Merge remote-tracking branch 'vfio/next'
[deliverable/linux.git] / drivers / net / ethernet / via / via-velocity.c
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * rx_copybreak/alignment
12 * More testing
13 *
14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15 * Additional fixes and clean up: Francois Romieu
16 *
17 * This source has not been verified for use in safety critical systems.
18 *
19 * Please direct queries about the revamped driver to the linux-kernel
20 * list not VIA.
21 *
22 * Original code:
23 *
24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25 * All rights reserved.
26 *
27 * This software may be redistributed and/or modified under
28 * the terms of the GNU General Public License as published by the Free
29 * Software Foundation; either version 2 of the License, or
30 * any later version.
31 *
32 * This program is distributed in the hope that it will be useful, but
33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35 * for more details.
36 *
37 * Author: Chuang Liang-Shing, AJ Jiang
38 *
39 * Date: Jan 24, 2003
40 *
41 * MODULE_LICENSE("GPL");
42 *
43 */
44
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/bitops.h>
48 #include <linux/init.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/mm.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/pci.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/delay.h>
59 #include <linux/timer.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/string.h>
63 #include <linux/wait.h>
64 #include <linux/io.h>
65 #include <linux/if.h>
66 #include <linux/uaccess.h>
67 #include <linux/proc_fs.h>
68 #include <linux/of_address.h>
69 #include <linux/of_device.h>
70 #include <linux/of_irq.h>
71 #include <linux/inetdevice.h>
72 #include <linux/platform_device.h>
73 #include <linux/reboot.h>
74 #include <linux/ethtool.h>
75 #include <linux/mii.h>
76 #include <linux/in.h>
77 #include <linux/if_arp.h>
78 #include <linux/if_vlan.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/crc-ccitt.h>
83 #include <linux/crc32.h>
84
85 #include "via-velocity.h"
86
87 enum velocity_bus_type {
88 BUS_PCI,
89 BUS_PLATFORM,
90 };
91
92 static int velocity_nics;
93 static int msglevel = MSG_LEVEL_INFO;
94
95 static void velocity_set_power_state(struct velocity_info *vptr, char state)
96 {
97 void *addr = vptr->mac_regs;
98
99 if (vptr->pdev)
100 pci_set_power_state(vptr->pdev, state);
101 else
102 writeb(state, addr + 0x154);
103 }
104
105 /**
106 * mac_get_cam_mask - Read a CAM mask
107 * @regs: register block for this velocity
108 * @mask: buffer to store mask
109 *
110 * Fetch the mask bits of the selected CAM and store them into the
111 * provided mask buffer.
112 */
113 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
114 {
115 int i;
116
117 /* Select CAM mask */
118 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
119
120 writeb(0, &regs->CAMADDR);
121
122 /* read mask */
123 for (i = 0; i < 8; i++)
124 *mask++ = readb(&(regs->MARCAM[i]));
125
126 /* disable CAMEN */
127 writeb(0, &regs->CAMADDR);
128
129 /* Select mar */
130 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
131 }
132
133 /**
134 * mac_set_cam_mask - Set a CAM mask
135 * @regs: register block for this velocity
136 * @mask: CAM mask to load
137 *
138 * Store a new mask into a CAM
139 */
140 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
141 {
142 int i;
143 /* Select CAM mask */
144 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
145
146 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
147
148 for (i = 0; i < 8; i++)
149 writeb(*mask++, &(regs->MARCAM[i]));
150
151 /* disable CAMEN */
152 writeb(0, &regs->CAMADDR);
153
154 /* Select mar */
155 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
156 }
157
158 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
159 {
160 int i;
161 /* Select CAM mask */
162 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
163
164 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
165
166 for (i = 0; i < 8; i++)
167 writeb(*mask++, &(regs->MARCAM[i]));
168
169 /* disable CAMEN */
170 writeb(0, &regs->CAMADDR);
171
172 /* Select mar */
173 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
174 }
175
176 /**
177 * mac_set_cam - set CAM data
178 * @regs: register block of this velocity
179 * @idx: Cam index
180 * @addr: 2 or 6 bytes of CAM data
181 *
182 * Load an address or vlan tag into a CAM
183 */
184 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
185 {
186 int i;
187
188 /* Select CAM mask */
189 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
190
191 idx &= (64 - 1);
192
193 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
194
195 for (i = 0; i < 6; i++)
196 writeb(*addr++, &(regs->MARCAM[i]));
197
198 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
199
200 udelay(10);
201
202 writeb(0, &regs->CAMADDR);
203
204 /* Select mar */
205 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
206 }
207
208 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
209 const u8 *addr)
210 {
211
212 /* Select CAM mask */
213 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
214
215 idx &= (64 - 1);
216
217 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
218 writew(*((u16 *) addr), &regs->MARCAM[0]);
219
220 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
221
222 udelay(10);
223
224 writeb(0, &regs->CAMADDR);
225
226 /* Select mar */
227 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
228 }
229
230
231 /**
232 * mac_wol_reset - reset WOL after exiting low power
233 * @regs: register block of this velocity
234 *
235 * Called after we drop out of wake on lan mode in order to
236 * reset the Wake on lan features. This function doesn't restore
237 * the rest of the logic from the result of sleep/wakeup
238 */
239 static void mac_wol_reset(struct mac_regs __iomem *regs)
240 {
241
242 /* Turn off SWPTAG right after leaving power mode */
243 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
244 /* clear sticky bits */
245 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
246
247 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
248 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
249 /* disable force PME-enable */
250 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
251 /* disable power-event config bit */
252 writew(0xFFFF, &regs->WOLCRClr);
253 /* clear power status */
254 writew(0xFFFF, &regs->WOLSRClr);
255 }
256
257 static const struct ethtool_ops velocity_ethtool_ops;
258
259 /*
260 Define module options
261 */
262
263 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
264 MODULE_LICENSE("GPL");
265 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
266
267 #define VELOCITY_PARAM(N, D) \
268 static int N[MAX_UNITS] = OPTION_DEFAULT;\
269 module_param_array(N, int, NULL, 0); \
270 MODULE_PARM_DESC(N, D);
271
272 #define RX_DESC_MIN 64
273 #define RX_DESC_MAX 255
274 #define RX_DESC_DEF 64
275 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
276
277 #define TX_DESC_MIN 16
278 #define TX_DESC_MAX 256
279 #define TX_DESC_DEF 64
280 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
281
282 #define RX_THRESH_MIN 0
283 #define RX_THRESH_MAX 3
284 #define RX_THRESH_DEF 0
285 /* rx_thresh[] is used for controlling the receive fifo threshold.
286 0: indicate the rxfifo threshold is 128 bytes.
287 1: indicate the rxfifo threshold is 512 bytes.
288 2: indicate the rxfifo threshold is 1024 bytes.
289 3: indicate the rxfifo threshold is store & forward.
290 */
291 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
292
293 #define DMA_LENGTH_MIN 0
294 #define DMA_LENGTH_MAX 7
295 #define DMA_LENGTH_DEF 6
296
297 /* DMA_length[] is used for controlling the DMA length
298 0: 8 DWORDs
299 1: 16 DWORDs
300 2: 32 DWORDs
301 3: 64 DWORDs
302 4: 128 DWORDs
303 5: 256 DWORDs
304 6: SF(flush till emply)
305 7: SF(flush till emply)
306 */
307 VELOCITY_PARAM(DMA_length, "DMA length");
308
309 #define IP_ALIG_DEF 0
310 /* IP_byte_align[] is used for IP header DWORD byte aligned
311 0: indicate the IP header won't be DWORD byte aligned.(Default) .
312 1: indicate the IP header will be DWORD byte aligned.
313 In some environment, the IP header should be DWORD byte aligned,
314 or the packet will be droped when we receive it. (eg: IPVS)
315 */
316 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
317
318 #define FLOW_CNTL_DEF 1
319 #define FLOW_CNTL_MIN 1
320 #define FLOW_CNTL_MAX 5
321
322 /* flow_control[] is used for setting the flow control ability of NIC.
323 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
324 2: enable TX flow control.
325 3: enable RX flow control.
326 4: enable RX/TX flow control.
327 5: disable
328 */
329 VELOCITY_PARAM(flow_control, "Enable flow control ability");
330
331 #define MED_LNK_DEF 0
332 #define MED_LNK_MIN 0
333 #define MED_LNK_MAX 5
334 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
335 0: indicate autonegotiation for both speed and duplex mode
336 1: indicate 100Mbps half duplex mode
337 2: indicate 100Mbps full duplex mode
338 3: indicate 10Mbps half duplex mode
339 4: indicate 10Mbps full duplex mode
340 5: indicate 1000Mbps full duplex mode
341
342 Note:
343 if EEPROM have been set to the force mode, this option is ignored
344 by driver.
345 */
346 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
347
348 #define WOL_OPT_DEF 0
349 #define WOL_OPT_MIN 0
350 #define WOL_OPT_MAX 7
351 /* wol_opts[] is used for controlling wake on lan behavior.
352 0: Wake up if recevied a magic packet. (Default)
353 1: Wake up if link status is on/off.
354 2: Wake up if recevied an arp packet.
355 4: Wake up if recevied any unicast packet.
356 Those value can be sumed up to support more than one option.
357 */
358 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
359
360 static int rx_copybreak = 200;
361 module_param(rx_copybreak, int, 0644);
362 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
363
364 /*
365 * Internal board variants. At the moment we have only one
366 */
367 static struct velocity_info_tbl chip_info_table[] = {
368 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
369 { }
370 };
371
372 /*
373 * Describe the PCI device identifiers that we support in this
374 * device driver. Used for hotplug autoloading.
375 */
376
377 static const struct pci_device_id velocity_pci_id_table[] = {
378 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
379 { }
380 };
381
382 MODULE_DEVICE_TABLE(pci, velocity_pci_id_table);
383
384 /**
385 * Describe the OF device identifiers that we support in this
386 * device driver. Used for devicetree nodes.
387 */
388 static const struct of_device_id velocity_of_ids[] = {
389 { .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] },
390 { /* Sentinel */ },
391 };
392 MODULE_DEVICE_TABLE(of, velocity_of_ids);
393
394 /**
395 * get_chip_name - identifier to name
396 * @id: chip identifier
397 *
398 * Given a chip identifier return a suitable description. Returns
399 * a pointer a static string valid while the driver is loaded.
400 */
401 static const char *get_chip_name(enum chip_type chip_id)
402 {
403 int i;
404 for (i = 0; chip_info_table[i].name != NULL; i++)
405 if (chip_info_table[i].chip_id == chip_id)
406 break;
407 return chip_info_table[i].name;
408 }
409
410 /**
411 * velocity_set_int_opt - parser for integer options
412 * @opt: pointer to option value
413 * @val: value the user requested (or -1 for default)
414 * @min: lowest value allowed
415 * @max: highest value allowed
416 * @def: default value
417 * @name: property name
418 * @dev: device name
419 *
420 * Set an integer property in the module options. This function does
421 * all the verification and checking as well as reporting so that
422 * we don't duplicate code for each option.
423 */
424 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def,
425 char *name, const char *devname)
426 {
427 if (val == -1)
428 *opt = def;
429 else if (val < min || val > max) {
430 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
431 devname, name, min, max);
432 *opt = def;
433 } else {
434 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
435 devname, name, val);
436 *opt = val;
437 }
438 }
439
440 /**
441 * velocity_set_bool_opt - parser for boolean options
442 * @opt: pointer to option value
443 * @val: value the user requested (or -1 for default)
444 * @def: default value (yes/no)
445 * @flag: numeric value to set for true.
446 * @name: property name
447 * @dev: device name
448 *
449 * Set a boolean property in the module options. This function does
450 * all the verification and checking as well as reporting so that
451 * we don't duplicate code for each option.
452 */
453 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag,
454 char *name, const char *devname)
455 {
456 (*opt) &= (~flag);
457 if (val == -1)
458 *opt |= (def ? flag : 0);
459 else if (val < 0 || val > 1) {
460 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
461 devname, name);
462 *opt |= (def ? flag : 0);
463 } else {
464 printk(KERN_INFO "%s: set parameter %s to %s\n",
465 devname, name, val ? "TRUE" : "FALSE");
466 *opt |= (val ? flag : 0);
467 }
468 }
469
470 /**
471 * velocity_get_options - set options on device
472 * @opts: option structure for the device
473 * @index: index of option to use in module options array
474 * @devname: device name
475 *
476 * Turn the module and command options into a single structure
477 * for the current device
478 */
479 static void velocity_get_options(struct velocity_opt *opts, int index,
480 const char *devname)
481 {
482
483 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
484 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
485 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
486 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
487
488 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
489 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
490 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
491 velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
492 opts->numrx = (opts->numrx & ~3);
493 }
494
495 /**
496 * velocity_init_cam_filter - initialise CAM
497 * @vptr: velocity to program
498 *
499 * Initialize the content addressable memory used for filters. Load
500 * appropriately according to the presence of VLAN
501 */
502 static void velocity_init_cam_filter(struct velocity_info *vptr)
503 {
504 struct mac_regs __iomem *regs = vptr->mac_regs;
505 unsigned int vid, i = 0;
506
507 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
508 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
509 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
510
511 /* Disable all CAMs */
512 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
513 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
514 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
515 mac_set_cam_mask(regs, vptr->mCAMmask);
516
517 /* Enable VCAMs */
518 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
519 mac_set_vlan_cam(regs, i, (u8 *) &vid);
520 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
521 if (++i >= VCAM_SIZE)
522 break;
523 }
524 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
525 }
526
527 static int velocity_vlan_rx_add_vid(struct net_device *dev,
528 __be16 proto, u16 vid)
529 {
530 struct velocity_info *vptr = netdev_priv(dev);
531
532 spin_lock_irq(&vptr->lock);
533 set_bit(vid, vptr->active_vlans);
534 velocity_init_cam_filter(vptr);
535 spin_unlock_irq(&vptr->lock);
536 return 0;
537 }
538
539 static int velocity_vlan_rx_kill_vid(struct net_device *dev,
540 __be16 proto, u16 vid)
541 {
542 struct velocity_info *vptr = netdev_priv(dev);
543
544 spin_lock_irq(&vptr->lock);
545 clear_bit(vid, vptr->active_vlans);
546 velocity_init_cam_filter(vptr);
547 spin_unlock_irq(&vptr->lock);
548 return 0;
549 }
550
551 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
552 {
553 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
554 }
555
556 /**
557 * velocity_rx_reset - handle a receive reset
558 * @vptr: velocity we are resetting
559 *
560 * Reset the ownership and status for the receive ring side.
