p_hwfn
584 * @param p_ent
585 * @param priority
586 *
587 * @return int
588 */
589 static int
590 qed_spq_add_entry(struct qed_hwfn *p_hwfn,
591 struct qed_spq_entry *p_ent,
592 enum spq_priority priority)
593 {
594 struct qed_spq *p_spq = p_hwfn->p_spq;
595
596 if (p_ent->queue == &p_spq->unlimited_pending) {
597
598 if (list_empty(&p_spq->free_pool)) {
599 list_add_tail(&p_ent->list, &p_spq->unlimited_pending);
600 p_spq->unlimited_pending_count++;
601
602 return 0;
603 } else {
604 struct qed_spq_entry *p_en2;
605
606 p_en2 = list_first_entry(&p_spq->free_pool,
607 struct qed_spq_entry,
608 list);
609 list_del(&p_en2->list);
610
611 /* Copy the ring element physical pointer to the new
612 * entry, since we are about to override the entire ring
613 * entry and don't want to lose the pointer.
614 */
615 p_ent->elem.data_ptr = p_en2->elem.data_ptr;
616
617 *p_en2 = *p_ent;
618
619 /* EBLOCK responsible to free the allocated p_ent */
620 if (p_ent->comp_mode != QED_SPQ_MODE_EBLOCK)
621 kfree(p_ent);
622
623 p_ent = p_en2;
624 }
625 }
626
627 /* entry is to be placed in 'pending' queue */
628 switch (priority) {
629 case QED_SPQ_PRIORITY_NORMAL:
630 list_add_tail(&p_ent->list, &p_spq->pending);
631 p_spq->normal_count++;
632 break;
633 case QED_SPQ_PRIORITY_HIGH:
634 list_add(&p_ent->list, &p_spq->pending);
635 p_spq->high_count++;
636 break;
637 default:
638 return -EINVAL;
639 }
640
641 return 0;
642 }
643
644 /***************************************************************************
645 * Accessor
646 ***************************************************************************/
647 u32 qed_spq_get_cid(struct qed_hwfn *p_hwfn)
648 {
649 if (!p_hwfn->p_spq)
650 return 0xffffffff; /* illegal */
651 return p_hwfn->p_spq->cid;
652 }
653
654 /***************************************************************************
655 * Posting new Ramrods
656 ***************************************************************************/
657 static int qed_spq_post_list(struct qed_hwfn *p_hwfn,
658 struct list_head *head,
659 u32 keep_reserve)
660 {
661 struct qed_spq *p_spq = p_hwfn->p_spq;
662 int rc;
663
664 while (qed_chain_get_elem_left(&p_spq->chain) > keep_reserve &&
665 !list_empty(head)) {
666 struct qed_spq_entry *p_ent =
667 list_first_entry(head, struct qed_spq_entry, list);
668 list_del(&p_ent->list);
669 list_add_tail(&p_ent->list, &p_spq->completion_pending);
670 p_spq->comp_sent_count++;
671
672 rc = qed_spq_hw_post(p_hwfn, p_spq, p_ent);
673 if (rc) {
674 list_del(&p_ent->list);
675 __qed_spq_return_entry(p_hwfn, p_ent);
676 return rc;
677 }
678 }
679
680 return 0;
681 }
682
683 static int qed_spq_pend_post(struct qed_hwfn *p_hwfn)
684 {
685 struct qed_spq *p_spq = p_hwfn->p_spq;
686 struct qed_spq_entry *p_ent = NULL;
687
688 while (!list_empty(&p_spq->free_pool)) {
689 if (list_empty(&p_spq->unlimited_pending))
690 break;
691
692 p_ent = list_first_entry(&p_spq->unlimited_pending,
693 struct qed_spq_entry,
694 list);
695 if (!p_ent)
696 return -EINVAL;
697
698 list_del(&p_ent->list);
699
700 qed_spq_add_entry(p_hwfn, p_ent, p_ent->priority);
701 }
702
703 return qed_spq_post_list(p_hwfn, &p_spq->pending,
704 SPQ_HIGH_PRI_RESERVE_DEFAULT);
705 }
706
707 int qed_spq_post(struct qed_hwfn *p_hwfn,
708 struct qed_spq_entry *p_ent,
709 u8 *fw_return_code)
710 {
711 int rc = 0;
712 struct qed_spq *p_spq = p_hwfn ? p_hwfn->p_spq : NULL;
713 bool b_ret_ent = true;
714
715 if (!p_hwfn)
716 return -EINVAL;
717
718 if (!p_ent) {
719 DP_NOTICE(p_hwfn, "Got a NULL pointer\n");
720 return -EINVAL;
721 }
722
723 /* Complete the entry */
724 rc = qed_spq_fill_entry(p_hwfn, p_ent);
725
726 spin_lock_bh(&p_spq->lock);
727
728 /* Check return value after LOCK is taken for cleaner error flow */
729 if (rc)
730 goto spq_post_fail;
731
732 /* Add the request to the pending queue */
733 rc = qed_spq_add_entry(p_hwfn, p_ent, p_ent->priority);
734 if (rc)
735 goto spq_post_fail;
736
737 rc = qed_spq_pend_post(p_hwfn);
738 if (rc) {
739 /* Since it's possible that pending failed for a different
740 * entry [although unlikely], the failed entry was already
741 * dealt with; No need to return it here.
742 */
743 b_ret_ent = false;
744 goto spq_post_fail;
745 }
746
747 spin_unlock_bh(&p_spq->lock);
748
749 if (p_ent->comp_mode == QED_SPQ_MODE_EBLOCK) {
750 /* For entries in QED BLOCK mode, the completion code cannot
751 * perform the necessary cleanup - if it did, we couldn't
752 * access p_ent here to see whether it's successful or not.
