Merge remote-tracking branch 'mkp-scsi/4.8/scsi-fixes' into fixes
[deliverable/linux.git] / drivers / net / ethernet / tundra / tsi108_eth.c
1 /*******************************************************************************
2
3 Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 2 of the License, or (at your option)
8 any later version.
9
10 This program is distributed in the hope that it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc., 59
17 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
19 *******************************************************************************/
20
21 /* This driver is based on the driver code originally developed
22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
24 *
25 * Currently changes from original version are:
26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27 * - modifications to handle two ports independently and support for
28 * additional PHY devices (alexandre.bounine@tundra.com)
29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30 *
31 */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/interrupt.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/ethtool.h>
40 #include <linux/skbuff.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50 #include <linux/gfp.h>
51
52 #include <asm/io.h>
53 #include <asm/tsi108.h>
54
55 #include "tsi108_eth.h"
56
57 #define MII_READ_DELAY 10000 /* max link wait time in msec */
58
59 #define TSI108_RXRING_LEN 256
60
61 /* NOTE: The driver currently does not support receiving packets
62 * larger than the buffer size, so don't decrease this (unless you
63 * want to add such support).
64 */
65 #define TSI108_RXBUF_SIZE 1536
66
67 #define TSI108_TXRING_LEN 256
68
69 #define TSI108_TX_INT_FREQ 64
70
71 /* Check the phy status every half a second. */
72 #define CHECK_PHY_INTERVAL (HZ/2)
73
74 static int tsi108_init_one(struct platform_device *pdev);
75 static int tsi108_ether_remove(struct platform_device *pdev);
76
77 struct tsi108_prv_data {
78 void __iomem *regs; /* Base of normal regs */
79 void __iomem *phyregs; /* Base of register bank used for PHY access */
80
81 struct net_device *dev;
82 struct napi_struct napi;
83
84 unsigned int phy; /* Index of PHY for this interface */
85 unsigned int irq_num;
86 unsigned int id;
87 unsigned int phy_type;
88
89 struct timer_list timer;/* Timer that triggers the check phy function */
90 unsigned int rxtail; /* Next entry in rxring to read */
91 unsigned int rxhead; /* Next entry in rxring to give a new buffer */
92 unsigned int rxfree; /* Number of free, allocated RX buffers */
93
94 unsigned int rxpending; /* Non-zero if there are still descriptors
95 * to be processed from a previous descriptor
96 * interrupt condition that has been cleared */
97
98 unsigned int txtail; /* Next TX descriptor to check status on */
99 unsigned int txhead; /* Next TX descriptor to use */
100
101 /* Number of free TX descriptors. This could be calculated from
102 * rxhead and rxtail if one descriptor were left unused to disambiguate
103 * full and empty conditions, but it's simpler to just keep track
104 * explicitly. */
105
106 unsigned int txfree;
107
108 unsigned int phy_ok; /* The PHY is currently powered on. */
109
110 /* PHY status (duplex is 1 for half, 2 for full,
111 * so that the default 0 indicates that neither has
112 * yet been configured). */
113
114 unsigned int link_up;
115 unsigned int speed;
116 unsigned int duplex;
117
118 tx_desc *txring;
119 rx_desc *rxring;
120 struct sk_buff *txskbs[TSI108_TXRING_LEN];
121 struct sk_buff *rxskbs[TSI108_RXRING_LEN];
122
123 dma_addr_t txdma, rxdma;
124
125 /* txlock nests in misclock and phy_lock */
126
127 spinlock_t txlock, misclock;
128
129 /* stats is used to hold the upper bits of each hardware counter,
130 * and tmpstats is used to hold the full values for returning
131 * to the caller of get_stats(). They must be separate in case
132 * an overflow interrupt occurs before the stats are consumed.
133 */
134
135 struct net_device_stats stats;
136 struct net_device_stats tmpstats;
137
138 /* These stats are kept separate in hardware, thus require individual
139 * fields for handling carry. They are combined in get_stats.
140 */
141
142 unsigned long rx_fcs; /* Add to rx_frame_errors */
143 unsigned long rx_short_fcs; /* Add to rx_frame_errors */
144 unsigned long rx_long_fcs; /* Add to rx_frame_errors */
145 unsigned long rx_underruns; /* Add to rx_length_errors */
146 unsigned long rx_overruns; /* Add to rx_length_errors */
147
148 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */
149 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */
150
151 unsigned long mc_hash[16];
152 u32 msg_enable; /* debug message level */
153 struct mii_if_info mii_if;
154 unsigned int init_media;
155 };
156
157 /* Structure for a device driver */
158
159 static struct platform_driver tsi_eth_driver = {
160 .probe = tsi108_init_one,
161 .remove = tsi108_ether_remove,
162 .driver = {
163 .name = "tsi-ethernet",
164 },
165 };
166
167 static void tsi108_timed_checker(unsigned long dev_ptr);
168
169 static void dump_eth_one(struct net_device *dev)
170 {
171 struct tsi108_prv_data *data = netdev_priv(dev);
172
173 printk("Dumping %s...\n", dev->name);
174 printk("intstat %x intmask %x phy_ok %d"
175 " link %d speed %d duplex %d\n",
176 TSI_READ(TSI108_EC_INTSTAT),
177 TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
178 data->link_up, data->speed, data->duplex);
179
180 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
181 data->txhead, data->txtail, data->txfree,
182 TSI_READ(TSI108_EC_TXSTAT),
183 TSI_READ(TSI108_EC_TXESTAT),
184 TSI_READ(TSI108_EC_TXERR));
185
186 printk("RX: head %d, tail %d, free %d, stat %x,"
187 " estat %x, err %x, pending %d\n\n",
188 data->rxhead, data->rxtail, data->rxfree,
189 TSI_READ(TSI108_EC_RXSTAT),
190 TSI_READ(TSI108_EC_RXESTAT),
191 TSI_READ(TSI108_EC_RXERR), data->rxpending);
192 }
193
194 /* Synchronization is needed between the thread and up/down events.
195 * Note that the PHY is accessed through the same registers for both
196 * interfaces, so this can't be made interface-specific.
