selinux: fix overflow and 0 length allocations
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qed / qed_sriov.c
1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/etherdevice.h>
10 #include <linux/crc32.h>
11 #include <linux/qed/qed_iov_if.h>
12 #include "qed_cxt.h"
13 #include "qed_hsi.h"
14 #include "qed_hw.h"
15 #include "qed_init_ops.h"
16 #include "qed_int.h"
17 #include "qed_mcp.h"
18 #include "qed_reg_addr.h"
19 #include "qed_sp.h"
20 #include "qed_sriov.h"
21 #include "qed_vf.h"
22
23 /* IOV ramrods */
24 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf)
25 {
26 struct vf_start_ramrod_data *p_ramrod = NULL;
27 struct qed_spq_entry *p_ent = NULL;
28 struct qed_sp_init_data init_data;
29 int rc = -EINVAL;
30 u8 fp_minor;
31
32 /* Get SPQ entry */
33 memset(&init_data, 0, sizeof(init_data));
34 init_data.cid = qed_spq_get_cid(p_hwfn);
35 init_data.opaque_fid = p_vf->opaque_fid;
36 init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
37
38 rc = qed_sp_init_request(p_hwfn, &p_ent,
39 COMMON_RAMROD_VF_START,
40 PROTOCOLID_COMMON, &init_data);
41 if (rc)
42 return rc;
43
44 p_ramrod = &p_ent->ramrod.vf_start;
45
46 p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID);
47 p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid);
48
49 switch (p_hwfn->hw_info.personality) {
50 case QED_PCI_ETH:
51 p_ramrod->personality = PERSONALITY_ETH;
52 break;
53 case QED_PCI_ETH_ROCE:
54 p_ramrod->personality = PERSONALITY_RDMA_AND_ETH;
55 break;
56 default:
57 DP_NOTICE(p_hwfn, "Unknown VF personality %d\n",
58 p_hwfn->hw_info.personality);
59 return -EINVAL;
60 }
61
62 fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor;
63 if (fp_minor > ETH_HSI_VER_MINOR) {
64 DP_VERBOSE(p_hwfn,
65 QED_MSG_IOV,
66 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
67 p_vf->abs_vf_id,
68 ETH_HSI_VER_MAJOR,
69 fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
70 fp_minor = ETH_HSI_VER_MINOR;
71 }
72
73 p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR;
74 p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor;
75
76 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
77 "VF[%d] - Starting using HSI %02x.%02x\n",
78 p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor);
79
80 return qed_spq_post(p_hwfn, p_ent, NULL);
81 }
82
83 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn,
84 u32 concrete_vfid, u16 opaque_vfid)
85 {
86 struct vf_stop_ramrod_data *p_ramrod = NULL;
87 struct qed_spq_entry *p_ent = NULL;
88 struct qed_sp_init_data init_data;
89 int rc = -EINVAL;
90
91 /* Get SPQ entry */
92 memset(&init_data, 0, sizeof(init_data));
93 init_data.cid = qed_spq_get_cid(p_hwfn);
94 init_data.opaque_fid = opaque_vfid;
95 init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
96
97 rc = qed_sp_init_request(p_hwfn, &p_ent,
98 COMMON_RAMROD_VF_STOP,
99 PROTOCOLID_COMMON, &init_data);
100 if (rc)
101 return rc;
102
103 p_ramrod = &p_ent->ramrod.vf_stop;
104
105 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID);
106
107 return qed_spq_post(p_hwfn, p_ent, NULL);
108 }
109
110 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
111 int rel_vf_id, bool b_enabled_only)
112 {
113 if (!p_hwfn->pf_iov_info) {
114 DP_NOTICE(p_hwfn->cdev, "No iov info\n");
115 return false;
116 }
117
118 if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
119 (rel_vf_id < 0))
120 return false;
121
122 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
123 b_enabled_only)
124 return false;
125
126 return true;
127 }
128
129 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
130 u16 relative_vf_id,
131 bool b_enabled_only)
132 {
133 struct qed_vf_info *vf = NULL;
134
135 if (!p_hwfn->pf_iov_info) {
136 DP_NOTICE(p_hwfn->cdev, "No iov info\n");
137 return NULL;
138 }
139
140 if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id, b_enabled_only))
141 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
142 else
143 DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n",
144 relative_vf_id);
145
146 return vf;
147 }
148
149 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn,
150 struct qed_vf_info *p_vf, u16 rx_qid)
151 {
152 if (rx_qid >= p_vf->num_rxqs)
153 DP_VERBOSE(p_hwfn,
154 QED_MSG_IOV,
155 "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n",
156 p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs);
157 return rx_qid < p_vf->num_rxqs;
158 }
159
160 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn,
161 struct qed_vf_info *p_vf, u16 tx_qid)
162 {
163 if (tx_qid >= p_vf->num_txqs)
164 DP_VERBOSE(p_hwfn,
165 QED_MSG_IOV,
166 "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n",
167 p_vf->abs_vf_id, tx_qid, p_vf->num_txqs);
168 return tx_qid < p_vf->num_txqs;
169 }
170
171 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn,
172 struct qed_vf_info *p_vf, u16 sb_idx)
173 {
174 int i;
175
176 for (i = 0; i < p_vf->num_sbs; i++)
177 if (p_vf->igu_sbs[i] == sb_idx)
178 return true;
179
180 DP_VERBOSE(p_hwfn,
181 QED_MSG_IOV,
182 "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n",
183 p_vf->abs_vf_id, sb_idx, p_vf->num_sbs);
184
185 return false;
186 }
187
188 int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn,
189 int vfid, struct qed_ptt *p_ptt)
190 {
191 struct qed_bulletin_content *p_bulletin;
192 int crc_size = sizeof(p_bulletin->crc);
193 struct qed_dmae_params params;
194 struct qed_vf_info *p_vf;
195
196 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
197 if (!p_vf)
198 return -EINVAL;
199
200 if (!p_vf->vf_bulletin)
201 return -EINVAL;
202
203 p_bulletin = p_vf->bulletin.p_virt;
204
205 /* Increment bulletin board version and compute crc */
206 p_bulletin->version++;
207 p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size,
208 p_vf->bulletin.size - crc_size);
209
210 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
211 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
212 p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc);
213
214 /* propagate bulletin board via dmae to vm memory */
215 memset(&params, 0, sizeof(params));
216 params.flags = QED_DMAE_FLAG_VF_DST;
217 params.dst_vfid = p_vf->abs_vf_id;
218 return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys,
219 p_vf->vf_bulletin, p_vf->bulletin.size / 4,
220 &params);
221 }
222
223 static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
224 {
225 struct qed_hw_sriov_info *iov = cdev->p_iov_info;
226 int pos = iov->pos;
227
228 DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
229 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
230
231 pci_read_config_word(cdev->pdev,
232 pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
233 pci_read_config_word(cdev->pdev,
234 pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
235
236 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
237 if (iov->num_vfs) {
238 DP_VERBOSE(cdev,
239 QED_MSG_IOV,
240 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
241 iov->num_vfs = 0;
242 }
243
244 pci_read_config_word(cdev->pdev,
245 pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
246
247 pci_read_config_word(cdev->pdev,
248 pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
249
250 pci_read_config_word(cdev->pdev,
251 pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
252
253 pci_read_config_dword(cdev->pdev,
254 pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
255
256 pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
257
258 pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
259
260 DP_VERBOSE(cdev,
261 QED_MSG_IOV,
262 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
263 iov->nres,
264 iov->cap,
265 iov->ctrl,
266 iov->total_vfs,
267 iov->initial_vfs,
268 iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
269
270 /* Some sanity checks */
271 if (iov->num_vfs > NUM_OF_VFS(cdev) ||
272 iov->total_vfs > NUM_OF_VFS(cdev)) {
273 /* This can happen only due to a bug. In this case we set
274 * num_vfs to zero to avoid memory corruption in the code that
275 * assumes max number of vfs
276 */
277 DP_NOTICE(cdev,
278 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
279 iov->num_vfs);
280
281 iov->num_vfs = 0;
282 iov->total_vfs = 0;
283 }
284
285 return 0;
286 }
287
288 static void qed_iov_clear_vf_igu_blocks(struct qed_hwfn *p_hwfn,
289 struct qed_ptt *p_ptt)
290 {
291 struct qed_igu_block *p_sb;
292 u16 sb_id;
293 u32 val;
294
295 if (!p_hwfn->hw_info.p_igu_info) {
296 DP_ERR(p_hwfn,
297 "qed_iov_clear_vf_igu_blocks IGU Info not initialized\n");
298 return;
299 }
300
301 for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
302 sb_id++) {
303 p_sb = &p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks[sb_id];
304 if ((p_sb->status & QED_IGU_STATUS_FREE) &&
305 !(p_sb->status & QED_IGU_STATUS_PF)) {
306 val = qed_rd(p_hwfn, p_ptt,
307 IGU_REG_MAPPING_MEMORY + sb_id * 4);
308 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
309 qed_wr(p_hwfn, p_ptt,
310 IGU_REG_MAPPING_MEMORY + 4 * sb_id, val);
311 }
312 }
313 }
314
315 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
316 {
317 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
318 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
319 struct qed_bulletin_content *p_bulletin_virt;
320 dma_addr_t req_p, rply_p, bulletin_p;
321 union pfvf_tlvs *p_reply_virt_addr;
322 union vfpf_tlvs *p_req_virt_addr;
323 u8 idx = 0;
324
325 memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
326
327 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
328 req_p = p_iov_info->mbx_msg_phys_addr;
329 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
330 rply_p = p_iov_info->mbx_reply_phys_addr;
331 p_bulletin_virt = p_iov_info->p_bulletins;
332 bulletin_p = p_iov_info->bulletins_phys;
333 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
334 DP_ERR(p_hwfn,
335 "qed_iov_setup_vfdb called without allocating mem first\n");
336 return;
337 }
338
339 for (idx = 0; idx < p_iov->total_vfs; idx++) {
340 struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
341 u32 concrete;
342
343 vf->vf_mbx.req_virt = p_req_virt_addr + idx;
344 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
345 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
346 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
347
348 vf->state = VF_STOPPED;
349 vf->b_init = false;
350
351 vf->bulletin.phys = idx *
352 sizeof(struct qed_bulletin_content) +
353 bulletin_p;
354 vf->bulletin.p_virt = p_bulletin_virt + idx;
355 vf->bulletin.size = sizeof(struct qed_bulletin_content);
356
357 vf->relative_vf_id = idx;
358 vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
359 concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
360 vf->concrete_fid = concrete;
361 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
362 (vf->abs_vf_id << 8);
363 vf->vport_id = idx + 1;
364
365 vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS;
366 vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS;
367 }
368 }
369
370 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
371 {
372 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
373 void **p_v_addr;
374 u16 num_vfs = 0;
375
376 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
377
378 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
379 "qed_iov_allocate_vfdb for %d VFs\n", num_vfs);
380
381 /* Allocate PF Mailbox buffer (per-VF) */
382 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
383 p_v_addr = &p_iov_info->mbx_msg_virt_addr;
384 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
385 p_iov_info->mbx_msg_size,
386 &p_iov_info->mbx_msg_phys_addr,
387 GFP_KERNEL);
388 if (!*p_v_addr)
389 return -ENOMEM;
390
391 /* Allocate PF Mailbox Reply buffer (per-VF) */
392 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
393 p_v_addr = &p_iov_info->mbx_reply_virt_addr;
394 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
395 p_iov_info->mbx_reply_size,
396 &p_iov_info->mbx_reply_phys_addr,
397 GFP_KERNEL);
398 if (!*p_v_addr)
399 return -ENOMEM;
400
401 p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
402 num_vfs;
403 p_v_addr = &p_iov_info->p_bulletins;
404 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
405 p_iov_info->bulletins_size,
406 &p_iov_info->bulletins_phys,
407 GFP_KERNEL);
408 if (!*p_v_addr)
409 return -ENOMEM;
410
411 DP_VERBOSE(p_hwfn,
412 QED_MSG_IOV,
413 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
414 p_iov_info->mbx_msg_virt_addr,
415 (u64) p_iov_info->mbx_msg_phys_addr,
416 p_iov_info->mbx_reply_virt_addr,
417 (u64) p_iov_info->mbx_reply_phys_addr,
418 p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys);
419
420 return 0;
421 }
422
423 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
424 {
425 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
426
427 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
428 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
429 p_iov_info->mbx_msg_size,
430 p_iov_info->mbx_msg_virt_addr,
431 p_iov_info->mbx_msg_phys_addr);
432
433 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
434 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
435 p_iov_info->mbx_reply_size,
436 p_iov_info->mbx_reply_virt_addr,
437 p_iov_info->mbx_reply_phys_addr);
438
439 if (p_iov_info->p_bulletins)
440 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
441 p_iov_info->bulletins_size,
442 p_iov_info->p_bulletins,
443 p_iov_info->bulletins_phys);
444 }
445
446 int qed_iov_alloc(struct qed_hwfn *p_hwfn)
447 {
448 struct qed_pf_iov *p_sriov;
449
450 if (!IS_PF_SRIOV(p_hwfn)) {
451 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
452 "No SR-IOV - no need for IOV db\n");
453 return 0;
454 }
455
456 p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
457 if (!p_sriov) {
458 DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_sriov'\n");
459 return -ENOMEM;
460 }
461
462 p_hwfn->pf_iov_info = p_sriov;
463
464 return qed_iov_allocate_vfdb(p_hwfn);
465 }
466
467 void qed_iov_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
468 {
469 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
470 return;
471
472 qed_iov_setup_vfdb(p_hwfn);
473 qed_iov_clear_vf_igu_blocks(p_hwfn, p_ptt);
474 }
475
476 void qed_iov_free(struct qed_hwfn *p_hwfn)
477 {
478 if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
479 qed_iov_free_vfdb(p_hwfn);
480 kfree(p_hwfn->pf_iov_info);
481 }
482 }
483
484 void qed_iov_free_hw_info(struct qed_dev *cdev)
485 {
486 kfree(cdev->p_iov_info);
487 cdev->p_iov_info = NULL;
488 }
489
490 int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
491 {
492 struct qed_dev *cdev = p_hwfn->cdev;
493 int pos;
494 int rc;
495
496 if (IS_VF(p_hwfn->cdev))
497 return 0;
498
499 /* Learn the PCI configuration */
500 pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
501 PCI_EXT_CAP_ID_SRIOV);
502 if (!pos) {
503 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
504 return 0;
505 }
506
507 /* Allocate a new struct for IOV information */
508 cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
509 if (!cdev->p_iov_info) {
510 DP_NOTICE(p_hwfn, "Can't support IOV due to lack of memory\n");
511 return -ENOMEM;
512 }
513 cdev->p_iov_info->pos = pos;
514
515 rc = qed_iov_pci_cfg_info(cdev);
516 if (rc)
517 return rc;
518
519 /* We want PF IOV to be synonemous with the existance of p_iov_info;
520 * In case the capability is published but there are no VFs, simply
521 * de-allocate the struct.
