vfio/pci: Fix typos in comments
[deliverable/linux.git] / drivers / net / ethernet / renesas / ravb_main.c
1 /* Renesas Ethernet AVB device driver
2 *
3 * Copyright (C) 2014-2015 Renesas Electronics Corporation
4 * Copyright (C) 2015 Renesas Solutions Corp.
5 * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
6 *
7 * Based on the SuperH Ethernet driver
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License version 2,
11 * as published by the Free Software Foundation.
12 */
13
14 #include <linux/cache.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/net_tstamp.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34
35 #include <asm/div64.h>
36
37 #include "ravb.h"
38
39 #define RAVB_DEF_MSG_ENABLE \
40 (NETIF_MSG_LINK | \
41 NETIF_MSG_TIMER | \
42 NETIF_MSG_RX_ERR | \
43 NETIF_MSG_TX_ERR)
44
45 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
46 "ch0", /* RAVB_BE */
47 "ch1", /* RAVB_NC */
48 };
49
50 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
51 "ch18", /* RAVB_BE */
52 "ch19", /* RAVB_NC */
53 };
54
55 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
56 u32 set)
57 {
58 ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
59 }
60
61 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
62 {
63 int i;
64
65 for (i = 0; i < 10000; i++) {
66 if ((ravb_read(ndev, reg) & mask) == value)
67 return 0;
68 udelay(10);
69 }
70 return -ETIMEDOUT;
71 }
72
73 static int ravb_config(struct net_device *ndev)
74 {
75 int error;
76
77 /* Set config mode */
78 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
79 /* Check if the operating mode is changed to the config mode */
80 error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
81 if (error)
82 netdev_err(ndev, "failed to switch device to config mode\n");
83
84 return error;
85 }
86
87 static void ravb_set_duplex(struct net_device *ndev)
88 {
89 struct ravb_private *priv = netdev_priv(ndev);
90
91 ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
92 }
93
94 static void ravb_set_rate(struct net_device *ndev)
95 {
96 struct ravb_private *priv = netdev_priv(ndev);
97
98 switch (priv->speed) {
99 case 100: /* 100BASE */
100 ravb_write(ndev, GECMR_SPEED_100, GECMR);
101 break;
102 case 1000: /* 1000BASE */
103 ravb_write(ndev, GECMR_SPEED_1000, GECMR);
104 break;
105 }
106 }
107
108 static void ravb_set_buffer_align(struct sk_buff *skb)
109 {
110 u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
111
112 if (reserve)
113 skb_reserve(skb, RAVB_ALIGN - reserve);
114 }
115
116 /* Get MAC address from the MAC address registers
117 *
118 * Ethernet AVB device doesn't have ROM for MAC address.
119 * This function gets the MAC address that was used by a bootloader.
120 */
121 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
122 {
123 if (mac) {
124 ether_addr_copy(ndev->dev_addr, mac);
125 } else {
126 u32 mahr = ravb_read(ndev, MAHR);
127 u32 malr = ravb_read(ndev, MALR);
128
129 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
130 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
131 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
132 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
133 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
134 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
135 }
136 }
137
138 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
139 {
140 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
141 mdiobb);
142
143 ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
144 }
145
146 /* MDC pin control */
147 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
148 {
149 ravb_mdio_ctrl(ctrl, PIR_MDC, level);
150 }
151
152 /* Data I/O pin control */
153 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
154 {
155 ravb_mdio_ctrl(ctrl, PIR_MMD, output);
156 }
157
158 /* Set data bit */
159 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
160 {
161 ravb_mdio_ctrl(ctrl, PIR_MDO, value);
162 }
163
164 /* Get data bit */
165 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
166 {
167 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
168 mdiobb);
169
170 return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
171 }
172
173 /* MDIO bus control struct */
174 static struct mdiobb_ops bb_ops = {
175 .owner = THIS_MODULE,
176 .set_mdc = ravb_set_mdc,
177 .set_mdio_dir = ravb_set_mdio_dir,
178 .set_mdio_data = ravb_set_mdio_data,
179 .get_mdio_data = ravb_get_mdio_data,
180 };
181
182 /* Free skb's and DMA buffers for Ethernet AVB */
183 static void ravb_ring_free(struct net_device *ndev, int q)
184 {
185 struct ravb_private *priv = netdev_priv(ndev);
186 int ring_size;
187 int i;
188
189 /* Free RX skb ringbuffer */
190 if (priv->rx_skb[q]) {
191 for (i = 0; i < priv->num_rx_ring[q]; i++)
192 dev_kfree_skb(priv->rx_skb[q][i]);
193 }
194 kfree(priv->rx_skb[q]);
195 priv->rx_skb[q] = NULL;
196
197 /* Free TX skb ringbuffer */
198 if (priv->tx_skb[q]) {
199 for (i = 0; i < priv->num_tx_ring[q]; i++)
200 dev_kfree_skb(priv->tx_skb[q][i]);
201 }
202 kfree(priv->tx_skb[q]);
203 priv->tx_skb[q] = NULL;
204
205 /* Free aligned TX buffers */
206 kfree(priv->tx_align[q]);
207 priv->tx_align[q] = NULL;
208
209 if (priv->rx_ring[q]) {
210 ring_size = sizeof(struct ravb_ex_rx_desc) *
211 (priv->num_rx_ring[q] + 1);
212 dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
213 priv->rx_desc_dma[q]);
214 priv->rx_ring[q] = NULL;
215 }
216
217 if (priv->tx_ring[q]) {
218 ring_size = sizeof(struct ravb_tx_desc) *
219 (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
220 dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
221 priv->tx_desc_dma[q]);
222 priv->tx_ring[q] = NULL;
223 }
224 }
225
226 /* Format skb and descriptor buffer for Ethernet AVB */
227 static void ravb_ring_format(struct net_device *ndev, int q)
228 {
229 struct ravb_private *priv = netdev_priv(ndev);
230 struct ravb_ex_rx_desc *rx_desc;
231 struct ravb_tx_desc *tx_desc;
232 struct ravb_desc *desc;
233 int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
234 int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
235 NUM_TX_DESC;
236 dma_addr_t dma_addr;
237 int i;
238
239 priv->cur_rx[q] = 0;
240 priv->cur_tx[q] = 0;
241 priv->dirty_rx[q] = 0;
242 priv->dirty_tx[q] = 0;
243
244 memset(priv->rx_ring[q], 0, rx_ring_size);
245 /* Build RX ring buffer */
246 for (i = 0; i < priv->num_rx_ring[q]; i++) {
247 /* RX descriptor */
248 rx_desc = &priv->rx_ring[q][i];
249 rx_desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
250 dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
251 PKT_BUF_SZ,
252 DMA_FROM_DEVICE);
253 /* We just set the data size to 0 for a failed mapping which
254 * should prevent DMA from happening...
