eth16i: Move the Allied Telesis/Fujitsu drivers
[deliverable/linux.git] / drivers / net / fs_enet / fs_enet-main.c
1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39 #include <linux/of.h>
40 #include <linux/of_mdio.h>
41 #include <linux/of_platform.h>
42 #include <linux/of_gpio.h>
43 #include <linux/of_net.h>
44
45 #include <linux/vmalloc.h>
46 #include <asm/pgtable.h>
47 #include <asm/irq.h>
48 #include <asm/uaccess.h>
49
50 #include "fs_enet.h"
51
52 /*************************************************/
53
54 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
55 MODULE_DESCRIPTION("Freescale Ethernet Driver");
56 MODULE_LICENSE("GPL");
57 MODULE_VERSION(DRV_MODULE_VERSION);
58
59 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
60 module_param(fs_enet_debug, int, 0);
61 MODULE_PARM_DESC(fs_enet_debug,
62 "Freescale bitmapped debugging message enable value");
63
64 #ifdef CONFIG_NET_POLL_CONTROLLER
65 static void fs_enet_netpoll(struct net_device *dev);
66 #endif
67
68 static void fs_set_multicast_list(struct net_device *dev)
69 {
70 struct fs_enet_private *fep = netdev_priv(dev);
71
72 (*fep->ops->set_multicast_list)(dev);
73 }
74
75 static void skb_align(struct sk_buff *skb, int align)
76 {
77 int off = ((unsigned long)skb->data) & (align - 1);
78
79 if (off)
80 skb_reserve(skb, align - off);
81 }
82
83 /* NAPI receive function */
84 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
85 {
86 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
87 struct net_device *dev = fep->ndev;
88 const struct fs_platform_info *fpi = fep->fpi;
89 cbd_t __iomem *bdp;
90 struct sk_buff *skb, *skbn, *skbt;
91 int received = 0;
92 u16 pkt_len, sc;
93 int curidx;
94
95 /*
96 * First, grab all of the stats for the incoming packet.
97 * These get messed up if we get called due to a busy condition.
98 */
99 bdp = fep->cur_rx;
100
101 /* clear RX status bits for napi*/
102 (*fep->ops->napi_clear_rx_event)(dev);
103
104 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
105 curidx = bdp - fep->rx_bd_base;
106
107 /*
108 * Since we have allocated space to hold a complete frame,
109 * the last indicator should be set.
110 */
111 if ((sc & BD_ENET_RX_LAST) == 0)
112 dev_warn(fep->dev, "rcv is not +last\n");
113
114 /*
115 * Check for errors.
116 */
117 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
118 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
119 fep->stats.rx_errors++;
120 /* Frame too long or too short. */
121 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
122 fep->stats.rx_length_errors++;
123 /* Frame alignment */
124 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
125 fep->stats.rx_frame_errors++;
126 /* CRC Error */
127 if (sc & BD_ENET_RX_CR)
128 fep->stats.rx_crc_errors++;
129 /* FIFO overrun */
130 if (sc & BD_ENET_RX_OV)
131 fep->stats.rx_crc_errors++;
132
133 skb = fep->rx_skbuff[curidx];
134
135 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
136 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
137 DMA_FROM_DEVICE);
138
139 skbn = skb;
140
141 } else {
142 skb = fep->rx_skbuff[curidx];
143
144 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
145 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
146 DMA_FROM_DEVICE);
147
148 /*
149 * Process the incoming frame.
150 */
151 fep->stats.rx_packets++;
152 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
153 fep->stats.rx_bytes += pkt_len + 4;
154
155 if (pkt_len <= fpi->rx_copybreak) {
156 /* +2 to make IP header L1 cache aligned */
157 skbn = dev_alloc_skb(pkt_len + 2);
158 if (skbn != NULL) {
159 skb_reserve(skbn, 2); /* align IP header */
160 skb_copy_from_linear_data(skb,
161 skbn->data, pkt_len);
162 /* swap */
163 skbt = skb;
164 skb = skbn;
165 skbn = skbt;
166 }
167 } else {
168 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
169
170 if (skbn)
171 skb_align(skbn, ENET_RX_ALIGN);
172 }
173
174 if (skbn != NULL) {
175 skb_put(skb, pkt_len); /* Make room */
176 skb->protocol = eth_type_trans(skb, dev);
177 received++;
178 netif_receive_skb(skb);
179 } else {
180 dev_warn(fep->dev,
181 "Memory squeeze, dropping packet.\n");
182 fep->stats.rx_dropped++;
183 skbn = skb;
184 }
185 }
186
187 fep->rx_skbuff[curidx] = skbn;
188 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190 DMA_FROM_DEVICE));
191 CBDW_DATLEN(bdp, 0);
192 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
193
194 /*
195 * Update BD pointer to next entry.
