Merge remote-tracking branch 'lightnvm/for-next'
[deliverable/linux.git] / drivers / net / wireless / marvell / mwifiex / sta_cmdresp.c
1 /*
2 * Marvell Wireless LAN device driver: station command response handling
3 *
4 * Copyright (C) 2011-2014, Marvell International Ltd.
5 *
6 * This software file (the "File") is distributed by Marvell International
7 * Ltd. under the terms of the GNU General Public License Version 2, June 1991
8 * (the "License"). You may use, redistribute and/or modify this File in
9 * accordance with the terms and conditions of the License, a copy of which
10 * is available by writing to the Free Software Foundation, Inc.,
11 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or on the
12 * worldwide web at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
13 *
14 * THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
16 * ARE EXPRESSLY DISCLAIMED. The License provides additional details about
17 * this warranty disclaimer.
18 */
19
20 #include "decl.h"
21 #include "ioctl.h"
22 #include "util.h"
23 #include "fw.h"
24 #include "main.h"
25 #include "wmm.h"
26 #include "11n.h"
27 #include "11ac.h"
28
29
30 /*
31 * This function handles the command response error case.
32 *
33 * For scan response error, the function cancels all the pending
34 * scan commands and generates an event to inform the applications
35 * of the scan completion.
36 *
37 * For Power Save command failure, we do not retry enter PS
38 * command in case of Ad-hoc mode.
39 *
40 * For all other response errors, the current command buffer is freed
41 * and returned to the free command queue.
42 */
43 static void
44 mwifiex_process_cmdresp_error(struct mwifiex_private *priv,
45 struct host_cmd_ds_command *resp)
46 {
47 struct mwifiex_adapter *adapter = priv->adapter;
48 struct host_cmd_ds_802_11_ps_mode_enh *pm;
49 unsigned long flags;
50
51 mwifiex_dbg(adapter, ERROR,
52 "CMD_RESP: cmd %#x error, result=%#x\n",
53 resp->command, resp->result);
54
55 if (adapter->curr_cmd->wait_q_enabled)
56 adapter->cmd_wait_q.status = -1;
57
58 switch (le16_to_cpu(resp->command)) {
59 case HostCmd_CMD_802_11_PS_MODE_ENH:
60 pm = &resp->params.psmode_enh;
61 mwifiex_dbg(adapter, ERROR,
62 "PS_MODE_ENH cmd failed: result=0x%x action=0x%X\n",
63 resp->result, le16_to_cpu(pm->action));
64 /* We do not re-try enter-ps command in ad-hoc mode. */
65 if (le16_to_cpu(pm->action) == EN_AUTO_PS &&
66 (le16_to_cpu(pm->params.ps_bitmap) & BITMAP_STA_PS) &&
67 priv->bss_mode == NL80211_IFTYPE_ADHOC)
68 adapter->ps_mode = MWIFIEX_802_11_POWER_MODE_CAM;
69
70 break;
71 case HostCmd_CMD_802_11_SCAN:
72 case HostCmd_CMD_802_11_SCAN_EXT:
73 mwifiex_cancel_pending_scan_cmd(adapter);
74
75 spin_lock_irqsave(&adapter->mwifiex_cmd_lock, flags);
76 adapter->scan_processing = false;
77 spin_unlock_irqrestore(&adapter->mwifiex_cmd_lock, flags);
78 break;
79
80 case HostCmd_CMD_MAC_CONTROL:
81 break;
82
83 case HostCmd_CMD_SDIO_SP_RX_AGGR_CFG:
84 mwifiex_dbg(adapter, MSG,
85 "SDIO RX single-port aggregation Not support\n");
86 break;
87
88 default:
89 break;
90 }
91 /* Handling errors here */
92 mwifiex_recycle_cmd_node(adapter, adapter->curr_cmd);
93
94 spin_lock_irqsave(&adapter->mwifiex_cmd_lock, flags);
95 adapter->curr_cmd = NULL;
96 spin_unlock_irqrestore(&adapter->mwifiex_cmd_lock, flags);
97 }
98
99 /*
100 * This function handles the command response of get RSSI info.
101 *
102 * Handling includes changing the header fields into CPU format
103 * and saving the following parameters in driver -
104 * - Last data and beacon RSSI value
105 * - Average data and beacon RSSI value
106 * - Last data and beacon NF value
107 * - Average data and beacon NF value
108 *
109 * The parameters are send to the application as well, along with
110 * calculated SNR values.
111 */
112 static int mwifiex_ret_802_11_rssi_info(struct mwifiex_private *priv,
113 struct host_cmd_ds_command *resp)
114 {
115 struct host_cmd_ds_802_11_rssi_info_rsp *rssi_info_rsp =
116 &resp->params.rssi_info_rsp;
117 struct mwifiex_ds_misc_subsc_evt *subsc_evt =
118 &priv->async_subsc_evt_storage;
119
120 priv->data_rssi_last = le16_to_cpu(rssi_info_rsp->data_rssi_last);
121 priv->data_nf_last = le16_to_cpu(rssi_info_rsp->data_nf_last);
122
123 priv->data_rssi_avg = le16_to_cpu(rssi_info_rsp->data_rssi_avg);
124 priv->data_nf_avg = le16_to_cpu(rssi_info_rsp->data_nf_avg);
125
126 priv->bcn_rssi_last = le16_to_cpu(rssi_info_rsp->bcn_rssi_last);
127 priv->bcn_nf_last = le16_to_cpu(rssi_info_rsp->bcn_nf_last);
128
129 priv->bcn_rssi_avg = le16_to_cpu(rssi_info_rsp->bcn_rssi_avg);
130 priv->bcn_nf_avg = le16_to_cpu(rssi_info_rsp->bcn_nf_avg);
131
132 if (priv->subsc_evt_rssi_state == EVENT_HANDLED)
133 return 0;
134
135 memset(subsc_evt, 0x00, sizeof(struct mwifiex_ds_misc_subsc_evt));
136
137 /* Resubscribe low and high rssi events with new thresholds */
138 subsc_evt->events = BITMASK_BCN_RSSI_LOW | BITMASK_BCN_RSSI_HIGH;
139 subsc_evt->action = HostCmd_ACT_BITWISE_SET;
140 if (priv->subsc_evt_rssi_state == RSSI_LOW_RECVD) {
141 subsc_evt->bcn_l_rssi_cfg.abs_value = abs(priv->bcn_rssi_avg -
142 priv->cqm_rssi_hyst);
143 subsc_evt->bcn_h_rssi_cfg.abs_value = abs(priv->cqm_rssi_thold);
144 } else if (priv->subsc_evt_rssi_state == RSSI_HIGH_RECVD) {
145 subsc_evt->bcn_l_rssi_cfg.abs_value = abs(priv->cqm_rssi_thold);
146 subsc_evt->bcn_h_rssi_cfg.abs_value = abs(priv->bcn_rssi_avg +
147 priv->cqm_rssi_hyst);
148 }
149 subsc_evt->bcn_l_rssi_cfg.evt_freq = 1;
150 subsc_evt->bcn_h_rssi_cfg.evt_freq = 1;
151
152 priv->subsc_evt_rssi_state = EVENT_HANDLED;
153
154 mwifiex_send_cmd(priv, HostCmd_CMD_802_11_SUBSCRIBE_EVENT,
155 0, 0, subsc_evt, false);
156
157 return 0;
158 }
159
160 /*
161 * This function handles the command response of set/get SNMP
162 * MIB parameters.
