Merge remote-tracking branch 'omap_dss2/for-next'
[deliverable/linux.git] / drivers / net / phy / phy.c
1 /* Framework for configuring and reading PHY devices
2 * Based on code in sungem_phy.c and gianfar_phy.c
3 *
4 * Author: Andy Fleming
5 *
6 * Copyright (c) 2004 Freescale Semiconductor, Inc.
7 * Copyright (c) 2006, 2007 Maciej W. Rozycki
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/errno.h>
21 #include <linux/unistd.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/phy.h>
32 #include <linux/timer.h>
33 #include <linux/workqueue.h>
34 #include <linux/mdio.h>
35 #include <linux/io.h>
36 #include <linux/uaccess.h>
37 #include <linux/atomic.h>
38
39 #include <asm/irq.h>
40
41 static const char *phy_speed_to_str(int speed)
42 {
43 switch (speed) {
44 case SPEED_10:
45 return "10Mbps";
46 case SPEED_100:
47 return "100Mbps";
48 case SPEED_1000:
49 return "1Gbps";
50 case SPEED_2500:
51 return "2.5Gbps";
52 case SPEED_10000:
53 return "10Gbps";
54 case SPEED_UNKNOWN:
55 return "Unknown";
56 default:
57 return "Unsupported (update phy.c)";
58 }
59 }
60
61 #define PHY_STATE_STR(_state) \
62 case PHY_##_state: \
63 return __stringify(_state); \
64
65 static const char *phy_state_to_str(enum phy_state st)
66 {
67 switch (st) {
68 PHY_STATE_STR(DOWN)
69 PHY_STATE_STR(STARTING)
70 PHY_STATE_STR(READY)
71 PHY_STATE_STR(PENDING)
72 PHY_STATE_STR(UP)
73 PHY_STATE_STR(AN)
74 PHY_STATE_STR(RUNNING)
75 PHY_STATE_STR(NOLINK)
76 PHY_STATE_STR(FORCING)
77 PHY_STATE_STR(CHANGELINK)
78 PHY_STATE_STR(HALTED)
79 PHY_STATE_STR(RESUMING)
80 }
81
82 return NULL;
83 }
84
85
86 /**
87 * phy_print_status - Convenience function to print out the current phy status
88 * @phydev: the phy_device struct
89 */
90 void phy_print_status(struct phy_device *phydev)
91 {
92 if (phydev->link) {
93 netdev_info(phydev->attached_dev,
94 "Link is Up - %s/%s - flow control %s\n",
95 phy_speed_to_str(phydev->speed),
96 DUPLEX_FULL == phydev->duplex ? "Full" : "Half",
97 phydev->pause ? "rx/tx" : "off");
98 } else {
99 netdev_info(phydev->attached_dev, "Link is Down\n");
100 }
101 }
102 EXPORT_SYMBOL(phy_print_status);
103
104 /**
105 * phy_clear_interrupt - Ack the phy device's interrupt
106 * @phydev: the phy_device struct
107 *
108 * If the @phydev driver has an ack_interrupt function, call it to
109 * ack and clear the phy device's interrupt.
110 *
111 * Returns 0 on success or < 0 on error.
112 */
113 static int phy_clear_interrupt(struct phy_device *phydev)
114 {
115 if (phydev->drv->ack_interrupt)
116 return phydev->drv->ack_interrupt(phydev);
117
118 return 0;
119 }
120
121 /**
122 * phy_config_interrupt - configure the PHY device for the requested interrupts
123 * @phydev: the phy_device struct
124 * @interrupts: interrupt flags to configure for this @phydev
125 *
126 * Returns 0 on success or < 0 on error.
127 */
128 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
129 {
130 phydev->interrupts = interrupts;
131 if (phydev->drv->config_intr)
132 return phydev->drv->config_intr(phydev);
133
134 return 0;
135 }
136
137
138 /**
139 * phy_aneg_done - return auto-negotiation status
140 * @phydev: target phy_device struct
141 *
142 * Description: Return the auto-negotiation status from this @phydev
143 * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation
144 * is still pending.
145 */
146 static inline int phy_aneg_done(struct phy_device *phydev)
147 {
148 if (phydev->drv->aneg_done)
149 return phydev->drv->aneg_done(phydev);
150
151 return genphy_aneg_done(phydev);
152 }
153
154 /* A structure for mapping a particular speed and duplex
155 * combination to a particular SUPPORTED and ADVERTISED value
156 */
157 struct phy_setting {
158 int speed;
159 int duplex;
160 u32 setting;
161 };
162
163 /* A mapping of all SUPPORTED settings to speed/duplex */
164 static const struct phy_setting settings[] = {
165 {
166 .speed = SPEED_10000,
167 .duplex = DUPLEX_FULL,
168 .setting = SUPPORTED_10000baseKR_Full,
169 },
170 {
171 .speed = SPEED_10000,
172 .duplex = DUPLEX_FULL,
173 .setting = SUPPORTED_10000baseKX4_Full,
174 },
175 {
176 .speed = SPEED_10000,
177 .duplex = DUPLEX_FULL,
178 .setting = SUPPORTED_10000baseT_Full,
179 },
180 {
181 .speed = SPEED_2500,
182 .duplex = DUPLEX_FULL,
183 .setting = SUPPORTED_2500baseX_Full,
184 },
185 {
186 .speed = SPEED_1000,
187 .duplex = DUPLEX_FULL,
188 .setting = SUPPORTED_1000baseKX_Full,
189 },
190 {
191 .speed = SPEED_1000,
192 .duplex = DUPLEX_FULL,
193 .setting = SUPPORTED_1000baseT_Full,
194 },
195 {
196 .speed = SPEED_1000,
197 .duplex = DUPLEX_HALF,
198 .setting = SUPPORTED_1000baseT_Half,
199 },
200 {
201 .speed = SPEED_100,
202 .duplex = DUPLEX_FULL,
203 .setting = SUPPORTED_100baseT_Full,
204 },
205 {
206 .speed = SPEED_100,
207 .duplex = DUPLEX_HALF,
208 .setting = SUPPORTED_100baseT_Half,
209 },
210 {
211 .speed = SPEED_10,
212 .duplex = DUPLEX_FULL,
213 .setting = SUPPORTED_10baseT_Full,
214 },
215 {
216 .speed = SPEED_10,
217 .duplex = DUPLEX_HALF,
218 .setting = SUPPORTED_10baseT_Half,
219 },
220 };
221
222 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
223
224 /**
225 * phy_find_setting - find a PHY settings array entry that matches speed & duplex
226 * @speed: speed to match
227 * @duplex: duplex to match
228 *
229 * Description: Searches the settings array for the setting which
230 * matches the desired speed and duplex, and returns the index
231 * of that setting. Returns the index of the last setting if
232 * none of the others match.