561 * Hand all the receive queue to the NIC.
562 */
563 static void velocity_rx_reset(struct velocity_info *vptr)
564 {
565
566 struct mac_regs __iomem *regs = vptr->mac_regs;
567 int i;
568
569 velocity_init_rx_ring_indexes(vptr);
570
571 /*
572 * Init state, all RD entries belong to the NIC
573 */
574 for (i = 0; i < vptr->options.numrx; ++i)
575 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
576
577 writew(vptr->options.numrx, &regs->RBRDU);
578 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
579 writew(0, &regs->RDIdx);
580 writew(vptr->options.numrx - 1, &regs->RDCSize);
581 }
582
583 /**
584 * velocity_get_opt_media_mode - get media selection
585 * @vptr: velocity adapter
586 *
587 * Get the media mode stored in EEPROM or module options and load
588 * mii_status accordingly. The requested link state information
589 * is also returned.
590 */
591 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
592 {
593 u32 status = 0;
594
595 switch (vptr->options.spd_dpx) {
596 case SPD_DPX_AUTO:
597 status = VELOCITY_AUTONEG_ENABLE;
598 break;
599 case SPD_DPX_100_FULL:
600 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
601 break;
602 case SPD_DPX_10_FULL:
603 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
604 break;
605 case SPD_DPX_100_HALF:
606 status = VELOCITY_SPEED_100;
607 break;
608 case SPD_DPX_10_HALF:
609 status = VELOCITY_SPEED_10;
610 break;
611 case SPD_DPX_1000_FULL:
612 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
613 break;
614 }
615 vptr->mii_status = status;
616 return status;
617 }
618
619 /**
620 * safe_disable_mii_autopoll - autopoll off
621 * @regs: velocity registers
622 *
623 * Turn off the autopoll and wait for it to disable on the chip
624 */
625 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
626 {
627 u16 ww;
628
629 /* turn off MAUTO */
630 writeb(0, &regs->MIICR);
631 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
632 udelay(1);
633 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
634 break;
635 }
636 }
637
638 /**
639 * enable_mii_autopoll - turn on autopolling
640 * @regs: velocity registers
641 *
642 * Enable the MII link status autopoll feature on the Velocity
643 * hardware. Wait for it to enable.
644 */
645 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
646 {
647 int ii;
648
649 writeb(0, &(regs->MIICR));
650 writeb(MIIADR_SWMPL, &regs->MIIADR);
651
652 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
653 udelay(1);
654 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
655 break;
656 }
657
658 writeb(MIICR_MAUTO, &regs->MIICR);
659
660 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
661 udelay(1);
662 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
663 break;
664 }
665
666 }
667
668 /**
669 * velocity_mii_read - read MII data
670 * @regs: velocity registers
671 * @index: MII register index
672 * @data: buffer for received data
673 *
674 * Perform a single read of an MII 16bit register. Returns zero
675 * on success or -ETIMEDOUT if the PHY did not respond.
676 */
677 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
678 {
679 u16 ww;
680
681 /*
682 * Disable MIICR_MAUTO, so that mii addr can be set normally
683 */
684 safe_disable_mii_autopoll(regs);
685
686 writeb(index, &regs->MIIADR);
687
688 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
689
690 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
691 if (!(readb(&regs->MIICR) & MIICR_RCMD))
692 break;
693 }
694
695 *data = readw(&regs->MIIDATA);
696
697 enable_mii_autopoll(regs);
698 if (ww == W_MAX_TIMEOUT)
699 return -ETIMEDOUT;
700 return 0;
701 }
702
703 /**
704 * mii_check_media_mode - check media state
705 * @regs: velocity registers
706 *
707 * Check the current MII status and determine the link status
708 * accordingly
709 */
710 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
711 {
712 u32 status = 0;
713 u16 ANAR;
714
715 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
716 status |= VELOCITY_LINK_FAIL;
717
718 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
719 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
720 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
721 status |= (VELOCITY_SPEED_1000);
722 else {
723 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
724 if (ANAR & ADVERTISE_100FULL)
725 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
726 else if (ANAR & ADVERTISE_100HALF)
727 status |= VELOCITY_SPEED_100;
728 else if (ANAR & ADVERTISE_10FULL)
729 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
730 else
731 status |= (VELOCITY_SPEED_10);
732 }
733
734 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
735 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
736 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
737 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
738 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
739 status |= VELOCITY_AUTONEG_ENABLE;
740 }
741 }
742
743 return status;
744 }
745
746 /**
747 * velocity_mii_write - write MII data
748 * @regs: velocity registers
749 * @index: MII register index
750 * @data: 16bit data for the MII register
751 *
752 * Perform a single write to an MII 16bit register. Returns zero
753 * on success or -ETIMEDOUT if the PHY did not respond.
754 */
755 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
756 {
757 u16 ww;
758
759 /*
760 * Disable MIICR_MAUTO, so that mii addr can be set normally
761 */
762 safe_disable_mii_autopoll(regs);
763
764 /* MII reg offset */
765 writeb(mii_addr, &regs->MIIADR);
766 /* set MII data */
767 writew(data, &regs->MIIDATA);
768
769 /* turn on MIICR_WCMD */
770 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
771
772 /* W_MAX_TIMEOUT is the timeout period */
773 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
774 udelay(5);
775 if (!(readb(&regs->MIICR) & MIICR_WCMD))
776 break;
777 }
778 enable_mii_autopoll(regs);
779
780 if (ww == W_MAX_TIMEOUT)
781 return -ETIMEDOUT;
782 return 0;
783 }
784
785 /**
786 * set_mii_flow_control - flow control setup
787 * @vptr: velocity interface
788 *
789 * Set up the flow control on this interface according to
790 * the supplied user/eeprom options.
791 */
792 static void set_mii_flow_control(struct velocity_info *vptr)
793 {
794 /*Enable or Disable PAUSE in ANAR */
795 switch (vptr->options.flow_cntl) {
796 case FLOW_CNTL_TX:
797 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
798 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
799 break;
800
801 case FLOW_CNTL_RX:
802 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
803 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
804 break;
805
806 case FLOW_CNTL_TX_RX:
807 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
808 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
809 break;
810
811 case FLOW_CNTL_DISABLE:
812 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
813 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
814 break;
815 default:
816 break;
817 }
818 }
819
820 /**
821 * mii_set_auto_on - autonegotiate on
822 * @vptr: velocity
823 *
824 * Enable autonegotation on this interface
825 */
826 static void mii_set_auto_on(struct velocity_info *vptr)
827 {
828 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
829 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
830 else
831 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
832 }
833
834 static u32 check_connection_type(struct mac_regs __iomem *regs)
835 {
836 u32 status = 0;
837 u8 PHYSR0;
838 u16 ANAR;
839 PHYSR0 = readb(&regs->PHYSR0);
840
841 /*
842 if (!(PHYSR0 & PHYSR0_LINKGD))
843 status|=VELOCITY_LINK_FAIL;
844 */
845
846 if (PHYSR0 & PHYSR0_FDPX)
847 status |= VELOCITY_DUPLEX_FULL;
848
849 if (PHYSR0 & PHYSR0_SPDG)
850 status |= VELOCITY_SPEED_1000;
851 else if (PHYSR0 & PHYSR0_SPD10)
852 status |= VELOCITY_SPEED_10;
853 else
854 status |= VELOCITY_SPEED_100;
855
856 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
857 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
858 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
859 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
860 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
861 status |= VELOCITY_AUTONEG_ENABLE;
862 }
863 }
864
865 return status;
866 }
867
868 /**
869 * velocity_set_media_mode - set media mode
870 * @mii_status: old MII link state
871 *
872 * Check the media link state and configure the flow control
873 * PHY and also velocity hardware setup accordingly. In particular
874 * we need to set up CD polling and frame bursting.
875 */
876 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
877 {
878 u32 curr_status;
879 struct mac_regs __iomem *regs = vptr->mac_regs;
880
881 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
882 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
883
884 /* Set mii link status */
885 set_mii_flow_control(vptr);
886
887 /*
888 Check if new status is consistent with current status
889 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
890 (mii_status==curr_status)) {
891 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
892 vptr->mii_status=check_connection_type(vptr->mac_regs);
893 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
894 return 0;
895 }
896 */
897
898 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
899 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
900
901 /*
902 * If connection type is AUTO
903 */
904 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
905 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
906 /* clear force MAC mode bit */
907 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
908 /* set duplex mode of MAC according to duplex mode of MII */
909 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
910 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
911 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
912
913 /* enable AUTO-NEGO mode */
914 mii_set_auto_on(vptr);
915 } else {
916 u16 CTRL1000;
917 u16 ANAR;
918 u8 CHIPGCR;
919
920 /*
921 * 1. if it's 3119, disable frame bursting in halfduplex mode
922 * and enable it in fullduplex mode
923 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
924 * 3. only enable CD heart beat counter in 10HD mode
925 */
926
927 /* set force MAC mode bit */
928 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
929
930 CHIPGCR = readb(&regs->CHIPGCR);
931
932 if (mii_status & VELOCITY_SPEED_1000)
933 CHIPGCR |= CHIPGCR_FCGMII;
934 else
935 CHIPGCR &= ~CHIPGCR_FCGMII;
936
937 if (mii_status & VELOCITY_DUPLEX_FULL) {
938 CHIPGCR |= CHIPGCR_FCFDX;
939 writeb(CHIPGCR, &regs->CHIPGCR);
940 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
941 if (vptr->rev_id < REV_ID_VT3216_A0)
942 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
943 } else {
944 CHIPGCR &= ~CHIPGCR_FCFDX;
945 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
946 writeb(CHIPGCR, &regs->CHIPGCR);
947 if (vptr->rev_id < REV_ID_VT3216_A0)
948 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
949 }
950
951 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
952 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
953 if ((mii_status & VELOCITY_SPEED_1000) &&
954 (mii_status & VELOCITY_DUPLEX_FULL)) {
955 CTRL1000 |= ADVERTISE_1000FULL;
956 }
957 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
958
959 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
960 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
961 else
962 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
963
964 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
965 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
966 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
967 if (mii_status & VELOCITY_SPEED_100) {
968 if (mii_status & VELOCITY_DUPLEX_FULL)
969 ANAR |= ADVERTISE_100FULL;
970 else
971 ANAR |= ADVERTISE_100HALF;
972 } else if (mii_status & VELOCITY_SPEED_10) {
973 if (mii_status & VELOCITY_DUPLEX_FULL)
974 ANAR |= ADVERTISE_10FULL;
975 else
976 ANAR |= ADVERTISE_10HALF;
977 }
978 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
979 /* enable AUTO-NEGO mode */
980 mii_set_auto_on(vptr);
981 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
982 }
983 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
984 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
985 return VELOCITY_LINK_CHANGE;
986 }
987
988 /**
989 * velocity_print_link_status - link status reporting
990 * @vptr: velocity to report on
991 *
992 * Turn the link status of the velocity card into a kernel log
993 * description of the new link state, detailing speed and duplex
994 * status
995 */
996 static void velocity_print_link_status(struct velocity_info *vptr)
997 {
998
999 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1000 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->netdev->name);
1001 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1002 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->netdev->name);
1003
1004 if (vptr->mii_status & VELOCITY_SPEED_1000)
1005 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1006 else if (vptr->mii_status & VELOCITY_SPEED_100)
1007 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1008 else
1009 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1010
1011 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1012 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1013 else
1014 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1015 } else {
1016 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->netdev->name);
1017 switch (vptr->options.spd_dpx) {
1018 case SPD_DPX_1000_FULL:
1019 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1020 break;
1021 case SPD_DPX_100_HALF:
1022 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1023 break;
1024 case SPD_DPX_100_FULL:
1025 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1026 break;
1027 case SPD_DPX_10_HALF:
1028 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1029 break;
1030 case SPD_DPX_10_FULL:
1031 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1032 break;
1033 default:
1034 break;
1035 }
1036 }
1037 }
1038
1039 /**
1040 * enable_flow_control_ability - flow control
1041 * @vptr: veloity to configure
1042 *
1043 * Set up flow control according to the flow control options
1044 * determined by the eeprom/configuration.