522 */
523 if (!cdev->p_iov_info->total_vfs) {
524 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
525 "IOV capabilities, but no VFs are published\n");
526 kfree(cdev->p_iov_info);
527 cdev->p_iov_info = NULL;
528 return 0;
529 }
530
531 /* Calculate the first VF index - this is a bit tricky; Basically,
532 * VFs start at offset 16 relative to PF0, and 2nd engine VFs begin
533 * after the first engine's VFs.
534 */
535 cdev->p_iov_info->first_vf_in_pf = p_hwfn->cdev->p_iov_info->offset +
536 p_hwfn->abs_pf_id - 16;
537 if (QED_PATH_ID(p_hwfn))
538 cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
539
540 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
541 "First VF in hwfn 0x%08x\n",
542 cdev->p_iov_info->first_vf_in_pf);
543
544 return 0;
545 }
546
547 static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
548 {
549 /* Check PF supports sriov */
550 if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) ||
551 !IS_PF_SRIOV_ALLOC(p_hwfn))
552 return false;
553
554 /* Check VF validity */
555 if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true))
556 return false;
557
558 return true;
559 }
560
561 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev,
562 u16 rel_vf_id, u8 to_disable)
563 {
564 struct qed_vf_info *vf;
565 int i;
566
567 for_each_hwfn(cdev, i) {
568 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
569
570 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
571 if (!vf)
572 continue;
573
574 vf->to_disable = to_disable;
575 }
576 }
577
578 void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable)
579 {
580 u16 i;
581
582 if (!IS_QED_SRIOV(cdev))
583 return;
584
585 for (i = 0; i < cdev->p_iov_info->total_vfs; i++)
586 qed_iov_set_vf_to_disable(cdev, i, to_disable);
587 }
588
589 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn,
590 struct qed_ptt *p_ptt, u8 abs_vfid)
591 {
592 qed_wr(p_hwfn, p_ptt,
593 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4,
594 1 << (abs_vfid & 0x1f));
595 }
596
597 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn,
598 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
599 {
600 int i;
601
602 /* Set VF masks and configuration - pretend */
603 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
604
605 qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0);
606
607 /* unpretend */
608 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
609
610 /* iterate over all queues, clear sb consumer */
611 for (i = 0; i < vf->num_sbs; i++)
612 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
613 vf->igu_sbs[i],
614 vf->opaque_fid, true);
615 }
616
617 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn,
618 struct qed_ptt *p_ptt,
619 struct qed_vf_info *vf, bool enable)
620 {
621 u32 igu_vf_conf;
622
623 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
624
625 igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION);
626
627 if (enable)
628 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN;
629 else
630 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN;
631
632 qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf);
633
634 /* unpretend */
635 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
636 }
637
638 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn,
639 struct qed_ptt *p_ptt,
640 struct qed_vf_info *vf)
641 {
642 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN;
643 int rc;
644
645 if (vf->to_disable)
646 return 0;
647
648 DP_VERBOSE(p_hwfn,
649 QED_MSG_IOV,
650 "Enable internal access for vf %x [abs %x]\n",
651 vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf));
652
653 qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf));
654
655 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
656
657 rc = qed_mcp_config_vf_msix(p_hwfn, p_ptt, vf->abs_vf_id, vf->num_sbs);
658 if (rc)
659 return rc;
660
661 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
662
663 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id);
664 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf);
665
666 qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id,
667 p_hwfn->hw_info.hw_mode);
668
669 /* unpretend */
670 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
671
672 vf->state = VF_FREE;
673
674 return rc;
675 }
676
677 /**
678 * @brief qed_iov_config_perm_table - configure the permission
679 * zone table.
680 * In E4, queue zone permission table size is 320x9. There
681 * are 320 VF queues for single engine device (256 for dual
682 * engine device), and each entry has the following format:
683 * {Valid, VF[7:0]}
684 * @param p_hwfn
685 * @param p_ptt
686 * @param vf
687 * @param enable
688 */
689 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn,
690 struct qed_ptt *p_ptt,
691 struct qed_vf_info *vf, u8 enable)
692 {
693 u32 reg_addr, val;
694 u16 qzone_id = 0;
695 int qid;
696
697 for (qid = 0; qid < vf->num_rxqs; qid++) {
698 qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid,
699 &qzone_id);
700
701 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4;
702 val = enable ? (vf->abs_vf_id | (1 << 8)) : 0;
703 qed_wr(p_hwfn, p_ptt, reg_addr, val);
704 }
705 }
706
707 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn,
708 struct qed_ptt *p_ptt,
709 struct qed_vf_info *vf)
710 {
711 /* Reset vf in IGU - interrupts are still disabled */
712 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
713
714 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1);
715
716 /* Permission Table */
717 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true);
718 }
719
720 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn,
721 struct qed_ptt *p_ptt,
722 struct qed_vf_info *vf, u16 num_rx_queues)
723 {
724 struct qed_igu_block *igu_blocks;
725 int qid = 0, igu_id = 0;
726 u32 val = 0;
727
728 igu_blocks = p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks;
729
730 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->free_blks)
731 num_rx_queues = p_hwfn->hw_info.p_igu_info->free_blks;
732 p_hwfn->hw_info.p_igu_info->free_blks -= num_rx_queues;
733
734 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id);
735 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1);
736 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0);
737
738 while ((qid < num_rx_queues) &&
739 (igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev))) {
740 if (igu_blocks[igu_id].status & QED_IGU_STATUS_FREE) {
741 struct cau_sb_entry sb_entry;
742
743 vf->igu_sbs[qid] = (u16)igu_id;
744 igu_blocks[igu_id].status &= ~QED_IGU_STATUS_FREE;
745
746 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid);
747
748 qed_wr(p_hwfn, p_ptt,
749 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id,
750 val);
751
752 /* Configure igu sb in CAU which were marked valid */
753 qed_init_cau_sb_entry(p_hwfn, &sb_entry,
754 p_hwfn->rel_pf_id,
755 vf->abs_vf_id, 1);
756 qed_dmae_host2grc(p_hwfn, p_ptt,
757 (u64)(uintptr_t)&sb_entry,
758 CAU_REG_SB_VAR_MEMORY +
759 igu_id * sizeof(u64), 2, 0);
760 qid++;
761 }
762 igu_id++;
763 }
764
765 vf->num_sbs = (u8) num_rx_queues;
766
767 return vf->num_sbs;
768 }
769
770 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn,
771 struct qed_ptt *p_ptt,
772 struct qed_vf_info *vf)
773 {
774 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
775 int idx, igu_id;
776 u32 addr, val;
777
778 /* Invalidate igu CAM lines and mark them as free */
779 for (idx = 0; idx < vf->num_sbs; idx++) {
780 igu_id = vf->igu_sbs[idx];
781 addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id;
782
783 val = qed_rd(p_hwfn, p_ptt, addr);
784 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
785 qed_wr(p_hwfn, p_ptt, addr, val);
786
787 p_info->igu_map.igu_blocks[igu_id].status |=
788 QED_IGU_STATUS_FREE;
789
790 p_hwfn->hw_info.p_igu_info->free_blks++;
791 }
792
793 vf->num_sbs = 0;
794 }
795
796 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn,
797 struct qed_ptt *p_ptt,
798 u16 rel_vf_id, u16 num_rx_queues)
799 {
800 u8 num_of_vf_avaiable_chains = 0;
801 struct qed_vf_info *vf = NULL;
802 int rc = 0;
803 u32 cids;
804 u8 i;
805
806 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
807 if (!vf) {
808 DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n");
809 return -EINVAL;
810 }
811
812 if (vf->b_init) {
813 DP_NOTICE(p_hwfn, "VF[%d] is already active.\n", rel_vf_id);
814 return -EINVAL;
815 }
816
817 /* Limit number of queues according to number of CIDs */
818 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids);
819 DP_VERBOSE(p_hwfn,
820 QED_MSG_IOV,
821 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
822 vf->relative_vf_id, num_rx_queues, (u16) cids);
823 num_rx_queues = min_t(u16, num_rx_queues, ((u16) cids));
824
825 num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn,
826 p_ptt,
827 vf,
828 num_rx_queues);
829 if (!num_of_vf_avaiable_chains) {
830 DP_ERR(p_hwfn, "no available igu sbs\n");
831 return -ENOMEM;
832 }
833
834 /* Choose queue number and index ranges */
835 vf->num_rxqs = num_of_vf_avaiable_chains;
836 vf->num_txqs = num_of_vf_avaiable_chains;
837
838 for (i = 0; i < vf->num_rxqs; i++) {
839 u16 queue_id = qed_int_queue_id_from_sb_id(p_hwfn,
840 vf->igu_sbs[i]);
841
842 if (queue_id > RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
843 DP_NOTICE(p_hwfn,
844 "VF[%d] will require utilizing of out-of-bounds queues - %04x\n",
845 vf->relative_vf_id, queue_id);
846 return -EINVAL;
847 }
848
849 /* CIDs are per-VF, so no problem having them 0-based. */
850 vf->vf_queues[i].fw_rx_qid = queue_id;
851 vf->vf_queues[i].fw_tx_qid = queue_id;
852 vf->vf_queues[i].fw_cid = i;
853
854 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
855 "VF[%d] - [%d] SB %04x, Tx/Rx queue %04x CID %04x\n",
856 vf->relative_vf_id, i, vf->igu_sbs[i], queue_id, i);
857 }
858 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf);
859 if (!rc) {
860 vf->b_init = true;
861
862 if (IS_LEAD_HWFN(p_hwfn))
863 p_hwfn->cdev->p_iov_info->num_vfs++;
864 }
865
866 return rc;
867 }
868
869 static void qed_iov_set_link(struct qed_hwfn *p_hwfn,
870 u16 vfid,
871 struct qed_mcp_link_params *params,
872 struct qed_mcp_link_state *link,
873 struct qed_mcp_link_capabilities *p_caps)
874 {
875 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
876 vfid,
877 false);
878 struct qed_bulletin_content *p_bulletin;
879
880 if (!p_vf)
881 return;
882
883 p_bulletin = p_vf->bulletin.p_virt;
884 p_bulletin->req_autoneg = params->speed.autoneg;
885 p_bulletin->req_adv_speed = params->speed.advertised_speeds;
886 p_bulletin->req_forced_speed = params->speed.forced_speed;
887 p_bulletin->req_autoneg_pause = params->pause.autoneg;
888 p_bulletin->req_forced_rx = params->pause.forced_rx;
889 p_bulletin->req_forced_tx = params->pause.forced_tx;
890 p_bulletin->req_loopback = params->loopback_mode;
891
892 p_bulletin->link_up = link->link_up;
893 p_bulletin->speed = link->speed;
894 p_bulletin->full_duplex = link->full_duplex;
895 p_bulletin->autoneg = link->an;
896 p_bulletin->autoneg_complete = link->an_complete;
897 p_bulletin->parallel_detection = link->parallel_detection;
898 p_bulletin->pfc_enabled = link->pfc_enabled;
899 p_bulletin->partner_adv_speed = link->partner_adv_speed;
900 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en;
901 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en;
902 p_bulletin->partner_adv_pause = link->partner_adv_pause;
903 p_bulletin->sfp_tx_fault = link->sfp_tx_fault;
904
905 p_bulletin->capability_speed = p_caps->speed_capabilities;
906 }
907
908 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn,
909 struct qed_ptt *p_ptt, u16 rel_vf_id)
910 {
911 struct qed_mcp_link_capabilities caps;
912 struct qed_mcp_link_params params;
913 struct qed_mcp_link_state link;
914 struct qed_vf_info *vf = NULL;
915
916 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
917 if (!vf) {
918 DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n");
919 return -EINVAL;
920 }
921
922 if (vf->bulletin.p_virt)
923 memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt));
924
925 memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info));
926
927 /* Get the link configuration back in bulletin so
928 * that when VFs are re-enabled they get the actual
929 * link configuration.