197 */
198
199 static DEFINE_SPINLOCK(phy_lock);
200
201 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
202 {
203 unsigned i;
204
205 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
206 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
207 (reg << TSI108_MAC_MII_ADDR_REG));
208 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
209 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
210 for (i = 0; i < 100; i++) {
211 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
212 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
213 break;
214 udelay(10);
215 }
216
217 if (i == 100)
218 return 0xffff;
219 else
220 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
221 }
222
223 static void tsi108_write_mii(struct tsi108_prv_data *data,
224 int reg, u16 val)
225 {
226 unsigned i = 100;
227 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
228 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
229 (reg << TSI108_MAC_MII_ADDR_REG));
230 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
231 while (i--) {
232 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
233 TSI108_MAC_MII_IND_BUSY))
234 break;
235 udelay(10);
236 }
237 }
238
239 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
240 {
241 struct tsi108_prv_data *data = netdev_priv(dev);
242 return tsi108_read_mii(data, reg);
243 }
244
245 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
246 {
247 struct tsi108_prv_data *data = netdev_priv(dev);
248 tsi108_write_mii(data, reg, val);
249 }
250
251 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
252 int reg, u16 val)
253 {
254 unsigned i = 1000;
255 TSI_WRITE(TSI108_MAC_MII_ADDR,
256 (0x1e << TSI108_MAC_MII_ADDR_PHY)
257 | (reg << TSI108_MAC_MII_ADDR_REG));
258 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
259 while(i--) {
260 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
261 return;
262 udelay(10);
263 }
264 printk(KERN_ERR "%s function time out\n", __func__);
265 }
266
267 static int mii_speed(struct mii_if_info *mii)
268 {
269 int advert, lpa, val, media;
270 int lpa2 = 0;
271 int speed;
272
273 if (!mii_link_ok(mii))
274 return 0;
275
276 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
277 if ((val & BMSR_ANEGCOMPLETE) == 0)
278 return 0;
279
280 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
281 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
282 media = mii_nway_result(advert & lpa);
283
284 if (mii->supports_gmii)
285 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
286
287 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
288 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
289 return speed;
290 }
291
292 static void tsi108_check_phy(struct net_device *dev)
293 {
294 struct tsi108_prv_data *data = netdev_priv(dev);
295 u32 mac_cfg2_reg, portctrl_reg;
296 u32 duplex;
297 u32 speed;
298 unsigned long flags;
299
300 spin_lock_irqsave(&phy_lock, flags);
301
302 if (!data->phy_ok)
303 goto out;
304
305 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
306 data->init_media = 0;
307
308 if (netif_carrier_ok(dev)) {
309
310 speed = mii_speed(&data->mii_if);
311
312 if ((speed != data->speed) || duplex) {
313
314 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
315 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
316
317 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
318
319 if (speed == 1000) {
320 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
321 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
322 } else {
323 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
324 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
325 }
326
327 data->speed = speed;
328
329 if (data->mii_if.full_duplex) {
330 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
331 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
332 data->duplex = 2;
333 } else {
334 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
335 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
336 data->duplex = 1;
337 }
338
339 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
340 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
341 }
342
343 if (data->link_up == 0) {
344 /* The manual says it can take 3-4 usecs for the speed change
345 * to take effect.
346 */
347 udelay(5);
348
349 spin_lock(&data->txlock);
350 if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
351 netif_wake_queue(dev);
352
353 data->link_up = 1;
354 spin_unlock(&data->txlock);
355 }
356 } else {
357 if (data->link_up == 1) {
358 netif_stop_queue(dev);
359 data->link_up = 0;
360 printk(KERN_NOTICE "%s : link is down\n", dev->name);
361 }
362
363 goto out;
364 }
365
366
367 out:
368 spin_unlock_irqrestore(&phy_lock, flags);
369 }
370
371 static inline void
372 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
373 unsigned long *upper)
374 {
375 if (carry & carry_bit)
376 *upper += carry_shift;
377 }
378
379 static void tsi108_stat_carry(struct net_device *dev)
380 {
381 struct tsi108_prv_data *data = netdev_priv(dev);
382 u32 carry1, carry2;
383
384 spin_lock_irq(&data->misclock);
385
386 carry1 = TSI_READ(TSI108_STAT_CARRY1);
387 carry2 = TSI_READ(TSI108_STAT_CARRY2);
388
389 TSI_WRITE(TSI108_STAT_CARRY1, carry1);
390 TSI_WRITE(TSI108_STAT_CARRY2, carry2);
391
392 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
393 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
394
395 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
396 TSI108_STAT_RXPKTS_CARRY,
397 &data->stats.rx_packets);
398
399 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
400 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
401
402 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
403 TSI108_STAT_RXMCAST_CARRY,
404 &data->stats.multicast);
405
406 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
407 TSI108_STAT_RXALIGN_CARRY,
408 &data->stats.rx_frame_errors);
409
410 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
411 TSI108_STAT_RXLENGTH_CARRY,
412 &data->stats.rx_length_errors);
413
414 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
415 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
416
417 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
418 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
419
420 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
421 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
422
423 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
424 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
425
426 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
427 TSI108_STAT_RXDROP_CARRY,
428 &data->stats.rx_missed_errors);
429
430 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
431 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
432
433 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
434 TSI108_STAT_TXPKTS_CARRY,
435 &data->stats.tx_packets);
436
437 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
438 TSI108_STAT_TXEXDEF_CARRY,
439 &data->stats.tx_aborted_errors);
440
441 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
442 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
443
444 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
445 TSI108_STAT_TXTCOL_CARRY,
446 &data->stats.collisions);
447
448 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
449 TSI108_STAT_TXPAUSEDROP_CARRY,
450 &data->tx_pause_drop);
451
452 spin_unlock_irq(&data->misclock);
453 }
454
455 /* Read a stat counter atomically with respect to carries.
456 * data->misclock must be held.
457 */
458 static inline unsigned long
459 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
460 int carry_shift, unsigned long *upper)
461 {
462 int carryreg;
463 unsigned long val;
464
465 if (reg < 0xb0)
466 carryreg = TSI108_STAT_CARRY1;
467 else
468 carryreg = TSI108_STAT_CARRY2;
469
470 again:
471 val = TSI_READ(reg) | *upper;
472
473 /* Check to see if it overflowed, but the interrupt hasn't
474 * been serviced yet. If so, handle the carry here, and
475 * try again.