1045 */
1046 static void enable_flow_control_ability(struct velocity_info *vptr)
1047 {
1048
1049 struct mac_regs __iomem *regs = vptr->mac_regs;
1050
1051 switch (vptr->options.flow_cntl) {
1052
1053 case FLOW_CNTL_DEFAULT:
1054 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1055 writel(CR0_FDXRFCEN, &regs->CR0Set);
1056 else
1057 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1058
1059 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1060 writel(CR0_FDXTFCEN, &regs->CR0Set);
1061 else
1062 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1063 break;
1064
1065 case FLOW_CNTL_TX:
1066 writel(CR0_FDXTFCEN, &regs->CR0Set);
1067 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1068 break;
1069
1070 case FLOW_CNTL_RX:
1071 writel(CR0_FDXRFCEN, &regs->CR0Set);
1072 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1073 break;
1074
1075 case FLOW_CNTL_TX_RX:
1076 writel(CR0_FDXTFCEN, &regs->CR0Set);
1077 writel(CR0_FDXRFCEN, &regs->CR0Set);
1078 break;
1079
1080 case FLOW_CNTL_DISABLE:
1081 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1082 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1083 break;
1084
1085 default:
1086 break;
1087 }
1088
1089 }
1090
1091 /**
1092 * velocity_soft_reset - soft reset
1093 * @vptr: velocity to reset
1094 *
1095 * Kick off a soft reset of the velocity adapter and then poll
1096 * until the reset sequence has completed before returning.
1097 */
1098 static int velocity_soft_reset(struct velocity_info *vptr)
1099 {
1100 struct mac_regs __iomem *regs = vptr->mac_regs;
1101 int i = 0;
1102
1103 writel(CR0_SFRST, &regs->CR0Set);
1104
1105 for (i = 0; i < W_MAX_TIMEOUT; i++) {
1106 udelay(5);
1107 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1108 break;
1109 }
1110
1111 if (i == W_MAX_TIMEOUT) {
1112 writel(CR0_FORSRST, &regs->CR0Set);
1113 /* FIXME: PCI POSTING */
1114 /* delay 2ms */
1115 mdelay(2);
1116 }
1117 return 0;
1118 }
1119
1120 /**
1121 * velocity_set_multi - filter list change callback
1122 * @dev: network device
1123 *
1124 * Called by the network layer when the filter lists need to change
1125 * for a velocity adapter. Reload the CAMs with the new address
1126 * filter ruleset.
1127 */
1128 static void velocity_set_multi(struct net_device *dev)
1129 {
1130 struct velocity_info *vptr = netdev_priv(dev);
1131 struct mac_regs __iomem *regs = vptr->mac_regs;
1132 u8 rx_mode;
1133 int i;
1134 struct netdev_hw_addr *ha;
1135
1136 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1137 writel(0xffffffff, &regs->MARCAM[0]);
1138 writel(0xffffffff, &regs->MARCAM[4]);
1139 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1140 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1141 (dev->flags & IFF_ALLMULTI)) {
1142 writel(0xffffffff, &regs->MARCAM[0]);
1143 writel(0xffffffff, &regs->MARCAM[4]);
1144 rx_mode = (RCR_AM | RCR_AB);
1145 } else {
1146 int offset = MCAM_SIZE - vptr->multicast_limit;
1147 mac_get_cam_mask(regs, vptr->mCAMmask);
1148
1149 i = 0;
1150 netdev_for_each_mc_addr(ha, dev) {
1151 mac_set_cam(regs, i + offset, ha->addr);
1152 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1153 i++;
1154 }
1155
1156 mac_set_cam_mask(regs, vptr->mCAMmask);
1157 rx_mode = RCR_AM | RCR_AB | RCR_AP;
1158 }
1159 if (dev->mtu > 1500)
1160 rx_mode |= RCR_AL;
1161
1162 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1163
1164 }
1165
1166 /*
1167 * MII access , media link mode setting functions
1168 */
1169
1170 /**
1171 * mii_init - set up MII
1172 * @vptr: velocity adapter
1173 * @mii_status: links tatus
1174 *
1175 * Set up the PHY for the current link state.
1176 */
1177 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1178 {
1179 u16 BMCR;
1180
1181 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1182 case PHYID_ICPLUS_IP101A:
1183 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP),
1184 MII_ADVERTISE, vptr->mac_regs);
1185 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1186 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION,
1187 vptr->mac_regs);
1188 else
1189 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION,
1190 vptr->mac_regs);
1191 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1192 break;
1193 case PHYID_CICADA_CS8201:
1194 /*
1195 * Reset to hardware default
1196 */
1197 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1198 /*
1199 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1200 * off it in NWay-forced half mode for NWay-forced v.s.
1201 * legacy-forced issue.
1202 */
1203 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1204 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1205 else
1206 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1207 /*
1208 * Turn on Link/Activity LED enable bit for CIS8201
1209 */
1210 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1211 break;
1212 case PHYID_VT3216_32BIT:
1213 case PHYID_VT3216_64BIT:
1214 /*
1215 * Reset to hardware default
1216 */
1217 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1218 /*
1219 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1220 * off it in NWay-forced half mode for NWay-forced v.s.
1221 * legacy-forced issue
1222 */
1223 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1224 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1225 else
1226 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1227 break;
1228
1229 case PHYID_MARVELL_1000:
1230 case PHYID_MARVELL_1000S:
1231 /*
1232 * Assert CRS on Transmit
1233 */
1234 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1235 /*
1236 * Reset to hardware default
1237 */
1238 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1239 break;
1240 default:
1241 ;
1242 }
1243 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1244 if (BMCR & BMCR_ISOLATE) {
1245 BMCR &= ~BMCR_ISOLATE;
1246 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1247 }
1248 }
1249
1250 /**
1251 * setup_queue_timers - Setup interrupt timers
1252 *
1253 * Setup interrupt frequency during suppression (timeout if the frame
1254 * count isn't filled).
1255 */
1256 static void setup_queue_timers(struct velocity_info *vptr)
1257 {
1258 /* Only for newer revisions */
1259 if (vptr->rev_id >= REV_ID_VT3216_A0) {
1260 u8 txqueue_timer = 0;
1261 u8 rxqueue_timer = 0;
1262
1263 if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1264 VELOCITY_SPEED_100)) {
1265 txqueue_timer = vptr->options.txqueue_timer;
1266 rxqueue_timer = vptr->options.rxqueue_timer;
1267 }
1268
1269 writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1270 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1271 }
1272 }
1273
1274 /**
1275 * setup_adaptive_interrupts - Setup interrupt suppression
1276 *
1277 * @vptr velocity adapter
1278 *
1279 * The velocity is able to suppress interrupt during high interrupt load.
1280 * This function turns on that feature.
1281 */
1282 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1283 {
1284 struct mac_regs __iomem *regs = vptr->mac_regs;
1285 u16 tx_intsup = vptr->options.tx_intsup;
1286 u16 rx_intsup = vptr->options.rx_intsup;
1287
1288 /* Setup default interrupt mask (will be changed below) */
1289 vptr->int_mask = INT_MASK_DEF;
1290
1291 /* Set Tx Interrupt Suppression Threshold */
1292 writeb(CAMCR_PS0, &regs->CAMCR);
1293 if (tx_intsup != 0) {
1294 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1295 ISR_PTX2I | ISR_PTX3I);
1296 writew(tx_intsup, &regs->ISRCTL);
1297 } else
1298 writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1299
1300 /* Set Rx Interrupt Suppression Threshold */
1301 writeb(CAMCR_PS1, &regs->CAMCR);
1302 if (rx_intsup != 0) {
1303 vptr->int_mask &= ~ISR_PRXI;
1304 writew(rx_intsup, &regs->ISRCTL);
1305 } else
1306 writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1307
1308 /* Select page to interrupt hold timer */
1309 writeb(0, &regs->CAMCR);
1310 }
1311
1312 /**
1313 * velocity_init_registers - initialise MAC registers
1314 * @vptr: velocity to init
1315 * @type: type of initialisation (hot or cold)
1316 *
1317 * Initialise the MAC on a reset or on first set up on the
1318 * hardware.
1319 */
1320 static void velocity_init_registers(struct velocity_info *vptr,
1321 enum velocity_init_type type)
1322 {
1323 struct mac_regs __iomem *regs = vptr->mac_regs;
1324 struct net_device *netdev = vptr->netdev;
1325 int i, mii_status;
1326
1327 mac_wol_reset(regs);
1328
1329 switch (type) {
1330 case VELOCITY_INIT_RESET:
1331 case VELOCITY_INIT_WOL:
1332
1333 netif_stop_queue(netdev);
1334
1335 /*
1336 * Reset RX to prevent RX pointer not on the 4X location
1337 */
1338 velocity_rx_reset(vptr);
1339 mac_rx_queue_run(regs);
1340 mac_rx_queue_wake(regs);
1341
1342 mii_status = velocity_get_opt_media_mode(vptr);
1343 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1344 velocity_print_link_status(vptr);
1345 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1346 netif_wake_queue(netdev);
1347 }
1348
1349 enable_flow_control_ability(vptr);
1350
1351 mac_clear_isr(regs);
1352 writel(CR0_STOP, &regs->CR0Clr);
1353 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1354 &regs->CR0Set);
1355
1356 break;
1357
1358 case VELOCITY_INIT_COLD:
1359 default:
1360 /*
1361 * Do reset
1362 */
1363 velocity_soft_reset(vptr);
1364 mdelay(5);
1365
1366 if (!vptr->no_eeprom) {
1367 mac_eeprom_reload(regs);
1368 for (i = 0; i < 6; i++)
1369 writeb(netdev->dev_addr[i], regs->PAR + i);
1370 }
1371
1372 /*
1373 * clear Pre_ACPI bit.
1374 */
1375 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1376 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1377 mac_set_dma_length(regs, vptr->options.DMA_length);
1378
1379 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1380 /*
1381 * Back off algorithm use original IEEE standard
1382 */
1383 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1384
1385 /*
1386 * Init CAM filter
1387 */
1388 velocity_init_cam_filter(vptr);
1389
1390 /*
1391 * Set packet filter: Receive directed and broadcast address
1392 */
1393 velocity_set_multi(netdev);
1394
1395 /*
1396 * Enable MII auto-polling
1397 */
1398 enable_mii_autopoll(regs);
1399
1400 setup_adaptive_interrupts(vptr);
1401
1402 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1403 writew(vptr->options.numrx - 1, &regs->RDCSize);
1404 mac_rx_queue_run(regs);
1405 mac_rx_queue_wake(regs);
1406
1407 writew(vptr->options.numtx - 1, &regs->TDCSize);
1408
1409 for (i = 0; i < vptr->tx.numq; i++) {
1410 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1411 mac_tx_queue_run(regs, i);
1412 }
1413
1414 init_flow_control_register(vptr);
1415
1416 writel(CR0_STOP, &regs->CR0Clr);
1417 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1418
1419 mii_status = velocity_get_opt_media_mode(vptr);
1420 netif_stop_queue(netdev);
1421
1422 mii_init(vptr, mii_status);
1423
1424 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1425 velocity_print_link_status(vptr);
1426 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1427 netif_wake_queue(netdev);
1428 }
1429
1430 enable_flow_control_ability(vptr);
1431 mac_hw_mibs_init(regs);
1432 mac_write_int_mask(vptr->int_mask, regs);
1433 mac_clear_isr(regs);
1434
1435 }
1436 }
1437
1438 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1439 {
1440 struct mac_regs __iomem *regs = vptr->mac_regs;
1441 int avail, dirty, unusable;
1442
1443 /*
1444 * RD number must be equal to 4X per hardware spec
1445 * (programming guide rev 1.20, p.13)
1446 */
1447 if (vptr->rx.filled < 4)
1448 return;
1449
1450 wmb();
1451
1452 unusable = vptr->rx.filled & 0x0003;
1453 dirty = vptr->rx.dirty - unusable;
1454 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1455 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1456 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1457 }
1458
1459 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1460 vptr->rx.filled = unusable;
1461 }
1462
1463 /**
1464 * velocity_init_dma_rings - set up DMA rings
1465 * @vptr: Velocity to set up
1466 *
1467 * Allocate PCI mapped DMA rings for the receive and transmit layer
1468 * to use.
1469 */
1470 static int velocity_init_dma_rings(struct velocity_info *vptr)
1471 {
1472 struct velocity_opt *opt = &vptr->options;
1473 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1474 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1475 dma_addr_t pool_dma;
1476 void *pool;
1477 unsigned int i;
1478
1479 /*
1480 * Allocate all RD/TD rings a single pool.
1481 *
1482 * dma_alloc_coherent() fulfills the requirement for 64 bytes
1483 * alignment
1484 */
1485 pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq +
1486 rx_ring_size, &pool_dma, GFP_ATOMIC);
1487 if (!pool) {
1488 dev_err(vptr->dev, "%s : DMA memory allocation failed.\n",
1489 vptr->netdev->name);
1490 return -ENOMEM;
1491 }
1492
1493 vptr->rx.ring = pool;
1494 vptr->rx.pool_dma = pool_dma;
1495
1496 pool += rx_ring_size;
1497 pool_dma += rx_ring_size;
1498
1499 for (i = 0; i < vptr->tx.numq; i++) {
1500 vptr->tx.rings[i] = pool;
1501 vptr->tx.pool_dma[i] = pool_dma;
1502 pool += tx_ring_size;
1503 pool_dma += tx_ring_size;
1504 }
1505
1506 return 0;
1507 }
1508
1509 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1510 {
1511 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1512 }
1513
1514 /**
1515 * velocity_alloc_rx_buf - allocate aligned receive buffer
1516 * @vptr: velocity
1517 * @idx: ring index
1518 *
1519 * Allocate a new full sized buffer for the reception of a frame and
1520 * map it into PCI space for the hardware to use. The hardware
1521 * requires *64* byte alignment of the buffer which makes life
1522 * less fun than would be ideal.