930 */
931 memcpy(&params, qed_mcp_get_link_params(p_hwfn), sizeof(params));
932 memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link));
933 memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
934 qed_iov_set_link(p_hwfn, rel_vf_id, &params, &link, &caps);
935
936 /* Forget the VF's acquisition message */
937 memset(&vf->acquire, 0, sizeof(vf->acquire));
938
939 /* disablng interrupts and resetting permission table was done during
940 * vf-close, however, we could get here without going through vf_close
941 */
942 /* Disable Interrupts for VF */
943 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
944
945 /* Reset Permission table */
946 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
947
948 vf->num_rxqs = 0;
949 vf->num_txqs = 0;
950 qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf);
951
952 if (vf->b_init) {
953 vf->b_init = false;
954
955 if (IS_LEAD_HWFN(p_hwfn))
956 p_hwfn->cdev->p_iov_info->num_vfs--;
957 }
958
959 return 0;
960 }
961
962 static bool qed_iov_tlv_supported(u16 tlvtype)
963 {
964 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
965 }
966
967 /* place a given tlv on the tlv buffer, continuing current tlv list */
968 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
969 {
970 struct channel_tlv *tl = (struct channel_tlv *)*offset;
971
972 tl->type = type;
973 tl->length = length;
974
975 /* Offset should keep pointing to next TLV (the end of the last) */
976 *offset += length;
977
978 /* Return a pointer to the start of the added tlv */
979 return *offset - length;
980 }
981
982 /* list the types and lengths of the tlvs on the buffer */
983 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
984 {
985 u16 i = 1, total_length = 0;
986 struct channel_tlv *tlv;
987
988 do {
989 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
990
991 /* output tlv */
992 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
993 "TLV number %d: type %d, length %d\n",
994 i, tlv->type, tlv->length);
995
996 if (tlv->type == CHANNEL_TLV_LIST_END)
997 return;
998
999 /* Validate entry - protect against malicious VFs */
1000 if (!tlv->length) {
1001 DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
1002 return;
1003 }
1004
1005 total_length += tlv->length;
1006
1007 if (total_length >= sizeof(struct tlv_buffer_size)) {
1008 DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
1009 return;
1010 }
1011
1012 i++;
1013 } while (1);
1014 }
1015
1016 static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
1017 struct qed_ptt *p_ptt,
1018 struct qed_vf_info *p_vf,
1019 u16 length, u8 status)
1020 {
1021 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
1022 struct qed_dmae_params params;
1023 u8 eng_vf_id;
1024
1025 mbx->reply_virt->default_resp.hdr.status = status;
1026
1027 qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
1028
1029 eng_vf_id = p_vf->abs_vf_id;
1030
1031 memset(&params, 0, sizeof(struct qed_dmae_params));
1032 params.flags = QED_DMAE_FLAG_VF_DST;
1033 params.dst_vfid = eng_vf_id;
1034
1035 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
1036 mbx->req_virt->first_tlv.reply_address +
1037 sizeof(u64),
1038 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
1039 &params);
1040
1041 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
1042 mbx->req_virt->first_tlv.reply_address,
1043 sizeof(u64) / 4, &params);
1044
1045 REG_WR(p_hwfn,
1046 GTT_BAR0_MAP_REG_USDM_RAM +
1047 USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1);
1048 }
1049
1050 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn,
1051 enum qed_iov_vport_update_flag flag)
1052 {
1053 switch (flag) {
1054 case QED_IOV_VP_UPDATE_ACTIVATE:
1055 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
1056 case QED_IOV_VP_UPDATE_VLAN_STRIP:
1057 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
1058 case QED_IOV_VP_UPDATE_TX_SWITCH:
1059 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
1060 case QED_IOV_VP_UPDATE_MCAST:
1061 return CHANNEL_TLV_VPORT_UPDATE_MCAST;
1062 case QED_IOV_VP_UPDATE_ACCEPT_PARAM:
1063 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
1064 case QED_IOV_VP_UPDATE_RSS:
1065 return CHANNEL_TLV_VPORT_UPDATE_RSS;
1066 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN:
1067 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
1068 case QED_IOV_VP_UPDATE_SGE_TPA:
1069 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
1070 default:
1071 return 0;
1072 }
1073 }
1074
1075 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn,
1076 struct qed_vf_info *p_vf,
1077 struct qed_iov_vf_mbx *p_mbx,
1078 u8 status,
1079 u16 tlvs_mask, u16 tlvs_accepted)
1080 {
1081 struct pfvf_def_resp_tlv *resp;
1082 u16 size, total_len, i;
1083
1084 memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs));
1085 p_mbx->offset = (u8 *)p_mbx->reply_virt;
1086 size = sizeof(struct pfvf_def_resp_tlv);
1087 total_len = size;
1088
1089 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size);
1090
1091 /* Prepare response for all extended tlvs if they are found by PF */
1092 for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) {
1093 if (!(tlvs_mask & (1 << i)))
1094 continue;
1095
1096 resp = qed_add_tlv(p_hwfn, &p_mbx->offset,
1097 qed_iov_vport_to_tlv(p_hwfn, i), size);
1098
1099 if (tlvs_accepted & (1 << i))
1100 resp->hdr.status = status;
1101 else
1102 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED;
1103
1104 DP_VERBOSE(p_hwfn,
1105 QED_MSG_IOV,
1106 "VF[%d] - vport_update response: TLV %d, status %02x\n",
1107 p_vf->relative_vf_id,
1108 qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status);
1109
1110 total_len += size;
1111 }
1112
1113 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END,
1114 sizeof(struct channel_list_end_tlv));
1115
1116 return total_len;
1117 }
1118
1119 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
1120 struct qed_ptt *p_ptt,
1121 struct qed_vf_info *vf_info,
1122 u16 type, u16 length, u8 status)
1123 {
1124 struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
1125
1126 mbx->offset = (u8 *)mbx->reply_virt;
1127
1128 qed_add_tlv(p_hwfn, &mbx->offset, type, length);
1129 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1130 sizeof(struct channel_list_end_tlv));
1131
1132 qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
1133 }
1134
1135 struct qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn,
1136 u16 relative_vf_id,
1137 bool b_enabled_only)
1138 {
1139 struct qed_vf_info *vf = NULL;
1140
1141 vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only);
1142 if (!vf)
1143 return NULL;
1144
1145 return &vf->p_vf_info;
1146 }
1147
1148 void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid)
1149 {
1150 struct qed_public_vf_info *vf_info;
1151
1152 vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false);
1153
1154 if (!vf_info)
1155 return;
1156
1157 /* Clear the VF mac */
1158 memset(vf_info->mac, 0, ETH_ALEN);
1159 }
1160
1161 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn,
1162 struct qed_vf_info *p_vf)
1163 {
1164 u32 i;
1165
1166 p_vf->vf_bulletin = 0;
1167 p_vf->vport_instance = 0;
1168 p_vf->configured_features = 0;
1169
1170 /* If VF previously requested less resources, go back to default */
1171 p_vf->num_rxqs = p_vf->num_sbs;
1172 p_vf->num_txqs = p_vf->num_sbs;
1173
1174 p_vf->num_active_rxqs = 0;
1175
1176 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++)
1177 p_vf->vf_queues[i].rxq_active = 0;
1178
1179 memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config));
1180 memset(&p_vf->acquire, 0, sizeof(p_vf->acquire));
1181 qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id);
1182 }
1183
1184 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn,
1185 struct qed_ptt *p_ptt,
1186 struct qed_vf_info *p_vf,
1187 struct vf_pf_resc_request *p_req,
1188 struct pf_vf_resc *p_resp)
1189 {
1190 int i;
1191
1192 /* Queue related information */
1193 p_resp->num_rxqs = p_vf->num_rxqs;
1194 p_resp->num_txqs = p_vf->num_txqs;
1195 p_resp->num_sbs = p_vf->num_sbs;
1196
1197 for (i = 0; i < p_resp->num_sbs; i++) {
1198 p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i];
1199 p_resp->hw_sbs[i].sb_qid = 0;
1200 }
1201
1202 /* These fields are filled for backward compatibility.
1203 * Unused by modern vfs.
1204 */
1205 for (i = 0; i < p_resp->num_rxqs; i++) {
1206 qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid,
1207 (u16 *)&p_resp->hw_qid[i]);
1208 p_resp->cid[i] = p_vf->vf_queues[i].fw_cid;
1209 }
1210
1211 /* Filter related information */
1212 p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters,
1213 p_req->num_mac_filters);
1214 p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters,
1215 p_req->num_vlan_filters);
1216
1217 /* This isn't really needed/enforced, but some legacy VFs might depend
1218 * on the correct filling of this field.
1219 */
1220 p_resp->num_mc_filters = QED_MAX_MC_ADDRS;
1221
1222 /* Validate sufficient resources for VF */
1223 if (p_resp->num_rxqs < p_req->num_rxqs ||
1224 p_resp->num_txqs < p_req->num_txqs ||
1225 p_resp->num_sbs < p_req->num_sbs ||
1226 p_resp->num_mac_filters < p_req->num_mac_filters ||
1227 p_resp->num_vlan_filters < p_req->num_vlan_filters ||
1228 p_resp->num_mc_filters < p_req->num_mc_filters) {
1229 DP_VERBOSE(p_hwfn,
1230 QED_MSG_IOV,
1231 "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x]\n",
1232 p_vf->abs_vf_id,
1233 p_req->num_rxqs,
1234 p_resp->num_rxqs,
1235 p_req->num_rxqs,
1236 p_resp->num_txqs,
1237 p_req->num_sbs,
1238 p_resp->num_sbs,
1239 p_req->num_mac_filters,
1240 p_resp->num_mac_filters,
1241 p_req->num_vlan_filters,
1242 p_resp->num_vlan_filters,
1243 p_req->num_mc_filters, p_resp->num_mc_filters);
1244 return PFVF_STATUS_NO_RESOURCE;
1245 }
1246
1247 return PFVF_STATUS_SUCCESS;
1248 }
1249
1250 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn,
1251 struct pfvf_stats_info *p_stats)
1252 {
1253 p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B +
1254 offsetof(struct mstorm_vf_zone,
1255 non_trigger.eth_queue_stat);
1256 p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat);
1257 p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B +
1258 offsetof(struct ustorm_vf_zone,
1259 non_trigger.eth_queue_stat);
1260 p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat);
1261 p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B +
1262 offsetof(struct pstorm_vf_zone,
1263 non_trigger.eth_queue_stat);
1264 p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat);
1265 p_stats->tstats.address = 0;
1266 p_stats->tstats.len = 0;
1267 }
1268
1269 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn,
1270 struct qed_ptt *p_ptt,
1271 struct qed_vf_info *vf)
1272 {
1273 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1274 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp;
1275 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info;
1276 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire;
1277 u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED;
1278 struct pf_vf_resc *resc = &resp->resc;
1279 int rc;
1280
1281 memset(resp, 0, sizeof(*resp));
1282
1283 /* Validate FW compatibility */
1284 if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) {
1285 DP_INFO(p_hwfn,
1286 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n",
1287 vf->abs_vf_id,
1288 req->vfdev_info.eth_fp_hsi_major,
1289 req->vfdev_info.eth_fp_hsi_minor,
1290 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
1291
1292 /* Write the PF version so that VF would know which version
1293 * is supported.
1294 */
1295 pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR;
1296 pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR;
1297
1298 goto out;
1299 }
1300
1301 /* On 100g PFs, prevent old VFs from loading */
1302 if ((p_hwfn->cdev->num_hwfns > 1) &&
1303 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) {
1304 DP_INFO(p_hwfn,
1305 "VF[%d] is running an old driver that doesn't support 100g\n",
1306 vf->abs_vf_id);
1307 goto out;
1308 }
1309
1310 /* Store the acquire message */
1311 memcpy(&vf->acquire, req, sizeof(vf->acquire));
1312
1313 vf->opaque_fid = req->vfdev_info.opaque_fid;
1314
1315 vf->vf_bulletin = req->bulletin_addr;
1316 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ?
1317 vf->bulletin.size : req->bulletin_size;
1318
1319 /* fill in pfdev info */
1320 pfdev_info->chip_num = p_hwfn->cdev->chip_num;
1321 pfdev_info->db_size = 0;
1322 pfdev_info->indices_per_sb = PIS_PER_SB;
1323
1324 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED |
1325 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE;
1326 if (p_hwfn->cdev->num_hwfns > 1)
1327 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G;
1328
1329 qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info);
1330
1331 memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN);
1332
1333 pfdev_info->fw_major = FW_MAJOR_VERSION;
1334 pfdev_info->fw_minor = FW_MINOR_VERSION;
1335 pfdev_info->fw_rev = FW_REVISION_VERSION;
1336 pfdev_info->fw_eng = FW_ENGINEERING_VERSION;
1337 pfdev_info->minor_fp_hsi = min_t(u8,
1338 ETH_HSI_VER_MINOR,
1339 req->vfdev_info.eth_fp_hsi_minor);
1340 pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX;
1341 qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL);
1342
1343 pfdev_info->dev_type = p_hwfn->cdev->type;
1344 pfdev_info->chip_rev = p_hwfn->cdev->chip_rev;
1345
1346 /* Fill resources available to VF; Make sure there are enough to
1347 * satisfy the VF's request.
1348 */
1349 vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf,
1350 &req->resc_request, resc);
1351 if (vfpf_status != PFVF_STATUS_SUCCESS)
1352 goto out;
1353
1354 /* Start the VF in FW */
1355 rc = qed_sp_vf_start(p_hwfn, vf);
1356 if (rc) {
1357 DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id);
1358 vfpf_status = PFVF_STATUS_FAILURE;
1359 goto out;
1360 }
1361
1362 /* Fill agreed size of bulletin board in response */
1363 resp->bulletin_size = vf->bulletin.size;
1364 qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt);
1365
1366 DP_VERBOSE(p_hwfn,
1367 QED_MSG_IOV,
1368 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
1369 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
1370 vf->abs_vf_id,
1371 resp->pfdev_info.chip_num,
1372 resp->pfdev_info.db_size,
1373 resp->pfdev_info.indices_per_sb,
1374 resp->pfdev_info.capabilities,
1375 resc->num_rxqs,
1376 resc->num_txqs,
1377 resc->num_sbs,
1378 resc->num_mac_filters,
1379 resc->num_vlan_filters);
1380 vf->state = VF_ACQUIRED;
1381
1382 /* Prepare Response */
1383 out:
1384 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE,
1385 sizeof(struct pfvf_acquire_resp_tlv), vfpf_status);
1386 }
1387
1388 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn,
1389 struct qed_vf_info *p_vf, bool val)
1390 {
1391 struct qed_sp_vport_update_params params;
1392 int rc;
1393
1394 if (val == p_vf->spoof_chk) {
1395 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1396 "Spoofchk value[%d] is already configured\n", val);
1397 return 0;
1398 }
1399
1400 memset(&params, 0, sizeof(struct qed_sp_vport_update_params));
1401 params.opaque_fid = p_vf->opaque_fid;
1402 params.vport_id = p_vf->vport_id;
1403 params.update_anti_spoofing_en_flg = 1;
1404 params.anti_spoofing_en = val;
1405
1406 rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
1407 if (!rc) {
1408 p_vf->spoof_chk = val;
1409 p_vf->req_spoofchk_val = p_vf->spoof_chk;
1410 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1411 "Spoofchk val[%d] configured\n", val);
1412 } else {
1413 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1414 "Spoofchk configuration[val:%d] failed for VF[%d]\n",
1415 val, p_vf->relative_vf_id);
1416 }
1417
1418 return rc;
1419 }
1420
1421 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn,
1422 struct qed_vf_info *p_vf)
1423 {
1424 struct qed_filter_ucast filter;
1425 int rc = 0;
1426 int i;
1427
1428 memset(&filter, 0, sizeof(filter));
1429 filter.is_rx_filter = 1;
1430 filter.is_tx_filter = 1;
1431 filter.vport_to_add_to = p_vf->vport_id;
1432 filter.opcode = QED_FILTER_ADD;
1433
1434 /* Reconfigure vlans */
1435 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
1436 if (!p_vf->shadow_config.vlans[i].used)
1437 continue;
1438
1439 filter.type = QED_FILTER_VLAN;
1440 filter.vlan = p_vf->shadow_config.vlans[i].vid;
1441 DP_VERBOSE(p_hwfn,
1442 QED_MSG_IOV,
1443 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
1444 filter.vlan, p_vf->relative_vf_id);
1445 rc = qed_sp_eth_filter_ucast(p_hwfn,
1446 p_vf->opaque_fid,
1447 &filter,
1448 QED_SPQ_MODE_CB, NULL);
1449 if (rc) {
1450 DP_NOTICE(p_hwfn,
1451 "Failed to configure VLAN [%04x] to VF [%04x]\n",
1452 filter.vlan, p_vf->relative_vf_id);
1453 break;
1454 }
1455 }
1456
1457 return rc;
1458 }
1459
1460 static int
1461 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn,
1462 struct qed_vf_info *p_vf, u64 events)
1463 {
1464 int rc = 0;
1465
1466 if ((events & (1 << VLAN_ADDR_FORCED)) &&
1467 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED)))
1468 rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf);
1469
1470 return rc;
1471 }
1472
1473 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn,
1474 struct qed_vf_info *p_vf, u64 events)
1475 {
1476 int rc = 0;
1477 struct qed_filter_ucast filter;
1478
1479 if (!p_vf->vport_instance)
1480 return -EINVAL;
1481
1482 if (events & (1 << MAC_ADDR_FORCED)) {
1483 /* Since there's no way [currently] of removing the MAC,
1484 * we can always assume this means we need to force it.