196 */
197 if ((sc & BD_ENET_RX_WRAP) == 0)
198 bdp++;
199 else
200 bdp = fep->rx_bd_base;
201
202 (*fep->ops->rx_bd_done)(dev);
203
204 if (received >= budget)
205 break;
206 }
207
208 fep->cur_rx = bdp;
209
210 if (received < budget) {
211 /* done */
212 napi_complete(napi);
213 (*fep->ops->napi_enable_rx)(dev);
214 }
215 return received;
216 }
217
218 /* non NAPI receive function */
219 static int fs_enet_rx_non_napi(struct net_device *dev)
220 {
221 struct fs_enet_private *fep = netdev_priv(dev);
222 const struct fs_platform_info *fpi = fep->fpi;
223 cbd_t __iomem *bdp;
224 struct sk_buff *skb, *skbn, *skbt;
225 int received = 0;
226 u16 pkt_len, sc;
227 int curidx;
228 /*
229 * First, grab all of the stats for the incoming packet.
230 * These get messed up if we get called due to a busy condition.
231 */
232 bdp = fep->cur_rx;
233
234 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
235
236 curidx = bdp - fep->rx_bd_base;
237
238 /*
239 * Since we have allocated space to hold a complete frame,
240 * the last indicator should be set.
241 */
242 if ((sc & BD_ENET_RX_LAST) == 0)
243 dev_warn(fep->dev, "rcv is not +last\n");
244
245 /*
246 * Check for errors.
247 */
248 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
249 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
250 fep->stats.rx_errors++;
251 /* Frame too long or too short. */
252 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
253 fep->stats.rx_length_errors++;
254 /* Frame alignment */
255 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
256 fep->stats.rx_frame_errors++;
257 /* CRC Error */
258 if (sc & BD_ENET_RX_CR)
259 fep->stats.rx_crc_errors++;
260 /* FIFO overrun */
261 if (sc & BD_ENET_RX_OV)
262 fep->stats.rx_crc_errors++;
263
264 skb = fep->rx_skbuff[curidx];
265
266 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
267 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
268 DMA_FROM_DEVICE);
269
270 skbn = skb;
271
272 } else {
273
274 skb = fep->rx_skbuff[curidx];
275
276 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
277 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
278 DMA_FROM_DEVICE);
279
280 /*
281 * Process the incoming frame.
282 */
283 fep->stats.rx_packets++;
284 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
285 fep->stats.rx_bytes += pkt_len + 4;
286
287 if (pkt_len <= fpi->rx_copybreak) {
288 /* +2 to make IP header L1 cache aligned */
289 skbn = dev_alloc_skb(pkt_len + 2);
290 if (skbn != NULL) {
291 skb_reserve(skbn, 2); /* align IP header */
292 skb_copy_from_linear_data(skb,
293 skbn->data, pkt_len);
294 /* swap */
295 skbt = skb;
296 skb = skbn;
297 skbn = skbt;
298 }
299 } else {
300 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
301
302 if (skbn)
303 skb_align(skbn, ENET_RX_ALIGN);
304 }
305
306 if (skbn != NULL) {
307 skb_put(skb, pkt_len); /* Make room */
308 skb->protocol = eth_type_trans(skb, dev);
309 received++;
310 netif_rx(skb);
311 } else {
312 dev_warn(fep->dev,
313 "Memory squeeze, dropping packet.\n");
314 fep->stats.rx_dropped++;
315 skbn = skb;
316 }
317 }
318
319 fep->rx_skbuff[curidx] = skbn;
320 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
321 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
322 DMA_FROM_DEVICE));
323 CBDW_DATLEN(bdp, 0);
324 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
325
326 /*
327 * Update BD pointer to next entry.