1523 */
1524 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1525 {
1526 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1527 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1528
1529 rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64);
1530 if (rd_info->skb == NULL)
1531 return -ENOMEM;
1532
1533 /*
1534 * Do the gymnastics to get the buffer head for data at
1535 * 64byte alignment.
1536 */
1537 skb_reserve(rd_info->skb,
1538 64 - ((unsigned long) rd_info->skb->data & 63));
1539 rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data,
1540 vptr->rx.buf_sz, DMA_FROM_DEVICE);
1541
1542 /*
1543 * Fill in the descriptor to match
1544 */
1545
1546 *((u32 *) & (rd->rdesc0)) = 0;
1547 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1548 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1549 rd->pa_high = 0;
1550 return 0;
1551 }
1552
1553
1554 static int velocity_rx_refill(struct velocity_info *vptr)
1555 {
1556 int dirty = vptr->rx.dirty, done = 0;
1557
1558 do {
1559 struct rx_desc *rd = vptr->rx.ring + dirty;
1560
1561 /* Fine for an all zero Rx desc at init time as well */
1562 if (rd->rdesc0.len & OWNED_BY_NIC)
1563 break;
1564
1565 if (!vptr->rx.info[dirty].skb) {
1566 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1567 break;
1568 }
1569 done++;
1570 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1571 } while (dirty != vptr->rx.curr);
1572
1573 if (done) {
1574 vptr->rx.dirty = dirty;
1575 vptr->rx.filled += done;
1576 }
1577
1578 return done;
1579 }
1580
1581 /**
1582 * velocity_free_rd_ring - free receive ring
1583 * @vptr: velocity to clean up
1584 *
1585 * Free the receive buffers for each ring slot and any
1586 * attached socket buffers that need to go away.
1587 */
1588 static void velocity_free_rd_ring(struct velocity_info *vptr)
1589 {
1590 int i;
1591
1592 if (vptr->rx.info == NULL)
1593 return;
1594
1595 for (i = 0; i < vptr->options.numrx; i++) {
1596 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1597 struct rx_desc *rd = vptr->rx.ring + i;
1598
1599 memset(rd, 0, sizeof(*rd));
1600
1601 if (!rd_info->skb)
1602 continue;
1603 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
1604 DMA_FROM_DEVICE);
1605 rd_info->skb_dma = 0;
1606
1607 dev_kfree_skb(rd_info->skb);
1608 rd_info->skb = NULL;
1609 }
1610
1611 kfree(vptr->rx.info);
1612 vptr->rx.info = NULL;
1613 }
1614
1615 /**
1616 * velocity_init_rd_ring - set up receive ring
1617 * @vptr: velocity to configure
1618 *
1619 * Allocate and set up the receive buffers for each ring slot and
1620 * assign them to the network adapter.
1621 */
1622 static int velocity_init_rd_ring(struct velocity_info *vptr)
1623 {
1624 int ret = -ENOMEM;
1625
1626 vptr->rx.info = kcalloc(vptr->options.numrx,
1627 sizeof(struct velocity_rd_info), GFP_KERNEL);
1628 if (!vptr->rx.info)
1629 goto out;
1630
1631 velocity_init_rx_ring_indexes(vptr);
1632
1633 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1634 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1635 "%s: failed to allocate RX buffer.\n", vptr->netdev->name);
1636 velocity_free_rd_ring(vptr);
1637 goto out;
1638 }
1639
1640 ret = 0;
1641 out:
1642 return ret;
1643 }
1644
1645 /**
1646 * velocity_init_td_ring - set up transmit ring
1647 * @vptr: velocity
1648 *
1649 * Set up the transmit ring and chain the ring pointers together.
1650 * Returns zero on success or a negative posix errno code for
1651 * failure.
1652 */
1653 static int velocity_init_td_ring(struct velocity_info *vptr)
1654 {
1655 int j;
1656
1657 /* Init the TD ring entries */
1658 for (j = 0; j < vptr->tx.numq; j++) {
1659
1660 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1661 sizeof(struct velocity_td_info),
1662 GFP_KERNEL);
1663 if (!vptr->tx.infos[j]) {
1664 while (--j >= 0)
1665 kfree(vptr->tx.infos[j]);
1666 return -ENOMEM;
1667 }
1668
1669 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1670 }
1671 return 0;
1672 }
1673
1674 /**
1675 * velocity_free_dma_rings - free PCI ring pointers
1676 * @vptr: Velocity to free from
1677 *
1678 * Clean up the PCI ring buffers allocated to this velocity.
1679 */
1680 static void velocity_free_dma_rings(struct velocity_info *vptr)
1681 {
1682 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1683 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1684
1685 dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma);
1686 }
1687
1688 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1689 {
1690 int ret;
1691
1692 velocity_set_rxbufsize(vptr, mtu);
1693
1694 ret = velocity_init_dma_rings(vptr);
1695 if (ret < 0)
1696 goto out;
1697
1698 ret = velocity_init_rd_ring(vptr);
1699 if (ret < 0)
1700 goto err_free_dma_rings_0;
1701
1702 ret = velocity_init_td_ring(vptr);
1703 if (ret < 0)
1704 goto err_free_rd_ring_1;
1705 out:
1706 return ret;
1707
1708 err_free_rd_ring_1:
1709 velocity_free_rd_ring(vptr);
1710 err_free_dma_rings_0:
1711 velocity_free_dma_rings(vptr);
1712 goto out;
1713 }
1714
1715 /**
1716 * velocity_free_tx_buf - free transmit buffer
1717 * @vptr: velocity
1718 * @tdinfo: buffer
1719 *
1720 * Release an transmit buffer. If the buffer was preallocated then
1721 * recycle it, if not then unmap the buffer.
1722 */
1723 static void velocity_free_tx_buf(struct velocity_info *vptr,
1724 struct velocity_td_info *tdinfo, struct tx_desc *td)
1725 {
1726 struct sk_buff *skb = tdinfo->skb;
1727 int i;
1728
1729 /*
1730 * Don't unmap the pre-allocated tx_bufs
1731 */
1732 for (i = 0; i < tdinfo->nskb_dma; i++) {
1733 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1734
1735 /* For scatter-gather */
1736 if (skb_shinfo(skb)->nr_frags > 0)
1737 pktlen = max_t(size_t, pktlen,
1738 td->td_buf[i].size & ~TD_QUEUE);
1739
1740 dma_unmap_single(vptr->dev, tdinfo->skb_dma[i],
1741 le16_to_cpu(pktlen), DMA_TO_DEVICE);
1742 }
1743 dev_kfree_skb_irq(skb);
1744 tdinfo->skb = NULL;
1745 }
1746
1747 /*
1748 * FIXME: could we merge this with velocity_free_tx_buf ?
1749 */
1750 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1751 int q, int n)
1752 {
1753 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1754 int i;
1755
1756 if (td_info == NULL)
1757 return;
1758
1759 if (td_info->skb) {
1760 for (i = 0; i < td_info->nskb_dma; i++) {
1761 if (td_info->skb_dma[i]) {
1762 dma_unmap_single(vptr->dev, td_info->skb_dma[i],
1763 td_info->skb->len, DMA_TO_DEVICE);
1764 td_info->skb_dma[i] = 0;
1765 }
1766 }
1767 dev_kfree_skb(td_info->skb);
1768 td_info->skb = NULL;
1769 }
1770 }
1771
1772 /**
1773 * velocity_free_td_ring - free td ring
1774 * @vptr: velocity
1775 *
1776 * Free up the transmit ring for this particular velocity adapter.
1777 * We free the ring contents but not the ring itself.
1778 */
1779 static void velocity_free_td_ring(struct velocity_info *vptr)
1780 {
1781 int i, j;
1782
1783 for (j = 0; j < vptr->tx.numq; j++) {
1784 if (vptr->tx.infos[j] == NULL)
1785 continue;
1786 for (i = 0; i < vptr->options.numtx; i++)
1787 velocity_free_td_ring_entry(vptr, j, i);
1788
1789 kfree(vptr->tx.infos[j]);
1790 vptr->tx.infos[j] = NULL;
1791 }
1792 }
1793
1794 static void velocity_free_rings(struct velocity_info *vptr)
1795 {
1796 velocity_free_td_ring(vptr);
1797 velocity_free_rd_ring(vptr);
1798 velocity_free_dma_rings(vptr);
1799 }
1800
1801 /**
1802 * velocity_error - handle error from controller
1803 * @vptr: velocity
1804 * @status: card status
1805 *
1806 * Process an error report from the hardware and attempt to recover
1807 * the card itself. At the moment we cannot recover from some
1808 * theoretically impossible errors but this could be fixed using
1809 * the pci_device_failed logic to bounce the hardware
1810 *
1811 */
1812 static void velocity_error(struct velocity_info *vptr, int status)
1813 {
1814
1815 if (status & ISR_TXSTLI) {
1816 struct mac_regs __iomem *regs = vptr->mac_regs;
1817
1818 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1819 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1820 writew(TRDCSR_RUN, &regs->TDCSRClr);
1821 netif_stop_queue(vptr->netdev);
1822
1823 /* FIXME: port over the pci_device_failed code and use it
1824 here */
1825 }
1826
1827 if (status & ISR_SRCI) {
1828 struct mac_regs __iomem *regs = vptr->mac_regs;
1829 int linked;
1830
1831 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1832 vptr->mii_status = check_connection_type(regs);
1833
1834 /*
1835 * If it is a 3119, disable frame bursting in
1836 * halfduplex mode and enable it in fullduplex
1837 * mode
1838 */
1839 if (vptr->rev_id < REV_ID_VT3216_A0) {
1840 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1841 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1842 else
1843 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1844 }
1845 /*
1846 * Only enable CD heart beat counter in 10HD mode
1847 */
1848 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1849 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1850 else
1851 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1852
1853 setup_queue_timers(vptr);
1854 }
1855 /*
1856 * Get link status from PHYSR0
1857 */
1858 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1859
1860 if (linked) {
1861 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1862 netif_carrier_on(vptr->netdev);
1863 } else {
1864 vptr->mii_status |= VELOCITY_LINK_FAIL;
1865 netif_carrier_off(vptr->netdev);
1866 }
1867
1868 velocity_print_link_status(vptr);
1869 enable_flow_control_ability(vptr);
1870
1871 /*
1872 * Re-enable auto-polling because SRCI will disable
1873 * auto-polling
1874 */
1875
1876 enable_mii_autopoll(regs);
1877
1878 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1879 netif_stop_queue(vptr->netdev);
1880 else
1881 netif_wake_queue(vptr->netdev);
1882
1883 }
1884 if (status & ISR_MIBFI)
1885 velocity_update_hw_mibs(vptr);
1886 if (status & ISR_LSTEI)
1887 mac_rx_queue_wake(vptr->mac_regs);
1888 }
1889
1890 /**
1891 * tx_srv - transmit interrupt service
1892 * @vptr; Velocity
1893 *
1894 * Scan the queues looking for transmitted packets that
1895 * we can complete and clean up. Update any statistics as
1896 * necessary/
1897 */
1898 static int velocity_tx_srv(struct velocity_info *vptr)
1899 {
1900 struct tx_desc *td;
1901 int qnum;
1902 int full = 0;
1903 int idx;
1904 int works = 0;
1905 struct velocity_td_info *tdinfo;
1906 struct net_device_stats *stats = &vptr->netdev->stats;
1907
1908 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1909 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1910 idx = (idx + 1) % vptr->options.numtx) {
1911
1912 /*
1913 * Get Tx Descriptor
1914 */
1915 td = &(vptr->tx.rings[qnum][idx]);
1916 tdinfo = &(vptr->tx.infos[qnum][idx]);
1917
1918 if (td->tdesc0.len & OWNED_BY_NIC)
1919 break;
1920
1921 if ((works++ > 15))
1922 break;
1923
1924 if (td->tdesc0.TSR & TSR0_TERR) {
1925 stats->tx_errors++;
1926 stats->tx_dropped++;
1927 if (td->tdesc0.TSR & TSR0_CDH)
1928 stats->tx_heartbeat_errors++;
1929 if (td->tdesc0.TSR & TSR0_CRS)
1930 stats->tx_carrier_errors++;
1931 if (td->tdesc0.TSR & TSR0_ABT)
1932 stats->tx_aborted_errors++;
1933 if (td->tdesc0.TSR & TSR0_OWC)
1934 stats->tx_window_errors++;
1935 } else {
1936 stats->tx_packets++;
1937 stats->tx_bytes += tdinfo->skb->len;
1938 }
1939 velocity_free_tx_buf(vptr, tdinfo, td);
1940 vptr->tx.used[qnum]--;
1941 }
1942 vptr->tx.tail[qnum] = idx;
1943
1944 if (AVAIL_TD(vptr, qnum) < 1)
1945 full = 1;
1946 }
1947 /*
1948 * Look to see if we should kick the transmit network
1949 * layer for more work.
