Merge remote-tracking branch 'selinux/next'
[deliverable/linux.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2 * Texas Instruments Ethernet Switch Driver
3 *
4 * Copyright (C) 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38
39 #include <linux/pinctrl/consumer.h>
40
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45
46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
47 NETIF_MSG_DRV | NETIF_MSG_LINK | \
48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
53 NETIF_MSG_RX_STATUS)
54
55 #define cpsw_info(priv, type, format, ...) \
56 do { \
57 if (netif_msg_##type(priv) && net_ratelimit()) \
58 dev_info(priv->dev, format, ## __VA_ARGS__); \
59 } while (0)
60
61 #define cpsw_err(priv, type, format, ...) \
62 do { \
63 if (netif_msg_##type(priv) && net_ratelimit()) \
64 dev_err(priv->dev, format, ## __VA_ARGS__); \
65 } while (0)
66
67 #define cpsw_dbg(priv, type, format, ...) \
68 do { \
69 if (netif_msg_##type(priv) && net_ratelimit()) \
70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \
71 } while (0)
72
73 #define cpsw_notice(priv, type, format, ...) \
74 do { \
75 if (netif_msg_##type(priv) && net_ratelimit()) \
76 dev_notice(priv->dev, format, ## __VA_ARGS__); \
77 } while (0)
78
79 #define ALE_ALL_PORTS 0x7
80
81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff)
83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f)
84
85 #define CPSW_VERSION_1 0x19010a
86 #define CPSW_VERSION_2 0x19010c
87 #define CPSW_VERSION_3 0x19010f
88 #define CPSW_VERSION_4 0x190112
89
90 #define HOST_PORT_NUM 0
91 #define SLIVER_SIZE 0x40
92
93 #define CPSW1_HOST_PORT_OFFSET 0x028
94 #define CPSW1_SLAVE_OFFSET 0x050
95 #define CPSW1_SLAVE_SIZE 0x040
96 #define CPSW1_CPDMA_OFFSET 0x100
97 #define CPSW1_STATERAM_OFFSET 0x200
98 #define CPSW1_HW_STATS 0x400
99 #define CPSW1_CPTS_OFFSET 0x500
100 #define CPSW1_ALE_OFFSET 0x600
101 #define CPSW1_SLIVER_OFFSET 0x700
102
103 #define CPSW2_HOST_PORT_OFFSET 0x108
104 #define CPSW2_SLAVE_OFFSET 0x200
105 #define CPSW2_SLAVE_SIZE 0x100
106 #define CPSW2_CPDMA_OFFSET 0x800
107 #define CPSW2_HW_STATS 0x900
108 #define CPSW2_STATERAM_OFFSET 0xa00
109 #define CPSW2_CPTS_OFFSET 0xc00
110 #define CPSW2_ALE_OFFSET 0xd00
111 #define CPSW2_SLIVER_OFFSET 0xd80
112 #define CPSW2_BD_OFFSET 0x2000
113
114 #define CPDMA_RXTHRESH 0x0c0
115 #define CPDMA_RXFREE 0x0e0
116 #define CPDMA_TXHDP 0x00
117 #define CPDMA_RXHDP 0x20
118 #define CPDMA_TXCP 0x40
119 #define CPDMA_RXCP 0x60
120
121 #define CPSW_POLL_WEIGHT 64
122 #define CPSW_MIN_PACKET_SIZE 60
123 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4)
124
125 #define RX_PRIORITY_MAPPING 0x76543210
126 #define TX_PRIORITY_MAPPING 0x33221100
127 #define CPDMA_TX_PRIORITY_MAP 0x01234567
128
129 #define CPSW_VLAN_AWARE BIT(1)
130 #define CPSW_ALE_VLAN_AWARE 1
131
132 #define CPSW_FIFO_NORMAL_MODE (0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16)
135
136 #define CPSW_INTPACEEN (0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK (0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT 63
139 #define CPSW_CMINTMIN_CNT 2
140 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1)
142
143 #define cpsw_slave_index(cpsw, priv) \
144 ((cpsw->data.dual_emac) ? priv->emac_port : \
145 cpsw->data.active_slave)
146 #define IRQ_NUM 2
147 #define CPSW_MAX_QUEUES 8
148
149 static int debug_level;
150 module_param(debug_level, int, 0);
151 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
152
153 static int ale_ageout = 10;
154 module_param(ale_ageout, int, 0);
155 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
156
157 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
158 module_param(rx_packet_max, int, 0);
159 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
160
161 struct cpsw_wr_regs {
162 u32 id_ver;
163 u32 soft_reset;
164 u32 control;
165 u32 int_control;
166 u32 rx_thresh_en;
167 u32 rx_en;
168 u32 tx_en;
169 u32 misc_en;
170 u32 mem_allign1[8];
171 u32 rx_thresh_stat;
172 u32 rx_stat;
173 u32 tx_stat;
174 u32 misc_stat;
175 u32 mem_allign2[8];
176 u32 rx_imax;
177 u32 tx_imax;
178
179 };
180
181 struct cpsw_ss_regs {
182 u32 id_ver;
183 u32 control;
184 u32 soft_reset;
185 u32 stat_port_en;
186 u32 ptype;
187 u32 soft_idle;
188 u32 thru_rate;
189 u32 gap_thresh;
190 u32 tx_start_wds;
191 u32 flow_control;
192 u32 vlan_ltype;
193 u32 ts_ltype;
194 u32 dlr_ltype;
195 };
196
197 /* CPSW_PORT_V1 */
198 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */
199 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */
200 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */
201 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */
202 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */
203 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */
204 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */
205 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */
206
207 /* CPSW_PORT_V2 */
208 #define CPSW2_CONTROL 0x00 /* Control Register */
209 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */
210 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */
211 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */
212 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */
213 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */
214 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */
215
216 /* CPSW_PORT_V1 and V2 */
217 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */
218 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */
219 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */
220
221 /* CPSW_PORT_V2 only */
222 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */
223 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */
224 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */
225 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */
226 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */
227 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */
228 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */
229 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */
230
231 /* Bit definitions for the CPSW2_CONTROL register */
232 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */
233 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */
234 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */
235 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */
236 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */
237 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */
238 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */
239 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */
240 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */
241 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */
242 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */
243 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */
244 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */
245 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */
246 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */
247 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */
248 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */
249
250 #define CTRL_V2_TS_BITS \
251 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
252 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN)
253
254 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
255 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN)
256 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN)
257
258
259 #define CTRL_V3_TS_BITS \
260 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
261 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
262 TS_LTYPE1_EN)
263
264 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
265 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN)
266 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN)
267
268 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
269 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */
270 #define TS_SEQ_ID_OFFSET_MASK (0x3f)
271 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */
272 #define TS_MSG_TYPE_EN_MASK (0xffff)
273
274 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
275 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
276
277 /* Bit definitions for the CPSW1_TS_CTL register */
278 #define CPSW_V1_TS_RX_EN BIT(0)
279 #define CPSW_V1_TS_TX_EN BIT(4)
280 #define CPSW_V1_MSG_TYPE_OFS 16
281
282 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
283 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16
284
285 struct cpsw_host_regs {
286 u32 max_blks;
287 u32 blk_cnt;
288 u32 tx_in_ctl;
289 u32 port_vlan;
290 u32 tx_pri_map;
291 u32 cpdma_tx_pri_map;
292 u32 cpdma_rx_chan_map;
293 };
294
295 struct cpsw_sliver_regs {
296 u32 id_ver;
297 u32 mac_control;
298 u32 mac_status;
299 u32 soft_reset;
300 u32 rx_maxlen;
301 u32 __reserved_0;
302 u32 rx_pause;
303 u32 tx_pause;
304 u32 __reserved_1;
305 u32 rx_pri_map;
306 };
307
308 struct cpsw_hw_stats {
309 u32 rxgoodframes;
310 u32 rxbroadcastframes;
311 u32 rxmulticastframes;
312 u32 rxpauseframes;
313 u32 rxcrcerrors;
314 u32 rxaligncodeerrors;
315 u32 rxoversizedframes;
316 u32 rxjabberframes;
317 u32 rxundersizedframes;
318 u32 rxfragments;
319 u32 __pad_0[2];
320 u32 rxoctets;
321 u32 txgoodframes;
322 u32 txbroadcastframes;
323 u32 txmulticastframes;
324 u32 txpauseframes;
325 u32 txdeferredframes;
326 u32 txcollisionframes;
327 u32 txsinglecollframes;
328 u32 txmultcollframes;
329 u32 txexcessivecollisions;
330 u32 txlatecollisions;
331 u32 txunderrun;
332 u32 txcarriersenseerrors;
333 u32 txoctets;
334 u32 octetframes64;
335 u32 octetframes65t127;
336 u32 octetframes128t255;
337 u32 octetframes256t511;
338 u32 octetframes512t1023;
339 u32 octetframes1024tup;
340 u32 netoctets;
341 u32 rxsofoverruns;
342 u32 rxmofoverruns;
343 u32 rxdmaoverruns;
344 };
345
346 struct cpsw_slave {
347 void __iomem *regs;
348 struct cpsw_sliver_regs __iomem *sliver;
349 int slave_num;
350 u32 mac_control;
351 struct cpsw_slave_data *data;
352 struct phy_device *phy;
353 struct net_device *ndev;
354 u32 port_vlan;
355 u32 open_stat;
356 };
357
358 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
359 {
360 return __raw_readl(slave->regs + offset);
361 }
362
363 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
364 {
365 __raw_writel(val, slave->regs + offset);
366 }
367
368 struct cpsw_common {
369 struct device *dev;
370 struct cpsw_platform_data data;
371 struct napi_struct napi_rx;
372 struct napi_struct napi_tx;
373 struct cpsw_ss_regs __iomem *regs;
374 struct cpsw_wr_regs __iomem *wr_regs;
375 u8 __iomem *hw_stats;
376 struct cpsw_host_regs __iomem *host_port_regs;
377 u32 version;
378 u32 coal_intvl;
379 u32 bus_freq_mhz;
380 int rx_packet_max;
381 struct cpsw_slave *slaves;
382 struct cpdma_ctlr *dma;
383 struct cpdma_chan *txch[CPSW_MAX_QUEUES];