328 */
329 if ((sc & BD_ENET_RX_WRAP) == 0)
330 bdp++;
331 else
332 bdp = fep->rx_bd_base;
333
334 (*fep->ops->rx_bd_done)(dev);
335 }
336
337 fep->cur_rx = bdp;
338
339 return 0;
340 }
341
342 static void fs_enet_tx(struct net_device *dev)
343 {
344 struct fs_enet_private *fep = netdev_priv(dev);
345 cbd_t __iomem *bdp;
346 struct sk_buff *skb;
347 int dirtyidx, do_wake, do_restart;
348 u16 sc;
349
350 spin_lock(&fep->tx_lock);
351 bdp = fep->dirty_tx;
352
353 do_wake = do_restart = 0;
354 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
355 dirtyidx = bdp - fep->tx_bd_base;
356
357 if (fep->tx_free == fep->tx_ring)
358 break;
359
360 skb = fep->tx_skbuff[dirtyidx];
361
362 /*
363 * Check for errors.
364 */
365 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
366 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
367
368 if (sc & BD_ENET_TX_HB) /* No heartbeat */
369 fep->stats.tx_heartbeat_errors++;
370 if (sc & BD_ENET_TX_LC) /* Late collision */
371 fep->stats.tx_window_errors++;
372 if (sc & BD_ENET_TX_RL) /* Retrans limit */
373 fep->stats.tx_aborted_errors++;
374 if (sc & BD_ENET_TX_UN) /* Underrun */
375 fep->stats.tx_fifo_errors++;
376 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
377 fep->stats.tx_carrier_errors++;
378
379 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
380 fep->stats.tx_errors++;
381 do_restart = 1;
382 }
383 } else
384 fep->stats.tx_packets++;
385
386 if (sc & BD_ENET_TX_READY) {
387 dev_warn(fep->dev,
388 "HEY! Enet xmit interrupt and TX_READY.\n");
389 }
390
391 /*
392 * Deferred means some collisions occurred during transmit,
393 * but we eventually sent the packet OK.
394 */
395 if (sc & BD_ENET_TX_DEF)
396 fep->stats.collisions++;
397
398 /* unmap */
399 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
400 skb->len, DMA_TO_DEVICE);
401
402 /*
403 * Free the sk buffer associated with this last transmit.
404 */
405 dev_kfree_skb_irq(skb);
406 fep->tx_skbuff[dirtyidx] = NULL;
407
408 /*
409 * Update pointer to next buffer descriptor to be transmitted.
410 */
411 if ((sc & BD_ENET_TX_WRAP) == 0)
412 bdp++;
413 else
414 bdp = fep->tx_bd_base;
415
416 /*
417 * Since we have freed up a buffer, the ring is no longer
418 * full.
419 */
420 if (!fep->tx_free++)
421 do_wake = 1;
422 }
423
424 fep->dirty_tx = bdp;
425
426 if (do_restart)
427 (*fep->ops->tx_restart)(dev);
428
429 spin_unlock(&fep->tx_lock);
430
431 if (do_wake)
432 netif_wake_queue(dev);
433 }
434
435 /*
436 * The interrupt handler.
437 * This is called from the MPC core interrupt.
438 */
439 static irqreturn_t
440 fs_enet_interrupt(int irq, void *dev_id)
441 {
442 struct net_device *dev = dev_id;
443 struct fs_enet_private *fep;
444 const struct fs_platform_info *fpi;
445 u32 int_events;
446 u32 int_clr_events;
447 int nr, napi_ok;
448 int handled;
449
450 fep = netdev_priv(dev);
451 fpi = fep->fpi;
452
453 nr = 0;
454 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
455 nr++;
456
457 int_clr_events = int_events;
458 if (fpi->use_napi)
459 int_clr_events &= ~fep->ev_napi_rx;
460
461 (*fep->ops->clear_int_events)(dev, int_clr_events);
462
463 if (int_events & fep->ev_err)
464 (*fep->ops->ev_error)(dev, int_events);
465
466 if (int_events & fep->ev_rx) {
467 if (!fpi->use_napi)
468 fs_enet_rx_non_napi(dev);
469 else {
470 napi_ok = napi_schedule_prep(&fep->napi);
471
472 (*fep->ops->napi_disable_rx)(dev);
473 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
474
475 /* NOTE: it is possible for FCCs in NAPI mode */
476 /* to submit a spurious interrupt while in poll */
477 if (napi_ok)
478 __napi_schedule(&fep->napi);
479 }
480 }
481
482 if (int_events & fep->ev_tx)
483 fs_enet_tx(dev);
484 }
485
486 handled = nr > 0;
487 return IRQ_RETVAL(handled);
488 }
489
490 void fs_init_bds(struct net_device *dev)
491 {
492 struct fs_enet_private *fep = netdev_priv(dev);
493 cbd_t __iomem *bdp;
494 struct sk_buff *skb;
495 int i;
496
497 fs_cleanup_bds(dev);
498
499 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
500 fep->tx_free = fep->tx_ring;
501 fep->cur_rx = fep->rx_bd_base;
502
503 /*
504 * Initialize the receive buffer descriptors.