1950 */
1951 if (netif_queue_stopped(vptr->netdev) && (full == 0) &&
1952 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1953 netif_wake_queue(vptr->netdev);
1954 }
1955 return works;
1956 }
1957
1958 /**
1959 * velocity_rx_csum - checksum process
1960 * @rd: receive packet descriptor
1961 * @skb: network layer packet buffer
1962 *
1963 * Process the status bits for the received packet and determine
1964 * if the checksum was computed and verified by the hardware
1965 */
1966 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1967 {
1968 skb_checksum_none_assert(skb);
1969
1970 if (rd->rdesc1.CSM & CSM_IPKT) {
1971 if (rd->rdesc1.CSM & CSM_IPOK) {
1972 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1973 (rd->rdesc1.CSM & CSM_UDPKT)) {
1974 if (!(rd->rdesc1.CSM & CSM_TUPOK))
1975 return;
1976 }
1977 skb->ip_summed = CHECKSUM_UNNECESSARY;
1978 }
1979 }
1980 }
1981
1982 /**
1983 * velocity_rx_copy - in place Rx copy for small packets
1984 * @rx_skb: network layer packet buffer candidate
1985 * @pkt_size: received data size
1986 * @rd: receive packet descriptor
1987 * @dev: network device
1988 *
1989 * Replace the current skb that is scheduled for Rx processing by a
1990 * shorter, immediately allocated skb, if the received packet is small
1991 * enough. This function returns a negative value if the received
1992 * packet is too big or if memory is exhausted.
1993 */
1994 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1995 struct velocity_info *vptr)
1996 {
1997 int ret = -1;
1998 if (pkt_size < rx_copybreak) {
1999 struct sk_buff *new_skb;
2000
2001 new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size);
2002 if (new_skb) {
2003 new_skb->ip_summed = rx_skb[0]->ip_summed;
2004 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
2005 *rx_skb = new_skb;
2006 ret = 0;
2007 }
2008
2009 }
2010 return ret;
2011 }
2012
2013 /**
2014 * velocity_iph_realign - IP header alignment
2015 * @vptr: velocity we are handling
2016 * @skb: network layer packet buffer
2017 * @pkt_size: received data size
2018 *
2019 * Align IP header on a 2 bytes boundary. This behavior can be
2020 * configured by the user.
2021 */
2022 static inline void velocity_iph_realign(struct velocity_info *vptr,
2023 struct sk_buff *skb, int pkt_size)
2024 {
2025 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2026 memmove(skb->data + 2, skb->data, pkt_size);
2027 skb_reserve(skb, 2);
2028 }
2029 }
2030
2031 /**
2032 * velocity_receive_frame - received packet processor
2033 * @vptr: velocity we are handling
2034 * @idx: ring index
2035 *
2036 * A packet has arrived. We process the packet and if appropriate
2037 * pass the frame up the network stack
2038 */
2039 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2040 {
2041 struct net_device_stats *stats = &vptr->netdev->stats;
2042 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2043 struct rx_desc *rd = &(vptr->rx.ring[idx]);
2044 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2045 struct sk_buff *skb;
2046
2047 if (unlikely(rd->rdesc0.RSR & (RSR_STP | RSR_EDP | RSR_RL))) {
2048 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP))
2049 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame spans multiple RDs.\n", vptr->netdev->name);
2050 stats->rx_length_errors++;
2051 return -EINVAL;
2052 }
2053
2054 if (rd->rdesc0.RSR & RSR_MAR)
2055 stats->multicast++;
2056
2057 skb = rd_info->skb;
2058
2059 dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma,
2060 vptr->rx.buf_sz, DMA_FROM_DEVICE);
2061
2062 velocity_rx_csum(rd, skb);
2063
2064 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2065 velocity_iph_realign(vptr, skb, pkt_len);
2066 rd_info->skb = NULL;
2067 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
2068 DMA_FROM_DEVICE);
2069 } else {
2070 dma_sync_single_for_device(vptr->dev, rd_info->skb_dma,
2071 vptr->rx.buf_sz, DMA_FROM_DEVICE);
2072 }
2073
2074 skb_put(skb, pkt_len - 4);
2075 skb->protocol = eth_type_trans(skb, vptr->netdev);
2076
2077 if (rd->rdesc0.RSR & RSR_DETAG) {
2078 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2079
2080 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
2081 }
2082 netif_receive_skb(skb);
2083
2084 stats->rx_bytes += pkt_len;
2085 stats->rx_packets++;
2086
2087 return 0;
2088 }
2089
2090 /**
2091 * velocity_rx_srv - service RX interrupt
2092 * @vptr: velocity
2093 *
2094 * Walk the receive ring of the velocity adapter and remove
2095 * any received packets from the receive queue. Hand the ring
2096 * slots back to the adapter for reuse.
2097 */
2098 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2099 {
2100 struct net_device_stats *stats = &vptr->netdev->stats;
2101 int rd_curr = vptr->rx.curr;
2102 int works = 0;
2103
2104 while (works < budget_left) {
2105 struct rx_desc *rd = vptr->rx.ring + rd_curr;
2106
2107 if (!vptr->rx.info[rd_curr].skb)
2108 break;
2109
2110 if (rd->rdesc0.len & OWNED_BY_NIC)
2111 break;
2112
2113 rmb();
2114
2115 /*
2116 * Don't drop CE or RL error frame although RXOK is off
2117 */
2118 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2119 if (velocity_receive_frame(vptr, rd_curr) < 0)
2120 stats->rx_dropped++;
2121 } else {
2122 if (rd->rdesc0.RSR & RSR_CRC)
2123 stats->rx_crc_errors++;
2124 if (rd->rdesc0.RSR & RSR_FAE)
2125 stats->rx_frame_errors++;
2126
2127 stats->rx_dropped++;
2128 }
2129
2130 rd->size |= RX_INTEN;
2131
2132 rd_curr++;
2133 if (rd_curr >= vptr->options.numrx)
2134 rd_curr = 0;
2135 works++;
2136 }
2137
2138 vptr->rx.curr = rd_curr;
2139
2140 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2141 velocity_give_many_rx_descs(vptr);
2142
2143 VAR_USED(stats);
2144 return works;
2145 }
2146
2147 static int velocity_poll(struct napi_struct *napi, int budget)
2148 {
2149 struct velocity_info *vptr = container_of(napi,
2150 struct velocity_info, napi);
2151 unsigned int rx_done;
2152 unsigned long flags;
2153
2154 /*
2155 * Do rx and tx twice for performance (taken from the VIA
2156 * out-of-tree driver).
2157 */
2158 rx_done = velocity_rx_srv(vptr, budget);
2159 spin_lock_irqsave(&vptr->lock, flags);
2160 velocity_tx_srv(vptr);
2161 /* If budget not fully consumed, exit the polling mode */
2162 if (rx_done < budget) {
2163 napi_complete(napi);
2164 mac_enable_int(vptr->mac_regs);
2165 }
2166 spin_unlock_irqrestore(&vptr->lock, flags);
2167
2168 return rx_done;
2169 }
2170
2171 /**
2172 * velocity_intr - interrupt callback
2173 * @irq: interrupt number
2174 * @dev_instance: interrupting device
2175 *
2176 * Called whenever an interrupt is generated by the velocity
2177 * adapter IRQ line. We may not be the source of the interrupt
2178 * and need to identify initially if we are, and if not exit as
2179 * efficiently as possible.
2180 */
2181 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2182 {
2183 struct net_device *dev = dev_instance;
2184 struct velocity_info *vptr = netdev_priv(dev);
2185 u32 isr_status;
2186
2187 spin_lock(&vptr->lock);
2188 isr_status = mac_read_isr(vptr->mac_regs);
2189
2190 /* Not us ? */
2191 if (isr_status == 0) {
2192 spin_unlock(&vptr->lock);
2193 return IRQ_NONE;
2194 }
2195
2196 /* Ack the interrupt */
2197 mac_write_isr(vptr->mac_regs, isr_status);
2198
2199 if (likely(napi_schedule_prep(&vptr->napi))) {
2200 mac_disable_int(vptr->mac_regs);
2201 __napi_schedule(&vptr->napi);
2202 }
2203
2204 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2205 velocity_error(vptr, isr_status);
2206
2207 spin_unlock(&vptr->lock);
2208
2209 return IRQ_HANDLED;
2210 }
2211
2212 /**
2213 * velocity_open - interface activation callback
2214 * @dev: network layer device to open
2215 *
2216 * Called when the network layer brings the interface up. Returns
2217 * a negative posix error code on failure, or zero on success.
2218 *
2219 * All the ring allocation and set up is done on open for this
2220 * adapter to minimise memory usage when inactive
2221 */
2222 static int velocity_open(struct net_device *dev)
2223 {
2224 struct velocity_info *vptr = netdev_priv(dev);
2225 int ret;
2226
2227 ret = velocity_init_rings(vptr, dev->mtu);
2228 if (ret < 0)
2229 goto out;
2230
2231 /* Ensure chip is running */
2232 velocity_set_power_state(vptr, PCI_D0);
2233
2234 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2235
2236 ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED,
2237 dev->name, dev);
2238 if (ret < 0) {
2239 /* Power down the chip */
2240 velocity_set_power_state(vptr, PCI_D3hot);
2241 velocity_free_rings(vptr);
2242 goto out;
2243 }
2244
2245 velocity_give_many_rx_descs(vptr);
2246
2247 mac_enable_int(vptr->mac_regs);
2248 netif_start_queue(dev);
2249 napi_enable(&vptr->napi);
2250 vptr->flags |= VELOCITY_FLAGS_OPENED;
2251 out:
2252 return ret;
2253 }
2254
2255 /**
2256 * velocity_shutdown - shut down the chip
2257 * @vptr: velocity to deactivate
2258 *
2259 * Shuts down the internal operations of the velocity and
2260 * disables interrupts, autopolling, transmit and receive
2261 */
2262 static void velocity_shutdown(struct velocity_info *vptr)
2263 {
2264 struct mac_regs __iomem *regs = vptr->mac_regs;
2265 mac_disable_int(regs);
2266 writel(CR0_STOP, &regs->CR0Set);
2267 writew(0xFFFF, &regs->TDCSRClr);
2268 writeb(0xFF, &regs->RDCSRClr);
2269 safe_disable_mii_autopoll(regs);
2270 mac_clear_isr(regs);
2271 }
2272
2273 /**
2274 * velocity_change_mtu - MTU change callback
2275 * @dev: network device
2276 * @new_mtu: desired MTU
2277 *
2278 * Handle requests from the networking layer for MTU change on
2279 * this interface. It gets called on a change by the network layer.
2280 * Return zero for success or negative posix error code.
2281 */
2282 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2283 {
2284 struct velocity_info *vptr = netdev_priv(dev);
2285 int ret = 0;
2286
2287 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2288 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2289 vptr->netdev->name);
2290 ret = -EINVAL;
2291 goto out_0;
2292 }
2293
2294 if (!netif_running(dev)) {
2295 dev->mtu = new_mtu;
2296 goto out_0;
2297 }
2298
2299 if (dev->mtu != new_mtu) {
2300 struct velocity_info *tmp_vptr;
2301 unsigned long flags;
2302 struct rx_info rx;
2303 struct tx_info tx;
2304
2305 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2306 if (!tmp_vptr) {
2307 ret = -ENOMEM;
2308 goto out_0;
2309 }
2310
2311 tmp_vptr->netdev = dev;
2312 tmp_vptr->pdev = vptr->pdev;
2313 tmp_vptr->dev = vptr->dev;
2314 tmp_vptr->options = vptr->options;
2315 tmp_vptr->tx.numq = vptr->tx.numq;
2316
2317 ret = velocity_init_rings(tmp_vptr, new_mtu);
2318 if (ret < 0)
2319 goto out_free_tmp_vptr_1;
2320
2321 napi_disable(&vptr->napi);
2322
2323 spin_lock_irqsave(&vptr->lock, flags);
2324
2325 netif_stop_queue(dev);
2326 velocity_shutdown(vptr);
2327
2328 rx = vptr->rx;
2329 tx = vptr->tx;
2330
2331 vptr->rx = tmp_vptr->rx;
2332 vptr->tx = tmp_vptr->tx;
2333
2334 tmp_vptr->rx = rx;
2335 tmp_vptr->tx = tx;
2336
2337 dev->mtu = new_mtu;
2338
2339 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2340
2341 velocity_give_many_rx_descs(vptr);
2342
2343 napi_enable(&vptr->napi);
2344
2345 mac_enable_int(vptr->mac_regs);
2346 netif_start_queue(dev);
2347
2348 spin_unlock_irqrestore(&vptr->lock, flags);
2349
2350 velocity_free_rings(tmp_vptr);
2351
2352 out_free_tmp_vptr_1:
2353 kfree(tmp_vptr);
2354 }
2355 out_0:
2356 return ret;
2357 }
2358
2359 #ifdef CONFIG_NET_POLL_CONTROLLER
2360 /**
2361 * velocity_poll_controller - Velocity Poll controller function
2362 * @dev: network device
2363 *
2364 *
2365 * Used by NETCONSOLE and other diagnostic tools to allow network I/P
2366 * with interrupts disabled.
2367 */
2368 static void velocity_poll_controller(struct net_device *dev)
2369 {
2370 disable_irq(dev->irq);
2371 velocity_intr(dev->irq, dev);
2372 enable_irq(dev->irq);
2373 }
2374 #endif
2375
2376 /**
2377 * velocity_mii_ioctl - MII ioctl handler
2378 * @dev: network device
2379 * @ifr: the ifreq block for the ioctl
2380 * @cmd: the command
2381 *
2382 * Process MII requests made via ioctl from the network layer. These
2383 * are used by tools like kudzu to interrogate the link state of the
2384 * hardware
2385 */
2386 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2387 {
2388 struct velocity_info *vptr = netdev_priv(dev);
2389 struct mac_regs __iomem *regs = vptr->mac_regs;
2390 unsigned long flags;
2391 struct mii_ioctl_data *miidata = if_mii(ifr);
2392 int err;
2393
2394 switch (cmd) {
2395 case SIOCGMIIPHY:
2396 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2397 break;
2398 case SIOCGMIIREG:
2399 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2400 return -ETIMEDOUT;
2401 break;
2402 case SIOCSMIIREG:
2403 spin_lock_irqsave(&vptr->lock, flags);
2404 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2405 spin_unlock_irqrestore(&vptr->lock, flags);
2406 check_connection_type(vptr->mac_regs);
2407 if (err)
2408 return err;
2409 break;
2410 default:
2411 return -EOPNOTSUPP;
2412 }
2413 return 0;
2414 }
2415
2416 /**
2417 * velocity_ioctl - ioctl entry point
2418 * @dev: network device
2419 * @rq: interface request ioctl
2420 * @cmd: command code
2421 *
2422 * Called when the user issues an ioctl request to the network
2423 * device in question. The velocity interface supports MII.
