Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[deliverable/linux.git] / drivers / net / ethernet / ti / netcp_core.c
1 /*
2 * Keystone NetCP Core driver
3 *
4 * Copyright (C) 2014 Texas Instruments Incorporated
5 * Authors: Sandeep Nair <sandeep_n@ti.com>
6 * Sandeep Paulraj <s-paulraj@ti.com>
7 * Cyril Chemparathy <cyril@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 * Murali Karicheri <m-karicheri2@ti.com>
10 * Wingman Kwok <w-kwok2@ti.com>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation version 2.
15 *
16 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17 * kind, whether express or implied; without even the implied warranty
18 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 */
21
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31
32 #include "netcp.h"
33
34 #define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT 64
36 #define NETCP_TX_TIMEOUT (5 * HZ)
37 #define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN)
38 #define NETCP_MIN_PACKET_SIZE ETH_ZLEN
39 #define NETCP_MAX_MCAST_ADDR 16
40
41 #define NETCP_EFUSE_REG_INDEX 0
42
43 #define NETCP_MOD_PROBE_SKIPPED 1
44 #define NETCP_MOD_PROBE_FAILED 2
45
46 #define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
47 NETIF_MSG_DRV | NETIF_MSG_LINK | \
48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
53 NETIF_MSG_RX_STATUS)
54
55 #define NETCP_EFUSE_ADDR_SWAP 2
56
57 #define knav_queue_get_id(q) knav_queue_device_control(q, \
58 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
59
60 #define knav_queue_enable_notify(q) knav_queue_device_control(q, \
61 KNAV_QUEUE_ENABLE_NOTIFY, \
62 (unsigned long)NULL)
63
64 #define knav_queue_disable_notify(q) knav_queue_device_control(q, \
65 KNAV_QUEUE_DISABLE_NOTIFY, \
66 (unsigned long)NULL)
67
68 #define knav_queue_get_count(q) knav_queue_device_control(q, \
69 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
70
71 #define for_each_netcp_module(module) \
72 list_for_each_entry(module, &netcp_modules, module_list)
73
74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
75 list_for_each_entry(inst_modpriv, \
76 &((netcp_device)->modpriv_head), inst_list)
77
78 #define for_each_module(netcp, intf_modpriv) \
79 list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
80
81 /* Module management structures */
82 struct netcp_device {
83 struct list_head device_list;
84 struct list_head interface_head;
85 struct list_head modpriv_head;
86 struct device *device;
87 };
88
89 struct netcp_inst_modpriv {
90 struct netcp_device *netcp_device;
91 struct netcp_module *netcp_module;
92 struct list_head inst_list;
93 void *module_priv;
94 };
95
96 struct netcp_intf_modpriv {
97 struct netcp_intf *netcp_priv;
98 struct netcp_module *netcp_module;
99 struct list_head intf_list;
100 void *module_priv;
101 };
102
103 static LIST_HEAD(netcp_devices);
104 static LIST_HEAD(netcp_modules);
105 static DEFINE_MUTEX(netcp_modules_lock);
106
107 static int netcp_debug_level = -1;
108 module_param(netcp_debug_level, int, 0);
109 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
110
111 /* Helper functions - Get/Set */
112 static void get_pkt_info(u32 *buff, u32 *buff_len, u32 *ndesc,
113 struct knav_dma_desc *desc)
114 {
115 *buff_len = desc->buff_len;
116 *buff = desc->buff;
117 *ndesc = desc->next_desc;
118 }
119
120 static void get_pad_info(u32 *pad0, u32 *pad1, struct knav_dma_desc *desc)
121 {
122 *pad0 = desc->pad[0];
123 *pad1 = desc->pad[1];
124 }
125
126 static void get_org_pkt_info(u32 *buff, u32 *buff_len,
127 struct knav_dma_desc *desc)
128 {
129 *buff = desc->orig_buff;
130 *buff_len = desc->orig_len;
131 }
132
133 static void get_words(u32 *words, int num_words, u32 *desc)
134 {
135 int i;
136
137 for (i = 0; i < num_words; i++)
138 words[i] = desc[i];
139 }
140
141 static void set_pkt_info(u32 buff, u32 buff_len, u32 ndesc,
142 struct knav_dma_desc *desc)
143 {
144 desc->buff_len = buff_len;
145 desc->buff = buff;
146 desc->next_desc = ndesc;
147 }
148
149 static void set_desc_info(u32 desc_info, u32 pkt_info,
150 struct knav_dma_desc *desc)
151 {
152 desc->desc_info = desc_info;
153 desc->packet_info = pkt_info;
154 }
155
156 static void set_pad_info(u32 pad0, u32 pad1, struct knav_dma_desc *desc)
157 {
158 desc->pad[0] = pad0;
159 desc->pad[1] = pad1;
160 }
161
162 static void set_org_pkt_info(u32 buff, u32 buff_len,
163 struct knav_dma_desc *desc)
164 {
165 desc->orig_buff = buff;
166 desc->orig_len = buff_len;
167 }
168
169 static void set_words(u32 *words, int num_words, u32 *desc)
170 {
171 int i;
172
173 for (i = 0; i < num_words; i++)
174 desc[i] = words[i];
175 }
176
177 /* Read the e-fuse value as 32 bit values to be endian independent */
178 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
179 {
180 unsigned int addr0, addr1;
181
182 addr1 = readl(efuse_mac + 4);
183 addr0 = readl(efuse_mac);
184
185 switch (swap) {
186 case NETCP_EFUSE_ADDR_SWAP:
187 addr0 = addr1;
188 addr1 = readl(efuse_mac);
189 break;
190 default:
191 break;
192 }
193
194 x[0] = (addr1 & 0x0000ff00) >> 8;
195 x[1] = addr1 & 0x000000ff;
196 x[2] = (addr0 & 0xff000000) >> 24;
197 x[3] = (addr0 & 0x00ff0000) >> 16;
198 x[4] = (addr0 & 0x0000ff00) >> 8;
199 x[5] = addr0 & 0x000000ff;
200
201 return 0;
202 }
203
204 static const char *netcp_node_name(struct device_node *node)
205 {
206 const char *name;
207
208 if (of_property_read_string(node, "label", &name) < 0)
209 name = node->name;
210 if (!name)
211 name = "unknown";
212 return name;
213 }
214
215 /* Module management routines */
216 static int netcp_register_interface(struct netcp_intf *netcp)
217 {
218 int ret;
219
220 ret = register_netdev(netcp->ndev);
221 if (!ret)
222 netcp->netdev_registered = true;
223 return ret;
224 }
225
226 static int netcp_module_probe(struct netcp_device *netcp_device,
227 struct netcp_module *module)
228 {
229 struct device *dev = netcp_device->device;
230 struct device_node *devices, *interface, *node = dev->of_node;
231 struct device_node *child;
232 struct netcp_inst_modpriv *inst_modpriv;
233 struct netcp_intf *netcp_intf;
234 struct netcp_module *tmp;
235 bool primary_module_registered = false;
236 int ret;
237
238 /* Find this module in the sub-tree for this device */
239 devices = of_get_child_by_name(node, "netcp-devices");
240 if (!devices) {
241 dev_err(dev, "could not find netcp-devices node\n");
242 return NETCP_MOD_PROBE_SKIPPED;
243 }
244
245 for_each_available_child_of_node(devices, child) {
246 const char *name = netcp_node_name(child);
247
248 if (!strcasecmp(module->name, name))
249 break;
250 }
251
252 of_node_put(devices);
253 /* If module not used for this device, skip it */
254 if (!child) {
255 dev_warn(dev, "module(%s) not used for device\n", module->name);
256 return NETCP_MOD_PROBE_SKIPPED;
257 }
258
259 inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
260 if (!inst_modpriv) {
261 of_node_put(child);
262 return -ENOMEM;
263 }
264
265 inst_modpriv->netcp_device = netcp_device;
266 inst_modpriv->netcp_module = module;
267 list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
268
269 ret = module->probe(netcp_device, dev, child,
270 &inst_modpriv->module_priv);
271 of_node_put(child);
272 if (ret) {
273 dev_err(dev, "Probe of module(%s) failed with %d\n",
274 module->name, ret);
275 list_del(&inst_modpriv->inst_list);
276 devm_kfree(dev, inst_modpriv);
277 return NETCP_MOD_PROBE_FAILED;
278 }
279
280 /* Attach modules only if the primary module is probed */
281 for_each_netcp_module(tmp) {
282 if (tmp->primary)
283 primary_module_registered = true;
284 }
285
286 if (!primary_module_registered)
287 return 0;
288
289 /* Attach module to interfaces */
290 list_for_each_entry(netcp_intf, &netcp_device->interface_head,