1485 */
1486 memset(&filter, 0, sizeof(filter));
1487 filter.type = QED_FILTER_MAC;
1488 filter.opcode = QED_FILTER_REPLACE;
1489 filter.is_rx_filter = 1;
1490 filter.is_tx_filter = 1;
1491 filter.vport_to_add_to = p_vf->vport_id;
1492 ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac);
1493
1494 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1495 &filter, QED_SPQ_MODE_CB, NULL);
1496 if (rc) {
1497 DP_NOTICE(p_hwfn,
1498 "PF failed to configure MAC for VF\n");
1499 return rc;
1500 }
1501
1502 p_vf->configured_features |= 1 << MAC_ADDR_FORCED;
1503 }
1504
1505 if (events & (1 << VLAN_ADDR_FORCED)) {
1506 struct qed_sp_vport_update_params vport_update;
1507 u8 removal;
1508 int i;
1509
1510 memset(&filter, 0, sizeof(filter));
1511 filter.type = QED_FILTER_VLAN;
1512 filter.is_rx_filter = 1;
1513 filter.is_tx_filter = 1;
1514 filter.vport_to_add_to = p_vf->vport_id;
1515 filter.vlan = p_vf->bulletin.p_virt->pvid;
1516 filter.opcode = filter.vlan ? QED_FILTER_REPLACE :
1517 QED_FILTER_FLUSH;
1518
1519 /* Send the ramrod */
1520 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1521 &filter, QED_SPQ_MODE_CB, NULL);
1522 if (rc) {
1523 DP_NOTICE(p_hwfn,
1524 "PF failed to configure VLAN for VF\n");
1525 return rc;
1526 }
1527
1528 /* Update the default-vlan & silent vlan stripping */
1529 memset(&vport_update, 0, sizeof(vport_update));
1530 vport_update.opaque_fid = p_vf->opaque_fid;
1531 vport_update.vport_id = p_vf->vport_id;
1532 vport_update.update_default_vlan_enable_flg = 1;
1533 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0;
1534 vport_update.update_default_vlan_flg = 1;
1535 vport_update.default_vlan = filter.vlan;
1536
1537 vport_update.update_inner_vlan_removal_flg = 1;
1538 removal = filter.vlan ? 1
1539 : p_vf->shadow_config.inner_vlan_removal;
1540 vport_update.inner_vlan_removal_flg = removal;
1541 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0;
1542 rc = qed_sp_vport_update(p_hwfn,
1543 &vport_update,
1544 QED_SPQ_MODE_EBLOCK, NULL);
1545 if (rc) {
1546 DP_NOTICE(p_hwfn,
1547 "PF failed to configure VF vport for vlan\n");
1548 return rc;
1549 }
1550
1551 /* Update all the Rx queues */
1552 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1553 u16 qid;
1554
1555 if (!p_vf->vf_queues[i].rxq_active)
1556 continue;
1557
1558 qid = p_vf->vf_queues[i].fw_rx_qid;
1559
1560 rc = qed_sp_eth_rx_queues_update(p_hwfn, qid,
1561 1, 0, 1,
1562 QED_SPQ_MODE_EBLOCK,
1563 NULL);
1564 if (rc) {
1565 DP_NOTICE(p_hwfn,
1566 "Failed to send Rx update fo queue[0x%04x]\n",
1567 qid);
1568 return rc;
1569 }
1570 }
1571
1572 if (filter.vlan)
1573 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED;
1574 else
1575 p_vf->configured_features &= ~(1 << VLAN_ADDR_FORCED);
1576 }
1577
1578 /* If forced features are terminated, we need to configure the shadow
1579 * configuration back again.
1580 */
1581 if (events)
1582 qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events);
1583
1584 return rc;
1585 }
1586
1587 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn,
1588 struct qed_ptt *p_ptt,
1589 struct qed_vf_info *vf)
1590 {
1591 struct qed_sp_vport_start_params params = { 0 };
1592 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1593 struct vfpf_vport_start_tlv *start;
1594 u8 status = PFVF_STATUS_SUCCESS;
1595 struct qed_vf_info *vf_info;
1596 u64 *p_bitmap;
1597 int sb_id;
1598 int rc;
1599
1600 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true);
1601 if (!vf_info) {
1602 DP_NOTICE(p_hwfn->cdev,
1603 "Failed to get VF info, invalid vfid [%d]\n",
1604 vf->relative_vf_id);
1605 return;
1606 }
1607
1608 vf->state = VF_ENABLED;
1609 start = &mbx->req_virt->start_vport;
1610
1611 /* Initialize Status block in CAU */
1612 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) {
1613 if (!start->sb_addr[sb_id]) {
1614 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1615 "VF[%d] did not fill the address of SB %d\n",
1616 vf->relative_vf_id, sb_id);
1617 break;
1618 }
1619
1620 qed_int_cau_conf_sb(p_hwfn, p_ptt,
1621 start->sb_addr[sb_id],
1622 vf->igu_sbs[sb_id],
1623 vf->abs_vf_id, 1);
1624 }
1625 qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf);
1626
1627 vf->mtu = start->mtu;
1628 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal;
1629
1630 /* Take into consideration configuration forced by hypervisor;
1631 * If none is configured, use the supplied VF values [for old
1632 * vfs that would still be fine, since they passed '0' as padding].
1633 */
1634 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap;
1635 if (!(*p_bitmap & (1 << VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) {
1636 u8 vf_req = start->only_untagged;
1637
1638 vf_info->bulletin.p_virt->default_only_untagged = vf_req;
1639 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT;
1640 }
1641
1642 params.tpa_mode = start->tpa_mode;
1643 params.remove_inner_vlan = start->inner_vlan_removal;
1644 params.tx_switching = true;
1645
1646 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged;
1647 params.drop_ttl0 = false;
1648 params.concrete_fid = vf->concrete_fid;
1649 params.opaque_fid = vf->opaque_fid;
1650 params.vport_id = vf->vport_id;
1651 params.max_buffers_per_cqe = start->max_buffers_per_cqe;
1652 params.mtu = vf->mtu;
1653
1654 rc = qed_sp_eth_vport_start(p_hwfn, &params);
1655 if (rc != 0) {
1656 DP_ERR(p_hwfn,
1657 "qed_iov_vf_mbx_start_vport returned error %d\n", rc);
1658 status = PFVF_STATUS_FAILURE;
1659 } else {
1660 vf->vport_instance++;
1661
1662 /* Force configuration if needed on the newly opened vport */
1663 qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap);
1664
1665 __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val);
1666 }
1667 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START,
1668 sizeof(struct pfvf_def_resp_tlv), status);
1669 }
1670
1671 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn,
1672 struct qed_ptt *p_ptt,
1673 struct qed_vf_info *vf)
1674 {
1675 u8 status = PFVF_STATUS_SUCCESS;
1676 int rc;
1677
1678 vf->vport_instance--;
1679 vf->spoof_chk = false;
1680
1681 rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id);
1682 if (rc != 0) {
1683 DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n",
1684 rc);
1685 status = PFVF_STATUS_FAILURE;
1686 }
1687
1688 /* Forget the configuration on the vport */
1689 vf->configured_features = 0;
1690 memset(&vf->shadow_config, 0, sizeof(vf->shadow_config));
1691
1692 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN,
1693 sizeof(struct pfvf_def_resp_tlv), status);
1694 }
1695
1696 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn,
1697 struct qed_ptt *p_ptt,
1698 struct qed_vf_info *vf, u8 status)
1699 {
1700 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1701 struct pfvf_start_queue_resp_tlv *p_tlv;
1702 struct vfpf_start_rxq_tlv *req;
1703
1704 mbx->offset = (u8 *)mbx->reply_virt;
1705
1706 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ,
1707 sizeof(*p_tlv));
1708 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1709 sizeof(struct channel_list_end_tlv));
1710
1711 /* Update the TLV with the response */
1712 if (status == PFVF_STATUS_SUCCESS) {
1713 req = &mbx->req_virt->start_rxq;
1714 p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B +
1715 offsetof(struct mstorm_vf_zone,
1716 non_trigger.eth_rx_queue_producers) +
1717 sizeof(struct eth_rx_prod_data) * req->rx_qid;
1718 }
1719
1720 qed_iov_send_response(p_hwfn, p_ptt, vf, sizeof(*p_tlv), status);
1721 }
1722
1723 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn,
1724 struct qed_ptt *p_ptt,
1725 struct qed_vf_info *vf)
1726 {
1727 struct qed_queue_start_common_params params;
1728 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1729 u8 status = PFVF_STATUS_NO_RESOURCE;
1730 struct vfpf_start_rxq_tlv *req;
1731 int rc;
1732
1733 memset(&params, 0, sizeof(params));
1734 req = &mbx->req_virt->start_rxq;
1735
1736 if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid) ||
1737 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
1738 goto out;
1739
1740 params.queue_id = vf->vf_queues[req->rx_qid].fw_rx_qid;
1741 params.vf_qid = req->rx_qid;
1742 params.vport_id = vf->vport_id;
1743 params.sb = req->hw_sb;
1744 params.sb_idx = req->sb_index;
1745
1746 rc = qed_sp_eth_rxq_start_ramrod(p_hwfn, vf->opaque_fid,
1747 vf->vf_queues[req->rx_qid].fw_cid,
1748 &params,
1749 vf->abs_vf_id + 0x10,
1750 req->bd_max_bytes,
1751 req->rxq_addr,
1752 req->cqe_pbl_addr, req->cqe_pbl_size);
1753
1754 if (rc) {
1755 status = PFVF_STATUS_FAILURE;
1756 } else {
1757 status = PFVF_STATUS_SUCCESS;
1758 vf->vf_queues[req->rx_qid].rxq_active = true;
1759 vf->num_active_rxqs++;
1760 }
1761
1762 out:
1763 qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status);
1764 }
1765
1766 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn,
1767 struct qed_ptt *p_ptt,
1768 struct qed_vf_info *p_vf, u8 status)
1769 {
1770 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
1771 struct pfvf_start_queue_resp_tlv *p_tlv;
1772
1773 mbx->offset = (u8 *)mbx->reply_virt;
1774
1775 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ,
1776 sizeof(*p_tlv));
1777 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1778 sizeof(struct channel_list_end_tlv));
1779
1780 /* Update the TLV with the response */
1781 if (status == PFVF_STATUS_SUCCESS) {
1782 u16 qid = mbx->req_virt->start_txq.tx_qid;
1783
1784 p_tlv->offset = qed_db_addr(p_vf->vf_queues[qid].fw_cid,
1785 DQ_DEMS_LEGACY);
1786 }
1787
1788 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_tlv), status);
1789 }
1790
1791 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn,
1792 struct qed_ptt *p_ptt,
1793 struct qed_vf_info *vf)
1794 {
1795 struct qed_queue_start_common_params params;
1796 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1797 u8 status = PFVF_STATUS_NO_RESOURCE;
1798 union qed_qm_pq_params pq_params;
1799 struct vfpf_start_txq_tlv *req;
1800 int rc;
1801
1802 /* Prepare the parameters which would choose the right PQ */
1803 memset(&pq_params, 0, sizeof(pq_params));
1804 pq_params.eth.is_vf = 1;
1805 pq_params.eth.vf_id = vf->relative_vf_id;
1806
1807 memset(&params, 0, sizeof(params));
1808 req = &mbx->req_virt->start_txq;
1809
1810 if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid) ||
1811 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
1812 goto out;
1813
1814 params.queue_id = vf->vf_queues[req->tx_qid].fw_tx_qid;
1815 params.vport_id = vf->vport_id;
1816 params.sb = req->hw_sb;
1817 params.sb_idx = req->sb_index;
1818
1819 rc = qed_sp_eth_txq_start_ramrod(p_hwfn,
1820 vf->opaque_fid,
1821 vf->vf_queues[req->tx_qid].fw_cid,
1822 &params,
1823 vf->abs_vf_id + 0x10,
1824 req->pbl_addr,
1825 req->pbl_size, &pq_params);
1826
1827 if (rc) {
1828 status = PFVF_STATUS_FAILURE;
1829 } else {
1830 status = PFVF_STATUS_SUCCESS;
1831 vf->vf_queues[req->tx_qid].txq_active = true;
1832 }
1833
1834 out:
1835 qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, status);
1836 }
1837
1838 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn,
1839 struct qed_vf_info *vf,
1840 u16 rxq_id, u8 num_rxqs, bool cqe_completion)
1841 {
1842 int rc = 0;
1843 int qid;
1844
1845 if (rxq_id + num_rxqs > ARRAY_SIZE(vf->vf_queues))
1846 return -EINVAL;
1847
1848 for (qid = rxq_id; qid < rxq_id + num_rxqs; qid++) {
1849 if (vf->vf_queues[qid].rxq_active) {
1850 rc = qed_sp_eth_rx_queue_stop(p_hwfn,
1851 vf->vf_queues[qid].
1852 fw_rx_qid, false,
1853 cqe_completion);
1854
1855 if (rc)
1856 return rc;
1857 }
1858 vf->vf_queues[qid].rxq_active = false;
1859 vf->num_active_rxqs--;
1860 }
1861
1862 return rc;
1863 }
1864
1865 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn,
1866 struct qed_vf_info *vf, u16 txq_id, u8 num_txqs)
1867 {
1868 int rc = 0;
1869 int qid;
1870
1871 if (txq_id + num_txqs > ARRAY_SIZE(vf->vf_queues))
1872 return -EINVAL;
1873
1874 for (qid = txq_id; qid < txq_id + num_txqs; qid++) {
1875 if (vf->vf_queues[qid].txq_active) {
1876 rc = qed_sp_eth_tx_queue_stop(p_hwfn,
1877 vf->vf_queues[qid].
1878 fw_tx_qid);
1879
1880 if (rc)
1881 return rc;
1882 }
1883 vf->vf_queues[qid].txq_active = false;
1884 }
1885 return rc;
1886 }
1887
1888 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn,
1889 struct qed_ptt *p_ptt,
1890 struct qed_vf_info *vf)
1891 {
1892 u16 length = sizeof(struct pfvf_def_resp_tlv);
1893 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1894 u8 status = PFVF_STATUS_SUCCESS;
1895 struct vfpf_stop_rxqs_tlv *req;
1896 int rc;
1897
1898 /* We give the option of starting from qid != 0, in this case we
1899 * need to make sure that qid + num_qs doesn't exceed the actual
1900 * amount of queues that exist.
