ath9k: Fix bug in the way "bf_tx_aborted" of struct ath_buf is used
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "ath9k.h"
18 #include "ar9003_mac.h"
19
20 #define BITS_PER_BYTE 8
21 #define OFDM_PLCP_BITS 22
22 #define HT_RC_2_MCS(_rc) ((_rc) & 0x1f)
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
33 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
34
35 #define OFDM_SIFS_TIME 16
36
37 static u16 bits_per_symbol[][2] = {
38 /* 20MHz 40MHz */
39 { 26, 54 }, /* 0: BPSK */
40 { 52, 108 }, /* 1: QPSK 1/2 */
41 { 78, 162 }, /* 2: QPSK 3/4 */
42 { 104, 216 }, /* 3: 16-QAM 1/2 */
43 { 156, 324 }, /* 4: 16-QAM 3/4 */
44 { 208, 432 }, /* 5: 64-QAM 2/3 */
45 { 234, 486 }, /* 6: 64-QAM 3/4 */
46 { 260, 540 }, /* 7: 64-QAM 5/6 */
47 };
48
49 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
50
51 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
52 struct ath_atx_tid *tid,
53 struct list_head *bf_head);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok, int sendbar);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head);
59 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
60 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
61 struct ath_tx_status *ts, int txok);
62 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
63 int nbad, int txok, bool update_rc);
64
65 enum {
66 MCS_HT20,
67 MCS_HT20_SGI,
68 MCS_HT40,
69 MCS_HT40_SGI,
70 };
71
72 static int ath_max_4ms_framelen[4][32] = {
73 [MCS_HT20] = {
74 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
75 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
76 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
77 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
78 },
79 [MCS_HT20_SGI] = {
80 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
81 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
82 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
83 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
84 },
85 [MCS_HT40] = {
86 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
87 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
88 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
89 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
90 },
91 [MCS_HT40_SGI] = {
92 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
93 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
94 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
95 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
96 }
97 };
98
99 /*********************/
100 /* Aggregation logic */
101 /*********************/
102
103 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
104 {
105 struct ath_atx_ac *ac = tid->ac;
106
107 if (tid->paused)
108 return;
109
110 if (tid->sched)
111 return;
112
113 tid->sched = true;
114 list_add_tail(&tid->list, &ac->tid_q);
115
116 if (ac->sched)
117 return;
118
119 ac->sched = true;
120 list_add_tail(&ac->list, &txq->axq_acq);
121 }
122
123 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
124 {
125 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
126
127 spin_lock_bh(&txq->axq_lock);
128 tid->paused++;
129 spin_unlock_bh(&txq->axq_lock);
130 }
131
132 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
133 {
134 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
135
136 BUG_ON(tid->paused <= 0);
137 spin_lock_bh(&txq->axq_lock);
138
139 tid->paused--;
140
141 if (tid->paused > 0)
142 goto unlock;
143
144 if (list_empty(&tid->buf_q))
145 goto unlock;
146
147 ath_tx_queue_tid(txq, tid);
148 ath_txq_schedule(sc, txq);
149 unlock:
150 spin_unlock_bh(&txq->axq_lock);
151 }
152
153 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
154 {
155 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
156 struct ath_buf *bf;
157 struct list_head bf_head;
158 INIT_LIST_HEAD(&bf_head);
159
160 BUG_ON(tid->paused <= 0);
161 spin_lock_bh(&txq->axq_lock);
162
163 tid->paused--;
164
165 if (tid->paused > 0) {
166 spin_unlock_bh(&txq->axq_lock);
167 return;
168 }
169
170 while (!list_empty(&tid->buf_q)) {
171 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
172 BUG_ON(bf_isretried(bf));
173 list_move_tail(&bf->list, &bf_head);
174 ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
175 }
176
177 spin_unlock_bh(&txq->axq_lock);
178 }
179
180 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
181 int seqno)
182 {
183 int index, cindex;
184
185 index = ATH_BA_INDEX(tid->seq_start, seqno);
186 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
187
188 tid->tx_buf[cindex] = NULL;
189
190 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
191 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
192 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
193 }
194 }
195
196 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
197 struct ath_buf *bf)
198 {
199 int index, cindex;
200
201 if (bf_isretried(bf))
202 return;
203
204 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
205 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
206
207 BUG_ON(tid->tx_buf[cindex] != NULL);
208 tid->tx_buf[cindex] = bf;
209
210 if (index >= ((tid->baw_tail - tid->baw_head) &
211 (ATH_TID_MAX_BUFS - 1))) {
212 tid->baw_tail = cindex;
213 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
214 }
215 }
216
217 /*
218 * TODO: For frame(s) that are in the retry state, we will reuse the
219 * sequence number(s) without setting the retry bit. The
220 * alternative is to give up on these and BAR the receiver's window
221 * forward.
222 */
223 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
224 struct ath_atx_tid *tid)
225
226 {
227 struct ath_buf *bf;
228 struct list_head bf_head;
229 struct ath_tx_status ts;
230
231 memset(&ts, 0, sizeof(ts));
232 INIT_LIST_HEAD(&bf_head);
233
234 for (;;) {
235 if (list_empty(&tid->buf_q))
236 break;
237
238 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
239 list_move_tail(&bf->list, &bf_head);
240
241 if (bf_isretried(bf))
242 ath_tx_update_baw(sc, tid, bf->bf_seqno);
243
244 spin_unlock(&txq->axq_lock);
245 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
246 spin_lock(&txq->axq_lock);
247 }
248
249 tid->seq_next = tid->seq_start;
250 tid->baw_tail = tid->baw_head;
251 }
252
253 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
254 struct ath_buf *bf)
255 {
256 struct sk_buff *skb;
257 struct ieee80211_hdr *hdr;
258
259 bf->bf_state.bf_type |= BUF_RETRY;
260 bf->bf_retries++;
261 TX_STAT_INC(txq->axq_qnum, a_retries);
262
263 skb = bf->bf_mpdu;
264 hdr = (struct ieee80211_hdr *)skb->data;
265 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
266 }
267
268 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
269 {
270 struct ath_buf *bf = NULL;
271
272 spin_lock_bh(&sc->tx.txbuflock);
273
274 if (unlikely(list_empty(&sc->tx.txbuf))) {
275 spin_unlock_bh(&sc->tx.txbuflock);
276 return NULL;
277 }
278
279 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
280 list_del(&bf->list);
281
282 spin_unlock_bh(&sc->tx.txbuflock);
283
284 return bf;
285 }
286
287 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
288 {
289 spin_lock_bh(&sc->tx.txbuflock);
290 list_add_tail(&bf->list, &sc->tx.txbuf);
291 spin_unlock_bh(&sc->tx.txbuflock);
292 }
293
294 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
295 {
296 struct ath_buf *tbf;
297
298 tbf = ath_tx_get_buffer(sc);
299 if (WARN_ON(!tbf))
300 return NULL;
301
302 ATH_TXBUF_RESET(tbf);
303
304 tbf->aphy = bf->aphy;
305 tbf->bf_mpdu = bf->bf_mpdu;
306 tbf->bf_buf_addr = bf->bf_buf_addr;
307 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
308 tbf->bf_state = bf->bf_state;
309 tbf->bf_dmacontext = bf->bf_dmacontext;
310
311 return tbf;
312 }
313
314 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
315 struct ath_buf *bf, struct list_head *bf_q,
316 struct ath_tx_status *ts, int txok)
317 {
318 struct ath_node *an = NULL;
319 struct sk_buff *skb;
320 struct ieee80211_sta *sta;
321 struct ieee80211_hw *hw;
322 struct ieee80211_hdr *hdr;
323 struct ieee80211_tx_info *tx_info;
324 struct ath_atx_tid *tid = NULL;
325 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
326 struct list_head bf_head, bf_pending;
327 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
328 u32 ba[WME_BA_BMP_SIZE >> 5];
329 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
330 bool rc_update = true;
331
332 skb = bf->bf_mpdu;
333 hdr = (struct ieee80211_hdr *)skb->data;
334
335 tx_info = IEEE80211_SKB_CB(skb);
336 hw = bf->aphy->hw;
337
338 rcu_read_lock();
339
340 /* XXX: use ieee80211_find_sta! */
341 sta = ieee80211_find_sta_by_hw(hw, hdr->addr1);
342 if (!sta) {
343 rcu_read_unlock();
344 return;
345 }
346
347 an = (struct ath_node *)sta->drv_priv;
348 tid = ATH_AN_2_TID(an, bf->bf_tidno);
349
350 isaggr = bf_isaggr(bf);
351 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
352
353 if (isaggr && txok) {
354 if (ts->ts_flags & ATH9K_TX_BA) {
355 seq_st = ts->ts_seqnum;
356 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
357 } else {
358 /*
359 * AR5416 can become deaf/mute when BA
360 * issue happens. Chip needs to be reset.
361 * But AP code may have sychronization issues
362 * when perform internal reset in this routine.
363 * Only enable reset in STA mode for now.