476 */
477
478 if (unlikely(TSI_READ(carryreg) & carry_bit)) {
479 *upper += carry_shift;
480 TSI_WRITE(carryreg, carry_bit);
481 goto again;
482 }
483
484 return val;
485 }
486
487 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
488 {
489 unsigned long excol;
490
491 struct tsi108_prv_data *data = netdev_priv(dev);
492 spin_lock_irq(&data->misclock);
493
494 data->tmpstats.rx_packets =
495 tsi108_read_stat(data, TSI108_STAT_RXPKTS,
496 TSI108_STAT_CARRY1_RXPKTS,
497 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
498
499 data->tmpstats.tx_packets =
500 tsi108_read_stat(data, TSI108_STAT_TXPKTS,
501 TSI108_STAT_CARRY2_TXPKTS,
502 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
503
504 data->tmpstats.rx_bytes =
505 tsi108_read_stat(data, TSI108_STAT_RXBYTES,
506 TSI108_STAT_CARRY1_RXBYTES,
507 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
508
509 data->tmpstats.tx_bytes =
510 tsi108_read_stat(data, TSI108_STAT_TXBYTES,
511 TSI108_STAT_CARRY2_TXBYTES,
512 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
513
514 data->tmpstats.multicast =
515 tsi108_read_stat(data, TSI108_STAT_RXMCAST,
516 TSI108_STAT_CARRY1_RXMCAST,
517 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
518
519 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
520 TSI108_STAT_CARRY2_TXEXCOL,
521 TSI108_STAT_TXEXCOL_CARRY,
522 &data->tx_coll_abort);
523
524 data->tmpstats.collisions =
525 tsi108_read_stat(data, TSI108_STAT_TXTCOL,
526 TSI108_STAT_CARRY2_TXTCOL,
527 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
528
529 data->tmpstats.collisions += excol;
530
531 data->tmpstats.rx_length_errors =
532 tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
533 TSI108_STAT_CARRY1_RXLENGTH,
534 TSI108_STAT_RXLENGTH_CARRY,
535 &data->stats.rx_length_errors);
536
537 data->tmpstats.rx_length_errors +=
538 tsi108_read_stat(data, TSI108_STAT_RXRUNT,
539 TSI108_STAT_CARRY1_RXRUNT,
540 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
541
542 data->tmpstats.rx_length_errors +=
543 tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
544 TSI108_STAT_CARRY1_RXJUMBO,
545 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
546
547 data->tmpstats.rx_frame_errors =
548 tsi108_read_stat(data, TSI108_STAT_RXALIGN,
549 TSI108_STAT_CARRY1_RXALIGN,
550 TSI108_STAT_RXALIGN_CARRY,
551 &data->stats.rx_frame_errors);
552
553 data->tmpstats.rx_frame_errors +=
554 tsi108_read_stat(data, TSI108_STAT_RXFCS,
555 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
556 &data->rx_fcs);
557
558 data->tmpstats.rx_frame_errors +=
559 tsi108_read_stat(data, TSI108_STAT_RXFRAG,
560 TSI108_STAT_CARRY1_RXFRAG,
561 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
562
563 data->tmpstats.rx_missed_errors =
564 tsi108_read_stat(data, TSI108_STAT_RXDROP,
565 TSI108_STAT_CARRY1_RXDROP,
566 TSI108_STAT_RXDROP_CARRY,
567 &data->stats.rx_missed_errors);
568
569 /* These three are maintained by software. */
570 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
571 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
572
573 data->tmpstats.tx_aborted_errors =
574 tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
575 TSI108_STAT_CARRY2_TXEXDEF,
576 TSI108_STAT_TXEXDEF_CARRY,
577 &data->stats.tx_aborted_errors);
578
579 data->tmpstats.tx_aborted_errors +=
580 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
581 TSI108_STAT_CARRY2_TXPAUSE,
582 TSI108_STAT_TXPAUSEDROP_CARRY,
583 &data->tx_pause_drop);
584
585 data->tmpstats.tx_aborted_errors += excol;
586
587 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
588 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
589 data->tmpstats.rx_crc_errors +
590 data->tmpstats.rx_frame_errors +
591 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
592
593 spin_unlock_irq(&data->misclock);
594 return &data->tmpstats;
595 }
596
597 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
598 {
599 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
600 TSI108_EC_RXQ_PTRHIGH_VALID);
601
602 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
603 | TSI108_EC_RXCTRL_QUEUE0);
604 }
605
606 static void tsi108_restart_tx(struct tsi108_prv_data * data)
607 {
608 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
609 TSI108_EC_TXQ_PTRHIGH_VALID);
610
611 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
612 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
613 }
614
615 /* txlock must be held by caller, with IRQs disabled, and
616 * with permission to re-enable them when the lock is dropped.
617 */
618 static void tsi108_complete_tx(struct net_device *dev)
619 {
620 struct tsi108_prv_data *data = netdev_priv(dev);
621 int tx;
622 struct sk_buff *skb;
623 int release = 0;
624
625 while (!data->txfree || data->txhead != data->txtail) {
626 tx = data->txtail;
627
628 if (data->txring[tx].misc & TSI108_TX_OWN)
629 break;
630
631 skb = data->txskbs[tx];
632
633 if (!(data->txring[tx].misc & TSI108_TX_OK))
634 printk("%s: bad tx packet, misc %x\n",
635 dev->name, data->txring[tx].misc);
636
637 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
638 data->txfree++;
639
640 if (data->txring[tx].misc & TSI108_TX_EOF) {
641 dev_kfree_skb_any(skb);
642 release++;
643 }
644 }
645
646 if (release) {
647 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
648 netif_wake_queue(dev);
649 }
650 }
651
652 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
653 {
654 struct tsi108_prv_data *data = netdev_priv(dev);
655 int frags = skb_shinfo(skb)->nr_frags + 1;
656 int i;
657
658 if (!data->phy_ok && net_ratelimit())
659 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
660
661 if (!data->link_up) {
662 printk(KERN_ERR "%s: Transmit while link is down!\n",
663 dev->name);
664 netif_stop_queue(dev);
665 return NETDEV_TX_BUSY;
666 }
667
668 if (data->txfree < MAX_SKB_FRAGS + 1) {
669 netif_stop_queue(dev);
670
671 if (net_ratelimit())
672 printk(KERN_ERR "%s: Transmit with full tx ring!\n",
673 dev->name);
674 return NETDEV_TX_BUSY;
675 }
676
677 if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
678 netif_stop_queue(dev);
679 }
680
681 spin_lock_irq(&data->txlock);
682
683 for (i = 0; i < frags; i++) {
684 int misc = 0;
685 int tx = data->txhead;
686
687 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
688 * the interrupt bit. TX descriptor-complete interrupts are
689 * enabled when the queue fills up, and masked when there is
690 * still free space. This way, when saturating the outbound
691 * link, the tx interrupts are kept to a reasonable level.