233 */
234 static inline unsigned int phy_find_setting(int speed, int duplex)
235 {
236 unsigned int idx = 0;
237
238 while (idx < ARRAY_SIZE(settings) &&
239 (settings[idx].speed != speed || settings[idx].duplex != duplex))
240 idx++;
241
242 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
243 }
244
245 /**
246 * phy_find_valid - find a PHY setting that matches the requested features mask
247 * @idx: The first index in settings[] to search
248 * @features: A mask of the valid settings
249 *
250 * Description: Returns the index of the first valid setting less
251 * than or equal to the one pointed to by idx, as determined by
252 * the mask in features. Returns the index of the last setting
253 * if nothing else matches.
254 */
255 static inline unsigned int phy_find_valid(unsigned int idx, u32 features)
256 {
257 while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
258 idx++;
259
260 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
261 }
262
263 /**
264 * phy_check_valid - check if there is a valid PHY setting which matches
265 * speed, duplex, and feature mask
266 * @speed: speed to match
267 * @duplex: duplex to match
268 * @features: A mask of the valid settings
269 *
270 * Description: Returns true if there is a valid setting, false otherwise.
271 */
272 static inline bool phy_check_valid(int speed, int duplex, u32 features)
273 {
274 unsigned int idx;
275
276 idx = phy_find_valid(phy_find_setting(speed, duplex), features);
277
278 return settings[idx].speed == speed && settings[idx].duplex == duplex &&
279 (settings[idx].setting & features);
280 }
281
282 /**
283 * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
284 * @phydev: the target phy_device struct
285 *
286 * Description: Make sure the PHY is set to supported speeds and
287 * duplexes. Drop down by one in this order: 1000/FULL,
288 * 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
289 */
290 static void phy_sanitize_settings(struct phy_device *phydev)
291 {
292 u32 features = phydev->supported;
293 unsigned int idx;
294
295 /* Sanitize settings based on PHY capabilities */
296 if ((features & SUPPORTED_Autoneg) == 0)
297 phydev->autoneg = AUTONEG_DISABLE;
298
299 idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
300 features);
301
302 phydev->speed = settings[idx].speed;
303 phydev->duplex = settings[idx].duplex;
304 }
305
306 /**
307 * phy_ethtool_sset - generic ethtool sset function, handles all the details
308 * @phydev: target phy_device struct
309 * @cmd: ethtool_cmd
310 *
311 * A few notes about parameter checking:
312 * - We don't set port or transceiver, so we don't care what they
313 * were set to.
314 * - phy_start_aneg() will make sure forced settings are sane, and
315 * choose the next best ones from the ones selected, so we don't
316 * care if ethtool tries to give us bad values.
