lightnvm: NVM should depend on HAS_DMA
[deliverable/linux.git] / drivers / net / wireless / zydas / zd1211rw / zd_usb.c
1 /* ZD1211 USB-WLAN driver for Linux
2 *
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/firmware.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/slab.h>
27 #include <linux/skbuff.h>
28 #include <linux/usb.h>
29 #include <linux/workqueue.h>
30 #include <linux/module.h>
31 #include <net/mac80211.h>
32 #include <asm/unaligned.h>
33
34 #include "zd_def.h"
35 #include "zd_mac.h"
36 #include "zd_usb.h"
37
38 static struct usb_device_id usb_ids[] = {
39 /* ZD1211 */
40 { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
41 { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
42 { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
43 { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
44 { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
45 { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
46 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
47 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
48 { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
49 { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50 { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
51 { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
52 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
53 { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
54 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
55 { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
56 { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
57 { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
58 { USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
59 { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
60 { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
61 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
62 { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
63 { USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
64 { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
65 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
66 /* ZD1211B */
67 { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
68 { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
69 { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
70 { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
71 { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
72 { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
73 { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
74 { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
75 { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
76 { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
77 { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
78 { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
79 { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
80 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
81 { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
82 { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
83 { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
84 { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
85 { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
86 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
87 { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
88 { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
89 { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
90 { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
91 { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
92 { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
93 { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
94 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
95 { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
96 { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
97 { USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
98 /* "Driverless" devices that need ejecting */
99 { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
100 { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
101 {}
102 };
103
104 MODULE_LICENSE("GPL");
105 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
106 MODULE_AUTHOR("Ulrich Kunitz");
107 MODULE_AUTHOR("Daniel Drake");
108 MODULE_VERSION("1.0");
109 MODULE_DEVICE_TABLE(usb, usb_ids);
110
111 #define FW_ZD1211_PREFIX "zd1211/zd1211_"
112 #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
113
114 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
115 unsigned int count);
116
117 /* USB device initialization */
118 static void int_urb_complete(struct urb *urb);
119
120 static int request_fw_file(
121 const struct firmware **fw, const char *name, struct device *device)
122 {
123 int r;
124
125 dev_dbg_f(device, "fw name %s\n", name);
126
127 r = request_firmware(fw, name, device);
128 if (r)
129 dev_err(device,
130 "Could not load firmware file %s. Error number %d\n",
131 name, r);
132 return r;
133 }
134
135 static inline u16 get_bcdDevice(const struct usb_device *udev)
136 {
137 return le16_to_cpu(udev->descriptor.bcdDevice);
138 }
139
140 enum upload_code_flags {
141 REBOOT = 1,
142 };
143
144 /* Ensures that MAX_TRANSFER_SIZE is even. */
145 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
146
147 static int upload_code(struct usb_device *udev,
148 const u8 *data, size_t size, u16 code_offset, int flags)
149 {
150 u8 *p;
151 int r;
152
153 /* USB request blocks need "kmalloced" buffers.
154 */
155 p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
156 if (!p) {
157 r = -ENOMEM;
158 goto error;
159 }
160
161 size &= ~1;
162 while (size > 0) {
163 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
164 size : MAX_TRANSFER_SIZE;
165
166 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
167
168 memcpy(p, data, transfer_size);
169 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
170 USB_REQ_FIRMWARE_DOWNLOAD,
171 USB_DIR_OUT | USB_TYPE_VENDOR,
172 code_offset, 0, p, transfer_size, 1000 /* ms */);
173 if (r < 0) {
174 dev_err(&udev->dev,
175 "USB control request for firmware upload"
176 " failed. Error number %d\n", r);
177 goto error;
178 }
179 transfer_size = r & ~1;
180
181 size -= transfer_size;
182 data += transfer_size;
183 code_offset += transfer_size/sizeof(u16);
184 }
185
186 if (flags & REBOOT) {
187 u8 ret;
188
189 /* Use "DMA-aware" buffer. */
190 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
191 USB_REQ_FIRMWARE_CONFIRM,
192 USB_DIR_IN | USB_TYPE_VENDOR,
193 0, 0, p, sizeof(ret), 5000 /* ms */);
194 if (r != sizeof(ret)) {
195 dev_err(&udev->dev,
196 "control request firmeware confirmation failed."
197 " Return value %d\n", r);
198 if (r >= 0)
199 r = -ENODEV;
200 goto error;
201 }
202 ret = p[0];
203 if (ret & 0x80) {
204 dev_err(&udev->dev,
205 "Internal error while downloading."
206 " Firmware confirm return value %#04x\n",
207 (unsigned int)ret);
208 r = -ENODEV;
209 goto error;
210 }
211 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
212 (unsigned int)ret);
213 }
214
215 r = 0;
216 error:
217 kfree(p);
218 return r;
219 }
220
221 static u16 get_word(const void *data, u16 offset)
222 {
223 const __le16 *p = data;
224 return le16_to_cpu(p[offset]);
225 }
226
227 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
228 const char* postfix)
229 {
230 scnprintf(buffer, size, "%s%s",
231 usb->is_zd1211b ?