163 *
164 * Handling includes changing the header fields into CPU format
165 * and saving the parameter in driver.
166 *
167 * The following parameters are supported -
168 * - Fragmentation threshold
169 * - RTS threshold
170 * - Short retry limit
171 */
172 static int mwifiex_ret_802_11_snmp_mib(struct mwifiex_private *priv,
173 struct host_cmd_ds_command *resp,
174 u32 *data_buf)
175 {
176 struct host_cmd_ds_802_11_snmp_mib *smib = &resp->params.smib;
177 u16 oid = le16_to_cpu(smib->oid);
178 u16 query_type = le16_to_cpu(smib->query_type);
179 u32 ul_temp;
180
181 mwifiex_dbg(priv->adapter, INFO,
182 "info: SNMP_RESP: oid value = %#x,\t"
183 "query_type = %#x, buf size = %#x\n",
184 oid, query_type, le16_to_cpu(smib->buf_size));
185 if (query_type == HostCmd_ACT_GEN_GET) {
186 ul_temp = le16_to_cpu(*((__le16 *) (smib->value)));
187 if (data_buf)
188 *data_buf = ul_temp;
189 switch (oid) {
190 case FRAG_THRESH_I:
191 mwifiex_dbg(priv->adapter, INFO,
192 "info: SNMP_RESP: FragThsd =%u\n",
193 ul_temp);
194 break;
195 case RTS_THRESH_I:
196 mwifiex_dbg(priv->adapter, INFO,
197 "info: SNMP_RESP: RTSThsd =%u\n",
198 ul_temp);
199 break;
200 case SHORT_RETRY_LIM_I:
201 mwifiex_dbg(priv->adapter, INFO,
202 "info: SNMP_RESP: TxRetryCount=%u\n",
203 ul_temp);
204 break;
205 case DTIM_PERIOD_I:
206 mwifiex_dbg(priv->adapter, INFO,
207 "info: SNMP_RESP: DTIM period=%u\n",
208 ul_temp);
209 default:
210 break;
211 }
212 }
213
214 return 0;
215 }
216
217 /*
218 * This function handles the command response of get log request
219 *
220 * Handling includes changing the header fields into CPU format
221 * and sending the received parameters to application.
222 */
223 static int mwifiex_ret_get_log(struct mwifiex_private *priv,
224 struct host_cmd_ds_command *resp,
225 struct mwifiex_ds_get_stats *stats)
226 {
227 struct host_cmd_ds_802_11_get_log *get_log =
228 &resp->params.get_log;
229
230 if (stats) {
231 stats->mcast_tx_frame = le32_to_cpu(get_log->mcast_tx_frame);
232 stats->failed = le32_to_cpu(get_log->failed);
233 stats->retry = le32_to_cpu(get_log->retry);
234 stats->multi_retry = le32_to_cpu(get_log->multi_retry);
235 stats->frame_dup = le32_to_cpu(get_log->frame_dup);
236 stats->rts_success = le32_to_cpu(get_log->rts_success);
237 stats->rts_failure = le32_to_cpu(get_log->rts_failure);
238 stats->ack_failure = le32_to_cpu(get_log->ack_failure);
239 stats->rx_frag = le32_to_cpu(get_log->rx_frag);
240 stats->mcast_rx_frame = le32_to_cpu(get_log->mcast_rx_frame);
241 stats->fcs_error = le32_to_cpu(get_log->fcs_error);
242 stats->tx_frame = le32_to_cpu(get_log->tx_frame);
243 stats->wep_icv_error[0] =
244 le32_to_cpu(get_log->wep_icv_err_cnt[0]);
245 stats->wep_icv_error[1] =
246 le32_to_cpu(get_log->wep_icv_err_cnt[1]);
247 stats->wep_icv_error[2] =
248 le32_to_cpu(get_log->wep_icv_err_cnt[2]);
249 stats->wep_icv_error[3] =
250 le32_to_cpu(get_log->wep_icv_err_cnt[3]);
251 stats->bcn_rcv_cnt = le32_to_cpu(get_log->bcn_rcv_cnt);
252 stats->bcn_miss_cnt = le32_to_cpu(get_log->bcn_miss_cnt);
253 }
254
255 return 0;
256 }
257
258 /*
259 * This function handles the command response of set/get Tx rate
260 * configurations.
261 *
262 * Handling includes changing the header fields into CPU format
263 * and saving the following parameters in driver -
264 * - DSSS rate bitmap
265 * - OFDM rate bitmap
266 * - HT MCS rate bitmaps
267 *
268 * Based on the new rate bitmaps, the function re-evaluates if
269 * auto data rate has been activated. If not, it sends another
270 * query to the firmware to get the current Tx data rate.
271 */
272 static int mwifiex_ret_tx_rate_cfg(struct mwifiex_private *priv,
273 struct host_cmd_ds_command *resp)
274 {
275 struct host_cmd_ds_tx_rate_cfg *rate_cfg = &resp->params.tx_rate_cfg;
276 struct mwifiex_rate_scope *rate_scope;
277 struct mwifiex_ie_types_header *head;
278 u16 tlv, tlv_buf_len, tlv_buf_left;
279 u8 *tlv_buf;
280 u32 i;
281
282 tlv_buf = ((u8 *)rate_cfg) + sizeof(struct host_cmd_ds_tx_rate_cfg);
283 tlv_buf_left = le16_to_cpu(resp->size) - S_DS_GEN - sizeof(*rate_cfg);
284
285 while (tlv_buf_left >= sizeof(*head)) {
286 head = (struct mwifiex_ie_types_header *)tlv_buf;
287 tlv = le16_to_cpu(head->type);
288 tlv_buf_len = le16_to_cpu(head->len);
289
290 if (tlv_buf_left < (sizeof(*head) + tlv_buf_len))
291 break;
292
293 switch (tlv) {
294 case TLV_TYPE_RATE_SCOPE:
295 rate_scope = (struct mwifiex_rate_scope *) tlv_buf;
296 priv->bitmap_rates[0] =
297 le16_to_cpu(rate_scope->hr_dsss_rate_bitmap);
298 priv->bitmap_rates[1] =
299 le16_to_cpu(rate_scope->ofdm_rate_bitmap);
300 for (i = 0;
301 i <
302 sizeof(rate_scope->ht_mcs_rate_bitmap) /
303 sizeof(u16); i++)
304 priv->bitmap_rates[2 + i] =
305 le16_to_cpu(rate_scope->
306 ht_mcs_rate_bitmap[i]);
307
308 if (priv->adapter->fw_api_ver == MWIFIEX_FW_V15) {
309 for (i = 0; i < ARRAY_SIZE(rate_scope->
310 vht_mcs_rate_bitmap);
311 i++)
312 priv->bitmap_rates[10 + i] =
313 le16_to_cpu(rate_scope->
314 vht_mcs_rate_bitmap[i]);
315 }
316 break;
317 /* Add RATE_DROP tlv here */
318 }
319
320 tlv_buf += (sizeof(*head) + tlv_buf_len);
321 tlv_buf_left -= (sizeof(*head) + tlv_buf_len);
322 }
323
324 priv->is_data_rate_auto = mwifiex_is_rate_auto(priv);
325
326 if (priv->is_data_rate_auto)
327 priv->data_rate = 0;
328 else
329 return mwifiex_send_cmd(priv, HostCmd_CMD_802_11_TX_RATE_QUERY,
330 HostCmd_ACT_GEN_GET, 0, NULL, false);
331
332 return 0;
333 }
334
335 /*
336 * This function handles the command response of get Tx power level.