317 */
318 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
319 {
320 u32 speed = ethtool_cmd_speed(cmd);
321
322 if (cmd->phy_address != phydev->mdio.addr)
323 return -EINVAL;
324
325 /* We make sure that we don't pass unsupported values in to the PHY */
326 cmd->advertising &= phydev->supported;
327
328 /* Verify the settings we care about. */
329 if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
330 return -EINVAL;
331
332 if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
333 return -EINVAL;
334
335 if (cmd->autoneg == AUTONEG_DISABLE &&
336 ((speed != SPEED_1000 &&
337 speed != SPEED_100 &&
338 speed != SPEED_10) ||
339 (cmd->duplex != DUPLEX_HALF &&
340 cmd->duplex != DUPLEX_FULL)))
341 return -EINVAL;
342
343 phydev->autoneg = cmd->autoneg;
344
345 phydev->speed = speed;
346
347 phydev->advertising = cmd->advertising;
348
349 if (AUTONEG_ENABLE == cmd->autoneg)
350 phydev->advertising |= ADVERTISED_Autoneg;
351 else
352 phydev->advertising &= ~ADVERTISED_Autoneg;
353
354 phydev->duplex = cmd->duplex;
355
356 phydev->mdix = cmd->eth_tp_mdix_ctrl;
357
358 /* Restart the PHY */
359 phy_start_aneg(phydev);
360
361 return 0;
362 }
363 EXPORT_SYMBOL(phy_ethtool_sset);
364
365 int phy_ethtool_ksettings_set(struct phy_device *phydev,
366 const struct ethtool_link_ksettings *cmd)
367 {
368 u8 autoneg = cmd->base.autoneg;
369 u8 duplex = cmd->base.duplex;
370 u32 speed = cmd->base.speed;
371 u32 advertising;
372
373 if (cmd->base.phy_address != phydev->mdio.addr)
374 return -EINVAL;
375
376 ethtool_convert_link_mode_to_legacy_u32(&advertising,
377 cmd->link_modes.advertising);
378
379 /* We make sure that we don't pass unsupported values in to the PHY */
380 advertising &= phydev->supported;
381
382 /* Verify the settings we care about. */
383 if (autoneg != AUTONEG_ENABLE && autoneg != AUTONEG_DISABLE)
384 return -EINVAL;
385
386 if (autoneg == AUTONEG_ENABLE && advertising == 0)
387 return -EINVAL;
388
389 if (autoneg == AUTONEG_DISABLE &&
390 ((speed != SPEED_1000 &&
391 speed != SPEED_100 &&
392 speed != SPEED_10) ||
393 (duplex != DUPLEX_HALF &&
394 duplex != DUPLEX_FULL)))
395 return -EINVAL;
396
397 phydev->autoneg = autoneg;
398
399 phydev->speed = speed;
400
401 phydev->advertising = advertising;
402
403 if (autoneg == AUTONEG_ENABLE)
404 phydev->advertising |= ADVERTISED_Autoneg;
405 else
406 phydev->advertising &= ~ADVERTISED_Autoneg;
407
408 phydev->duplex = duplex;
409
410 phydev->mdix = cmd->base.eth_tp_mdix_ctrl;
411
412 /* Restart the PHY */
413 phy_start_aneg(phydev);
414
415 return 0;
416 }
417 EXPORT_SYMBOL(phy_ethtool_ksettings_set);
418
419 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
420 {
421 cmd->supported = phydev->supported;
422
423 cmd->advertising = phydev->advertising;
424 cmd->lp_advertising = phydev->lp_advertising;
425
426 ethtool_cmd_speed_set(cmd, phydev->speed);
427 cmd->duplex = phydev->duplex;
428 if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
429 cmd->port = PORT_BNC;
430 else
431 cmd->port = PORT_MII;
432 cmd->phy_address = phydev->mdio.addr;
433 cmd->transceiver = phy_is_internal(phydev) ?
434 XCVR_INTERNAL : XCVR_EXTERNAL;
435 cmd->autoneg = phydev->autoneg;
436 cmd->eth_tp_mdix_ctrl = phydev->mdix;
437
438 return 0;
439 }
440 EXPORT_SYMBOL(phy_ethtool_gset);
441
442 int phy_ethtool_ksettings_get(struct phy_device *phydev,
443 struct ethtool_link_ksettings *cmd)
444 {
445 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
446 phydev->supported);
447
448 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
449 phydev->advertising);
450
451 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
452 phydev->lp_advertising);
453
454 cmd->base.speed = phydev->speed;
455 cmd->base.duplex = phydev->duplex;
456 if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
457 cmd->base.port = PORT_BNC;
458 else
459 cmd->base.port = PORT_MII;
460
461 cmd->base.phy_address = phydev->mdio.addr;
462 cmd->base.autoneg = phydev->autoneg;
463 cmd->base.eth_tp_mdix_ctrl = phydev->mdix;
464
465 return 0;
466 }
467 EXPORT_SYMBOL(phy_ethtool_ksettings_get);
468
469 /**
470 * phy_mii_ioctl - generic PHY MII ioctl interface
471 * @phydev: the phy_device struct
472 * @ifr: &struct ifreq for socket ioctl's
473 * @cmd: ioctl cmd to execute
474 *
475 * Note that this function is currently incompatible with the
476 * PHYCONTROL layer. It changes registers without regard to
477 * current state. Use at own risk.
478 */
479 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd)
480 {
481 struct mii_ioctl_data *mii_data = if_mii(ifr);
482 u16 val = mii_data->val_in;
483 bool change_autoneg = false;
484
485 switch (cmd) {
486 case SIOCGMIIPHY:
487 mii_data->phy_id = phydev->mdio.addr;
488 /* fall through */
489
490 case SIOCGMIIREG:
491 mii_data->val_out = mdiobus_read(phydev->mdio.bus,
492 mii_data->phy_id,
493 mii_data->reg_num);
494 return 0;
495
496 case SIOCSMIIREG:
497 if (mii_data->phy_id == phydev->mdio.addr) {
498 switch (mii_data->reg_num) {
499 case MII_BMCR:
500 if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) {
501 if (phydev->autoneg == AUTONEG_ENABLE)
502 change_autoneg = true;
503 phydev->autoneg = AUTONEG_DISABLE;
504 if (val & BMCR_FULLDPLX)
505 phydev->duplex = DUPLEX_FULL;
506 else
507 phydev->duplex = DUPLEX_HALF;
508 if (val & BMCR_SPEED1000)
509 phydev->speed = SPEED_1000;
510 else if (val & BMCR_SPEED100)
511 phydev->speed = SPEED_100;
512 else phydev->speed = SPEED_10;
513 }
514 else {
515 if (phydev->autoneg == AUTONEG_DISABLE)
516 change_autoneg = true;
517 phydev->autoneg = AUTONEG_ENABLE;
518 }
519 break;
520 case MII_ADVERTISE:
521 phydev->advertising = mii_adv_to_ethtool_adv_t(val);
522 change_autoneg = true;
523 break;
524 default:
525 /* do nothing */
526 break;
527 }
528 }
529
530 mdiobus_write(phydev->mdio.bus, mii_data->phy_id,
531 mii_data->reg_num, val);
532
533 if (mii_data->phy_id == phydev->mdio.addr &&
534 mii_data->reg_num == MII_BMCR &&
535 val & BMCR_RESET)
536 return phy_init_hw(phydev);
537
538 if (change_autoneg)
539 return phy_start_aneg(phydev);
540
541 return 0;
542
543 case SIOCSHWTSTAMP:
544 if (phydev->drv->hwtstamp)
545 return phydev->drv->hwtstamp(phydev, ifr);
546 /* fall through */
547
548 default:
549 return -EOPNOTSUPP;
550 }
551 }
552 EXPORT_SYMBOL(phy_mii_ioctl);
553
554 /**
555 * phy_start_aneg - start auto-negotiation for this PHY device
556 * @phydev: the phy_device struct
557 *
558 * Description: Sanitizes the settings (if we're not autonegotiating
559 * them), and then calls the driver's config_aneg function.