232 FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
233 postfix);
234 return buffer;
235 }
236
237 static int handle_version_mismatch(struct zd_usb *usb,
238 const struct firmware *ub_fw)
239 {
240 struct usb_device *udev = zd_usb_to_usbdev(usb);
241 const struct firmware *ur_fw = NULL;
242 int offset;
243 int r = 0;
244 char fw_name[128];
245
246 r = request_fw_file(&ur_fw,
247 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
248 &udev->dev);
249 if (r)
250 goto error;
251
252 r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
253 if (r)
254 goto error;
255
256 offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
257 r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
258 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
259
260 /* At this point, the vendor driver downloads the whole firmware
261 * image, hacks around with version IDs, and uploads it again,
262 * completely overwriting the boot code. We do not do this here as
263 * it is not required on any tested devices, and it is suspected to
264 * cause problems. */
265 error:
266 release_firmware(ur_fw);
267 return r;
268 }
269
270 static int upload_firmware(struct zd_usb *usb)
271 {
272 int r;
273 u16 fw_bcdDevice;
274 u16 bcdDevice;
275 struct usb_device *udev = zd_usb_to_usbdev(usb);
276 const struct firmware *ub_fw = NULL;
277 const struct firmware *uph_fw = NULL;
278 char fw_name[128];
279
280 bcdDevice = get_bcdDevice(udev);
281
282 r = request_fw_file(&ub_fw,
283 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
284 &udev->dev);
285 if (r)
286 goto error;
287
288 fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
289
290 if (fw_bcdDevice != bcdDevice) {
291 dev_info(&udev->dev,
292 "firmware version %#06x and device bootcode version "
293 "%#06x differ\n", fw_bcdDevice, bcdDevice);
294 if (bcdDevice <= 0x4313)
295 dev_warn(&udev->dev, "device has old bootcode, please "
296 "report success or failure\n");
297
298 r = handle_version_mismatch(usb, ub_fw);
299 if (r)
300 goto error;
301 } else {
302 dev_dbg_f(&udev->dev,
303 "firmware device id %#06x is equal to the "
304 "actual device id\n", fw_bcdDevice);
305 }
306
307
308 r = request_fw_file(&uph_fw,
309 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
310 &udev->dev);
311 if (r)
312 goto error;
313
314 r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
315 if (r) {
316 dev_err(&udev->dev,
317 "Could not upload firmware code uph. Error number %d\n",
318 r);
319 }
320
321 /* FALL-THROUGH */
322 error:
323 release_firmware(ub_fw);
324 release_firmware(uph_fw);
325 return r;
326 }
327
328 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ur");
329 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ur");
330 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ub");
331 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ub");
332 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "uphr");
333 MODULE_FIRMWARE(FW_ZD1211_PREFIX "uphr");
334
335 /* Read data from device address space using "firmware interface" which does
336 * not require firmware to be loaded. */
337 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
338 {
339 int r;
340 struct usb_device *udev = zd_usb_to_usbdev(usb);
341 u8 *buf;
342
343 /* Use "DMA-aware" buffer. */
344 buf = kmalloc(len, GFP_KERNEL);
345 if (!buf)
346 return -ENOMEM;
347 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
348 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
349 buf, len, 5000);
350 if (r < 0) {
351 dev_err(&udev->dev,
352 "read over firmware interface failed: %d\n", r);
353 goto exit;
354 } else if (r != len) {
355 dev_err(&udev->dev,
356 "incomplete read over firmware interface: %d/%d\n",
357 r, len);
358 r = -EIO;
359 goto exit;
360 }
361 r = 0;
362 memcpy(data, buf, len);
363 exit:
364 kfree(buf);
365 return r;
366 }
367
368 #define urb_dev(urb) (&(urb)->dev->dev)
369
370 static inline void handle_regs_int_override(struct urb *urb)
371 {
372 struct zd_usb *usb = urb->context;
373 struct zd_usb_interrupt *intr = &usb->intr;
374
375 spin_lock(&intr->lock);
376 if (atomic_read(&intr->read_regs_enabled)) {
377 atomic_set(&intr->read_regs_enabled, 0);
378 intr->read_regs_int_overridden = 1;
379 complete(&intr->read_regs.completion);
380 }
381 spin_unlock(&intr->lock);
382 }
383
384 static inline void handle_regs_int(struct urb *urb)
385 {
386 struct zd_usb *usb = urb->context;
387 struct zd_usb_interrupt *intr = &usb->intr;
388 int len;
389 u16 int_num;
390
391 ZD_ASSERT(in_interrupt());
392 spin_lock(&intr->lock);
393
394 int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
395 if (int_num == CR_INTERRUPT) {
396 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
397 spin_lock(&mac->lock);
398 memcpy(&mac->intr_buffer, urb->transfer_buffer,
399 USB_MAX_EP_INT_BUFFER);
400 spin_unlock(&mac->lock);
401 schedule_work(&mac->process_intr);
402 } else if (atomic_read(&intr->read_regs_enabled)) {
403 len = urb->actual_length;
404 intr->read_regs.length = urb->actual_length;
405 if (len > sizeof(intr->read_regs.buffer))
406 len = sizeof(intr->read_regs.buffer);
407
408 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
409
410 /* Sometimes USB_INT_ID_REGS is not overridden, but comes after
411 * USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this
412 * delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of
413 * retry unhandled. Next read-reg command then might catch
414 * this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads.