337 *
338 * Handling includes saving the maximum and minimum Tx power levels
339 * in driver, as well as sending the values to user.
340 */
341 static int mwifiex_get_power_level(struct mwifiex_private *priv, void *data_buf)
342 {
343 int length, max_power = -1, min_power = -1;
344 struct mwifiex_types_power_group *pg_tlv_hdr;
345 struct mwifiex_power_group *pg;
346
347 if (!data_buf)
348 return -1;
349
350 pg_tlv_hdr = (struct mwifiex_types_power_group *)((u8 *)data_buf);
351 pg = (struct mwifiex_power_group *)
352 ((u8 *) pg_tlv_hdr + sizeof(struct mwifiex_types_power_group));
353 length = le16_to_cpu(pg_tlv_hdr->length);
354
355 /* At least one structure required to update power */
356 if (length < sizeof(struct mwifiex_power_group))
357 return 0;
358
359 max_power = pg->power_max;
360 min_power = pg->power_min;
361 length -= sizeof(struct mwifiex_power_group);
362
363 while (length >= sizeof(struct mwifiex_power_group)) {
364 pg++;
365 if (max_power < pg->power_max)
366 max_power = pg->power_max;
367
368 if (min_power > pg->power_min)
369 min_power = pg->power_min;
370
371 length -= sizeof(struct mwifiex_power_group);
372 }
373 priv->min_tx_power_level = (u8) min_power;
374 priv->max_tx_power_level = (u8) max_power;
375
376 return 0;
377 }
378
379 /*
380 * This function handles the command response of set/get Tx power
381 * configurations.
382 *
383 * Handling includes changing the header fields into CPU format
384 * and saving the current Tx power level in driver.
385 */
386 static int mwifiex_ret_tx_power_cfg(struct mwifiex_private *priv,
387 struct host_cmd_ds_command *resp)
388 {
389 struct mwifiex_adapter *adapter = priv->adapter;
390 struct host_cmd_ds_txpwr_cfg *txp_cfg = &resp->params.txp_cfg;
391 struct mwifiex_types_power_group *pg_tlv_hdr;
392 struct mwifiex_power_group *pg;
393 u16 action = le16_to_cpu(txp_cfg->action);
394 u16 tlv_buf_left;
395
396 pg_tlv_hdr = (struct mwifiex_types_power_group *)
397 ((u8 *)txp_cfg +
398 sizeof(struct host_cmd_ds_txpwr_cfg));
399
400 pg = (struct mwifiex_power_group *)
401 ((u8 *)pg_tlv_hdr +
402 sizeof(struct mwifiex_types_power_group));
403
404 tlv_buf_left = le16_to_cpu(resp->size) - S_DS_GEN - sizeof(*txp_cfg);
405 if (tlv_buf_left <
406 le16_to_cpu(pg_tlv_hdr->length) + sizeof(*pg_tlv_hdr))
407 return 0;
408
409 switch (action) {
410 case HostCmd_ACT_GEN_GET:
411 if (adapter->hw_status == MWIFIEX_HW_STATUS_INITIALIZING)
412 mwifiex_get_power_level(priv, pg_tlv_hdr);
413
414 priv->tx_power_level = (u16) pg->power_min;
415 break;
416
417 case HostCmd_ACT_GEN_SET:
418 if (!le32_to_cpu(txp_cfg->mode))
419 break;
420
421 if (pg->power_max == pg->power_min)
422 priv->tx_power_level = (u16) pg->power_min;
423 break;
424 default:
425 mwifiex_dbg(adapter, ERROR,
426 "CMD_RESP: unknown cmd action %d\n",
427 action);
428 return 0;
429 }
430 mwifiex_dbg(adapter, INFO,
431 "info: Current TxPower Level = %d, Max Power=%d, Min Power=%d\n",
432 priv->tx_power_level, priv->max_tx_power_level,
433 priv->min_tx_power_level);
434
435 return 0;
436 }
437
438 /*
439 * This function handles the command response of get RF Tx power.
440 */
441 static int mwifiex_ret_rf_tx_power(struct mwifiex_private *priv,
442 struct host_cmd_ds_command *resp)
443 {
444 struct host_cmd_ds_rf_tx_pwr *txp = &resp->params.txp;
445 u16 action = le16_to_cpu(txp->action);
446
447 priv->tx_power_level = le16_to_cpu(txp->cur_level);
448
449 if (action == HostCmd_ACT_GEN_GET) {
450 priv->max_tx_power_level = txp->max_power;
451 priv->min_tx_power_level = txp->min_power;
452 }
453
454 mwifiex_dbg(priv->adapter, INFO,
455 "Current TxPower Level=%d, Max Power=%d, Min Power=%d\n",
456 priv->tx_power_level, priv->max_tx_power_level,
457 priv->min_tx_power_level);
458
459 return 0;
460 }
461
462 /*
463 * This function handles the command response of set rf antenna
464 */
465 static int mwifiex_ret_rf_antenna(struct mwifiex_private *priv,
466 struct host_cmd_ds_command *resp)
467 {
468 struct host_cmd_ds_rf_ant_mimo *ant_mimo = &resp->params.ant_mimo;
469 struct host_cmd_ds_rf_ant_siso *ant_siso = &resp->params.ant_siso;
470 struct mwifiex_adapter *adapter = priv->adapter;
471
472 if (adapter->hw_dev_mcs_support == HT_STREAM_2X2) {
473 priv->tx_ant = le16_to_cpu(ant_mimo->tx_ant_mode);
474 priv->rx_ant = le16_to_cpu(ant_mimo->rx_ant_mode);
475 mwifiex_dbg(adapter, INFO,
476 "RF_ANT_RESP: Tx action = 0x%x, Tx Mode = 0x%04x\t"
477 "Rx action = 0x%x, Rx Mode = 0x%04x\n",
478 le16_to_cpu(ant_mimo->action_tx),
479 le16_to_cpu(ant_mimo->tx_ant_mode),
480 le16_to_cpu(ant_mimo->action_rx),
481 le16_to_cpu(ant_mimo->rx_ant_mode));
482 } else {
483 priv->tx_ant = le16_to_cpu(ant_siso->ant_mode);
484 priv->rx_ant = le16_to_cpu(ant_siso->ant_mode);
485 mwifiex_dbg(adapter, INFO,
486 "RF_ANT_RESP: action = 0x%x, Mode = 0x%04x\n",
487 le16_to_cpu(ant_siso->action),
488 le16_to_cpu(ant_siso->ant_mode));
489 }
490 return 0;
491 }
492
493 /*
494 * This function handles the command response of set/get MAC address.
495 *
496 * Handling includes saving the MAC address in driver.
497 */
498 static int mwifiex_ret_802_11_mac_address(struct mwifiex_private *priv,
499 struct host_cmd_ds_command *resp)
500 {
501 struct host_cmd_ds_802_11_mac_address *cmd_mac_addr =
502 &resp->params.mac_addr;
503
504 memcpy(priv->curr_addr, cmd_mac_addr->mac_addr, ETH_ALEN);
505
506 mwifiex_dbg(priv->adapter, INFO,
507 "info: set mac address: %pM\n", priv->curr_addr);
508
509 return 0;
510 }
511
512 /*
513 * This function handles the command response of set/get MAC multicast
514 * address.