560 * If the PHYCONTROL Layer is operating, we change the state to
561 * reflect the beginning of Auto-negotiation or forcing.
562 */
563 int phy_start_aneg(struct phy_device *phydev)
564 {
565 int err;
566
567 mutex_lock(&phydev->lock);
568
569 if (AUTONEG_DISABLE == phydev->autoneg)
570 phy_sanitize_settings(phydev);
571
572 /* Invalidate LP advertising flags */
573 phydev->lp_advertising = 0;
574
575 err = phydev->drv->config_aneg(phydev);
576 if (err < 0)
577 goto out_unlock;
578
579 if (phydev->state != PHY_HALTED) {
580 if (AUTONEG_ENABLE == phydev->autoneg) {
581 phydev->state = PHY_AN;
582 phydev->link_timeout = PHY_AN_TIMEOUT;
583 } else {
584 phydev->state = PHY_FORCING;
585 phydev->link_timeout = PHY_FORCE_TIMEOUT;
586 }
587 }
588
589 out_unlock:
590 mutex_unlock(&phydev->lock);
591 return err;
592 }
593 EXPORT_SYMBOL(phy_start_aneg);
594
595 /**
596 * phy_start_machine - start PHY state machine tracking
597 * @phydev: the phy_device struct
598 *
599 * Description: The PHY infrastructure can run a state machine
600 * which tracks whether the PHY is starting up, negotiating,
601 * etc. This function starts the timer which tracks the state
602 * of the PHY. If you want to maintain your own state machine,
603 * do not call this function.
604 */
605 void phy_start_machine(struct phy_device *phydev)
606 {
607 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ);
608 }
609
610 /**
611 * phy_stop_machine - stop the PHY state machine tracking
612 * @phydev: target phy_device struct
613 *
614 * Description: Stops the state machine timer, sets the state to UP
615 * (unless it wasn't up yet). This function must be called BEFORE
616 * phy_detach.
617 */
618 void phy_stop_machine(struct phy_device *phydev)
619 {
620 cancel_delayed_work_sync(&phydev->state_queue);
621
622 mutex_lock(&phydev->lock);
623 if (phydev->state > PHY_UP)
624 phydev->state = PHY_UP;
625 mutex_unlock(&phydev->lock);
626 }
627
628 /**
629 * phy_error - enter HALTED state for this PHY device
630 * @phydev: target phy_device struct
631 *
632 * Moves the PHY to the HALTED state in response to a read
633 * or write error, and tells the controller the link is down.
634 * Must not be called from interrupt context, or while the
635 * phydev->lock is held.
636 */
637 static void phy_error(struct phy_device *phydev)
638 {
639 mutex_lock(&phydev->lock);
640 phydev->state = PHY_HALTED;
641 mutex_unlock(&phydev->lock);
642 }
643
644 /**
645 * phy_interrupt - PHY interrupt handler
646 * @irq: interrupt line
647 * @phy_dat: phy_device pointer
648 *
649 * Description: When a PHY interrupt occurs, the handler disables
650 * interrupts, and schedules a work task to clear the interrupt.
651 */
652 static irqreturn_t phy_interrupt(int irq, void *phy_dat)
653 {
654 struct phy_device *phydev = phy_dat;
655
656 if (PHY_HALTED == phydev->state)
657 return IRQ_NONE; /* It can't be ours. */
658
659 /* The MDIO bus is not allowed to be written in interrupt
660 * context, so we need to disable the irq here. A work
661 * queue will write the PHY to disable and clear the
662 * interrupt, and then reenable the irq line.
663 */
664 disable_irq_nosync(irq);
665 atomic_inc(&phydev->irq_disable);
666
667 queue_work(system_power_efficient_wq, &phydev->phy_queue);
668
669 return IRQ_HANDLED;
670 }
671
672 /**
673 * phy_enable_interrupts - Enable the interrupts from the PHY side
674 * @phydev: target phy_device struct
675 */
676 static int phy_enable_interrupts(struct phy_device *phydev)
677 {
678 int err = phy_clear_interrupt(phydev);
679
680 if (err < 0)
681 return err;
682
683 return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
684 }
685
686 /**
687 * phy_disable_interrupts - Disable the PHY interrupts from the PHY side
688 * @phydev: target phy_device struct
689 */
690 static int phy_disable_interrupts(struct phy_device *phydev)
691 {
692 int err;
693
694 /* Disable PHY interrupts */
695 err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
696 if (err)
697 goto phy_err;
698
699 /* Clear the interrupt */
700 err = phy_clear_interrupt(phydev);
701 if (err)
702 goto phy_err;
703
704 return 0;
705
706 phy_err:
707 phy_error(phydev);
708
709 return err;
710 }
711
712 /**
713 * phy_start_interrupts - request and enable interrupts for a PHY device
714 * @phydev: target phy_device struct
715 *
716 * Description: Request the interrupt for the given PHY.