1901 */
1902 req = &mbx->req_virt->stop_rxqs;
1903 rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid,
1904 req->num_rxqs, req->cqe_completion);
1905 if (rc)
1906 status = PFVF_STATUS_FAILURE;
1907
1908 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS,
1909 length, status);
1910 }
1911
1912 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn,
1913 struct qed_ptt *p_ptt,
1914 struct qed_vf_info *vf)
1915 {
1916 u16 length = sizeof(struct pfvf_def_resp_tlv);
1917 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1918 u8 status = PFVF_STATUS_SUCCESS;
1919 struct vfpf_stop_txqs_tlv *req;
1920 int rc;
1921
1922 /* We give the option of starting from qid != 0, in this case we
1923 * need to make sure that qid + num_qs doesn't exceed the actual
1924 * amount of queues that exist.
1925 */
1926 req = &mbx->req_virt->stop_txqs;
1927 rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, req->num_txqs);
1928 if (rc)
1929 status = PFVF_STATUS_FAILURE;
1930
1931 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS,
1932 length, status);
1933 }
1934
1935 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn,
1936 struct qed_ptt *p_ptt,
1937 struct qed_vf_info *vf)
1938 {
1939 u16 length = sizeof(struct pfvf_def_resp_tlv);
1940 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1941 struct vfpf_update_rxq_tlv *req;
1942 u8 status = PFVF_STATUS_SUCCESS;
1943 u8 complete_event_flg;
1944 u8 complete_cqe_flg;
1945 u16 qid;
1946 int rc;
1947 u8 i;
1948
1949 req = &mbx->req_virt->update_rxq;
1950 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG);
1951 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG);
1952
1953 for (i = 0; i < req->num_rxqs; i++) {
1954 qid = req->rx_qid + i;
1955
1956 if (!vf->vf_queues[qid].rxq_active) {
1957 DP_NOTICE(p_hwfn, "VF rx_qid = %d isn`t active!\n",
1958 qid);
1959 status = PFVF_STATUS_FAILURE;
1960 break;
1961 }
1962
1963 rc = qed_sp_eth_rx_queues_update(p_hwfn,
1964 vf->vf_queues[qid].fw_rx_qid,
1965 1,
1966 complete_cqe_flg,
1967 complete_event_flg,
1968 QED_SPQ_MODE_EBLOCK, NULL);
1969
1970 if (rc) {
1971 status = PFVF_STATUS_FAILURE;
1972 break;
1973 }
1974 }
1975
1976 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ,
1977 length, status);
1978 }
1979
1980 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn,
1981 void *p_tlvs_list, u16 req_type)
1982 {
1983 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list;
1984 int len = 0;
1985
1986 do {
1987 if (!p_tlv->length) {
1988 DP_NOTICE(p_hwfn, "Zero length TLV found\n");
1989 return NULL;
1990 }
1991
1992 if (p_tlv->type == req_type) {
1993 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1994 "Extended tlv type %d, length %d found\n",
1995 p_tlv->type, p_tlv->length);
1996 return p_tlv;
1997 }
1998
1999 len += p_tlv->length;
2000 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length);
2001
2002 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) {
2003 DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n");
2004 return NULL;
2005 }
2006 } while (p_tlv->type != CHANNEL_TLV_LIST_END);
2007
2008 return NULL;
2009 }
2010
2011 static void
2012 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn,
2013 struct qed_sp_vport_update_params *p_data,
2014 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2015 {
2016 struct vfpf_vport_update_activate_tlv *p_act_tlv;
2017 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
2018
2019 p_act_tlv = (struct vfpf_vport_update_activate_tlv *)
2020 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2021 if (!p_act_tlv)
2022 return;
2023
2024 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx;
2025 p_data->vport_active_rx_flg = p_act_tlv->active_rx;
2026 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx;
2027 p_data->vport_active_tx_flg = p_act_tlv->active_tx;
2028 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE;
2029 }
2030
2031 static void
2032 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn,
2033 struct qed_sp_vport_update_params *p_data,
2034 struct qed_vf_info *p_vf,
2035 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2036 {
2037 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv;
2038 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
2039
2040 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *)
2041 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2042 if (!p_vlan_tlv)
2043 return;
2044
2045 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan;
2046
2047 /* Ignore the VF request if we're forcing a vlan */
2048 if (!(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) {
2049 p_data->update_inner_vlan_removal_flg = 1;
2050 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan;
2051 }
2052
2053 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP;
2054 }
2055
2056 static void
2057 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn,
2058 struct qed_sp_vport_update_params *p_data,
2059 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2060 {
2061 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv;
2062 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
2063
2064 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *)
2065 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2066 tlv);
2067 if (!p_tx_switch_tlv)
2068 return;
2069
2070 p_data->update_tx_switching_flg = 1;
2071 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching;
2072 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH;
2073 }
2074
2075 static void
2076 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn,
2077 struct qed_sp_vport_update_params *p_data,
2078 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2079 {
2080 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv;
2081 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST;
2082
2083 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *)
2084 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2085 if (!p_mcast_tlv)
2086 return;
2087
2088 p_data->update_approx_mcast_flg = 1;
2089 memcpy(p_data->bins, p_mcast_tlv->bins,
2090 sizeof(unsigned long) * ETH_MULTICAST_MAC_BINS_IN_REGS);
2091 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST;
2092 }
2093
2094 static void
2095 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn,
2096 struct qed_sp_vport_update_params *p_data,
2097 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2098 {
2099 struct qed_filter_accept_flags *p_flags = &p_data->accept_flags;
2100 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv;
2101 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
2102
2103 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *)
2104 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2105 if (!p_accept_tlv)
2106 return;
2107
2108 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode;
2109 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter;
2110 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode;
2111 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter;
2112 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM;
2113 }
2114
2115 static void
2116 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn,
2117 struct qed_sp_vport_update_params *p_data,
2118 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2119 {
2120 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan;
2121 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
2122
2123 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *)
2124 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2125 tlv);
2126 if (!p_accept_any_vlan)
2127 return;
2128
2129 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan;
2130 p_data->update_accept_any_vlan_flg =
2131 p_accept_any_vlan->update_accept_any_vlan_flg;
2132 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN;
2133 }
2134
2135 static void
2136 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn,
2137 struct qed_vf_info *vf,
2138 struct qed_sp_vport_update_params *p_data,
2139 struct qed_rss_params *p_rss,
2140 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2141 {
2142 struct vfpf_vport_update_rss_tlv *p_rss_tlv;
2143 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS;
2144 u16 i, q_idx, max_q_idx;
2145 u16 table_size;
2146
2147 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *)
2148 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2149 if (!p_rss_tlv) {
2150 p_data->rss_params = NULL;
2151 return;
2152 }
2153
2154 memset(p_rss, 0, sizeof(struct qed_rss_params));
2155
2156 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags &
2157 VFPF_UPDATE_RSS_CONFIG_FLAG);
2158 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags &
2159 VFPF_UPDATE_RSS_CAPS_FLAG);
2160 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags &
2161 VFPF_UPDATE_RSS_IND_TABLE_FLAG);
2162 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags &
2163 VFPF_UPDATE_RSS_KEY_FLAG);
2164
2165 p_rss->rss_enable = p_rss_tlv->rss_enable;
2166 p_rss->rss_eng_id = vf->relative_vf_id + 1;
2167 p_rss->rss_caps = p_rss_tlv->rss_caps;
2168 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log;
2169 memcpy(p_rss->rss_ind_table, p_rss_tlv->rss_ind_table,
2170 sizeof(p_rss->rss_ind_table));
2171 memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key));
2172
2173 table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table),
2174 (1 << p_rss_tlv->rss_table_size_log));
2175
2176 max_q_idx = ARRAY_SIZE(vf->vf_queues);
2177
2178 for (i = 0; i < table_size; i++) {
2179 u16 index = vf->vf_queues[0].fw_rx_qid;
2180
2181 q_idx = p_rss->rss_ind_table[i];
2182 if (q_idx >= max_q_idx)
2183 DP_NOTICE(p_hwfn,
2184 "rss_ind_table[%d] = %d, rxq is out of range\n",
2185 i, q_idx);
2186 else if (!vf->vf_queues[q_idx].rxq_active)
2187 DP_NOTICE(p_hwfn,
2188 "rss_ind_table[%d] = %d, rxq is not active\n",
2189 i, q_idx);
2190 else
2191 index = vf->vf_queues[q_idx].fw_rx_qid;
2192 p_rss->rss_ind_table[i] = index;
2193 }
2194
2195 p_data->rss_params = p_rss;
2196 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS;
2197 }
2198
2199 static void
2200 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn,
2201 struct qed_vf_info *vf,
2202 struct qed_sp_vport_update_params *p_data,
2203 struct qed_sge_tpa_params *p_sge_tpa,
2204 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2205 {
2206 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv;
2207 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
2208
2209 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *)
2210 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2211
2212 if (!p_sge_tpa_tlv) {
2213 p_data->sge_tpa_params = NULL;
2214 return;
2215 }
2216
2217 memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params));
2218
2219 p_sge_tpa->update_tpa_en_flg =
2220 !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG);
2221 p_sge_tpa->update_tpa_param_flg =
2222 !!(p_sge_tpa_tlv->update_sge_tpa_flags &
2223 VFPF_UPDATE_TPA_PARAM_FLAG);
2224
2225 p_sge_tpa->tpa_ipv4_en_flg =
2226 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG);
2227 p_sge_tpa->tpa_ipv6_en_flg =
2228 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG);
2229 p_sge_tpa->tpa_pkt_split_flg =
2230 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG);
2231 p_sge_tpa->tpa_hdr_data_split_flg =
2232 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG);
2233 p_sge_tpa->tpa_gro_consistent_flg =
2234 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG);
2235
2236 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num;
2237 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size;
2238 p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start;
2239 p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont;
2240 p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe;
2241
2242 p_data->sge_tpa_params = p_sge_tpa;
2243
2244 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA;
2245 }
2246
2247 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn,
2248 struct qed_ptt *p_ptt,
2249 struct qed_vf_info *vf)
2250 {
2251 struct qed_sp_vport_update_params params;
2252 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2253 struct qed_sge_tpa_params sge_tpa_params;
2254 struct qed_rss_params rss_params;
2255 u8 status = PFVF_STATUS_SUCCESS;
2256 u16 tlvs_mask = 0;
2257 u16 length;
2258 int rc;
2259
2260 /* Valiate PF can send such a request */
2261 if (!vf->vport_instance) {
2262 DP_VERBOSE(p_hwfn,
2263 QED_MSG_IOV,
2264 "No VPORT instance available for VF[%d], failing vport update\n",
2265 vf->abs_vf_id);
2266 status = PFVF_STATUS_FAILURE;
2267 goto out;
2268 }
2269
2270 memset(&params, 0, sizeof(params));
2271 params.opaque_fid = vf->opaque_fid;
2272 params.vport_id = vf->vport_id;
2273 params.rss_params = NULL;
2274
2275 /* Search for extended tlvs list and update values
2276 * from VF in struct qed_sp_vport_update_params.
2277 */
2278 qed_iov_vp_update_act_param(p_hwfn, &params, mbx, &tlvs_mask);
2279 qed_iov_vp_update_vlan_param(p_hwfn, &params, vf, mbx, &tlvs_mask);
2280 qed_iov_vp_update_tx_switch(p_hwfn, &params, mbx, &tlvs_mask);
2281 qed_iov_vp_update_mcast_bin_param(p_hwfn, &params, mbx, &tlvs_mask);
2282 qed_iov_vp_update_accept_flag(p_hwfn, &params, mbx, &tlvs_mask);
2283 qed_iov_vp_update_rss_param(p_hwfn, vf, &params, &rss_params,
2284 mbx, &tlvs_mask);
2285 qed_iov_vp_update_accept_any_vlan(p_hwfn, &params, mbx, &tlvs_mask);
2286 qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, &params,
2287 &sge_tpa_params, mbx, &tlvs_mask);
2288
2289 /* Just log a message if there is no single extended tlv in buffer.
2290 * When all features of vport update ramrod would be requested by VF
2291 * as extended TLVs in buffer then an error can be returned in response
2292 * if there is no extended TLV present in buffer.
2293 */
2294 if (!tlvs_mask) {
2295 DP_NOTICE(p_hwfn,
2296 "No feature tlvs found for vport update\n");
2297 status = PFVF_STATUS_NOT_SUPPORTED;
2298 goto out;
2299 }
2300
2301 rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
2302
2303 if (rc)
2304 status = PFVF_STATUS_FAILURE;
2305
2306 out:
2307 length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status,
2308 tlvs_mask, tlvs_mask);
2309 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
2310 }
2311
2312 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn,
2313 struct qed_vf_info *p_vf,
2314 struct qed_filter_ucast *p_params)
2315 {
2316 int i;
2317
2318 /* First remove entries and then add new ones */
2319 if (p_params->opcode == QED_FILTER_REMOVE) {
2320 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
2321 if (p_vf->shadow_config.vlans[i].used &&
2322 p_vf->shadow_config.vlans[i].vid ==
2323 p_params->vlan) {
2324 p_vf->shadow_config.vlans[i].used = false;
2325 break;
2326 }
2327 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
2328 DP_VERBOSE(p_hwfn,
2329 QED_MSG_IOV,
2330 "VF [%d] - Tries to remove a non-existing vlan\n",
2331 p_vf->relative_vf_id);
2332 return -EINVAL;
2333 }
2334 } else if (p_params->opcode == QED_FILTER_REPLACE ||
2335 p_params->opcode == QED_FILTER_FLUSH) {
2336 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
2337 p_vf->shadow_config.vlans[i].used = false;
2338 }
2339
2340 /* In forced mode, we're willing to remove entries - but we don't add
2341 * new ones.