255 */
256 if (dma_mapping_error(ndev->dev.parent, dma_addr))
257 rx_desc->ds_cc = cpu_to_le16(0);
258 rx_desc->dptr = cpu_to_le32(dma_addr);
259 rx_desc->die_dt = DT_FEMPTY;
260 }
261 rx_desc = &priv->rx_ring[q][i];
262 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
263 rx_desc->die_dt = DT_LINKFIX; /* type */
264
265 memset(priv->tx_ring[q], 0, tx_ring_size);
266 /* Build TX ring buffer */
267 for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
268 i++, tx_desc++) {
269 tx_desc->die_dt = DT_EEMPTY;
270 tx_desc++;
271 tx_desc->die_dt = DT_EEMPTY;
272 }
273 tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
274 tx_desc->die_dt = DT_LINKFIX; /* type */
275
276 /* RX descriptor base address for best effort */
277 desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
278 desc->die_dt = DT_LINKFIX; /* type */
279 desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
280
281 /* TX descriptor base address for best effort */
282 desc = &priv->desc_bat[q];
283 desc->die_dt = DT_LINKFIX; /* type */
284 desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
285 }
286
287 /* Init skb and descriptor buffer for Ethernet AVB */
288 static int ravb_ring_init(struct net_device *ndev, int q)
289 {
290 struct ravb_private *priv = netdev_priv(ndev);
291 struct sk_buff *skb;
292 int ring_size;
293 int i;
294
295 /* Allocate RX and TX skb rings */
296 priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
297 sizeof(*priv->rx_skb[q]), GFP_KERNEL);
298 priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
299 sizeof(*priv->tx_skb[q]), GFP_KERNEL);
300 if (!priv->rx_skb[q] || !priv->tx_skb[q])
301 goto error;
302
303 for (i = 0; i < priv->num_rx_ring[q]; i++) {
304 skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
305 if (!skb)
306 goto error;
307 ravb_set_buffer_align(skb);
308 priv->rx_skb[q][i] = skb;
309 }
310
311 /* Allocate rings for the aligned buffers */
312 priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
313 DPTR_ALIGN - 1, GFP_KERNEL);
314 if (!priv->tx_align[q])
315 goto error;
316
317 /* Allocate all RX descriptors. */
318 ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
319 priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
320 &priv->rx_desc_dma[q],
321 GFP_KERNEL);
322 if (!priv->rx_ring[q])
323 goto error;
324
325 priv->dirty_rx[q] = 0;
326
327 /* Allocate all TX descriptors. */
328 ring_size = sizeof(struct ravb_tx_desc) *
329 (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
330 priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
331 &priv->tx_desc_dma[q],
332 GFP_KERNEL);
333 if (!priv->tx_ring[q])
334 goto error;
335
336 return 0;
337
338 error:
339 ravb_ring_free(ndev, q);
340
341 return -ENOMEM;
342 }
343
344 /* E-MAC init function */
345 static void ravb_emac_init(struct net_device *ndev)
346 {
347 struct ravb_private *priv = netdev_priv(ndev);
348
349 /* Receive frame limit set register */
350 ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
351
352 /* PAUSE prohibition */
353 ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
354 ECMR_TE | ECMR_RE, ECMR);
355
356 ravb_set_rate(ndev);
357
358 /* Set MAC address */
359 ravb_write(ndev,
360 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
361 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
362 ravb_write(ndev,
363 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
364
365 /* E-MAC status register clear */
366 ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
367
368 /* E-MAC interrupt enable register */
369 ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
370 }
371
372 /* Device init function for Ethernet AVB */
373 static int ravb_dmac_init(struct net_device *ndev)
374 {
375 struct ravb_private *priv = netdev_priv(ndev);
376 int error;
377
378 /* Set CONFIG mode */
379 error = ravb_config(ndev);
380 if (error)
381 return error;
382
383 error = ravb_ring_init(ndev, RAVB_BE);
384 if (error)
385 return error;
386 error = ravb_ring_init(ndev, RAVB_NC);
387 if (error) {
388 ravb_ring_free(ndev, RAVB_BE);
389 return error;
390 }
391
392 /* Descriptor format */
393 ravb_ring_format(ndev, RAVB_BE);
394 ravb_ring_format(ndev, RAVB_NC);
395
396 #if defined(__LITTLE_ENDIAN)
397 ravb_modify(ndev, CCC, CCC_BOC, 0);
398 #else
399 ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
400 #endif
401
402 /* Set AVB RX */
403 ravb_write(ndev,
404 RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
405
406 /* Set FIFO size */
407 ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
408
409 /* Timestamp enable */
410 ravb_write(ndev, TCCR_TFEN, TCCR);
411
412 /* Interrupt init: */
413 if (priv->chip_id == RCAR_GEN3) {
414 /* Clear DIL.DPLx */
415 ravb_write(ndev, 0, DIL);
416 /* Set queue specific interrupt */
417 ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
418 }
419 /* Frame receive */
420 ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
421 /* Disable FIFO full warning */
422 ravb_write(ndev, 0, RIC1);
423 /* Receive FIFO full error, descriptor empty */
424 ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
425 /* Frame transmitted, timestamp FIFO updated */
426 ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
427
428 /* Setting the control will start the AVB-DMAC process. */
429 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
430
431 return 0;
432 }
433
434 /* Free TX skb function for AVB-IP */
435 static int ravb_tx_free(struct net_device *ndev, int q)
436 {
437 struct ravb_private *priv = netdev_priv(ndev);
438 struct net_device_stats *stats = &priv->stats[q];
439 struct ravb_tx_desc *desc;
440 int free_num = 0;
441 int entry;
442 u32 size;
443
444 for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
445 entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
446 NUM_TX_DESC);
447 desc = &priv->tx_ring[q][entry];
448 if (desc->die_dt != DT_FEMPTY)
449 break;
450 /* Descriptor type must be checked before all other reads */
451 dma_rmb();
452 size = le16_to_cpu(desc->ds_tagl) & TX_DS;
453 /* Free the original skb. */
454 if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
455 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
456 size, DMA_TO_DEVICE);
457 /* Last packet descriptor? */
458 if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
459 entry /= NUM_TX_DESC;
460 dev_kfree_skb_any(priv->tx_skb[q][entry]);
461 priv->tx_skb[q][entry] = NULL;
462 stats->tx_packets++;
463 }
464 free_num++;
465 }
466 stats->tx_bytes += size;
467 desc->die_dt = DT_EEMPTY;
468 }
469 return free_num;
470 }
471
472 static void ravb_get_tx_tstamp(struct net_device *ndev)
473 {
474 struct ravb_private *priv = netdev_priv(ndev);
475 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
476 struct skb_shared_hwtstamps shhwtstamps;
477 struct sk_buff *skb;
478 struct timespec64 ts;
479 u16 tag, tfa_tag;
480 int count;
481 u32 tfa2;
482
483 count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
484 while (count--) {
485 tfa2 = ravb_read(ndev, TFA2);
486 tfa_tag = (tfa2 & TFA2_TST) >> 16;
487 ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
488 ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
489 ravb_read(ndev, TFA1);
490 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
491 shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
492 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
493 list) {
494 skb = ts_skb->skb;
495 tag = ts_skb->tag;
496 list_del(&ts_skb->list);
497 kfree(ts_skb);
498 if (tag == tfa_tag) {
499 skb_tstamp_tx(skb, &shhwtstamps);
500 break;
501 }
502 }
503 ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
504 }
505 }
506
507 /* Packet receive function for Ethernet AVB */
508 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
509 {
510 struct ravb_private *priv = netdev_priv(ndev);
511 int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
512 int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
513 priv->cur_rx[q];
514 struct net_device_stats *stats = &priv->stats[q];
515 struct ravb_ex_rx_desc *desc;
516 struct sk_buff *skb;
517 dma_addr_t dma_addr;
518 struct timespec64 ts;
519 u8 desc_status;
520 u16 pkt_len;
521 int limit;
522
523 boguscnt = min(boguscnt, *quota);
524 limit = boguscnt;
525 desc = &priv->rx_ring[q][entry];
526 while (desc->die_dt != DT_FEMPTY) {
527 /* Descriptor type must be checked before all other reads */
528 dma_rmb();
529 desc_status = desc->msc;
530 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
531
532 if (--boguscnt < 0)
533 break;
534
535 /* We use 0-byte descriptors to mark the DMA mapping errors */
536 if (!pkt_len)
537 continue;
538
539 if (desc_status & MSC_MC)
540 stats->multicast++;
541
542 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
543 MSC_CEEF)) {
544 stats->rx_errors++;
545 if (desc_status & MSC_CRC)
546 stats->rx_crc_errors++;
547 if (desc_status & MSC_RFE)
548 stats->rx_frame_errors++;
549 if (desc_status & (MSC_RTLF | MSC_RTSF))
550 stats->rx_length_errors++;
551 if (desc_status & MSC_CEEF)
552 stats->rx_missed_errors++;
553 } else {
554 u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
555
556 skb = priv->rx_skb[q][entry];
557 priv->rx_skb[q][entry] = NULL;
558 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
559 PKT_BUF_SZ,
560 DMA_FROM_DEVICE);
561 get_ts &= (q == RAVB_NC) ?
562 RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
563 ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
564 if (get_ts) {
565 struct skb_shared_hwtstamps *shhwtstamps;
566
567 shhwtstamps = skb_hwtstamps(skb);
568 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
569 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
570 32) | le32_to_cpu(desc->ts_sl);
571 ts.tv_nsec = le32_to_cpu(desc->ts_n);
572 shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
573 }
574 skb_put(skb, pkt_len);
575 skb->protocol = eth_type_trans(skb, ndev);
576 napi_gro_receive(&priv->napi[q], skb);
577 stats->rx_packets++;
578 stats->rx_bytes += pkt_len;
579 }
580
581 entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
582 desc = &priv->rx_ring[q][entry];
583 }
584
585 /* Refill the RX ring buffers. */
586 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
587 entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
588 desc = &priv->rx_ring[q][entry];
589 desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
590
591 if (!priv->rx_skb[q][entry]) {
592 skb = netdev_alloc_skb(ndev,
593 PKT_BUF_SZ + RAVB_ALIGN - 1);
594 if (!skb)
595 break; /* Better luck next round. */
596 ravb_set_buffer_align(skb);
597 dma_addr = dma_map_single(ndev->dev.parent, skb->data,
598 le16_to_cpu(desc->ds_cc),
599 DMA_FROM_DEVICE);
600 skb_checksum_none_assert(skb);
601 /* We just set the data size to 0 for a failed mapping
602 * which should prevent DMA from happening...