291 interface_list) {
292 struct netcp_intf_modpriv *intf_modpriv;
293
294 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
295 GFP_KERNEL);
296 if (!intf_modpriv)
297 return -ENOMEM;
298
299 interface = of_parse_phandle(netcp_intf->node_interface,
300 module->name, 0);
301
302 if (!interface) {
303 devm_kfree(dev, intf_modpriv);
304 continue;
305 }
306
307 intf_modpriv->netcp_priv = netcp_intf;
308 intf_modpriv->netcp_module = module;
309 list_add_tail(&intf_modpriv->intf_list,
310 &netcp_intf->module_head);
311
312 ret = module->attach(inst_modpriv->module_priv,
313 netcp_intf->ndev, interface,
314 &intf_modpriv->module_priv);
315 of_node_put(interface);
316 if (ret) {
317 dev_dbg(dev, "Attach of module %s declined with %d\n",
318 module->name, ret);
319 list_del(&intf_modpriv->intf_list);
320 devm_kfree(dev, intf_modpriv);
321 continue;
322 }
323 }
324
325 /* Now register the interface with netdev */
326 list_for_each_entry(netcp_intf,
327 &netcp_device->interface_head,
328 interface_list) {
329 /* If interface not registered then register now */
330 if (!netcp_intf->netdev_registered) {
331 ret = netcp_register_interface(netcp_intf);
332 if (ret)
333 return -ENODEV;
334 }
335 }
336 return 0;
337 }
338
339 int netcp_register_module(struct netcp_module *module)
340 {
341 struct netcp_device *netcp_device;
342 struct netcp_module *tmp;
343 int ret;
344
345 if (!module->name) {
346 WARN(1, "error registering netcp module: no name\n");
347 return -EINVAL;
348 }
349
350 if (!module->probe) {
351 WARN(1, "error registering netcp module: no probe\n");
352 return -EINVAL;
353 }
354
355 mutex_lock(&netcp_modules_lock);
356
357 for_each_netcp_module(tmp) {
358 if (!strcasecmp(tmp->name, module->name)) {
359 mutex_unlock(&netcp_modules_lock);
360 return -EEXIST;
361 }
362 }
363 list_add_tail(&module->module_list, &netcp_modules);
364
365 list_for_each_entry(netcp_device, &netcp_devices, device_list) {
366 ret = netcp_module_probe(netcp_device, module);
367 if (ret < 0)
368 goto fail;
369 }
370 mutex_unlock(&netcp_modules_lock);
371 return 0;
372
373 fail:
374 mutex_unlock(&netcp_modules_lock);
375 netcp_unregister_module(module);
376 return ret;
377 }
378 EXPORT_SYMBOL_GPL(netcp_register_module);
379
380 static void netcp_release_module(struct netcp_device *netcp_device,
381 struct netcp_module *module)
382 {
383 struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
384 struct netcp_intf *netcp_intf, *netcp_tmp;
385 struct device *dev = netcp_device->device;
386
387 /* Release the module from each interface */
388 list_for_each_entry_safe(netcp_intf, netcp_tmp,
389 &netcp_device->interface_head,
390 interface_list) {
391 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
392
393 list_for_each_entry_safe(intf_modpriv, intf_tmp,
394 &netcp_intf->module_head,
395 intf_list) {
396 if (intf_modpriv->netcp_module == module) {
397 module->release(intf_modpriv->module_priv);
398 list_del(&intf_modpriv->intf_list);
399 devm_kfree(dev, intf_modpriv);
400 break;
401 }
402 }
403 }
404
405 /* Remove the module from each instance */
406 list_for_each_entry_safe(inst_modpriv, inst_tmp,
407 &netcp_device->modpriv_head, inst_list) {
408 if (inst_modpriv->netcp_module == module) {
409 module->remove(netcp_device,
410 inst_modpriv->module_priv);
411 list_del(&inst_modpriv->inst_list);
412 devm_kfree(dev, inst_modpriv);
413 break;
414 }
415 }
416 }
417
418 void netcp_unregister_module(struct netcp_module *module)
419 {
420 struct netcp_device *netcp_device;
421 struct netcp_module *module_tmp;
422
423 mutex_lock(&netcp_modules_lock);
424
425 list_for_each_entry(netcp_device, &netcp_devices, device_list) {
426 netcp_release_module(netcp_device, module);
427 }
428
429 /* Remove the module from the module list */
430 for_each_netcp_module(module_tmp) {
431 if (module == module_tmp) {
432 list_del(&module->module_list);
433 break;
434 }
435 }
436
437 mutex_unlock(&netcp_modules_lock);
438 }
439 EXPORT_SYMBOL_GPL(netcp_unregister_module);
440
441 void *netcp_module_get_intf_data(struct netcp_module *module,
442 struct netcp_intf *intf)
443 {
444 struct netcp_intf_modpriv *intf_modpriv;
445
446 list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
447 if (intf_modpriv->netcp_module == module)
448 return intf_modpriv->module_priv;
449 return NULL;
450 }
451 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
452
453 /* Module TX and RX Hook management */
454 struct netcp_hook_list {
455 struct list_head list;
456 netcp_hook_rtn *hook_rtn;
457 void *hook_data;
458 int order;
459 };
460
461 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
462 netcp_hook_rtn *hook_rtn, void *hook_data)
463 {
464 struct netcp_hook_list *entry;
465 struct netcp_hook_list *next;
466 unsigned long flags;
467
468 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
469 if (!entry)
470 return -ENOMEM;
471
472 entry->hook_rtn = hook_rtn;
473 entry->hook_data = hook_data;
474 entry->order = order;
475
476 spin_lock_irqsave(&netcp_priv->lock, flags);
477 list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
478 if (next->order > order)
479 break;
480 }
481 __list_add(&entry->list, next->list.prev, &next->list);
482 spin_unlock_irqrestore(&netcp_priv->lock, flags);
483
484 return 0;
485 }
486 EXPORT_SYMBOL_GPL(netcp_register_txhook);
487
488 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
489 netcp_hook_rtn *hook_rtn, void *hook_data)
490 {
491 struct netcp_hook_list *next, *n;
492 unsigned long flags;
493
494 spin_lock_irqsave(&netcp_priv->lock, flags);
495 list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
496 if ((next->order == order) &&
497 (next->hook_rtn == hook_rtn) &&
498 (next->hook_data == hook_data)) {
499 list_del(&next->list);
500 spin_unlock_irqrestore(&netcp_priv->lock, flags);
501 devm_kfree(netcp_priv->dev, next);
502 return 0;
503 }
504 }
505 spin_unlock_irqrestore(&netcp_priv->lock, flags);
506 return -ENOENT;
507 }
508 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
509
510 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
511 netcp_hook_rtn *hook_rtn, void *hook_data)
512 {
513 struct netcp_hook_list *entry;
514 struct netcp_hook_list *next;
515 unsigned long flags;
516
517 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
518 if (!entry)
519 return -ENOMEM;
520
521 entry->hook_rtn = hook_rtn;
522 entry->hook_data = hook_data;
523 entry->order = order;
524
525 spin_lock_irqsave(&netcp_priv->lock, flags);
526 list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
527 if (next->order > order)
528 break;
529 }
530 __list_add(&entry->list, next->list.prev, &next->list);
531 spin_unlock_irqrestore(&netcp_priv->lock, flags);
532
533 return 0;
534 }
535
536 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
537 netcp_hook_rtn *hook_rtn, void *hook_data)
538 {
539 struct netcp_hook_list *next, *n;
540 unsigned long flags;
541
542 spin_lock_irqsave(&netcp_priv->lock, flags);
543 list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
544 if ((next->order == order) &&
545 (next->hook_rtn == hook_rtn) &&
546 (next->hook_data == hook_data)) {
547 list_del(&next->list);
548 spin_unlock_irqrestore(&netcp_priv->lock, flags);
549 devm_kfree(netcp_priv->dev, next);
550 return 0;
551 }
552 }
553 spin_unlock_irqrestore(&netcp_priv->lock, flags);
554
555 return -ENOENT;
556 }
557
558 static void netcp_frag_free(bool is_frag, void *ptr)
559 {
560 if (is_frag)
561 skb_free_frag(ptr);
562 else
563 kfree(ptr);
564 }
565
566 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
567 struct knav_dma_desc *desc)
568 {
569 struct knav_dma_desc *ndesc;
570 dma_addr_t dma_desc, dma_buf;
571 unsigned int buf_len, dma_sz = sizeof(*ndesc);
572 void *buf_ptr;
573 u32 tmp;
574
575 get_words(&dma_desc, 1, &desc->next_desc);