415 */
416 if (!check_read_regs(usb, intr->read_regs.req,
417 intr->read_regs.req_count))
418 goto out;
419
420 atomic_set(&intr->read_regs_enabled, 0);
421 intr->read_regs_int_overridden = 0;
422 complete(&intr->read_regs.completion);
423
424 goto out;
425 }
426
427 out:
428 spin_unlock(&intr->lock);
429
430 /* CR_INTERRUPT might override read_reg too. */
431 if (int_num == CR_INTERRUPT && atomic_read(&intr->read_regs_enabled))
432 handle_regs_int_override(urb);
433 }
434
435 static void int_urb_complete(struct urb *urb)
436 {
437 int r;
438 struct usb_int_header *hdr;
439 struct zd_usb *usb;
440 struct zd_usb_interrupt *intr;
441
442 switch (urb->status) {
443 case 0:
444 break;
445 case -ESHUTDOWN:
446 case -EINVAL:
447 case -ENODEV:
448 case -ENOENT:
449 case -ECONNRESET:
450 case -EPIPE:
451 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
452 return;
453 default:
454 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
455 goto resubmit;
456 }
457
458 if (urb->actual_length < sizeof(hdr)) {
459 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
460 goto resubmit;
461 }
462
463 hdr = urb->transfer_buffer;
464 if (hdr->type != USB_INT_TYPE) {
465 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
466 goto resubmit;
467 }
468
469 /* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override
470 * pending USB_INT_ID_REGS causing read command timeout.
471 */
472 usb = urb->context;
473 intr = &usb->intr;
474 if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled))
475 handle_regs_int_override(urb);
476
477 switch (hdr->id) {
478 case USB_INT_ID_REGS:
479 handle_regs_int(urb);
480 break;
481 case USB_INT_ID_RETRY_FAILED:
482 zd_mac_tx_failed(urb);
483 break;
484 default:
485 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
486 (unsigned int)hdr->id);
487 goto resubmit;
488 }
489
490 resubmit:
491 r = usb_submit_urb(urb, GFP_ATOMIC);
492 if (r) {
493 dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
494 urb, r);
495 /* TODO: add worker to reset intr->urb */
496 }
497 return;
498 }
499
500 static inline int int_urb_interval(struct usb_device *udev)
501 {
502 switch (udev->speed) {
503 case USB_SPEED_HIGH:
504 return 4;
505 case USB_SPEED_LOW:
506 return 10;
507 case USB_SPEED_FULL:
508 default:
509 return 1;
510 }
511 }
512
513 static inline int usb_int_enabled(struct zd_usb *usb)
514 {
515 unsigned long flags;
516 struct zd_usb_interrupt *intr = &usb->intr;
517 struct urb *urb;
518
519 spin_lock_irqsave(&intr->lock, flags);
520 urb = intr->urb;
521 spin_unlock_irqrestore(&intr->lock, flags);
522 return urb != NULL;
523 }
524
525 int zd_usb_enable_int(struct zd_usb *usb)
526 {
527 int r;
528 struct usb_device *udev = zd_usb_to_usbdev(usb);
529 struct zd_usb_interrupt *intr = &usb->intr;
530 struct urb *urb;
531
532 dev_dbg_f(zd_usb_dev(usb), "\n");
533
534 urb = usb_alloc_urb(0, GFP_KERNEL);
535 if (!urb) {
536 r = -ENOMEM;
537 goto out;
538 }
539
540 ZD_ASSERT(!irqs_disabled());
541 spin_lock_irq(&intr->lock);
542 if (intr->urb) {
543 spin_unlock_irq(&intr->lock);
544 r = 0;
545 goto error_free_urb;
546 }
547 intr->urb = urb;
548 spin_unlock_irq(&intr->lock);
549
550 r = -ENOMEM;
551 intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER,
552 GFP_KERNEL, &intr->buffer_dma);
553 if (!intr->buffer) {
554 dev_dbg_f(zd_usb_dev(usb),
555 "couldn't allocate transfer_buffer\n");
556 goto error_set_urb_null;
557 }
558
559 usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
560 intr->buffer, USB_MAX_EP_INT_BUFFER,
561 int_urb_complete, usb,
562 intr->interval);
563 urb->transfer_dma = intr->buffer_dma;
564 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
565
566 dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
567 r = usb_submit_urb(urb, GFP_KERNEL);
568 if (r) {
569 dev_dbg_f(zd_usb_dev(usb),
570 "Couldn't submit urb. Error number %d\n", r);
571 goto error;
572 }
573
574 return 0;
575 error:
576 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
577 intr->buffer, intr->buffer_dma);
578 error_set_urb_null:
579 spin_lock_irq(&intr->lock);
580 intr->urb = NULL;
581 spin_unlock_irq(&intr->lock);
582 error_free_urb:
583 usb_free_urb(urb);
584 out:
585 return r;
586 }
587
588 void zd_usb_disable_int(struct zd_usb *usb)
589 {
590 unsigned long flags;
591 struct usb_device *udev = zd_usb_to_usbdev(usb);
592 struct zd_usb_interrupt *intr = &usb->intr;
593 struct urb *urb;
594 void *buffer;
595 dma_addr_t buffer_dma;
596
597 spin_lock_irqsave(&intr->lock, flags);
598 urb = intr->urb;
599 if (!urb) {
600 spin_unlock_irqrestore(&intr->lock, flags);
601 return;
602 }
603 intr->urb = NULL;
604 buffer = intr->buffer;
605 buffer_dma = intr->buffer_dma;
606 intr->buffer = NULL;
607 spin_unlock_irqrestore(&intr->lock, flags);
608
609 usb_kill_urb(urb);
610 dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
611 usb_free_urb(urb);
612
613 if (buffer)
614 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
615 buffer, buffer_dma);
616 }
617
618 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
619 unsigned int length)
620 {
621 int i;
622 const struct rx_length_info *length_info;
623
624 if (length < sizeof(struct rx_length_info)) {
625 /* It's not a complete packet anyhow. */
626 dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n",
627 length);
628 return;
629 }
630 length_info = (struct rx_length_info *)
631 (buffer + length - sizeof(struct rx_length_info));
632
633 /* It might be that three frames are merged into a single URB
634 * transaction. We have to check for the length info tag.