384 struct cpdma_chan *rxch[CPSW_MAX_QUEUES];
385 struct cpsw_ale *ale;
386 bool quirk_irq;
387 bool rx_irq_disabled;
388 bool tx_irq_disabled;
389 u32 irqs_table[IRQ_NUM];
390 struct cpts *cpts;
391 int rx_ch_num, tx_ch_num;
392 };
393
394 struct cpsw_priv {
395 struct net_device *ndev;
396 struct device *dev;
397 u32 msg_enable;
398 u8 mac_addr[ETH_ALEN];
399 bool rx_pause;
400 bool tx_pause;
401 u32 emac_port;
402 struct cpsw_common *cpsw;
403 };
404
405 struct cpsw_stats {
406 char stat_string[ETH_GSTRING_LEN];
407 int type;
408 int sizeof_stat;
409 int stat_offset;
410 };
411
412 enum {
413 CPSW_STATS,
414 CPDMA_RX_STATS,
415 CPDMA_TX_STATS,
416 };
417
418 #define CPSW_STAT(m) CPSW_STATS, \
419 sizeof(((struct cpsw_hw_stats *)0)->m), \
420 offsetof(struct cpsw_hw_stats, m)
421 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \
422 sizeof(((struct cpdma_chan_stats *)0)->m), \
423 offsetof(struct cpdma_chan_stats, m)
424 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \
425 sizeof(((struct cpdma_chan_stats *)0)->m), \
426 offsetof(struct cpdma_chan_stats, m)
427
428 static const struct cpsw_stats cpsw_gstrings_stats[] = {
429 { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
430 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
431 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
432 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
433 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
434 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
435 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
436 { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
437 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
438 { "Rx Fragments", CPSW_STAT(rxfragments) },
439 { "Rx Octets", CPSW_STAT(rxoctets) },
440 { "Good Tx Frames", CPSW_STAT(txgoodframes) },
441 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
442 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
443 { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
444 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
445 { "Collisions", CPSW_STAT(txcollisionframes) },
446 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
447 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
448 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
449 { "Late Collisions", CPSW_STAT(txlatecollisions) },
450 { "Tx Underrun", CPSW_STAT(txunderrun) },
451 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
452 { "Tx Octets", CPSW_STAT(txoctets) },
453 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
454 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
455 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
456 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
457 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
458 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
459 { "Net Octets", CPSW_STAT(netoctets) },
460 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
461 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
462 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
463 };
464
465 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
466 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
467 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
468 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
469 { "misqueued", CPDMA_RX_STAT(misqueued) },
470 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
471 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
472 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
473 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
474 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
475 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
476 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
477 { "requeue", CPDMA_RX_STAT(requeue) },
478 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
479 };
480
481 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats)
482 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats)
483
484 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
485 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi)
486 #define for_each_slave(priv, func, arg...) \
487 do { \
488 struct cpsw_slave *slave; \
489 struct cpsw_common *cpsw = (priv)->cpsw; \
490 int n; \
491 if (cpsw->data.dual_emac) \
492 (func)((cpsw)->slaves + priv->emac_port, ##arg);\
493 else \
494 for (n = cpsw->data.slaves, \
495 slave = cpsw->slaves; \
496 n; n--) \
497 (func)(slave++, ##arg); \
498 } while (0)
499
500 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb) \
501 do { \
502 if (!cpsw->data.dual_emac) \
503 break; \
504 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \
505 ndev = cpsw->slaves[0].ndev; \
506 skb->dev = ndev; \
507 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \
508 ndev = cpsw->slaves[1].ndev; \
509 skb->dev = ndev; \
510 } \
511 } while (0)
512 #define cpsw_add_mcast(cpsw, priv, addr) \
513 do { \
514 if (cpsw->data.dual_emac) { \
515 struct cpsw_slave *slave = cpsw->slaves + \
516 priv->emac_port; \
517 int slave_port = cpsw_get_slave_port( \
518 slave->slave_num); \
519 cpsw_ale_add_mcast(cpsw->ale, addr, \
520 1 << slave_port | ALE_PORT_HOST, \
521 ALE_VLAN, slave->port_vlan, 0); \
522 } else { \
523 cpsw_ale_add_mcast(cpsw->ale, addr, \
524 ALE_ALL_PORTS, \
525 0, 0, 0); \
526 } \
527 } while (0)
528
529 static inline int cpsw_get_slave_port(u32 slave_num)
530 {
531 return slave_num + 1;
532 }
533
534 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
535 {
536 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
537 struct cpsw_ale *ale = cpsw->ale;
538 int i;
539
540 if (cpsw->data.dual_emac) {
541 bool flag = false;
542
543 /* Enabling promiscuous mode for one interface will be
544 * common for both the interface as the interface shares
545 * the same hardware resource.
546 */
547 for (i = 0; i < cpsw->data.slaves; i++)
548 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
549 flag = true;
550
551 if (!enable && flag) {
552 enable = true;
553 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
554 }
555
556 if (enable) {
557 /* Enable Bypass */
558 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
559
560 dev_dbg(&ndev->dev, "promiscuity enabled\n");
561 } else {
562 /* Disable Bypass */
563 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
564 dev_dbg(&ndev->dev, "promiscuity disabled\n");
565 }
566 } else {
567 if (enable) {
568 unsigned long timeout = jiffies + HZ;
569
570 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
571 for (i = 0; i <= cpsw->data.slaves; i++) {
572 cpsw_ale_control_set(ale, i,
573 ALE_PORT_NOLEARN, 1);
574 cpsw_ale_control_set(ale, i,
575 ALE_PORT_NO_SA_UPDATE, 1);
576 }
577
578 /* Clear All Untouched entries */
579 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
580 do {
581 cpu_relax();
582 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
583 break;
584 } while (time_after(timeout, jiffies));
585 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
586
587 /* Clear all mcast from ALE */
588 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
589
590 /* Flood All Unicast Packets to Host port */
591 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
592 dev_dbg(&ndev->dev, "promiscuity enabled\n");
593 } else {
594 /* Don't Flood All Unicast Packets to Host port */
595 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
596
597 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
598 for (i = 0; i <= cpsw->data.slaves; i++) {
599 cpsw_ale_control_set(ale, i,
600 ALE_PORT_NOLEARN, 0);
601 cpsw_ale_control_set(ale, i,
602 ALE_PORT_NO_SA_UPDATE, 0);
603 }
604 dev_dbg(&ndev->dev, "promiscuity disabled\n");
605 }
606 }
607 }
608
609 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
610 {
611 struct cpsw_priv *priv = netdev_priv(ndev);
612 struct cpsw_common *cpsw = priv->cpsw;
613 int vid;
614
615 if (cpsw->data.dual_emac)
616 vid = cpsw->slaves[priv->emac_port].port_vlan;
617 else
618 vid = cpsw->data.default_vlan;
619
620 if (ndev->flags & IFF_PROMISC) {
621 /* Enable promiscuous mode */
622 cpsw_set_promiscious(ndev, true);
623 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
624 return;
625 } else {
626 /* Disable promiscuous mode */
627 cpsw_set_promiscious(ndev, false);
628 }
629
630 /* Restore allmulti on vlans if necessary */
631 cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
632
633 /* Clear all mcast from ALE */
634 cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
635
636 if (!netdev_mc_empty(ndev)) {
637 struct netdev_hw_addr *ha;
638
639 /* program multicast address list into ALE register */
640 netdev_for_each_mc_addr(ha, ndev) {
641 cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
642 }
643 }
644 }
645
646 static void cpsw_intr_enable(struct cpsw_common *cpsw)
647 {
648 __raw_writel(0xFF, &cpsw->wr_regs->tx_en);
649 __raw_writel(0xFF, &cpsw->wr_regs->rx_en);
650
651 cpdma_ctlr_int_ctrl(cpsw->dma, true);
652 return;
653 }
654
655 static void cpsw_intr_disable(struct cpsw_common *cpsw)
656 {
657 __raw_writel(0, &cpsw->wr_regs->tx_en);
658 __raw_writel(0, &cpsw->wr_regs->rx_en);
659
660 cpdma_ctlr_int_ctrl(cpsw->dma, false);
661 return;
662 }
663
664 static void cpsw_tx_handler(void *token, int len, int status)
665 {
666 struct netdev_queue *txq;
667 struct sk_buff *skb = token;
668 struct net_device *ndev = skb->dev;
669 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
670
671 /* Check whether the queue is stopped due to stalled tx dma, if the
672 * queue is stopped then start the queue as we have free desc for tx
673 */
674 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
675 if (unlikely(netif_tx_queue_stopped(txq)))
676 netif_tx_wake_queue(txq);
677
678 cpts_tx_timestamp(cpsw->cpts, skb);
679 ndev->stats.tx_packets++;
680 ndev->stats.tx_bytes += len;
681 dev_kfree_skb_any(skb);
682 }
683
684 static void cpsw_rx_handler(void *token, int len, int status)
685 {
686 struct cpdma_chan *ch;
687 struct sk_buff *skb = token;
688 struct sk_buff *new_skb;
689 struct net_device *ndev = skb->dev;
690 int ret = 0;
691 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
692
693 cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
694
695 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
696 bool ndev_status = false;
697 struct cpsw_slave *slave = cpsw->slaves;
698 int n;
699
700 if (cpsw->data.dual_emac) {
701 /* In dual emac mode check for all interfaces */
702 for (n = cpsw->data.slaves; n; n--, slave++)
703 if (netif_running(slave->ndev))
704 ndev_status = true;
705 }
706
707 if (ndev_status && (status >= 0)) {
708 /* The packet received is for the interface which
709 * is already down and the other interface is up
710 * and running, instead of freeing which results
711 * in reducing of the number of rx descriptor in
712 * DMA engine, requeue skb back to cpdma.