505 */
506 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
507 skb = dev_alloc_skb(ENET_RX_FRSIZE);
508 if (skb == NULL) {
509 dev_warn(fep->dev,
510 "Memory squeeze, unable to allocate skb\n");
511 break;
512 }
513 skb_align(skb, ENET_RX_ALIGN);
514 fep->rx_skbuff[i] = skb;
515 CBDW_BUFADDR(bdp,
516 dma_map_single(fep->dev, skb->data,
517 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
518 DMA_FROM_DEVICE));
519 CBDW_DATLEN(bdp, 0); /* zero */
520 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
521 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
522 }
523 /*
524 * if we failed, fillup remainder
525 */
526 for (; i < fep->rx_ring; i++, bdp++) {
527 fep->rx_skbuff[i] = NULL;
528 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
529 }
530
531 /*
532 * ...and the same for transmit.
533 */
534 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
535 fep->tx_skbuff[i] = NULL;
536 CBDW_BUFADDR(bdp, 0);
537 CBDW_DATLEN(bdp, 0);
538 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
539 }
540 }
541
542 void fs_cleanup_bds(struct net_device *dev)
543 {
544 struct fs_enet_private *fep = netdev_priv(dev);
545 struct sk_buff *skb;
546 cbd_t __iomem *bdp;
547 int i;
548
549 /*
550 * Reset SKB transmit buffers.
551 */
552 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
553 if ((skb = fep->tx_skbuff[i]) == NULL)
554 continue;
555
556 /* unmap */
557 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
558 skb->len, DMA_TO_DEVICE);
559
560 fep->tx_skbuff[i] = NULL;
561 dev_kfree_skb(skb);
562 }
563
564 /*
565 * Reset SKB receive buffers
566 */
567 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
568 if ((skb = fep->rx_skbuff[i]) == NULL)
569 continue;
570
571 /* unmap */
572 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
573 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
574 DMA_FROM_DEVICE);
575
576 fep->rx_skbuff[i] = NULL;
577
578 dev_kfree_skb(skb);
579 }
580 }
581
582 /**********************************************************************************/
583
584 #ifdef CONFIG_FS_ENET_MPC5121_FEC
585 /*
586 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
587 */
588 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
589 struct sk_buff *skb)
590 {
591 struct sk_buff *new_skb;
592 struct fs_enet_private *fep = netdev_priv(dev);
593
594 /* Alloc new skb */
595 new_skb = dev_alloc_skb(skb->len + 4);
596 if (!new_skb) {
597 if (net_ratelimit()) {
598 dev_warn(fep->dev,
599 "Memory squeeze, dropping tx packet.\n");
600 }
601 return NULL;
602 }
603
604 /* Make sure new skb is properly aligned */
605 skb_align(new_skb, 4);
606
607 /* Copy data to new skb ... */
608 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
609 skb_put(new_skb, skb->len);
610
611 /* ... and free an old one */
612 dev_kfree_skb_any(skb);
613
614 return new_skb;
615 }
616 #endif
617
618 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
619 {
620 struct fs_enet_private *fep = netdev_priv(dev);
621 cbd_t __iomem *bdp;
622 int curidx;
623 u16 sc;
624 unsigned long flags;
625
626 #ifdef CONFIG_FS_ENET_MPC5121_FEC
627 if (((unsigned long)skb->data) & 0x3) {
628 skb = tx_skb_align_workaround(dev, skb);
629 if (!skb) {
630 /*
631 * We have lost packet due to memory allocation error
632 * in tx_skb_align_workaround(). Hopefully original
633 * skb is still valid, so try transmit it later.