753 * Thus, after gaining the answer perform the cleanup here.
754 */
755 rc = qed_spq_block(p_hwfn, p_ent, fw_return_code);
756
757 if (p_ent->queue == &p_spq->unlimited_pending) {
758 /* This is an allocated p_ent which does not need to
759 * return to pool.
760 */
761 kfree(p_ent);
762 return rc;
763 }
764
765 if (rc)
766 goto spq_post_fail2;
767
768 /* return to pool */
769 qed_spq_return_entry(p_hwfn, p_ent);
770 }
771 return rc;
772
773 spq_post_fail2:
774 spin_lock_bh(&p_spq->lock);
775 list_del(&p_ent->list);
776 qed_chain_return_produced(&p_spq->chain);
777
778 spq_post_fail:
779 /* return to the free pool */
780 if (b_ret_ent)
781 __qed_spq_return_entry(p_hwfn, p_ent);
782 spin_unlock_bh(&p_spq->lock);
783
784 return rc;
785 }
786
787 int qed_spq_completion(struct qed_hwfn *p_hwfn,
788 __le16 echo,
789 u8 fw_return_code,
790 union event_ring_data *p_data)
791 {
792 struct qed_spq *p_spq;
793 struct qed_spq_entry *p_ent = NULL;
794 struct qed_spq_entry *tmp;
795 struct qed_spq_entry *found = NULL;
796 int rc;
797
798 if (!p_hwfn)
799 return -EINVAL;
800
801 p_spq = p_hwfn->p_spq;
802 if (!p_spq)
803 return -EINVAL;
804
805 spin_lock_bh(&p_spq->lock);
806 list_for_each_entry_safe(p_ent, tmp, &p_spq->completion_pending,
807 list) {
808 if (p_ent->elem.hdr.echo == echo) {
809 u16 pos = le16_to_cpu(echo) % SPQ_RING_SIZE;
810
811 list_del(&p_ent->list);
812
813 /* Avoid overriding of SPQ entries when getting
814 * out-of-order completions, by marking the completions
815 * in a bitmap and increasing the chain consumer only
816 * for the first successive completed entries.
817 */
818 __set_bit(pos, p_spq->p_comp_bitmap);
819
820 while (test_bit(p_spq->comp_bitmap_idx,
821 p_spq->p_comp_bitmap)) {
822 __clear_bit(p_spq->comp_bitmap_idx,
823 p_spq->p_comp_bitmap);
824 p_spq->comp_bitmap_idx++;
825 qed_chain_return_produced(&p_spq->chain);
826 }
827
828 p_spq->comp_count++;
829 found = p_ent;
830 break;
831 }
832
833 /* This is relatively uncommon - depends on scenarios
834 * which have mutliple per-PF sent ramrods.
835 */
836 DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
837 "Got completion for echo %04x - doesn't match echo %04x in completion pending list\n",
838 le16_to_cpu(echo),
839 le16_to_cpu(p_ent->elem.hdr.echo));
840 }
841
842 /* Release lock before callback, as callback may post
843 * an additional ramrod.
844 */
845 spin_unlock_bh(&p_spq->lock);
846
847 if (!found) {
848 DP_NOTICE(p_hwfn,
849 "Failed to find an entry this EQE completes\n");
850 return -EEXIST;
851 }
852
853 DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Complete: func %p cookie %p)\n",
854 p_ent->comp_cb.function, p_ent->comp_cb.cookie);
855 if (found->comp_cb.function)
856 found->comp_cb.function(p_hwfn, found->comp_cb.cookie, p_data,
857 fw_return_code);
858
859 if ((found->comp_mode != QED_SPQ_MODE_EBLOCK) ||
860 (found->queue == &p_spq->unlimited_pending))
861 /* EBLOCK is responsible for returning its own entry into the
862 * free list, unless it originally added the entry into the
863 * unlimited pending list.
864 */
865 qed_spq_return_entry(p_hwfn, found);
866
867 /* Attempt to post pending requests */
868 spin_lock_bh(&p_spq->lock);
869 rc = qed_spq_pend_post(p_hwfn);
870 spin_unlock_bh(&p_spq->lock);
871
872 return rc;
873 }
874
875 struct qed_consq *qed_consq_alloc(struct qed_hwfn *p_hwfn)
876 {
877 struct qed_consq *p_consq;
878
879 /* Allocate ConsQ struct */
880 p_consq = kzalloc(sizeof(*p_consq), GFP_KERNEL);
881 if (!p_consq) {
882 DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_consq'\n");
883 return NULL;
884 }
885
886 /* Allocate and initialize EQ chain*/
887 if (qed_chain_alloc(p_hwfn->cdev,
888 QED_CHAIN_USE_TO_PRODUCE,
889 QED_CHAIN_MODE_PBL,
890 QED_CHAIN_CNT_TYPE_U16,
891 QED_CHAIN_PAGE_SIZE / 0x80,
892 0x80, &p_consq->chain)) {
893 DP_NOTICE(p_hwfn, "Failed to allocate consq chain");
894 goto consq_allocate_fail;
895 }
896
897 return p_consq;
898
899 consq_allocate_fail:
900 qed_consq_free(p_hwfn, p_consq);
901 return NULL;
902 }
903
904 void qed_consq_setup(struct qed_hwfn *p_hwfn,
905 struct qed_consq *p_consq)
906 {
907 qed_chain_reset(&p_consq->chain);
908 }
909
910 void qed_consq_free(struct qed_hwfn *p_hwfn,
911 struct qed_consq *p_consq)
912 {
913 if (!p_consq)
914 return;
915 qed_chain_free(p_hwfn->cdev, &p_consq->chain);
916 kfree(p_consq);
917 }
This page took 0.050099 seconds and 5 git commands to generate.