692 * When the queue is not full, reclamation of skbs still occurs
693 * as new packets are transmitted, or on a queue-empty
694 * interrupt.
695 */
696
697 if ((tx % TSI108_TX_INT_FREQ == 0) &&
698 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
699 misc = TSI108_TX_INT;
700
701 data->txskbs[tx] = skb;
702
703 if (i == 0) {
704 data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
705 skb_headlen(skb), DMA_TO_DEVICE);
706 data->txring[tx].len = skb_headlen(skb);
707 misc |= TSI108_TX_SOF;
708 } else {
709 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
710
711 data->txring[tx].buf0 = skb_frag_dma_map(NULL, frag,
712 0,
713 skb_frag_size(frag),
714 DMA_TO_DEVICE);
715 data->txring[tx].len = skb_frag_size(frag);
716 }
717
718 if (i == frags - 1)
719 misc |= TSI108_TX_EOF;
720
721 if (netif_msg_pktdata(data)) {
722 int i;
723 printk("%s: Tx Frame contents (%d)\n", dev->name,
724 skb->len);
725 for (i = 0; i < skb->len; i++)
726 printk(" %2.2x", skb->data[i]);
727 printk(".\n");
728 }
729 data->txring[tx].misc = misc | TSI108_TX_OWN;
730
731 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
732 data->txfree--;
733 }
734
735 tsi108_complete_tx(dev);
736
737 /* This must be done after the check for completed tx descriptors,
738 * so that the tail pointer is correct.
739 */
740
741 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
742 tsi108_restart_tx(data);
743
744 spin_unlock_irq(&data->txlock);
745 return NETDEV_TX_OK;
746 }
747
748 static int tsi108_complete_rx(struct net_device *dev, int budget)
749 {
750 struct tsi108_prv_data *data = netdev_priv(dev);
751 int done = 0;
752
753 while (data->rxfree && done != budget) {
754 int rx = data->rxtail;
755 struct sk_buff *skb;
756
757 if (data->rxring[rx].misc & TSI108_RX_OWN)
758 break;
759
760 skb = data->rxskbs[rx];
761 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
762 data->rxfree--;
763 done++;
764
765 if (data->rxring[rx].misc & TSI108_RX_BAD) {
766 spin_lock_irq(&data->misclock);
767
768 if (data->rxring[rx].misc & TSI108_RX_CRC)
769 data->stats.rx_crc_errors++;
770 if (data->rxring[rx].misc & TSI108_RX_OVER)
771 data->stats.rx_fifo_errors++;
772
773 spin_unlock_irq(&data->misclock);
774
775 dev_kfree_skb_any(skb);
776 continue;
777 }
778 if (netif_msg_pktdata(data)) {
779 int i;
780 printk("%s: Rx Frame contents (%d)\n",
781 dev->name, data->rxring[rx].len);
782 for (i = 0; i < data->rxring[rx].len; i++)
783 printk(" %2.2x", skb->data[i]);
784 printk(".\n");
785 }
786
787 skb_put(skb, data->rxring[rx].len);
788 skb->protocol = eth_type_trans(skb, dev);
789 netif_receive_skb(skb);
790 }
791
792 return done;
793 }
794
795 static int tsi108_refill_rx(struct net_device *dev, int budget)
796 {
797 struct tsi108_prv_data *data = netdev_priv(dev);
798 int done = 0;
799
800 while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
801 int rx = data->rxhead;
802 struct sk_buff *skb;
803
804 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
805 data->rxskbs[rx] = skb;
806 if (!skb)
807 break;
808
809 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
810 TSI108_RX_SKB_SIZE,
811 DMA_FROM_DEVICE);
812
813 /* Sometimes the hardware sets blen to zero after packet
814 * reception, even though the manual says that it's only ever
815 * modified by the driver.
816 */
817
818 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
819 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
820
821 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
822 data->rxfree++;
823 done++;
824 }
825
826 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
827 TSI108_EC_RXSTAT_QUEUE0))
828 tsi108_restart_rx(data, dev);
829
830 return done;
831 }
832
833 static int tsi108_poll(struct napi_struct *napi, int budget)
834 {
835 struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
836 struct net_device *dev = data->dev;
837 u32 estat = TSI_READ(TSI108_EC_RXESTAT);
838 u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
839 int num_received = 0, num_filled = 0;
840
841 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
842 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
843
844 TSI_WRITE(TSI108_EC_RXESTAT, estat);
845 TSI_WRITE(TSI108_EC_INTSTAT, intstat);
846
847 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
848 num_received = tsi108_complete_rx(dev, budget);
849
850 /* This should normally fill no more slots than the number of
851 * packets received in tsi108_complete_rx(). The exception
852 * is when we previously ran out of memory for RX SKBs. In that
853 * case, it's helpful to obey the budget, not only so that the
854 * CPU isn't hogged, but so that memory (which may still be low)
855 * is not hogged by one device.
856 *
857 * A work unit is considered to be two SKBs to allow us to catch
858 * up when the ring has shrunk due to out-of-memory but we're
859 * still removing the full budget's worth of packets each time.
860 */
861
862 if (data->rxfree < TSI108_RXRING_LEN)
863 num_filled = tsi108_refill_rx(dev, budget * 2);
864
865 if (intstat & TSI108_INT_RXERROR) {
866 u32 err = TSI_READ(TSI108_EC_RXERR);
867 TSI_WRITE(TSI108_EC_RXERR, err);
868
869 if (err) {
870 if (net_ratelimit())
871 printk(KERN_DEBUG "%s: RX error %x\n",
872 dev->name, err);
873
874 if (!(TSI_READ(TSI108_EC_RXSTAT) &
875 TSI108_EC_RXSTAT_QUEUE0))
876 tsi108_restart_rx(data, dev);
877 }
878 }
879
880 if (intstat & TSI108_INT_RXOVERRUN) {
881 spin_lock_irq(&data->misclock);
882 data->stats.rx_fifo_errors++;
883 spin_unlock_irq(&data->misclock);
884 }
885
886 if (num_received < budget) {
887 data->rxpending = 0;
888 napi_complete(napi);
889
890 TSI_WRITE(TSI108_EC_INTMASK,
891 TSI_READ(TSI108_EC_INTMASK)
892 & ~(TSI108_INT_RXQUEUE0
893 | TSI108_INT_RXTHRESH |
894 TSI108_INT_RXOVERRUN |
895 TSI108_INT_RXERROR |
896 TSI108_INT_RXWAIT));
897 } else {
898 data->rxpending = 1;
899 }
900
901 return num_received;
902 }
903
904 static void tsi108_rx_int(struct net_device *dev)
905 {
906 struct tsi108_prv_data *data = netdev_priv(dev);
907
908 /* A race could cause dev to already be scheduled, so it's not an
909 * error if that happens (and interrupts shouldn't be re-masked,
910 * because that can cause harmful races, if poll has already
911 * unmasked them but not cleared LINK_STATE_SCHED).