515 */
516 static int mwifiex_ret_mac_multicast_adr(struct mwifiex_private *priv,
517 struct host_cmd_ds_command *resp)
518 {
519 return 0;
520 }
521
522 /*
523 * This function handles the command response of get Tx rate query.
524 *
525 * Handling includes changing the header fields into CPU format
526 * and saving the Tx rate and HT information parameters in driver.
527 *
528 * Both rate configuration and current data rate can be retrieved
529 * with this request.
530 */
531 static int mwifiex_ret_802_11_tx_rate_query(struct mwifiex_private *priv,
532 struct host_cmd_ds_command *resp)
533 {
534 priv->tx_rate = resp->params.tx_rate.tx_rate;
535 priv->tx_htinfo = resp->params.tx_rate.ht_info;
536 if (!priv->is_data_rate_auto)
537 priv->data_rate =
538 mwifiex_index_to_data_rate(priv, priv->tx_rate,
539 priv->tx_htinfo);
540
541 return 0;
542 }
543
544 /*
545 * This function handles the command response of a deauthenticate
546 * command.
547 *
548 * If the deauthenticated MAC matches the current BSS MAC, the connection
549 * state is reset.
550 */
551 static int mwifiex_ret_802_11_deauthenticate(struct mwifiex_private *priv,
552 struct host_cmd_ds_command *resp)
553 {
554 struct mwifiex_adapter *adapter = priv->adapter;
555
556 adapter->dbg.num_cmd_deauth++;
557 if (!memcmp(resp->params.deauth.mac_addr,
558 &priv->curr_bss_params.bss_descriptor.mac_address,
559 sizeof(resp->params.deauth.mac_addr)))
560 mwifiex_reset_connect_state(priv, WLAN_REASON_DEAUTH_LEAVING,
561 false);
562
563 return 0;
564 }
565
566 /*
567 * This function handles the command response of ad-hoc stop.
568 *
569 * The function resets the connection state in driver.
570 */
571 static int mwifiex_ret_802_11_ad_hoc_stop(struct mwifiex_private *priv,
572 struct host_cmd_ds_command *resp)
573 {
574 mwifiex_reset_connect_state(priv, WLAN_REASON_DEAUTH_LEAVING, false);
575 return 0;
576 }
577
578 /*
579 * This function handles the command response of set/get v1 key material.
580 *
581 * Handling includes updating the driver parameters to reflect the
582 * changes.
583 */
584 static int mwifiex_ret_802_11_key_material_v1(struct mwifiex_private *priv,
585 struct host_cmd_ds_command *resp)
586 {
587 struct host_cmd_ds_802_11_key_material *key =
588 &resp->params.key_material;
589
590 if (le16_to_cpu(key->action) == HostCmd_ACT_GEN_SET) {
591 if ((le16_to_cpu(key->key_param_set.key_info) & KEY_MCAST)) {
592 mwifiex_dbg(priv->adapter, INFO,
593 "info: key: GTK is set\n");
594 priv->wpa_is_gtk_set = true;
595 priv->scan_block = false;
596 priv->port_open = true;
597 }
598 }
599
600 memset(priv->aes_key.key_param_set.key, 0,
601 sizeof(key->key_param_set.key));
602 priv->aes_key.key_param_set.key_len = key->key_param_set.key_len;
603 memcpy(priv->aes_key.key_param_set.key, key->key_param_set.key,
604 le16_to_cpu(priv->aes_key.key_param_set.key_len));
605
606 return 0;
607 }
608
609 /*
610 * This function handles the command response of set/get v2 key material.
611 *
612 * Handling includes updating the driver parameters to reflect the
613 * changes.
614 */
615 static int mwifiex_ret_802_11_key_material_v2(struct mwifiex_private *priv,
616 struct host_cmd_ds_command *resp)
617 {
618 struct host_cmd_ds_802_11_key_material_v2 *key_v2;
619 __le16 len;
620
621 key_v2 = &resp->params.key_material_v2;
622 if (le16_to_cpu(key_v2->action) == HostCmd_ACT_GEN_SET) {
623 if ((le16_to_cpu(key_v2->key_param_set.key_info) & KEY_MCAST)) {
624 mwifiex_dbg(priv->adapter, INFO, "info: key: GTK is set\n");
625 priv->wpa_is_gtk_set = true;
626 priv->scan_block = false;
627 priv->port_open = true;
628 }
629 }
630
631 if (key_v2->key_param_set.key_type != KEY_TYPE_ID_AES)
632 return 0;
633
634 memset(priv->aes_key_v2.key_param_set.key_params.aes.key, 0,
635 WLAN_KEY_LEN_CCMP);
636 priv->aes_key_v2.key_param_set.key_params.aes.key_len =
637 key_v2->key_param_set.key_params.aes.key_len;
638 len = priv->aes_key_v2.key_param_set.key_params.aes.key_len;
639 memcpy(priv->aes_key_v2.key_param_set.key_params.aes.key,
640 key_v2->key_param_set.key_params.aes.key, le16_to_cpu(len));
641
642 return 0;
643 }
644
645 /* Wrapper function for processing response of key material command */
646 static int mwifiex_ret_802_11_key_material(struct mwifiex_private *priv,
647 struct host_cmd_ds_command *resp)
648 {
649 if (priv->adapter->key_api_major_ver == KEY_API_VER_MAJOR_V2)
650 return mwifiex_ret_802_11_key_material_v2(priv, resp);
651 else
652 return mwifiex_ret_802_11_key_material_v1(priv, resp);
653 }
654
655 /*
656 * This function handles the command response of get 11d domain information.
657 */
658 static int mwifiex_ret_802_11d_domain_info(struct mwifiex_private *priv,
659 struct host_cmd_ds_command *resp)
660 {
661 struct host_cmd_ds_802_11d_domain_info_rsp *domain_info =
662 &resp->params.domain_info_resp;
663 struct mwifiex_ietypes_domain_param_set *domain = &domain_info->domain;
664 u16 action = le16_to_cpu(domain_info->action);
665 u8 no_of_triplet;
666
667 no_of_triplet = (u8) ((le16_to_cpu(domain->header.len)
668 - IEEE80211_COUNTRY_STRING_LEN)
669 / sizeof(struct ieee80211_country_ie_triplet));
670
671 mwifiex_dbg(priv->adapter, INFO,
672 "info: 11D Domain Info Resp: no_of_triplet=%d\n",
673 no_of_triplet);
674
675 if (no_of_triplet > MWIFIEX_MAX_TRIPLET_802_11D) {
676 mwifiex_dbg(priv->adapter, FATAL,
677 "11D: invalid number of triplets %d returned\n",
678 no_of_triplet);
679 return -1;
680 }
681
682 switch (action) {
683 case HostCmd_ACT_GEN_SET: /* Proc Set Action */
684 break;
685 case HostCmd_ACT_GEN_GET:
686 break;
687 default:
688 mwifiex_dbg(priv->adapter, ERROR,
689 "11D: invalid action:%d\n", domain_info->action);
690 return -1;
691 }
692
693 return 0;
694 }
695
696 /*
697 * This function handles the command response of get extended version.
698 *
699 * Handling includes forming the extended version string and sending it
700 * to application.
701 */
702 static int mwifiex_ret_ver_ext(struct mwifiex_private *priv,
703 struct host_cmd_ds_command *resp,
704 struct host_cmd_ds_version_ext *version_ext)
705 {
706 struct host_cmd_ds_version_ext *ver_ext = &resp->params.verext;
707
708 if (version_ext) {
709 version_ext->version_str_sel = ver_ext->version_str_sel;
710 memcpy(version_ext->version_str, ver_ext->version_str,
711 sizeof(char) * 128);
712 memcpy(priv->version_str, ver_ext->version_str, 128);
713 }
714 return 0;
715 }
716
717 /*
718 * This function handles the command response of remain on channel.