364 */
365 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
366 needreset = 1;
367 }
368 }
369
370 INIT_LIST_HEAD(&bf_pending);
371 INIT_LIST_HEAD(&bf_head);
372
373 nbad = ath_tx_num_badfrms(sc, bf, ts, txok);
374 while (bf) {
375 txfail = txpending = 0;
376 bf_next = bf->bf_next;
377
378 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
379 /* transmit completion, subframe is
380 * acked by block ack */
381 acked_cnt++;
382 } else if (!isaggr && txok) {
383 /* transmit completion */
384 acked_cnt++;
385 } else {
386 if (!(tid->state & AGGR_CLEANUP) &&
387 !bf_last->bf_tx_aborted) {
388 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
389 ath_tx_set_retry(sc, txq, bf);
390 txpending = 1;
391 } else {
392 bf->bf_state.bf_type |= BUF_XRETRY;
393 txfail = 1;
394 sendbar = 1;
395 txfail_cnt++;
396 }
397 } else {
398 /*
399 * cleanup in progress, just fail
400 * the un-acked sub-frames
401 */
402 txfail = 1;
403 }
404 }
405
406 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
407 bf_next == NULL) {
408 /*
409 * Make sure the last desc is reclaimed if it
410 * not a holding desc.
411 */
412 if (!bf_last->bf_stale)
413 list_move_tail(&bf->list, &bf_head);
414 else
415 INIT_LIST_HEAD(&bf_head);
416 } else {
417 BUG_ON(list_empty(bf_q));
418 list_move_tail(&bf->list, &bf_head);
419 }
420
421 if (!txpending) {
422 /*
423 * complete the acked-ones/xretried ones; update
424 * block-ack window
425 */
426 spin_lock_bh(&txq->axq_lock);
427 ath_tx_update_baw(sc, tid, bf->bf_seqno);
428 spin_unlock_bh(&txq->axq_lock);
429
430 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
431 ath_tx_rc_status(bf, ts, nbad, txok, true);
432 rc_update = false;
433 } else {
434 ath_tx_rc_status(bf, ts, nbad, txok, false);
435 }
436
437 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
438 !txfail, sendbar);
439 } else {
440 /* retry the un-acked ones */
441 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
442 if (bf->bf_next == NULL && bf_last->bf_stale) {
443 struct ath_buf *tbf;
444
445 tbf = ath_clone_txbuf(sc, bf_last);
446 /*
447 * Update tx baw and complete the
448 * frame with failed status if we
449 * run out of tx buf.
450 */
451 if (!tbf) {
452 spin_lock_bh(&txq->axq_lock);
453 ath_tx_update_baw(sc, tid,
454 bf->bf_seqno);
455 spin_unlock_bh(&txq->axq_lock);
456
457 bf->bf_state.bf_type |=
458 BUF_XRETRY;
459 ath_tx_rc_status(bf, ts, nbad,
460 0, false);
461 ath_tx_complete_buf(sc, bf, txq,
462 &bf_head,
463 ts, 0, 0);
464 break;
465 }
466
467 ath9k_hw_cleartxdesc(sc->sc_ah,
468 tbf->bf_desc);
469 list_add_tail(&tbf->list, &bf_head);
470 } else {
471 /*
472 * Clear descriptor status words for
473 * software retry
474 */
475 ath9k_hw_cleartxdesc(sc->sc_ah,
476 bf->bf_desc);
477 }
478 }
479
480 /*
481 * Put this buffer to the temporary pending
482 * queue to retain ordering
483 */
484 list_splice_tail_init(&bf_head, &bf_pending);
485 }
486
487 bf = bf_next;
488 }
489
490 if (tid->state & AGGR_CLEANUP) {
491 if (tid->baw_head == tid->baw_tail) {
492 tid->state &= ~AGGR_ADDBA_COMPLETE;
493 tid->state &= ~AGGR_CLEANUP;
494
495 /* send buffered frames as singles */
496 ath_tx_flush_tid(sc, tid);
497 }
498 rcu_read_unlock();
499 return;
500 }
501
502 /* prepend un-acked frames to the beginning of the pending frame queue */
503 if (!list_empty(&bf_pending)) {
504 spin_lock_bh(&txq->axq_lock);
505 list_splice(&bf_pending, &tid->buf_q);
506 ath_tx_queue_tid(txq, tid);
507 spin_unlock_bh(&txq->axq_lock);
508 }
509
510 rcu_read_unlock();
511
512 if (needreset)
513 ath_reset(sc, false);
514 }
515
516 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
517 struct ath_atx_tid *tid)
518 {
519 struct sk_buff *skb;
520 struct ieee80211_tx_info *tx_info;
521 struct ieee80211_tx_rate *rates;
522 u32 max_4ms_framelen, frmlen;
523 u16 aggr_limit, legacy = 0;
524 int i;
525
526 skb = bf->bf_mpdu;
527 tx_info = IEEE80211_SKB_CB(skb);
528 rates = tx_info->control.rates;
529
530 /*
531 * Find the lowest frame length among the rate series that will have a
532 * 4ms transmit duration.
533 * TODO - TXOP limit needs to be considered.
534 */
535 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
536
537 for (i = 0; i < 4; i++) {
538 if (rates[i].count) {
539 int modeidx;
540 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
541 legacy = 1;
542 break;
543 }
544
545 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
546 modeidx = MCS_HT40;
547 else
548 modeidx = MCS_HT20;
549
550 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
551 modeidx++;
552
553 frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
554 max_4ms_framelen = min(max_4ms_framelen, frmlen);
555 }
556 }
557
558 /*
559 * limit aggregate size by the minimum rate if rate selected is
560 * not a probe rate, if rate selected is a probe rate then
561 * avoid aggregation of this packet.
562 */
563 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
564 return 0;
565
566 if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
567 aggr_limit = min((max_4ms_framelen * 3) / 8,
568 (u32)ATH_AMPDU_LIMIT_MAX);
569 else
570 aggr_limit = min(max_4ms_framelen,
571 (u32)ATH_AMPDU_LIMIT_MAX);
572
573 /*
574 * h/w can accept aggregates upto 16 bit lengths (65535).
575 * The IE, however can hold upto 65536, which shows up here
576 * as zero. Ignore 65536 since we are constrained by hw.
577 */
578 if (tid->an->maxampdu)
579 aggr_limit = min(aggr_limit, tid->an->maxampdu);
580
581 return aggr_limit;
582 }
583
584 /*
585 * Returns the number of delimiters to be added to
586 * meet the minimum required mpdudensity.
587 */
588 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
589 struct ath_buf *bf, u16 frmlen)
590 {
591 struct sk_buff *skb = bf->bf_mpdu;
592 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
593 u32 nsymbits, nsymbols;
594 u16 minlen;
595 u8 flags, rix;
596 int width, streams, half_gi, ndelim, mindelim;
597
598 /* Select standard number of delimiters based on frame length alone */
599 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
600
601 /*
602 * If encryption enabled, hardware requires some more padding between
603 * subframes.
604 * TODO - this could be improved to be dependent on the rate.
605 * The hardware can keep up at lower rates, but not higher rates
606 */
607 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
608 ndelim += ATH_AGGR_ENCRYPTDELIM;
609
610 /*
611 * Convert desired mpdu density from microeconds to bytes based
612 * on highest rate in rate series (i.e. first rate) to determine
613 * required minimum length for subframe. Take into account
614 * whether high rate is 20 or 40Mhz and half or full GI.
615 *
616 * If there is no mpdu density restriction, no further calculation
617 * is needed.
618 */
619
620 if (tid->an->mpdudensity == 0)
621 return ndelim;
622
623 rix = tx_info->control.rates[0].idx;
624 flags = tx_info->control.rates[0].flags;
625 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
626 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
627
628 if (half_gi)
629 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
630 else
631 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
632
633 if (nsymbols == 0)
634 nsymbols = 1;
635
636 streams = HT_RC_2_STREAMS(rix);
637 nsymbits = bits_per_symbol[rix % 8][width] * streams;
638 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
639
640 if (frmlen < minlen) {
641 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
642 ndelim = max(mindelim, ndelim);
643 }
644
645 return ndelim;
646 }
647
648 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
649 struct ath_txq *txq,
650 struct ath_atx_tid *tid,
651 struct list_head *bf_q)
652 {
653 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
654 struct ath_buf *bf, *bf_first, *bf_prev = NULL;
655 int rl = 0, nframes = 0, ndelim, prev_al = 0;
656 u16 aggr_limit = 0, al = 0, bpad = 0,
657 al_delta, h_baw = tid->baw_size / 2;
658 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
659
660 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
661
662 do {
663 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
664
665 /* do not step over block-ack window */
666 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
667 status = ATH_AGGR_BAW_CLOSED;
668 break;
669 }
670
671 if (!rl) {
672 aggr_limit = ath_lookup_rate(sc, bf, tid);
673 rl = 1;
674 }
675
676 /* do not exceed aggregation limit */
677 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
678
679 if (nframes &&
680 (aggr_limit < (al + bpad + al_delta + prev_al))) {
681 status = ATH_AGGR_LIMITED;
682 break;
683 }
684
685 /* do not exceed subframe limit */
686 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
687 status = ATH_AGGR_LIMITED;
688 break;
689 }
690 nframes++;
691
692 /* add padding for previous frame to aggregation length */
693 al += bpad + al_delta;
694
695 /*
696 * Get the delimiters needed to meet the MPDU
697 * density for this node.