2424 */
2425 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2426 {
2427 struct velocity_info *vptr = netdev_priv(dev);
2428 int ret;
2429
2430 /* If we are asked for information and the device is power
2431 saving then we need to bring the device back up to talk to it */
2432
2433 if (!netif_running(dev))
2434 velocity_set_power_state(vptr, PCI_D0);
2435
2436 switch (cmd) {
2437 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2438 case SIOCGMIIREG: /* Read MII PHY register. */
2439 case SIOCSMIIREG: /* Write to MII PHY register. */
2440 ret = velocity_mii_ioctl(dev, rq, cmd);
2441 break;
2442
2443 default:
2444 ret = -EOPNOTSUPP;
2445 }
2446 if (!netif_running(dev))
2447 velocity_set_power_state(vptr, PCI_D3hot);
2448
2449
2450 return ret;
2451 }
2452
2453 /**
2454 * velocity_get_status - statistics callback
2455 * @dev: network device
2456 *
2457 * Callback from the network layer to allow driver statistics
2458 * to be resynchronized with hardware collected state. In the
2459 * case of the velocity we need to pull the MIB counters from
2460 * the hardware into the counters before letting the network
2461 * layer display them.
2462 */
2463 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2464 {
2465 struct velocity_info *vptr = netdev_priv(dev);
2466
2467 /* If the hardware is down, don't touch MII */
2468 if (!netif_running(dev))
2469 return &dev->stats;
2470
2471 spin_lock_irq(&vptr->lock);
2472 velocity_update_hw_mibs(vptr);
2473 spin_unlock_irq(&vptr->lock);
2474
2475 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2476 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2477 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2478
2479 // unsigned long rx_dropped; /* no space in linux buffers */
2480 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2481 /* detailed rx_errors: */
2482 // unsigned long rx_length_errors;
2483 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2484 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2485 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2486 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2487 // unsigned long rx_missed_errors; /* receiver missed packet */
2488
2489 /* detailed tx_errors */
2490 // unsigned long tx_fifo_errors;
2491
2492 return &dev->stats;
2493 }
2494
2495 /**
2496 * velocity_close - close adapter callback
2497 * @dev: network device
2498 *
2499 * Callback from the network layer when the velocity is being
2500 * deactivated by the network layer
2501 */
2502 static int velocity_close(struct net_device *dev)
2503 {
2504 struct velocity_info *vptr = netdev_priv(dev);
2505
2506 napi_disable(&vptr->napi);
2507 netif_stop_queue(dev);
2508 velocity_shutdown(vptr);
2509
2510 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2511 velocity_get_ip(vptr);
2512
2513 free_irq(dev->irq, dev);
2514
2515 velocity_free_rings(vptr);
2516
2517 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2518 return 0;
2519 }
2520
2521 /**
2522 * velocity_xmit - transmit packet callback
2523 * @skb: buffer to transmit
2524 * @dev: network device
2525 *
2526 * Called by the networ layer to request a packet is queued to
2527 * the velocity. Returns zero on success.
2528 */
2529 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2530 struct net_device *dev)
2531 {
2532 struct velocity_info *vptr = netdev_priv(dev);
2533 int qnum = 0;
2534 struct tx_desc *td_ptr;
2535 struct velocity_td_info *tdinfo;
2536 unsigned long flags;
2537 int pktlen;
2538 int index, prev;
2539 int i = 0;
2540
2541 if (skb_padto(skb, ETH_ZLEN))
2542 goto out;
2543
2544 /* The hardware can handle at most 7 memory segments, so merge
2545 * the skb if there are more */
2546 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2547 dev_kfree_skb_any(skb);
2548 return NETDEV_TX_OK;
2549 }
2550
2551 pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2552 max_t(unsigned int, skb->len, ETH_ZLEN) :
2553 skb_headlen(skb);
2554
2555 spin_lock_irqsave(&vptr->lock, flags);
2556
2557 index = vptr->tx.curr[qnum];
2558 td_ptr = &(vptr->tx.rings[qnum][index]);
2559 tdinfo = &(vptr->tx.infos[qnum][index]);
2560
2561 td_ptr->tdesc1.TCR = TCR0_TIC;
2562 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2563
2564 /*
2565 * Map the linear network buffer into PCI space and
2566 * add it to the transmit ring.
2567 */
2568 tdinfo->skb = skb;
2569 tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen,
2570 DMA_TO_DEVICE);
2571 td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2572 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2573 td_ptr->td_buf[0].pa_high = 0;
2574 td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2575
2576 /* Handle fragments */
2577 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2578 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2579
2580 tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev,
2581 frag, 0,
2582 skb_frag_size(frag),
2583 DMA_TO_DEVICE);
2584
2585 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2586 td_ptr->td_buf[i + 1].pa_high = 0;
2587 td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2588 }
2589 tdinfo->nskb_dma = i + 1;
2590
2591 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2592
2593 if (skb_vlan_tag_present(skb)) {
2594 td_ptr->tdesc1.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
2595 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2596 }
2597
2598 /*
2599 * Handle hardware checksum
2600 */
2601 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2602 const struct iphdr *ip = ip_hdr(skb);
2603 if (ip->protocol == IPPROTO_TCP)
2604 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2605 else if (ip->protocol == IPPROTO_UDP)
2606 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2607 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2608 }
2609
2610 prev = index - 1;
2611 if (prev < 0)
2612 prev = vptr->options.numtx - 1;
2613 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2614 vptr->tx.used[qnum]++;
2615 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2616
2617 if (AVAIL_TD(vptr, qnum) < 1)
2618 netif_stop_queue(dev);
2619
2620 td_ptr = &(vptr->tx.rings[qnum][prev]);
2621 td_ptr->td_buf[0].size |= TD_QUEUE;
2622 mac_tx_queue_wake(vptr->mac_regs, qnum);
2623
2624 spin_unlock_irqrestore(&vptr->lock, flags);
2625 out:
2626 return NETDEV_TX_OK;
2627 }
2628
2629 static const struct net_device_ops velocity_netdev_ops = {
2630 .ndo_open = velocity_open,
2631 .ndo_stop = velocity_close,
2632 .ndo_start_xmit = velocity_xmit,
2633 .ndo_get_stats = velocity_get_stats,
2634 .ndo_validate_addr = eth_validate_addr,
2635 .ndo_set_mac_address = eth_mac_addr,
2636 .ndo_set_rx_mode = velocity_set_multi,
2637 .ndo_change_mtu = velocity_change_mtu,
2638 .ndo_do_ioctl = velocity_ioctl,
2639 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
2640 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
2641 #ifdef CONFIG_NET_POLL_CONTROLLER
2642 .ndo_poll_controller = velocity_poll_controller,
2643 #endif
2644 };
2645
2646 /**
2647 * velocity_init_info - init private data
2648 * @pdev: PCI device
2649 * @vptr: Velocity info
2650 * @info: Board type
2651 *
2652 * Set up the initial velocity_info struct for the device that has been
2653 * discovered.
2654 */
2655 static void velocity_init_info(struct velocity_info *vptr,
2656 const struct velocity_info_tbl *info)
2657 {
2658 vptr->chip_id = info->chip_id;
2659 vptr->tx.numq = info->txqueue;
2660 vptr->multicast_limit = MCAM_SIZE;
2661 spin_lock_init(&vptr->lock);
2662 }
2663
2664 /**
2665 * velocity_get_pci_info - retrieve PCI info for device
2666 * @vptr: velocity device
2667 * @pdev: PCI device it matches
2668 *
2669 * Retrieve the PCI configuration space data that interests us from
2670 * the kernel PCI layer
2671 */
2672 static int velocity_get_pci_info(struct velocity_info *vptr)
2673 {
2674 struct pci_dev *pdev = vptr->pdev;
2675
2676 pci_set_master(pdev);
2677
2678 vptr->ioaddr = pci_resource_start(pdev, 0);
2679 vptr->memaddr = pci_resource_start(pdev, 1);
2680
2681 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2682 dev_err(&pdev->dev,
2683 "region #0 is not an I/O resource, aborting.\n");
2684 return -EINVAL;
2685 }
2686
2687 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2688 dev_err(&pdev->dev,
2689 "region #1 is an I/O resource, aborting.\n");
2690 return -EINVAL;
2691 }
2692
2693 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2694 dev_err(&pdev->dev, "region #1 is too small.\n");
2695 return -EINVAL;
2696 }
2697
2698 return 0;
2699 }
2700
2701 /**
2702 * velocity_get_platform_info - retrieve platform info for device
2703 * @vptr: velocity device
2704 * @pdev: platform device it matches
2705 *
2706 * Retrieve the Platform configuration data that interests us
2707 */
2708 static int velocity_get_platform_info(struct velocity_info *vptr)
2709 {
2710 struct resource res;
2711 int ret;
2712
2713 if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL))
2714 vptr->no_eeprom = 1;
2715
2716 ret = of_address_to_resource(vptr->dev->of_node, 0, &res);
2717 if (ret) {
2718 dev_err(vptr->dev, "unable to find memory address\n");
2719 return ret;
2720 }
2721
2722 vptr->memaddr = res.start;
2723
2724 if (resource_size(&res) < VELOCITY_IO_SIZE) {
2725 dev_err(vptr->dev, "memory region is too small.\n");
2726 return -EINVAL;
2727 }
2728
2729 return 0;
2730 }
2731
2732 /**
2733 * velocity_print_info - per driver data
2734 * @vptr: velocity
2735 *
2736 * Print per driver data as the kernel driver finds Velocity
2737 * hardware
2738 */
2739 static void velocity_print_info(struct velocity_info *vptr)
2740 {
2741 struct net_device *dev = vptr->netdev;
2742
2743 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2744 printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2745 dev->name, dev->dev_addr);
2746 }
2747
2748 static u32 velocity_get_link(struct net_device *dev)
2749 {
2750 struct velocity_info *vptr = netdev_priv(dev);
2751 struct mac_regs __iomem *regs = vptr->mac_regs;
2752 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2753 }
2754
2755 /**
2756 * velocity_probe - set up discovered velocity device
2757 * @pdev: PCI device
2758 * @ent: PCI device table entry that matched
2759 * @bustype: bus that device is connected to
2760 *
2761 * Configure a discovered adapter from scratch. Return a negative
2762 * errno error code on failure paths.
2763 */
2764 static int velocity_probe(struct device *dev, int irq,
2765 const struct velocity_info_tbl *info,
2766 enum velocity_bus_type bustype)
2767 {
2768 static int first = 1;
2769 struct net_device *netdev;
2770 int i;
2771 const char *drv_string;
2772 struct velocity_info *vptr;
2773 struct mac_regs __iomem *regs;
2774 int ret = -ENOMEM;
2775
2776 /* FIXME: this driver, like almost all other ethernet drivers,
2777 * can support more than MAX_UNITS.