635 *
636 * While testing we discovered that length_info might be unaligned,
637 * because if USB transactions are merged, the last packet will not
638 * be padded. Unaligned access might also happen if the length_info
639 * structure is not present.
640 */
641 if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
642 {
643 unsigned int l, k, n;
644 for (i = 0, l = 0;; i++) {
645 k = get_unaligned_le16(&length_info->length[i]);
646 if (k == 0)
647 return;
648 n = l+k;
649 if (n > length)
650 return;
651 zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
652 if (i >= 2)
653 return;
654 l = (n+3) & ~3;
655 }
656 } else {
657 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
658 }
659 }
660
661 static void rx_urb_complete(struct urb *urb)
662 {
663 int r;
664 struct zd_usb *usb;
665 struct zd_usb_rx *rx;
666 const u8 *buffer;
667 unsigned int length;
668
669 switch (urb->status) {
670 case 0:
671 break;
672 case -ESHUTDOWN:
673 case -EINVAL:
674 case -ENODEV:
675 case -ENOENT:
676 case -ECONNRESET:
677 case -EPIPE:
678 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
679 return;
680 default:
681 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
682 goto resubmit;
683 }
684
685 buffer = urb->transfer_buffer;
686 length = urb->actual_length;
687 usb = urb->context;
688 rx = &usb->rx;
689
690 tasklet_schedule(&rx->reset_timer_tasklet);
691
692 if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
693 /* If there is an old first fragment, we don't care. */
694 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
695 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
696 spin_lock(&rx->lock);
697 memcpy(rx->fragment, buffer, length);
698 rx->fragment_length = length;
699 spin_unlock(&rx->lock);
700 goto resubmit;
701 }
702
703 spin_lock(&rx->lock);
704 if (rx->fragment_length > 0) {
705 /* We are on a second fragment, we believe */
706 ZD_ASSERT(length + rx->fragment_length <=
707 ARRAY_SIZE(rx->fragment));
708 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
709 memcpy(rx->fragment+rx->fragment_length, buffer, length);
710 handle_rx_packet(usb, rx->fragment,
711 rx->fragment_length + length);
712 rx->fragment_length = 0;
713 spin_unlock(&rx->lock);
714 } else {
715 spin_unlock(&rx->lock);
716 handle_rx_packet(usb, buffer, length);
717 }
718
719 resubmit:
720 r = usb_submit_urb(urb, GFP_ATOMIC);
721 if (r)
722 dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
723 }
724
725 static struct urb *alloc_rx_urb(struct zd_usb *usb)
726 {
727 struct usb_device *udev = zd_usb_to_usbdev(usb);
728 struct urb *urb;
729 void *buffer;
730
731 urb = usb_alloc_urb(0, GFP_KERNEL);
732 if (!urb)
733 return NULL;
734 buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
735 &urb->transfer_dma);
736 if (!buffer) {
737 usb_free_urb(urb);
738 return NULL;
739 }
740
741 usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
742 buffer, USB_MAX_RX_SIZE,
743 rx_urb_complete, usb);
744 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
745
746 return urb;
747 }
748
749 static void free_rx_urb(struct urb *urb)
750 {
751 if (!urb)
752 return;
753 usb_free_coherent(urb->dev, urb->transfer_buffer_length,
754 urb->transfer_buffer, urb->transfer_dma);
755 usb_free_urb(urb);
756 }
757
758 static int __zd_usb_enable_rx(struct zd_usb *usb)
759 {
760 int i, r;
761 struct zd_usb_rx *rx = &usb->rx;
762 struct urb **urbs;
763
764 dev_dbg_f(zd_usb_dev(usb), "\n");
765
766 r = -ENOMEM;
767 urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
768 if (!urbs)
769 goto error;
770 for (i = 0; i < RX_URBS_COUNT; i++) {
771 urbs[i] = alloc_rx_urb(usb);
772 if (!urbs[i])
773 goto error;
774 }
775
776 ZD_ASSERT(!irqs_disabled());
777 spin_lock_irq(&rx->lock);
778 if (rx->urbs) {
779 spin_unlock_irq(&rx->lock);
780 r = 0;
781 goto error;
782 }
783 rx->urbs = urbs;
784 rx->urbs_count = RX_URBS_COUNT;
785 spin_unlock_irq(&rx->lock);
786
787 for (i = 0; i < RX_URBS_COUNT; i++) {
788 r = usb_submit_urb(urbs[i], GFP_KERNEL);
789 if (r)
790 goto error_submit;
791 }
792
793 return 0;
794 error_submit:
795 for (i = 0; i < RX_URBS_COUNT; i++) {
796 usb_kill_urb(urbs[i]);
797 }
798 spin_lock_irq(&rx->lock);
799 rx->urbs = NULL;