698 */
699 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
700 bpad = PADBYTES(al_delta) + (ndelim << 2);
701
702 bf->bf_next = NULL;
703 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0);
704
705 /* link buffers of this frame to the aggregate */
706 ath_tx_addto_baw(sc, tid, bf);
707 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
708 list_move_tail(&bf->list, bf_q);
709 if (bf_prev) {
710 bf_prev->bf_next = bf;
711 ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc,
712 bf->bf_daddr);
713 }
714 bf_prev = bf;
715
716 } while (!list_empty(&tid->buf_q));
717
718 bf_first->bf_al = al;
719 bf_first->bf_nframes = nframes;
720
721 return status;
722 #undef PADBYTES
723 }
724
725 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
726 struct ath_atx_tid *tid)
727 {
728 struct ath_buf *bf;
729 enum ATH_AGGR_STATUS status;
730 struct list_head bf_q;
731
732 do {
733 if (list_empty(&tid->buf_q))
734 return;
735
736 INIT_LIST_HEAD(&bf_q);
737
738 status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
739
740 /*
741 * no frames picked up to be aggregated;
742 * block-ack window is not open.
743 */
744 if (list_empty(&bf_q))
745 break;
746
747 bf = list_first_entry(&bf_q, struct ath_buf, list);
748 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
749
750 /* if only one frame, send as non-aggregate */
751 if (bf->bf_nframes == 1) {
752 bf->bf_state.bf_type &= ~BUF_AGGR;
753 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
754 ath_buf_set_rate(sc, bf);
755 ath_tx_txqaddbuf(sc, txq, &bf_q);
756 continue;
757 }
758
759 /* setup first desc of aggregate */
760 bf->bf_state.bf_type |= BUF_AGGR;
761 ath_buf_set_rate(sc, bf);
762 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
763
764 /* anchor last desc of aggregate */
765 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
766
767 ath_tx_txqaddbuf(sc, txq, &bf_q);
768 TX_STAT_INC(txq->axq_qnum, a_aggr);
769
770 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
771 status != ATH_AGGR_BAW_CLOSED);
772 }
773
774 void ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
775 u16 tid, u16 *ssn)
776 {
777 struct ath_atx_tid *txtid;
778 struct ath_node *an;
779
780 an = (struct ath_node *)sta->drv_priv;
781 txtid = ATH_AN_2_TID(an, tid);
782 txtid->state |= AGGR_ADDBA_PROGRESS;
783 ath_tx_pause_tid(sc, txtid);
784 *ssn = txtid->seq_start;
785 }
786
787 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
788 {
789 struct ath_node *an = (struct ath_node *)sta->drv_priv;
790 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
791 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
792 struct ath_tx_status ts;
793 struct ath_buf *bf;
794 struct list_head bf_head;
795
796 memset(&ts, 0, sizeof(ts));
797 INIT_LIST_HEAD(&bf_head);
798
799 if (txtid->state & AGGR_CLEANUP)
800 return;
801
802 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
803 txtid->state &= ~AGGR_ADDBA_PROGRESS;
804 return;
805 }
806
807 ath_tx_pause_tid(sc, txtid);
808
809 /* drop all software retried frames and mark this TID */
810 spin_lock_bh(&txq->axq_lock);
811 while (!list_empty(&txtid->buf_q)) {
812 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
813 if (!bf_isretried(bf)) {
814 /*
815 * NB: it's based on the assumption that
816 * software retried frame will always stay
817 * at the head of software queue.
818 */
819 break;
820 }
821 list_move_tail(&bf->list, &bf_head);
822 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
823 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
824 }
825 spin_unlock_bh(&txq->axq_lock);
826
827 if (txtid->baw_head != txtid->baw_tail) {
828 txtid->state |= AGGR_CLEANUP;
829 } else {
830 txtid->state &= ~AGGR_ADDBA_COMPLETE;
831 ath_tx_flush_tid(sc, txtid);
832 }
833 }
834
835 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
836 {
837 struct ath_atx_tid *txtid;
838 struct ath_node *an;
839
840 an = (struct ath_node *)sta->drv_priv;
841
842 if (sc->sc_flags & SC_OP_TXAGGR) {
843 txtid = ATH_AN_2_TID(an, tid);
844 txtid->baw_size =
845 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
846 txtid->state |= AGGR_ADDBA_COMPLETE;
847 txtid->state &= ~AGGR_ADDBA_PROGRESS;
848 ath_tx_resume_tid(sc, txtid);
849 }
850 }
851
852 bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
853 {
854 struct ath_atx_tid *txtid;
855
856 if (!(sc->sc_flags & SC_OP_TXAGGR))
857 return false;
858
859 txtid = ATH_AN_2_TID(an, tidno);
860
861 if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
862 return true;
863 return false;
864 }
865
866 /********************/
867 /* Queue Management */
868 /********************/
869
870 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
871 struct ath_txq *txq)
872 {
873 struct ath_atx_ac *ac, *ac_tmp;
874 struct ath_atx_tid *tid, *tid_tmp;
875
876 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
877 list_del(&ac->list);
878 ac->sched = false;
879 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
880 list_del(&tid->list);
881 tid->sched = false;
882 ath_tid_drain(sc, txq, tid);
883 }
884 }
885 }
886
887 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
888 {
889 struct ath_hw *ah = sc->sc_ah;
890 struct ath_common *common = ath9k_hw_common(ah);
891 struct ath9k_tx_queue_info qi;
892 int qnum, i;
893
894 memset(&qi, 0, sizeof(qi));
895 qi.tqi_subtype = subtype;
896 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
897 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
898 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
899 qi.tqi_physCompBuf = 0;
900
901 /*
902 * Enable interrupts only for EOL and DESC conditions.
903 * We mark tx descriptors to receive a DESC interrupt
904 * when a tx queue gets deep; otherwise waiting for the
905 * EOL to reap descriptors. Note that this is done to
906 * reduce interrupt load and this only defers reaping
907 * descriptors, never transmitting frames. Aside from
908 * reducing interrupts this also permits more concurrency.
909 * The only potential downside is if the tx queue backs
910 * up in which case the top half of the kernel may backup
911 * due to a lack of tx descriptors.
912 *
913 * The UAPSD queue is an exception, since we take a desc-
914 * based intr on the EOSP frames.
915 */
916 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
917 qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
918 TXQ_FLAG_TXERRINT_ENABLE;
919 } else {
920 if (qtype == ATH9K_TX_QUEUE_UAPSD)
921 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
922 else
923 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
924 TXQ_FLAG_TXDESCINT_ENABLE;
925 }
926 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
927 if (qnum == -1) {
928 /*
929 * NB: don't print a message, this happens
930 * normally on parts with too few tx queues
931 */
932 return NULL;
933 }
934 if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
935 ath_print(common, ATH_DBG_FATAL,
936 "qnum %u out of range, max %u!\n",
937 qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
938 ath9k_hw_releasetxqueue(ah, qnum);
939 return NULL;
940 }
941 if (!ATH_TXQ_SETUP(sc, qnum)) {
942 struct ath_txq *txq = &sc->tx.txq[qnum];
943
944 txq->axq_qnum = qnum;
945 txq->axq_link = NULL;
946 INIT_LIST_HEAD(&txq->axq_q);
947 INIT_LIST_HEAD(&txq->axq_acq);
948 spin_lock_init(&txq->axq_lock);
949 txq->axq_depth = 0;
950 txq->axq_tx_inprogress = false;
951 sc->tx.txqsetup |= 1<<qnum;
952
953 txq->txq_headidx = txq->txq_tailidx = 0;
954 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
955 INIT_LIST_HEAD(&txq->txq_fifo[i]);
956 INIT_LIST_HEAD(&txq->txq_fifo_pending);
957 }
958 return &sc->tx.txq[qnum];
959 }
960
961 int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
962 {
963 int qnum;
964
965 switch (qtype) {
966 case ATH9K_TX_QUEUE_DATA:
967 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
968 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
969 "HAL AC %u out of range, max %zu!\n",
970 haltype, ARRAY_SIZE(sc->tx.hwq_map));
971 return -1;
972 }
973 qnum = sc->tx.hwq_map[haltype];
974 break;
975 case ATH9K_TX_QUEUE_BEACON:
976 qnum = sc->beacon.beaconq;
977 break;
978 case ATH9K_TX_QUEUE_CAB:
979 qnum = sc->beacon.cabq->axq_qnum;
980 break;
981 default:
982 qnum = -1;
983 }
984 return qnum;
985 }
986
987 struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
988 {
989 struct ath_txq *txq = NULL;
990 u16 skb_queue = skb_get_queue_mapping(skb);
991 int qnum;
992
993 qnum = ath_get_hal_qnum(skb_queue, sc);
994 txq = &sc->tx.txq[qnum];
995
996 spin_lock_bh(&txq->axq_lock);
997
998 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
999 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_XMIT,
1000 "TX queue: %d is full, depth: %d\n",
1001 qnum, txq->axq_depth);
1002 ath_mac80211_stop_queue(sc, skb_queue);
1003 txq->stopped = 1;
1004 spin_unlock_bh(&txq->axq_lock);
1005 return NULL;
1006 }
1007
1008 spin_unlock_bh(&txq->axq_lock);
1009
1010 return txq;
1011 }
1012
1013 int ath_txq_update(struct ath_softc *sc, int qnum,
1014 struct ath9k_tx_queue_info *qinfo)
1015 {
1016 struct ath_hw *ah = sc->sc_ah;
1017 int error = 0;
1018 struct ath9k_tx_queue_info qi;
1019
1020 if (qnum == sc->beacon.beaconq) {
1021 /*
1022 * XXX: for beacon queue, we just save the parameter.