634 */
635 return NETDEV_TX_BUSY;
636 }
637 }
638 #endif
639 spin_lock_irqsave(&fep->tx_lock, flags);
640
641 /*
642 * Fill in a Tx ring entry
643 */
644 bdp = fep->cur_tx;
645
646 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
647 netif_stop_queue(dev);
648 spin_unlock_irqrestore(&fep->tx_lock, flags);
649
650 /*
651 * Ooops. All transmit buffers are full. Bail out.
652 * This should not happen, since the tx queue should be stopped.
653 */
654 dev_warn(fep->dev, "tx queue full!.\n");
655 return NETDEV_TX_BUSY;
656 }
657
658 curidx = bdp - fep->tx_bd_base;
659 /*
660 * Clear all of the status flags.
661 */
662 CBDC_SC(bdp, BD_ENET_TX_STATS);
663
664 /*
665 * Save skb pointer.
666 */
667 fep->tx_skbuff[curidx] = skb;
668
669 fep->stats.tx_bytes += skb->len;
670
671 /*
672 * Push the data cache so the CPM does not get stale memory data.
673 */
674 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
675 skb->data, skb->len, DMA_TO_DEVICE));
676 CBDW_DATLEN(bdp, skb->len);
677
678 /*
679 * If this was the last BD in the ring, start at the beginning again.
680 */
681 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
682 fep->cur_tx++;
683 else
684 fep->cur_tx = fep->tx_bd_base;
685
686 if (!--fep->tx_free)
687 netif_stop_queue(dev);
688
689 /* Trigger transmission start */
690 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
691 BD_ENET_TX_LAST | BD_ENET_TX_TC;
692
693 /* note that while FEC does not have this bit
694 * it marks it as available for software use
695 * yay for hw reuse :) */
696 if (skb->len <= 60)
697 sc |= BD_ENET_TX_PAD;
698 CBDS_SC(bdp, sc);
699
700 skb_tx_timestamp(skb);
701
702 (*fep->ops->tx_kickstart)(dev);
703
704 spin_unlock_irqrestore(&fep->tx_lock, flags);
705
706 return NETDEV_TX_OK;
707 }
708
709 static void fs_timeout(struct net_device *dev)
710 {
711 struct fs_enet_private *fep = netdev_priv(dev);
712 unsigned long flags;
713 int wake = 0;
714
715 fep->stats.tx_errors++;
716
717 spin_lock_irqsave(&fep->lock, flags);
718
719 if (dev->flags & IFF_UP) {
720 phy_stop(fep->phydev);
721 (*fep->ops->stop)(dev);
722 (*fep->ops->restart)(dev);
723 phy_start(fep->phydev);
724 }
725
726 phy_start(fep->phydev);
727 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
728 spin_unlock_irqrestore(&fep->lock, flags);
729
730 if (wake)
731 netif_wake_queue(dev);
732 }
733
734 /*-----------------------------------------------------------------------------
735 * generic link-change handler - should be sufficient for most cases
736 *-----------------------------------------------------------------------------*/
737 static void generic_adjust_link(struct net_device *dev)
738 {
739 struct fs_enet_private *fep = netdev_priv(dev);
740 struct phy_device *phydev = fep->phydev;
741 int new_state = 0;
742
743 if (phydev->link) {
744 /* adjust to duplex mode */
745 if (phydev->duplex != fep->oldduplex) {
746 new_state = 1;
747 fep->oldduplex = phydev->duplex;
748 }
749
750 if (phydev->speed != fep->oldspeed) {
751 new_state = 1;
752 fep->oldspeed = phydev->speed;
753 }
754
755 if (!fep->oldlink) {
756 new_state = 1;
757 fep->oldlink = 1;
758 }
759
760 if (new_state)
761 fep->ops->restart(dev);
762 } else if (fep->oldlink) {
763 new_state = 1;
764 fep->oldlink = 0;
765 fep->oldspeed = 0;
766 fep->oldduplex = -1;
767 }
768
769 if (new_state && netif_msg_link(fep))
770 phy_print_status(phydev);
771 }
772
773
774 static void fs_adjust_link(struct net_device *dev)
775 {
776 struct fs_enet_private *fep = netdev_priv(dev);
777 unsigned long flags;
778