800 rx->urbs_count = 0;
801 spin_unlock_irq(&rx->lock);
802 error:
803 if (urbs) {
804 for (i = 0; i < RX_URBS_COUNT; i++)
805 free_rx_urb(urbs[i]);
806 }
807 return r;
808 }
809
810 int zd_usb_enable_rx(struct zd_usb *usb)
811 {
812 int r;
813 struct zd_usb_rx *rx = &usb->rx;
814
815 mutex_lock(&rx->setup_mutex);
816 r = __zd_usb_enable_rx(usb);
817 mutex_unlock(&rx->setup_mutex);
818
819 zd_usb_reset_rx_idle_timer(usb);
820
821 return r;
822 }
823
824 static void __zd_usb_disable_rx(struct zd_usb *usb)
825 {
826 int i;
827 unsigned long flags;
828 struct urb **urbs;
829 unsigned int count;
830 struct zd_usb_rx *rx = &usb->rx;
831
832 spin_lock_irqsave(&rx->lock, flags);
833 urbs = rx->urbs;
834 count = rx->urbs_count;
835 spin_unlock_irqrestore(&rx->lock, flags);
836 if (!urbs)
837 return;
838
839 for (i = 0; i < count; i++) {
840 usb_kill_urb(urbs[i]);
841 free_rx_urb(urbs[i]);
842 }
843 kfree(urbs);
844
845 spin_lock_irqsave(&rx->lock, flags);
846 rx->urbs = NULL;
847 rx->urbs_count = 0;
848 spin_unlock_irqrestore(&rx->lock, flags);
849 }
850
851 void zd_usb_disable_rx(struct zd_usb *usb)
852 {
853 struct zd_usb_rx *rx = &usb->rx;
854
855 mutex_lock(&rx->setup_mutex);
856 __zd_usb_disable_rx(usb);
857 mutex_unlock(&rx->setup_mutex);
858
859 tasklet_kill(&rx->reset_timer_tasklet);
860 cancel_delayed_work_sync(&rx->idle_work);
861 }
862
863 static void zd_usb_reset_rx(struct zd_usb *usb)
864 {
865 bool do_reset;
866 struct zd_usb_rx *rx = &usb->rx;
867 unsigned long flags;
868
869 mutex_lock(&rx->setup_mutex);
870
871 spin_lock_irqsave(&rx->lock, flags);
872 do_reset = rx->urbs != NULL;
873 spin_unlock_irqrestore(&rx->lock, flags);
874
875 if (do_reset) {
876 __zd_usb_disable_rx(usb);
877 __zd_usb_enable_rx(usb);
878 }
879
880 mutex_unlock(&rx->setup_mutex);
881
882 if (do_reset)
883 zd_usb_reset_rx_idle_timer(usb);
884 }
885
886 /**
887 * zd_usb_disable_tx - disable transmission
888 * @usb: the zd1211rw-private USB structure
889 *
890 * Frees all URBs in the free list and marks the transmission as disabled.
891 */
892 void zd_usb_disable_tx(struct zd_usb *usb)
893 {
894 struct zd_usb_tx *tx = &usb->tx;
895 unsigned long flags;
896
897 atomic_set(&tx->enabled, 0);
898
899 /* kill all submitted tx-urbs */
900 usb_kill_anchored_urbs(&tx->submitted);
901
902 spin_lock_irqsave(&tx->lock, flags);
903 WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
904 WARN_ON(tx->submitted_urbs != 0);
905 tx->submitted_urbs = 0;
906 spin_unlock_irqrestore(&tx->lock, flags);
907
908 /* The stopped state is ignored, relying on ieee80211_wake_queues()
909 * in a potentionally following zd_usb_enable_tx().
910 */
911 }
912
913 /**
914 * zd_usb_enable_tx - enables transmission
915 * @usb: a &struct zd_usb pointer
916 *
917 * This function enables transmission and prepares the &zd_usb_tx data
918 * structure.
919 */
920 void zd_usb_enable_tx(struct zd_usb *usb)
921 {
922 unsigned long flags;
923 struct zd_usb_tx *tx = &usb->tx;
924
925 spin_lock_irqsave(&tx->lock, flags);
926 atomic_set(&tx->enabled, 1);
927 tx->submitted_urbs = 0;
928 ieee80211_wake_queues(zd_usb_to_hw(usb));
929 tx->stopped = 0;
930 spin_unlock_irqrestore(&tx->lock, flags);
931 }
932
933 static void tx_dec_submitted_urbs(struct zd_usb *usb)
934 {
935 struct zd_usb_tx *tx = &usb->tx;
936 unsigned long flags;
937
938 spin_lock_irqsave(&tx->lock, flags);
939 --tx->submitted_urbs;
940 if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
941 ieee80211_wake_queues(zd_usb_to_hw(usb));
942 tx->stopped = 0;
943 }
944 spin_unlock_irqrestore(&tx->lock, flags);
945 }
946
947 static void tx_inc_submitted_urbs(struct zd_usb *usb)
948 {
949 struct zd_usb_tx *tx = &usb->tx;
950 unsigned long flags;
951
952 spin_lock_irqsave(&tx->lock, flags);
953 ++tx->submitted_urbs;
954 if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
955 ieee80211_stop_queues(zd_usb_to_hw(usb));
956 tx->stopped = 1;
957 }
958 spin_unlock_irqrestore(&tx->lock, flags);
959 }
960
961 /**
962 * tx_urb_complete - completes the execution of an URB
963 * @urb: a URB
964 *
965 * This function is called if the URB has been transferred to a device or an
966 * error has happened.