1023 * It will be picked up by ath_beaconq_config when
1024 * it's necessary.
1025 */
1026 sc->beacon.beacon_qi = *qinfo;
1027 return 0;
1028 }
1029
1030 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1031
1032 ath9k_hw_get_txq_props(ah, qnum, &qi);
1033 qi.tqi_aifs = qinfo->tqi_aifs;
1034 qi.tqi_cwmin = qinfo->tqi_cwmin;
1035 qi.tqi_cwmax = qinfo->tqi_cwmax;
1036 qi.tqi_burstTime = qinfo->tqi_burstTime;
1037 qi.tqi_readyTime = qinfo->tqi_readyTime;
1038
1039 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1040 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1041 "Unable to update hardware queue %u!\n", qnum);
1042 error = -EIO;
1043 } else {
1044 ath9k_hw_resettxqueue(ah, qnum);
1045 }
1046
1047 return error;
1048 }
1049
1050 int ath_cabq_update(struct ath_softc *sc)
1051 {
1052 struct ath9k_tx_queue_info qi;
1053 int qnum = sc->beacon.cabq->axq_qnum;
1054
1055 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1056 /*
1057 * Ensure the readytime % is within the bounds.
1058 */
1059 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1060 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1061 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1062 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1063
1064 qi.tqi_readyTime = (sc->beacon_interval *
1065 sc->config.cabqReadytime) / 100;
1066 ath_txq_update(sc, qnum, &qi);
1067
1068 return 0;
1069 }
1070
1071 /*
1072 * Drain a given TX queue (could be Beacon or Data)
1073 *
1074 * This assumes output has been stopped and
1075 * we do not need to block ath_tx_tasklet.
1076 */
1077 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1078 {
1079 struct ath_buf *bf, *lastbf;
1080 struct list_head bf_head;
1081 struct ath_tx_status ts;
1082
1083 memset(&ts, 0, sizeof(ts));
1084 INIT_LIST_HEAD(&bf_head);
1085
1086 for (;;) {
1087 spin_lock_bh(&txq->axq_lock);
1088
1089 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1090 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
1091 txq->txq_headidx = txq->txq_tailidx = 0;
1092 spin_unlock_bh(&txq->axq_lock);
1093 break;
1094 } else {
1095 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
1096 struct ath_buf, list);
1097 }
1098 } else {
1099 if (list_empty(&txq->axq_q)) {
1100 txq->axq_link = NULL;
1101 spin_unlock_bh(&txq->axq_lock);
1102 break;
1103 }
1104 bf = list_first_entry(&txq->axq_q, struct ath_buf,
1105 list);
1106
1107 if (bf->bf_stale) {
1108 list_del(&bf->list);
1109 spin_unlock_bh(&txq->axq_lock);
1110
1111 ath_tx_return_buffer(sc, bf);
1112 continue;
1113 }
1114 }
1115
1116 lastbf = bf->bf_lastbf;
1117 if (!retry_tx)
1118 lastbf->bf_tx_aborted = true;
1119
1120 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1121 list_cut_position(&bf_head,
1122 &txq->txq_fifo[txq->txq_tailidx],
1123 &lastbf->list);
1124 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
1125 } else {
1126 /* remove ath_buf's of the same mpdu from txq */
1127 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
1128 }
1129
1130 txq->axq_depth--;
1131
1132 spin_unlock_bh(&txq->axq_lock);
1133
1134 if (bf_isampdu(bf))
1135 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0);
1136 else
1137 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
1138 }
1139
1140 spin_lock_bh(&txq->axq_lock);
1141 txq->axq_tx_inprogress = false;
1142 spin_unlock_bh(&txq->axq_lock);
1143
1144 /* flush any pending frames if aggregation is enabled */
1145 if (sc->sc_flags & SC_OP_TXAGGR) {
1146 if (!retry_tx) {
1147 spin_lock_bh(&txq->axq_lock);
1148 ath_txq_drain_pending_buffers(sc, txq);
1149 spin_unlock_bh(&txq->axq_lock);
1150 }
1151 }
1152
1153 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1154 spin_lock_bh(&txq->axq_lock);
1155 while (!list_empty(&txq->txq_fifo_pending)) {
1156 bf = list_first_entry(&txq->txq_fifo_pending,
1157 struct ath_buf, list);
1158 list_cut_position(&bf_head,
1159 &txq->txq_fifo_pending,
1160 &bf->bf_lastbf->list);
1161 spin_unlock_bh(&txq->axq_lock);
1162
1163 if (bf_isampdu(bf))
1164 ath_tx_complete_aggr(sc, txq, bf, &bf_head,
1165 &ts, 0);
1166 else
1167 ath_tx_complete_buf(sc, bf, txq, &bf_head,
1168 &ts, 0, 0);
1169 spin_lock_bh(&txq->axq_lock);
1170 }
1171 spin_unlock_bh(&txq->axq_lock);
1172 }
1173 }
1174
1175 void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1176 {
1177 struct ath_hw *ah = sc->sc_ah;
1178 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1179 struct ath_txq *txq;
1180 int i, npend = 0;
1181
1182 if (sc->sc_flags & SC_OP_INVALID)
1183 return;
1184
1185 /* Stop beacon queue */
1186 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1187
1188 /* Stop data queues */
1189 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1190 if (ATH_TXQ_SETUP(sc, i)) {
1191 txq = &sc->tx.txq[i];
1192 ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1193 npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
1194 }
1195 }
1196
1197 if (npend) {
1198 int r;
1199
1200 ath_print(common, ATH_DBG_FATAL,
1201 "Failed to stop TX DMA. Resetting hardware!\n");
1202
1203 spin_lock_bh(&sc->sc_resetlock);
1204 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1205 if (r)
1206 ath_print(common, ATH_DBG_FATAL,
1207 "Unable to reset hardware; reset status %d\n",
1208 r);
1209 spin_unlock_bh(&sc->sc_resetlock);
1210 }
1211
1212 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1213 if (ATH_TXQ_SETUP(sc, i))
1214 ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
1215 }
1216 }
1217
1218 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1219 {
1220 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1221 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1222 }
1223
1224 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1225 {
1226 struct ath_atx_ac *ac;
1227 struct ath_atx_tid *tid;
1228
1229 if (list_empty(&txq->axq_acq))
1230 return;
1231
1232 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1233 list_del(&ac->list);
1234 ac->sched = false;
1235
1236 do {
1237 if (list_empty(&ac->tid_q))
1238 return;
1239
1240 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
1241 list_del(&tid->list);
1242 tid->sched = false;
1243
1244 if (tid->paused)
1245 continue;
1246
1247 ath_tx_sched_aggr(sc, txq, tid);
1248
1249 /*
1250 * add tid to round-robin queue if more frames
1251 * are pending for the tid
1252 */
1253 if (!list_empty(&tid->buf_q))
1254 ath_tx_queue_tid(txq, tid);
1255
1256 break;
1257 } while (!list_empty(&ac->tid_q));
1258
1259 if (!list_empty(&ac->tid_q)) {
1260 if (!ac->sched) {
1261 ac->sched = true;
1262 list_add_tail(&ac->list, &txq->axq_acq);
1263 }
1264 }
1265 }
1266
1267 int ath_tx_setup(struct ath_softc *sc, int haltype)
1268 {
1269 struct ath_txq *txq;
1270
1271 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1272 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1273 "HAL AC %u out of range, max %zu!\n",
1274 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1275 return 0;
1276 }
1277 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1278 if (txq != NULL) {
1279 sc->tx.hwq_map[haltype] = txq->axq_qnum;
1280 return 1;
1281 } else
1282 return 0;
1283 }
1284
1285 /***********/
1286 /* TX, DMA */
1287 /***********/
1288
1289 /*
1290 * Insert a chain of ath_buf (descriptors) on a txq and
1291 * assume the descriptors are already chained together by caller.
1292 */
1293 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1294 struct list_head *head)
1295 {
1296 struct ath_hw *ah = sc->sc_ah;
1297 struct ath_common *common = ath9k_hw_common(ah);
1298 struct ath_buf *bf;
1299
1300 /*
1301 * Insert the frame on the outbound list and
1302 * pass it on to the hardware.