603 */
604 if (dma_mapping_error(ndev->dev.parent, dma_addr))
605 desc->ds_cc = cpu_to_le16(0);
606 desc->dptr = cpu_to_le32(dma_addr);
607 priv->rx_skb[q][entry] = skb;
608 }
609 /* Descriptor type must be set after all the above writes */
610 dma_wmb();
611 desc->die_dt = DT_FEMPTY;
612 }
613
614 *quota -= limit - (++boguscnt);
615
616 return boguscnt <= 0;
617 }
618
619 static void ravb_rcv_snd_disable(struct net_device *ndev)
620 {
621 /* Disable TX and RX */
622 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
623 }
624
625 static void ravb_rcv_snd_enable(struct net_device *ndev)
626 {
627 /* Enable TX and RX */
628 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
629 }
630
631 /* function for waiting dma process finished */
632 static int ravb_stop_dma(struct net_device *ndev)
633 {
634 int error;
635
636 /* Wait for stopping the hardware TX process */
637 error = ravb_wait(ndev, TCCR,
638 TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
639 if (error)
640 return error;
641
642 error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
643 0);
644 if (error)
645 return error;
646
647 /* Stop the E-MAC's RX/TX processes. */
648 ravb_rcv_snd_disable(ndev);
649
650 /* Wait for stopping the RX DMA process */
651 error = ravb_wait(ndev, CSR, CSR_RPO, 0);
652 if (error)
653 return error;
654
655 /* Stop AVB-DMAC process */
656 return ravb_config(ndev);
657 }
658
659 /* E-MAC interrupt handler */
660 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
661 {
662 struct ravb_private *priv = netdev_priv(ndev);
663 u32 ecsr, psr;
664
665 ecsr = ravb_read(ndev, ECSR);
666 ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
667 if (ecsr & ECSR_ICD)
668 ndev->stats.tx_carrier_errors++;
669 if (ecsr & ECSR_LCHNG) {
670 /* Link changed */
671 if (priv->no_avb_link)
672 return;
673 psr = ravb_read(ndev, PSR);
674 if (priv->avb_link_active_low)
675 psr ^= PSR_LMON;
676 if (!(psr & PSR_LMON)) {
677 /* DIsable RX and TX */
678 ravb_rcv_snd_disable(ndev);
679 } else {
680 /* Enable RX and TX */
681 ravb_rcv_snd_enable(ndev);
682 }
683 }
684 }
685
686 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
687 {
688 struct net_device *ndev = dev_id;
689 struct ravb_private *priv = netdev_priv(ndev);
690
691 spin_lock(&priv->lock);
692 ravb_emac_interrupt_unlocked(ndev);
693 mmiowb();
694 spin_unlock(&priv->lock);
695 return IRQ_HANDLED;
696 }
697
698 /* Error interrupt handler */
699 static void ravb_error_interrupt(struct net_device *ndev)
700 {
701 struct ravb_private *priv = netdev_priv(ndev);
702 u32 eis, ris2;
703
704 eis = ravb_read(ndev, EIS);
705 ravb_write(ndev, ~EIS_QFS, EIS);
706 if (eis & EIS_QFS) {
707 ris2 = ravb_read(ndev, RIS2);
708 ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
709
710 /* Receive Descriptor Empty int */
711 if (ris2 & RIS2_QFF0)
712 priv->stats[RAVB_BE].rx_over_errors++;
713
714 /* Receive Descriptor Empty int */
715 if (ris2 & RIS2_QFF1)
716 priv->stats[RAVB_NC].rx_over_errors++;
717
718 /* Receive FIFO Overflow int */
719 if (ris2 & RIS2_RFFF)
720 priv->rx_fifo_errors++;
721 }
722 }
723
724 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
725 {
726 struct ravb_private *priv = netdev_priv(ndev);
727 u32 ris0 = ravb_read(ndev, RIS0);
728 u32 ric0 = ravb_read(ndev, RIC0);
729 u32 tis = ravb_read(ndev, TIS);
730 u32 tic = ravb_read(ndev, TIC);
731
732 if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
733 if (napi_schedule_prep(&priv->napi[q])) {
734 /* Mask RX and TX interrupts */
735 if (priv->chip_id == RCAR_GEN2) {
736 ravb_write(ndev, ric0 & ~BIT(q), RIC0);
737 ravb_write(ndev, tic & ~BIT(q), TIC);
738 } else {
739 ravb_write(ndev, BIT(q), RID0);
740 ravb_write(ndev, BIT(q), TID);
741 }
742 __napi_schedule(&priv->napi[q]);
743 } else {
744 netdev_warn(ndev,
745 "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
746 ris0, ric0);
747 netdev_warn(ndev,
748 " tx status 0x%08x, tx mask 0x%08x.\n",
749 tis, tic);
750 }
751 return true;
752 }
753 return false;
754 }
755
756 static bool ravb_timestamp_interrupt(struct net_device *ndev)
757 {
758 u32 tis = ravb_read(ndev, TIS);
759
760 if (tis & TIS_TFUF) {
761 ravb_write(ndev, ~TIS_TFUF, TIS);
762 ravb_get_tx_tstamp(ndev);
763 return true;
764 }
765 return false;
766 }
767
768 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
769 {
770 struct net_device *ndev = dev_id;
771 struct ravb_private *priv = netdev_priv(ndev);
772 irqreturn_t result = IRQ_NONE;
773 u32 iss;
774
775 spin_lock(&priv->lock);
776 /* Get interrupt status */
777 iss = ravb_read(ndev, ISS);
778
779 /* Received and transmitted interrupts */
780 if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
781 int q;
782
783 /* Timestamp updated */
784 if (ravb_timestamp_interrupt(ndev))
785 result = IRQ_HANDLED;
786
787 /* Network control and best effort queue RX/TX */
788 for (q = RAVB_NC; q >= RAVB_BE; q--) {
789 if (ravb_queue_interrupt(ndev, q))
790 result = IRQ_HANDLED;
791 }
792 }
793
794 /* E-MAC status summary */
795 if (iss & ISS_MS) {
796 ravb_emac_interrupt_unlocked(ndev);
797 result = IRQ_HANDLED;
798 }
799
800 /* Error status summary */
801 if (iss & ISS_ES) {
802 ravb_error_interrupt(ndev);
803 result = IRQ_HANDLED;
804 }
805
806 /* gPTP interrupt status summary */
807 if (iss & ISS_CGIS) {
808 ravb_ptp_interrupt(ndev);
809 result = IRQ_HANDLED;
810 }
811
812 mmiowb();
813 spin_unlock(&priv->lock);
814 return result;
815 }
816
817 /* Timestamp/Error/gPTP interrupt handler */
818 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
819 {
820 struct net_device *ndev = dev_id;
821 struct ravb_private *priv = netdev_priv(ndev);
822 irqreturn_t result = IRQ_NONE;
823 u32 iss;
824
825 spin_lock(&priv->lock);
826 /* Get interrupt status */
827 iss = ravb_read(ndev, ISS);
828
829 /* Timestamp updated */
830 if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
831 result = IRQ_HANDLED;
832
833 /* Error status summary */
834 if (iss & ISS_ES) {
835 ravb_error_interrupt(ndev);
836 result = IRQ_HANDLED;
837 }
838
839 /* gPTP interrupt status summary */
840 if (iss & ISS_CGIS) {
841 ravb_ptp_interrupt(ndev);
842 result = IRQ_HANDLED;
843 }
844
845 mmiowb();
846 spin_unlock(&priv->lock);
847 return result;
848 }
849
850 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
851 {
852 struct net_device *ndev = dev_id;
853 struct ravb_private *priv = netdev_priv(ndev);
854 irqreturn_t result = IRQ_NONE;
855
856 spin_lock(&priv->lock);
857
858 /* Network control/Best effort queue RX/TX */
859 if (ravb_queue_interrupt(ndev, q))
860 result = IRQ_HANDLED;
861
862 mmiowb();
863 spin_unlock(&priv->lock);
864 return result;
865 }
866
867 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
868 {
869 return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
870 }
871
872 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
873 {
874 return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
875 }
876
877 static int ravb_poll(struct napi_struct *napi, int budget)
878 {
879 struct net_device *ndev = napi->dev;
880 struct ravb_private *priv = netdev_priv(ndev);
881 unsigned long flags;
882 int q = napi - priv->napi;
883 int mask = BIT(q);