719 */
720 static int
721 mwifiex_ret_remain_on_chan(struct mwifiex_private *priv,
722 struct host_cmd_ds_command *resp,
723 struct host_cmd_ds_remain_on_chan *roc_cfg)
724 {
725 struct host_cmd_ds_remain_on_chan *resp_cfg = &resp->params.roc_cfg;
726
727 if (roc_cfg)
728 memcpy(roc_cfg, resp_cfg, sizeof(*roc_cfg));
729
730 return 0;
731 }
732
733 /*
734 * This function handles the command response of P2P mode cfg.
735 */
736 static int
737 mwifiex_ret_p2p_mode_cfg(struct mwifiex_private *priv,
738 struct host_cmd_ds_command *resp,
739 void *data_buf)
740 {
741 struct host_cmd_ds_p2p_mode_cfg *mode_cfg = &resp->params.mode_cfg;
742
743 if (data_buf)
744 *((u16 *)data_buf) = le16_to_cpu(mode_cfg->mode);
745
746 return 0;
747 }
748
749 /* This function handles the command response of mem_access command
750 */
751 static int
752 mwifiex_ret_mem_access(struct mwifiex_private *priv,
753 struct host_cmd_ds_command *resp, void *pioctl_buf)
754 {
755 struct host_cmd_ds_mem_access *mem = (void *)&resp->params.mem;
756
757 priv->mem_rw.addr = le32_to_cpu(mem->addr);
758 priv->mem_rw.value = le32_to_cpu(mem->value);
759
760 return 0;
761 }
762 /*
763 * This function handles the command response of register access.
764 *
765 * The register value and offset are returned to the user. For EEPROM
766 * access, the byte count is also returned.
767 */
768 static int mwifiex_ret_reg_access(u16 type, struct host_cmd_ds_command *resp,
769 void *data_buf)
770 {
771 struct mwifiex_ds_reg_rw *reg_rw;
772 struct mwifiex_ds_read_eeprom *eeprom;
773 union reg {
774 struct host_cmd_ds_mac_reg_access *mac;
775 struct host_cmd_ds_bbp_reg_access *bbp;
776 struct host_cmd_ds_rf_reg_access *rf;
777 struct host_cmd_ds_pmic_reg_access *pmic;
778 struct host_cmd_ds_802_11_eeprom_access *eeprom;
779 } r;
780
781 if (!data_buf)
782 return 0;
783
784 reg_rw = data_buf;
785 eeprom = data_buf;
786 switch (type) {
787 case HostCmd_CMD_MAC_REG_ACCESS:
788 r.mac = &resp->params.mac_reg;
789 reg_rw->offset = (u32) le16_to_cpu(r.mac->offset);
790 reg_rw->value = le32_to_cpu(r.mac->value);
791 break;
792 case HostCmd_CMD_BBP_REG_ACCESS:
793 r.bbp = &resp->params.bbp_reg;
794 reg_rw->offset = (u32) le16_to_cpu(r.bbp->offset);
795 reg_rw->value = (u32) r.bbp->value;
796 break;
797
798 case HostCmd_CMD_RF_REG_ACCESS:
799 r.rf = &resp->params.rf_reg;
800 reg_rw->offset = (u32) le16_to_cpu(r.rf->offset);
801 reg_rw->value = (u32) r.bbp->value;
802 break;
803 case HostCmd_CMD_PMIC_REG_ACCESS:
804 r.pmic = &resp->params.pmic_reg;
805 reg_rw->offset = (u32) le16_to_cpu(r.pmic->offset);
806 reg_rw->value = (u32) r.pmic->value;
807 break;
808 case HostCmd_CMD_CAU_REG_ACCESS:
809 r.rf = &resp->params.rf_reg;
810 reg_rw->offset = (u32) le16_to_cpu(r.rf->offset);
811 reg_rw->value = (u32) r.rf->value;
812 break;
813 case HostCmd_CMD_802_11_EEPROM_ACCESS:
814 r.eeprom = &resp->params.eeprom;
815 pr_debug("info: EEPROM read len=%x\n",
816 le16_to_cpu(r.eeprom->byte_count));
817 if (eeprom->byte_count < le16_to_cpu(r.eeprom->byte_count)) {
818 eeprom->byte_count = 0;
819 pr_debug("info: EEPROM read length is too big\n");
820 return -1;
821 }
822 eeprom->offset = le16_to_cpu(r.eeprom->offset);
823 eeprom->byte_count = le16_to_cpu(r.eeprom->byte_count);
824 if (eeprom->byte_count > 0)
825 memcpy(&eeprom->value, &r.eeprom->value,
826 min((u16)MAX_EEPROM_DATA, eeprom->byte_count));
827 break;
828 default:
829 return -1;
830 }
831 return 0;
832 }
833
834 /*
835 * This function handles the command response of get IBSS coalescing status.
836 *
837 * If the received BSSID is different than the current one, the current BSSID,
838 * beacon interval, ATIM window and ERP information are updated, along with
839 * changing the ad-hoc state accordingly.
840 */
841 static int mwifiex_ret_ibss_coalescing_status(struct mwifiex_private *priv,
842 struct host_cmd_ds_command *resp)
843 {
844 struct host_cmd_ds_802_11_ibss_status *ibss_coal_resp =
845 &(resp->params.ibss_coalescing);
846
847 if (le16_to_cpu(ibss_coal_resp->action) == HostCmd_ACT_GEN_SET)
848 return 0;
849
850 mwifiex_dbg(priv->adapter, INFO,
851 "info: new BSSID %pM\n", ibss_coal_resp->bssid);
852
853 /* If rsp has NULL BSSID, Just return..... No Action */
854 if (is_zero_ether_addr(ibss_coal_resp->bssid)) {
855 mwifiex_dbg(priv->adapter, FATAL, "new BSSID is NULL\n");
856 return 0;
857 }
858
859 /* If BSSID is diff, modify current BSS parameters */
860 if (!ether_addr_equal(priv->curr_bss_params.bss_descriptor.mac_address, ibss_coal_resp->bssid)) {
861 /* BSSID */
862 memcpy(priv->curr_bss_params.bss_descriptor.mac_address,
863 ibss_coal_resp->bssid, ETH_ALEN);
864
865 /* Beacon Interval */
866 priv->curr_bss_params.bss_descriptor.beacon_period
867 = le16_to_cpu(ibss_coal_resp->beacon_interval);
868
869 /* ERP Information */
870 priv->curr_bss_params.bss_descriptor.erp_flags =
871 (u8) le16_to_cpu(ibss_coal_resp->use_g_rate_protect);
872
873 priv->adhoc_state = ADHOC_COALESCED;
874 }
875
876 return 0;
877 }
878 static int mwifiex_ret_tdls_oper(struct mwifiex_private *priv,
879 struct host_cmd_ds_command *resp)
880 {
881 struct host_cmd_ds_tdls_oper *cmd_tdls_oper = &resp->params.tdls_oper;
882 u16 reason = le16_to_cpu(cmd_tdls_oper->reason);
883 u16 action = le16_to_cpu(cmd_tdls_oper->tdls_action);
884 struct mwifiex_sta_node *node =
885 mwifiex_get_sta_entry(priv, cmd_tdls_oper->peer_mac);
886
887 switch (action) {
888 case ACT_TDLS_DELETE:
889 if (reason) {
890 if (!node || reason == TDLS_ERR_LINK_NONEXISTENT)
891 mwifiex_dbg(priv->adapter, MSG,
892 "TDLS link delete for %pM failed: reason %d\n",
893 cmd_tdls_oper->peer_mac, reason);
894 else
895 mwifiex_dbg(priv->adapter, ERROR,
896 "TDLS link delete for %pM failed: reason %d\n",
897 cmd_tdls_oper->peer_mac, reason);
898 } else {
899 mwifiex_dbg(priv->adapter, MSG,
900 "TDLS link delete for %pM successful\n",
901 cmd_tdls_oper->peer_mac);
902 }
903 break;
904 case ACT_TDLS_CREATE:
905 if (reason) {
906 mwifiex_dbg(priv->adapter, ERROR,
907 "TDLS link creation for %pM failed: reason %d",
908 cmd_tdls_oper->peer_mac, reason);
909 if (node && reason != TDLS_ERR_LINK_EXISTS)
910 node->tdls_status = TDLS_SETUP_FAILURE;
911 } else {
912 mwifiex_dbg(priv->adapter, MSG,
913 "TDLS link creation for %pM successful",
914 cmd_tdls_oper->peer_mac);
915 }
916 break;
917 case ACT_TDLS_CONFIG:
918 if (reason) {
919 mwifiex_dbg(priv->adapter, ERROR,
920 "TDLS link config for %pM failed, reason %d\n",
921 cmd_tdls_oper->peer_mac, reason);
922 if (node)
923 node->tdls_status = TDLS_SETUP_FAILURE;
924 } else {
925 mwifiex_dbg(priv->adapter, MSG,
926 "TDLS link config for %pM successful\n",
927 cmd_tdls_oper->peer_mac);
928 }
929 break;
930 default:
931 mwifiex_dbg(priv->adapter, ERROR,
932 "Unknown TDLS command action response %d", action);
933 return -1;
934 }
935
936 return 0;
937 }
938 /*
939 * This function handles the command response for subscribe event command.