912 *
913 * This can happen if this code races with tsi108_poll(), which masks
914 * the interrupts after tsi108_irq_one() read the mask, but before
915 * napi_schedule is called. It could also happen due to calls
916 * from tsi108_check_rxring().
917 */
918
919 if (napi_schedule_prep(&data->napi)) {
920 /* Mask, rather than ack, the receive interrupts. The ack
921 * will happen in tsi108_poll().
922 */
923
924 TSI_WRITE(TSI108_EC_INTMASK,
925 TSI_READ(TSI108_EC_INTMASK) |
926 TSI108_INT_RXQUEUE0
927 | TSI108_INT_RXTHRESH |
928 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
929 TSI108_INT_RXWAIT);
930 __napi_schedule(&data->napi);
931 } else {
932 if (!netif_running(dev)) {
933 /* This can happen if an interrupt occurs while the
934 * interface is being brought down, as the START
935 * bit is cleared before the stop function is called.
936 *
937 * In this case, the interrupts must be masked, or
938 * they will continue indefinitely.
939 *
940 * There's a race here if the interface is brought down
941 * and then up in rapid succession, as the device could
942 * be made running after the above check and before
943 * the masking below. This will only happen if the IRQ
944 * thread has a lower priority than the task brining
945 * up the interface. Fixing this race would likely
946 * require changes in generic code.
947 */
948
949 TSI_WRITE(TSI108_EC_INTMASK,
950 TSI_READ
951 (TSI108_EC_INTMASK) |
952 TSI108_INT_RXQUEUE0 |
953 TSI108_INT_RXTHRESH |
954 TSI108_INT_RXOVERRUN |
955 TSI108_INT_RXERROR |
956 TSI108_INT_RXWAIT);
957 }
958 }
959 }
960
961 /* If the RX ring has run out of memory, try periodically
962 * to allocate some more, as otherwise poll would never
963 * get called (apart from the initial end-of-queue condition).
964 *
965 * This is called once per second (by default) from the thread.
966 */
967
968 static void tsi108_check_rxring(struct net_device *dev)
969 {
970 struct tsi108_prv_data *data = netdev_priv(dev);
971
972 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
973 * directly, so as to keep the receive path single-threaded
974 * (and thus not needing a lock).
975 */
976
977 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
978 tsi108_rx_int(dev);
979 }
980
981 static void tsi108_tx_int(struct net_device *dev)
982 {
983 struct tsi108_prv_data *data = netdev_priv(dev);
984 u32 estat = TSI_READ(TSI108_EC_TXESTAT);
985
986 TSI_WRITE(TSI108_EC_TXESTAT, estat);
987 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
988 TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
989 if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
990 u32 err = TSI_READ(TSI108_EC_TXERR);
991 TSI_WRITE(TSI108_EC_TXERR, err);
992
993 if (err && net_ratelimit())
994 printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
995 }
996
997 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
998 spin_lock(&data->txlock);
999 tsi108_complete_tx(dev);
1000 spin_unlock(&data->txlock);
1001 }
1002 }
1003
1004
1005 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1006 {
1007 struct net_device *dev = dev_id;
1008 struct tsi108_prv_data *data = netdev_priv(dev);
1009 u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1010
1011 if (!(stat & TSI108_INT_ANY))
1012 return IRQ_NONE; /* Not our interrupt */
1013
1014 stat &= ~TSI_READ(TSI108_EC_INTMASK);
1015
1016 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1017 TSI108_INT_TXERROR))
1018 tsi108_tx_int(dev);
1019 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1020 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1021 TSI108_INT_RXERROR))
1022 tsi108_rx_int(dev);
1023
1024 if (stat & TSI108_INT_SFN) {
1025 if (net_ratelimit())
1026 printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1027 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1028 }
1029
1030 if (stat & TSI108_INT_STATCARRY) {
1031 tsi108_stat_carry(dev);
1032 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1033 }
1034
1035 return IRQ_HANDLED;
1036 }
1037
1038 static void tsi108_stop_ethernet(struct net_device *dev)
1039 {
1040 struct tsi108_prv_data *data = netdev_priv(dev);
1041 int i = 1000;
1042 /* Disable all TX and RX queues ... */
1043 TSI_WRITE(TSI108_EC_TXCTRL, 0);
1044 TSI_WRITE(TSI108_EC_RXCTRL, 0);
1045
1046 /* ...and wait for them to become idle */
1047 while(i--) {
1048 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1049 break;
1050 udelay(10);
1051 }
1052 i = 1000;
1053 while(i--){
1054 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1055 return;
1056 udelay(10);
1057 }
1058 printk(KERN_ERR "%s function time out\n", __func__);
1059 }
1060
1061 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1062 {
1063 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1064 udelay(100);
1065 TSI_WRITE(TSI108_MAC_CFG1, 0);
1066
1067 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1068 udelay(100);
1069 TSI_WRITE(TSI108_EC_PORTCTRL,
1070 TSI_READ(TSI108_EC_PORTCTRL) &
1071 ~TSI108_EC_PORTCTRL_STATRST);
1072
1073 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1074 udelay(100);
1075 TSI_WRITE(TSI108_EC_TXCFG,
1076 TSI_READ(TSI108_EC_TXCFG) &
1077 ~TSI108_EC_TXCFG_RST);
1078
1079 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1080 udelay(100);
1081 TSI_WRITE(TSI108_EC_RXCFG,
1082 TSI_READ(TSI108_EC_RXCFG) &
1083 ~TSI108_EC_RXCFG_RST);
1084
1085 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1086 TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1087 TSI108_MAC_MII_MGMT_RST);
1088 udelay(100);
1089 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1090 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1091 ~(TSI108_MAC_MII_MGMT_RST |
1092 TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1093 }
1094
1095 static int tsi108_get_mac(struct net_device *dev)
1096 {
1097 struct tsi108_prv_data *data = netdev_priv(dev);
1098 u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1099 u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1100
1101 /* Note that the octets are reversed from what the manual says,
1102 * producing an even weirder ordering...