884 int quota = budget;
885 u32 ris0, tis;
886
887 for (;;) {
888 tis = ravb_read(ndev, TIS);
889 ris0 = ravb_read(ndev, RIS0);
890 if (!((ris0 & mask) || (tis & mask)))
891 break;
892
893 /* Processing RX Descriptor Ring */
894 if (ris0 & mask) {
895 /* Clear RX interrupt */
896 ravb_write(ndev, ~mask, RIS0);
897 if (ravb_rx(ndev, &quota, q))
898 goto out;
899 }
900 /* Processing TX Descriptor Ring */
901 if (tis & mask) {
902 spin_lock_irqsave(&priv->lock, flags);
903 /* Clear TX interrupt */
904 ravb_write(ndev, ~mask, TIS);
905 ravb_tx_free(ndev, q);
906 netif_wake_subqueue(ndev, q);
907 mmiowb();
908 spin_unlock_irqrestore(&priv->lock, flags);
909 }
910 }
911
912 napi_complete(napi);
913
914 /* Re-enable RX/TX interrupts */
915 spin_lock_irqsave(&priv->lock, flags);
916 if (priv->chip_id == RCAR_GEN2) {
917 ravb_modify(ndev, RIC0, mask, mask);
918 ravb_modify(ndev, TIC, mask, mask);
919 } else {
920 ravb_write(ndev, mask, RIE0);
921 ravb_write(ndev, mask, TIE);
922 }
923 mmiowb();
924 spin_unlock_irqrestore(&priv->lock, flags);
925
926 /* Receive error message handling */
927 priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
928 priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
929 if (priv->rx_over_errors != ndev->stats.rx_over_errors) {
930 ndev->stats.rx_over_errors = priv->rx_over_errors;
931 netif_err(priv, rx_err, ndev, "Receive Descriptor Empty\n");
932 }
933 if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) {
934 ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
935 netif_err(priv, rx_err, ndev, "Receive FIFO Overflow\n");
936 }
937 out:
938 return budget - quota;
939 }
940
941 /* PHY state control function */
942 static void ravb_adjust_link(struct net_device *ndev)
943 {
944 struct ravb_private *priv = netdev_priv(ndev);
945 struct phy_device *phydev = priv->phydev;
946 bool new_state = false;
947
948 if (phydev->link) {
949 if (phydev->duplex != priv->duplex) {
950 new_state = true;
951 priv->duplex = phydev->duplex;
952 ravb_set_duplex(ndev);
953 }
954
955 if (phydev->speed != priv->speed) {
956 new_state = true;
957 priv->speed = phydev->speed;
958 ravb_set_rate(ndev);
959 }
960 if (!priv->link) {
961 ravb_modify(ndev, ECMR, ECMR_TXF, 0);
962 new_state = true;
963 priv->link = phydev->link;
964 if (priv->no_avb_link)
965 ravb_rcv_snd_enable(ndev);
966 }
967 } else if (priv->link) {
968 new_state = true;
969 priv->link = 0;
970 priv->speed = 0;
971 priv->duplex = -1;
972 if (priv->no_avb_link)
973 ravb_rcv_snd_disable(ndev);
974 }
975
976 if (new_state && netif_msg_link(priv))
977 phy_print_status(phydev);
978 }
979
980 /* PHY init function */
981 static int ravb_phy_init(struct net_device *ndev)
982 {
983 struct device_node *np = ndev->dev.parent->of_node;
984 struct ravb_private *priv = netdev_priv(ndev);
985 struct phy_device *phydev;
986 struct device_node *pn;
987 int err;
988
989 priv->link = 0;
990 priv->speed = 0;
991 priv->duplex = -1;
992
993 /* Try connecting to PHY */
994 pn = of_parse_phandle(np, "phy-handle", 0);
995 if (!pn) {
996 /* In the case of a fixed PHY, the DT node associated
997 * to the PHY is the Ethernet MAC DT node.
998 */
999 if (of_phy_is_fixed_link(np)) {
1000 err = of_phy_register_fixed_link(np);
1001 if (err)
1002 return err;
1003 }
1004 pn = of_node_get(np);
1005 }
1006 phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1007 priv->phy_interface);
1008 of_node_put(pn);
1009 if (!phydev) {
1010 netdev_err(ndev, "failed to connect PHY\n");
1011 return -ENOENT;
1012 }
1013
1014 /* This driver only support 10/100Mbit speeds on Gen3
1015 * at this time.
1016 */
1017 if (priv->chip_id == RCAR_GEN3) {
1018 int err;
1019
1020 err = phy_set_max_speed(phydev, SPEED_100);
1021 if (err) {
1022 netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1023 phy_disconnect(phydev);
1024 return err;
1025 }
1026
1027 netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1028 }
1029
1030 /* 10BASE is not supported */
1031 phydev->supported &= ~PHY_10BT_FEATURES;
1032
1033 phy_attached_info(phydev);
1034
1035 priv->phydev = phydev;
1036
1037 return 0;
1038 }
1039
1040 /* PHY control start function */
1041 static int ravb_phy_start(struct net_device *ndev)
1042 {
1043 struct ravb_private *priv = netdev_priv(ndev);
1044 int error;
1045
1046 error = ravb_phy_init(ndev);
1047 if (error)
1048 return error;
1049
1050 phy_start(priv->phydev);
1051
1052 return 0;
1053 }
1054
1055 static int ravb_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1056 {
1057 struct ravb_private *priv = netdev_priv(ndev);
1058 int error = -ENODEV;
1059 unsigned long flags;
1060
1061 if (priv->phydev) {
1062 spin_lock_irqsave(&priv->lock, flags);
1063 error = phy_ethtool_gset(priv->phydev, ecmd);
1064 spin_unlock_irqrestore(&priv->lock, flags);
1065 }
1066
1067 return error;
1068 }
1069
1070 static int ravb_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1071 {
1072 struct ravb_private *priv = netdev_priv(ndev);
1073 unsigned long flags;
1074 int error;
1075
1076 if (!priv->phydev)
1077 return -ENODEV;
1078
1079 spin_lock_irqsave(&priv->lock, flags);
1080
1081 /* Disable TX and RX */
1082 ravb_rcv_snd_disable(ndev);
1083
1084 error = phy_ethtool_sset(priv->phydev, ecmd);
1085 if (error)
1086 goto error_exit;
1087
1088 if (ecmd->duplex == DUPLEX_FULL)
1089 priv->duplex = 1;
1090 else
1091 priv->duplex = 0;
1092
1093 ravb_set_duplex(ndev);
1094
1095 error_exit:
1096 mdelay(1);
1097
1098 /* Enable TX and RX */
1099 ravb_rcv_snd_enable(ndev);
1100
1101 mmiowb();
1102 spin_unlock_irqrestore(&priv->lock, flags);
1103
1104 return error;
1105 }
1106
1107 static int ravb_nway_reset(struct net_device *ndev)
1108 {
1109 struct ravb_private *priv = netdev_priv(ndev);
1110 int error = -ENODEV;
1111 unsigned long flags;
1112
1113 if (priv->phydev) {
1114 spin_lock_irqsave(&priv->lock, flags);
1115 error = phy_start_aneg(priv->phydev);
1116 spin_unlock_irqrestore(&priv->lock, flags);
1117 }
1118
1119 return error;
1120 }
1121
1122 static u32 ravb_get_msglevel(struct net_device *ndev)
1123 {
1124 struct ravb_private *priv = netdev_priv(ndev);
1125
1126 return priv->msg_enable;
1127 }
1128
1129 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1130 {
1131 struct ravb_private *priv = netdev_priv(ndev);
1132
1133 priv->msg_enable = value;
1134 }
1135
1136 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1137 "rx_queue_0_current",
1138 "tx_queue_0_current",
1139 "rx_queue_0_dirty",
1140 "tx_queue_0_dirty",
1141 "rx_queue_0_packets",
1142 "tx_queue_0_packets",
1143 "rx_queue_0_bytes",
1144 "tx_queue_0_bytes",
1145 "rx_queue_0_mcast_packets",
1146 "rx_queue_0_errors",
1147 "rx_queue_0_crc_errors",
1148 "rx_queue_0_frame_errors",
1149 "rx_queue_0_length_errors",
1150 "rx_queue_0_missed_errors",
1151 "rx_queue_0_over_errors",
1152
1153 "rx_queue_1_current",
1154 "tx_queue_1_current",
1155 "rx_queue_1_dirty",
1156 "tx_queue_1_dirty",
1157 "rx_queue_1_packets",
1158 "tx_queue_1_packets",
1159 "rx_queue_1_bytes",
1160 "tx_queue_1_bytes",
1161 "rx_queue_1_mcast_packets",
1162 "rx_queue_1_errors",
1163 "rx_queue_1_crc_errors",
1164 "rx_queue_1_frame_errors",
1165 "rx_queue_1_length_errors",