1303 */
1304
1305 if (list_empty(head))
1306 return;
1307
1308 bf = list_first_entry(head, struct ath_buf, list);
1309
1310 ath_print(common, ATH_DBG_QUEUE,
1311 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1312
1313 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1314 if (txq->axq_depth >= ATH_TXFIFO_DEPTH) {
1315 list_splice_tail_init(head, &txq->txq_fifo_pending);
1316 return;
1317 }
1318 if (!list_empty(&txq->txq_fifo[txq->txq_headidx]))
1319 ath_print(common, ATH_DBG_XMIT,
1320 "Initializing tx fifo %d which "
1321 "is non-empty\n",
1322 txq->txq_headidx);
1323 INIT_LIST_HEAD(&txq->txq_fifo[txq->txq_headidx]);
1324 list_splice_init(head, &txq->txq_fifo[txq->txq_headidx]);
1325 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1326 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1327 ath_print(common, ATH_DBG_XMIT,
1328 "TXDP[%u] = %llx (%p)\n",
1329 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1330 } else {
1331 list_splice_tail_init(head, &txq->axq_q);
1332
1333 if (txq->axq_link == NULL) {
1334 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1335 ath_print(common, ATH_DBG_XMIT,
1336 "TXDP[%u] = %llx (%p)\n",
1337 txq->axq_qnum, ito64(bf->bf_daddr),
1338 bf->bf_desc);
1339 } else {
1340 *txq->axq_link = bf->bf_daddr;
1341 ath_print(common, ATH_DBG_XMIT,
1342 "link[%u] (%p)=%llx (%p)\n",
1343 txq->axq_qnum, txq->axq_link,
1344 ito64(bf->bf_daddr), bf->bf_desc);
1345 }
1346 ath9k_hw_get_desc_link(ah, bf->bf_lastbf->bf_desc,
1347 &txq->axq_link);
1348 ath9k_hw_txstart(ah, txq->axq_qnum);
1349 }
1350 txq->axq_depth++;
1351 }
1352
1353 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1354 struct list_head *bf_head,
1355 struct ath_tx_control *txctl)
1356 {
1357 struct ath_buf *bf;
1358
1359 bf = list_first_entry(bf_head, struct ath_buf, list);
1360 bf->bf_state.bf_type |= BUF_AMPDU;
1361 TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
1362
1363 /*
1364 * Do not queue to h/w when any of the following conditions is true:
1365 * - there are pending frames in software queue
1366 * - the TID is currently paused for ADDBA/BAR request
1367 * - seqno is not within block-ack window
1368 * - h/w queue depth exceeds low water mark
1369 */
1370 if (!list_empty(&tid->buf_q) || tid->paused ||
1371 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1372 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1373 /*
1374 * Add this frame to software queue for scheduling later
1375 * for aggregation.
1376 */
1377 list_move_tail(&bf->list, &tid->buf_q);
1378 ath_tx_queue_tid(txctl->txq, tid);
1379 return;
1380 }
1381
1382 /* Add sub-frame to BAW */
1383 ath_tx_addto_baw(sc, tid, bf);
1384
1385 /* Queue to h/w without aggregation */
1386 bf->bf_nframes = 1;
1387 bf->bf_lastbf = bf;
1388 ath_buf_set_rate(sc, bf);
1389 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1390 }
1391
1392 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
1393 struct ath_atx_tid *tid,
1394 struct list_head *bf_head)
1395 {
1396 struct ath_buf *bf;
1397
1398 bf = list_first_entry(bf_head, struct ath_buf, list);
1399 bf->bf_state.bf_type &= ~BUF_AMPDU;
1400
1401 /* update starting sequence number for subsequent ADDBA request */
1402 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1403
1404 bf->bf_nframes = 1;
1405 bf->bf_lastbf = bf;
1406 ath_buf_set_rate(sc, bf);
1407 ath_tx_txqaddbuf(sc, txq, bf_head);
1408 TX_STAT_INC(txq->axq_qnum, queued);
1409 }
1410
1411 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1412 struct list_head *bf_head)
1413 {
1414 struct ath_buf *bf;
1415
1416 bf = list_first_entry(bf_head, struct ath_buf, list);
1417
1418 bf->bf_lastbf = bf;
1419 bf->bf_nframes = 1;
1420 ath_buf_set_rate(sc, bf);
1421 ath_tx_txqaddbuf(sc, txq, bf_head);
1422 TX_STAT_INC(txq->axq_qnum, queued);
1423 }
1424
1425 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1426 {
1427 struct ieee80211_hdr *hdr;
1428 enum ath9k_pkt_type htype;
1429 __le16 fc;
1430
1431 hdr = (struct ieee80211_hdr *)skb->data;
1432 fc = hdr->frame_control;
1433
1434 if (ieee80211_is_beacon(fc))
1435 htype = ATH9K_PKT_TYPE_BEACON;
1436 else if (ieee80211_is_probe_resp(fc))
1437 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1438 else if (ieee80211_is_atim(fc))
1439 htype = ATH9K_PKT_TYPE_ATIM;
1440 else if (ieee80211_is_pspoll(fc))
1441 htype = ATH9K_PKT_TYPE_PSPOLL;
1442 else
1443 htype = ATH9K_PKT_TYPE_NORMAL;
1444
1445 return htype;
1446 }
1447
1448 static int get_hw_crypto_keytype(struct sk_buff *skb)
1449 {
1450 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1451
1452 if (tx_info->control.hw_key) {
1453 if (tx_info->control.hw_key->alg == ALG_WEP)
1454 return ATH9K_KEY_TYPE_WEP;
1455 else if (tx_info->control.hw_key->alg == ALG_TKIP)
1456 return ATH9K_KEY_TYPE_TKIP;
1457 else if (tx_info->control.hw_key->alg == ALG_CCMP)
1458 return ATH9K_KEY_TYPE_AES;
1459 }
1460
1461 return ATH9K_KEY_TYPE_CLEAR;
1462 }
1463
1464 static void assign_aggr_tid_seqno(struct sk_buff *skb,
1465 struct ath_buf *bf)
1466 {
1467 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1468 struct ieee80211_hdr *hdr;
1469 struct ath_node *an;
1470 struct ath_atx_tid *tid;
1471 __le16 fc;
1472 u8 *qc;
1473
1474 if (!tx_info->control.sta)
1475 return;
1476
1477 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1478 hdr = (struct ieee80211_hdr *)skb->data;
1479 fc = hdr->frame_control;
1480
1481 if (ieee80211_is_data_qos(fc)) {
1482 qc = ieee80211_get_qos_ctl(hdr);
1483 bf->bf_tidno = qc[0] & 0xf;
1484 }
1485
1486 /*
1487 * For HT capable stations, we save tidno for later use.
1488 * We also override seqno set by upper layer with the one
1489 * in tx aggregation state.
1490 */
1491 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1492 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1493 bf->bf_seqno = tid->seq_next;
1494 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1495 }
1496
1497 static int setup_tx_flags(struct sk_buff *skb, bool use_ldpc)
1498 {
1499 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1500 int flags = 0;
1501
1502 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
1503 flags |= ATH9K_TXDESC_INTREQ;
1504
1505 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1506 flags |= ATH9K_TXDESC_NOACK;
1507
1508 if (use_ldpc)
1509 flags |= ATH9K_TXDESC_LDPC;
1510
1511 return flags;
1512 }
1513
1514 /*
1515 * rix - rate index
1516 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1517 * width - 0 for 20 MHz, 1 for 40 MHz
1518 * half_gi - to use 4us v/s 3.6 us for symbol time
1519 */
1520 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
1521 int width, int half_gi, bool shortPreamble)
1522 {
1523 u32 nbits, nsymbits, duration, nsymbols;
1524 int streams, pktlen;
1525
1526 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
1527
1528 /* find number of symbols: PLCP + data */
1529 streams = HT_RC_2_STREAMS(rix);
1530 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1531 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1532 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1533
1534 if (!half_gi)
1535 duration = SYMBOL_TIME(nsymbols);
1536 else
1537 duration = SYMBOL_TIME_HALFGI(nsymbols);
1538
1539 /* addup duration for legacy/ht training and signal fields */
1540 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1541
1542 return duration;
1543 }
1544
1545 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
1546 {
1547 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1548 struct ath9k_11n_rate_series series[4];
1549 struct sk_buff *skb;
1550 struct ieee80211_tx_info *tx_info;
1551 struct ieee80211_tx_rate *rates;
1552 const struct ieee80211_rate *rate;
1553 struct ieee80211_hdr *hdr;
1554 int i, flags = 0;
1555 u8 rix = 0, ctsrate = 0;
1556 bool is_pspoll;
1557
1558 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
1559
1560 skb = bf->bf_mpdu;
1561 tx_info = IEEE80211_SKB_CB(skb);
1562 rates = tx_info->control.rates;
1563 hdr = (struct ieee80211_hdr *)skb->data;
1564 is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
1565
1566 /*
1567 * We check if Short Preamble is needed for the CTS rate by
1568 * checking the BSS's global flag.