1103 */
1104 if (word2 == 0 && word1 == 0) {
1105 dev->dev_addr[0] = 0x00;
1106 dev->dev_addr[1] = 0x06;
1107 dev->dev_addr[2] = 0xd2;
1108 dev->dev_addr[3] = 0x00;
1109 dev->dev_addr[4] = 0x00;
1110 if (0x8 == data->phy)
1111 dev->dev_addr[5] = 0x01;
1112 else
1113 dev->dev_addr[5] = 0x02;
1114
1115 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1116
1117 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1118 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1119
1120 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1121 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1122 } else {
1123 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1124 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1125 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1126 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1127 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1128 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1129 }
1130
1131 if (!is_valid_ether_addr(dev->dev_addr)) {
1132 printk(KERN_ERR
1133 "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1134 dev->name, word1, word2);
1135 return -EINVAL;
1136 }
1137
1138 return 0;
1139 }
1140
1141 static int tsi108_set_mac(struct net_device *dev, void *addr)
1142 {
1143 struct tsi108_prv_data *data = netdev_priv(dev);
1144 u32 word1, word2;
1145 int i;
1146
1147 if (!is_valid_ether_addr(addr))
1148 return -EADDRNOTAVAIL;
1149
1150 for (i = 0; i < 6; i++)
1151 /* +2 is for the offset of the HW addr type */
1152 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1153
1154 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1155
1156 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1157 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1158
1159 spin_lock_irq(&data->misclock);
1160 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1161 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1162 spin_lock(&data->txlock);
1163
1164 if (data->txfree && data->link_up)
1165 netif_wake_queue(dev);
1166
1167 spin_unlock(&data->txlock);
1168 spin_unlock_irq(&data->misclock);
1169 return 0;
1170 }
1171
1172 /* Protected by dev->xmit_lock. */
1173 static void tsi108_set_rx_mode(struct net_device *dev)
1174 {
1175 struct tsi108_prv_data *data = netdev_priv(dev);
1176 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1177
1178 if (dev->flags & IFF_PROMISC) {
1179 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1180 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1181 goto out;
1182 }
1183
1184 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1185
1186 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1187 int i;
1188 struct netdev_hw_addr *ha;
1189 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1190
1191 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1192
1193 netdev_for_each_mc_addr(ha, dev) {
1194 u32 hash, crc;
1195
1196 crc = ether_crc(6, ha->addr);
1197 hash = crc >> 23;
1198 __set_bit(hash, &data->mc_hash[0]);
1199 }
1200
1201 TSI_WRITE(TSI108_EC_HASHADDR,
1202 TSI108_EC_HASHADDR_AUTOINC |
1203 TSI108_EC_HASHADDR_MCAST);
1204
1205 for (i = 0; i < 16; i++) {
1206 /* The manual says that the hardware may drop
1207 * back-to-back writes to the data register.
1208 */
1209 udelay(1);
1210 TSI_WRITE(TSI108_EC_HASHDATA,
1211 data->mc_hash[i]);
1212 }
1213 }
1214
1215 out:
1216 TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1217 }
1218
1219 static void tsi108_init_phy(struct net_device *dev)
1220 {
1221 struct tsi108_prv_data *data = netdev_priv(dev);
1222 u32 i = 0;
1223 u16 phyval = 0;
1224 unsigned long flags;
1225
1226 spin_lock_irqsave(&phy_lock, flags);
1227
1228 tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1229 while (--i) {
1230 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1231 break;
1232 udelay(10);
1233 }
1234 if (i == 0)
1235 printk(KERN_ERR "%s function time out\n", __func__);
1236
1237 if (data->phy_type == TSI108_PHY_BCM54XX) {
1238 tsi108_write_mii(data, 0x09, 0x0300);
1239 tsi108_write_mii(data, 0x10, 0x1020);
1240 tsi108_write_mii(data, 0x1c, 0x8c00);
1241 }
1242
1243 tsi108_write_mii(data,
1244 MII_BMCR,
1245 BMCR_ANENABLE | BMCR_ANRESTART);
1246 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1247 cpu_relax();
1248
1249 /* Set G/MII mode and receive clock select in TBI control #2. The
1250 * second port won't work if this isn't done, even though we don't
1251 * use TBI mode.
1252 */
1253
1254 tsi108_write_tbi(data, 0x11, 0x30);
1255
1256 /* FIXME: It seems to take more than 2 back-to-back reads to the
1257 * PHY_STAT register before the link up status bit is set.
1258 */
1259
1260 data->link_up = 0;
1261
1262 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1263 BMSR_LSTATUS)) {
1264 if (i++ > (MII_READ_DELAY / 10)) {
1265 break;
1266 }
1267 spin_unlock_irqrestore(&phy_lock, flags);
1268 msleep(10);
1269 spin_lock_irqsave(&phy_lock, flags);
1270 }
1271
1272 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1273 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1274 data->phy_ok = 1;
1275 data->init_media = 1;
1276 spin_unlock_irqrestore(&phy_lock, flags);
1277 }
1278
1279 static void tsi108_kill_phy(struct net_device *dev)
1280 {
1281 struct tsi108_prv_data *data = netdev_priv(dev);
1282 unsigned long flags;
1283
1284 spin_lock_irqsave(&phy_lock, flags);
1285 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1286 data->phy_ok = 0;
1287 spin_unlock_irqrestore(&phy_lock, flags);
1288 }
1289
1290 static int tsi108_open(struct net_device *dev)
1291 {
1292 int i;
1293 struct tsi108_prv_data *data = netdev_priv(dev);
1294 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1295 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1296
1297 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1298 if (i != 0) {
1299 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1300 data->id, data->irq_num);
1301 return i;
1302 } else {
1303 dev->irq = data->irq_num;
1304 printk(KERN_NOTICE
1305 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1306 data->id, dev->irq, dev->name);
1307 }
1308
1309 data->rxring = dma_zalloc_coherent(NULL, rxring_size, &data->rxdma,
1310 GFP_KERNEL);
1311 if (!data->rxring)
1312 return -ENOMEM;
1313
1314 data->txring = dma_zalloc_coherent(NULL, txring_size, &data->txdma,
1315 GFP_KERNEL);
1316 if (!data->txring) {
1317 pci_free_consistent(NULL, rxring_size, data->rxring,
1318 data->rxdma);
1319 return -ENOMEM;
1320 }
1321
1322 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1323 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1324 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1325 data->rxring[i].vlan = 0;
1326 }
1327
1328 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1329
1330 data->rxtail = 0;
1331 data->rxhead = 0;
1332
1333 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1334 struct sk_buff *skb;
1335
1336 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1337 if (!skb) {
1338 /* Bah. No memory for now, but maybe we'll get
1339 * some more later.