1166 "rx_queue_1_missed_errors",
1167 "rx_queue_1_over_errors",
1168 };
1169
1170 #define RAVB_STATS_LEN ARRAY_SIZE(ravb_gstrings_stats)
1171
1172 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1173 {
1174 switch (sset) {
1175 case ETH_SS_STATS:
1176 return RAVB_STATS_LEN;
1177 default:
1178 return -EOPNOTSUPP;
1179 }
1180 }
1181
1182 static void ravb_get_ethtool_stats(struct net_device *ndev,
1183 struct ethtool_stats *stats, u64 *data)
1184 {
1185 struct ravb_private *priv = netdev_priv(ndev);
1186 int i = 0;
1187 int q;
1188
1189 /* Device-specific stats */
1190 for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1191 struct net_device_stats *stats = &priv->stats[q];
1192
1193 data[i++] = priv->cur_rx[q];
1194 data[i++] = priv->cur_tx[q];
1195 data[i++] = priv->dirty_rx[q];
1196 data[i++] = priv->dirty_tx[q];
1197 data[i++] = stats->rx_packets;
1198 data[i++] = stats->tx_packets;
1199 data[i++] = stats->rx_bytes;
1200 data[i++] = stats->tx_bytes;
1201 data[i++] = stats->multicast;
1202 data[i++] = stats->rx_errors;
1203 data[i++] = stats->rx_crc_errors;
1204 data[i++] = stats->rx_frame_errors;
1205 data[i++] = stats->rx_length_errors;
1206 data[i++] = stats->rx_missed_errors;
1207 data[i++] = stats->rx_over_errors;
1208 }
1209 }
1210
1211 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1212 {
1213 switch (stringset) {
1214 case ETH_SS_STATS:
1215 memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1216 break;
1217 }
1218 }
1219
1220 static void ravb_get_ringparam(struct net_device *ndev,
1221 struct ethtool_ringparam *ring)
1222 {
1223 struct ravb_private *priv = netdev_priv(ndev);
1224
1225 ring->rx_max_pending = BE_RX_RING_MAX;
1226 ring->tx_max_pending = BE_TX_RING_MAX;
1227 ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1228 ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1229 }
1230
1231 static int ravb_set_ringparam(struct net_device *ndev,
1232 struct ethtool_ringparam *ring)
1233 {
1234 struct ravb_private *priv = netdev_priv(ndev);
1235 int error;
1236
1237 if (ring->tx_pending > BE_TX_RING_MAX ||
1238 ring->rx_pending > BE_RX_RING_MAX ||
1239 ring->tx_pending < BE_TX_RING_MIN ||
1240 ring->rx_pending < BE_RX_RING_MIN)
1241 return -EINVAL;
1242 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1243 return -EINVAL;
1244
1245 if (netif_running(ndev)) {
1246 netif_device_detach(ndev);
1247 /* Stop PTP Clock driver */
1248 if (priv->chip_id == RCAR_GEN2)
1249 ravb_ptp_stop(ndev);
1250 /* Wait for DMA stopping */
1251 error = ravb_stop_dma(ndev);
1252 if (error) {
1253 netdev_err(ndev,
1254 "cannot set ringparam! Any AVB processes are still running?\n");
1255 return error;
1256 }
1257 synchronize_irq(ndev->irq);
1258
1259 /* Free all the skb's in the RX queue and the DMA buffers. */
1260 ravb_ring_free(ndev, RAVB_BE);
1261 ravb_ring_free(ndev, RAVB_NC);
1262 }
1263
1264 /* Set new parameters */
1265 priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1266 priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1267
1268 if (netif_running(ndev)) {
1269 error = ravb_dmac_init(ndev);
1270 if (error) {
1271 netdev_err(ndev,
1272 "%s: ravb_dmac_init() failed, error %d\n",
1273 __func__, error);
1274 return error;
1275 }
1276
1277 ravb_emac_init(ndev);
1278
1279 /* Initialise PTP Clock driver */
1280 if (priv->chip_id == RCAR_GEN2)
1281 ravb_ptp_init(ndev, priv->pdev);
1282
1283 netif_device_attach(ndev);
1284 }
1285
1286 return 0;
1287 }
1288
1289 static int ravb_get_ts_info(struct net_device *ndev,
1290 struct ethtool_ts_info *info)
1291 {
1292 struct ravb_private *priv = netdev_priv(ndev);
1293
1294 info->so_timestamping =
1295 SOF_TIMESTAMPING_TX_SOFTWARE |
1296 SOF_TIMESTAMPING_RX_SOFTWARE |
1297 SOF_TIMESTAMPING_SOFTWARE |
1298 SOF_TIMESTAMPING_TX_HARDWARE |
1299 SOF_TIMESTAMPING_RX_HARDWARE |
1300 SOF_TIMESTAMPING_RAW_HARDWARE;
1301 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1302 info->rx_filters =
1303 (1 << HWTSTAMP_FILTER_NONE) |
1304 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1305 (1 << HWTSTAMP_FILTER_ALL);
1306 info->phc_index = ptp_clock_index(priv->ptp.clock);
1307
1308 return 0;
1309 }
1310
1311 static const struct ethtool_ops ravb_ethtool_ops = {
1312 .get_settings = ravb_get_settings,
1313 .set_settings = ravb_set_settings,
1314 .nway_reset = ravb_nway_reset,
1315 .get_msglevel = ravb_get_msglevel,
1316 .set_msglevel = ravb_set_msglevel,
1317 .get_link = ethtool_op_get_link,
1318 .get_strings = ravb_get_strings,
1319 .get_ethtool_stats = ravb_get_ethtool_stats,
1320 .get_sset_count = ravb_get_sset_count,
1321 .get_ringparam = ravb_get_ringparam,
1322 .set_ringparam = ravb_set_ringparam,
1323 .get_ts_info = ravb_get_ts_info,
1324 };
1325
1326 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1327 struct net_device *ndev, struct device *dev,
1328 const char *ch)
1329 {
1330 char *name;
1331 int error;
1332
1333 name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1334 if (!name)
1335 return -ENOMEM;
1336 error = request_irq(irq, handler, 0, name, ndev);
1337 if (error)
1338 netdev_err(ndev, "cannot request IRQ %s\n", name);
1339
1340 return error;
1341 }
1342
1343 /* Network device open function for Ethernet AVB */
1344 static int ravb_open(struct net_device *ndev)
1345 {
1346 struct ravb_private *priv = netdev_priv(ndev);
1347 struct platform_device *pdev = priv->pdev;
1348 struct device *dev = &pdev->dev;
1349 int error;
1350
1351 napi_enable(&priv->napi[RAVB_BE]);
1352 napi_enable(&priv->napi[RAVB_NC]);
1353
1354 if (priv->chip_id == RCAR_GEN2) {
1355 error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1356 ndev->name, ndev);
1357 if (error) {
1358 netdev_err(ndev, "cannot request IRQ\n");
1359 goto out_napi_off;
1360 }
1361 } else {
1362 error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1363 dev, "ch22:multi");
1364 if (error)
1365 goto out_napi_off;
1366 error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1367 dev, "ch24:emac");
1368 if (error)
1369 goto out_free_irq;
1370 error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1371 ndev, dev, "ch0:rx_be");
1372 if (error)
1373 goto out_free_irq_emac;
1374 error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1375 ndev, dev, "ch18:tx_be");
1376 if (error)
1377 goto out_free_irq_be_rx;
1378 error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1379 ndev, dev, "ch1:rx_nc");
1380 if (error)
1381 goto out_free_irq_be_tx;
1382 error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1383 ndev, dev, "ch19:tx_nc");
1384 if (error)
1385 goto out_free_irq_nc_rx;
1386 }
1387
1388 /* Device init */
1389 error = ravb_dmac_init(ndev);
1390 if (error)
1391 goto out_free_irq_nc_tx;
1392 ravb_emac_init(ndev);
1393
1394 /* Initialise PTP Clock driver */
1395 if (priv->chip_id == RCAR_GEN2)
1396 ravb_ptp_init(ndev, priv->pdev);
1397
1398 netif_tx_start_all_queues(ndev);
1399
1400 /* PHY control start */
1401 error = ravb_phy_start(ndev);
1402 if (error)
1403 goto out_ptp_stop;
1404
1405 return 0;
1406
1407 out_ptp_stop:
1408 /* Stop PTP Clock driver */
1409 if (priv->chip_id == RCAR_GEN2)
1410 ravb_ptp_stop(ndev);
1411 out_free_irq_nc_tx:
1412 if (priv->chip_id == RCAR_GEN2)