2778 */
2779 if (velocity_nics >= MAX_UNITS) {
2780 dev_notice(dev, "already found %d NICs.\n", velocity_nics);
2781 return -ENODEV;
2782 }
2783
2784 netdev = alloc_etherdev(sizeof(struct velocity_info));
2785 if (!netdev)
2786 goto out;
2787
2788 /* Chain it all together */
2789
2790 SET_NETDEV_DEV(netdev, dev);
2791 vptr = netdev_priv(netdev);
2792
2793 if (first) {
2794 printk(KERN_INFO "%s Ver. %s\n",
2795 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2796 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2797 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2798 first = 0;
2799 }
2800
2801 netdev->irq = irq;
2802 vptr->netdev = netdev;
2803 vptr->dev = dev;
2804
2805 velocity_init_info(vptr, info);
2806
2807 if (bustype == BUS_PCI) {
2808 vptr->pdev = to_pci_dev(dev);
2809
2810 ret = velocity_get_pci_info(vptr);
2811 if (ret < 0)
2812 goto err_free_dev;
2813 } else {
2814 vptr->pdev = NULL;
2815 ret = velocity_get_platform_info(vptr);
2816 if (ret < 0)
2817 goto err_free_dev;
2818 }
2819
2820 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2821 if (regs == NULL) {
2822 ret = -EIO;
2823 goto err_free_dev;
2824 }
2825
2826 vptr->mac_regs = regs;
2827 vptr->rev_id = readb(&regs->rev_id);
2828
2829 mac_wol_reset(regs);
2830
2831 for (i = 0; i < 6; i++)
2832 netdev->dev_addr[i] = readb(&regs->PAR[i]);
2833
2834
2835 drv_string = dev_driver_string(dev);
2836
2837 velocity_get_options(&vptr->options, velocity_nics, drv_string);
2838
2839 /*
2840 * Mask out the options cannot be set to the chip
2841 */
2842
2843 vptr->options.flags &= info->flags;
2844
2845 /*
2846 * Enable the chip specified capbilities
2847 */
2848
2849 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2850
2851 vptr->wol_opts = vptr->options.wol_opts;
2852 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2853
2854 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2855
2856 netdev->netdev_ops = &velocity_netdev_ops;
2857 netdev->ethtool_ops = &velocity_ethtool_ops;
2858 netif_napi_add(netdev, &vptr->napi, velocity_poll,
2859 VELOCITY_NAPI_WEIGHT);
2860
2861 netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2862 NETIF_F_HW_VLAN_CTAG_TX;
2863 netdev->features |= NETIF_F_HW_VLAN_CTAG_TX |
2864 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX |
2865 NETIF_F_IP_CSUM;
2866
2867 ret = register_netdev(netdev);
2868 if (ret < 0)
2869 goto err_iounmap;
2870
2871 if (!velocity_get_link(netdev)) {
2872 netif_carrier_off(netdev);
2873 vptr->mii_status |= VELOCITY_LINK_FAIL;
2874 }
2875
2876 velocity_print_info(vptr);
2877 dev_set_drvdata(vptr->dev, netdev);
2878
2879 /* and leave the chip powered down */
2880
2881 velocity_set_power_state(vptr, PCI_D3hot);
2882 velocity_nics++;
2883 out:
2884 return ret;
2885
2886 err_iounmap:
2887 netif_napi_del(&vptr->napi);
2888 iounmap(regs);
2889 err_free_dev:
2890 free_netdev(netdev);
2891 goto out;
2892 }
2893
2894 /**
2895 * velocity_remove - device unplug
2896 * @dev: device being removed
2897 *
2898 * Device unload callback. Called on an unplug or on module
2899 * unload for each active device that is present. Disconnects
2900 * the device from the network layer and frees all the resources
2901 */
2902 static int velocity_remove(struct device *dev)
2903 {
2904 struct net_device *netdev = dev_get_drvdata(dev);
2905 struct velocity_info *vptr = netdev_priv(netdev);
2906
2907 unregister_netdev(netdev);
2908 netif_napi_del(&vptr->napi);
2909 iounmap(vptr->mac_regs);
2910 free_netdev(netdev);
2911 velocity_nics--;
2912
2913 return 0;
2914 }
2915
2916 static int velocity_pci_probe(struct pci_dev *pdev,
2917 const struct pci_device_id *ent)
2918 {
2919 const struct velocity_info_tbl *info =
2920 &chip_info_table[ent->driver_data];
2921 int ret;
2922
2923 ret = pci_enable_device(pdev);
2924 if (ret < 0)
2925 return ret;
2926
2927 ret = pci_request_regions(pdev, VELOCITY_NAME);
2928 if (ret < 0) {
2929 dev_err(&pdev->dev, "No PCI resources.\n");
2930 goto fail1;
2931 }
2932
2933 ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI);
2934 if (ret == 0)
2935 return 0;
2936
2937 pci_release_regions(pdev);
2938 fail1:
2939 pci_disable_device(pdev);
2940 return ret;
2941 }
2942
2943 static void velocity_pci_remove(struct pci_dev *pdev)
2944 {
2945 velocity_remove(&pdev->dev);
2946
2947 pci_release_regions(pdev);
2948 pci_disable_device(pdev);
2949 }
2950
2951 static int velocity_platform_probe(struct platform_device *pdev)
2952 {
2953 const struct of_device_id *of_id;
2954 const struct velocity_info_tbl *info;
2955 int irq;
2956
2957 of_id = of_match_device(velocity_of_ids, &pdev->dev);
2958 if (!of_id)
2959 return -EINVAL;
2960 info = of_id->data;
2961
2962 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
2963 if (!irq)
2964 return -EINVAL;
2965
2966 return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM);
2967 }
2968
2969 static int velocity_platform_remove(struct platform_device *pdev)
2970 {
2971 velocity_remove(&pdev->dev);
2972
2973 return 0;
2974 }
2975
2976 #ifdef CONFIG_PM_SLEEP
2977 /**
2978 * wol_calc_crc - WOL CRC
2979 * @pattern: data pattern
2980 * @mask_pattern: mask
2981 *
2982 * Compute the wake on lan crc hashes for the packet header
2983 * we are interested in.
2984 */
2985 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2986 {
2987 u16 crc = 0xFFFF;
2988 u8 mask;
2989 int i, j;
2990
2991 for (i = 0; i < size; i++) {
2992 mask = mask_pattern[i];
2993
2994 /* Skip this loop if the mask equals to zero */
2995 if (mask == 0x00)
2996 continue;
2997
2998 for (j = 0; j < 8; j++) {
2999 if ((mask & 0x01) == 0) {
3000 mask >>= 1;
3001 continue;
3002 }
3003 mask >>= 1;
3004 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3005 }
3006 }
3007 /* Finally, invert the result once to get the correct data */
3008 crc = ~crc;
3009 return bitrev32(crc) >> 16;
3010 }
3011
3012 /**
3013 * velocity_set_wol - set up for wake on lan
3014 * @vptr: velocity to set WOL status on
3015 *
3016 * Set a card up for wake on lan either by unicast or by
3017 * ARP packet.
3018 *
3019 * FIXME: check static buffer is safe here
3020 */
3021 static int velocity_set_wol(struct velocity_info *vptr)
3022 {
3023 struct mac_regs __iomem *regs = vptr->mac_regs;
3024 enum speed_opt spd_dpx = vptr->options.spd_dpx;
3025 static u8 buf[256];
3026 int i;
3027
3028 static u32 mask_pattern[2][4] = {
3029 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3030 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3031 };
3032
3033 writew(0xFFFF, &regs->WOLCRClr);
3034 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3035 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3036
3037 /*
3038 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3039 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3040 */
3041
3042 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3043 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3044
3045 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3046 struct arp_packet *arp = (struct arp_packet *) buf;
3047 u16 crc;
3048 memset(buf, 0, sizeof(struct arp_packet) + 7);
3049
3050 for (i = 0; i < 4; i++)
3051 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3052
3053 arp->type = htons(ETH_P_ARP);
3054 arp->ar_op = htons(1);
3055
3056 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3057
3058 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3059 (u8 *) & mask_pattern[0][0]);
3060
3061 writew(crc, &regs->PatternCRC[0]);
3062 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3063 }
3064
3065 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3066 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3067
3068 writew(0x0FFF, &regs->WOLSRClr);
3069
3070 if (spd_dpx == SPD_DPX_1000_FULL)
3071 goto mac_done;
3072
3073 if (spd_dpx != SPD_DPX_AUTO)
3074 goto advertise_done;
3075
3076 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3077 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3078 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
3079
3080 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
3081 }
3082
3083 if (vptr->mii_status & VELOCITY_SPEED_1000)
3084 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
3085
3086 advertise_done:
3087 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3088
3089 {
3090 u8 GCR;
3091 GCR = readb(&regs->CHIPGCR);
3092 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3093 writeb(GCR, &regs->CHIPGCR);
3094 }
3095
3096 mac_done:
3097 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3098 /* Turn on SWPTAG just before entering power mode */
3099 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3100 /* Go to bed ..... */
3101 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3102
3103 return 0;
3104 }
3105
3106 /**
3107 * velocity_save_context - save registers
3108 * @vptr: velocity
3109 * @context: buffer for stored context
3110 *
3111 * Retrieve the current configuration from the velocity hardware
3112 * and stash it in the context structure, for use by the context
3113 * restore functions. This allows us to save things we need across
3114 * power down states
3115 */
3116 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
3117 {
3118 struct mac_regs __iomem *regs = vptr->mac_regs;
3119 u16 i;
3120 u8 __iomem *ptr = (u8 __iomem *)regs;
3121
3122 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3123 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3124
3125 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3126 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3127
3128 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3129 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3130
3131 }
3132
3133 static int velocity_suspend(struct device *dev)
3134 {
3135 struct net_device *netdev = dev_get_drvdata(dev);
3136 struct velocity_info *vptr = netdev_priv(netdev);
3137 unsigned long flags;
3138
3139 if (!netif_running(vptr->netdev))
3140 return 0;
3141
3142 netif_device_detach(vptr->netdev);
3143
3144 spin_lock_irqsave(&vptr->lock, flags);
3145 if (vptr->pdev)
3146 pci_save_state(vptr->pdev);
3147
3148 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3149 velocity_get_ip(vptr);
3150 velocity_save_context(vptr, &vptr->context);
3151 velocity_shutdown(vptr);
3152 velocity_set_wol(vptr);
3153 if (vptr->pdev)
3154 pci_enable_wake(vptr->pdev, PCI_D3hot, 1);
3155 velocity_set_power_state(vptr, PCI_D3hot);
3156 } else {
3157 velocity_save_context(vptr, &vptr->context);
3158 velocity_shutdown(vptr);
3159 if (vptr->pdev)
3160 pci_disable_device(vptr->pdev);
3161 velocity_set_power_state(vptr, PCI_D3hot);
3162 }
3163
3164 spin_unlock_irqrestore(&vptr->lock, flags);
3165 return 0;
3166 }
3167
3168 /**
3169 * velocity_restore_context - restore registers
3170 * @vptr: velocity
3171 * @context: buffer for stored context
3172 *
3173 * Reload the register configuration from the velocity context
3174 * created by velocity_save_context.
3175 */
3176 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3177 {
3178 struct mac_regs __iomem *regs = vptr->mac_regs;
3179 int i;
3180 u8 __iomem *ptr = (u8 __iomem *)regs;
3181
3182 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3183 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3184
3185 /* Just skip cr0 */
3186 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3187 /* Clear */
3188 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3189 /* Set */
3190 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3191 }
3192
3193 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3194 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3195
3196 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3197 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3198
3199 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3200 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3201 }
3202
3203 static int velocity_resume(struct device *dev)
3204 {
3205 struct net_device *netdev = dev_get_drvdata(dev);
3206 struct velocity_info *vptr = netdev_priv(netdev);
3207 unsigned long flags;
3208 int i;
3209
3210 if (!netif_running(vptr->netdev))
3211 return 0;
3212
3213 velocity_set_power_state(vptr, PCI_D0);
3214
3215 if (vptr->pdev) {
3216 pci_enable_wake(vptr->pdev, PCI_D0, 0);
3217 pci_restore_state(vptr->pdev);
3218 }
3219
3220 mac_wol_reset(vptr->mac_regs);
3221
3222 spin_lock_irqsave(&vptr->lock, flags);
3223 velocity_restore_context(vptr, &vptr->context);
3224 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3225 mac_disable_int(vptr->mac_regs);
3226
3227 velocity_tx_srv(vptr);
3228
3229 for (i = 0; i < vptr->tx.numq; i++) {
3230 if (vptr->tx.used[i])
3231 mac_tx_queue_wake(vptr->mac_regs, i);
3232 }
3233
3234 mac_enable_int(vptr->mac_regs);
3235 spin_unlock_irqrestore(&vptr->lock, flags);
3236 netif_device_attach(vptr->netdev);
3237
3238 return 0;
3239 }
3240 #endif /* CONFIG_PM_SLEEP */
3241
3242 static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume);
3243
3244 /*
3245 * Definition for our device driver. The PCI layer interface
3246 * uses this to handle all our card discover and plugging
3247 */
3248 static struct pci_driver velocity_pci_driver = {
3249 .name = VELOCITY_NAME,
3250 .id_table = velocity_pci_id_table,
3251 .probe = velocity_pci_probe,
3252 .remove = velocity_pci_remove,
3253 .driver = {
3254 .pm = &velocity_pm_ops,
3255 },
3256 };
3257
3258 static struct platform_driver velocity_platform_driver = {
3259 .probe = velocity_platform_probe,
3260 .remove = velocity_platform_remove,
3261 .driver = {
3262 .name = "via-velocity",
3263 .of_match_table = velocity_of_ids,
3264 .pm = &velocity_pm_ops,
3265 },
3266 };
3267
3268 /**
3269 * velocity_ethtool_up - pre hook for ethtool
3270 * @dev: network device
3271 *
3272 * Called before an ethtool operation. We need to make sure the
3273 * chip is out of D3 state before we poke at it.
3274 */
3275 static int velocity_ethtool_up(struct net_device *dev)
3276 {
3277 struct velocity_info *vptr = netdev_priv(dev);
3278 if (!netif_running(dev))
3279 velocity_set_power_state(vptr, PCI_D0);
3280 return 0;
3281 }
3282
3283 /**
3284 * velocity_ethtool_down - post hook for ethtool
3285 * @dev: network device
3286 *
3287 * Called after an ethtool operation. Restore the chip back to D3
3288 * state if it isn't running.