940 */
941 static int mwifiex_ret_subsc_evt(struct mwifiex_private *priv,
942 struct host_cmd_ds_command *resp)
943 {
944 struct host_cmd_ds_802_11_subsc_evt *cmd_sub_event =
945 &resp->params.subsc_evt;
946
947 /* For every subscribe event command (Get/Set/Clear), FW reports the
948 * current set of subscribed events*/
949 mwifiex_dbg(priv->adapter, EVENT,
950 "Bitmap of currently subscribed events: %16x\n",
951 le16_to_cpu(cmd_sub_event->events));
952
953 return 0;
954 }
955
956 static int mwifiex_ret_uap_sta_list(struct mwifiex_private *priv,
957 struct host_cmd_ds_command *resp)
958 {
959 struct host_cmd_ds_sta_list *sta_list =
960 &resp->params.sta_list;
961 struct mwifiex_ie_types_sta_info *sta_info = (void *)&sta_list->tlv;
962 int i;
963 struct mwifiex_sta_node *sta_node;
964
965 for (i = 0; i < (le16_to_cpu(sta_list->sta_count)); i++) {
966 sta_node = mwifiex_get_sta_entry(priv, sta_info->mac);
967 if (unlikely(!sta_node))
968 continue;
969
970 sta_node->stats.rssi = sta_info->rssi;
971 sta_info++;
972 }
973
974 return 0;
975 }
976
977 /* This function handles the command response of set_cfg_data */
978 static int mwifiex_ret_cfg_data(struct mwifiex_private *priv,
979 struct host_cmd_ds_command *resp)
980 {
981 if (resp->result != HostCmd_RESULT_OK) {
982 mwifiex_dbg(priv->adapter, ERROR, "Cal data cmd resp failed\n");
983 return -1;
984 }
985
986 return 0;
987 }
988
989 /** This Function handles the command response of sdio rx aggr */
990 static int mwifiex_ret_sdio_rx_aggr_cfg(struct mwifiex_private *priv,
991 struct host_cmd_ds_command *resp)
992 {
993 struct mwifiex_adapter *adapter = priv->adapter;
994 struct host_cmd_sdio_sp_rx_aggr_cfg *cfg =
995 &resp->params.sdio_rx_aggr_cfg;
996
997 adapter->sdio_rx_aggr_enable = cfg->enable;
998 adapter->sdio_rx_block_size = le16_to_cpu(cfg->block_size);
999
1000 return 0;
1001 }
1002
1003 static int mwifiex_ret_robust_coex(struct mwifiex_private *priv,
1004 struct host_cmd_ds_command *resp,
1005 bool *is_timeshare)
1006 {
1007 struct host_cmd_ds_robust_coex *coex = &resp->params.coex;
1008 struct mwifiex_ie_types_robust_coex *coex_tlv;
1009 u16 action = le16_to_cpu(coex->action);
1010 u32 mode;
1011
1012 coex_tlv = (struct mwifiex_ie_types_robust_coex
1013 *)((u8 *)coex + sizeof(struct host_cmd_ds_robust_coex));
1014 if (action == HostCmd_ACT_GEN_GET) {
1015 mode = le32_to_cpu(coex_tlv->mode);
1016 if (mode == MWIFIEX_COEX_MODE_TIMESHARE)
1017 *is_timeshare = true;
1018 else
1019 *is_timeshare = false;
1020 }
1021
1022 return 0;
1023 }
1024
1025 static struct ieee80211_regdomain *
1026 mwifiex_create_custom_regdomain(struct mwifiex_private *priv,
1027 u8 *buf, u16 buf_len)
1028 {
1029 u16 num_chan = buf_len / 2;
1030 struct ieee80211_regdomain *regd;
1031 struct ieee80211_reg_rule *rule;
1032 bool new_rule;
1033 int regd_size, idx, freq, prev_freq = 0;
1034 u32 bw, prev_bw = 0;
1035 u8 chflags, prev_chflags = 0, valid_rules = 0;
1036
1037 if (WARN_ON_ONCE(num_chan > NL80211_MAX_SUPP_REG_RULES))
1038 return ERR_PTR(-EINVAL);
1039
1040 regd_size = sizeof(struct ieee80211_regdomain) +
1041 num_chan * sizeof(struct ieee80211_reg_rule);
1042
1043 regd = kzalloc(regd_size, GFP_KERNEL);
1044 if (!regd)
1045 return ERR_PTR(-ENOMEM);
1046
1047 for (idx = 0; idx < num_chan; idx++) {
1048 u8 chan;
1049 enum nl80211_band band;
1050
1051 chan = *buf++;
1052 if (!chan)
1053 return NULL;
1054 chflags = *buf++;
1055 band = (chan <= 14) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
1056 freq = ieee80211_channel_to_frequency(chan, band);
1057 new_rule = false;
1058
1059 if (chflags & MWIFIEX_CHANNEL_DISABLED)
1060 continue;
1061
1062 if (band == NL80211_BAND_5GHZ) {
1063 if (!(chflags & MWIFIEX_CHANNEL_NOHT80))
1064 bw = MHZ_TO_KHZ(80);
1065 else if (!(chflags & MWIFIEX_CHANNEL_NOHT40))
1066 bw = MHZ_TO_KHZ(40);
1067 else
1068 bw = MHZ_TO_KHZ(20);
1069 } else {
1070 if (!(chflags & MWIFIEX_CHANNEL_NOHT40))
1071 bw = MHZ_TO_KHZ(40);
1072 else
1073 bw = MHZ_TO_KHZ(20);
1074 }
1075
1076 if (idx == 0 || prev_chflags != chflags || prev_bw != bw ||
1077 freq - prev_freq > 20) {
1078 valid_rules++;
1079 new_rule = true;
1080 }
1081
1082 rule = &regd->reg_rules[valid_rules - 1];
1083
1084 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(freq + 10);
1085
1086 prev_chflags = chflags;
1087 prev_freq = freq;
1088 prev_bw = bw;
1089
1090 if (!new_rule)
1091 continue;
1092
1093 rule->freq_range.start_freq_khz = MHZ_TO_KHZ(freq - 10);
1094 rule->power_rule.max_eirp = DBM_TO_MBM(19);
1095
1096 if (chflags & MWIFIEX_CHANNEL_PASSIVE)