717 * If this fails, then we set irq to PHY_POLL.
718 * Otherwise, we enable the interrupts in the PHY.
719 * This should only be called with a valid IRQ number.
720 * Returns 0 on success or < 0 on error.
721 */
722 int phy_start_interrupts(struct phy_device *phydev)
723 {
724 atomic_set(&phydev->irq_disable, 0);
725 if (request_irq(phydev->irq, phy_interrupt,
726 IRQF_SHARED,
727 "phy_interrupt",
728 phydev) < 0) {
729 pr_warn("%s: Can't get IRQ %d (PHY)\n",
730 phydev->mdio.bus->name, phydev->irq);
731 phydev->irq = PHY_POLL;
732 return 0;
733 }
734
735 return phy_enable_interrupts(phydev);
736 }
737 EXPORT_SYMBOL(phy_start_interrupts);
738
739 /**
740 * phy_stop_interrupts - disable interrupts from a PHY device
741 * @phydev: target phy_device struct
742 */
743 int phy_stop_interrupts(struct phy_device *phydev)
744 {
745 int err = phy_disable_interrupts(phydev);
746
747 if (err)
748 phy_error(phydev);
749
750 free_irq(phydev->irq, phydev);
751
752 /* Cannot call flush_scheduled_work() here as desired because
753 * of rtnl_lock(), but we do not really care about what would
754 * be done, except from enable_irq(), so cancel any work
755 * possibly pending and take care of the matter below.
756 */
757 cancel_work_sync(&phydev->phy_queue);
758 /* If work indeed has been cancelled, disable_irq() will have
759 * been left unbalanced from phy_interrupt() and enable_irq()
760 * has to be called so that other devices on the line work.
761 */
762 while (atomic_dec_return(&phydev->irq_disable) >= 0)
763 enable_irq(phydev->irq);
764
765 return err;
766 }
767 EXPORT_SYMBOL(phy_stop_interrupts);
768
769 /**
770 * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes
771 * @work: work_struct that describes the work to be done
772 */
773 void phy_change(struct work_struct *work)
774 {
775 struct phy_device *phydev =
776 container_of(work, struct phy_device, phy_queue);
777
778 if (phy_interrupt_is_valid(phydev)) {
779 if (phydev->drv->did_interrupt &&
780 !phydev->drv->did_interrupt(phydev))
781 goto ignore;
782
783 if (phy_disable_interrupts(phydev))
784 goto phy_err;
785 }
786
787 mutex_lock(&phydev->lock);
788 if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
789 phydev->state = PHY_CHANGELINK;
790 mutex_unlock(&phydev->lock);
791
792 if (phy_interrupt_is_valid(phydev)) {
793 atomic_dec(&phydev->irq_disable);
794 enable_irq(phydev->irq);
795
796 /* Reenable interrupts */
797 if (PHY_HALTED != phydev->state &&
798 phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED))
799 goto irq_enable_err;
800 }
801
802 /* reschedule state queue work to run as soon as possible */
803 cancel_delayed_work_sync(&phydev->state_queue);
804 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0);
805 return;
806
807 ignore:
808 atomic_dec(&phydev->irq_disable);
809 enable_irq(phydev->irq);
810 return;
811
812 irq_enable_err:
813 disable_irq(phydev->irq);
814 atomic_inc(&phydev->irq_disable);
815 phy_err:
816 phy_error(phydev);
817 }
818
819 /**
820 * phy_stop - Bring down the PHY link, and stop checking the status
821 * @phydev: target phy_device struct
822 */
823 void phy_stop(struct phy_device *phydev)
824 {
825 mutex_lock(&phydev->lock);
826
827 if (PHY_HALTED == phydev->state)
828 goto out_unlock;
829
830 if (phy_interrupt_is_valid(phydev)) {
831 /* Disable PHY Interrupts */
832 phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
833
834 /* Clear any pending interrupts */
835 phy_clear_interrupt(phydev);
836 }
837
838 phydev->state = PHY_HALTED;
839
840 out_unlock:
841 mutex_unlock(&phydev->lock);
842
843 /* Cannot call flush_scheduled_work() here as desired because
844 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
845 * will not reenable interrupts.
846 */
847 }
848 EXPORT_SYMBOL(phy_stop);
849
850 /**
851 * phy_start - start or restart a PHY device
852 * @phydev: target phy_device struct
853 *
854 * Description: Indicates the attached device's readiness to
855 * handle PHY-related work. Used during startup to start the
856 * PHY, and after a call to phy_stop() to resume operation.
857 * Also used to indicate the MDIO bus has cleared an error
858 * condition.