713 */
714 new_skb = skb;
715 goto requeue;
716 }
717
718 /* the interface is going down, skbs are purged */
719 dev_kfree_skb_any(skb);
720 return;
721 }
722
723 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
724 if (new_skb) {
725 skb_copy_queue_mapping(new_skb, skb);
726 skb_put(skb, len);
727 cpts_rx_timestamp(cpsw->cpts, skb);
728 skb->protocol = eth_type_trans(skb, ndev);
729 netif_receive_skb(skb);
730 ndev->stats.rx_bytes += len;
731 ndev->stats.rx_packets++;
732 kmemleak_not_leak(new_skb);
733 } else {
734 ndev->stats.rx_dropped++;
735 new_skb = skb;
736 }
737
738 requeue:
739 if (netif_dormant(ndev)) {
740 dev_kfree_skb_any(new_skb);
741 return;
742 }
743
744 ch = cpsw->rxch[skb_get_queue_mapping(new_skb)];
745 ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
746 skb_tailroom(new_skb), 0);
747 if (WARN_ON(ret < 0))
748 dev_kfree_skb_any(new_skb);
749 }
750
751 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
752 {
753 struct cpsw_common *cpsw = dev_id;
754
755 writel(0, &cpsw->wr_regs->tx_en);
756 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
757
758 if (cpsw->quirk_irq) {
759 disable_irq_nosync(cpsw->irqs_table[1]);
760 cpsw->tx_irq_disabled = true;
761 }
762
763 napi_schedule(&cpsw->napi_tx);
764 return IRQ_HANDLED;
765 }
766
767 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
768 {
769 struct cpsw_common *cpsw = dev_id;
770
771 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
772 writel(0, &cpsw->wr_regs->rx_en);
773
774 if (cpsw->quirk_irq) {
775 disable_irq_nosync(cpsw->irqs_table[0]);
776 cpsw->rx_irq_disabled = true;
777 }
778
779 napi_schedule(&cpsw->napi_rx);
780 return IRQ_HANDLED;
781 }
782
783 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
784 {
785 u32 ch_map;
786 int num_tx, ch;
787 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
788
789 /* process every unprocessed channel */
790 ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
791 for (ch = 0, num_tx = 0; num_tx < budget; ch_map >>= 1, ch++) {
792 if (!ch_map) {
793 ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
794 if (!ch_map)
795 break;
796
797 ch = 0;
798 }
799
800 if (!(ch_map & 0x01))
801 continue;
802
803 num_tx += cpdma_chan_process(cpsw->txch[ch], budget - num_tx);
804 }
805
806 if (num_tx < budget) {
807 napi_complete(napi_tx);
808 writel(0xff, &cpsw->wr_regs->tx_en);
809 if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
810 cpsw->tx_irq_disabled = false;
811 enable_irq(cpsw->irqs_table[1]);
812 }
813 }
814
815 return num_tx;
816 }
817
818 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
819 {
820 u32 ch_map;
821 int num_rx, ch;
822 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
823
824 /* process every unprocessed channel */
825 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
826 for (ch = 0, num_rx = 0; num_rx < budget; ch_map >>= 1, ch++) {
827 if (!ch_map) {
828 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
829 if (!ch_map)
830 break;
831
832 ch = 0;
833 }
834
835 if (!(ch_map & 0x01))
836 continue;
837
838 num_rx += cpdma_chan_process(cpsw->rxch[ch], budget - num_rx);
839 }
840
841 if (num_rx < budget) {
842 napi_complete(napi_rx);
843 writel(0xff, &cpsw->wr_regs->rx_en);
844 if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
845 cpsw->rx_irq_disabled = false;
846 enable_irq(cpsw->irqs_table[0]);
847 }
848 }
849
850 return num_rx;
851 }
852
853 static inline void soft_reset(const char *module, void __iomem *reg)
854 {
855 unsigned long timeout = jiffies + HZ;
856
857 __raw_writel(1, reg);
858 do {
859 cpu_relax();
860 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
861
862 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
863 }
864
865 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
866 ((mac)[2] << 16) | ((mac)[3] << 24))
867 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
868
869 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
870 struct cpsw_priv *priv)
871 {
872 slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
873 slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
874 }
875
876 static void _cpsw_adjust_link(struct cpsw_slave *slave,
877 struct cpsw_priv *priv, bool *link)
878 {
879 struct phy_device *phy = slave->phy;
880 u32 mac_control = 0;
881 u32 slave_port;
882 struct cpsw_common *cpsw = priv->cpsw;
883
884 if (!phy)
885 return;
886
887 slave_port = cpsw_get_slave_port(slave->slave_num);
888
889 if (phy->link) {
890 mac_control = cpsw->data.mac_control;
891
892 /* enable forwarding */
893 cpsw_ale_control_set(cpsw->ale, slave_port,
894 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
895
896 if (phy->speed == 1000)
897 mac_control |= BIT(7); /* GIGABITEN */
898 if (phy->duplex)
899 mac_control |= BIT(0); /* FULLDUPLEXEN */
900
901 /* set speed_in input in case RMII mode is used in 100Mbps */
902 if (phy->speed == 100)
903 mac_control |= BIT(15);
904 else if (phy->speed == 10)
905 mac_control |= BIT(18); /* In Band mode */
906
907 if (priv->rx_pause)
908 mac_control |= BIT(3);
909
910 if (priv->tx_pause)
911 mac_control |= BIT(4);
912
913 *link = true;
914 } else {
915 mac_control = 0;
916 /* disable forwarding */
917 cpsw_ale_control_set(cpsw->ale, slave_port,
918 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
919 }
920
921 if (mac_control != slave->mac_control) {
922 phy_print_status(phy);
923 __raw_writel(mac_control, &slave->sliver->mac_control);
924 }
925
926 slave->mac_control = mac_control;
927 }
928
929 static void cpsw_adjust_link(struct net_device *ndev)
930 {
931 struct cpsw_priv *priv = netdev_priv(ndev);
932 bool link = false;
933
934 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
935
936 if (link) {
937 netif_carrier_on(ndev);
938 if (netif_running(ndev))
939 netif_tx_wake_all_queues(ndev);
940 } else {
941 netif_carrier_off(ndev);
942 netif_tx_stop_all_queues(ndev);
943 }
944 }
945
946 static int cpsw_get_coalesce(struct net_device *ndev,
947 struct ethtool_coalesce *coal)
948 {
949 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
950
951 coal->rx_coalesce_usecs = cpsw->coal_intvl;
952 return 0;
953 }
954
955 static int cpsw_set_coalesce(struct net_device *ndev,
956 struct ethtool_coalesce *coal)
957 {
958 struct cpsw_priv *priv = netdev_priv(ndev);
959 u32 int_ctrl;
960 u32 num_interrupts = 0;
961 u32 prescale = 0;
962 u32 addnl_dvdr = 1;
963 u32 coal_intvl = 0;
964 struct cpsw_common *cpsw = priv->cpsw;
965
966 coal_intvl = coal->rx_coalesce_usecs;
967
968 int_ctrl = readl(&cpsw->wr_regs->int_control);
969 prescale = cpsw->bus_freq_mhz * 4;
970
971 if (!coal->rx_coalesce_usecs) {
972 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
973 goto update_return;
974 }
975
976 if (coal_intvl < CPSW_CMINTMIN_INTVL)
977 coal_intvl = CPSW_CMINTMIN_INTVL;
978
979 if (coal_intvl > CPSW_CMINTMAX_INTVL) {
980 /* Interrupt pacer works with 4us Pulse, we can
981 * throttle further by dilating the 4us pulse.
982 */
983 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
984
985 if (addnl_dvdr > 1) {
986 prescale *= addnl_dvdr;
987 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
988 coal_intvl = (CPSW_CMINTMAX_INTVL
989 * addnl_dvdr);
990 } else {
991 addnl_dvdr = 1;
992 coal_intvl = CPSW_CMINTMAX_INTVL;
993 }
994 }
995
996 num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
997 writel(num_interrupts, &cpsw->wr_regs->rx_imax);
998 writel(num_interrupts, &cpsw->wr_regs->tx_imax);
999
1000 int_ctrl |= CPSW_INTPACEEN;
1001 int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1002 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1003
1004 update_return:
1005 writel(int_ctrl, &cpsw->wr_regs->int_control);
1006
1007 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1008 cpsw->coal_intvl = coal_intvl;
1009
1010 return 0;
1011 }
1012
1013 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1014 {
1015 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1016
1017 switch (sset) {
1018 case ETH_SS_STATS:
1019 return (CPSW_STATS_COMMON_LEN +
1020 (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1021 CPSW_STATS_CH_LEN);
1022 default:
1023 return -EOPNOTSUPP;
1024 }
1025 }
1026
1027 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1028 {
1029 int ch_stats_len;
1030 int line;
1031 int i;
1032
1033 ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1034 for (i = 0; i < ch_stats_len; i++) {
1035 line = i % CPSW_STATS_CH_LEN;
1036 snprintf(*p, ETH_GSTRING_LEN,
1037 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1038 i / CPSW_STATS_CH_LEN,
1039 cpsw_gstrings_ch_stats[line].stat_string);
1040 *p += ETH_GSTRING_LEN;
1041 }
1042 }
1043
1044 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1045 {
1046 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1047 u8 *p = data;
1048 int i;
1049
1050 switch (stringset) {
1051 case ETH_SS_STATS:
1052 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1053 memcpy(p, cpsw_gstrings_stats[i].stat_string,
1054 ETH_GSTRING_LEN);
1055 p += ETH_GSTRING_LEN;
1056 }
1057
1058 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1059 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1060 break;
1061 }
1062 }
1063
1064 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1065 struct ethtool_stats *stats, u64 *data)
1066 {
1067 u8 *p;
1068 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1069 struct cpdma_chan_stats ch_stats;
1070 int i, l, ch;
1071
1072 /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1073 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1074 data[l] = readl(cpsw->hw_stats +
1075 cpsw_gstrings_stats[l].stat_offset);
1076
1077 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1078 cpdma_chan_get_stats(cpsw->rxch[ch], &ch_stats);
1079 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1080 p = (u8 *)&ch_stats +
1081 cpsw_gstrings_ch_stats[i].stat_offset;
1082 data[l] = *(u32 *)p;
1083 }
1084 }
1085
1086 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1087 cpdma_chan_get_stats(cpsw->txch[ch], &ch_stats);
1088 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1089 p = (u8 *)&ch_stats +
1090 cpsw_gstrings_ch_stats[i].stat_offset;
1091 data[l] = *(u32 *)p;
1092 }
1093 }
1094 }
1095
1096 static int cpsw_common_res_usage_state(struct cpsw_common *cpsw)
1097 {
1098 u32 i;
1099 u32 usage_count = 0;
1100
1101 if (!cpsw->data.dual_emac)
1102 return 0;
1103
1104 for (i = 0; i < cpsw->data.slaves; i++)
1105 if (cpsw->slaves[i].open_stat)
1106 usage_count++;
1107
1108 return usage_count;
1109 }
1110
1111 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1112 struct sk_buff *skb,
1113 struct cpdma_chan *txch)
1114 {
1115 struct cpsw_common *cpsw = priv->cpsw;
1116
1117 return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1118 priv->emac_port + cpsw->data.dual_emac);
1119 }
1120
1121 static inline void cpsw_add_dual_emac_def_ale_entries(
1122 struct cpsw_priv *priv, struct cpsw_slave *slave,
1123 u32 slave_port)
1124 {
1125 struct cpsw_common *cpsw = priv->cpsw;
1126 u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1127
1128 if (cpsw->version == CPSW_VERSION_1)