1413 goto out_free_irq;
1414 free_irq(priv->tx_irqs[RAVB_NC], ndev);
1415 out_free_irq_nc_rx:
1416 free_irq(priv->rx_irqs[RAVB_NC], ndev);
1417 out_free_irq_be_tx:
1418 free_irq(priv->tx_irqs[RAVB_BE], ndev);
1419 out_free_irq_be_rx:
1420 free_irq(priv->rx_irqs[RAVB_BE], ndev);
1421 out_free_irq_emac:
1422 free_irq(priv->emac_irq, ndev);
1423 out_free_irq:
1424 free_irq(ndev->irq, ndev);
1425 out_napi_off:
1426 napi_disable(&priv->napi[RAVB_NC]);
1427 napi_disable(&priv->napi[RAVB_BE]);
1428 return error;
1429 }
1430
1431 /* Timeout function for Ethernet AVB */
1432 static void ravb_tx_timeout(struct net_device *ndev)
1433 {
1434 struct ravb_private *priv = netdev_priv(ndev);
1435
1436 netif_err(priv, tx_err, ndev,
1437 "transmit timed out, status %08x, resetting...\n",
1438 ravb_read(ndev, ISS));
1439
1440 /* tx_errors count up */
1441 ndev->stats.tx_errors++;
1442
1443 schedule_work(&priv->work);
1444 }
1445
1446 static void ravb_tx_timeout_work(struct work_struct *work)
1447 {
1448 struct ravb_private *priv = container_of(work, struct ravb_private,
1449 work);
1450 struct net_device *ndev = priv->ndev;
1451
1452 netif_tx_stop_all_queues(ndev);
1453
1454 /* Stop PTP Clock driver */
1455 if (priv->chip_id == RCAR_GEN2)
1456 ravb_ptp_stop(ndev);
1457
1458 /* Wait for DMA stopping */
1459 ravb_stop_dma(ndev);
1460
1461 ravb_ring_free(ndev, RAVB_BE);
1462 ravb_ring_free(ndev, RAVB_NC);
1463
1464 /* Device init */
1465 ravb_dmac_init(ndev);
1466 ravb_emac_init(ndev);
1467
1468 /* Initialise PTP Clock driver */
1469 if (priv->chip_id == RCAR_GEN2)
1470 ravb_ptp_init(ndev, priv->pdev);
1471
1472 netif_tx_start_all_queues(ndev);
1473 }
1474
1475 /* Packet transmit function for Ethernet AVB */
1476 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1477 {
1478 struct ravb_private *priv = netdev_priv(ndev);
1479 u16 q = skb_get_queue_mapping(skb);
1480 struct ravb_tstamp_skb *ts_skb;
1481 struct ravb_tx_desc *desc;
1482 unsigned long flags;
1483 u32 dma_addr;
1484 void *buffer;
1485 u32 entry;
1486 u32 len;
1487
1488 spin_lock_irqsave(&priv->lock, flags);
1489 if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1490 NUM_TX_DESC) {
1491 netif_err(priv, tx_queued, ndev,
1492 "still transmitting with the full ring!\n");
1493 netif_stop_subqueue(ndev, q);
1494 spin_unlock_irqrestore(&priv->lock, flags);
1495 return NETDEV_TX_BUSY;
1496 }
1497 entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1498 priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1499
1500 if (skb_put_padto(skb, ETH_ZLEN))
1501 goto drop;
1502
1503 buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1504 entry / NUM_TX_DESC * DPTR_ALIGN;
1505 len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1506 memcpy(buffer, skb->data, len);
1507 dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1508 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1509 goto drop;
1510
1511 desc = &priv->tx_ring[q][entry];
1512 desc->ds_tagl = cpu_to_le16(len);
1513 desc->dptr = cpu_to_le32(dma_addr);
1514
1515 buffer = skb->data + len;
1516 len = skb->len - len;
1517 dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1518 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1519 goto unmap;
1520
1521 desc++;
1522 desc->ds_tagl = cpu_to_le16(len);
1523 desc->dptr = cpu_to_le32(dma_addr);
1524
1525 /* TX timestamp required */
1526 if (q == RAVB_NC) {
1527 ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1528 if (!ts_skb) {
1529 desc--;
1530 dma_unmap_single(ndev->dev.parent, dma_addr, len,
1531 DMA_TO_DEVICE);
1532 goto unmap;
1533 }
1534 ts_skb->skb = skb;
1535 ts_skb->tag = priv->ts_skb_tag++;
1536 priv->ts_skb_tag &= 0x3ff;
1537 list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1538
1539 /* TAG and timestamp required flag */
1540 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1541 desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1542 desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
1543 }
1544
1545 skb_tx_timestamp(skb);
1546 /* Descriptor type must be set after all the above writes */
1547 dma_wmb();
1548 desc->die_dt = DT_FEND;
1549 desc--;
1550 desc->die_dt = DT_FSTART;
1551
1552 ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1553
1554 priv->cur_tx[q] += NUM_TX_DESC;
1555 if (priv->cur_tx[q] - priv->dirty_tx[q] >
1556 (priv->num_tx_ring[q] - 1) * NUM_TX_DESC && !ravb_tx_free(ndev, q))
1557 netif_stop_subqueue(ndev, q);
1558
1559 exit:
1560 mmiowb();
1561 spin_unlock_irqrestore(&priv->lock, flags);
1562 return NETDEV_TX_OK;
1563
1564 unmap:
1565 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1566 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1567 drop:
1568 dev_kfree_skb_any(skb);
1569 priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1570 goto exit;
1571 }
1572
1573 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1574 void *accel_priv, select_queue_fallback_t fallback)
1575 {
1576 /* If skb needs TX timestamp, it is handled in network control queue */
1577 return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1578 RAVB_BE;
1579
1580 }
1581
1582 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1583 {
1584 struct ravb_private *priv = netdev_priv(ndev);
1585 struct net_device_stats *nstats, *stats0, *stats1;
1586
1587 nstats = &ndev->stats;
1588 stats0 = &priv->stats[RAVB_BE];
1589 stats1 = &priv->stats[RAVB_NC];
1590
1591 nstats->tx_dropped += ravb_read(ndev, TROCR);
1592 ravb_write(ndev, 0, TROCR); /* (write clear) */
1593 nstats->collisions += ravb_read(ndev, CDCR);
1594 ravb_write(ndev, 0, CDCR); /* (write clear) */
1595 nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1596 ravb_write(ndev, 0, LCCR); /* (write clear) */
1597
1598 nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1599 ravb_write(ndev, 0, CERCR); /* (write clear) */
1600 nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1601 ravb_write(ndev, 0, CEECR); /* (write clear) */
1602
1603 nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1604 nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1605 nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1606 nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1607 nstats->multicast = stats0->multicast + stats1->multicast;
1608 nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1609 nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1610 nstats->rx_frame_errors =
1611 stats0->rx_frame_errors + stats1->rx_frame_errors;
1612 nstats->rx_length_errors =
1613 stats0->rx_length_errors + stats1->rx_length_errors;
1614 nstats->rx_missed_errors =
1615 stats0->rx_missed_errors + stats1->rx_missed_errors;
1616 nstats->rx_over_errors =
1617 stats0->rx_over_errors + stats1->rx_over_errors;
1618
1619 return nstats;
1620 }
1621
1622 /* Update promiscuous bit */
1623 static void ravb_set_rx_mode(struct net_device *ndev)
1624 {
1625 struct ravb_private *priv = netdev_priv(ndev);
1626 unsigned long flags;
1627
1628 spin_lock_irqsave(&priv->lock, flags);
1629 ravb_modify(ndev, ECMR, ECMR_PRM,
1630 ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1631 mmiowb();
1632 spin_unlock_irqrestore(&priv->lock, flags);
1633 }
1634
1635 /* Device close function for Ethernet AVB */