1569 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1570 */
1571 rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
1572 ctsrate = rate->hw_value;
1573 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
1574 ctsrate |= rate->hw_value_short;
1575
1576 for (i = 0; i < 4; i++) {
1577 bool is_40, is_sgi, is_sp;
1578 int phy;
1579
1580 if (!rates[i].count || (rates[i].idx < 0))
1581 continue;
1582
1583 rix = rates[i].idx;
1584 series[i].Tries = rates[i].count;
1585 series[i].ChSel = common->tx_chainmask;
1586
1587 if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) ||
1588 (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) {
1589 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1590 flags |= ATH9K_TXDESC_RTSENA;
1591 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1592 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1593 flags |= ATH9K_TXDESC_CTSENA;
1594 }
1595
1596 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1597 series[i].RateFlags |= ATH9K_RATESERIES_2040;
1598 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1599 series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1600
1601 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1602 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1603 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1604
1605 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1606 /* MCS rates */
1607 series[i].Rate = rix | 0x80;
1608 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
1609 is_40, is_sgi, is_sp);
1610 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1611 series[i].RateFlags |= ATH9K_RATESERIES_STBC;
1612 continue;
1613 }
1614
1615 /* legcay rates */
1616 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1617 !(rate->flags & IEEE80211_RATE_ERP_G))
1618 phy = WLAN_RC_PHY_CCK;
1619 else
1620 phy = WLAN_RC_PHY_OFDM;
1621
1622 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1623 series[i].Rate = rate->hw_value;
1624 if (rate->hw_value_short) {
1625 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1626 series[i].Rate |= rate->hw_value_short;
1627 } else {
1628 is_sp = false;
1629 }
1630
1631 series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1632 phy, rate->bitrate * 100, bf->bf_frmlen, rix, is_sp);
1633 }
1634
1635 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1636 if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
1637 flags &= ~ATH9K_TXDESC_RTSENA;
1638
1639 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1640 if (flags & ATH9K_TXDESC_RTSENA)
1641 flags &= ~ATH9K_TXDESC_CTSENA;
1642
1643 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1644 ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
1645 bf->bf_lastbf->bf_desc,
1646 !is_pspoll, ctsrate,
1647 0, series, 4, flags);
1648
1649 if (sc->config.ath_aggr_prot && flags)
1650 ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
1651 }
1652
1653 static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
1654 struct sk_buff *skb,
1655 struct ath_tx_control *txctl)
1656 {
1657 struct ath_wiphy *aphy = hw->priv;
1658 struct ath_softc *sc = aphy->sc;
1659 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1660 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1661 int hdrlen;
1662 __le16 fc;
1663 int padpos, padsize;
1664 bool use_ldpc = false;
1665
1666 tx_info->pad[0] = 0;
1667 switch (txctl->frame_type) {
1668 case ATH9K_IFT_NOT_INTERNAL:
1669 break;
1670 case ATH9K_IFT_PAUSE:
1671 tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_PAUSE;
1672 /* fall through */
1673 case ATH9K_IFT_UNPAUSE:
1674 tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_INTERNAL;
1675 break;
1676 }
1677 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1678 fc = hdr->frame_control;
1679
1680 ATH_TXBUF_RESET(bf);
1681
1682 bf->aphy = aphy;
1683 bf->bf_frmlen = skb->len + FCS_LEN;
1684 /* Remove the padding size from bf_frmlen, if any */
1685 padpos = ath9k_cmn_padpos(hdr->frame_control);
1686 padsize = padpos & 3;
1687 if (padsize && skb->len>padpos+padsize) {
1688 bf->bf_frmlen -= padsize;
1689 }
1690
1691 if (conf_is_ht(&hw->conf)) {
1692 bf->bf_state.bf_type |= BUF_HT;
1693 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1694 use_ldpc = true;
1695 }
1696
1697 bf->bf_flags = setup_tx_flags(skb, use_ldpc);
1698
1699 bf->bf_keytype = get_hw_crypto_keytype(skb);
1700 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1701 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1702 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1703 } else {
1704 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1705 }
1706
1707 if (ieee80211_is_data_qos(fc) && bf_isht(bf) &&
1708 (sc->sc_flags & SC_OP_TXAGGR))
1709 assign_aggr_tid_seqno(skb, bf);
1710
1711 bf->bf_mpdu = skb;
1712
1713 bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
1714 skb->len, DMA_TO_DEVICE);
1715 if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
1716 bf->bf_mpdu = NULL;
1717 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1718 "dma_mapping_error() on TX\n");
1719 return -ENOMEM;
1720 }
1721
1722 bf->bf_buf_addr = bf->bf_dmacontext;
1723
1724 /* tag if this is a nullfunc frame to enable PS when AP acks it */
1725 if (ieee80211_is_nullfunc(fc) && ieee80211_has_pm(fc)) {
1726 bf->bf_isnullfunc = true;
1727 sc->ps_flags &= ~PS_NULLFUNC_COMPLETED;
1728 } else
1729 bf->bf_isnullfunc = false;
1730
1731 bf->bf_tx_aborted = false;
1732
1733 return 0;
1734 }
1735
1736 /* FIXME: tx power */
1737 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1738 struct ath_tx_control *txctl)
1739 {
1740 struct sk_buff *skb = bf->bf_mpdu;
1741 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1742 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1743 struct ath_node *an = NULL;
1744 struct list_head bf_head;
1745 struct ath_desc *ds;
1746 struct ath_atx_tid *tid;
1747 struct ath_hw *ah = sc->sc_ah;
1748 int frm_type;
1749 __le16 fc;
1750
1751 frm_type = get_hw_packet_type(skb);
1752 fc = hdr->frame_control;
1753
1754 INIT_LIST_HEAD(&bf_head);
1755 list_add_tail(&bf->list, &bf_head);
1756
1757 ds = bf->bf_desc;
1758 ath9k_hw_set_desc_link(ah, ds, 0);
1759
1760 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1761 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1762
1763 ath9k_hw_filltxdesc(ah, ds,
1764 skb->len, /* segment length */
1765 true, /* first segment */
1766 true, /* last segment */
1767 ds, /* first descriptor */
1768 bf->bf_buf_addr,
1769 txctl->txq->axq_qnum);
1770
1771 spin_lock_bh(&txctl->txq->axq_lock);
1772
1773 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1774 tx_info->control.sta) {
1775 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1776 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1777
1778 if (!ieee80211_is_data_qos(fc)) {
1779 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1780 goto tx_done;
1781 }
1782
1783 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1784 /*
1785 * Try aggregation if it's a unicast data frame
1786 * and the destination is HT capable.
1787 */
1788 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1789 } else {
1790 /*
1791 * Send this frame as regular when ADDBA
1792 * exchange is neither complete nor pending.
1793 */
1794 ath_tx_send_ht_normal(sc, txctl->txq,
1795 tid, &bf_head);
1796 }
1797 } else {
1798 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1799 }
1800
1801 tx_done:
1802 spin_unlock_bh(&txctl->txq->axq_lock);
1803 }
1804
1805 /* Upon failure caller should free skb */
1806 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1807 struct ath_tx_control *txctl)
1808 {
1809 struct ath_wiphy *aphy = hw->priv;
1810 struct ath_softc *sc = aphy->sc;
1811 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1812 struct ath_buf *bf;
1813 int r;
1814
1815 bf = ath_tx_get_buffer(sc);
1816 if (!bf) {
1817 ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
1818 return -1;
1819 }
1820
1821 r = ath_tx_setup_buffer(hw, bf, skb, txctl);
1822 if (unlikely(r)) {
1823 struct ath_txq *txq = txctl->txq;
1824
1825 ath_print(common, ATH_DBG_FATAL, "TX mem alloc failure\n");
1826
1827 /* upon ath_tx_processq() this TX queue will be resumed, we
1828 * guarantee this will happen by knowing beforehand that
1829 * we will at least have to run TX completionon one buffer
1830 * on the queue */
1831 spin_lock_bh(&txq->axq_lock);
1832 if (sc->tx.txq[txq->axq_qnum].axq_depth > 1) {
1833 ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
1834 txq->stopped = 1;
1835 }
1836 spin_unlock_bh(&txq->axq_lock);
1837
1838 ath_tx_return_buffer(sc, bf);
1839
1840 return r;
1841 }
1842
1843 ath_tx_start_dma(sc, bf, txctl);
1844
1845 return 0;
1846 }
1847
1848 void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
1849 {
1850 struct ath_wiphy *aphy = hw->priv;
1851 struct ath_softc *sc = aphy->sc;
1852 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1853 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1854 int padpos, padsize;
1855 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1856 struct ath_tx_control txctl;
1857
1858 memset(&txctl, 0, sizeof(struct ath_tx_control));
1859
1860 /*
1861 * As a temporary workaround, assign seq# here; this will likely need
1862 * to be cleaned up to work better with Beacon transmission and virtual
1863 * BSSes.
1864 */
1865 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1866 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1867 sc->tx.seq_no += 0x10;
1868 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1869 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1870 }
1871
1872 /* Add the padding after the header if this is not already done */
1873 padpos = ath9k_cmn_padpos(hdr->frame_control);
1874 padsize = padpos & 3;
1875 if (padsize && skb->len>padpos) {
1876 if (skb_headroom(skb) < padsize) {
1877 ath_print(common, ATH_DBG_XMIT,
1878 "TX CABQ padding failed\n");
1879 dev_kfree_skb_any(skb);
1880 return;
1881 }
1882 skb_push(skb, padsize);
1883 memmove(skb->data, skb->data + padsize, padpos);
1884 }
1885
1886 txctl.txq = sc->beacon.cabq;
1887
1888 ath_print(common, ATH_DBG_XMIT,
1889 "transmitting CABQ packet, skb: %p\n", skb);
1890
1891 if (ath_tx_start(hw, skb, &txctl) != 0) {
1892 ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
1893 goto exit;
1894 }
1895
1896 return;
1897 exit:
1898 dev_kfree_skb_any(skb);
1899 }
1900
1901 /*****************/
1902 /* TX Completion */
1903 /*****************/
1904
1905 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1906 struct ath_wiphy *aphy, int tx_flags)
1907 {
1908 struct ieee80211_hw *hw = sc->hw;
1909 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1910 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1911 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1912 int padpos, padsize;
1913
1914 ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1915
1916 if (aphy)
1917 hw = aphy->hw;
1918
1919 if (tx_flags & ATH_TX_BAR)
1920 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1921
1922 if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
1923 /* Frame was ACKed */
1924 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1925 }
1926
1927 padpos = ath9k_cmn_padpos(hdr->frame_control);
1928 padsize = padpos & 3;
1929 if (padsize && skb->len>padpos+padsize) {
1930 /*
1931 * Remove MAC header padding before giving the frame back to
1932 * mac80211.