1129 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1130 else
1131 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1132 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1133 port_mask, port_mask, 0);
1134 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1135 port_mask, ALE_VLAN, slave->port_vlan, 0);
1136 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1137 HOST_PORT_NUM, ALE_VLAN |
1138 ALE_SECURE, slave->port_vlan);
1139 }
1140
1141 static void soft_reset_slave(struct cpsw_slave *slave)
1142 {
1143 char name[32];
1144
1145 snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1146 soft_reset(name, &slave->sliver->soft_reset);
1147 }
1148
1149 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1150 {
1151 u32 slave_port;
1152 struct cpsw_common *cpsw = priv->cpsw;
1153
1154 soft_reset_slave(slave);
1155
1156 /* setup priority mapping */
1157 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1158
1159 switch (cpsw->version) {
1160 case CPSW_VERSION_1:
1161 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1162 break;
1163 case CPSW_VERSION_2:
1164 case CPSW_VERSION_3:
1165 case CPSW_VERSION_4:
1166 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1167 break;
1168 }
1169
1170 /* setup max packet size, and mac address */
1171 __raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1172 cpsw_set_slave_mac(slave, priv);
1173
1174 slave->mac_control = 0; /* no link yet */
1175
1176 slave_port = cpsw_get_slave_port(slave->slave_num);
1177
1178 if (cpsw->data.dual_emac)
1179 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1180 else
1181 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1182 1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1183
1184 if (slave->data->phy_node) {
1185 slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1186 &cpsw_adjust_link, 0, slave->data->phy_if);
1187 if (!slave->phy) {
1188 dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
1189 slave->data->phy_node->full_name,
1190 slave->slave_num);
1191 return;
1192 }
1193 } else {
1194 slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1195 &cpsw_adjust_link, slave->data->phy_if);
1196 if (IS_ERR(slave->phy)) {
1197 dev_err(priv->dev,
1198 "phy \"%s\" not found on slave %d, err %ld\n",
1199 slave->data->phy_id, slave->slave_num,
1200 PTR_ERR(slave->phy));
1201 slave->phy = NULL;
1202 return;
1203 }
1204 }
1205
1206 phy_attached_info(slave->phy);
1207
1208 phy_start(slave->phy);
1209
1210 /* Configure GMII_SEL register */
1211 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1212 }
1213
1214 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1215 {
1216 struct cpsw_common *cpsw = priv->cpsw;
1217 const int vlan = cpsw->data.default_vlan;
1218 u32 reg;
1219 int i;
1220 int unreg_mcast_mask;
1221
1222 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1223 CPSW2_PORT_VLAN;
1224
1225 writel(vlan, &cpsw->host_port_regs->port_vlan);
1226
1227 for (i = 0; i < cpsw->data.slaves; i++)
1228 slave_write(cpsw->slaves + i, vlan, reg);
1229
1230 if (priv->ndev->flags & IFF_ALLMULTI)
1231 unreg_mcast_mask = ALE_ALL_PORTS;
1232 else
1233 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1234
1235 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1236 ALE_ALL_PORTS, ALE_ALL_PORTS,
1237 unreg_mcast_mask);
1238 }
1239
1240 static void cpsw_init_host_port(struct cpsw_priv *priv)
1241 {
1242 u32 fifo_mode;
1243 u32 control_reg;
1244 struct cpsw_common *cpsw = priv->cpsw;
1245
1246 /* soft reset the controller and initialize ale */
1247 soft_reset("cpsw", &cpsw->regs->soft_reset);
1248 cpsw_ale_start(cpsw->ale);
1249
1250 /* switch to vlan unaware mode */
1251 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1252 CPSW_ALE_VLAN_AWARE);
1253 control_reg = readl(&cpsw->regs->control);
1254 control_reg |= CPSW_VLAN_AWARE;
1255 writel(control_reg, &cpsw->regs->control);
1256 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1257 CPSW_FIFO_NORMAL_MODE;
1258 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1259
1260 /* setup host port priority mapping */
1261 __raw_writel(CPDMA_TX_PRIORITY_MAP,
1262 &cpsw->host_port_regs->cpdma_tx_pri_map);
1263 __raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1264
1265 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1266 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1267
1268 if (!cpsw->data.dual_emac) {
1269 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1270 0, 0);
1271 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1272 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1273 }
1274 }
1275
1276 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1277 {
1278 struct cpsw_common *cpsw = priv->cpsw;
1279 struct sk_buff *skb;
1280 int ch_buf_num;
1281 int ch, i, ret;
1282
1283 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1284 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxch[ch]);
1285 for (i = 0; i < ch_buf_num; i++) {
1286 skb = __netdev_alloc_skb_ip_align(priv->ndev,
1287 cpsw->rx_packet_max,
1288 GFP_KERNEL);
1289 if (!skb) {
1290 cpsw_err(priv, ifup, "cannot allocate skb\n");
1291 return -ENOMEM;
1292 }
1293
1294 skb_set_queue_mapping(skb, ch);
1295 ret = cpdma_chan_submit(cpsw->rxch[ch], skb, skb->data,
1296 skb_tailroom(skb), 0);
1297 if (ret < 0) {
1298 cpsw_err(priv, ifup,
1299 "cannot submit skb to channel %d rx, error %d\n",
1300 ch, ret);
1301 kfree_skb(skb);
1302 return ret;
1303 }
1304 kmemleak_not_leak(skb);
1305 }
1306
1307 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1308 ch, ch_buf_num);
1309 }
1310
1311 return 0;
1312 }
1313
1314 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1315 {
1316 u32 slave_port;
1317
1318 slave_port = cpsw_get_slave_port(slave->slave_num);
1319
1320 if (!slave->phy)
1321 return;
1322 phy_stop(slave->phy);
1323 phy_disconnect(slave->phy);
1324 slave->phy = NULL;
1325 cpsw_ale_control_set(cpsw->ale, slave_port,
1326 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1327 soft_reset_slave(slave);
1328 }
1329
1330 static int cpsw_ndo_open(struct net_device *ndev)
1331 {
1332 struct cpsw_priv *priv = netdev_priv(ndev);
1333 struct cpsw_common *cpsw = priv->cpsw;
1334 int ret;
1335 u32 reg;
1336
1337 ret = pm_runtime_get_sync(cpsw->dev);
1338 if (ret < 0) {
1339 pm_runtime_put_noidle(cpsw->dev);
1340 return ret;
1341 }
1342
1343 if (!cpsw_common_res_usage_state(cpsw))
1344 cpsw_intr_disable(cpsw);
1345 netif_carrier_off(ndev);
1346
1347 /* Notify the stack of the actual queue counts. */
1348 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1349 if (ret) {
1350 dev_err(priv->dev, "cannot set real number of tx queues\n");
1351 goto err_cleanup;
1352 }
1353
1354 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1355 if (ret) {
1356 dev_err(priv->dev, "cannot set real number of rx queues\n");
1357 goto err_cleanup;
1358 }
1359
1360 reg = cpsw->version;
1361
1362 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1363 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1364 CPSW_RTL_VERSION(reg));
1365
1366 /* initialize host and slave ports */
1367 if (!cpsw_common_res_usage_state(cpsw))
1368 cpsw_init_host_port(priv);
1369 for_each_slave(priv, cpsw_slave_open, priv);
1370
1371 /* Add default VLAN */
1372 if (!cpsw->data.dual_emac)
1373 cpsw_add_default_vlan(priv);
1374 else
1375 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1376 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1377
1378 if (!cpsw_common_res_usage_state(cpsw)) {
1379 /* setup tx dma to fixed prio and zero offset */
1380 cpdma_control_set(cpsw->dma, CPDMA_TX_PRIO_FIXED, 1);
1381 cpdma_control_set(cpsw->dma, CPDMA_RX_BUFFER_OFFSET, 0);
1382
1383 /* disable priority elevation */
1384 __raw_writel(0, &cpsw->regs->ptype);
1385
1386 /* enable statistics collection only on all ports */
1387 __raw_writel(0x7, &cpsw->regs->stat_port_en);
1388
1389 /* Enable internal fifo flow control */
1390 writel(0x7, &cpsw->regs->flow_control);
1391
1392 napi_enable(&cpsw->napi_rx);
1393 napi_enable(&cpsw->napi_tx);
1394
1395 if (cpsw->tx_irq_disabled) {
1396 cpsw->tx_irq_disabled = false;
1397 enable_irq(cpsw->irqs_table[1]);
1398 }
1399
1400 if (cpsw->rx_irq_disabled) {
1401 cpsw->rx_irq_disabled = false;
1402 enable_irq(cpsw->irqs_table[0]);
1403 }
1404
1405 ret = cpsw_fill_rx_channels(priv);
1406 if (ret < 0)
1407 goto err_cleanup;
1408
1409 if (cpts_register(cpsw->dev, cpsw->cpts,
1410 cpsw->data.cpts_clock_mult,
1411 cpsw->data.cpts_clock_shift))
1412 dev_err(priv->dev, "error registering cpts device\n");
1413
1414 }
1415
1416 /* Enable Interrupt pacing if configured */
1417 if (cpsw->coal_intvl != 0) {
1418 struct ethtool_coalesce coal;
1419
1420 coal.rx_coalesce_usecs = cpsw->coal_intvl;
1421 cpsw_set_coalesce(ndev, &coal);
1422 }
1423
1424 cpdma_ctlr_start(cpsw->dma);
1425 cpsw_intr_enable(cpsw);
1426
1427 if (cpsw->data.dual_emac)
1428 cpsw->slaves[priv->emac_port].open_stat = true;
1429
1430 netif_tx_start_all_queues(ndev);
1431
1432 return 0;
1433
1434 err_cleanup:
1435 cpdma_ctlr_stop(cpsw->dma);
1436 for_each_slave(priv, cpsw_slave_stop, cpsw);
1437 pm_runtime_put_sync(cpsw->dev);
1438 netif_carrier_off(priv->ndev);
1439 return ret;
1440 }
1441
1442 static int cpsw_ndo_stop(struct net_device *ndev)
1443 {
1444 struct cpsw_priv *priv = netdev_priv(ndev);
1445 struct cpsw_common *cpsw = priv->cpsw;
1446
1447 cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1448 netif_tx_stop_all_queues(priv->ndev);
1449 netif_carrier_off(priv->ndev);
1450
1451 if (cpsw_common_res_usage_state(cpsw) <= 1) {
1452 napi_disable(&cpsw->napi_rx);
1453 napi_disable(&cpsw->napi_tx);
1454 cpts_unregister(cpsw->cpts);
1455 cpsw_intr_disable(cpsw);
1456 cpdma_ctlr_stop(cpsw->dma);
1457 cpsw_ale_stop(cpsw->ale);
1458 }
1459 for_each_slave(priv, cpsw_slave_stop, cpsw);
1460 pm_runtime_put_sync(cpsw->dev);
1461 if (cpsw->data.dual_emac)
1462 cpsw->slaves[priv->emac_port].open_stat = false;
1463 return 0;
1464 }
1465
1466 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1467 struct net_device *ndev)
1468 {
1469 struct cpsw_priv *priv = netdev_priv(ndev);
1470 struct cpsw_common *cpsw = priv->cpsw;
1471 struct netdev_queue *txq;
1472 struct cpdma_chan *txch;
1473 int ret, q_idx;
1474
1475 netif_trans_update(ndev);
1476
1477 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1478 cpsw_err(priv, tx_err, "packet pad failed\n");
1479 ndev->stats.tx_dropped++;
1480 return NETDEV_TX_OK;
1481 }
1482
1483 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1484 cpsw->cpts->tx_enable)
1485 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1486
1487 skb_tx_timestamp(skb);
1488
1489 q_idx = skb_get_queue_mapping(skb);
1490 if (q_idx >= cpsw->tx_ch_num)
1491 q_idx = q_idx % cpsw->tx_ch_num;
1492
1493 txch = cpsw->txch[q_idx];
1494 ret = cpsw_tx_packet_submit(priv, skb, txch);
1495 if (unlikely(ret != 0)) {
1496 cpsw_err(priv, tx_err, "desc submit failed\n");
1497 goto fail;
1498 }
1499
1500 /* If there is no more tx desc left free then we need to
1501 * tell the kernel to stop sending us tx frames.