859 */
860 void phy_start(struct phy_device *phydev)
861 {
862 bool do_resume = false;
863 int err = 0;
864
865 mutex_lock(&phydev->lock);
866
867 switch (phydev->state) {
868 case PHY_STARTING:
869 phydev->state = PHY_PENDING;
870 break;
871 case PHY_READY:
872 phydev->state = PHY_UP;
873 break;
874 case PHY_HALTED:
875 /* make sure interrupts are re-enabled for the PHY */
876 if (phydev->irq != PHY_POLL) {
877 err = phy_enable_interrupts(phydev);
878 if (err < 0)
879 break;
880 }
881
882 phydev->state = PHY_RESUMING;
883 do_resume = true;
884 break;
885 default:
886 break;
887 }
888 mutex_unlock(&phydev->lock);
889
890 /* if phy was suspended, bring the physical link up again */
891 if (do_resume)
892 phy_resume(phydev);
893 }
894 EXPORT_SYMBOL(phy_start);
895
896 /**
897 * phy_state_machine - Handle the state machine
898 * @work: work_struct that describes the work to be done
899 */
900 void phy_state_machine(struct work_struct *work)
901 {
902 struct delayed_work *dwork = to_delayed_work(work);
903 struct phy_device *phydev =
904 container_of(dwork, struct phy_device, state_queue);
905 bool needs_aneg = false, do_suspend = false;
906 enum phy_state old_state;
907 int err = 0;
908 int old_link;
909
910 mutex_lock(&phydev->lock);
911
912 old_state = phydev->state;
913
914 if (phydev->drv->link_change_notify)
915 phydev->drv->link_change_notify(phydev);
916
917 switch (phydev->state) {
918 case PHY_DOWN:
919 case PHY_STARTING:
920 case PHY_READY:
921 case PHY_PENDING:
922 break;
923 case PHY_UP:
924 needs_aneg = true;
925
926 phydev->link_timeout = PHY_AN_TIMEOUT;
927
928 break;
929 case PHY_AN:
930 err = phy_read_status(phydev);
931 if (err < 0)
932 break;
933
934 /* If the link is down, give up on negotiation for now */
935 if (!phydev->link) {
936 phydev->state = PHY_NOLINK;
937 netif_carrier_off(phydev->attached_dev);
938 phydev->adjust_link(phydev->attached_dev);
939 break;
940 }
941
942 /* Check if negotiation is done. Break if there's an error */
943 err = phy_aneg_done(phydev);
944 if (err < 0)
945 break;
946
947 /* If AN is done, we're running */
948 if (err > 0) {
949 phydev->state = PHY_RUNNING;
950 netif_carrier_on(phydev->attached_dev);
951 phydev->adjust_link(phydev->attached_dev);
952
953 } else if (0 == phydev->link_timeout--)
954 needs_aneg = true;
955 break;
956 case PHY_NOLINK:
957 if (phy_interrupt_is_valid(phydev))
958 break;
959
960 err = phy_read_status(phydev);
961 if (err)
962 break;
963
964 if (phydev->link) {
965 if (AUTONEG_ENABLE == phydev->autoneg) {
966 err = phy_aneg_done(phydev);
967 if (err < 0)
968 break;
969
970 if (!err) {
971 phydev->state = PHY_AN;
972 phydev->link_timeout = PHY_AN_TIMEOUT;
973 break;
974 }
975 }
976 phydev->state = PHY_RUNNING;
977 netif_carrier_on(phydev->attached_dev);
978 phydev->adjust_link(phydev->attached_dev);
979 }
980 break;
981 case PHY_FORCING:
982 err = genphy_update_link(phydev);
983 if (err)
984 break;
985
986 if (phydev->link) {
987 phydev->state = PHY_RUNNING;
988 netif_carrier_on(phydev->attached_dev);
989 } else {
990 if (0 == phydev->link_timeout--)
991 needs_aneg = true;
992 }
993
994 phydev->adjust_link(phydev->attached_dev);
995 break;
996 case PHY_RUNNING:
997 /* Only register a CHANGE if we are polling and link changed
998 * since latest checking.
999 */
1000 if (phydev->irq == PHY_POLL) {
1001 old_link = phydev->link;
1002 err = phy_read_status(phydev);
1003 if (err)
1004 break;
1005
1006 if (old_link != phydev->link)
1007 phydev->state = PHY_CHANGELINK;
1008 }
1009 break;
1010 case PHY_CHANGELINK:
1011 err = phy_read_status(phydev);
1012 if (err)
1013 break;
1014
1015 if (phydev->link) {
1016 phydev->state = PHY_RUNNING;
1017 netif_carrier_on(phydev->attached_dev);
1018 } else {
1019 phydev->state = PHY_NOLINK;
1020 netif_carrier_off(phydev->attached_dev);
1021 }
1022
1023 phydev->adjust_link(phydev->attached_dev);
1024
1025 if (phy_interrupt_is_valid(phydev))
1026 err = phy_config_interrupt(phydev,
1027 PHY_INTERRUPT_ENABLED);
1028 break;
1029 case PHY_HALTED:
1030 if (phydev->link) {
1031 phydev->link = 0;
1032 netif_carrier_off(phydev->attached_dev);
1033 phydev->adjust_link(phydev->attached_dev);
1034 do_suspend = true;
1035 }
1036 break;
1037 case PHY_RESUMING:
1038 if (AUTONEG_ENABLE == phydev->autoneg) {
1039 err = phy_aneg_done(phydev);
1040 if (err < 0)
1041 break;
1042
1043 /* err > 0 if AN is done.