1097 rule->flags = NL80211_RRF_NO_IR;
1098
1099 if (chflags & MWIFIEX_CHANNEL_DFS)
1100 rule->flags = NL80211_RRF_DFS;
1101
1102 rule->freq_range.max_bandwidth_khz = bw;
1103 }
1104
1105 regd->n_reg_rules = valid_rules;
1106 regd->alpha2[0] = '9';
1107 regd->alpha2[1] = '9';
1108
1109 return regd;
1110 }
1111
1112 static int mwifiex_ret_chan_region_cfg(struct mwifiex_private *priv,
1113 struct host_cmd_ds_command *resp)
1114 {
1115 struct host_cmd_ds_chan_region_cfg *reg = &resp->params.reg_cfg;
1116 u16 action = le16_to_cpu(reg->action);
1117 u16 tlv, tlv_buf_len, tlv_buf_left;
1118 struct mwifiex_ie_types_header *head;
1119 u8 *tlv_buf;
1120
1121 if (action != HostCmd_ACT_GEN_GET)
1122 return 0;
1123
1124 tlv_buf = (u8 *)reg + sizeof(*reg);
1125 tlv_buf_left = le16_to_cpu(resp->size) - S_DS_GEN - sizeof(*reg);
1126
1127 while (tlv_buf_left >= sizeof(*head)) {
1128 head = (struct mwifiex_ie_types_header *)tlv_buf;
1129 tlv = le16_to_cpu(head->type);
1130 tlv_buf_len = le16_to_cpu(head->len);
1131
1132 if (tlv_buf_left < (sizeof(*head) + tlv_buf_len))
1133 break;
1134
1135 switch (tlv) {
1136 case TLV_TYPE_CHAN_ATTR_CFG:
1137 mwifiex_dbg_dump(priv->adapter, CMD_D, "CHAN:",
1138 (u8 *)head + sizeof(*head),
1139 tlv_buf_len);
1140 priv->adapter->regd =
1141 mwifiex_create_custom_regdomain(priv,
1142 (u8 *)head +
1143 sizeof(*head), tlv_buf_len);
1144 break;
1145 }
1146
1147 tlv_buf += (sizeof(*head) + tlv_buf_len);
1148 tlv_buf_left -= (sizeof(*head) + tlv_buf_len);
1149 }
1150
1151 return 0;
1152 }
1153
1154 /*
1155 * This function handles the command responses.
1156 *
1157 * This is a generic function, which calls command specific
1158 * response handlers based on the command ID.
1159 */
1160 int mwifiex_process_sta_cmdresp(struct mwifiex_private *priv, u16 cmdresp_no,
1161 struct host_cmd_ds_command *resp)
1162 {
1163 int ret = 0;
1164 struct mwifiex_adapter *adapter = priv->adapter;
1165 void *data_buf = adapter->curr_cmd->data_buf;
1166
1167 /* If the command is not successful, cleanup and return failure */
1168 if (resp->result != HostCmd_RESULT_OK) {
1169 mwifiex_process_cmdresp_error(priv, resp);
1170 return -1;
1171 }
1172 /* Command successful, handle response */
1173 switch (cmdresp_no) {
1174 case HostCmd_CMD_GET_HW_SPEC:
1175 ret = mwifiex_ret_get_hw_spec(priv, resp);
1176 break;
1177 case HostCmd_CMD_CFG_DATA:
1178 ret = mwifiex_ret_cfg_data(priv, resp);
1179 break;
1180 case HostCmd_CMD_MAC_CONTROL:
1181 break;
1182 case HostCmd_CMD_802_11_MAC_ADDRESS:
1183 ret = mwifiex_ret_802_11_mac_address(priv, resp);
1184 break;
1185 case HostCmd_CMD_MAC_MULTICAST_ADR:
1186 ret = mwifiex_ret_mac_multicast_adr(priv, resp);
1187 break;
1188 case HostCmd_CMD_TX_RATE_CFG:
1189 ret = mwifiex_ret_tx_rate_cfg(priv, resp);
1190 break;
1191 case HostCmd_CMD_802_11_SCAN:
1192 ret = mwifiex_ret_802_11_scan(priv, resp);
1193 adapter->curr_cmd->wait_q_enabled = false;
1194 break;
1195 case HostCmd_CMD_802_11_SCAN_EXT:
1196 ret = mwifiex_ret_802_11_scan_ext(priv, resp);
1197 adapter->curr_cmd->wait_q_enabled = false;
1198 break;
1199 case HostCmd_CMD_802_11_BG_SCAN_QUERY:
1200 ret = mwifiex_ret_802_11_scan(priv, resp);
1201 cfg80211_sched_scan_results(priv->wdev.wiphy);
1202 mwifiex_dbg(adapter, CMD,
1203 "info: CMD_RESP: BG_SCAN result is ready!\n");
1204 break;
1205 case HostCmd_CMD_802_11_BG_SCAN_CONFIG:
1206 break;
1207 case HostCmd_CMD_TXPWR_CFG:
1208 ret = mwifiex_ret_tx_power_cfg(priv, resp);
1209 break;
1210 case HostCmd_CMD_RF_TX_PWR:
1211 ret = mwifiex_ret_rf_tx_power(priv, resp);
1212 break;
1213 case HostCmd_CMD_RF_ANTENNA:
1214 ret = mwifiex_ret_rf_antenna(priv, resp);
1215 break;
1216 case HostCmd_CMD_802_11_PS_MODE_ENH:
1217 ret = mwifiex_ret_enh_power_mode(priv, resp, data_buf);
1218 break;
1219 case HostCmd_CMD_802_11_HS_CFG_ENH:
1220 ret = mwifiex_ret_802_11_hs_cfg(priv, resp);
1221 break;
1222 case HostCmd_CMD_802_11_ASSOCIATE:
1223 ret = mwifiex_ret_802_11_associate(priv, resp);
1224 break;
1225 case HostCmd_CMD_802_11_DEAUTHENTICATE:
1226 ret = mwifiex_ret_802_11_deauthenticate(priv, resp);
1227 break;
1228 case HostCmd_CMD_802_11_AD_HOC_START:
1229 case HostCmd_CMD_802_11_AD_HOC_JOIN:
1230 ret = mwifiex_ret_802_11_ad_hoc(priv, resp);
1231 break;
1232 case HostCmd_CMD_802_11_AD_HOC_STOP:
1233 ret = mwifiex_ret_802_11_ad_hoc_stop(priv, resp);
1234 break;
1235 case HostCmd_CMD_802_11_GET_LOG:
1236 ret = mwifiex_ret_get_log(priv, resp, data_buf);
1237 break;
1238 case HostCmd_CMD_RSSI_INFO:
1239 ret = mwifiex_ret_802_11_rssi_info(priv, resp);
1240 break;
1241 case HostCmd_CMD_802_11_SNMP_MIB:
1242 ret = mwifiex_ret_802_11_snmp_mib(priv, resp, data_buf);
1243 break;
1244 case HostCmd_CMD_802_11_TX_RATE_QUERY:
1245 ret = mwifiex_ret_802_11_tx_rate_query(priv, resp);
1246 break;
1247 case HostCmd_CMD_VERSION_EXT:
1248 ret = mwifiex_ret_ver_ext(priv, resp, data_buf);
1249 break;
1250 case HostCmd_CMD_REMAIN_ON_CHAN:
1251 ret = mwifiex_ret_remain_on_chan(priv, resp, data_buf);
1252 break;
1253 case HostCmd_CMD_11AC_CFG:
1254 break;
1255 case HostCmd_CMD_P2P_MODE_CFG:
1256 ret = mwifiex_ret_p2p_mode_cfg(priv, resp, data_buf);
1257 break;
1258 case HostCmd_CMD_MGMT_FRAME_REG:
1259 case HostCmd_CMD_FUNC_INIT:
1260 case HostCmd_CMD_FUNC_SHUTDOWN:
1261 break;
1262 case HostCmd_CMD_802_11_KEY_MATERIAL:
1263 ret = mwifiex_ret_802_11_key_material(priv, resp);
1264 break;
1265 case HostCmd_CMD_802_11D_DOMAIN_INFO:
1266 ret = mwifiex_ret_802_11d_domain_info(priv, resp);
1267 break;
1268 case HostCmd_CMD_11N_ADDBA_REQ:
1269 ret = mwifiex_ret_11n_addba_req(priv, resp);
1270 break;
1271 case HostCmd_CMD_11N_DELBA:
1272 ret = mwifiex_ret_11n_delba(priv, resp);
1273 break;
1274 case HostCmd_CMD_11N_ADDBA_RSP:
1275 ret = mwifiex_ret_11n_addba_resp(priv, resp);
1276 break;
1277 case HostCmd_CMD_RECONFIGURE_TX_BUFF:
1278 if (0xffff == (u16)le16_to_cpu(resp->params.tx_buf.buff_size)) {
1279 if (adapter->iface_type == MWIFIEX_USB &&
1280 adapter->usb_mc_setup) {
1281 if (adapter->if_ops.multi_port_resync)
1282 adapter->if_ops.
1283 multi_port_resync(adapter);
1284 adapter->usb_mc_setup = false;
1285 adapter->tx_lock_flag = false;
1286 }
1287 break;
1288 }
1289 adapter->tx_buf_size = (u16) le16_to_cpu(resp->params.
1290 tx_buf.buff_size);
1291 adapter->tx_buf_size = (adapter->tx_buf_size
1292 / MWIFIEX_SDIO_BLOCK_SIZE)
1293 * MWIFIEX_SDIO_BLOCK_SIZE;
1294 adapter->curr_tx_buf_size = adapter->tx_buf_size;
1295 mwifiex_dbg(adapter, CMD, "cmd: curr_tx_buf_size=%d\n",
1296 adapter->curr_tx_buf_size);
1297
1298 if (adapter->if_ops.update_mp_end_port)
1299 adapter->if_ops.update_mp_end_port(adapter,
1300 le16_to_cpu(resp->params.tx_buf.mp_end_port));
1301 break;
1302 case HostCmd_CMD_AMSDU_AGGR_CTRL:
1303 break;
1304 case HostCmd_CMD_WMM_GET_STATUS:
1305 ret = mwifiex_ret_wmm_get_status(priv, resp);
1306 break;
1307 case HostCmd_CMD_802_11_IBSS_COALESCING_STATUS:
1308 ret = mwifiex_ret_ibss_coalescing_status(priv, resp);
1309 break;
1310 case HostCmd_CMD_MEM_ACCESS:
1311 ret = mwifiex_ret_mem_access(priv, resp, data_buf);
1312 break;
1313 case HostCmd_CMD_MAC_REG_ACCESS:
1314 case HostCmd_CMD_BBP_REG_ACCESS:
1315 case HostCmd_CMD_RF_REG_ACCESS:
1316 case HostCmd_CMD_PMIC_REG_ACCESS:
1317 case HostCmd_CMD_CAU_REG_ACCESS:
1318 case HostCmd_CMD_802_11_EEPROM_ACCESS:
1319 ret = mwifiex_ret_reg_access(cmdresp_no, resp, data_buf);
1320 break;
1321 case HostCmd_CMD_SET_BSS_MODE:
1322 break;
1323 case HostCmd_CMD_11N_CFG:
1324 break;
1325 case HostCmd_CMD_PCIE_DESC_DETAILS:
1326 break;
1327 case HostCmd_CMD_802_11_SUBSCRIBE_EVENT:
1328 ret = mwifiex_ret_subsc_evt(priv, resp);
1329 break;
1330 case HostCmd_CMD_UAP_SYS_CONFIG:
1331 break;
1332 case HOST_CMD_APCMD_STA_LIST:
1333 ret = mwifiex_ret_uap_sta_list(priv, resp);
1334 break;
1335 case HostCmd_CMD_UAP_BSS_START:
1336 adapter->tx_lock_flag = false;
1337 adapter->pps_uapsd_mode = false;
1338 adapter->delay_null_pkt = false;
1339 priv->bss_started = 1;
1340 break;
1341 case HostCmd_CMD_UAP_BSS_STOP:
1342 priv->bss_started = 0;
1343 break;
1344 case HostCmd_CMD_UAP_STA_DEAUTH:
1345 break;
1346 case HOST_CMD_APCMD_SYS_RESET:
1347 break;
1348 case HostCmd_CMD_MEF_CFG:
1349 break;
1350 case HostCmd_CMD_COALESCE_CFG:
1351 break;
1352 case HostCmd_CMD_TDLS_OPER:
1353 ret = mwifiex_ret_tdls_oper(priv, resp);
1354 case HostCmd_CMD_MC_POLICY:
1355 break;
1356 case HostCmd_CMD_CHAN_REPORT_REQUEST:
1357 break;
1358 case HostCmd_CMD_SDIO_SP_RX_AGGR_CFG:
1359 ret = mwifiex_ret_sdio_rx_aggr_cfg(priv, resp);
1360 break;
1361 case HostCmd_CMD_HS_WAKEUP_REASON:
1362 ret = mwifiex_ret_wakeup_reason(priv, resp, data_buf);
1363 break;
1364 case HostCmd_CMD_TDLS_CONFIG:
1365 break;
1366 case HostCmd_CMD_ROBUST_COEX:
1367 ret = mwifiex_ret_robust_coex(priv, resp, data_buf);
1368 break;
1369 case HostCmd_CMD_GTK_REKEY_OFFLOAD_CFG:
1370 break;
1371 case HostCmd_CMD_CHAN_REGION_CFG:
1372 ret = mwifiex_ret_chan_region_cfg(priv, resp);
1373 break;
1374 default:
1375 mwifiex_dbg(adapter, ERROR,
1376 "CMD_RESP: unknown cmd response %#x\n",
1377 resp->command);
1378 break;
1379 }
1380
1381 return ret;
1382 }
This page took 0.081889 seconds and 5 git commands to generate.