1502 */
1503 if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1504 txq = netdev_get_tx_queue(ndev, q_idx);
1505 netif_tx_stop_queue(txq);
1506 }
1507
1508 return NETDEV_TX_OK;
1509 fail:
1510 ndev->stats.tx_dropped++;
1511 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
1512 netif_tx_stop_queue(txq);
1513 return NETDEV_TX_BUSY;
1514 }
1515
1516 #ifdef CONFIG_TI_CPTS
1517
1518 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1519 {
1520 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1521 u32 ts_en, seq_id;
1522
1523 if (!cpsw->cpts->tx_enable && !cpsw->cpts->rx_enable) {
1524 slave_write(slave, 0, CPSW1_TS_CTL);
1525 return;
1526 }
1527
1528 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1529 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1530
1531 if (cpsw->cpts->tx_enable)
1532 ts_en |= CPSW_V1_TS_TX_EN;
1533
1534 if (cpsw->cpts->rx_enable)
1535 ts_en |= CPSW_V1_TS_RX_EN;
1536
1537 slave_write(slave, ts_en, CPSW1_TS_CTL);
1538 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1539 }
1540
1541 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1542 {
1543 struct cpsw_slave *slave;
1544 struct cpsw_common *cpsw = priv->cpsw;
1545 u32 ctrl, mtype;
1546
1547 if (cpsw->data.dual_emac)
1548 slave = &cpsw->slaves[priv->emac_port];
1549 else
1550 slave = &cpsw->slaves[cpsw->data.active_slave];
1551
1552 ctrl = slave_read(slave, CPSW2_CONTROL);
1553 switch (cpsw->version) {
1554 case CPSW_VERSION_2:
1555 ctrl &= ~CTRL_V2_ALL_TS_MASK;
1556
1557 if (cpsw->cpts->tx_enable)
1558 ctrl |= CTRL_V2_TX_TS_BITS;
1559
1560 if (cpsw->cpts->rx_enable)
1561 ctrl |= CTRL_V2_RX_TS_BITS;
1562 break;
1563 case CPSW_VERSION_3:
1564 default:
1565 ctrl &= ~CTRL_V3_ALL_TS_MASK;
1566
1567 if (cpsw->cpts->tx_enable)
1568 ctrl |= CTRL_V3_TX_TS_BITS;
1569
1570 if (cpsw->cpts->rx_enable)
1571 ctrl |= CTRL_V3_RX_TS_BITS;
1572 break;
1573 }
1574
1575 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1576
1577 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1578 slave_write(slave, ctrl, CPSW2_CONTROL);
1579 __raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1580 }
1581
1582 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1583 {
1584 struct cpsw_priv *priv = netdev_priv(dev);
1585 struct hwtstamp_config cfg;
1586 struct cpsw_common *cpsw = priv->cpsw;
1587 struct cpts *cpts = cpsw->cpts;
1588
1589 if (cpsw->version != CPSW_VERSION_1 &&
1590 cpsw->version != CPSW_VERSION_2 &&
1591 cpsw->version != CPSW_VERSION_3)
1592 return -EOPNOTSUPP;
1593
1594 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1595 return -EFAULT;
1596
1597 /* reserved for future extensions */
1598 if (cfg.flags)
1599 return -EINVAL;
1600
1601 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1602 return -ERANGE;
1603
1604 switch (cfg.rx_filter) {
1605 case HWTSTAMP_FILTER_NONE:
1606 cpts->rx_enable = 0;
1607 break;
1608 case HWTSTAMP_FILTER_ALL:
1609 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1610 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1611 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1612 return -ERANGE;
1613 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1614 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1615 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1616 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1617 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1618 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1619 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1620 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1621 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1622 cpts->rx_enable = 1;
1623 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1624 break;
1625 default:
1626 return -ERANGE;
1627 }
1628
1629 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON;
1630
1631 switch (cpsw->version) {
1632 case CPSW_VERSION_1:
1633 cpsw_hwtstamp_v1(cpsw);
1634 break;
1635 case CPSW_VERSION_2:
1636 case CPSW_VERSION_3:
1637 cpsw_hwtstamp_v2(priv);
1638 break;
1639 default:
1640 WARN_ON(1);
1641 }
1642
1643 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1644 }
1645
1646 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1647 {
1648 struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1649 struct cpts *cpts = cpsw->cpts;
1650 struct hwtstamp_config cfg;
1651
1652 if (cpsw->version != CPSW_VERSION_1 &&
1653 cpsw->version != CPSW_VERSION_2 &&
1654 cpsw->version != CPSW_VERSION_3)
1655 return -EOPNOTSUPP;
1656
1657 cfg.flags = 0;
1658 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1659 cfg.rx_filter = (cpts->rx_enable ?
1660 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1661
1662 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1663 }
1664
1665 #endif /*CONFIG_TI_CPTS*/
1666
1667 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1668 {
1669 struct cpsw_priv *priv = netdev_priv(dev);
1670 struct cpsw_common *cpsw = priv->cpsw;
1671 int slave_no = cpsw_slave_index(cpsw, priv);
1672
1673 if (!netif_running(dev))
1674 return -EINVAL;
1675
1676 switch (cmd) {
1677 #ifdef CONFIG_TI_CPTS
1678 case SIOCSHWTSTAMP:
1679 return cpsw_hwtstamp_set(dev, req);
1680 case SIOCGHWTSTAMP:
1681 return cpsw_hwtstamp_get(dev, req);
1682 #endif
1683 }
1684
1685 if (!cpsw->slaves[slave_no].phy)
1686 return -EOPNOTSUPP;
1687 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1688 }
1689
1690 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1691 {
1692 struct cpsw_priv *priv = netdev_priv(ndev);
1693 struct cpsw_common *cpsw = priv->cpsw;
1694 int ch;
1695
1696 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1697 ndev->stats.tx_errors++;
1698 cpsw_intr_disable(cpsw);
1699 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1700 cpdma_chan_stop(cpsw->txch[ch]);
1701 cpdma_chan_start(cpsw->txch[ch]);
1702 }
1703
1704 cpsw_intr_enable(cpsw);
1705 }
1706
1707 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1708 {
1709 struct cpsw_priv *priv = netdev_priv(ndev);
1710 struct sockaddr *addr = (struct sockaddr *)p;
1711 struct cpsw_common *cpsw = priv->cpsw;
1712 int flags = 0;
1713 u16 vid = 0;
1714 int ret;
1715
1716 if (!is_valid_ether_addr(addr->sa_data))
1717 return -EADDRNOTAVAIL;
1718
1719 ret = pm_runtime_get_sync(cpsw->dev);
1720 if (ret < 0) {
1721 pm_runtime_put_noidle(cpsw->dev);
1722 return ret;
1723 }
1724
1725 if (cpsw->data.dual_emac) {
1726 vid = cpsw->slaves[priv->emac_port].port_vlan;
1727 flags = ALE_VLAN;
1728 }
1729
1730 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1731 flags, vid);
1732 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1733 flags, vid);
1734
1735 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1736 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1737 for_each_slave(priv, cpsw_set_slave_mac, priv);
1738
1739 pm_runtime_put(cpsw->dev);
1740
1741 return 0;
1742 }
1743
1744 #ifdef CONFIG_NET_POLL_CONTROLLER
1745 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1746 {
1747 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1748
1749 cpsw_intr_disable(cpsw);
1750 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1751 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1752 cpsw_intr_enable(cpsw);
1753 }
1754 #endif
1755
1756 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1757 unsigned short vid)
1758 {
1759 int ret;
1760 int unreg_mcast_mask = 0;
1761 u32 port_mask;
1762 struct cpsw_common *cpsw = priv->cpsw;
1763
1764 if (cpsw->data.dual_emac) {
1765 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1766
1767 if (priv->ndev->flags & IFF_ALLMULTI)
1768 unreg_mcast_mask = port_mask;
1769 } else {
1770 port_mask = ALE_ALL_PORTS;
1771
1772 if (priv->ndev->flags & IFF_ALLMULTI)
1773 unreg_mcast_mask = ALE_ALL_PORTS;
1774 else
1775 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1776 }
1777
1778 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1779 unreg_mcast_mask);
1780 if (ret != 0)
1781 return ret;
1782
1783 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1784 HOST_PORT_NUM, ALE_VLAN, vid);
1785 if (ret != 0)
1786 goto clean_vid;
1787
1788 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1789 port_mask, ALE_VLAN, vid, 0);
1790 if (ret != 0)
1791 goto clean_vlan_ucast;
1792 return 0;
1793
1794 clean_vlan_ucast:
1795 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1796 HOST_PORT_NUM, ALE_VLAN, vid);
1797 clean_vid:
1798 cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1799 return ret;
1800 }
1801
1802 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1803 __be16 proto, u16 vid)
1804 {
1805 struct cpsw_priv *priv = netdev_priv(ndev);
1806 struct cpsw_common *cpsw = priv->cpsw;
1807 int ret;
1808
1809 if (vid == cpsw->data.default_vlan)
1810 return 0;
1811
1812 ret = pm_runtime_get_sync(cpsw->dev);
1813 if (ret < 0) {
1814 pm_runtime_put_noidle(cpsw->dev);
1815 return ret;
1816 }
1817
1818 if (cpsw->data.dual_emac) {
1819 /* In dual EMAC, reserved VLAN id should not be used for
1820 * creating VLAN interfaces as this can break the dual
1821 * EMAC port separation
1822 */
1823 int i;
1824
1825 for (i = 0; i < cpsw->data.slaves; i++) {
1826 if (vid == cpsw->slaves[i].port_vlan)
1827 return -EINVAL;
1828 }
1829 }
1830
1831 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1832 ret = cpsw_add_vlan_ale_entry(priv, vid);
1833
1834 pm_runtime_put(cpsw->dev);
1835 return ret;
1836 }
1837
1838 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1839 __be16 proto, u16 vid)