1933 */
1934 memmove(skb->data + padsize, skb->data, padpos);
1935 skb_pull(skb, padsize);
1936 }
1937
1938 if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
1939 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
1940 ath_print(common, ATH_DBG_PS,
1941 "Going back to sleep after having "
1942 "received TX status (0x%lx)\n",
1943 sc->ps_flags & (PS_WAIT_FOR_BEACON |
1944 PS_WAIT_FOR_CAB |
1945 PS_WAIT_FOR_PSPOLL_DATA |
1946 PS_WAIT_FOR_TX_ACK));
1947 }
1948
1949 if (unlikely(tx_info->pad[0] & ATH_TX_INFO_FRAME_TYPE_INTERNAL))
1950 ath9k_tx_status(hw, skb);
1951 else
1952 ieee80211_tx_status(hw, skb);
1953 }
1954
1955 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1956 struct ath_txq *txq, struct list_head *bf_q,
1957 struct ath_tx_status *ts, int txok, int sendbar)
1958 {
1959 struct sk_buff *skb = bf->bf_mpdu;
1960 unsigned long flags;
1961 int tx_flags = 0;
1962
1963 if (sendbar)
1964 tx_flags = ATH_TX_BAR;
1965
1966 if (!txok) {
1967 tx_flags |= ATH_TX_ERROR;
1968
1969 if (bf_isxretried(bf))
1970 tx_flags |= ATH_TX_XRETRY;
1971 }
1972
1973 dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
1974 ath_tx_complete(sc, skb, bf->aphy, tx_flags);
1975 ath_debug_stat_tx(sc, txq, bf, ts);
1976
1977 /*
1978 * Return the list of ath_buf of this mpdu to free queue
1979 */
1980 spin_lock_irqsave(&sc->tx.txbuflock, flags);
1981 list_splice_tail_init(bf_q, &sc->tx.txbuf);
1982 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
1983 }
1984
1985 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
1986 struct ath_tx_status *ts, int txok)
1987 {
1988 u16 seq_st = 0;
1989 u32 ba[WME_BA_BMP_SIZE >> 5];
1990 int ba_index;
1991 int nbad = 0;
1992 int isaggr = 0;
1993
1994 if (bf->bf_lastbf->bf_tx_aborted)
1995 return 0;
1996
1997 isaggr = bf_isaggr(bf);
1998 if (isaggr) {
1999 seq_st = ts->ts_seqnum;
2000 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
2001 }
2002
2003 while (bf) {
2004 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
2005 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
2006 nbad++;
2007
2008 bf = bf->bf_next;
2009 }
2010
2011 return nbad;
2012 }
2013
2014 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
2015 int nbad, int txok, bool update_rc)
2016 {
2017 struct sk_buff *skb = bf->bf_mpdu;
2018 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2019 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2020 struct ieee80211_hw *hw = bf->aphy->hw;
2021 u8 i, tx_rateindex;
2022
2023 if (txok)
2024 tx_info->status.ack_signal = ts->ts_rssi;
2025
2026 tx_rateindex = ts->ts_rateindex;
2027 WARN_ON(tx_rateindex >= hw->max_rates);
2028
2029 if (ts->ts_status & ATH9K_TXERR_FILT)
2030 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2031 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc)
2032 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2033
2034 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2035 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
2036 if (ieee80211_is_data(hdr->frame_control)) {
2037 if (ts->ts_flags &
2038 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN))
2039 tx_info->pad[0] |= ATH_TX_INFO_UNDERRUN;
2040 if ((ts->ts_status & ATH9K_TXERR_XRETRY) ||
2041 (ts->ts_status & ATH9K_TXERR_FIFO))
2042 tx_info->pad[0] |= ATH_TX_INFO_XRETRY;
2043 tx_info->status.ampdu_len = bf->bf_nframes;
2044 tx_info->status.ampdu_ack_len = bf->bf_nframes - nbad;
2045 }
2046 }
2047
2048 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2049 tx_info->status.rates[i].count = 0;
2050 tx_info->status.rates[i].idx = -1;
2051 }
2052
2053 tx_info->status.rates[tx_rateindex].count = bf->bf_retries + 1;
2054 }
2055
2056 static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
2057 {
2058 int qnum;
2059
2060 spin_lock_bh(&txq->axq_lock);
2061 if (txq->stopped &&
2062 sc->tx.txq[txq->axq_qnum].axq_depth <= (ATH_TXBUF - 20)) {
2063 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
2064 if (qnum != -1) {
2065 ath_mac80211_start_queue(sc, qnum);
2066 txq->stopped = 0;
2067 }
2068 }
2069 spin_unlock_bh(&txq->axq_lock);
2070 }
2071
2072 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2073 {
2074 struct ath_hw *ah = sc->sc_ah;
2075 struct ath_common *common = ath9k_hw_common(ah);
2076 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2077 struct list_head bf_head;
2078 struct ath_desc *ds;
2079 struct ath_tx_status ts;
2080 int txok;
2081 int status;
2082
2083 ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
2084 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2085 txq->axq_link);
2086
2087 for (;;) {
2088 spin_lock_bh(&txq->axq_lock);
2089 if (list_empty(&txq->axq_q)) {
2090 txq->axq_link = NULL;
2091 spin_unlock_bh(&txq->axq_lock);
2092 break;
2093 }
2094 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2095
2096 /*
2097 * There is a race condition that a BH gets scheduled
2098 * after sw writes TxE and before hw re-load the last
2099 * descriptor to get the newly chained one.
2100 * Software must keep the last DONE descriptor as a
2101 * holding descriptor - software does so by marking
2102 * it with the STALE flag.
2103 */
2104 bf_held = NULL;
2105 if (bf->bf_stale) {
2106 bf_held = bf;
2107 if (list_is_last(&bf_held->list, &txq->axq_q)) {
2108 spin_unlock_bh(&txq->axq_lock);
2109 break;
2110 } else {
2111 bf = list_entry(bf_held->list.next,
2112 struct ath_buf, list);
2113 }
2114 }
2115
2116 lastbf = bf->bf_lastbf;
2117 ds = lastbf->bf_desc;
2118
2119 memset(&ts, 0, sizeof(ts));
2120 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2121 if (status == -EINPROGRESS) {
2122 spin_unlock_bh(&txq->axq_lock);
2123 break;
2124 }
2125
2126 /*
2127 * We now know the nullfunc frame has been ACKed so we
2128 * can disable RX.
2129 */
2130 if (bf->bf_isnullfunc &&
2131 (ts.ts_status & ATH9K_TX_ACKED)) {
2132 if ((sc->ps_flags & PS_ENABLED))
2133 ath9k_enable_ps(sc);
2134 else
2135 sc->ps_flags |= PS_NULLFUNC_COMPLETED;
2136 }
2137
2138 /*
2139 * Remove ath_buf's of the same transmit unit from txq,
2140 * however leave the last descriptor back as the holding
2141 * descriptor for hw.
2142 */
2143 lastbf->bf_stale = true;
2144 INIT_LIST_HEAD(&bf_head);
2145 if (!list_is_singular(&lastbf->list))
2146 list_cut_position(&bf_head,
2147 &txq->axq_q, lastbf->list.prev);
2148
2149 txq->axq_depth--;
2150 txok = !(ts.ts_status & ATH9K_TXERR_MASK);
2151 txq->axq_tx_inprogress = false;
2152 if (bf_held)
2153 list_del(&bf_held->list);
2154 spin_unlock_bh(&txq->axq_lock);
2155
2156 if (bf_held)
2157 ath_tx_return_buffer(sc, bf_held);
2158
2159 if (!bf_isampdu(bf)) {
2160 /*
2161 * This frame is sent out as a single frame.
2162 * Use hardware retry status for this frame.