576
577 while (dma_desc) {
578 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
579 if (unlikely(!ndesc)) {
580 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
581 break;
582 }
583 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
584 get_pad_info((u32 *)&buf_ptr, &tmp, ndesc);
585 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
586 __free_page(buf_ptr);
587 knav_pool_desc_put(netcp->rx_pool, desc);
588 }
589
590 get_pad_info((u32 *)&buf_ptr, &buf_len, desc);
591 if (buf_ptr)
592 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
593 knav_pool_desc_put(netcp->rx_pool, desc);
594 }
595
596 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
597 {
598 struct knav_dma_desc *desc;
599 unsigned int dma_sz;
600 dma_addr_t dma;
601
602 for (; ;) {
603 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
604 if (!dma)
605 break;
606
607 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
608 if (unlikely(!desc)) {
609 dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
610 __func__);
611 netcp->ndev->stats.rx_errors++;
612 continue;
613 }
614 netcp_free_rx_desc_chain(netcp, desc);
615 netcp->ndev->stats.rx_dropped++;
616 }
617 }
618
619 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
620 {
621 unsigned int dma_sz, buf_len, org_buf_len;
622 struct knav_dma_desc *desc, *ndesc;
623 unsigned int pkt_sz = 0, accum_sz;
624 struct netcp_hook_list *rx_hook;
625 dma_addr_t dma_desc, dma_buff;
626 struct netcp_packet p_info;
627 struct sk_buff *skb;
628 void *org_buf_ptr;
629 u32 tmp;
630
631 dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
632 if (!dma_desc)
633 return -1;
634
635 desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
636 if (unlikely(!desc)) {
637 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
638 return 0;
639 }
640
641 get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
642 get_pad_info((u32 *)&org_buf_ptr, &org_buf_len, desc);
643
644 if (unlikely(!org_buf_ptr)) {
645 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
646 goto free_desc;
647 }
648
649 pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
650 accum_sz = buf_len;
651 dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
652
653 /* Build a new sk_buff for the primary buffer */
654 skb = build_skb(org_buf_ptr, org_buf_len);
655 if (unlikely(!skb)) {
656 dev_err(netcp->ndev_dev, "build_skb() failed\n");
657 goto free_desc;
658 }
659
660 /* update data, tail and len */
661 skb_reserve(skb, NETCP_SOP_OFFSET);
662 __skb_put(skb, buf_len);
663
664 /* Fill in the page fragment list */
665 while (dma_desc) {
666 struct page *page;
667
668 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
669 if (unlikely(!ndesc)) {
670 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
671 goto free_desc;
672 }
673
674 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
675 get_pad_info((u32 *)&page, &tmp, ndesc);
676
677 if (likely(dma_buff && buf_len && page)) {
678 dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
679 DMA_FROM_DEVICE);
680 } else {
681 dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%p), len(%d), page(%p)\n",
682 (void *)dma_buff, buf_len, page);
683 goto free_desc;
684 }
685
686 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
687 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
688 accum_sz += buf_len;
689
690 /* Free the descriptor */
691 knav_pool_desc_put(netcp->rx_pool, ndesc);
692 }
693
694 /* Free the primary descriptor */
695 knav_pool_desc_put(netcp->rx_pool, desc);
696
697 /* check for packet len and warn */
698 if (unlikely(pkt_sz != accum_sz))
699 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
700 pkt_sz, accum_sz);
701
702 /* Remove ethernet FCS from the packet */
703 __pskb_trim(skb, skb->len - ETH_FCS_LEN);
704
705 /* Call each of the RX hooks */
706 p_info.skb = skb;
707 p_info.rxtstamp_complete = false;
708 list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
709 int ret;
710
711 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
712 &p_info);
713 if (unlikely(ret)) {
714 dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
715 rx_hook->order, ret);
716 netcp->ndev->stats.rx_errors++;
717 dev_kfree_skb(skb);
718 return 0;
719 }
720 }
721
722 netcp->ndev->stats.rx_packets++;
723 netcp->ndev->stats.rx_bytes += skb->len;
724
725 /* push skb up the stack */
726 skb->protocol = eth_type_trans(skb, netcp->ndev);
727 netif_receive_skb(skb);
728 return 0;
729
730 free_desc:
731 netcp_free_rx_desc_chain(netcp, desc);
732 netcp->ndev->stats.rx_errors++;
733 return 0;
734 }
735
736 static int netcp_process_rx_packets(struct netcp_intf *netcp,
737 unsigned int budget)
738 {
739 int i;
740
741 for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
742 ;
743 return i;
744 }
745
746 /* Release descriptors and attached buffers from Rx FDQ */
747 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
748 {
749 struct knav_dma_desc *desc;
750 unsigned int buf_len, dma_sz;
751 dma_addr_t dma;
752 void *buf_ptr;
753 u32 tmp;
754
755 /* Allocate descriptor */
756 while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
757 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
758 if (unlikely(!desc)) {
759 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
760 continue;
761 }
762
763 get_org_pkt_info(&dma, &buf_len, desc);
764 get_pad_info((u32 *)&buf_ptr, &tmp, desc);
765
766 if (unlikely(!dma)) {
767 dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
768 knav_pool_desc_put(netcp->rx_pool, desc);
769 continue;
770 }
771
772 if (unlikely(!buf_ptr)) {
773 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
774 knav_pool_desc_put(netcp->rx_pool, desc);
775 continue;
776 }
777
778 if (fdq == 0) {
779 dma_unmap_single(netcp->dev, dma, buf_len,
780 DMA_FROM_DEVICE);
781 netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
782 } else {
783 dma_unmap_page(netcp->dev, dma, buf_len,
784 DMA_FROM_DEVICE);
785 __free_page(buf_ptr);
786 }
787
788 knav_pool_desc_put(netcp->rx_pool, desc);
789 }
790 }
791
792 static void netcp_rxpool_free(struct netcp_intf *netcp)
793 {
794 int i;
795
796 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
797 !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
798 netcp_free_rx_buf(netcp, i);
799
800 if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
801 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
802 netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
803
804 knav_pool_destroy(netcp->rx_pool);
805 netcp->rx_pool = NULL;
806 }
807
808 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
809 {
810 struct knav_dma_desc *hwdesc;
811 unsigned int buf_len, dma_sz;
812 u32 desc_info, pkt_info;
813 struct page *page;
814 dma_addr_t dma;
815 void *bufptr;
816 u32 pad[2];
817
818 /* Allocate descriptor */
819 hwdesc = knav_pool_desc_get(netcp->rx_pool);
820 if (IS_ERR_OR_NULL(hwdesc)) {
821 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
822 return -ENOMEM;
823 }
824
825 if (likely(fdq == 0)) {
826 unsigned int primary_buf_len;
827 /* Allocate a primary receive queue entry */
828 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
829 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
830 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
831
832 bufptr = netdev_alloc_frag(primary_buf_len);
833 pad[1] = primary_buf_len;
834
835 if (unlikely(!bufptr)) {
836 dev_warn_ratelimited(netcp->ndev_dev,
837 "Primary RX buffer alloc failed\n");
838 goto fail;
839 }
840 dma = dma_map_single(netcp->dev, bufptr, buf_len,
841 DMA_TO_DEVICE);
842 if (unlikely(dma_mapping_error(netcp->dev, dma)))
843 goto fail;
844
845 pad[0] = (u32)bufptr;
846
847 } else {
848 /* Allocate a secondary receive queue entry */
849 page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD);