779 spin_lock_irqsave(&fep->lock, flags);
780
781 if(fep->ops->adjust_link)
782 fep->ops->adjust_link(dev);
783 else
784 generic_adjust_link(dev);
785
786 spin_unlock_irqrestore(&fep->lock, flags);
787 }
788
789 static int fs_init_phy(struct net_device *dev)
790 {
791 struct fs_enet_private *fep = netdev_priv(dev);
792 struct phy_device *phydev;
793
794 fep->oldlink = 0;
795 fep->oldspeed = 0;
796 fep->oldduplex = -1;
797
798 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
799 PHY_INTERFACE_MODE_MII);
800 if (!phydev) {
801 phydev = of_phy_connect_fixed_link(dev, &fs_adjust_link,
802 PHY_INTERFACE_MODE_MII);
803 }
804 if (!phydev) {
805 dev_err(&dev->dev, "Could not attach to PHY\n");
806 return -ENODEV;
807 }
808
809 fep->phydev = phydev;
810
811 return 0;
812 }
813
814 static int fs_enet_open(struct net_device *dev)
815 {
816 struct fs_enet_private *fep = netdev_priv(dev);
817 int r;
818 int err;
819
820 /* to initialize the fep->cur_rx,... */
821 /* not doing this, will cause a crash in fs_enet_rx_napi */
822 fs_init_bds(fep->ndev);
823
824 if (fep->fpi->use_napi)
825 napi_enable(&fep->napi);
826
827 /* Install our interrupt handler. */
828 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
829 "fs_enet-mac", dev);
830 if (r != 0) {
831 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
832 if (fep->fpi->use_napi)
833 napi_disable(&fep->napi);
834 return -EINVAL;
835 }
836
837 err = fs_init_phy(dev);
838 if (err) {
839 free_irq(fep->interrupt, dev);
840 if (fep->fpi->use_napi)
841 napi_disable(&fep->napi);
842 return err;
843 }
844 phy_start(fep->phydev);
845
846 netif_start_queue(dev);
847
848 return 0;
849 }
850
851 static int fs_enet_close(struct net_device *dev)
852 {
853 struct fs_enet_private *fep = netdev_priv(dev);
854 unsigned long flags;
855
856 netif_stop_queue(dev);
857 netif_carrier_off(dev);
858 if (fep->fpi->use_napi)
859 napi_disable(&fep->napi);
860 phy_stop(fep->phydev);
861
862 spin_lock_irqsave(&fep->lock, flags);
863 spin_lock(&fep->tx_lock);
864 (*fep->ops->stop)(dev);
865 spin_unlock(&fep->tx_lock);
866 spin_unlock_irqrestore(&fep->lock, flags);
867
868 /* release any irqs */
869 phy_disconnect(fep->phydev);
870 fep->phydev = NULL;
871 free_irq(fep->interrupt, dev);
872
873 return 0;
874 }
875
876 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
877 {
878 struct fs_enet_private *fep = netdev_priv(dev);
879 return &fep->stats;
880 }
881
882 /*************************************************************************/
883
884 static void fs_get_drvinfo(struct net_device *dev,
885 struct ethtool_drvinfo *info)
886 {
887 strcpy(info->driver, DRV_MODULE_NAME);
888 strcpy(info->version, DRV_MODULE_VERSION);
889 }
890
891 static int fs_get_regs_len(struct net_device *dev)
892 {
893 struct fs_enet_private *fep = netdev_priv(dev);
894
895 return (*fep->ops->get_regs_len)(dev);
896 }
897
898 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
899 void *p)
900 {
901 struct fs_enet_private *fep = netdev_priv(dev);
902 unsigned long flags;
903 int r, len;
904
905 len = regs->len;
906
907 spin_lock_irqsave(&fep->lock, flags);
908 r = (*fep->ops->get_regs)(dev, p, &len);
909 spin_unlock_irqrestore(&fep->lock, flags);
910
911 if (r == 0)
912 regs->version = 0;
913 }
914
915 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
916 {
917 struct fs_enet_private *fep = netdev_priv(dev);
918
919 if (!fep->phydev)
920 return -ENODEV;
921
922 return phy_ethtool_gset(fep->phydev, cmd);
923 }
924
925 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
926 {