967 */
968 static void tx_urb_complete(struct urb *urb)
969 {
970 int r;
971 struct sk_buff *skb;
972 struct ieee80211_tx_info *info;
973 struct zd_usb *usb;
974 struct zd_usb_tx *tx;
975
976 skb = (struct sk_buff *)urb->context;
977 info = IEEE80211_SKB_CB(skb);
978 /*
979 * grab 'usb' pointer before handing off the skb (since
980 * it might be freed by zd_mac_tx_to_dev or mac80211)
981 */
982 usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
983 tx = &usb->tx;
984
985 switch (urb->status) {
986 case 0:
987 break;
988 case -ESHUTDOWN:
989 case -EINVAL:
990 case -ENODEV:
991 case -ENOENT:
992 case -ECONNRESET:
993 case -EPIPE:
994 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
995 break;
996 default:
997 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
998 goto resubmit;
999 }
1000 free_urb:
1001 skb_unlink(skb, &usb->tx.submitted_skbs);
1002 zd_mac_tx_to_dev(skb, urb->status);
1003 usb_free_urb(urb);
1004 tx_dec_submitted_urbs(usb);
1005 return;
1006 resubmit:
1007 usb_anchor_urb(urb, &tx->submitted);
1008 r = usb_submit_urb(urb, GFP_ATOMIC);
1009 if (r) {
1010 usb_unanchor_urb(urb);
1011 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
1012 goto free_urb;
1013 }
1014 }
1015
1016 /**
1017 * zd_usb_tx: initiates transfer of a frame of the device
1018 *
1019 * @usb: the zd1211rw-private USB structure
1020 * @skb: a &struct sk_buff pointer
1021 *
1022 * This function tranmits a frame to the device. It doesn't wait for
1023 * completion. The frame must contain the control set and have all the
1024 * control set information available.
1025 *
1026 * The function returns 0 if the transfer has been successfully initiated.
1027 */
1028 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
1029 {
1030 int r;
1031 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1032 struct usb_device *udev = zd_usb_to_usbdev(usb);
1033 struct urb *urb;
1034 struct zd_usb_tx *tx = &usb->tx;
1035
1036 if (!atomic_read(&tx->enabled)) {
1037 r = -ENOENT;
1038 goto out;
1039 }
1040
1041 urb = usb_alloc_urb(0, GFP_ATOMIC);
1042 if (!urb) {
1043 r = -ENOMEM;
1044 goto out;
1045 }
1046
1047 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
1048 skb->data, skb->len, tx_urb_complete, skb);
1049
1050 info->rate_driver_data[1] = (void *)jiffies;
1051 skb_queue_tail(&tx->submitted_skbs, skb);
1052 usb_anchor_urb(urb, &tx->submitted);
1053
1054 r = usb_submit_urb(urb, GFP_ATOMIC);
1055 if (r) {
1056 dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
1057 usb_unanchor_urb(urb);
1058 skb_unlink(skb, &tx->submitted_skbs);
1059 goto error;
1060 }
1061 tx_inc_submitted_urbs(usb);
1062 return 0;
1063 error:
1064 usb_free_urb(urb);
1065 out:
1066 return r;
1067 }
1068
1069 static bool zd_tx_timeout(struct zd_usb *usb)
1070 {
1071 struct zd_usb_tx *tx = &usb->tx;
1072 struct sk_buff_head *q = &tx->submitted_skbs;
1073 struct sk_buff *skb, *skbnext;
1074 struct ieee80211_tx_info *info;
1075 unsigned long flags, trans_start;
1076 bool have_timedout = false;
1077
1078 spin_lock_irqsave(&q->lock, flags);
1079 skb_queue_walk_safe(q, skb, skbnext) {
1080 info = IEEE80211_SKB_CB(skb);
1081 trans_start = (unsigned long)info->rate_driver_data[1];
1082
1083 if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
1084 have_timedout = true;
1085 break;
1086 }
1087 }
1088 spin_unlock_irqrestore(&q->lock, flags);
1089
1090 return have_timedout;
1091 }
1092
1093 static void zd_tx_watchdog_handler(struct work_struct *work)
1094 {
1095 struct zd_usb *usb =
1096 container_of(work, struct zd_usb, tx.watchdog_work.work);
1097 struct zd_usb_tx *tx = &usb->tx;
1098
1099 if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
1100 goto out;
1101 if (!zd_tx_timeout(usb))
1102 goto out;
1103
1104 /* TX halted, try reset */
1105 dev_warn(zd_usb_dev(usb), "TX-stall detected, resetting device...");
1106
1107 usb_queue_reset_device(usb->intf);
1108
1109 /* reset will stop this worker, don't rearm */
1110 return;
1111 out:
1112 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1113 ZD_TX_WATCHDOG_INTERVAL);
1114 }
1115
1116 void zd_tx_watchdog_enable(struct zd_usb *usb)
1117 {
1118 struct zd_usb_tx *tx = &usb->tx;
1119
1120 if (!tx->watchdog_enabled) {
1121 dev_dbg_f(zd_usb_dev(usb), "\n");
1122 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1123 ZD_TX_WATCHDOG_INTERVAL);
1124 tx->watchdog_enabled = 1;
1125 }
1126 }
1127
1128 void zd_tx_watchdog_disable(struct zd_usb *usb)
1129 {
1130 struct zd_usb_tx *tx = &usb->tx;
1131