2342 */
2343 if (p_vf->bulletin.p_virt->valid_bitmap & (1 << VLAN_ADDR_FORCED))
2344 return 0;
2345
2346 if (p_params->opcode == QED_FILTER_ADD ||
2347 p_params->opcode == QED_FILTER_REPLACE) {
2348 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
2349 if (p_vf->shadow_config.vlans[i].used)
2350 continue;
2351
2352 p_vf->shadow_config.vlans[i].used = true;
2353 p_vf->shadow_config.vlans[i].vid = p_params->vlan;
2354 break;
2355 }
2356
2357 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
2358 DP_VERBOSE(p_hwfn,
2359 QED_MSG_IOV,
2360 "VF [%d] - Tries to configure more than %d vlan filters\n",
2361 p_vf->relative_vf_id,
2362 QED_ETH_VF_NUM_VLAN_FILTERS + 1);
2363 return -EINVAL;
2364 }
2365 }
2366
2367 return 0;
2368 }
2369
2370 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn,
2371 struct qed_vf_info *p_vf,
2372 struct qed_filter_ucast *p_params)
2373 {
2374 int i;
2375
2376 /* If we're in forced-mode, we don't allow any change */
2377 if (p_vf->bulletin.p_virt->valid_bitmap & (1 << MAC_ADDR_FORCED))
2378 return 0;
2379
2380 /* First remove entries and then add new ones */
2381 if (p_params->opcode == QED_FILTER_REMOVE) {
2382 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
2383 if (ether_addr_equal(p_vf->shadow_config.macs[i],
2384 p_params->mac)) {
2385 memset(p_vf->shadow_config.macs[i], 0,
2386 ETH_ALEN);
2387 break;
2388 }
2389 }
2390
2391 if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
2392 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2393 "MAC isn't configured\n");
2394 return -EINVAL;
2395 }
2396 } else if (p_params->opcode == QED_FILTER_REPLACE ||
2397 p_params->opcode == QED_FILTER_FLUSH) {
2398 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++)
2399 memset(p_vf->shadow_config.macs[i], 0, ETH_ALEN);
2400 }
2401
2402 /* List the new MAC address */
2403 if (p_params->opcode != QED_FILTER_ADD &&
2404 p_params->opcode != QED_FILTER_REPLACE)
2405 return 0;
2406
2407 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
2408 if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) {
2409 ether_addr_copy(p_vf->shadow_config.macs[i],
2410 p_params->mac);
2411 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2412 "Added MAC at %d entry in shadow\n", i);
2413 break;
2414 }
2415 }
2416
2417 if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
2418 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n");
2419 return -EINVAL;
2420 }
2421
2422 return 0;
2423 }
2424
2425 static int
2426 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn,
2427 struct qed_vf_info *p_vf,
2428 struct qed_filter_ucast *p_params)
2429 {
2430 int rc = 0;
2431
2432 if (p_params->type == QED_FILTER_MAC) {
2433 rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params);
2434 if (rc)
2435 return rc;
2436 }
2437
2438 if (p_params->type == QED_FILTER_VLAN)
2439 rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params);
2440
2441 return rc;
2442 }
2443
2444 int qed_iov_chk_ucast(struct qed_hwfn *hwfn,
2445 int vfid, struct qed_filter_ucast *params)
2446 {
2447 struct qed_public_vf_info *vf;
2448
2449 vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
2450 if (!vf)
2451 return -EINVAL;
2452
2453 /* No real decision to make; Store the configured MAC */
2454 if (params->type == QED_FILTER_MAC ||
2455 params->type == QED_FILTER_MAC_VLAN)
2456 ether_addr_copy(vf->mac, params->mac);
2457
2458 return 0;
2459 }
2460
2461 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn,
2462 struct qed_ptt *p_ptt,
2463 struct qed_vf_info *vf)
2464 {
2465 struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt;
2466 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2467 struct vfpf_ucast_filter_tlv *req;
2468 u8 status = PFVF_STATUS_SUCCESS;
2469 struct qed_filter_ucast params;
2470 int rc;
2471
2472 /* Prepare the unicast filter params */
2473 memset(&params, 0, sizeof(struct qed_filter_ucast));
2474 req = &mbx->req_virt->ucast_filter;
2475 params.opcode = (enum qed_filter_opcode)req->opcode;
2476 params.type = (enum qed_filter_ucast_type)req->type;
2477
2478 params.is_rx_filter = 1;
2479 params.is_tx_filter = 1;
2480 params.vport_to_remove_from = vf->vport_id;
2481 params.vport_to_add_to = vf->vport_id;
2482 memcpy(params.mac, req->mac, ETH_ALEN);
2483 params.vlan = req->vlan;
2484
2485 DP_VERBOSE(p_hwfn,
2486 QED_MSG_IOV,
2487 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n",
2488 vf->abs_vf_id, params.opcode, params.type,
2489 params.is_rx_filter ? "RX" : "",
2490 params.is_tx_filter ? "TX" : "",
2491 params.vport_to_add_to,
2492 params.mac[0], params.mac[1],
2493 params.mac[2], params.mac[3],
2494 params.mac[4], params.mac[5], params.vlan);
2495
2496 if (!vf->vport_instance) {
2497 DP_VERBOSE(p_hwfn,
2498 QED_MSG_IOV,
2499 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
2500 vf->abs_vf_id);
2501 status = PFVF_STATUS_FAILURE;
2502 goto out;
2503 }
2504
2505 /* Update shadow copy of the VF configuration */
2506 if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, &params)) {
2507 status = PFVF_STATUS_FAILURE;
2508 goto out;
2509 }
2510
2511 /* Determine if the unicast filtering is acceptible by PF */
2512 if ((p_bulletin->valid_bitmap & (1 << VLAN_ADDR_FORCED)) &&
2513 (params.type == QED_FILTER_VLAN ||
2514 params.type == QED_FILTER_MAC_VLAN)) {
2515 /* Once VLAN is forced or PVID is set, do not allow
2516 * to add/replace any further VLANs.
2517 */
2518 if (params.opcode == QED_FILTER_ADD ||
2519 params.opcode == QED_FILTER_REPLACE)
2520 status = PFVF_STATUS_FORCED;
2521 goto out;
2522 }
2523
2524 if ((p_bulletin->valid_bitmap & (1 << MAC_ADDR_FORCED)) &&
2525 (params.type == QED_FILTER_MAC ||
2526 params.type == QED_FILTER_MAC_VLAN)) {
2527 if (!ether_addr_equal(p_bulletin->mac, params.mac) ||
2528 (params.opcode != QED_FILTER_ADD &&
2529 params.opcode != QED_FILTER_REPLACE))
2530 status = PFVF_STATUS_FORCED;
2531 goto out;
2532 }
2533
2534 rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, &params);
2535 if (rc) {
2536 status = PFVF_STATUS_FAILURE;
2537 goto out;
2538 }
2539
2540 rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, &params,
2541 QED_SPQ_MODE_CB, NULL);
2542 if (rc)
2543 status = PFVF_STATUS_FAILURE;
2544
2545 out:
2546 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER,
2547 sizeof(struct pfvf_def_resp_tlv), status);
2548 }
2549
2550 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn,
2551 struct qed_ptt *p_ptt,
2552 struct qed_vf_info *vf)
2553 {
2554 int i;
2555
2556 /* Reset the SBs */
2557 for (i = 0; i < vf->num_sbs; i++)
2558 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2559 vf->igu_sbs[i],
2560 vf->opaque_fid, false);
2561
2562 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP,
2563 sizeof(struct pfvf_def_resp_tlv),
2564 PFVF_STATUS_SUCCESS);
2565 }
2566
2567 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn,
2568 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
2569 {
2570 u16 length = sizeof(struct pfvf_def_resp_tlv);
2571 u8 status = PFVF_STATUS_SUCCESS;
2572
2573 /* Disable Interrupts for VF */
2574 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
2575
2576 /* Reset Permission table */
2577 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
2578
2579 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE,
2580 length, status);
2581 }
2582
2583 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn,
2584 struct qed_ptt *p_ptt,
2585 struct qed_vf_info *p_vf)
2586 {
2587 u16 length = sizeof(struct pfvf_def_resp_tlv);
2588 u8 status = PFVF_STATUS_SUCCESS;
2589 int rc = 0;
2590
2591 qed_iov_vf_cleanup(p_hwfn, p_vf);
2592
2593 if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) {
2594 /* Stopping the VF */
2595 rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid,
2596 p_vf->opaque_fid);
2597
2598 if (rc) {
2599 DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n",
2600 rc);
2601 status = PFVF_STATUS_FAILURE;
2602 }
2603
2604 p_vf->state = VF_STOPPED;
2605 }
2606
2607 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE,
2608 length, status);
2609 }
2610
2611 static int
2612 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn,
2613 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
2614 {
2615 int cnt;
2616 u32 val;
2617
2618 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid);
2619
2620 for (cnt = 0; cnt < 50; cnt++) {
2621 val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT);
2622 if (!val)
2623 break;
2624 msleep(20);
2625 }
2626 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
2627
2628 if (cnt == 50) {
2629 DP_ERR(p_hwfn,
2630 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
2631 p_vf->abs_vf_id, val);
2632 return -EBUSY;
2633 }
2634
2635 return 0;
2636 }
2637
2638 static int
2639 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn,
2640 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
2641 {
2642 u32 cons[MAX_NUM_VOQS], distance[MAX_NUM_VOQS];
2643 int i, cnt;
2644
2645 /* Read initial consumers & producers */
2646 for (i = 0; i < MAX_NUM_VOQS; i++) {
2647 u32 prod;
2648
2649 cons[i] = qed_rd(p_hwfn, p_ptt,
2650 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
2651 i * 0x40);
2652 prod = qed_rd(p_hwfn, p_ptt,
2653 PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 +
2654 i * 0x40);
2655 distance[i] = prod - cons[i];
2656 }
2657
2658 /* Wait for consumers to pass the producers */
2659 i = 0;
2660 for (cnt = 0; cnt < 50; cnt++) {
2661 for (; i < MAX_NUM_VOQS; i++) {
2662 u32 tmp;
2663
2664 tmp = qed_rd(p_hwfn, p_ptt,
2665 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
2666 i * 0x40);
2667 if (distance[i] > tmp - cons[i])
2668 break;
2669 }
2670
2671 if (i == MAX_NUM_VOQS)
2672 break;
2673
2674 msleep(20);
2675 }
2676
2677 if (cnt == 50) {
2678 DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n",
2679 p_vf->abs_vf_id, i);
2680 return -EBUSY;
2681 }
2682
2683 return 0;
2684 }
2685
2686 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn,
2687 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
2688 {
2689 int rc;
2690
2691 rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt);
2692 if (rc)
2693 return rc;
2694
2695 rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt);
2696 if (rc)
2697 return rc;
2698
2699 return 0;
2700 }
2701
2702 static int
2703 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn,
2704 struct qed_ptt *p_ptt,
2705 u16 rel_vf_id, u32 *ack_vfs)
2706 {
2707 struct qed_vf_info *p_vf;
2708 int rc = 0;
2709
2710 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
2711 if (!p_vf)
2712 return 0;
2713
2714 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &
2715 (1ULL << (rel_vf_id % 64))) {
2716 u16 vfid = p_vf->abs_vf_id;
2717
2718 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2719 "VF[%d] - Handling FLR\n", vfid);
2720
2721 qed_iov_vf_cleanup(p_hwfn, p_vf);
2722
2723 /* If VF isn't active, no need for anything but SW */
2724 if (!p_vf->b_init)
2725 goto cleanup;
2726
2727 rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt);
2728 if (rc)
2729 goto cleanup;
2730
2731 rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true);
2732 if (rc) {
2733 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid);
2734 return rc;
2735 }
2736
2737 /* VF_STOPPED has to be set only after final cleanup
2738 * but prior to re-enabling the VF.
2739 */
2740 p_vf->state = VF_STOPPED;
2741
2742 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf);
2743 if (rc) {
2744 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n",
2745 vfid);
2746 return rc;
2747 }
2748 cleanup:
2749 /* Mark VF for ack and clean pending state */
2750 if (p_vf->state == VF_RESET)
2751 p_vf->state = VF_STOPPED;
2752 ack_vfs[vfid / 32] |= (1 << (vfid % 32));
2753 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &=
2754 ~(1ULL << (rel_vf_id % 64));
2755 p_hwfn->pf_iov_info->pending_events[rel_vf_id / 64] &=
2756 ~(1ULL << (rel_vf_id % 64));
2757 }
2758
2759 return rc;
2760 }
2761
2762 int qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2763 {
2764 u32 ack_vfs[VF_MAX_STATIC / 32];
2765 int rc = 0;
2766 u16 i;
2767
2768 memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32));
2769
2770 /* Since BRB <-> PRS interface can't be tested as part of the flr
2771 * polling due to HW limitations, simply sleep a bit. And since
2772 * there's no need to wait per-vf, do it before looping.
2773 */
2774 msleep(100);
2775
2776 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++)
2777 qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs);
2778
2779 rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs);
2780 return rc;
2781 }
2782
2783 int qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs)
2784 {
2785 u16 i, found = 0;
2786
2787 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n");
2788 for (i = 0; i < (VF_MAX_STATIC / 32); i++)
2789 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2790 "[%08x,...,%08x]: %08x\n",
2791 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]);
2792
2793 if (!p_hwfn->cdev->p_iov_info) {
2794 DP_NOTICE(p_hwfn, "VF flr but no IOV\n");
2795 return 0;
2796 }
2797
2798 /* Mark VFs */
2799 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) {
2800 struct qed_vf_info *p_vf;
2801 u8 vfid;
2802
2803 p_vf = qed_iov_get_vf_info(p_hwfn, i, false);
2804 if (!p_vf)
2805 continue;
2806
2807 vfid = p_vf->abs_vf_id;
2808 if ((1 << (vfid % 32)) & p_disabled_vfs[vfid / 32]) {
2809 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr;
2810 u16 rel_vf_id = p_vf->relative_vf_id;
2811
2812 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2813 "VF[%d] [rel %d] got FLR-ed\n",
2814 vfid, rel_vf_id);
2815
2816 p_vf->state = VF_RESET;
2817
2818 /* No need to lock here, since pending_flr should
2819 * only change here and before ACKing MFw. Since
2820 * MFW will not trigger an additional attention for
2821 * VF flr until ACKs, we're safe.