1340 * For now, we'll live with the smaller ring.
1341 */
1342 printk(KERN_WARNING
1343 "%s: Could only allocate %d receive skb(s).\n",
1344 dev->name, i);
1345 data->rxhead = i;
1346 break;
1347 }
1348
1349 data->rxskbs[i] = skb;
1350 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1351 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1352 }
1353
1354 data->rxfree = i;
1355 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1356
1357 for (i = 0; i < TSI108_TXRING_LEN; i++) {
1358 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1359 data->txring[i].misc = 0;
1360 }
1361
1362 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1363 data->txtail = 0;
1364 data->txhead = 0;
1365 data->txfree = TSI108_TXRING_LEN;
1366 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1367 tsi108_init_phy(dev);
1368
1369 napi_enable(&data->napi);
1370
1371 setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1372 mod_timer(&data->timer, jiffies + 1);
1373
1374 tsi108_restart_rx(data, dev);
1375
1376 TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1377
1378 TSI_WRITE(TSI108_EC_INTMASK,
1379 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1380 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1381 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1382 TSI108_INT_SFN | TSI108_INT_STATCARRY));
1383
1384 TSI_WRITE(TSI108_MAC_CFG1,
1385 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1386 netif_start_queue(dev);
1387 return 0;
1388 }
1389
1390 static int tsi108_close(struct net_device *dev)
1391 {
1392 struct tsi108_prv_data *data = netdev_priv(dev);
1393
1394 netif_stop_queue(dev);
1395 napi_disable(&data->napi);
1396
1397 del_timer_sync(&data->timer);
1398
1399 tsi108_stop_ethernet(dev);
1400 tsi108_kill_phy(dev);
1401 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1402 TSI_WRITE(TSI108_MAC_CFG1, 0);
1403
1404 /* Check for any pending TX packets, and drop them. */
1405
1406 while (!data->txfree || data->txhead != data->txtail) {
1407 int tx = data->txtail;
1408 struct sk_buff *skb;
1409 skb = data->txskbs[tx];
1410 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1411 data->txfree++;
1412 dev_kfree_skb(skb);
1413 }
1414
1415 free_irq(data->irq_num, dev);
1416
1417 /* Discard the RX ring. */
1418
1419 while (data->rxfree) {
1420 int rx = data->rxtail;
1421 struct sk_buff *skb;
1422
1423 skb = data->rxskbs[rx];
1424 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1425 data->rxfree--;
1426 dev_kfree_skb(skb);
1427 }
1428
1429 dma_free_coherent(0,
1430 TSI108_RXRING_LEN * sizeof(rx_desc),
1431 data->rxring, data->rxdma);
1432 dma_free_coherent(0,
1433 TSI108_TXRING_LEN * sizeof(tx_desc),
1434 data->txring, data->txdma);
1435
1436 return 0;
1437 }
1438
1439 static void tsi108_init_mac(struct net_device *dev)
1440 {
1441 struct tsi108_prv_data *data = netdev_priv(dev);
1442
1443 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1444 TSI108_MAC_CFG2_PADCRC);
1445
1446 TSI_WRITE(TSI108_EC_TXTHRESH,
1447 (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1448 (192 << TSI108_EC_TXTHRESH_STOPFILL));
1449
1450 TSI_WRITE(TSI108_STAT_CARRYMASK1,
1451 ~(TSI108_STAT_CARRY1_RXBYTES |
1452 TSI108_STAT_CARRY1_RXPKTS |
1453 TSI108_STAT_CARRY1_RXFCS |
1454 TSI108_STAT_CARRY1_RXMCAST |
1455 TSI108_STAT_CARRY1_RXALIGN |
1456 TSI108_STAT_CARRY1_RXLENGTH |
1457 TSI108_STAT_CARRY1_RXRUNT |
1458 TSI108_STAT_CARRY1_RXJUMBO |
1459 TSI108_STAT_CARRY1_RXFRAG |
1460 TSI108_STAT_CARRY1_RXJABBER |
1461 TSI108_STAT_CARRY1_RXDROP));
1462
1463 TSI_WRITE(TSI108_STAT_CARRYMASK2,
1464 ~(TSI108_STAT_CARRY2_TXBYTES |
1465 TSI108_STAT_CARRY2_TXPKTS |
1466 TSI108_STAT_CARRY2_TXEXDEF |
1467 TSI108_STAT_CARRY2_TXEXCOL |
1468 TSI108_STAT_CARRY2_TXTCOL |
1469 TSI108_STAT_CARRY2_TXPAUSE));
1470
1471 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1472 TSI_WRITE(TSI108_MAC_CFG1, 0);
1473
1474 TSI_WRITE(TSI108_EC_RXCFG,
1475 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1476
1477 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1478 TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1479 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1480 TSI108_EC_TXQ_CFG_SFNPORT));
1481
1482 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1483 TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1484 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1485 TSI108_EC_RXQ_CFG_SFNPORT));
1486
1487 TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1488 TSI108_EC_TXQ_BUFCFG_BURST256 |
1489 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1490 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1491
1492 TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1493 TSI108_EC_RXQ_BUFCFG_BURST256 |
1494 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1495 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1496
1497 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1498 }
1499
1500 static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1501 {
1502 struct tsi108_prv_data *data = netdev_priv(dev);
1503 unsigned long flags;
1504 int rc;
1505
1506 spin_lock_irqsave(&data->txlock, flags);
1507 rc = mii_ethtool_gset(&data->mii_if, cmd);
1508 spin_unlock_irqrestore(&data->txlock, flags);
1509
1510 return rc;
1511 }
1512
1513 static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1514 {