1840 {
1841 struct cpsw_priv *priv = netdev_priv(ndev);
1842 struct cpsw_common *cpsw = priv->cpsw;
1843 int ret;
1844
1845 if (vid == cpsw->data.default_vlan)
1846 return 0;
1847
1848 ret = pm_runtime_get_sync(cpsw->dev);
1849 if (ret < 0) {
1850 pm_runtime_put_noidle(cpsw->dev);
1851 return ret;
1852 }
1853
1854 if (cpsw->data.dual_emac) {
1855 int i;
1856
1857 for (i = 0; i < cpsw->data.slaves; i++) {
1858 if (vid == cpsw->slaves[i].port_vlan)
1859 return -EINVAL;
1860 }
1861 }
1862
1863 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1864 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1865 if (ret != 0)
1866 return ret;
1867
1868 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1869 HOST_PORT_NUM, ALE_VLAN, vid);
1870 if (ret != 0)
1871 return ret;
1872
1873 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1874 0, ALE_VLAN, vid);
1875 pm_runtime_put(cpsw->dev);
1876 return ret;
1877 }
1878
1879 static const struct net_device_ops cpsw_netdev_ops = {
1880 .ndo_open = cpsw_ndo_open,
1881 .ndo_stop = cpsw_ndo_stop,
1882 .ndo_start_xmit = cpsw_ndo_start_xmit,
1883 .ndo_set_mac_address = cpsw_ndo_set_mac_address,
1884 .ndo_do_ioctl = cpsw_ndo_ioctl,
1885 .ndo_validate_addr = eth_validate_addr,
1886 .ndo_change_mtu = eth_change_mtu,
1887 .ndo_tx_timeout = cpsw_ndo_tx_timeout,
1888 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode,
1889 #ifdef CONFIG_NET_POLL_CONTROLLER
1890 .ndo_poll_controller = cpsw_ndo_poll_controller,
1891 #endif
1892 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid,
1893 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid,
1894 };
1895
1896 static int cpsw_get_regs_len(struct net_device *ndev)
1897 {
1898 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1899
1900 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
1901 }
1902
1903 static void cpsw_get_regs(struct net_device *ndev,
1904 struct ethtool_regs *regs, void *p)
1905 {
1906 u32 *reg = p;
1907 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1908
1909 /* update CPSW IP version */
1910 regs->version = cpsw->version;
1911
1912 cpsw_ale_dump(cpsw->ale, reg);
1913 }
1914
1915 static void cpsw_get_drvinfo(struct net_device *ndev,
1916 struct ethtool_drvinfo *info)
1917 {
1918 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1919 struct platform_device *pdev = to_platform_device(cpsw->dev);
1920
1921 strlcpy(info->driver, "cpsw", sizeof(info->driver));
1922 strlcpy(info->version, "1.0", sizeof(info->version));
1923 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
1924 }
1925
1926 static u32 cpsw_get_msglevel(struct net_device *ndev)
1927 {
1928 struct cpsw_priv *priv = netdev_priv(ndev);
1929 return priv->msg_enable;
1930 }
1931
1932 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
1933 {
1934 struct cpsw_priv *priv = netdev_priv(ndev);
1935 priv->msg_enable = value;
1936 }
1937
1938 static int cpsw_get_ts_info(struct net_device *ndev,
1939 struct ethtool_ts_info *info)
1940 {
1941 #ifdef CONFIG_TI_CPTS
1942 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1943
1944 info->so_timestamping =
1945 SOF_TIMESTAMPING_TX_HARDWARE |
1946 SOF_TIMESTAMPING_TX_SOFTWARE |
1947 SOF_TIMESTAMPING_RX_HARDWARE |
1948 SOF_TIMESTAMPING_RX_SOFTWARE |
1949 SOF_TIMESTAMPING_SOFTWARE |
1950 SOF_TIMESTAMPING_RAW_HARDWARE;
1951 info->phc_index = cpsw->cpts->phc_index;
1952 info->tx_types =
1953 (1 << HWTSTAMP_TX_OFF) |
1954 (1 << HWTSTAMP_TX_ON);
1955 info->rx_filters =
1956 (1 << HWTSTAMP_FILTER_NONE) |
1957 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1958 #else
1959 info->so_timestamping =
1960 SOF_TIMESTAMPING_TX_SOFTWARE |
1961 SOF_TIMESTAMPING_RX_SOFTWARE |
1962 SOF_TIMESTAMPING_SOFTWARE;
1963 info->phc_index = -1;
1964 info->tx_types = 0;
1965 info->rx_filters = 0;
1966 #endif
1967 return 0;
1968 }
1969
1970 static int cpsw_get_settings(struct net_device *ndev,
1971 struct ethtool_cmd *ecmd)
1972 {
1973 struct cpsw_priv *priv = netdev_priv(ndev);
1974 struct cpsw_common *cpsw = priv->cpsw;
1975 int slave_no = cpsw_slave_index(cpsw, priv);
1976
1977 if (cpsw->slaves[slave_no].phy)
1978 return phy_ethtool_gset(cpsw->slaves[slave_no].phy, ecmd);
1979 else
1980 return -EOPNOTSUPP;
1981 }
1982
1983 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1984 {
1985 struct cpsw_priv *priv = netdev_priv(ndev);
1986 struct cpsw_common *cpsw = priv->cpsw;
1987 int slave_no = cpsw_slave_index(cpsw, priv);
1988
1989 if (cpsw->slaves[slave_no].phy)
1990 return phy_ethtool_sset(cpsw->slaves[slave_no].phy, ecmd);
1991 else
1992 return -EOPNOTSUPP;
1993 }
1994
1995 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1996 {
1997 struct cpsw_priv *priv = netdev_priv(ndev);
1998 struct cpsw_common *cpsw = priv->cpsw;
1999 int slave_no = cpsw_slave_index(cpsw, priv);
2000
2001 wol->supported = 0;
2002 wol->wolopts = 0;
2003
2004 if (cpsw->slaves[slave_no].phy)
2005 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2006 }
2007
2008 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2009 {
2010 struct cpsw_priv *priv = netdev_priv(ndev);
2011 struct cpsw_common *cpsw = priv->cpsw;
2012 int slave_no = cpsw_slave_index(cpsw, priv);
2013
2014 if (cpsw->slaves[slave_no].phy)
2015 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2016 else
2017 return -EOPNOTSUPP;
2018 }
2019
2020 static void cpsw_get_pauseparam(struct net_device *ndev,
2021 struct ethtool_pauseparam *pause)
2022 {
2023 struct cpsw_priv *priv = netdev_priv(ndev);
2024
2025 pause->autoneg = AUTONEG_DISABLE;
2026 pause->rx_pause = priv->rx_pause ? true : false;
2027 pause->tx_pause = priv->tx_pause ? true : false;
2028 }
2029
2030 static int cpsw_set_pauseparam(struct net_device *ndev,
2031 struct ethtool_pauseparam *pause)
2032 {
2033 struct cpsw_priv *priv = netdev_priv(ndev);
2034 bool link;
2035
2036 priv->rx_pause = pause->rx_pause ? true : false;
2037 priv->tx_pause = pause->tx_pause ? true : false;
2038
2039 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2040 return 0;
2041 }
2042
2043 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2044 {
2045 struct cpsw_priv *priv = netdev_priv(ndev);
2046 struct cpsw_common *cpsw = priv->cpsw;
2047 int ret;
2048
2049 ret = pm_runtime_get_sync(cpsw->dev);
2050 if (ret < 0) {
2051 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2052 pm_runtime_put_noidle(cpsw->dev);
2053 }
2054
2055 return ret;
2056 }
2057
2058 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2059 {
2060 struct cpsw_priv *priv = netdev_priv(ndev);
2061 int ret;
2062
2063 ret = pm_runtime_put(priv->cpsw->dev);
2064 if (ret < 0)
2065 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2066 }
2067
2068 static void cpsw_get_channels(struct net_device *ndev,
2069 struct ethtool_channels *ch)
2070 {
2071 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2072
2073 ch->max_combined = 0;
2074 ch->max_rx = CPSW_MAX_QUEUES;
2075 ch->max_tx = CPSW_MAX_QUEUES;
2076 ch->max_other = 0;
2077 ch->other_count = 0;
2078 ch->rx_count = cpsw->rx_ch_num;
2079 ch->tx_count = cpsw->tx_ch_num;
2080 ch->combined_count = 0;
2081 }
2082
2083 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2084 struct ethtool_channels *ch)
2085 {
2086 if (ch->combined_count)
2087 return -EINVAL;
2088
2089 /* verify we have at least one channel in each direction */
2090 if (!ch->rx_count || !ch->tx_count)
2091 return -EINVAL;
2092
2093 if (ch->rx_count > cpsw->data.channels ||
2094 ch->tx_count > cpsw->data.channels)
2095 return -EINVAL;
2096
2097 return 0;
2098 }
2099
2100 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2101 {
2102 int (*poll)(struct napi_struct *, int);
2103 struct cpsw_common *cpsw = priv->cpsw;
2104 void (*handler)(void *, int, int);
2105 struct cpdma_chan **chan;
2106 int ret, *ch;
2107
2108 if (rx) {
2109 ch = &cpsw->rx_ch_num;
2110 chan = cpsw->rxch;
2111 handler = cpsw_rx_handler;
2112 poll = cpsw_rx_poll;
2113 } else {
2114 ch = &cpsw->tx_ch_num;
2115 chan = cpsw->txch;
2116 handler = cpsw_tx_handler;
2117 poll = cpsw_tx_poll;
2118 }
2119
2120 while (*ch < ch_num) {
2121 chan[*ch] = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2122
2123 if (IS_ERR(chan[*ch]))
2124 return PTR_ERR(chan[*ch]);
2125
2126 if (!chan[*ch])
2127 return -EINVAL;
2128
2129 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2130 (rx ? "rx" : "tx"));
2131 (*ch)++;
2132 }
2133
2134 while (*ch > ch_num) {
2135 (*ch)--;
2136
2137 ret = cpdma_chan_destroy(chan[*ch]);
2138 if (ret)
2139 return ret;
2140
2141 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2142 (rx ? "rx" : "tx"));
2143 }
2144
2145 return 0;
2146 }
2147
2148 static int cpsw_update_channels(struct cpsw_priv *priv,
2149 struct ethtool_channels *ch)
2150 {
2151 int ret;
2152
2153 ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2154 if (ret)
2155 return ret;
2156
2157 ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2158 if (ret)
2159 return ret;
2160
2161 return 0;
2162 }
2163
2164 static int cpsw_set_channels(struct net_device *ndev,
2165 struct ethtool_channels *chs)
2166 {
2167 struct cpsw_priv *priv = netdev_priv(ndev);
2168 struct cpsw_common *cpsw = priv->cpsw;
2169 struct cpsw_slave *slave;
2170 int i, ret;
2171
2172 ret = cpsw_check_ch_settings(cpsw, chs);
2173 if (ret < 0)
2174 return ret;
2175
2176 /* Disable NAPI scheduling */
2177 cpsw_intr_disable(cpsw);
2178
2179 /* Stop all transmit queues for every network device.
2180 * Disable re-using rx descriptors with dormant_on.