2822 */
2823 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64);
2824 found = 1;
2825 }
2826 }
2827
2828 return found;
2829 }
2830
2831 static void qed_iov_get_link(struct qed_hwfn *p_hwfn,
2832 u16 vfid,
2833 struct qed_mcp_link_params *p_params,
2834 struct qed_mcp_link_state *p_link,
2835 struct qed_mcp_link_capabilities *p_caps)
2836 {
2837 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
2838 vfid,
2839 false);
2840 struct qed_bulletin_content *p_bulletin;
2841
2842 if (!p_vf)
2843 return;
2844
2845 p_bulletin = p_vf->bulletin.p_virt;
2846
2847 if (p_params)
2848 __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin);
2849 if (p_link)
2850 __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin);
2851 if (p_caps)
2852 __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin);
2853 }
2854
2855 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
2856 struct qed_ptt *p_ptt, int vfid)
2857 {
2858 struct qed_iov_vf_mbx *mbx;
2859 struct qed_vf_info *p_vf;
2860
2861 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
2862 if (!p_vf)
2863 return;
2864
2865 mbx = &p_vf->vf_mbx;
2866
2867 /* qed_iov_process_mbx_request */
2868 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2869 "VF[%02x]: Processing mailbox message\n", p_vf->abs_vf_id);
2870
2871 mbx->first_tlv = mbx->req_virt->first_tlv;
2872
2873 /* check if tlv type is known */
2874 if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
2875 switch (mbx->first_tlv.tl.type) {
2876 case CHANNEL_TLV_ACQUIRE:
2877 qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf);
2878 break;
2879 case CHANNEL_TLV_VPORT_START:
2880 qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf);
2881 break;
2882 case CHANNEL_TLV_VPORT_TEARDOWN:
2883 qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf);
2884 break;
2885 case CHANNEL_TLV_START_RXQ:
2886 qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf);
2887 break;
2888 case CHANNEL_TLV_START_TXQ:
2889 qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf);
2890 break;
2891 case CHANNEL_TLV_STOP_RXQS:
2892 qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf);
2893 break;
2894 case CHANNEL_TLV_STOP_TXQS:
2895 qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf);
2896 break;
2897 case CHANNEL_TLV_UPDATE_RXQ:
2898 qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf);
2899 break;
2900 case CHANNEL_TLV_VPORT_UPDATE:
2901 qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf);
2902 break;
2903 case CHANNEL_TLV_UCAST_FILTER:
2904 qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf);
2905 break;
2906 case CHANNEL_TLV_CLOSE:
2907 qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf);
2908 break;
2909 case CHANNEL_TLV_INT_CLEANUP:
2910 qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf);
2911 break;
2912 case CHANNEL_TLV_RELEASE:
2913 qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf);
2914 break;
2915 }
2916 } else {
2917 /* unknown TLV - this may belong to a VF driver from the future
2918 * - a version written after this PF driver was written, which
2919 * supports features unknown as of yet. Too bad since we don't
2920 * support them. Or this may be because someone wrote a crappy
2921 * VF driver and is sending garbage over the channel.
2922 */
2923 DP_NOTICE(p_hwfn,
2924 "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n",
2925 p_vf->abs_vf_id,
2926 mbx->first_tlv.tl.type,
2927 mbx->first_tlv.tl.length,
2928 mbx->first_tlv.padding, mbx->first_tlv.reply_address);
2929
2930 /* Try replying in case reply address matches the acquisition's
2931 * posted address.
2932 */
2933 if (p_vf->acquire.first_tlv.reply_address &&
2934 (mbx->first_tlv.reply_address ==
2935 p_vf->acquire.first_tlv.reply_address)) {
2936 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
2937 mbx->first_tlv.tl.type,
2938 sizeof(struct pfvf_def_resp_tlv),
2939 PFVF_STATUS_NOT_SUPPORTED);
2940 } else {
2941 DP_VERBOSE(p_hwfn,
2942 QED_MSG_IOV,
2943 "VF[%02x]: Can't respond to TLV - no valid reply address\n",
2944 p_vf->abs_vf_id);
2945 }
2946 }
2947 }
2948
2949 void qed_iov_pf_add_pending_events(struct qed_hwfn *p_hwfn, u8 vfid)
2950 {
2951 u64 add_bit = 1ULL << (vfid % 64);
2952
2953 p_hwfn->pf_iov_info->pending_events[vfid / 64] |= add_bit;
2954 }
2955
2956 static void qed_iov_pf_get_and_clear_pending_events(struct qed_hwfn *p_hwfn,
2957 u64 *events)
2958 {
2959 u64 *p_pending_events = p_hwfn->pf_iov_info->pending_events;
2960
2961 memcpy(events, p_pending_events, sizeof(u64) * QED_VF_ARRAY_LENGTH);
2962 memset(p_pending_events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
2963 }
2964
2965 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
2966 u16 abs_vfid, struct regpair *vf_msg)
2967 {
2968 u8 min = (u8)p_hwfn->cdev->p_iov_info->first_vf_in_pf;
2969 struct qed_vf_info *p_vf;
2970
2971 if (!qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min)) {
2972 DP_VERBOSE(p_hwfn,
2973 QED_MSG_IOV,
2974 "Got a message from VF [abs 0x%08x] that cannot be handled by PF\n",
2975 abs_vfid);
2976 return 0;
2977 }
2978 p_vf = &p_hwfn->pf_iov_info->vfs_array[(u8)abs_vfid - min];
2979
2980 /* List the physical address of the request so that handler
2981 * could later on copy the message from it.
2982 */
2983 p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo;
2984
2985 /* Mark the event and schedule the workqueue */
2986 qed_iov_pf_add_pending_events(p_hwfn, p_vf->relative_vf_id);
2987 qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
2988
2989 return 0;
2990 }
2991
2992 int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
2993 u8 opcode, __le16 echo, union event_ring_data *data)
2994 {
2995 switch (opcode) {
2996 case COMMON_EVENT_VF_PF_CHANNEL:
2997 return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
2998 &data->vf_pf_channel.msg_addr);
2999 default:
3000 DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
3001 opcode);
3002 return -EINVAL;
3003 }
3004 }
3005
3006 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
3007 {
3008 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
3009 u16 i;
3010
3011 if (!p_iov)
3012 goto out;
3013
3014 for (i = rel_vf_id; i < p_iov->total_vfs; i++)
3015 if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true))
3016 return i;
3017
3018 out:
3019 return MAX_NUM_VFS;
3020 }
3021
3022 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
3023 int vfid)
3024 {
3025 struct qed_dmae_params params;
3026 struct qed_vf_info *vf_info;
3027
3028 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3029 if (!vf_info)
3030 return -EINVAL;
3031
3032 memset(&params, 0, sizeof(struct qed_dmae_params));
3033 params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST;
3034 params.src_vfid = vf_info->abs_vf_id;
3035
3036 if (qed_dmae_host2host(p_hwfn, ptt,
3037 vf_info->vf_mbx.pending_req,
3038 vf_info->vf_mbx.req_phys,
3039 sizeof(union vfpf_tlvs) / 4, &params)) {
3040 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3041 "Failed to copy message from VF 0x%02x\n", vfid);
3042
3043 return -EIO;
3044 }
3045
3046 return 0;
3047 }
3048
3049 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn,
3050 u8 *mac, int vfid)
3051 {
3052 struct qed_vf_info *vf_info;
3053 u64 feature;
3054
3055 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
3056 if (!vf_info) {
3057 DP_NOTICE(p_hwfn->cdev,
3058 "Can not set forced MAC, invalid vfid [%d]\n", vfid);
3059 return;
3060 }
3061
3062 feature = 1 << MAC_ADDR_FORCED;
3063 memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN);
3064
3065 vf_info->bulletin.p_virt->valid_bitmap |= feature;
3066 /* Forced MAC will disable MAC_ADDR */
3067 vf_info->bulletin.p_virt->valid_bitmap &=
3068 ~(1 << VFPF_BULLETIN_MAC_ADDR);
3069
3070 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
3071 }
3072
3073 void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn,
3074 u16 pvid, int vfid)
3075 {
3076 struct qed_vf_info *vf_info;
3077 u64 feature;
3078
3079 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3080 if (!vf_info) {
3081 DP_NOTICE(p_hwfn->cdev,
3082 "Can not set forced MAC, invalid vfid [%d]\n", vfid);
3083 return;
3084 }
3085
3086 feature = 1 << VLAN_ADDR_FORCED;
3087 vf_info->bulletin.p_virt->pvid = pvid;
3088 if (pvid)
3089 vf_info->bulletin.p_virt->valid_bitmap |= feature;
3090 else
3091 vf_info->bulletin.p_virt->valid_bitmap &= ~feature;
3092
3093 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
3094 }
3095
3096 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid)
3097 {
3098 struct qed_vf_info *p_vf_info;
3099
3100 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3101 if (!p_vf_info)
3102 return false;
3103
3104 return !!p_vf_info->vport_instance;
3105 }
3106
3107 bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid)
3108 {
3109 struct qed_vf_info *p_vf_info;
3110
3111 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3112 if (!p_vf_info)
3113 return true;
3114
3115 return p_vf_info->state == VF_STOPPED;
3116 }
3117
3118 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid)
3119 {
3120 struct qed_vf_info *vf_info;
3121
3122 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3123 if (!vf_info)
3124 return false;
3125
3126 return vf_info->spoof_chk;
3127 }
3128
3129 int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val)
3130 {
3131 struct qed_vf_info *vf;
3132 int rc = -EINVAL;
3133
3134 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
3135 DP_NOTICE(p_hwfn,
3136 "SR-IOV sanity check failed, can't set spoofchk\n");
3137 goto out;
3138 }
3139
3140 vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3141 if (!vf)
3142 goto out;
3143
3144 if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) {
3145 /* After VF VPORT start PF will configure spoof check */
3146 vf->req_spoofchk_val = val;
3147 rc = 0;
3148 goto out;
3149 }
3150
3151 rc = __qed_iov_spoofchk_set(p_hwfn, vf, val);
3152
3153 out:
3154 return rc;
3155 }
3156
3157 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn,
3158 u16 rel_vf_id)
3159 {
3160 struct qed_vf_info *p_vf;
3161
3162 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
3163 if (!p_vf || !p_vf->bulletin.p_virt)
3164 return NULL;
3165
3166 if (!(p_vf->bulletin.p_virt->valid_bitmap & (1 << MAC_ADDR_FORCED)))
3167 return NULL;
3168
3169 return p_vf->bulletin.p_virt->mac;
3170 }
3171
3172 u16 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
3173 {
3174 struct qed_vf_info *p_vf;
3175
3176 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
3177 if (!p_vf || !p_vf->bulletin.p_virt)
3178 return 0;
3179
3180 if (!(p_vf->bulletin.p_virt->valid_bitmap & (1 << VLAN_ADDR_FORCED)))
3181 return 0;
3182
3183 return p_vf->bulletin.p_virt->pvid;
3184 }
3185
3186 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn,
3187 struct qed_ptt *p_ptt, int vfid, int val)
3188 {
3189 struct qed_vf_info *vf;
3190 u8 abs_vp_id = 0;
3191 int rc;
3192
3193 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
3194 if (!vf)
3195 return -EINVAL;
3196
3197 rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id);
3198 if (rc)
3199 return rc;
3200
3201 return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val);
3202 }
3203
3204 int qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate)
3205 {
3206 struct qed_vf_info *vf;
3207 u8 vport_id;
3208 int i;
3209
3210 for_each_hwfn(cdev, i) {
3211 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3212
3213 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
3214 DP_NOTICE(p_hwfn,
3215 "SR-IOV sanity check failed, can't set min rate\n");
3216 return -EINVAL;
3217 }
3218 }
3219
3220 vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true);
3221 vport_id = vf->vport_id;
3222
3223 return qed_configure_vport_wfq(cdev, vport_id, rate);
3224 }
3225
3226 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid)
3227 {
3228 struct qed_wfq_data *vf_vp_wfq;
3229 struct qed_vf_info *vf_info;
3230
3231 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3232 if (!vf_info)
3233 return 0;
3234
3235 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id];
3236
3237 if (vf_vp_wfq->configured)
3238 return vf_vp_wfq->min_speed;
3239 else
3240 return 0;
3241 }
3242
3243 /**
3244 * qed_schedule_iov - schedules IOV task for VF and PF
3245 * @hwfn: hardware function pointer
3246 * @flag: IOV flag for VF/PF
3247 */
3248 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
3249 {
3250 smp_mb__before_atomic();
3251 set_bit(flag, &hwfn->iov_task_flags);
3252 smp_mb__after_atomic();
3253 DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3254 queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
3255 }
3256
3257 void qed_vf_start_iov_wq(struct qed_dev *cdev)
3258 {
3259 int i;
3260
3261 for_each_hwfn(cdev, i)
3262 queue_delayed_work(cdev->hwfns[i].iov_wq,
3263 &cdev->hwfns[i].iov_task, 0);
3264 }
3265
3266 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled)
3267 {
3268 int i, j;
3269
3270 for_each_hwfn(cdev, i)
3271 if (cdev->hwfns[i].iov_wq)
3272 flush_workqueue(cdev->hwfns[i].iov_wq);
3273
3274 /* Mark VFs for disablement */
3275 qed_iov_set_vfs_to_disable(cdev, true);
3276
3277 if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled)
3278 pci_disable_sriov(cdev->pdev);
3279
3280 for_each_hwfn(cdev, i) {
3281 struct qed_hwfn *hwfn = &cdev->hwfns[i];
3282 struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
3283
3284 /* Failure to acquire the ptt in 100g creates an odd error
3285 * where the first engine has already relased IOV.