1636 static int ravb_close(struct net_device *ndev)
1637 {
1638 struct ravb_private *priv = netdev_priv(ndev);
1639 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1640
1641 netif_tx_stop_all_queues(ndev);
1642
1643 /* Disable interrupts by clearing the interrupt masks. */
1644 ravb_write(ndev, 0, RIC0);
1645 ravb_write(ndev, 0, RIC2);
1646 ravb_write(ndev, 0, TIC);
1647
1648 /* Stop PTP Clock driver */
1649 if (priv->chip_id == RCAR_GEN2)
1650 ravb_ptp_stop(ndev);
1651
1652 /* Set the config mode to stop the AVB-DMAC's processes */
1653 if (ravb_stop_dma(ndev) < 0)
1654 netdev_err(ndev,
1655 "device will be stopped after h/w processes are done.\n");
1656
1657 /* Clear the timestamp list */
1658 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1659 list_del(&ts_skb->list);
1660 kfree(ts_skb);
1661 }
1662
1663 /* PHY disconnect */
1664 if (priv->phydev) {
1665 phy_stop(priv->phydev);
1666 phy_disconnect(priv->phydev);
1667 priv->phydev = NULL;
1668 }
1669
1670 if (priv->chip_id != RCAR_GEN2) {
1671 free_irq(priv->tx_irqs[RAVB_NC], ndev);
1672 free_irq(priv->rx_irqs[RAVB_NC], ndev);
1673 free_irq(priv->tx_irqs[RAVB_BE], ndev);
1674 free_irq(priv->rx_irqs[RAVB_BE], ndev);
1675 free_irq(priv->emac_irq, ndev);
1676 }
1677 free_irq(ndev->irq, ndev);
1678
1679 napi_disable(&priv->napi[RAVB_NC]);
1680 napi_disable(&priv->napi[RAVB_BE]);
1681
1682 /* Free all the skb's in the RX queue and the DMA buffers. */
1683 ravb_ring_free(ndev, RAVB_BE);
1684 ravb_ring_free(ndev, RAVB_NC);
1685
1686 return 0;
1687 }
1688
1689 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1690 {
1691 struct ravb_private *priv = netdev_priv(ndev);
1692 struct hwtstamp_config config;
1693
1694 config.flags = 0;
1695 config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1696 HWTSTAMP_TX_OFF;
1697 if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1698 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1699 else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1700 config.rx_filter = HWTSTAMP_FILTER_ALL;
1701 else
1702 config.rx_filter = HWTSTAMP_FILTER_NONE;
1703
1704 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1705 -EFAULT : 0;
1706 }
1707
1708 /* Control hardware time stamping */
1709 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1710 {
1711 struct ravb_private *priv = netdev_priv(ndev);
1712 struct hwtstamp_config config;
1713 u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1714 u32 tstamp_tx_ctrl;
1715
1716 if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1717 return -EFAULT;
1718
1719 /* Reserved for future extensions */
1720 if (config.flags)
1721 return -EINVAL;
1722
1723 switch (config.tx_type) {
1724 case HWTSTAMP_TX_OFF:
1725 tstamp_tx_ctrl = 0;
1726 break;
1727 case HWTSTAMP_TX_ON:
1728 tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1729 break;
1730 default:
1731 return -ERANGE;
1732 }
1733
1734 switch (config.rx_filter) {
1735 case HWTSTAMP_FILTER_NONE:
1736 tstamp_rx_ctrl = 0;
1737 break;
1738 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1739 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1740 break;
1741 default:
1742 config.rx_filter = HWTSTAMP_FILTER_ALL;
1743 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1744 }
1745
1746 priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1747 priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1748
1749 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1750 -EFAULT : 0;
1751 }
1752
1753 /* ioctl to device function */
1754 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1755 {
1756 struct ravb_private *priv = netdev_priv(ndev);
1757 struct phy_device *phydev = priv->phydev;
1758
1759 if (!netif_running(ndev))
1760 return -EINVAL;
1761
1762 if (!phydev)
1763 return -ENODEV;
1764
1765 switch (cmd) {
1766 case SIOCGHWTSTAMP:
1767 return ravb_hwtstamp_get(ndev, req);
1768 case SIOCSHWTSTAMP:
1769 return ravb_hwtstamp_set(ndev, req);
1770 }
1771
1772 return phy_mii_ioctl(phydev, req, cmd);
1773 }
1774
1775 static const struct net_device_ops ravb_netdev_ops = {
1776 .ndo_open = ravb_open,
1777 .ndo_stop = ravb_close,
1778 .ndo_start_xmit = ravb_start_xmit,
1779 .ndo_select_queue = ravb_select_queue,
1780 .ndo_get_stats = ravb_get_stats,
1781 .ndo_set_rx_mode = ravb_set_rx_mode,
1782 .ndo_tx_timeout = ravb_tx_timeout,
1783 .ndo_do_ioctl = ravb_do_ioctl,
1784 .ndo_validate_addr = eth_validate_addr,
1785 .ndo_set_mac_address = eth_mac_addr,
1786 .ndo_change_mtu = eth_change_mtu,
1787 };
1788
1789 /* MDIO bus init function */
1790 static int ravb_mdio_init(struct ravb_private *priv)
1791 {
1792 struct platform_device *pdev = priv->pdev;
1793 struct device *dev = &pdev->dev;
1794 int error;
1795
1796 /* Bitbang init */
1797 priv->mdiobb.ops = &bb_ops;
1798
1799 /* MII controller setting */
1800 priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1801 if (!priv->mii_bus)
1802 return -ENOMEM;
1803
1804 /* Hook up MII support for ethtool */
1805 priv->mii_bus->name = "ravb_mii";
1806 priv->mii_bus->parent = dev;
1807 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1808 pdev->name, pdev->id);
1809
1810 /* Register MDIO bus */
1811 error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1812 if (error)
1813 goto out_free_bus;
1814
1815 return 0;
1816
1817 out_free_bus:
1818 free_mdio_bitbang(priv->mii_bus);
1819 return error;
1820 }
1821
1822 /* MDIO bus release function */
1823 static int ravb_mdio_release(struct ravb_private *priv)
1824 {
1825 /* Unregister mdio bus */
1826 mdiobus_unregister(priv->mii_bus);
1827
1828 /* Free bitbang info */
1829 free_mdio_bitbang(priv->mii_bus);
1830
1831 return 0;
1832 }
1833
1834 static const struct of_device_id ravb_match_table[] = {
1835 { .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1836 { .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1837 { .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1838 { .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1839 { .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1840 { }
1841 };
1842 MODULE_DEVICE_TABLE(of, ravb_match_table);
1843
1844 static int ravb_set_gti(struct net_device *ndev)
1845 {
1846
1847 struct device *dev = ndev->dev.parent;
1848 struct device_node *np = dev->of_node;
1849 unsigned long rate;
1850 struct clk *clk;
1851 uint64_t inc;
1852
1853 clk = of_clk_get(np, 0);
1854 if (IS_ERR(clk)) {
1855 dev_err(dev, "could not get clock\n");
1856 return PTR_ERR(clk);
1857 }
1858
1859 rate = clk_get_rate(clk);
1860 clk_put(clk);
1861
1862 if (!rate)
1863 return -EINVAL;
1864
1865 inc = 1000000000ULL << 20;
1866 do_div(inc, rate);
1867
1868 if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1869 dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1870 inc, GTI_TIV_MIN, GTI_TIV_MAX);
1871 return -EINVAL;
1872 }
1873
1874 ravb_write(ndev, inc, GTI);
1875
1876 return 0;
1877 }
1878
1879 static int ravb_probe(struct platform_device *pdev)
1880 {
1881 struct device_node *np = pdev->dev.of_node;
1882 struct ravb_private *priv;
1883 enum ravb_chip_id chip_id;
1884 struct net_device *ndev;
1885 int error, irq, q;
1886 struct resource *res;
1887 int i;
1888
1889 if (!np) {