1132 if (tx->watchdog_enabled) {
1133 dev_dbg_f(zd_usb_dev(usb), "\n");
1134 tx->watchdog_enabled = 0;
1135 cancel_delayed_work_sync(&tx->watchdog_work);
1136 }
1137 }
1138
1139 static void zd_rx_idle_timer_handler(struct work_struct *work)
1140 {
1141 struct zd_usb *usb =
1142 container_of(work, struct zd_usb, rx.idle_work.work);
1143 struct zd_mac *mac = zd_usb_to_mac(usb);
1144
1145 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1146 return;
1147
1148 dev_dbg_f(zd_usb_dev(usb), "\n");
1149
1150 /* 30 seconds since last rx, reset rx */
1151 zd_usb_reset_rx(usb);
1152 }
1153
1154 static void zd_usb_reset_rx_idle_timer_tasklet(unsigned long param)
1155 {
1156 struct zd_usb *usb = (struct zd_usb *)param;
1157
1158 zd_usb_reset_rx_idle_timer(usb);
1159 }
1160
1161 void zd_usb_reset_rx_idle_timer(struct zd_usb *usb)
1162 {
1163 struct zd_usb_rx *rx = &usb->rx;
1164
1165 mod_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL);
1166 }
1167
1168 static inline void init_usb_interrupt(struct zd_usb *usb)
1169 {
1170 struct zd_usb_interrupt *intr = &usb->intr;
1171
1172 spin_lock_init(&intr->lock);
1173 intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
1174 init_completion(&intr->read_regs.completion);
1175 atomic_set(&intr->read_regs_enabled, 0);
1176 intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
1177 }
1178
1179 static inline void init_usb_rx(struct zd_usb *usb)
1180 {
1181 struct zd_usb_rx *rx = &usb->rx;
1182
1183 spin_lock_init(&rx->lock);
1184 mutex_init(&rx->setup_mutex);
1185 if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
1186 rx->usb_packet_size = 512;
1187 } else {
1188 rx->usb_packet_size = 64;
1189 }
1190 ZD_ASSERT(rx->fragment_length == 0);
1191 INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
1192 rx->reset_timer_tasklet.func = zd_usb_reset_rx_idle_timer_tasklet;
1193 rx->reset_timer_tasklet.data = (unsigned long)usb;
1194 }
1195
1196 static inline void init_usb_tx(struct zd_usb *usb)
1197 {
1198 struct zd_usb_tx *tx = &usb->tx;
1199
1200 spin_lock_init(&tx->lock);
1201 atomic_set(&tx->enabled, 0);
1202 tx->stopped = 0;
1203 skb_queue_head_init(&tx->submitted_skbs);
1204 init_usb_anchor(&tx->submitted);
1205 tx->submitted_urbs = 0;
1206 tx->watchdog_enabled = 0;
1207 INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
1208 }
1209
1210 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1211 struct usb_interface *intf)
1212 {
1213 memset(usb, 0, sizeof(*usb));
1214 usb->intf = usb_get_intf(intf);
1215 usb_set_intfdata(usb->intf, hw);
1216 init_usb_anchor(&usb->submitted_cmds);
1217 init_usb_interrupt(usb);
1218 init_usb_tx(usb);
1219 init_usb_rx(usb);
1220 }
1221
1222 void zd_usb_clear(struct zd_usb *usb)
1223 {
1224 usb_set_intfdata(usb->intf, NULL);
1225 usb_put_intf(usb->intf);
1226 ZD_MEMCLEAR(usb, sizeof(*usb));
1227 /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1228 }
1229
1230 static const char *speed(enum usb_device_speed speed)
1231 {
1232 switch (speed) {
1233 case USB_SPEED_LOW:
1234 return "low";
1235 case USB_SPEED_FULL:
1236 return "full";
1237 case USB_SPEED_HIGH:
1238 return "high";
1239 default:
1240 return "unknown speed";
1241 }
1242 }
1243
1244 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1245 {
1246 return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1247 le16_to_cpu(udev->descriptor.idVendor),
1248 le16_to_cpu(udev->descriptor.idProduct),
1249 get_bcdDevice(udev),
1250 speed(udev->speed));
1251 }
1252
1253 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1254 {
1255 struct usb_device *udev = interface_to_usbdev(usb->intf);
1256 return scnprint_id(udev, buffer, size);
1257 }
1258
1259 #ifdef DEBUG
1260 static void print_id(struct usb_device *udev)
1261 {
1262 char buffer[40];
1263
1264 scnprint_id(udev, buffer, sizeof(buffer));
1265 buffer[sizeof(buffer)-1] = 0;
1266 dev_dbg_f(&udev->dev, "%s\n", buffer);
1267 }
1268 #else
1269 #define print_id(udev) do { } while (0)
1270 #endif
1271
1272 static int eject_installer(struct usb_interface *intf)
1273 {
1274 struct usb_device *udev = interface_to_usbdev(intf);
1275 struct usb_host_interface *iface_desc = &intf->altsetting[0];
1276 struct usb_endpoint_descriptor *endpoint;
1277 unsigned char *cmd;
1278 u8 bulk_out_ep;
1279 int r;
1280
1281 /* Find bulk out endpoint */
1282 for (r = 1; r >= 0; r--) {
1283 endpoint = &iface_desc->endpoint[r].desc;
1284 if (usb_endpoint_dir_out(endpoint) &&
1285 usb_endpoint_xfer_bulk(endpoint)) {
1286 bulk_out_ep = endpoint->bEndpointAddress;