1515 struct tsi108_prv_data *data = netdev_priv(dev);
1516 unsigned long flags;
1517 int rc;
1518
1519 spin_lock_irqsave(&data->txlock, flags);
1520 rc = mii_ethtool_sset(&data->mii_if, cmd);
1521 spin_unlock_irqrestore(&data->txlock, flags);
1522
1523 return rc;
1524 }
1525
1526 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1527 {
1528 struct tsi108_prv_data *data = netdev_priv(dev);
1529 if (!netif_running(dev))
1530 return -EINVAL;
1531 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1532 }
1533
1534 static const struct ethtool_ops tsi108_ethtool_ops = {
1535 .get_link = ethtool_op_get_link,
1536 .get_settings = tsi108_get_settings,
1537 .set_settings = tsi108_set_settings,
1538 };
1539
1540 static const struct net_device_ops tsi108_netdev_ops = {
1541 .ndo_open = tsi108_open,
1542 .ndo_stop = tsi108_close,
1543 .ndo_start_xmit = tsi108_send_packet,
1544 .ndo_set_rx_mode = tsi108_set_rx_mode,
1545 .ndo_get_stats = tsi108_get_stats,
1546 .ndo_do_ioctl = tsi108_do_ioctl,
1547 .ndo_set_mac_address = tsi108_set_mac,
1548 .ndo_validate_addr = eth_validate_addr,
1549 .ndo_change_mtu = eth_change_mtu,
1550 };
1551
1552 static int
1553 tsi108_init_one(struct platform_device *pdev)
1554 {
1555 struct net_device *dev = NULL;
1556 struct tsi108_prv_data *data = NULL;
1557 hw_info *einfo;
1558 int err = 0;
1559
1560 einfo = dev_get_platdata(&pdev->dev);
1561
1562 if (NULL == einfo) {
1563 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1564 pdev->id);
1565 return -ENODEV;
1566 }
1567
1568 /* Create an ethernet device instance */
1569
1570 dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1571 if (!dev)
1572 return -ENOMEM;
1573
1574 printk("tsi108_eth%d: probe...\n", pdev->id);
1575 data = netdev_priv(dev);
1576 data->dev = dev;
1577
1578 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1579 pdev->id, einfo->regs, einfo->phyregs,
1580 einfo->phy, einfo->irq_num);
1581
1582 data->regs = ioremap(einfo->regs, 0x400);
1583 if (NULL == data->regs) {
1584 err = -ENOMEM;
1585 goto regs_fail;
1586 }
1587
1588 data->phyregs = ioremap(einfo->phyregs, 0x400);
1589 if (NULL == data->phyregs) {
1590 err = -ENOMEM;
1591 goto phyregs_fail;
1592 }
1593 /* MII setup */
1594 data->mii_if.dev = dev;
1595 data->mii_if.mdio_read = tsi108_mdio_read;
1596 data->mii_if.mdio_write = tsi108_mdio_write;
1597 data->mii_if.phy_id = einfo->phy;
1598 data->mii_if.phy_id_mask = 0x1f;
1599 data->mii_if.reg_num_mask = 0x1f;
1600
1601 data->phy = einfo->phy;
1602 data->phy_type = einfo->phy_type;
1603 data->irq_num = einfo->irq_num;
1604 data->id = pdev->id;
1605 netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1606 dev->netdev_ops = &tsi108_netdev_ops;
1607 dev->ethtool_ops = &tsi108_ethtool_ops;
1608
1609 /* Apparently, the Linux networking code won't use scatter-gather
1610 * if the hardware doesn't do checksums. However, it's faster
1611 * to checksum in place and use SG, as (among other reasons)
1612 * the cache won't be dirtied (which then has to be flushed
1613 * before DMA). The checksumming is done by the driver (via
1614 * a new function skb_csum_dev() in net/core/skbuff.c).
1615 */
1616
1617 dev->features = NETIF_F_HIGHDMA;
1618
1619 spin_lock_init(&data->txlock);
1620 spin_lock_init(&data->misclock);
1621
1622 tsi108_reset_ether(data);
1623 tsi108_kill_phy(dev);
1624
1625 if ((err = tsi108_get_mac(dev)) != 0) {
1626 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n",
1627 dev->name);
1628 goto register_fail;
1629 }
1630
1631 tsi108_init_mac(dev);
1632 err = register_netdev(dev);
1633 if (err) {
1634 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1635 dev->name);
1636 goto register_fail;
1637 }
1638
1639 platform_set_drvdata(pdev, dev);
1640 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1641 dev->name, dev->dev_addr);
1642 #ifdef DEBUG
1643 data->msg_enable = DEBUG;
1644 dump_eth_one(dev);
1645 #endif
1646
1647 return 0;
1648
1649 register_fail:
1650 iounmap(data->phyregs);
1651
1652 phyregs_fail:
1653 iounmap(data->regs);
1654
1655 regs_fail:
1656 free_netdev(dev);
1657 return err;
1658 }
1659
1660 /* There's no way to either get interrupts from the PHY when
1661 * something changes, or to have the Tsi108 automatically communicate
1662 * with the PHY to reconfigure itself.
1663 *
1664 * Thus, we have to do it using a timer.
1665 */
1666
1667 static void tsi108_timed_checker(unsigned long dev_ptr)
1668 {
1669 struct net_device *dev = (struct net_device *)dev_ptr;
1670 struct tsi108_prv_data *data = netdev_priv(dev);
1671
1672 tsi108_check_phy(dev);
1673 tsi108_check_rxring(dev);
1674 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1675 }
1676
1677 static int tsi108_ether_remove(struct platform_device *pdev)
1678 {
1679 struct net_device *dev = platform_get_drvdata(pdev);
1680 struct tsi108_prv_data *priv = netdev_priv(dev);
1681
1682 unregister_netdev(dev);
1683 tsi108_stop_ethernet(dev);
1684 iounmap(priv->regs);
1685 iounmap(priv->phyregs);
1686 free_netdev(dev);
1687
1688 return 0;
1689 }
1690 module_platform_driver(tsi_eth_driver);
1691
1692 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1693 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1694 MODULE_LICENSE("GPL");
1695 MODULE_ALIAS("platform:tsi-ethernet");
This page took 0.066505 seconds and 5 git commands to generate.