1890 dev_err(&pdev->dev,
1891 "this driver is required to be instantiated from device tree\n");
1892 return -EINVAL;
1893 }
1894
1895 /* Get base address */
1896 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1897 if (!res) {
1898 dev_err(&pdev->dev, "invalid resource\n");
1899 return -EINVAL;
1900 }
1901
1902 ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1903 NUM_TX_QUEUE, NUM_RX_QUEUE);
1904 if (!ndev)
1905 return -ENOMEM;
1906
1907 pm_runtime_enable(&pdev->dev);
1908 pm_runtime_get_sync(&pdev->dev);
1909
1910 /* The Ether-specific entries in the device structure. */
1911 ndev->base_addr = res->start;
1912
1913 chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
1914
1915 if (chip_id == RCAR_GEN3)
1916 irq = platform_get_irq_byname(pdev, "ch22");
1917 else
1918 irq = platform_get_irq(pdev, 0);
1919 if (irq < 0) {
1920 error = irq;
1921 goto out_release;
1922 }
1923 ndev->irq = irq;
1924
1925 SET_NETDEV_DEV(ndev, &pdev->dev);
1926
1927 priv = netdev_priv(ndev);
1928 priv->ndev = ndev;
1929 priv->pdev = pdev;
1930 priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
1931 priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
1932 priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
1933 priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
1934 priv->addr = devm_ioremap_resource(&pdev->dev, res);
1935 if (IS_ERR(priv->addr)) {
1936 error = PTR_ERR(priv->addr);
1937 goto out_release;
1938 }
1939
1940 spin_lock_init(&priv->lock);
1941 INIT_WORK(&priv->work, ravb_tx_timeout_work);
1942
1943 priv->phy_interface = of_get_phy_mode(np);
1944
1945 priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
1946 priv->avb_link_active_low =
1947 of_property_read_bool(np, "renesas,ether-link-active-low");
1948
1949 if (chip_id == RCAR_GEN3) {
1950 irq = platform_get_irq_byname(pdev, "ch24");
1951 if (irq < 0) {
1952 error = irq;
1953 goto out_release;
1954 }
1955 priv->emac_irq = irq;
1956 for (i = 0; i < NUM_RX_QUEUE; i++) {
1957 irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
1958 if (irq < 0) {
1959 error = irq;
1960 goto out_release;
1961 }
1962 priv->rx_irqs[i] = irq;
1963 }
1964 for (i = 0; i < NUM_TX_QUEUE; i++) {
1965 irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
1966 if (irq < 0) {
1967 error = irq;
1968 goto out_release;
1969 }
1970 priv->tx_irqs[i] = irq;
1971 }
1972 }
1973
1974 priv->chip_id = chip_id;
1975
1976 /* Set function */
1977 ndev->netdev_ops = &ravb_netdev_ops;
1978 ndev->ethtool_ops = &ravb_ethtool_ops;
1979
1980 /* Set AVB config mode */
1981 if (chip_id == RCAR_GEN2) {
1982 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1983 /* Set CSEL value */
1984 ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1985 } else {
1986 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1987 CCC_GAC | CCC_CSEL_HPB);
1988 }
1989
1990 /* Set GTI value */
1991 error = ravb_set_gti(ndev);
1992 if (error)
1993 goto out_release;
1994
1995 /* Request GTI loading */
1996 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1997
1998 /* Allocate descriptor base address table */
1999 priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2000 priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2001 &priv->desc_bat_dma, GFP_KERNEL);
2002 if (!priv->desc_bat) {
2003 dev_err(&pdev->dev,
2004 "Cannot allocate desc base address table (size %d bytes)\n",
2005 priv->desc_bat_size);
2006 error = -ENOMEM;
2007 goto out_release;
2008 }
2009 for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2010 priv->desc_bat[q].die_dt = DT_EOS;
2011 ravb_write(ndev, priv->desc_bat_dma, DBAT);
2012
2013 /* Initialise HW timestamp list */
2014 INIT_LIST_HEAD(&priv->ts_skb_list);
2015
2016 /* Initialise PTP Clock driver */
2017 if (chip_id != RCAR_GEN2)
2018 ravb_ptp_init(ndev, pdev);
2019
2020 /* Debug message level */
2021 priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2022
2023 /* Read and set MAC address */
2024 ravb_read_mac_address(ndev, of_get_mac_address(np));
2025 if (!is_valid_ether_addr(ndev->dev_addr)) {
2026 dev_warn(&pdev->dev,
2027 "no valid MAC address supplied, using a random one\n");
2028 eth_hw_addr_random(ndev);
2029 }
2030
2031 /* MDIO bus init */
2032 error = ravb_mdio_init(priv);
2033 if (error) {
2034 dev_err(&pdev->dev, "failed to initialize MDIO\n");
2035 goto out_dma_free;
2036 }
2037
2038 netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2039 netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2040
2041 /* Network device register */
2042 error = register_netdev(ndev);
2043 if (error)
2044 goto out_napi_del;
2045
2046 /* Print device information */
2047 netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2048 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2049
2050 platform_set_drvdata(pdev, ndev);
2051
2052 return 0;
2053
2054 out_napi_del:
2055 netif_napi_del(&priv->napi[RAVB_NC]);
2056 netif_napi_del(&priv->napi[RAVB_BE]);
2057 ravb_mdio_release(priv);
2058 out_dma_free:
2059 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2060 priv->desc_bat_dma);
2061
2062 /* Stop PTP Clock driver */
2063 if (chip_id != RCAR_GEN2)
2064 ravb_ptp_stop(ndev);
2065 out_release:
2066 if (ndev)
2067 free_netdev(ndev);
2068
2069 pm_runtime_put(&pdev->dev);
2070 pm_runtime_disable(&pdev->dev);
2071 return error;
2072 }
2073
2074 static int ravb_remove(struct platform_device *pdev)
2075 {
2076 struct net_device *ndev = platform_get_drvdata(pdev);
2077 struct ravb_private *priv = netdev_priv(ndev);
2078
2079 /* Stop PTP Clock driver */
2080 if (priv->chip_id != RCAR_GEN2)
2081 ravb_ptp_stop(ndev);
2082
2083 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2084 priv->desc_bat_dma);
2085 /* Set reset mode */
2086 ravb_write(ndev, CCC_OPC_RESET, CCC);
2087 pm_runtime_put_sync(&pdev->dev);
2088 unregister_netdev(ndev);
2089 netif_napi_del(&priv->napi[RAVB_NC]);
2090 netif_napi_del(&priv->napi[RAVB_BE]);
2091 ravb_mdio_release(priv);
2092 pm_runtime_disable(&pdev->dev);
2093 free_netdev(ndev);
2094 platform_set_drvdata(pdev, NULL);
2095
2096 return 0;
2097 }
2098
2099 #ifdef CONFIG_PM
2100 static int ravb_runtime_nop(struct device *dev)
2101 {
2102 /* Runtime PM callback shared between ->runtime_suspend()
2103 * and ->runtime_resume(). Simply returns success.
2104 *
2105 * This driver re-initializes all registers after
2106 * pm_runtime_get_sync() anyway so there is no need
2107 * to save and restore registers here.
2108 */
2109 return 0;
2110 }
2111
2112 static const struct dev_pm_ops ravb_dev_pm_ops = {
2113 SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2114 };
2115
2116 #define RAVB_PM_OPS (&ravb_dev_pm_ops)
2117 #else
2118 #define RAVB_PM_OPS NULL
2119 #endif
2120
2121 static struct platform_driver ravb_driver = {
2122 .probe = ravb_probe,
2123 .remove = ravb_remove,
2124 .driver = {
2125 .name = "ravb",
2126 .pm = RAVB_PM_OPS,
2127 .of_match_table = ravb_match_table,
2128 },
2129 };
2130
2131 module_platform_driver(ravb_driver);
2132
2133 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2134 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2135 MODULE_LICENSE("GPL v2");
This page took 0.112281 seconds and 5 git commands to generate.