1044 * Otherwise, it's 0, and we're still waiting for AN
1045 */
1046 if (err > 0) {
1047 err = phy_read_status(phydev);
1048 if (err)
1049 break;
1050
1051 if (phydev->link) {
1052 phydev->state = PHY_RUNNING;
1053 netif_carrier_on(phydev->attached_dev);
1054 } else {
1055 phydev->state = PHY_NOLINK;
1056 }
1057 phydev->adjust_link(phydev->attached_dev);
1058 } else {
1059 phydev->state = PHY_AN;
1060 phydev->link_timeout = PHY_AN_TIMEOUT;
1061 }
1062 } else {
1063 err = phy_read_status(phydev);
1064 if (err)
1065 break;
1066
1067 if (phydev->link) {
1068 phydev->state = PHY_RUNNING;
1069 netif_carrier_on(phydev->attached_dev);
1070 } else {
1071 phydev->state = PHY_NOLINK;
1072 }
1073 phydev->adjust_link(phydev->attached_dev);
1074 }
1075 break;
1076 }
1077
1078 mutex_unlock(&phydev->lock);
1079
1080 if (needs_aneg)
1081 err = phy_start_aneg(phydev);
1082 else if (do_suspend)
1083 phy_suspend(phydev);
1084
1085 if (err < 0)
1086 phy_error(phydev);
1087
1088 phydev_dbg(phydev, "PHY state change %s -> %s\n",
1089 phy_state_to_str(old_state),
1090 phy_state_to_str(phydev->state));
1091
1092 /* Only re-schedule a PHY state machine change if we are polling the
1093 * PHY, if PHY_IGNORE_INTERRUPT is set, then we will be moving
1094 * between states from phy_mac_interrupt()
1095 */
1096 if (phydev->irq == PHY_POLL)
1097 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue,
1098 PHY_STATE_TIME * HZ);
1099 }
1100
1101 void phy_mac_interrupt(struct phy_device *phydev, int new_link)
1102 {
1103 phydev->link = new_link;
1104
1105 /* Trigger a state machine change */
1106 queue_work(system_power_efficient_wq, &phydev->phy_queue);
1107 }
1108 EXPORT_SYMBOL(phy_mac_interrupt);
1109
1110 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad,
1111 int addr)
1112 {
1113 /* Write the desired MMD Devad */
1114 bus->write(bus, addr, MII_MMD_CTRL, devad);
1115
1116 /* Write the desired MMD register address */
1117 bus->write(bus, addr, MII_MMD_DATA, prtad);
1118
1119 /* Select the Function : DATA with no post increment */
1120 bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
1121 }
1122
1123 /**
1124 * phy_read_mmd_indirect - reads data from the MMD registers
1125 * @phydev: The PHY device bus
1126 * @prtad: MMD Address
1127 * @devad: MMD DEVAD
1128 *
1129 * Description: it reads data from the MMD registers (clause 22 to access to
1130 * clause 45) of the specified phy address.
1131 * To read these register we have:
1132 * 1) Write reg 13 // DEVAD
1133 * 2) Write reg 14 // MMD Address
1134 * 3) Write reg 13 // MMD Data Command for MMD DEVAD
1135 * 3) Read reg 14 // Read MMD data
1136 */
1137 int phy_read_mmd_indirect(struct phy_device *phydev, int prtad, int devad)
1138 {
1139 struct phy_driver *phydrv = phydev->drv;
1140 int addr = phydev->mdio.addr;
1141 int value = -1;
1142
1143 if (!phydrv->read_mmd_indirect) {
1144 struct mii_bus *bus = phydev->mdio.bus;
1145
1146 mutex_lock(&bus->mdio_lock);
1147 mmd_phy_indirect(bus, prtad, devad, addr);
1148
1149 /* Read the content of the MMD's selected register */
1150 value = bus->read(bus, addr, MII_MMD_DATA);
1151 mutex_unlock(&bus->mdio_lock);
1152 } else {
1153 value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr);
1154 }
1155 return value;
1156 }
1157 EXPORT_SYMBOL(phy_read_mmd_indirect);
1158
1159 /**
1160 * phy_write_mmd_indirect - writes data to the MMD registers
1161 * @phydev: The PHY device
1162 * @prtad: MMD Address
1163 * @devad: MMD DEVAD
1164 * @data: data to write in the MMD register
1165 *
1166 * Description: Write data from the MMD registers of the specified
1167 * phy address.
1168 * To write these register we have:
1169 * 1) Write reg 13 // DEVAD
1170 * 2) Write reg 14 // MMD Address
1171 * 3) Write reg 13 // MMD Data Command for MMD DEVAD
1172 * 3) Write reg 14 // Write MMD data
1173 */
1174 void phy_write_mmd_indirect(struct phy_device *phydev, int prtad,
1175 int devad, u32 data)
1176 {
1177 struct phy_driver *phydrv = phydev->drv;
1178 int addr = phydev->mdio.addr;
1179
1180 if (!phydrv->write_mmd_indirect) {
1181 struct mii_bus *bus = phydev->mdio.bus;
1182
1183 mutex_lock(&bus->mdio_lock);
1184 mmd_phy_indirect(bus, prtad, devad, addr);
1185
1186 /* Write the data into MMD's selected register */
1187 bus->write(bus, addr, MII_MMD_DATA, data);
1188 mutex_unlock(&bus->mdio_lock);
1189 } else {
1190 phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data);
1191 }
1192 }
1193 EXPORT_SYMBOL(phy_write_mmd_indirect);
1194
1195 /**
1196 * phy_init_eee - init and check the EEE feature
1197 * @phydev: target phy_device struct
1198 * @clk_stop_enable: PHY may stop the clock during LPI
1199 *
1200 * Description: it checks if the Energy-Efficient Ethernet (EEE)
1201 * is supported by looking at the MMD registers 3.20 and 7.60/61
1202 * and it programs the MMD register 3.0 setting the "Clock stop enable"
1203 * bit if required.
1204 */
1205 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable)
1206 {
1207 /* According to 802.3az,the EEE is supported only in full duplex-mode.