850 if (unlikely(!page)) {
851 dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
852 goto fail;
853 }
854 buf_len = PAGE_SIZE;
855 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
856 pad[0] = (u32)page;
857 pad[1] = 0;
858 }
859
860 desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC;
861 desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
862 pkt_info = KNAV_DMA_DESC_HAS_EPIB;
863 pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
864 pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
865 KNAV_DMA_DESC_RETQ_SHIFT;
866 set_org_pkt_info(dma, buf_len, hwdesc);
867 set_pad_info(pad[0], pad[1], hwdesc);
868 set_desc_info(desc_info, pkt_info, hwdesc);
869
870 /* Push to FDQs */
871 knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
872 &dma_sz);
873 knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
874 return 0;
875
876 fail:
877 knav_pool_desc_put(netcp->rx_pool, hwdesc);
878 return -ENOMEM;
879 }
880
881 /* Refill Rx FDQ with descriptors & attached buffers */
882 static void netcp_rxpool_refill(struct netcp_intf *netcp)
883 {
884 u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
885 int i, ret = 0;
886
887 /* Calculate the FDQ deficit and refill */
888 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
889 fdq_deficit[i] = netcp->rx_queue_depths[i] -
890 knav_queue_get_count(netcp->rx_fdq[i]);
891
892 while (fdq_deficit[i]-- && !ret)
893 ret = netcp_allocate_rx_buf(netcp, i);
894 } /* end for fdqs */
895 }
896
897 /* NAPI poll */
898 static int netcp_rx_poll(struct napi_struct *napi, int budget)
899 {
900 struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
901 rx_napi);
902 unsigned int packets;
903
904 packets = netcp_process_rx_packets(netcp, budget);
905
906 netcp_rxpool_refill(netcp);
907 if (packets < budget) {
908 napi_complete(&netcp->rx_napi);
909 knav_queue_enable_notify(netcp->rx_queue);
910 }
911
912 return packets;
913 }
914
915 static void netcp_rx_notify(void *arg)
916 {
917 struct netcp_intf *netcp = arg;
918
919 knav_queue_disable_notify(netcp->rx_queue);
920 napi_schedule(&netcp->rx_napi);
921 }
922
923 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
924 struct knav_dma_desc *desc,
925 unsigned int desc_sz)
926 {
927 struct knav_dma_desc *ndesc = desc;
928 dma_addr_t dma_desc, dma_buf;
929 unsigned int buf_len;
930
931 while (ndesc) {
932 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
933
934 if (dma_buf && buf_len)
935 dma_unmap_single(netcp->dev, dma_buf, buf_len,
936 DMA_TO_DEVICE);
937 else
938 dev_warn(netcp->ndev_dev, "bad Tx desc buf(%p), len(%d)\n",
939 (void *)dma_buf, buf_len);
940
941 knav_pool_desc_put(netcp->tx_pool, ndesc);
942 ndesc = NULL;
943 if (dma_desc) {
944 ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
945 desc_sz);
946 if (!ndesc)
947 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
948 }
949 }
950 }
951
952 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
953 unsigned int budget)
954 {
955 struct knav_dma_desc *desc;
956 struct sk_buff *skb;
957 unsigned int dma_sz;
958 dma_addr_t dma;
959 int pkts = 0;
960 u32 tmp;
961
962 while (budget--) {
963 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
964 if (!dma)
965 break;
966 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
967 if (unlikely(!desc)) {
968 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
969 netcp->ndev->stats.tx_errors++;
970 continue;
971 }
972
973 get_pad_info((u32 *)&skb, &tmp, desc);
974 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
975 if (!skb) {
976 dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
977 netcp->ndev->stats.tx_errors++;
978 continue;
979 }
980
981 if (netif_subqueue_stopped(netcp->ndev, skb) &&
982 netif_running(netcp->ndev) &&
983 (knav_pool_count(netcp->tx_pool) >
984 netcp->tx_resume_threshold)) {
985 u16 subqueue = skb_get_queue_mapping(skb);
986
987 netif_wake_subqueue(netcp->ndev, subqueue);
988 }
989
990 netcp->ndev->stats.tx_packets++;
991 netcp->ndev->stats.tx_bytes += skb->len;
992 dev_kfree_skb(skb);
993 pkts++;
994 }
995 return pkts;
996 }
997
998 static int netcp_tx_poll(struct napi_struct *napi, int budget)
999 {
1000 int packets;
1001 struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1002 tx_napi);
1003
1004 packets = netcp_process_tx_compl_packets(netcp, budget);
1005 if (packets < budget) {
1006 napi_complete(&netcp->tx_napi);
1007 knav_queue_enable_notify(netcp->tx_compl_q);
1008 }
1009
1010 return packets;
1011 }
1012
1013 static void netcp_tx_notify(void *arg)
1014 {
1015 struct netcp_intf *netcp = arg;
1016
1017 knav_queue_disable_notify(netcp->tx_compl_q);
1018 napi_schedule(&netcp->tx_napi);
1019 }
1020
1021 static struct knav_dma_desc*
1022 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1023 {
1024 struct knav_dma_desc *desc, *ndesc, *pdesc;
1025 unsigned int pkt_len = skb_headlen(skb);
1026 struct device *dev = netcp->dev;
1027 dma_addr_t dma_addr;
1028 unsigned int dma_sz;
1029 int i;
1030
1031 /* Map the linear buffer */
1032 dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1033 if (unlikely(dma_mapping_error(dev, dma_addr))) {
1034 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1035 return NULL;
1036 }
1037
1038 desc = knav_pool_desc_get(netcp->tx_pool);
1039 if (IS_ERR_OR_NULL(desc)) {
1040 dev_err(netcp->ndev_dev, "out of TX desc\n");
1041 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1042 return NULL;
1043 }
1044
1045 set_pkt_info(dma_addr, pkt_len, 0, desc);
1046 if (skb_is_nonlinear(skb)) {
1047 prefetchw(skb_shinfo(skb));
1048 } else {
1049 desc->next_desc = 0;
1050 goto upd_pkt_len;
1051 }
1052
1053 pdesc = desc;
1054
1055 /* Handle the case where skb is fragmented in pages */
1056 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1057 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1058 struct page *page = skb_frag_page(frag);
1059 u32 page_offset = frag->page_offset;
1060 u32 buf_len = skb_frag_size(frag);
1061 dma_addr_t desc_dma;
1062 u32 pkt_info;
1063
1064 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1065 DMA_TO_DEVICE);
1066 if (unlikely(!dma_addr)) {
1067 dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1068 goto free_descs;
1069 }
1070
1071 ndesc = knav_pool_desc_get(netcp->tx_pool);
1072 if (IS_ERR_OR_NULL(ndesc)) {
1073 dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1074 dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1075 goto free_descs;
1076 }
1077
1078 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool,
1079 (void *)ndesc);
1080 pkt_info =
1081 (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1082 KNAV_DMA_DESC_RETQ_SHIFT;
1083 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1084 set_words(&desc_dma, 1, &pdesc->next_desc);
1085 pkt_len += buf_len;
1086 if (pdesc != desc)
1087 knav_pool_desc_map(netcp->tx_pool, pdesc,
1088 sizeof(*pdesc), &desc_dma, &dma_sz);
1089 pdesc = ndesc;
1090 }
1091 if (pdesc != desc)
1092 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1093 &dma_addr, &dma_sz);
1094
1095 /* frag list based linkage is not supported for now. */
1096 if (skb_shinfo(skb)->frag_list) {
1097 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1098 goto free_descs;
1099 }
1100
1101 upd_pkt_len:
1102 WARN_ON(pkt_len != skb->len);
1103
1104 pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1105 set_words(&pkt_len, 1, &desc->desc_info);
1106 return desc;
1107
1108 free_descs:
1109 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1110 return NULL;
1111 }
1112
1113 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1114 struct sk_buff *skb,
1115 struct knav_dma_desc *desc)
1116 {
1117 struct netcp_tx_pipe *tx_pipe = NULL;
1118 struct netcp_hook_list *tx_hook;
1119 struct netcp_packet p_info;