2181 */
2182 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2183 if (!(slave->ndev && netif_running(slave->ndev)))
2184 continue;
2185
2186 netif_tx_stop_all_queues(slave->ndev);
2187 netif_dormant_on(slave->ndev);
2188 }
2189
2190 /* Handle rest of tx packets and stop cpdma channels */
2191 cpdma_ctlr_stop(cpsw->dma);
2192 ret = cpsw_update_channels(priv, chs);
2193 if (ret)
2194 goto err;
2195
2196 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2197 if (!(slave->ndev && netif_running(slave->ndev)))
2198 continue;
2199
2200 /* Inform stack about new count of queues */
2201 ret = netif_set_real_num_tx_queues(slave->ndev,
2202 cpsw->tx_ch_num);
2203 if (ret) {
2204 dev_err(priv->dev, "cannot set real number of tx queues\n");
2205 goto err;
2206 }
2207
2208 ret = netif_set_real_num_rx_queues(slave->ndev,
2209 cpsw->rx_ch_num);
2210 if (ret) {
2211 dev_err(priv->dev, "cannot set real number of rx queues\n");
2212 goto err;
2213 }
2214
2215 /* Enable rx packets handling */
2216 netif_dormant_off(slave->ndev);
2217 }
2218
2219 if (cpsw_common_res_usage_state(cpsw)) {
2220 ret = cpsw_fill_rx_channels(priv);
2221 if (ret)
2222 goto err;
2223
2224 /* After this receive is started */
2225 cpdma_ctlr_start(cpsw->dma);
2226 cpsw_intr_enable(cpsw);
2227 }
2228
2229 /* Resume transmit for every affected interface */
2230 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2231 if (!(slave->ndev && netif_running(slave->ndev)))
2232 continue;
2233 netif_tx_start_all_queues(slave->ndev);
2234 }
2235 return 0;
2236 err:
2237 dev_err(priv->dev, "cannot update channels number, closing device\n");
2238 dev_close(ndev);
2239 return ret;
2240 }
2241
2242 static const struct ethtool_ops cpsw_ethtool_ops = {
2243 .get_drvinfo = cpsw_get_drvinfo,
2244 .get_msglevel = cpsw_get_msglevel,
2245 .set_msglevel = cpsw_set_msglevel,
2246 .get_link = ethtool_op_get_link,
2247 .get_ts_info = cpsw_get_ts_info,
2248 .get_settings = cpsw_get_settings,
2249 .set_settings = cpsw_set_settings,
2250 .get_coalesce = cpsw_get_coalesce,
2251 .set_coalesce = cpsw_set_coalesce,
2252 .get_sset_count = cpsw_get_sset_count,
2253 .get_strings = cpsw_get_strings,
2254 .get_ethtool_stats = cpsw_get_ethtool_stats,
2255 .get_pauseparam = cpsw_get_pauseparam,
2256 .set_pauseparam = cpsw_set_pauseparam,
2257 .get_wol = cpsw_get_wol,
2258 .set_wol = cpsw_set_wol,
2259 .get_regs_len = cpsw_get_regs_len,
2260 .get_regs = cpsw_get_regs,
2261 .begin = cpsw_ethtool_op_begin,
2262 .complete = cpsw_ethtool_op_complete,
2263 .get_channels = cpsw_get_channels,
2264 .set_channels = cpsw_set_channels,
2265 };
2266
2267 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2268 u32 slave_reg_ofs, u32 sliver_reg_ofs)
2269 {
2270 void __iomem *regs = cpsw->regs;
2271 int slave_num = slave->slave_num;
2272 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num;
2273
2274 slave->data = data;
2275 slave->regs = regs + slave_reg_ofs;
2276 slave->sliver = regs + sliver_reg_ofs;
2277 slave->port_vlan = data->dual_emac_res_vlan;
2278 }
2279
2280 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2281 struct platform_device *pdev)
2282 {
2283 struct device_node *node = pdev->dev.of_node;
2284 struct device_node *slave_node;
2285 int i = 0, ret;
2286 u32 prop;
2287
2288 if (!node)
2289 return -EINVAL;
2290
2291 if (of_property_read_u32(node, "slaves", &prop)) {
2292 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2293 return -EINVAL;
2294 }
2295 data->slaves = prop;
2296
2297 if (of_property_read_u32(node, "active_slave", &prop)) {
2298 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2299 return -EINVAL;
2300 }
2301 data->active_slave = prop;
2302
2303 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
2304 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n");
2305 return -EINVAL;
2306 }
2307 data->cpts_clock_mult = prop;
2308
2309 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
2310 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n");
2311 return -EINVAL;
2312 }
2313 data->cpts_clock_shift = prop;
2314
2315 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2316 * sizeof(struct cpsw_slave_data),
2317 GFP_KERNEL);
2318 if (!data->slave_data)
2319 return -ENOMEM;
2320
2321 if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2322 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2323 return -EINVAL;
2324 }
2325 data->channels = prop;
2326
2327 if (of_property_read_u32(node, "ale_entries", &prop)) {
2328 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2329 return -EINVAL;
2330 }
2331 data->ale_entries = prop;
2332
2333 if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2334 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2335 return -EINVAL;
2336 }
2337 data->bd_ram_size = prop;
2338
2339 if (of_property_read_u32(node, "mac_control", &prop)) {
2340 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2341 return -EINVAL;
2342 }
2343 data->mac_control = prop;
2344
2345 if (of_property_read_bool(node, "dual_emac"))
2346 data->dual_emac = 1;
2347
2348 /*
2349 * Populate all the child nodes here...
2350 */
2351 ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2352 /* We do not want to force this, as in some cases may not have child */
2353 if (ret)
2354 dev_warn(&pdev->dev, "Doesn't have any child node\n");
2355
2356 for_each_available_child_of_node(node, slave_node) {
2357 struct cpsw_slave_data *slave_data = data->slave_data + i;
2358 const void *mac_addr = NULL;
2359 int lenp;
2360 const __be32 *parp;
2361
2362 /* This is no slave child node, continue */
2363 if (strcmp(slave_node->name, "slave"))
2364 continue;
2365
2366 slave_data->phy_node = of_parse_phandle(slave_node,
2367 "phy-handle", 0);
2368 parp = of_get_property(slave_node, "phy_id", &lenp);
2369 if (slave_data->phy_node) {
2370 dev_dbg(&pdev->dev,
2371 "slave[%d] using phy-handle=\"%s\"\n",
2372 i, slave_data->phy_node->full_name);
2373 } else if (of_phy_is_fixed_link(slave_node)) {
2374 /* In the case of a fixed PHY, the DT node associated
2375 * to the PHY is the Ethernet MAC DT node.
2376 */
2377 ret = of_phy_register_fixed_link(slave_node);
2378 if (ret)
2379 return ret;
2380 slave_data->phy_node = of_node_get(slave_node);
2381 } else if (parp) {
2382 u32 phyid;
2383 struct device_node *mdio_node;
2384 struct platform_device *mdio;
2385
2386 if (lenp != (sizeof(__be32) * 2)) {
2387 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2388 goto no_phy_slave;
2389 }
2390 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2391 phyid = be32_to_cpup(parp+1);
2392 mdio = of_find_device_by_node(mdio_node);
2393 of_node_put(mdio_node);
2394 if (!mdio) {
2395 dev_err(&pdev->dev, "Missing mdio platform device\n");
2396 return -EINVAL;
2397 }
2398 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2399 PHY_ID_FMT, mdio->name, phyid);
2400 } else {
2401 dev_err(&pdev->dev,
2402 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2403 i);
2404 goto no_phy_slave;
2405 }
2406 slave_data->phy_if = of_get_phy_mode(slave_node);
2407 if (slave_data->phy_if < 0) {
2408 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2409 i);
2410 return slave_data->phy_if;
2411 }
2412
2413 no_phy_slave:
2414 mac_addr = of_get_mac_address(slave_node);
2415 if (mac_addr) {
2416 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2417 } else {
2418 ret = ti_cm_get_macid(&pdev->dev, i,
2419 slave_data->mac_addr);
2420 if (ret)
2421 return ret;
2422 }
2423 if (data->dual_emac) {
2424 if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2425 &prop)) {
2426 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2427 slave_data->dual_emac_res_vlan = i+1;
2428 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2429 slave_data->dual_emac_res_vlan, i);
2430 } else {
2431 slave_data->dual_emac_res_vlan = prop;
2432 }
2433 }
2434
2435 i++;
2436 if (i == data->slaves)
2437 break;
2438 }
2439
2440 return 0;
2441 }
2442
2443 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2444 {
2445 struct cpsw_common *cpsw = priv->cpsw;
2446 struct cpsw_platform_data *data = &cpsw->data;
2447 struct net_device *ndev;
2448 struct cpsw_priv *priv_sl2;
2449 int ret = 0;
2450
2451 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2452 if (!ndev) {
2453 dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2454 return -ENOMEM;
2455 }
2456
2457 priv_sl2 = netdev_priv(ndev);
2458 priv_sl2->cpsw = cpsw;
2459 priv_sl2->ndev = ndev;
2460 priv_sl2->dev = &ndev->dev;
2461 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2462
2463 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2464 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2465 ETH_ALEN);
2466 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2467 priv_sl2->mac_addr);
2468 } else {
2469 random_ether_addr(priv_sl2->mac_addr);
2470 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2471 priv_sl2->mac_addr);
2472 }
2473 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2474
2475 priv_sl2->emac_port = 1;
2476 cpsw->slaves[1].ndev = ndev;
2477 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2478
2479 ndev->netdev_ops = &cpsw_netdev_ops;
2480 ndev->ethtool_ops = &cpsw_ethtool_ops;
2481
2482 /* register the network device */
2483 SET_NETDEV_DEV(ndev, cpsw->dev);
2484 ret = register_netdev(ndev);
2485 if (ret) {
2486 dev_err(cpsw->dev, "cpsw: error registering net device\n");
2487 free_netdev(ndev);
2488 ret = -ENODEV;
2489 }
2490
2491 return ret;
2492 }
2493
2494 #define CPSW_QUIRK_IRQ BIT(0)
2495
2496 static struct platform_device_id cpsw_devtype[] = {
2497 {
2498 /* keep it for existing comaptibles */
2499 .name = "cpsw",
2500 .driver_data = CPSW_QUIRK_IRQ,
2501 }, {
2502 .name = "am335x-cpsw",
2503 .driver_data = CPSW_QUIRK_IRQ,
2504 }, {
2505 .name = "am4372-cpsw",
2506 .driver_data = 0,
2507 }, {
2508 .name = "dra7-cpsw",
2509 .driver_data = 0,
2510 }, {
2511 /* sentinel */
2512 }
2513 };
2514 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2515
2516 enum ti_cpsw_type {
2517 CPSW = 0,
2518 AM335X_CPSW,
2519 AM4372_CPSW,
2520 DRA7_CPSW,
2521 };
2522
2523 static const struct of_device_id cpsw_of_mtable[] = {
2524 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2525 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2526 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2527 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2528 { /* sentinel */ },
2529 };
2530 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2531
2532 static int cpsw_probe(struct platform_device *pdev)
2533 {
2534 struct clk *clk;
2535 struct cpsw_platform_data *data;
2536 struct net_device *ndev;
2537 struct cpsw_priv *priv;
2538 struct cpdma_params dma_params;
2539 struct cpsw_ale_params ale_params;
2540 void __iomem *ss_regs;
2541 struct resource *res, *ss_res;
2542 const struct of_device_id *of_id;
2543 struct gpio_descs *mode;
2544 u32 slave_offset, sliver_offset, slave_size;
2545 struct cpsw_common *cpsw;
2546 int ret = 0, i;
2547 int irq;
2548
2549 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2550 cpsw->dev = &pdev->dev;
2551
2552 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2553 if (!ndev) {
2554 dev_err(&pdev->dev, "error allocating net_device\n");
2555 return -ENOMEM;
2556 }
2557
2558 platform_set_drvdata(pdev, ndev);
2559 priv = netdev_priv(ndev);
2560 priv->cpsw = cpsw;
2561 priv->ndev = ndev;
2562 priv->dev = &ndev->dev;
2563 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2564 cpsw->rx_packet_max = max(rx_packet_max, 128);
2565 cpsw->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
2566 if (!cpsw->cpts) {
2567 dev_err(&pdev->dev, "error allocating cpts\n");
2568 ret = -ENOMEM;
2569 goto clean_ndev_ret;
2570 }
2571
2572 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2573 if (IS_ERR(mode)) {
2574 ret = PTR_ERR(mode);
2575 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2576 goto clean_ndev_ret;
2577 }
2578
2579 /*
2580 * This may be required here for child devices.