927 struct fs_enet_private *fep = netdev_priv(dev);
928
929 if (!fep->phydev)
930 return -ENODEV;
931
932 return phy_ethtool_sset(fep->phydev, cmd);
933 }
934
935 static int fs_nway_reset(struct net_device *dev)
936 {
937 return 0;
938 }
939
940 static u32 fs_get_msglevel(struct net_device *dev)
941 {
942 struct fs_enet_private *fep = netdev_priv(dev);
943 return fep->msg_enable;
944 }
945
946 static void fs_set_msglevel(struct net_device *dev, u32 value)
947 {
948 struct fs_enet_private *fep = netdev_priv(dev);
949 fep->msg_enable = value;
950 }
951
952 static const struct ethtool_ops fs_ethtool_ops = {
953 .get_drvinfo = fs_get_drvinfo,
954 .get_regs_len = fs_get_regs_len,
955 .get_settings = fs_get_settings,
956 .set_settings = fs_set_settings,
957 .nway_reset = fs_nway_reset,
958 .get_link = ethtool_op_get_link,
959 .get_msglevel = fs_get_msglevel,
960 .set_msglevel = fs_set_msglevel,
961 .get_regs = fs_get_regs,
962 };
963
964 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
965 {
966 struct fs_enet_private *fep = netdev_priv(dev);
967
968 if (!netif_running(dev))
969 return -EINVAL;
970
971 return phy_mii_ioctl(fep->phydev, rq, cmd);
972 }
973
974 extern int fs_mii_connect(struct net_device *dev);
975 extern void fs_mii_disconnect(struct net_device *dev);
976
977 /**************************************************************************************/
978
979 #ifdef CONFIG_FS_ENET_HAS_FEC
980 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
981 #else
982 #define IS_FEC(match) 0
983 #endif
984
985 static const struct net_device_ops fs_enet_netdev_ops = {
986 .ndo_open = fs_enet_open,
987 .ndo_stop = fs_enet_close,
988 .ndo_get_stats = fs_enet_get_stats,
989 .ndo_start_xmit = fs_enet_start_xmit,
990 .ndo_tx_timeout = fs_timeout,
991 .ndo_set_multicast_list = fs_set_multicast_list,
992 .ndo_do_ioctl = fs_ioctl,
993 .ndo_validate_addr = eth_validate_addr,
994 .ndo_set_mac_address = eth_mac_addr,
995 .ndo_change_mtu = eth_change_mtu,
996 #ifdef CONFIG_NET_POLL_CONTROLLER
997 .ndo_poll_controller = fs_enet_netpoll,
998 #endif
999 };
1000
1001 static struct of_device_id fs_enet_match[];
1002 static int __devinit fs_enet_probe(struct platform_device *ofdev)
1003 {
1004 const struct of_device_id *match;
1005 struct net_device *ndev;
1006 struct fs_enet_private *fep;
1007 struct fs_platform_info *fpi;
1008 const u32 *data;
1009 const u8 *mac_addr;
1010 int privsize, len, ret = -ENODEV;
1011
1012 match = of_match_device(fs_enet_match, &ofdev->dev);
1013 if (!match)
1014 return -EINVAL;
1015
1016 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1017 if (!fpi)
1018 return -ENOMEM;
1019
1020 if (!IS_FEC(match)) {
1021 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
1022 if (!data || len != 4)
1023 goto out_free_fpi;
1024
1025 fpi->cp_command = *data;
1026 }
1027
1028 fpi->rx_ring = 32;
1029 fpi->tx_ring = 32;
1030 fpi->rx_copybreak = 240;
1031 fpi->use_napi = 1;
1032 fpi->napi_weight = 17;
1033 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
1034 if ((!fpi->phy_node) && (!of_get_property(ofdev->dev.of_node, "fixed-link",
1035 NULL)))
1036 goto out_free_fpi;
1037
1038 privsize = sizeof(*fep) +
1039 sizeof(struct sk_buff **) *
1040 (fpi->rx_ring + fpi->tx_ring);
1041
1042 ndev = alloc_etherdev(privsize);
1043 if (!ndev) {
1044 ret = -ENOMEM;
1045 goto out_put;
1046 }
1047
1048 SET_NETDEV_DEV(ndev, &ofdev->dev);
1049 dev_set_drvdata(&ofdev->dev, ndev);
1050
1051 fep = netdev_priv(ndev);
1052 fep->dev = &ofdev->dev;
1053 fep->ndev = ndev;
1054 fep->fpi = fpi;
1055 fep->ops = match->data;