1120 unsigned int dma_sz;
1121 dma_addr_t dma;
1122 u32 tmp = 0;
1123 int ret = 0;
1124
1125 p_info.netcp = netcp;
1126 p_info.skb = skb;
1127 p_info.tx_pipe = NULL;
1128 p_info.psdata_len = 0;
1129 p_info.ts_context = NULL;
1130 p_info.txtstamp_complete = NULL;
1131 p_info.epib = desc->epib;
1132 p_info.psdata = desc->psdata;
1133 memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(u32));
1134
1135 /* Find out where to inject the packet for transmission */
1136 list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1137 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1138 &p_info);
1139 if (unlikely(ret != 0)) {
1140 dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1141 tx_hook->order, ret);
1142 ret = (ret < 0) ? ret : NETDEV_TX_OK;
1143 goto out;
1144 }
1145 }
1146
1147 /* Make sure some TX hook claimed the packet */
1148 tx_pipe = p_info.tx_pipe;
1149 if (!tx_pipe) {
1150 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1151 ret = -ENXIO;
1152 goto out;
1153 }
1154
1155 /* update descriptor */
1156 if (p_info.psdata_len) {
1157 u32 *psdata = p_info.psdata;
1158
1159 memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
1160 p_info.psdata_len);
1161 set_words(psdata, p_info.psdata_len, psdata);
1162 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1163 KNAV_DMA_DESC_PSLEN_SHIFT;
1164 }
1165
1166 tmp |= KNAV_DMA_DESC_HAS_EPIB |
1167 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1168 KNAV_DMA_DESC_RETQ_SHIFT);
1169
1170 if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1171 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1172 KNAV_DMA_DESC_PSFLAG_SHIFT);
1173 }
1174
1175 set_words(&tmp, 1, &desc->packet_info);
1176 set_words((u32 *)&skb, 1, &desc->pad[0]);
1177
1178 if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1179 tmp = tx_pipe->switch_to_port;
1180 set_words((u32 *)&tmp, 1, &desc->tag_info);
1181 }
1182
1183 /* submit packet descriptor */
1184 ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1185 &dma_sz);
1186 if (unlikely(ret)) {
1187 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1188 ret = -ENOMEM;
1189 goto out;
1190 }
1191 skb_tx_timestamp(skb);
1192 knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1193
1194 out:
1195 return ret;
1196 }
1197
1198 /* Submit the packet */
1199 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1200 {
1201 struct netcp_intf *netcp = netdev_priv(ndev);
1202 int subqueue = skb_get_queue_mapping(skb);
1203 struct knav_dma_desc *desc;
1204 int desc_count, ret = 0;
1205
1206 if (unlikely(skb->len <= 0)) {
1207 dev_kfree_skb(skb);
1208 return NETDEV_TX_OK;
1209 }
1210
1211 if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1212 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1213 if (ret < 0) {
1214 /* If we get here, the skb has already been dropped */
1215 dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1216 ret);
1217 ndev->stats.tx_dropped++;
1218 return ret;
1219 }
1220 skb->len = NETCP_MIN_PACKET_SIZE;
1221 }
1222
1223 desc = netcp_tx_map_skb(skb, netcp);
1224 if (unlikely(!desc)) {
1225 netif_stop_subqueue(ndev, subqueue);
1226 ret = -ENOBUFS;
1227 goto drop;
1228 }
1229
1230 ret = netcp_tx_submit_skb(netcp, skb, desc);
1231 if (ret)
1232 goto drop;
1233
1234 ndev->trans_start = jiffies;
1235
1236 /* Check Tx pool count & stop subqueue if needed */
1237 desc_count = knav_pool_count(netcp->tx_pool);
1238 if (desc_count < netcp->tx_pause_threshold) {
1239 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1240 netif_stop_subqueue(ndev, subqueue);
1241 }
1242 return NETDEV_TX_OK;
1243
1244 drop:
1245 ndev->stats.tx_dropped++;
1246 if (desc)
1247 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1248 dev_kfree_skb(skb);
1249 return ret;
1250 }
1251
1252 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1253 {
1254 if (tx_pipe->dma_channel) {
1255 knav_dma_close_channel(tx_pipe->dma_channel);
1256 tx_pipe->dma_channel = NULL;
1257 }
1258 return 0;
1259 }
1260 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1261
1262 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1263 {
1264 struct device *dev = tx_pipe->netcp_device->device;
1265 struct knav_dma_cfg config;
1266 int ret = 0;
1267 u8 name[16];
1268
1269 memset(&config, 0, sizeof(config));
1270 config.direction = DMA_MEM_TO_DEV;
1271 config.u.tx.filt_einfo = false;
1272 config.u.tx.filt_pswords = false;
1273 config.u.tx.priority = DMA_PRIO_MED_L;
1274
1275 tx_pipe->dma_channel = knav_dma_open_channel(dev,
1276 tx_pipe->dma_chan_name, &config);
1277 if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
1278 dev_err(dev, "failed opening tx chan(%s)\n",
1279 tx_pipe->dma_chan_name);
1280 goto err;
1281 }
1282
1283 snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1284 tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1285 KNAV_QUEUE_SHARED);
1286 if (IS_ERR(tx_pipe->dma_queue)) {
1287 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1288 name, ret);
1289 ret = PTR_ERR(tx_pipe->dma_queue);
1290 goto err;
1291 }
1292
1293 dev_dbg(dev, "opened tx pipe %s\n", name);
1294 return 0;
1295
1296 err:
1297 if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1298 knav_dma_close_channel(tx_pipe->dma_channel);
1299 tx_pipe->dma_channel = NULL;
1300 return ret;
1301 }
1302 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1303
1304 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1305 struct netcp_device *netcp_device,
1306 const char *dma_chan_name, unsigned int dma_queue_id)
1307 {
1308 memset(tx_pipe, 0, sizeof(*tx_pipe));
1309 tx_pipe->netcp_device = netcp_device;
1310 tx_pipe->dma_chan_name = dma_chan_name;
1311 tx_pipe->dma_queue_id = dma_queue_id;
1312 return 0;
1313 }
1314 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1315
1316 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1317 const u8 *addr,
1318 enum netcp_addr_type type)
1319 {
1320 struct netcp_addr *naddr;
1321
1322 list_for_each_entry(naddr, &netcp->addr_list, node) {
1323 if (naddr->type != type)
1324 continue;
1325 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1326 continue;
1327 return naddr;
1328 }
1329
1330 return NULL;
1331 }
1332
1333 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1334 const u8 *addr,
1335 enum netcp_addr_type type)
1336 {
1337 struct netcp_addr *naddr;
1338
1339 naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1340 if (!naddr)
1341 return NULL;
1342
1343 naddr->type = type;
1344 naddr->flags = 0;
1345 naddr->netcp = netcp;
1346 if (addr)
1347 ether_addr_copy(naddr->addr, addr);
1348 else
1349 eth_zero_addr(naddr->addr);
1350 list_add_tail(&naddr->node, &netcp->addr_list);
1351
1352 return naddr;
1353 }
1354
1355 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1356 {
1357 list_del(&naddr->node);
1358 devm_kfree(netcp->dev, naddr);
1359 }
1360
1361 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1362 {
1363 struct netcp_addr *naddr;
1364
1365 list_for_each_entry(naddr, &netcp->addr_list, node)
1366 naddr->flags = 0;
1367 }
1368
1369 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1370 enum netcp_addr_type type)
1371 {
1372 struct netcp_addr *naddr;
1373
1374 naddr = netcp_addr_find(netcp, addr, type);
1375 if (naddr) {
1376 naddr->flags |= ADDR_VALID;
1377 return;
1378 }
1379
1380 naddr = netcp_addr_add(netcp, addr, type);
1381 if (!WARN_ON(!naddr))
1382 naddr->flags |= ADDR_NEW;
1383 }
1384
1385 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1386 {
1387 struct netcp_addr *naddr, *tmp;
1388 struct netcp_intf_modpriv *priv;
1389 struct netcp_module *module;
1390 int error;
1391
1392 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1393 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1394 continue;