1208 * Also EEE feature is active when core is operating with MII, GMII
1209 * or RGMII (all kinds). Internal PHYs are also allowed to proceed and
1210 * should return an error if they do not support EEE.
1211 */
1212 if ((phydev->duplex == DUPLEX_FULL) &&
1213 ((phydev->interface == PHY_INTERFACE_MODE_MII) ||
1214 (phydev->interface == PHY_INTERFACE_MODE_GMII) ||
1215 phy_interface_is_rgmii(phydev) ||
1216 phy_is_internal(phydev))) {
1217 int eee_lp, eee_cap, eee_adv;
1218 u32 lp, cap, adv;
1219 int status;
1220
1221 /* Read phy status to properly get the right settings */
1222 status = phy_read_status(phydev);
1223 if (status)
1224 return status;
1225
1226 /* First check if the EEE ability is supported */
1227 eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
1228 MDIO_MMD_PCS);
1229 if (eee_cap <= 0)
1230 goto eee_exit_err;
1231
1232 cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
1233 if (!cap)
1234 goto eee_exit_err;
1235
1236 /* Check which link settings negotiated and verify it in
1237 * the EEE advertising registers.
1238 */
1239 eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
1240 MDIO_MMD_AN);
1241 if (eee_lp <= 0)
1242 goto eee_exit_err;
1243
1244 eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
1245 MDIO_MMD_AN);
1246 if (eee_adv <= 0)
1247 goto eee_exit_err;
1248
1249 adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
1250 lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
1251 if (!phy_check_valid(phydev->speed, phydev->duplex, lp & adv))
1252 goto eee_exit_err;
1253
1254 if (clk_stop_enable) {
1255 /* Configure the PHY to stop receiving xMII
1256 * clock while it is signaling LPI.
1257 */
1258 int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1,
1259 MDIO_MMD_PCS);
1260 if (val < 0)
1261 return val;
1262
1263 val |= MDIO_PCS_CTRL1_CLKSTOP_EN;
1264 phy_write_mmd_indirect(phydev, MDIO_CTRL1,
1265 MDIO_MMD_PCS, val);
1266 }
1267
1268 return 0; /* EEE supported */
1269 }
1270 eee_exit_err:
1271 return -EPROTONOSUPPORT;
1272 }
1273 EXPORT_SYMBOL(phy_init_eee);
1274
1275 /**
1276 * phy_get_eee_err - report the EEE wake error count
1277 * @phydev: target phy_device struct
1278 *
1279 * Description: it is to report the number of time where the PHY
1280 * failed to complete its normal wake sequence.
1281 */
1282 int phy_get_eee_err(struct phy_device *phydev)
1283 {
1284 return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR, MDIO_MMD_PCS);
1285 }
1286 EXPORT_SYMBOL(phy_get_eee_err);
1287
1288 /**
1289 * phy_ethtool_get_eee - get EEE supported and status
1290 * @phydev: target phy_device struct
1291 * @data: ethtool_eee data
1292 *
1293 * Description: it reportes the Supported/Advertisement/LP Advertisement
1294 * capabilities.
1295 */
1296 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data)
1297 {
1298 int val;
1299
1300 /* Get Supported EEE */
1301 val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, MDIO_MMD_PCS);
1302 if (val < 0)
1303 return val;
1304 data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
1305
1306 /* Get advertisement EEE */
1307 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN);
1308 if (val < 0)
1309 return val;
1310 data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1311
1312 /* Get LP advertisement EEE */
1313 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, MDIO_MMD_AN);
1314 if (val < 0)
1315 return val;
1316 data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1317
1318 return 0;
1319 }
1320 EXPORT_SYMBOL(phy_ethtool_get_eee);
1321
1322 /**
1323 * phy_ethtool_set_eee - set EEE supported and status
1324 * @phydev: target phy_device struct
1325 * @data: ethtool_eee data
1326 *
1327 * Description: it is to program the Advertisement EEE register.
1328 */
1329 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data)
1330 {
1331 int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
1332
1333 phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN, val);
1334
1335 return 0;
1336 }
1337 EXPORT_SYMBOL(phy_ethtool_set_eee);
1338
1339 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1340 {
1341 if (phydev->drv->set_wol)
1342 return phydev->drv->set_wol(phydev, wol);
1343
1344 return -EOPNOTSUPP;
1345 }
1346 EXPORT_SYMBOL(phy_ethtool_set_wol);
1347
1348 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1349 {
1350 if (phydev->drv->get_wol)
1351 phydev->drv->get_wol(phydev, wol);
1352 }
1353 EXPORT_SYMBOL(phy_ethtool_get_wol);
1354
1355 int phy_ethtool_get_link_ksettings(struct net_device *ndev,
1356 struct ethtool_link_ksettings *cmd)
1357 {
1358 struct phy_device *phydev = ndev->phydev;
1359
1360 if (!phydev)
1361 return -ENODEV;
1362
1363 return phy_ethtool_ksettings_get(phydev, cmd);
1364 }
1365 EXPORT_SYMBOL(phy_ethtool_get_link_ksettings);
1366
1367 int phy_ethtool_set_link_ksettings(struct net_device *ndev,
1368 const struct ethtool_link_ksettings *cmd)
1369 {
1370 struct phy_device *phydev = ndev->phydev;
1371
1372 if (!phydev)
1373 return -ENODEV;
1374
1375 return phy_ethtool_ksettings_set(phydev, cmd);
1376 }
1377 EXPORT_SYMBOL(phy_ethtool_set_link_ksettings);
This page took 0.059265 seconds and 5 git commands to generate.