1056
1057 ret = fep->ops->setup_data(ndev);
1058 if (ret)
1059 goto out_free_dev;
1060
1061 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1062 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1063
1064 spin_lock_init(&fep->lock);
1065 spin_lock_init(&fep->tx_lock);
1066
1067 mac_addr = of_get_mac_address(ofdev->dev.of_node);
1068 if (mac_addr)
1069 memcpy(ndev->dev_addr, mac_addr, 6);
1070
1071 ret = fep->ops->allocate_bd(ndev);
1072 if (ret)
1073 goto out_cleanup_data;
1074
1075 fep->rx_bd_base = fep->ring_base;
1076 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1077
1078 fep->tx_ring = fpi->tx_ring;
1079 fep->rx_ring = fpi->rx_ring;
1080
1081 ndev->netdev_ops = &fs_enet_netdev_ops;
1082 ndev->watchdog_timeo = 2 * HZ;
1083 if (fpi->use_napi)
1084 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1085 fpi->napi_weight);
1086
1087 ndev->ethtool_ops = &fs_ethtool_ops;
1088
1089 init_timer(&fep->phy_timer_list);
1090
1091 netif_carrier_off(ndev);
1092
1093 ret = register_netdev(ndev);
1094 if (ret)
1095 goto out_free_bd;
1096
1097 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1098
1099 return 0;
1100
1101 out_free_bd:
1102 fep->ops->free_bd(ndev);
1103 out_cleanup_data:
1104 fep->ops->cleanup_data(ndev);
1105 out_free_dev:
1106 free_netdev(ndev);
1107 dev_set_drvdata(&ofdev->dev, NULL);
1108 out_put:
1109 of_node_put(fpi->phy_node);
1110 out_free_fpi:
1111 kfree(fpi);
1112 return ret;
1113 }
1114
1115 static int fs_enet_remove(struct platform_device *ofdev)
1116 {
1117 struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1118 struct fs_enet_private *fep = netdev_priv(ndev);
1119
1120 unregister_netdev(ndev);
1121
1122 fep->ops->free_bd(ndev);
1123 fep->ops->cleanup_data(ndev);
1124 dev_set_drvdata(fep->dev, NULL);
1125 of_node_put(fep->fpi->phy_node);
1126 free_netdev(ndev);
1127 return 0;
1128 }
1129
1130 static struct of_device_id fs_enet_match[] = {
1131 #ifdef CONFIG_FS_ENET_HAS_SCC
1132 {
1133 .compatible = "fsl,cpm1-scc-enet",
1134 .data = (void *)&fs_scc_ops,
1135 },
1136 {
1137 .compatible = "fsl,cpm2-scc-enet",
1138 .data = (void *)&fs_scc_ops,
1139 },
1140 #endif
1141 #ifdef CONFIG_FS_ENET_HAS_FCC
1142 {
1143 .compatible = "fsl,cpm2-fcc-enet",
1144 .data = (void *)&fs_fcc_ops,
1145 },
1146 #endif
1147 #ifdef CONFIG_FS_ENET_HAS_FEC
1148 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1149 {
1150 .compatible = "fsl,mpc5121-fec",
1151 .data = (void *)&fs_fec_ops,
1152 },
1153 #else
1154 {
1155 .compatible = "fsl,pq1-fec-enet",
1156 .data = (void *)&fs_fec_ops,
1157 },
1158 #endif
1159 #endif
1160 {}
1161 };
1162 MODULE_DEVICE_TABLE(of, fs_enet_match);
1163
1164 static struct platform_driver fs_enet_driver = {
1165 .driver = {
1166 .owner = THIS_MODULE,
1167 .name = "fs_enet",
1168 .of_match_table = fs_enet_match,
1169 },
1170 .probe = fs_enet_probe,
1171 .remove = fs_enet_remove,
1172 };
1173
1174 static int __init fs_init(void)
1175 {
1176 return platform_driver_register(&fs_enet_driver);
1177 }
1178
1179 static void __exit fs_cleanup(void)
1180 {
1181 platform_driver_unregister(&fs_enet_driver);
1182 }
1183
1184 #ifdef CONFIG_NET_POLL_CONTROLLER
1185 static void fs_enet_netpoll(struct net_device *dev)
1186 {
1187 disable_irq(dev->irq);
1188 fs_enet_interrupt(dev->irq, dev);
1189 enable_irq(dev->irq);
1190 }
1191 #endif
1192
1193 /**************************************************************************************/
1194
1195 module_init(fs_init);
1196 module_exit(fs_cleanup);
This page took 0.05508 seconds and 5 git commands to generate.