1395 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1396 naddr->addr, naddr->type);
1397 for_each_module(netcp, priv) {
1398 module = priv->netcp_module;
1399 if (!module->del_addr)
1400 continue;
1401 error = module->del_addr(priv->module_priv,
1402 naddr);
1403 WARN_ON(error);
1404 }
1405 netcp_addr_del(netcp, naddr);
1406 }
1407 }
1408
1409 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1410 {
1411 struct netcp_addr *naddr, *tmp;
1412 struct netcp_intf_modpriv *priv;
1413 struct netcp_module *module;
1414 int error;
1415
1416 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1417 if (!(naddr->flags & ADDR_NEW))
1418 continue;
1419 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1420 naddr->addr, naddr->type);
1421
1422 for_each_module(netcp, priv) {
1423 module = priv->netcp_module;
1424 if (!module->add_addr)
1425 continue;
1426 error = module->add_addr(priv->module_priv, naddr);
1427 WARN_ON(error);
1428 }
1429 }
1430 }
1431
1432 static void netcp_set_rx_mode(struct net_device *ndev)
1433 {
1434 struct netcp_intf *netcp = netdev_priv(ndev);
1435 struct netdev_hw_addr *ndev_addr;
1436 bool promisc;
1437
1438 promisc = (ndev->flags & IFF_PROMISC ||
1439 ndev->flags & IFF_ALLMULTI ||
1440 netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1441
1442 spin_lock(&netcp->lock);
1443 /* first clear all marks */
1444 netcp_addr_clear_mark(netcp);
1445
1446 /* next add new entries, mark existing ones */
1447 netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1448 for_each_dev_addr(ndev, ndev_addr)
1449 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1450 netdev_for_each_uc_addr(ndev_addr, ndev)
1451 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1452 netdev_for_each_mc_addr(ndev_addr, ndev)
1453 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1454
1455 if (promisc)
1456 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1457
1458 /* finally sweep and callout into modules */
1459 netcp_addr_sweep_del(netcp);
1460 netcp_addr_sweep_add(netcp);
1461 spin_unlock(&netcp->lock);
1462 }
1463
1464 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1465 {
1466 int i;
1467
1468 if (netcp->rx_channel) {
1469 knav_dma_close_channel(netcp->rx_channel);
1470 netcp->rx_channel = NULL;
1471 }
1472
1473 if (!IS_ERR_OR_NULL(netcp->rx_pool))
1474 netcp_rxpool_free(netcp);
1475
1476 if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1477 knav_queue_close(netcp->rx_queue);
1478 netcp->rx_queue = NULL;
1479 }
1480
1481 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1482 !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1483 knav_queue_close(netcp->rx_fdq[i]);
1484 netcp->rx_fdq[i] = NULL;
1485 }
1486
1487 if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1488 knav_queue_close(netcp->tx_compl_q);
1489 netcp->tx_compl_q = NULL;
1490 }
1491
1492 if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1493 knav_pool_destroy(netcp->tx_pool);
1494 netcp->tx_pool = NULL;
1495 }
1496 }
1497
1498 static int netcp_setup_navigator_resources(struct net_device *ndev)
1499 {
1500 struct netcp_intf *netcp = netdev_priv(ndev);
1501 struct knav_queue_notify_config notify_cfg;
1502 struct knav_dma_cfg config;
1503 u32 last_fdq = 0;
1504 u8 name[16];
1505 int ret;
1506 int i;
1507
1508 /* Create Rx/Tx descriptor pools */
1509 snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1510 netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1511 netcp->rx_pool_region_id);
1512 if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1513 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1514 ret = PTR_ERR(netcp->rx_pool);
1515 goto fail;
1516 }
1517
1518 snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1519 netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1520 netcp->tx_pool_region_id);
1521 if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1522 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1523 ret = PTR_ERR(netcp->tx_pool);
1524 goto fail;
1525 }
1526
1527 /* open Tx completion queue */
1528 snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1529 netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1530 if (IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1531 ret = PTR_ERR(netcp->tx_compl_q);
1532 goto fail;
1533 }
1534 netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1535
1536 /* Set notification for Tx completion */
1537 notify_cfg.fn = netcp_tx_notify;
1538 notify_cfg.fn_arg = netcp;
1539 ret = knav_queue_device_control(netcp->tx_compl_q,
1540 KNAV_QUEUE_SET_NOTIFIER,
1541 (unsigned long)&notify_cfg);
1542 if (ret)
1543 goto fail;
1544
1545 knav_queue_disable_notify(netcp->tx_compl_q);
1546
1547 /* open Rx completion queue */
1548 snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1549 netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1550 if (IS_ERR_OR_NULL(netcp->rx_queue)) {
1551 ret = PTR_ERR(netcp->rx_queue);
1552 goto fail;
1553 }
1554 netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1555
1556 /* Set notification for Rx completion */
1557 notify_cfg.fn = netcp_rx_notify;
1558 notify_cfg.fn_arg = netcp;
1559 ret = knav_queue_device_control(netcp->rx_queue,
1560 KNAV_QUEUE_SET_NOTIFIER,
1561 (unsigned long)&notify_cfg);
1562 if (ret)
1563 goto fail;
1564
1565 knav_queue_disable_notify(netcp->rx_queue);
1566
1567 /* open Rx FDQs */
1568 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1569 ++i) {
1570 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1571 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1572 if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) {
1573 ret = PTR_ERR(netcp->rx_fdq[i]);
1574 goto fail;
1575 }
1576 }
1577
1578 memset(&config, 0, sizeof(config));
1579 config.direction = DMA_DEV_TO_MEM;
1580 config.u.rx.einfo_present = true;
1581 config.u.rx.psinfo_present = true;
1582 config.u.rx.err_mode = DMA_DROP;
1583 config.u.rx.desc_type = DMA_DESC_HOST;
1584 config.u.rx.psinfo_at_sop = false;
1585 config.u.rx.sop_offset = NETCP_SOP_OFFSET;
1586 config.u.rx.dst_q = netcp->rx_queue_id;
1587 config.u.rx.thresh = DMA_THRESH_NONE;
1588
1589 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1590 if (netcp->rx_fdq[i])
1591 last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1592 config.u.rx.fdq[i] = last_fdq;
1593 }
1594
1595 netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1596 netcp->dma_chan_name, &config);
1597 if (IS_ERR_OR_NULL(netcp->rx_channel)) {
1598 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1599 netcp->dma_chan_name);
1600 goto fail;
1601 }
1602
1603 dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1604 return 0;
1605
1606 fail:
1607 netcp_free_navigator_resources(netcp);
1608 return ret;
1609 }
1610
1611 /* Open the device */
1612 static int netcp_ndo_open(struct net_device *ndev)
1613 {
1614 struct netcp_intf *netcp = netdev_priv(ndev);
1615 struct netcp_intf_modpriv *intf_modpriv;
1616 struct netcp_module *module;
1617 int ret;
1618
1619 netif_carrier_off(ndev);
1620 ret = netcp_setup_navigator_resources(ndev);
1621 if (ret) {
1622 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1623 goto fail;
1624 }
1625
1626 for_each_module(netcp, intf_modpriv) {
1627 module = intf_modpriv->netcp_module;
1628 if (module->open) {
1629 ret = module->open(intf_modpriv->module_priv, ndev);
1630 if (ret != 0) {
1631 dev_err(netcp->ndev_dev, "module open failed\n");
1632 goto fail_open;
1633 }
1634 }
1635 }
1636
1637 napi_enable(&netcp->rx_napi);
1638 napi_enable(&netcp->tx_napi);
1639 knav_queue_enable_notify(netcp->tx_compl_q);
1640 knav_queue_enable_notify(netcp->rx_queue);
1641 netcp_rxpool_refill(netcp);
1642 netif_tx_wake_all_queues(ndev);
1643 dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1644 return 0;
1645
1646 fail_open:
1647 for_each_module(netcp, intf_modpriv) {