2163 */
2164 bf->bf_retries = ts.ts_longretry;
2165 if (ts.ts_status & ATH9K_TXERR_XRETRY)
2166 bf->bf_state.bf_type |= BUF_XRETRY;
2167 ath_tx_rc_status(bf, &ts, 0, txok, true);
2168 }
2169
2170 if (bf_isampdu(bf))
2171 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok);
2172 else
2173 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0);
2174
2175 ath_wake_mac80211_queue(sc, txq);
2176
2177 spin_lock_bh(&txq->axq_lock);
2178 if (sc->sc_flags & SC_OP_TXAGGR)
2179 ath_txq_schedule(sc, txq);
2180 spin_unlock_bh(&txq->axq_lock);
2181 }
2182 }
2183
2184 static void ath_tx_complete_poll_work(struct work_struct *work)
2185 {
2186 struct ath_softc *sc = container_of(work, struct ath_softc,
2187 tx_complete_work.work);
2188 struct ath_txq *txq;
2189 int i;
2190 bool needreset = false;
2191
2192 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2193 if (ATH_TXQ_SETUP(sc, i)) {
2194 txq = &sc->tx.txq[i];
2195 spin_lock_bh(&txq->axq_lock);
2196 if (txq->axq_depth) {
2197 if (txq->axq_tx_inprogress) {
2198 needreset = true;
2199 spin_unlock_bh(&txq->axq_lock);
2200 break;
2201 } else {
2202 txq->axq_tx_inprogress = true;
2203 }
2204 }
2205 spin_unlock_bh(&txq->axq_lock);
2206 }
2207
2208 if (needreset) {
2209 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
2210 "tx hung, resetting the chip\n");
2211 ath9k_ps_wakeup(sc);
2212 ath_reset(sc, false);
2213 ath9k_ps_restore(sc);
2214 }
2215
2216 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2217 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2218 }
2219
2220
2221
2222 void ath_tx_tasklet(struct ath_softc *sc)
2223 {
2224 int i;
2225 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2226
2227 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2228
2229 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2230 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2231 ath_tx_processq(sc, &sc->tx.txq[i]);
2232 }
2233 }
2234
2235 void ath_tx_edma_tasklet(struct ath_softc *sc)
2236 {
2237 struct ath_tx_status txs;
2238 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2239 struct ath_hw *ah = sc->sc_ah;
2240 struct ath_txq *txq;
2241 struct ath_buf *bf, *lastbf;
2242 struct list_head bf_head;
2243 int status;
2244 int txok;
2245
2246 for (;;) {
2247 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&txs);
2248 if (status == -EINPROGRESS)
2249 break;
2250 if (status == -EIO) {
2251 ath_print(common, ATH_DBG_XMIT,
2252 "Error processing tx status\n");
2253 break;
2254 }
2255
2256 /* Skip beacon completions */
2257 if (txs.qid == sc->beacon.beaconq)
2258 continue;
2259
2260 txq = &sc->tx.txq[txs.qid];
2261
2262 spin_lock_bh(&txq->axq_lock);
2263 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2264 spin_unlock_bh(&txq->axq_lock);
2265 return;
2266 }
2267
2268 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
2269 struct ath_buf, list);
2270 lastbf = bf->bf_lastbf;
2271
2272 INIT_LIST_HEAD(&bf_head);
2273 list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
2274 &lastbf->list);
2275 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2276 txq->axq_depth--;
2277 txq->axq_tx_inprogress = false;
2278 spin_unlock_bh(&txq->axq_lock);
2279
2280 txok = !(txs.ts_status & ATH9K_TXERR_MASK);
2281
2282 if (!bf_isampdu(bf)) {
2283 bf->bf_retries = txs.ts_longretry;
2284 if (txs.ts_status & ATH9K_TXERR_XRETRY)
2285 bf->bf_state.bf_type |= BUF_XRETRY;
2286 ath_tx_rc_status(bf, &txs, 0, txok, true);
2287 }
2288
2289 if (bf_isampdu(bf))
2290 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &txs, txok);
2291 else
2292 ath_tx_complete_buf(sc, bf, txq, &bf_head,
2293 &txs, txok, 0);
2294
2295 ath_wake_mac80211_queue(sc, txq);
2296
2297 spin_lock_bh(&txq->axq_lock);
2298 if (!list_empty(&txq->txq_fifo_pending)) {
2299 INIT_LIST_HEAD(&bf_head);
2300 bf = list_first_entry(&txq->txq_fifo_pending,
2301 struct ath_buf, list);
2302 list_cut_position(&bf_head, &txq->txq_fifo_pending,
2303 &bf->bf_lastbf->list);
2304 ath_tx_txqaddbuf(sc, txq, &bf_head);
2305 } else if (sc->sc_flags & SC_OP_TXAGGR)
2306 ath_txq_schedule(sc, txq);
2307 spin_unlock_bh(&txq->axq_lock);
2308 }
2309 }
2310
2311 /*****************/
2312 /* Init, Cleanup */
2313 /*****************/
2314
2315 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2316 {
2317 struct ath_descdma *dd = &sc->txsdma;
2318 u8 txs_len = sc->sc_ah->caps.txs_len;
2319
2320 dd->dd_desc_len = size * txs_len;
2321 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2322 &dd->dd_desc_paddr, GFP_KERNEL);
2323 if (!dd->dd_desc)
2324 return -ENOMEM;
2325
2326 return 0;
2327 }
2328
2329 static int ath_tx_edma_init(struct ath_softc *sc)
2330 {
2331 int err;
2332
2333 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2334 if (!err)
2335 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2336 sc->txsdma.dd_desc_paddr,
2337 ATH_TXSTATUS_RING_SIZE);
2338
2339 return err;
2340 }
2341
2342 static void ath_tx_edma_cleanup(struct ath_softc *sc)
2343 {
2344 struct ath_descdma *dd = &sc->txsdma;
2345
2346 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2347 dd->dd_desc_paddr);
2348 }
2349
2350 int ath_tx_init(struct ath_softc *sc, int nbufs)
2351 {
2352 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2353 int error = 0;
2354
2355 spin_lock_init(&sc->tx.txbuflock);
2356
2357 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2358 "tx", nbufs, 1, 1);
2359 if (error != 0) {
2360 ath_print(common, ATH_DBG_FATAL,
2361 "Failed to allocate tx descriptors: %d\n", error);
2362 goto err;
2363 }
2364
2365 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2366 "beacon", ATH_BCBUF, 1, 1);
2367 if (error != 0) {
2368 ath_print(common, ATH_DBG_FATAL,
2369 "Failed to allocate beacon descriptors: %d\n", error);
2370 goto err;
2371 }
2372
2373 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2374
2375 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
2376 error = ath_tx_edma_init(sc);
2377 if (error)
2378 goto err;
2379 }
2380
2381 err:
2382 if (error != 0)
2383 ath_tx_cleanup(sc);
2384
2385 return error;
2386 }
2387
2388 void ath_tx_cleanup(struct ath_softc *sc)
2389 {
2390 if (sc->beacon.bdma.dd_desc_len != 0)
2391 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2392
2393 if (sc->tx.txdma.dd_desc_len != 0)
2394 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2395
2396 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2397 ath_tx_edma_cleanup(sc);
2398 }
2399
2400 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2401 {
2402 struct ath_atx_tid *tid;
2403 struct ath_atx_ac *ac;
2404 int tidno, acno;
2405
2406 for (tidno = 0, tid = &an->tid[tidno];
2407 tidno < WME_NUM_TID;
2408 tidno++, tid++) {
2409 tid->an = an;
2410 tid->tidno = tidno;
2411 tid->seq_start = tid->seq_next = 0;
2412 tid->baw_size = WME_MAX_BA;
2413 tid->baw_head = tid->baw_tail = 0;
2414 tid->sched = false;
2415 tid->paused = false;
2416 tid->state &= ~AGGR_CLEANUP;
2417 INIT_LIST_HEAD(&tid->buf_q);
2418 acno = TID_TO_WME_AC(tidno);
2419 tid->ac = &an->ac[acno];
2420 tid->state &= ~AGGR_ADDBA_COMPLETE;
2421 tid->state &= ~AGGR_ADDBA_PROGRESS;
2422 }
2423
2424 for (acno = 0, ac = &an->ac[acno];
2425 acno < WME_NUM_AC; acno++, ac++) {
2426 ac->sched = false;
2427 INIT_LIST_HEAD(&ac->tid_q);
2428
2429 switch (acno) {
2430 case WME_AC_BE:
2431 ac->qnum = ath_tx_get_qnum(sc,
2432 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2433 break;
2434 case WME_AC_BK:
2435 ac->qnum = ath_tx_get_qnum(sc,
2436 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2437 break;
2438 case WME_AC_VI:
2439 ac->qnum = ath_tx_get_qnum(sc,
2440 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2441 break;
2442 case WME_AC_VO:
2443 ac->qnum = ath_tx_get_qnum(sc,
2444 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2445 break;
2446 }
2447 }
2448 }
2449
2450 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2451 {
2452 int i;
2453 struct ath_atx_ac *ac, *ac_tmp;
2454 struct ath_atx_tid *tid, *tid_tmp;
2455 struct ath_txq *txq;
2456
2457 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2458 if (ATH_TXQ_SETUP(sc, i)) {
2459 txq = &sc->tx.txq[i];
2460
2461 spin_lock_bh(&txq->axq_lock);
2462
2463 list_for_each_entry_safe(ac,
2464 ac_tmp, &txq->axq_acq, list) {
2465 tid = list_first_entry(&ac->tid_q,
2466 struct ath_atx_tid, list);
2467 if (tid && tid->an != an)
2468 continue;
2469 list_del(&ac->list);
2470 ac->sched = false;
2471
2472 list_for_each_entry_safe(tid,
2473 tid_tmp, &ac->tid_q, list) {
2474 list_del(&tid->list);
2475 tid->sched = false;
2476 ath_tid_drain(sc, txq, tid);
2477 tid->state &= ~AGGR_ADDBA_COMPLETE;
2478 tid->state &= ~AGGR_CLEANUP;
2479 }
2480 }
2481
2482 spin_unlock_bh(&txq->axq_lock);
2483 }
2484 }
2485 }
This page took 0.083845 seconds and 5 git commands to generate.