2581 */
2582 pm_runtime_enable(&pdev->dev);
2583
2584 /* Select default pin state */
2585 pinctrl_pm_select_default_state(&pdev->dev);
2586
2587 if (cpsw_probe_dt(&cpsw->data, pdev)) {
2588 dev_err(&pdev->dev, "cpsw: platform data missing\n");
2589 ret = -ENODEV;
2590 goto clean_runtime_disable_ret;
2591 }
2592 data = &cpsw->data;
2593 cpsw->rx_ch_num = 1;
2594 cpsw->tx_ch_num = 1;
2595
2596 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2597 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2598 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2599 } else {
2600 eth_random_addr(priv->mac_addr);
2601 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2602 }
2603
2604 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2605
2606 cpsw->slaves = devm_kzalloc(&pdev->dev,
2607 sizeof(struct cpsw_slave) * data->slaves,
2608 GFP_KERNEL);
2609 if (!cpsw->slaves) {
2610 ret = -ENOMEM;
2611 goto clean_runtime_disable_ret;
2612 }
2613 for (i = 0; i < data->slaves; i++)
2614 cpsw->slaves[i].slave_num = i;
2615
2616 cpsw->slaves[0].ndev = ndev;
2617 priv->emac_port = 0;
2618
2619 clk = devm_clk_get(&pdev->dev, "fck");
2620 if (IS_ERR(clk)) {
2621 dev_err(priv->dev, "fck is not found\n");
2622 ret = -ENODEV;
2623 goto clean_runtime_disable_ret;
2624 }
2625 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2626
2627 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2628 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2629 if (IS_ERR(ss_regs)) {
2630 ret = PTR_ERR(ss_regs);
2631 goto clean_runtime_disable_ret;
2632 }
2633 cpsw->regs = ss_regs;
2634
2635 /* Need to enable clocks with runtime PM api to access module
2636 * registers
2637 */
2638 ret = pm_runtime_get_sync(&pdev->dev);
2639 if (ret < 0) {
2640 pm_runtime_put_noidle(&pdev->dev);
2641 goto clean_runtime_disable_ret;
2642 }
2643 cpsw->version = readl(&cpsw->regs->id_ver);
2644 pm_runtime_put_sync(&pdev->dev);
2645
2646 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2647 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2648 if (IS_ERR(cpsw->wr_regs)) {
2649 ret = PTR_ERR(cpsw->wr_regs);
2650 goto clean_runtime_disable_ret;
2651 }
2652
2653 memset(&dma_params, 0, sizeof(dma_params));
2654 memset(&ale_params, 0, sizeof(ale_params));
2655
2656 switch (cpsw->version) {
2657 case CPSW_VERSION_1:
2658 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2659 cpsw->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET;
2660 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS;
2661 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
2662 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
2663 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
2664 slave_offset = CPSW1_SLAVE_OFFSET;
2665 slave_size = CPSW1_SLAVE_SIZE;
2666 sliver_offset = CPSW1_SLIVER_OFFSET;
2667 dma_params.desc_mem_phys = 0;
2668 break;
2669 case CPSW_VERSION_2:
2670 case CPSW_VERSION_3:
2671 case CPSW_VERSION_4:
2672 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2673 cpsw->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET;
2674 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS;
2675 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
2676 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
2677 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
2678 slave_offset = CPSW2_SLAVE_OFFSET;
2679 slave_size = CPSW2_SLAVE_SIZE;
2680 sliver_offset = CPSW2_SLIVER_OFFSET;
2681 dma_params.desc_mem_phys =
2682 (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2683 break;
2684 default:
2685 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
2686 ret = -ENODEV;
2687 goto clean_runtime_disable_ret;
2688 }
2689 for (i = 0; i < cpsw->data.slaves; i++) {
2690 struct cpsw_slave *slave = &cpsw->slaves[i];
2691
2692 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
2693 slave_offset += slave_size;
2694 sliver_offset += SLIVER_SIZE;
2695 }
2696
2697 dma_params.dev = &pdev->dev;
2698 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
2699 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
2700 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
2701 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
2702 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
2703
2704 dma_params.num_chan = data->channels;
2705 dma_params.has_soft_reset = true;
2706 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
2707 dma_params.desc_mem_size = data->bd_ram_size;
2708 dma_params.desc_align = 16;
2709 dma_params.has_ext_regs = true;
2710 dma_params.desc_hw_addr = dma_params.desc_mem_phys;
2711
2712 cpsw->dma = cpdma_ctlr_create(&dma_params);
2713 if (!cpsw->dma) {
2714 dev_err(priv->dev, "error initializing dma\n");
2715 ret = -ENOMEM;
2716 goto clean_runtime_disable_ret;
2717 }
2718
2719 cpsw->txch[0] = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
2720 cpsw->rxch[0] = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
2721 if (WARN_ON(!cpsw->rxch[0] || !cpsw->txch[0])) {
2722 dev_err(priv->dev, "error initializing dma channels\n");
2723 ret = -ENOMEM;
2724 goto clean_dma_ret;
2725 }
2726
2727 ale_params.dev = &ndev->dev;
2728 ale_params.ale_ageout = ale_ageout;
2729 ale_params.ale_entries = data->ale_entries;
2730 ale_params.ale_ports = data->slaves;
2731
2732 cpsw->ale = cpsw_ale_create(&ale_params);
2733 if (!cpsw->ale) {
2734 dev_err(priv->dev, "error initializing ale engine\n");
2735 ret = -ENODEV;
2736 goto clean_dma_ret;
2737 }
2738
2739 ndev->irq = platform_get_irq(pdev, 1);
2740 if (ndev->irq < 0) {
2741 dev_err(priv->dev, "error getting irq resource\n");
2742 ret = ndev->irq;
2743 goto clean_ale_ret;
2744 }
2745
2746 of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
2747 if (of_id) {
2748 pdev->id_entry = of_id->data;
2749 if (pdev->id_entry->driver_data)
2750 cpsw->quirk_irq = true;
2751 }
2752
2753 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
2754 * MISC IRQs which are always kept disabled with this driver so
2755 * we will not request them.
2756 *
2757 * If anyone wants to implement support for those, make sure to
2758 * first request and append them to irqs_table array.
2759 */
2760
2761 /* RX IRQ */
2762 irq = platform_get_irq(pdev, 1);
2763 if (irq < 0) {
2764 ret = irq;
2765 goto clean_ale_ret;
2766 }
2767
2768 cpsw->irqs_table[0] = irq;
2769 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
2770 0, dev_name(&pdev->dev), cpsw);
2771 if (ret < 0) {
2772 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2773 goto clean_ale_ret;
2774 }
2775
2776 /* TX IRQ */
2777 irq = platform_get_irq(pdev, 2);
2778 if (irq < 0) {
2779 ret = irq;
2780 goto clean_ale_ret;
2781 }
2782
2783 cpsw->irqs_table[1] = irq;
2784 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
2785 0, dev_name(&pdev->dev), cpsw);
2786 if (ret < 0) {
2787 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2788 goto clean_ale_ret;
2789 }
2790
2791 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2792
2793 ndev->netdev_ops = &cpsw_netdev_ops;
2794 ndev->ethtool_ops = &cpsw_ethtool_ops;
2795 netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
2796 netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
2797
2798 /* register the network device */
2799 SET_NETDEV_DEV(ndev, &pdev->dev);
2800 ret = register_netdev(ndev);
2801 if (ret) {
2802 dev_err(priv->dev, "error registering net device\n");
2803 ret = -ENODEV;
2804 goto clean_ale_ret;
2805 }
2806
2807 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
2808 &ss_res->start, ndev->irq);
2809
2810 if (cpsw->data.dual_emac) {
2811 ret = cpsw_probe_dual_emac(priv);
2812 if (ret) {
2813 cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2814 goto clean_ale_ret;
2815 }
2816 }
2817
2818 return 0;
2819
2820 clean_ale_ret:
2821 cpsw_ale_destroy(cpsw->ale);
2822 clean_dma_ret:
2823 cpdma_ctlr_destroy(cpsw->dma);
2824 clean_runtime_disable_ret:
2825 pm_runtime_disable(&pdev->dev);
2826 clean_ndev_ret:
2827 free_netdev(priv->ndev);
2828 return ret;
2829 }
2830
2831 static int cpsw_remove(struct platform_device *pdev)
2832 {
2833 struct net_device *ndev = platform_get_drvdata(pdev);
2834 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2835 int ret;
2836
2837 ret = pm_runtime_get_sync(&pdev->dev);
2838 if (ret < 0) {
2839 pm_runtime_put_noidle(&pdev->dev);
2840 return ret;
2841 }
2842
2843 if (cpsw->data.dual_emac)
2844 unregister_netdev(cpsw->slaves[1].ndev);
2845 unregister_netdev(ndev);
2846
2847 cpsw_ale_destroy(cpsw->ale);
2848 cpdma_ctlr_destroy(cpsw->dma);
2849 of_platform_depopulate(&pdev->dev);
2850 pm_runtime_put_sync(&pdev->dev);
2851 pm_runtime_disable(&pdev->dev);
2852 if (cpsw->data.dual_emac)
2853 free_netdev(cpsw->slaves[1].ndev);
2854 free_netdev(ndev);
2855 return 0;
2856 }
2857
2858 #ifdef CONFIG_PM_SLEEP
2859 static int cpsw_suspend(struct device *dev)
2860 {
2861 struct platform_device *pdev = to_platform_device(dev);
2862 struct net_device *ndev = platform_get_drvdata(pdev);
2863 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2864
2865 if (cpsw->data.dual_emac) {
2866 int i;
2867
2868 for (i = 0; i < cpsw->data.slaves; i++) {
2869 if (netif_running(cpsw->slaves[i].ndev))
2870 cpsw_ndo_stop(cpsw->slaves[i].ndev);
2871 }
2872 } else {
2873 if (netif_running(ndev))
2874 cpsw_ndo_stop(ndev);
2875 }
2876
2877 /* Select sleep pin state */
2878 pinctrl_pm_select_sleep_state(dev);
2879
2880 return 0;
2881 }
2882
2883 static int cpsw_resume(struct device *dev)
2884 {
2885 struct platform_device *pdev = to_platform_device(dev);
2886 struct net_device *ndev = platform_get_drvdata(pdev);
2887 struct cpsw_common *cpsw = netdev_priv(ndev);
2888
2889 /* Select default pin state */
2890 pinctrl_pm_select_default_state(dev);
2891
2892 if (cpsw->data.dual_emac) {
2893 int i;
2894
2895 for (i = 0; i < cpsw->data.slaves; i++) {
2896 if (netif_running(cpsw->slaves[i].ndev))
2897 cpsw_ndo_open(cpsw->slaves[i].ndev);
2898 }
2899 } else {
2900 if (netif_running(ndev))
2901 cpsw_ndo_open(ndev);
2902 }
2903 return 0;
2904 }
2905 #endif
2906
2907 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2908
2909 static struct platform_driver cpsw_driver = {
2910 .driver = {
2911 .name = "cpsw",
2912 .pm = &cpsw_pm_ops,
2913 .of_match_table = cpsw_of_mtable,
2914 },
2915 .probe = cpsw_probe,
2916 .remove = cpsw_remove,
2917 };
2918
2919 module_platform_driver(cpsw_driver);
2920
2921 MODULE_LICENSE("GPL");
2922 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
2923 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
2924 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
This page took 0.105776 seconds and 5 git commands to generate.