1648 module = intf_modpriv->netcp_module;
1649 if (module->close)
1650 module->close(intf_modpriv->module_priv, ndev);
1651 }
1652
1653 fail:
1654 netcp_free_navigator_resources(netcp);
1655 return ret;
1656 }
1657
1658 /* Close the device */
1659 static int netcp_ndo_stop(struct net_device *ndev)
1660 {
1661 struct netcp_intf *netcp = netdev_priv(ndev);
1662 struct netcp_intf_modpriv *intf_modpriv;
1663 struct netcp_module *module;
1664 int err = 0;
1665
1666 netif_tx_stop_all_queues(ndev);
1667 netif_carrier_off(ndev);
1668 netcp_addr_clear_mark(netcp);
1669 netcp_addr_sweep_del(netcp);
1670 knav_queue_disable_notify(netcp->rx_queue);
1671 knav_queue_disable_notify(netcp->tx_compl_q);
1672 napi_disable(&netcp->rx_napi);
1673 napi_disable(&netcp->tx_napi);
1674
1675 for_each_module(netcp, intf_modpriv) {
1676 module = intf_modpriv->netcp_module;
1677 if (module->close) {
1678 err = module->close(intf_modpriv->module_priv, ndev);
1679 if (err != 0)
1680 dev_err(netcp->ndev_dev, "Close failed\n");
1681 }
1682 }
1683
1684 /* Recycle Rx descriptors from completion queue */
1685 netcp_empty_rx_queue(netcp);
1686
1687 /* Recycle Tx descriptors from completion queue */
1688 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1689
1690 if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1691 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1692 netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1693
1694 netcp_free_navigator_resources(netcp);
1695 dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1696 return 0;
1697 }
1698
1699 static int netcp_ndo_ioctl(struct net_device *ndev,
1700 struct ifreq *req, int cmd)
1701 {
1702 struct netcp_intf *netcp = netdev_priv(ndev);
1703 struct netcp_intf_modpriv *intf_modpriv;
1704 struct netcp_module *module;
1705 int ret = -1, err = -EOPNOTSUPP;
1706
1707 if (!netif_running(ndev))
1708 return -EINVAL;
1709
1710 for_each_module(netcp, intf_modpriv) {
1711 module = intf_modpriv->netcp_module;
1712 if (!module->ioctl)
1713 continue;
1714
1715 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1716 if ((err < 0) && (err != -EOPNOTSUPP)) {
1717 ret = err;
1718 goto out;
1719 }
1720 if (err == 0)
1721 ret = err;
1722 }
1723
1724 out:
1725 return (ret == 0) ? 0 : err;
1726 }
1727
1728 static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu)
1729 {
1730 struct netcp_intf *netcp = netdev_priv(ndev);
1731
1732 /* MTU < 68 is an error for IPv4 traffic */
1733 if ((new_mtu < 68) ||
1734 (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) {
1735 dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu);
1736 return -EINVAL;
1737 }
1738
1739 ndev->mtu = new_mtu;
1740 return 0;
1741 }
1742
1743 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1744 {
1745 struct netcp_intf *netcp = netdev_priv(ndev);
1746 unsigned int descs = knav_pool_count(netcp->tx_pool);
1747
1748 dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1749 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1750 ndev->trans_start = jiffies;
1751 netif_tx_wake_all_queues(ndev);
1752 }
1753
1754 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1755 {
1756 struct netcp_intf *netcp = netdev_priv(ndev);
1757 struct netcp_intf_modpriv *intf_modpriv;
1758 struct netcp_module *module;
1759 unsigned long flags;
1760 int err = 0;
1761
1762 dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1763
1764 spin_lock_irqsave(&netcp->lock, flags);
1765 for_each_module(netcp, intf_modpriv) {
1766 module = intf_modpriv->netcp_module;
1767 if ((module->add_vid) && (vid != 0)) {
1768 err = module->add_vid(intf_modpriv->module_priv, vid);
1769 if (err != 0) {
1770 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1771 vid);
1772 break;
1773 }
1774 }
1775 }
1776 spin_unlock_irqrestore(&netcp->lock, flags);
1777
1778 return err;
1779 }
1780
1781 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1782 {
1783 struct netcp_intf *netcp = netdev_priv(ndev);
1784 struct netcp_intf_modpriv *intf_modpriv;
1785 struct netcp_module *module;
1786 unsigned long flags;
1787 int err = 0;
1788
1789 dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1790
1791 spin_lock_irqsave(&netcp->lock, flags);
1792 for_each_module(netcp, intf_modpriv) {
1793 module = intf_modpriv->netcp_module;
1794 if (module->del_vid) {
1795 err = module->del_vid(intf_modpriv->module_priv, vid);
1796 if (err != 0) {
1797 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1798 vid);
1799 break;
1800 }
1801 }
1802 }
1803 spin_unlock_irqrestore(&netcp->lock, flags);
1804 return err;
1805 }
1806
1807 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1808 void *accel_priv,
1809 select_queue_fallback_t fallback)
1810 {
1811 return 0;
1812 }
1813
1814 static int netcp_setup_tc(struct net_device *dev, u8 num_tc)
1815 {
1816 int i;
1817
1818 /* setup tc must be called under rtnl lock */
1819 ASSERT_RTNL();
1820
1821 /* Sanity-check the number of traffic classes requested */
1822 if ((dev->real_num_tx_queues <= 1) ||
1823 (dev->real_num_tx_queues < num_tc))
1824 return -EINVAL;
1825
1826 /* Configure traffic class to queue mappings */
1827 if (num_tc) {
1828 netdev_set_num_tc(dev, num_tc);
1829 for (i = 0; i < num_tc; i++)
1830 netdev_set_tc_queue(dev, i, 1, i);
1831 } else {
1832 netdev_reset_tc(dev);
1833 }
1834
1835 return 0;
1836 }
1837
1838 static const struct net_device_ops netcp_netdev_ops = {
1839 .ndo_open = netcp_ndo_open,
1840 .ndo_stop = netcp_ndo_stop,
1841 .ndo_start_xmit = netcp_ndo_start_xmit,
1842 .ndo_set_rx_mode = netcp_set_rx_mode,
1843 .ndo_do_ioctl = netcp_ndo_ioctl,
1844 .ndo_change_mtu = netcp_ndo_change_mtu,
1845 .ndo_set_mac_address = eth_mac_addr,
1846 .ndo_validate_addr = eth_validate_addr,
1847 .ndo_vlan_rx_add_vid = netcp_rx_add_vid,
1848 .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid,
1849 .ndo_tx_timeout = netcp_ndo_tx_timeout,
1850 .ndo_select_queue = netcp_select_queue,
1851 .ndo_setup_tc = netcp_setup_tc,
1852 };
1853
1854 static int netcp_create_interface(struct netcp_device *netcp_device,
1855 struct device_node *node_interface)
1856 {
1857 struct device *dev = netcp_device->device;
1858 struct device_node *node = dev->of_node;
1859 struct netcp_intf *netcp;
1860 struct net_device *ndev;
1861 resource_size_t size;
1862 struct resource res;
1863 void __iomem *efuse = NULL;
1864 u32 efuse_mac = 0;
1865 const void *mac_addr;
1866 u8 efuse_mac_addr[6];
1867 u32 temp[2];
1868 int ret = 0;
1869
1870 ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1871 if (!ndev) {
1872 dev_err(dev, "Error allocating netdev\n");
1873 return -ENOMEM;
1874 }
1875
1876 ndev->features |= NETIF_F_SG;
1877 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1878 ndev->hw_features = ndev->features;
1879 ndev->vlan_features |= NETIF_F_SG;
1880
1881 netcp = netdev_priv(ndev);
1882 spin_lock_init(&netcp->lock);
1883 INIT_LIST_HEAD(&netcp->module_head);
1884 INIT_LIST_HEAD(&netcp->txhook_list_head);
1885 INIT_LIST_HEAD(&netcp->rxhook_list_head);
1886 INIT_LIST_HEAD(&netcp->addr_list);
1887 netcp->netcp_device = netcp_device;
1888 netcp->dev = netcp_device->device;
1889 netcp->ndev = ndev;
1890 netcp->ndev_dev = &ndev->dev;
1891 netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
1892 netcp->tx_pause_threshold = MAX_SKB_FRAGS;
1893 netcp->tx_resume_threshold = netcp->tx_pause_threshold;
1894 netcp->node_interface = node_interface;
1895
1896 ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
1897 if (efuse_mac) {
1898 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
1899 dev_err(dev, "could not find efuse-mac reg resource\n");
1900 ret = -ENODEV;
1901 goto quit;
1902 }
1903 size = resource_size(&res);
1904
1905 if (!devm_request_mem_region(dev, res.start, size,
1906 dev_name(dev))) {