3289 */
3290 static void velocity_ethtool_down(struct net_device *dev)
3291 {
3292 struct velocity_info *vptr = netdev_priv(dev);
3293 if (!netif_running(dev))
3294 velocity_set_power_state(vptr, PCI_D3hot);
3295 }
3296
3297 static int velocity_get_settings(struct net_device *dev,
3298 struct ethtool_cmd *cmd)
3299 {
3300 struct velocity_info *vptr = netdev_priv(dev);
3301 struct mac_regs __iomem *regs = vptr->mac_regs;
3302 u32 status;
3303 status = check_connection_type(vptr->mac_regs);
3304
3305 cmd->supported = SUPPORTED_TP |
3306 SUPPORTED_Autoneg |
3307 SUPPORTED_10baseT_Half |
3308 SUPPORTED_10baseT_Full |
3309 SUPPORTED_100baseT_Half |
3310 SUPPORTED_100baseT_Full |
3311 SUPPORTED_1000baseT_Half |
3312 SUPPORTED_1000baseT_Full;
3313
3314 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3315 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3316 cmd->advertising |=
3317 ADVERTISED_10baseT_Half |
3318 ADVERTISED_10baseT_Full |
3319 ADVERTISED_100baseT_Half |
3320 ADVERTISED_100baseT_Full |
3321 ADVERTISED_1000baseT_Half |
3322 ADVERTISED_1000baseT_Full;
3323 } else {
3324 switch (vptr->options.spd_dpx) {
3325 case SPD_DPX_1000_FULL:
3326 cmd->advertising |= ADVERTISED_1000baseT_Full;
3327 break;
3328 case SPD_DPX_100_HALF:
3329 cmd->advertising |= ADVERTISED_100baseT_Half;
3330 break;
3331 case SPD_DPX_100_FULL:
3332 cmd->advertising |= ADVERTISED_100baseT_Full;
3333 break;
3334 case SPD_DPX_10_HALF:
3335 cmd->advertising |= ADVERTISED_10baseT_Half;
3336 break;
3337 case SPD_DPX_10_FULL:
3338 cmd->advertising |= ADVERTISED_10baseT_Full;
3339 break;
3340 default:
3341 break;
3342 }
3343 }
3344
3345 if (status & VELOCITY_SPEED_1000)
3346 ethtool_cmd_speed_set(cmd, SPEED_1000);
3347 else if (status & VELOCITY_SPEED_100)
3348 ethtool_cmd_speed_set(cmd, SPEED_100);
3349 else
3350 ethtool_cmd_speed_set(cmd, SPEED_10);
3351
3352 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3353 cmd->port = PORT_TP;
3354 cmd->transceiver = XCVR_INTERNAL;
3355 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3356
3357 if (status & VELOCITY_DUPLEX_FULL)
3358 cmd->duplex = DUPLEX_FULL;
3359 else
3360 cmd->duplex = DUPLEX_HALF;
3361
3362 return 0;
3363 }
3364
3365 static int velocity_set_settings(struct net_device *dev,
3366 struct ethtool_cmd *cmd)
3367 {
3368 struct velocity_info *vptr = netdev_priv(dev);
3369 u32 speed = ethtool_cmd_speed(cmd);
3370 u32 curr_status;
3371 u32 new_status = 0;
3372 int ret = 0;
3373
3374 curr_status = check_connection_type(vptr->mac_regs);
3375 curr_status &= (~VELOCITY_LINK_FAIL);
3376
3377 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3378 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3379 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3380 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3381 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3382
3383 if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3384 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3385 ret = -EINVAL;
3386 } else {
3387 enum speed_opt spd_dpx;
3388
3389 if (new_status & VELOCITY_AUTONEG_ENABLE)
3390 spd_dpx = SPD_DPX_AUTO;
3391 else if ((new_status & VELOCITY_SPEED_1000) &&
3392 (new_status & VELOCITY_DUPLEX_FULL)) {
3393 spd_dpx = SPD_DPX_1000_FULL;
3394 } else if (new_status & VELOCITY_SPEED_100)
3395 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3396 SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3397 else if (new_status & VELOCITY_SPEED_10)
3398 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3399 SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3400 else
3401 return -EOPNOTSUPP;
3402
3403 vptr->options.spd_dpx = spd_dpx;
3404
3405 velocity_set_media_mode(vptr, new_status);
3406 }
3407
3408 return ret;
3409 }
3410
3411 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3412 {
3413 struct velocity_info *vptr = netdev_priv(dev);
3414
3415 strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3416 strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3417 if (vptr->pdev)
3418 strlcpy(info->bus_info, pci_name(vptr->pdev),
3419 sizeof(info->bus_info));
3420 else
3421 strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
3422 }
3423
3424 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3425 {
3426 struct velocity_info *vptr = netdev_priv(dev);
3427 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3428 wol->wolopts |= WAKE_MAGIC;
3429 /*
3430 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3431 wol.wolopts|=WAKE_PHY;
3432 */
3433 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3434 wol->wolopts |= WAKE_UCAST;
3435 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3436 wol->wolopts |= WAKE_ARP;
3437 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3438 }
3439
3440 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3441 {
3442 struct velocity_info *vptr = netdev_priv(dev);
3443
3444 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3445 return -EFAULT;
3446 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3447
3448 /*
3449 if (wol.wolopts & WAKE_PHY) {
3450 vptr->wol_opts|=VELOCITY_WOL_PHY;
3451 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3452 }
3453 */
3454
3455 if (wol->wolopts & WAKE_MAGIC) {
3456 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3457 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3458 }
3459 if (wol->wolopts & WAKE_UCAST) {
3460 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3461 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3462 }
3463 if (wol->wolopts & WAKE_ARP) {
3464 vptr->wol_opts |= VELOCITY_WOL_ARP;
3465 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3466 }
3467 memcpy(vptr->wol_passwd, wol->sopass, 6);
3468 return 0;
3469 }
3470
3471 static u32 velocity_get_msglevel(struct net_device *dev)
3472 {
3473 return msglevel;
3474 }
3475
3476 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3477 {
3478 msglevel = value;
3479 }
3480
3481 static int get_pending_timer_val(int val)
3482 {
3483 int mult_bits = val >> 6;
3484 int mult = 1;
3485
3486 switch (mult_bits)
3487 {
3488 case 1:
3489 mult = 4; break;
3490 case 2:
3491 mult = 16; break;
3492 case 3:
3493 mult = 64; break;
3494 case 0:
3495 default:
3496 break;
3497 }
3498
3499 return (val & 0x3f) * mult;
3500 }
3501
3502 static void set_pending_timer_val(int *val, u32 us)
3503 {
3504 u8 mult = 0;
3505 u8 shift = 0;
3506
3507 if (us >= 0x3f) {
3508 mult = 1; /* mult with 4 */
3509 shift = 2;
3510 }
3511 if (us >= 0x3f * 4) {
3512 mult = 2; /* mult with 16 */
3513 shift = 4;
3514 }
3515 if (us >= 0x3f * 16) {
3516 mult = 3; /* mult with 64 */
3517 shift = 6;
3518 }
3519
3520 *val = (mult << 6) | ((us >> shift) & 0x3f);
3521 }
3522
3523
3524 static int velocity_get_coalesce(struct net_device *dev,
3525 struct ethtool_coalesce *ecmd)
3526 {
3527 struct velocity_info *vptr = netdev_priv(dev);
3528
3529 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3530 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3531
3532 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3533 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3534
3535 return 0;
3536 }
3537
3538 static int velocity_set_coalesce(struct net_device *dev,
3539 struct ethtool_coalesce *ecmd)
3540 {
3541 struct velocity_info *vptr = netdev_priv(dev);
3542 int max_us = 0x3f * 64;
3543 unsigned long flags;
3544
3545 /* 6 bits of */
3546 if (ecmd->tx_coalesce_usecs > max_us)
3547 return -EINVAL;
3548 if (ecmd->rx_coalesce_usecs > max_us)
3549 return -EINVAL;
3550
3551 if (ecmd->tx_max_coalesced_frames > 0xff)
3552 return -EINVAL;
3553 if (ecmd->rx_max_coalesced_frames > 0xff)
3554 return -EINVAL;
3555
3556 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3557 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3558
3559 set_pending_timer_val(&vptr->options.rxqueue_timer,
3560 ecmd->rx_coalesce_usecs);
3561 set_pending_timer_val(&vptr->options.txqueue_timer,
3562 ecmd->tx_coalesce_usecs);
3563
3564 /* Setup the interrupt suppression and queue timers */
3565 spin_lock_irqsave(&vptr->lock, flags);
3566 mac_disable_int(vptr->mac_regs);
3567 setup_adaptive_interrupts(vptr);
3568 setup_queue_timers(vptr);
3569
3570 mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3571 mac_clear_isr(vptr->mac_regs);
3572 mac_enable_int(vptr->mac_regs);
3573 spin_unlock_irqrestore(&vptr->lock, flags);
3574
3575 return 0;
3576 }
3577
3578 static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3579 "rx_all",
3580 "rx_ok",
3581 "tx_ok",
3582 "rx_error",
3583 "rx_runt_ok",
3584 "rx_runt_err",
3585 "rx_64",
3586 "tx_64",
3587 "rx_65_to_127",
3588 "tx_65_to_127",
3589 "rx_128_to_255",
3590 "tx_128_to_255",
3591 "rx_256_to_511",
3592 "tx_256_to_511",
3593 "rx_512_to_1023",
3594 "tx_512_to_1023",
3595 "rx_1024_to_1518",
3596 "tx_1024_to_1518",
3597 "tx_ether_collisions",
3598 "rx_crc_errors",
3599 "rx_jumbo",
3600 "tx_jumbo",
3601 "rx_mac_control_frames",
3602 "tx_mac_control_frames",
3603 "rx_frame_alignement_errors",
3604 "rx_long_ok",
3605 "rx_long_err",
3606 "tx_sqe_errors",
3607 "rx_no_buf",
3608 "rx_symbol_errors",
3609 "in_range_length_errors",
3610 "late_collisions"
3611 };
3612
3613 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3614 {
3615 switch (sset) {
3616 case ETH_SS_STATS:
3617 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3618 break;
3619 }
3620 }
3621
3622 static int velocity_get_sset_count(struct net_device *dev, int sset)
3623 {
3624 switch (sset) {
3625 case ETH_SS_STATS:
3626 return ARRAY_SIZE(velocity_gstrings);
3627 default:
3628 return -EOPNOTSUPP;
3629 }
3630 }
3631
3632 static void velocity_get_ethtool_stats(struct net_device *dev,
3633 struct ethtool_stats *stats, u64 *data)
3634 {
3635 if (netif_running(dev)) {
3636 struct velocity_info *vptr = netdev_priv(dev);
3637 u32 *p = vptr->mib_counter;
3638 int i;
3639
3640 spin_lock_irq(&vptr->lock);
3641 velocity_update_hw_mibs(vptr);
3642 spin_unlock_irq(&vptr->lock);
3643
3644 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3645 *data++ = *p++;
3646 }
3647 }
3648
3649 static const struct ethtool_ops velocity_ethtool_ops = {
3650 .get_settings = velocity_get_settings,
3651 .set_settings = velocity_set_settings,
3652 .get_drvinfo = velocity_get_drvinfo,
3653 .get_wol = velocity_ethtool_get_wol,
3654 .set_wol = velocity_ethtool_set_wol,
3655 .get_msglevel = velocity_get_msglevel,
3656 .set_msglevel = velocity_set_msglevel,
3657 .get_link = velocity_get_link,
3658 .get_strings = velocity_get_strings,
3659 .get_sset_count = velocity_get_sset_count,
3660 .get_ethtool_stats = velocity_get_ethtool_stats,
3661 .get_coalesce = velocity_get_coalesce,
3662 .set_coalesce = velocity_set_coalesce,
3663 .begin = velocity_ethtool_up,
3664 .complete = velocity_ethtool_down
3665 };
3666
3667 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3668 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3669 {
3670 struct in_ifaddr *ifa = ptr;
3671 struct net_device *dev = ifa->ifa_dev->dev;
3672
3673 if (dev_net(dev) == &init_net &&
3674 dev->netdev_ops == &velocity_netdev_ops)
3675 velocity_get_ip(netdev_priv(dev));
3676
3677 return NOTIFY_DONE;
3678 }
3679
3680 static struct notifier_block velocity_inetaddr_notifier = {
3681 .notifier_call = velocity_netdev_event,
3682 };
3683
3684 static void velocity_register_notifier(void)
3685 {
3686 register_inetaddr_notifier(&velocity_inetaddr_notifier);
3687 }
3688
3689 static void velocity_unregister_notifier(void)
3690 {
3691 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3692 }
3693
3694 #else
3695
3696 #define velocity_register_notifier() do {} while (0)
3697 #define velocity_unregister_notifier() do {} while (0)
3698
3699 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */
3700
3701 /**
3702 * velocity_init_module - load time function
3703 *
3704 * Called when the velocity module is loaded. The PCI driver
3705 * is registered with the PCI layer, and in turn will call
3706 * the probe functions for each velocity adapter installed
3707 * in the system.
3708 */
3709 static int __init velocity_init_module(void)
3710 {
3711 int ret_pci, ret_platform;
3712
3713 velocity_register_notifier();
3714
3715 ret_pci = pci_register_driver(&velocity_pci_driver);
3716 ret_platform = platform_driver_register(&velocity_platform_driver);
3717
3718 /* if both_registers failed, remove the notifier */
3719 if ((ret_pci < 0) && (ret_platform < 0)) {
3720 velocity_unregister_notifier();
3721 return ret_pci;
3722 }
3723
3724 return 0;
3725 }
3726
3727 /**
3728 * velocity_cleanup - module unload
3729 *
3730 * When the velocity hardware is unloaded this function is called.
3731 * It will clean up the notifiers and the unregister the PCI
3732 * driver interface for this hardware. This in turn cleans up
3733 * all discovered interfaces before returning from the function
3734 */
3735 static void __exit velocity_cleanup_module(void)
3736 {
3737 velocity_unregister_notifier();
3738
3739 pci_unregister_driver(&velocity_pci_driver);
3740 platform_driver_unregister(&velocity_platform_driver);
3741 }
3742
3743 module_init(velocity_init_module);
3744 module_exit(velocity_cleanup_module);
This page took 0.155282 seconds and 5 git commands to generate.