3286 */
3287 if (!ptt) {
3288 DP_ERR(hwfn, "Failed to acquire ptt\n");
3289 return -EBUSY;
3290 }
3291
3292 /* Clean WFQ db and configure equal weight for all vports */
3293 qed_clean_wfq_db(hwfn, ptt);
3294
3295 qed_for_each_vf(hwfn, j) {
3296 int k;
3297
3298 if (!qed_iov_is_valid_vfid(hwfn, j, true))
3299 continue;
3300
3301 /* Wait until VF is disabled before releasing */
3302 for (k = 0; k < 100; k++) {
3303 if (!qed_iov_is_vf_stopped(hwfn, j))
3304 msleep(20);
3305 else
3306 break;
3307 }
3308
3309 if (k < 100)
3310 qed_iov_release_hw_for_vf(&cdev->hwfns[i],
3311 ptt, j);
3312 else
3313 DP_ERR(hwfn,
3314 "Timeout waiting for VF's FLR to end\n");
3315 }
3316
3317 qed_ptt_release(hwfn, ptt);
3318 }
3319
3320 qed_iov_set_vfs_to_disable(cdev, false);
3321
3322 return 0;
3323 }
3324
3325 static int qed_sriov_enable(struct qed_dev *cdev, int num)
3326 {
3327 struct qed_sb_cnt_info sb_cnt_info;
3328 int i, j, rc;
3329
3330 if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) {
3331 DP_NOTICE(cdev, "Can start at most %d VFs\n",
3332 RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1);
3333 return -EINVAL;
3334 }
3335
3336 /* Initialize HW for VF access */
3337 for_each_hwfn(cdev, j) {
3338 struct qed_hwfn *hwfn = &cdev->hwfns[j];
3339 struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
3340 int num_sbs = 0, limit = 16;
3341
3342 if (!ptt) {
3343 DP_ERR(hwfn, "Failed to acquire ptt\n");
3344 rc = -EBUSY;
3345 goto err;
3346 }
3347
3348 if (IS_MF_DEFAULT(hwfn))
3349 limit = MAX_NUM_VFS_BB / hwfn->num_funcs_on_engine;
3350
3351 memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
3352 qed_int_get_num_sbs(hwfn, &sb_cnt_info);
3353 num_sbs = min_t(int, sb_cnt_info.sb_free_blk, limit);
3354
3355 for (i = 0; i < num; i++) {
3356 if (!qed_iov_is_valid_vfid(hwfn, i, false))
3357 continue;
3358
3359 rc = qed_iov_init_hw_for_vf(hwfn,
3360 ptt, i, num_sbs / num);
3361 if (rc) {
3362 DP_ERR(cdev, "Failed to enable VF[%d]\n", i);
3363 qed_ptt_release(hwfn, ptt);
3364 goto err;
3365 }
3366 }
3367
3368 qed_ptt_release(hwfn, ptt);
3369 }
3370
3371 /* Enable SRIOV PCIe functions */
3372 rc = pci_enable_sriov(cdev->pdev, num);
3373 if (rc) {
3374 DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc);
3375 goto err;
3376 }
3377
3378 return num;
3379
3380 err:
3381 qed_sriov_disable(cdev, false);
3382 return rc;
3383 }
3384
3385 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param)
3386 {
3387 if (!IS_QED_SRIOV(cdev)) {
3388 DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n");
3389 return -EOPNOTSUPP;
3390 }
3391
3392 if (num_vfs_param)
3393 return qed_sriov_enable(cdev, num_vfs_param);
3394 else
3395 return qed_sriov_disable(cdev, true);
3396 }
3397
3398 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid)
3399 {
3400 int i;
3401
3402 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
3403 DP_VERBOSE(cdev, QED_MSG_IOV,
3404 "Cannot set a VF MAC; Sriov is not enabled\n");
3405 return -EINVAL;
3406 }
3407
3408 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true)) {
3409 DP_VERBOSE(cdev, QED_MSG_IOV,
3410 "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
3411 return -EINVAL;
3412 }
3413
3414 for_each_hwfn(cdev, i) {
3415 struct qed_hwfn *hwfn = &cdev->hwfns[i];
3416 struct qed_public_vf_info *vf_info;
3417
3418 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3419 if (!vf_info)
3420 continue;
3421
3422 /* Set the forced MAC, and schedule the IOV task */
3423 ether_addr_copy(vf_info->forced_mac, mac);
3424 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
3425 }
3426
3427 return 0;
3428 }
3429
3430 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid)
3431 {
3432 int i;
3433
3434 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
3435 DP_VERBOSE(cdev, QED_MSG_IOV,
3436 "Cannot set a VF MAC; Sriov is not enabled\n");
3437 return -EINVAL;
3438 }
3439
3440 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true)) {
3441 DP_VERBOSE(cdev, QED_MSG_IOV,
3442 "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
3443 return -EINVAL;
3444 }
3445
3446 for_each_hwfn(cdev, i) {
3447 struct qed_hwfn *hwfn = &cdev->hwfns[i];
3448 struct qed_public_vf_info *vf_info;
3449
3450 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3451 if (!vf_info)
3452 continue;
3453
3454 /* Set the forced vlan, and schedule the IOV task */
3455 vf_info->forced_vlan = vid;
3456 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
3457 }
3458
3459 return 0;
3460 }
3461
3462 static int qed_get_vf_config(struct qed_dev *cdev,
3463 int vf_id, struct ifla_vf_info *ivi)
3464 {
3465 struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
3466 struct qed_public_vf_info *vf_info;
3467 struct qed_mcp_link_state link;
3468 u32 tx_rate;
3469
3470 /* Sanitize request */
3471 if (IS_VF(cdev))
3472 return -EINVAL;
3473
3474 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true)) {
3475 DP_VERBOSE(cdev, QED_MSG_IOV,
3476 "VF index [%d] isn't active\n", vf_id);
3477 return -EINVAL;
3478 }
3479
3480 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
3481
3482 qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL);
3483
3484 /* Fill information about VF */
3485 ivi->vf = vf_id;
3486
3487 if (is_valid_ether_addr(vf_info->forced_mac))
3488 ether_addr_copy(ivi->mac, vf_info->forced_mac);
3489 else
3490 ether_addr_copy(ivi->mac, vf_info->mac);
3491
3492 ivi->vlan = vf_info->forced_vlan;
3493 ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id);
3494 ivi->linkstate = vf_info->link_state;
3495 tx_rate = vf_info->tx_rate;
3496 ivi->max_tx_rate = tx_rate ? tx_rate : link.speed;
3497 ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id);
3498
3499 return 0;
3500 }
3501
3502 void qed_inform_vf_link_state(struct qed_hwfn *hwfn)
3503 {
3504 struct qed_mcp_link_capabilities caps;
3505 struct qed_mcp_link_params params;
3506 struct qed_mcp_link_state link;
3507 int i;
3508
3509 if (!hwfn->pf_iov_info)
3510 return;
3511
3512 /* Update bulletin of all future possible VFs with link configuration */
3513 for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) {
3514 struct qed_public_vf_info *vf_info;
3515
3516 vf_info = qed_iov_get_public_vf_info(hwfn, i, false);
3517 if (!vf_info)
3518 continue;
3519
3520 memcpy(&params, qed_mcp_get_link_params(hwfn), sizeof(params));
3521 memcpy(&link, qed_mcp_get_link_state(hwfn), sizeof(link));
3522 memcpy(&caps, qed_mcp_get_link_capabilities(hwfn),
3523 sizeof(caps));
3524
3525 /* Modify link according to the VF's configured link state */
3526 switch (vf_info->link_state) {
3527 case IFLA_VF_LINK_STATE_DISABLE:
3528 link.link_up = false;
3529 break;
3530 case IFLA_VF_LINK_STATE_ENABLE:
3531 link.link_up = true;
3532 /* Set speed according to maximum supported by HW.
3533 * that is 40G for regular devices and 100G for CMT
3534 * mode devices.
3535 */
3536 link.speed = (hwfn->cdev->num_hwfns > 1) ?
3537 100000 : 40000;
3538 default:
3539 /* In auto mode pass PF link image to VF */
3540 break;
3541 }
3542
3543 if (link.link_up && vf_info->tx_rate) {
3544 struct qed_ptt *ptt;
3545 int rate;
3546
3547 rate = min_t(int, vf_info->tx_rate, link.speed);
3548
3549 ptt = qed_ptt_acquire(hwfn);
3550 if (!ptt) {
3551 DP_NOTICE(hwfn, "Failed to acquire PTT\n");
3552 return;
3553 }
3554
3555 if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) {
3556 vf_info->tx_rate = rate;
3557 link.speed = rate;
3558 }
3559
3560 qed_ptt_release(hwfn, ptt);
3561 }
3562
3563 qed_iov_set_link(hwfn, i, &params, &link, &caps);
3564 }
3565
3566 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
3567 }
3568
3569 static int qed_set_vf_link_state(struct qed_dev *cdev,
3570 int vf_id, int link_state)
3571 {
3572 int i;
3573
3574 /* Sanitize request */
3575 if (IS_VF(cdev))
3576 return -EINVAL;
3577
3578 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true)) {
3579 DP_VERBOSE(cdev, QED_MSG_IOV,
3580 "VF index [%d] isn't active\n", vf_id);
3581 return -EINVAL;
3582 }
3583
3584 /* Handle configuration of link state */
3585 for_each_hwfn(cdev, i) {
3586 struct qed_hwfn *hwfn = &cdev->hwfns[i];
3587 struct qed_public_vf_info *vf;
3588
3589 vf = qed_iov_get_public_vf_info(hwfn, vf_id, true);
3590 if (!vf)
3591 continue;
3592
3593 if (vf->link_state == link_state)
3594 continue;
3595
3596 vf->link_state = link_state;
3597 qed_inform_vf_link_state(&cdev->hwfns[i]);
3598 }
3599
3600 return 0;
3601 }
3602
3603 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val)
3604 {
3605 int i, rc = -EINVAL;
3606
3607 for_each_hwfn(cdev, i) {
3608 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3609
3610 rc = qed_iov_spoofchk_set(p_hwfn, vfid, val);
3611 if (rc)
3612 break;
3613 }
3614
3615 return rc;
3616 }
3617
3618 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate)
3619 {
3620 int i;
3621
3622 for_each_hwfn(cdev, i) {
3623 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3624 struct qed_public_vf_info *vf;
3625
3626 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
3627 DP_NOTICE(p_hwfn,
3628 "SR-IOV sanity check failed, can't set tx rate\n");
3629 return -EINVAL;
3630 }
3631
3632 vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true);
3633
3634 vf->tx_rate = rate;
3635
3636 qed_inform_vf_link_state(p_hwfn);
3637 }
3638
3639 return 0;
3640 }
3641
3642 static int qed_set_vf_rate(struct qed_dev *cdev,
3643 int vfid, u32 min_rate, u32 max_rate)
3644 {
3645 int rc_min = 0, rc_max = 0;
3646
3647 if (max_rate)
3648 rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate);
3649
3650 if (min_rate)
3651 rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate);
3652
3653 if (rc_max | rc_min)
3654 return -EINVAL;
3655
3656 return 0;
3657 }
3658
3659 static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
3660 {
3661 u64 events[QED_VF_ARRAY_LENGTH];
3662 struct qed_ptt *ptt;
3663 int i;
3664
3665 ptt = qed_ptt_acquire(hwfn);
3666 if (!ptt) {
3667 DP_VERBOSE(hwfn, QED_MSG_IOV,
3668 "Can't acquire PTT; re-scheduling\n");
3669 qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
3670 return;
3671 }
3672
3673 qed_iov_pf_get_and_clear_pending_events(hwfn, events);
3674
3675 DP_VERBOSE(hwfn, QED_MSG_IOV,
3676 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
3677 events[0], events[1], events[2]);
3678
3679 qed_for_each_vf(hwfn, i) {
3680 /* Skip VFs with no pending messages */
3681 if (!(events[i / 64] & (1ULL << (i % 64))))
3682 continue;
3683
3684 DP_VERBOSE(hwfn, QED_MSG_IOV,
3685 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
3686 i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
3687
3688 /* Copy VF's message to PF's request buffer for that VF */
3689 if (qed_iov_copy_vf_msg(hwfn, ptt, i))
3690 continue;
3691
3692 qed_iov_process_mbx_req(hwfn, ptt, i);
3693 }
3694
3695 qed_ptt_release(hwfn, ptt);
3696 }
3697
3698 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn)
3699 {
3700 int i;
3701
3702 qed_for_each_vf(hwfn, i) {
3703 struct qed_public_vf_info *info;
3704 bool update = false;
3705 u8 *mac;
3706
3707 info = qed_iov_get_public_vf_info(hwfn, i, true);
3708 if (!info)
3709 continue;
3710
3711 /* Update data on bulletin board */
3712 mac = qed_iov_bulletin_get_forced_mac(hwfn, i);
3713 if (is_valid_ether_addr(info->forced_mac) &&
3714 (!mac || !ether_addr_equal(mac, info->forced_mac))) {
3715 DP_VERBOSE(hwfn,
3716 QED_MSG_IOV,
3717 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
3718 i,
3719 hwfn->cdev->p_iov_info->first_vf_in_pf + i);
3720
3721 /* Update bulletin board with forced MAC */
3722 qed_iov_bulletin_set_forced_mac(hwfn,
3723 info->forced_mac, i);
3724 update = true;
3725 }
3726
3727 if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^
3728 info->forced_vlan) {
3729 DP_VERBOSE(hwfn,
3730 QED_MSG_IOV,
3731 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
3732 info->forced_vlan,
3733 i,
3734 hwfn->cdev->p_iov_info->first_vf_in_pf + i);
3735 qed_iov_bulletin_set_forced_vlan(hwfn,
3736 info->forced_vlan, i);
3737 update = true;
3738 }
3739
3740 if (update)
3741 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
3742 }
3743 }
3744
3745 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn)
3746 {
3747 struct qed_ptt *ptt;
3748 int i;
3749
3750 ptt = qed_ptt_acquire(hwfn);
3751 if (!ptt) {
3752 DP_NOTICE(hwfn, "Failed allocating a ptt entry\n");
3753 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
3754 return;
3755 }
3756
3757 qed_for_each_vf(hwfn, i)
3758 qed_iov_post_vf_bulletin(hwfn, i, ptt);
3759
3760 qed_ptt_release(hwfn, ptt);
3761 }
3762
3763 void qed_iov_pf_task(struct work_struct *work)
3764 {
3765 struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
3766 iov_task.work);
3767 int rc;
3768
3769 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
3770 return;
3771
3772 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) {
3773 struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
3774
3775 if (!ptt) {
3776 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
3777 return;
3778 }
3779
3780 rc = qed_iov_vf_flr_cleanup(hwfn, ptt);
3781 if (rc)
3782 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
3783
3784 qed_ptt_release(hwfn, ptt);
3785 }
3786
3787 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
3788 qed_handle_vf_msg(hwfn);
3789
3790 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG,
3791 &hwfn->iov_task_flags))
3792 qed_handle_pf_set_vf_unicast(hwfn);
3793
3794 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG,
3795 &hwfn->iov_task_flags))
3796 qed_handle_bulletin_post(hwfn);
3797 }
3798
3799 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
3800 {
3801 int i;
3802
3803 for_each_hwfn(cdev, i) {
3804 if (!cdev->hwfns[i].iov_wq)
3805 continue;
3806
3807 if (schedule_first) {
3808 qed_schedule_iov(&cdev->hwfns[i],
3809 QED_IOV_WQ_STOP_WQ_FLAG);
3810 cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
3811 }
3812
3813 flush_workqueue(cdev->hwfns[i].iov_wq);
3814 destroy_workqueue(cdev->hwfns[i].iov_wq);
3815 }
3816 }
3817
3818 int qed_iov_wq_start(struct qed_dev *cdev)
3819 {
3820 char name[NAME_SIZE];
3821 int i;
3822
3823 for_each_hwfn(cdev, i) {
3824 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3825
3826 /* PFs needs a dedicated workqueue only if they support IOV.
3827 * VFs always require one.
3828 */
3829 if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn))
3830 continue;
3831
3832 snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
3833 cdev->pdev->bus->number,
3834 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
3835
3836 p_hwfn->iov_wq = create_singlethread_workqueue(name);
3837 if (!p_hwfn->iov_wq) {
3838 DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
3839 return -ENOMEM;
3840 }
3841
3842 if (IS_PF(cdev))
3843 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
3844 else
3845 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task);
3846 }
3847
3848 return 0;
3849 }
3850
3851 const struct qed_iov_hv_ops qed_iov_ops_pass = {
3852 .configure = &qed_sriov_configure,
3853 .set_mac = &qed_sriov_pf_set_mac,
3854 .set_vlan = &qed_sriov_pf_set_vlan,
3855 .get_config = &qed_get_vf_config,
3856 .set_link_state = &qed_set_vf_link_state,
3857 .set_spoof = &qed_spoof_configure,
3858 .set_rate = &qed_set_vf_rate,
3859 };
This page took 0.115914 seconds and 5 git commands to generate.