1907 dev_err(dev, "could not reserve resource\n");
1908 ret = -ENOMEM;
1909 goto quit;
1910 }
1911
1912 efuse = devm_ioremap_nocache(dev, res.start, size);
1913 if (!efuse) {
1914 dev_err(dev, "could not map resource\n");
1915 devm_release_mem_region(dev, res.start, size);
1916 ret = -ENOMEM;
1917 goto quit;
1918 }
1919
1920 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
1921 if (is_valid_ether_addr(efuse_mac_addr))
1922 ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
1923 else
1924 random_ether_addr(ndev->dev_addr);
1925
1926 devm_iounmap(dev, efuse);
1927 devm_release_mem_region(dev, res.start, size);
1928 } else {
1929 mac_addr = of_get_mac_address(node_interface);
1930 if (mac_addr)
1931 ether_addr_copy(ndev->dev_addr, mac_addr);
1932 else
1933 random_ether_addr(ndev->dev_addr);
1934 }
1935
1936 ret = of_property_read_string(node_interface, "rx-channel",
1937 &netcp->dma_chan_name);
1938 if (ret < 0) {
1939 dev_err(dev, "missing \"rx-channel\" parameter\n");
1940 ret = -ENODEV;
1941 goto quit;
1942 }
1943
1944 ret = of_property_read_u32(node_interface, "rx-queue",
1945 &netcp->rx_queue_id);
1946 if (ret < 0) {
1947 dev_warn(dev, "missing \"rx-queue\" parameter\n");
1948 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
1949 }
1950
1951 ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
1952 netcp->rx_queue_depths,
1953 KNAV_DMA_FDQ_PER_CHAN);
1954 if (ret < 0) {
1955 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
1956 netcp->rx_queue_depths[0] = 128;
1957 }
1958
1959 ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
1960 if (ret < 0) {
1961 dev_err(dev, "missing \"rx-pool\" parameter\n");
1962 ret = -ENODEV;
1963 goto quit;
1964 }
1965 netcp->rx_pool_size = temp[0];
1966 netcp->rx_pool_region_id = temp[1];
1967
1968 ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
1969 if (ret < 0) {
1970 dev_err(dev, "missing \"tx-pool\" parameter\n");
1971 ret = -ENODEV;
1972 goto quit;
1973 }
1974 netcp->tx_pool_size = temp[0];
1975 netcp->tx_pool_region_id = temp[1];
1976
1977 if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
1978 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
1979 MAX_SKB_FRAGS);
1980 ret = -ENODEV;
1981 goto quit;
1982 }
1983
1984 ret = of_property_read_u32(node_interface, "tx-completion-queue",
1985 &netcp->tx_compl_qid);
1986 if (ret < 0) {
1987 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
1988 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
1989 }
1990
1991 /* NAPI register */
1992 netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
1993 netif_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
1994
1995 /* Register the network device */
1996 ndev->dev_id = 0;
1997 ndev->watchdog_timeo = NETCP_TX_TIMEOUT;
1998 ndev->netdev_ops = &netcp_netdev_ops;
1999 SET_NETDEV_DEV(ndev, dev);
2000
2001 list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2002 return 0;
2003
2004 quit:
2005 free_netdev(ndev);
2006 return ret;
2007 }
2008
2009 static void netcp_delete_interface(struct netcp_device *netcp_device,
2010 struct net_device *ndev)
2011 {
2012 struct netcp_intf_modpriv *intf_modpriv, *tmp;
2013 struct netcp_intf *netcp = netdev_priv(ndev);
2014 struct netcp_module *module;
2015
2016 dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2017 ndev->name);
2018
2019 /* Notify each of the modules that the interface is going away */
2020 list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2021 intf_list) {
2022 module = intf_modpriv->netcp_module;
2023 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2024 module->name);
2025 if (module->release)
2026 module->release(intf_modpriv->module_priv);
2027 list_del(&intf_modpriv->intf_list);
2028 kfree(intf_modpriv);
2029 }
2030 WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2031 ndev->name);
2032
2033 list_del(&netcp->interface_list);
2034
2035 of_node_put(netcp->node_interface);
2036 unregister_netdev(ndev);
2037 netif_napi_del(&netcp->rx_napi);
2038 free_netdev(ndev);
2039 }
2040
2041 static int netcp_probe(struct platform_device *pdev)
2042 {
2043 struct device_node *node = pdev->dev.of_node;
2044 struct netcp_intf *netcp_intf, *netcp_tmp;
2045 struct device_node *child, *interfaces;
2046 struct netcp_device *netcp_device;
2047 struct device *dev = &pdev->dev;
2048 int ret;
2049
2050 if (!node) {
2051 dev_err(dev, "could not find device info\n");
2052 return -ENODEV;
2053 }
2054
2055 /* Allocate a new NETCP device instance */
2056 netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2057 if (!netcp_device)
2058 return -ENOMEM;
2059
2060 pm_runtime_enable(&pdev->dev);
2061 ret = pm_runtime_get_sync(&pdev->dev);
2062 if (ret < 0) {
2063 dev_err(dev, "Failed to enable NETCP power-domain\n");
2064 pm_runtime_disable(&pdev->dev);
2065 return ret;
2066 }
2067
2068 /* Initialize the NETCP device instance */
2069 INIT_LIST_HEAD(&netcp_device->interface_head);
2070 INIT_LIST_HEAD(&netcp_device->modpriv_head);
2071 netcp_device->device = dev;
2072 platform_set_drvdata(pdev, netcp_device);
2073
2074 /* create interfaces */
2075 interfaces = of_get_child_by_name(node, "netcp-interfaces");
2076 if (!interfaces) {
2077 dev_err(dev, "could not find netcp-interfaces node\n");
2078 ret = -ENODEV;
2079 goto probe_quit;
2080 }
2081
2082 for_each_available_child_of_node(interfaces, child) {
2083 ret = netcp_create_interface(netcp_device, child);
2084 if (ret) {
2085 dev_err(dev, "could not create interface(%s)\n",
2086 child->name);
2087 goto probe_quit_interface;
2088 }
2089 }
2090
2091 /* Add the device instance to the list */
2092 list_add_tail(&netcp_device->device_list, &netcp_devices);
2093
2094 return 0;
2095
2096 probe_quit_interface:
2097 list_for_each_entry_safe(netcp_intf, netcp_tmp,
2098 &netcp_device->interface_head,
2099 interface_list) {
2100 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2101 }
2102
2103 probe_quit:
2104 pm_runtime_put_sync(&pdev->dev);
2105 pm_runtime_disable(&pdev->dev);
2106 platform_set_drvdata(pdev, NULL);
2107 return ret;
2108 }
2109
2110 static int netcp_remove(struct platform_device *pdev)
2111 {
2112 struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2113 struct netcp_intf *netcp_intf, *netcp_tmp;
2114 struct netcp_inst_modpriv *inst_modpriv, *tmp;
2115 struct netcp_module *module;
2116
2117 list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2118 inst_list) {
2119 module = inst_modpriv->netcp_module;
2120 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2121 module->remove(netcp_device, inst_modpriv->module_priv);
2122 list_del(&inst_modpriv->inst_list);
2123 kfree(inst_modpriv);
2124 }
2125
2126 /* now that all modules are removed, clean up the interfaces */
2127 list_for_each_entry_safe(netcp_intf, netcp_tmp,
2128 &netcp_device->interface_head,
2129 interface_list) {
2130 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2131 }
2132
2133 WARN(!list_empty(&netcp_device->interface_head),
2134 "%s interface list not empty!\n", pdev->name);
2135
2136 pm_runtime_put_sync(&pdev->dev);
2137 pm_runtime_disable(&pdev->dev);
2138 platform_set_drvdata(pdev, NULL);
2139 return 0;
2140 }
2141
2142 static const struct of_device_id of_match[] = {
2143 { .compatible = "ti,netcp-1.0", },
2144 {},
2145 };
2146 MODULE_DEVICE_TABLE(of, of_match);
2147
2148 static struct platform_driver netcp_driver = {
2149 .driver = {
2150 .name = "netcp-1.0",
2151 .of_match_table = of_match,
2152 },
2153 .probe = netcp_probe,
2154 .remove = netcp_remove,
2155 };
2156 module_platform_driver(netcp_driver);
2157
2158 MODULE_LICENSE("GPL v2");
2159 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2160 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");
This page took 0.08304 seconds and 5 git commands to generate.