1287 break;
1288 }
1289 }
1290 if (r == -1) {
1291 dev_err(&udev->dev,
1292 "zd1211rw: Could not find bulk out endpoint\n");
1293 return -ENODEV;
1294 }
1295
1296 cmd = kzalloc(31, GFP_KERNEL);
1297 if (cmd == NULL)
1298 return -ENODEV;
1299
1300 /* USB bulk command block */
1301 cmd[0] = 0x55; /* bulk command signature */
1302 cmd[1] = 0x53; /* bulk command signature */
1303 cmd[2] = 0x42; /* bulk command signature */
1304 cmd[3] = 0x43; /* bulk command signature */
1305 cmd[14] = 6; /* command length */
1306
1307 cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1308 cmd[19] = 0x2; /* eject disc */
1309
1310 dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1311 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1312 cmd, 31, NULL, 2000);
1313 kfree(cmd);
1314 if (r)
1315 return r;
1316
1317 /* At this point, the device disconnects and reconnects with the real
1318 * ID numbers. */
1319
1320 usb_set_intfdata(intf, NULL);
1321 return 0;
1322 }
1323
1324 int zd_usb_init_hw(struct zd_usb *usb)
1325 {
1326 int r;
1327 struct zd_mac *mac = zd_usb_to_mac(usb);
1328
1329 dev_dbg_f(zd_usb_dev(usb), "\n");
1330
1331 r = upload_firmware(usb);
1332 if (r) {
1333 dev_err(zd_usb_dev(usb),
1334 "couldn't load firmware. Error number %d\n", r);
1335 return r;
1336 }
1337
1338 r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1339 if (r) {
1340 dev_dbg_f(zd_usb_dev(usb),
1341 "couldn't reset configuration. Error number %d\n", r);
1342 return r;
1343 }
1344
1345 r = zd_mac_init_hw(mac->hw);
1346 if (r) {
1347 dev_dbg_f(zd_usb_dev(usb),
1348 "couldn't initialize mac. Error number %d\n", r);
1349 return r;
1350 }
1351
1352 usb->initialized = 1;
1353 return 0;
1354 }
1355
1356 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1357 {
1358 int r;
1359 struct usb_device *udev = interface_to_usbdev(intf);
1360 struct zd_usb *usb;
1361 struct ieee80211_hw *hw = NULL;
1362
1363 print_id(udev);
1364
1365 if (id->driver_info & DEVICE_INSTALLER)
1366 return eject_installer(intf);
1367
1368 switch (udev->speed) {
1369 case USB_SPEED_LOW:
1370 case USB_SPEED_FULL:
1371 case USB_SPEED_HIGH:
1372 break;
1373 default:
1374 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1375 r = -ENODEV;
1376 goto error;
1377 }
1378
1379 r = usb_reset_device(udev);
1380 if (r) {
1381 dev_err(&intf->dev,
1382 "couldn't reset usb device. Error number %d\n", r);
1383 goto error;
1384 }
1385
1386 hw = zd_mac_alloc_hw(intf);
1387 if (hw == NULL) {
1388 r = -ENOMEM;
1389 goto error;
1390 }
1391
1392 usb = &zd_hw_mac(hw)->chip.usb;
1393 usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1394
1395 r = zd_mac_preinit_hw(hw);
1396 if (r) {
1397 dev_dbg_f(&intf->dev,
1398 "couldn't initialize mac. Error number %d\n", r);
1399 goto error;
1400 }
1401
1402 r = ieee80211_register_hw(hw);
1403 if (r) {
1404 dev_dbg_f(&intf->dev,
1405 "couldn't register device. Error number %d\n", r);
1406 goto error;
1407 }
1408
1409 dev_dbg_f(&intf->dev, "successful\n");
1410 dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1411 return 0;
1412 error:
1413 usb_reset_device(interface_to_usbdev(intf));
1414 if (hw) {
1415 zd_mac_clear(zd_hw_mac(hw));
1416 ieee80211_free_hw(hw);
1417 }
1418 return r;
1419 }
1420
1421 static void disconnect(struct usb_interface *intf)
1422 {
1423 struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1424 struct zd_mac *mac;
1425 struct zd_usb *usb;
1426
1427 /* Either something really bad happened, or we're just dealing with
1428 * a DEVICE_INSTALLER. */
1429 if (hw == NULL)
1430 return;
1431
1432 mac = zd_hw_mac(hw);
1433 usb = &mac->chip.usb;
1434
1435 dev_dbg_f(zd_usb_dev(usb), "\n");
1436
1437 ieee80211_unregister_hw(hw);
1438
1439 /* Just in case something has gone wrong! */
1440 zd_usb_disable_tx(usb);
1441 zd_usb_disable_rx(usb);
1442 zd_usb_disable_int(usb);
1443
1444 /* If the disconnect has been caused by a removal of the
1445 * driver module, the reset allows reloading of the driver. If the
1446 * reset will not be executed here, the upload of the firmware in the
1447 * probe function caused by the reloading of the driver will fail.
1448 */
1449 usb_reset_device(interface_to_usbdev(intf));
1450
1451 zd_mac_clear(mac);
1452 ieee80211_free_hw(hw);
1453 dev_dbg(&intf->dev, "disconnected\n");
1454 }
1455
1456 static void zd_usb_resume(struct zd_usb *usb)
1457 {
1458 struct zd_mac *mac = zd_usb_to_mac(usb);
1459 int r;
1460
1461 dev_dbg_f(zd_usb_dev(usb), "\n");
1462
1463 r = zd_op_start(zd_usb_to_hw(usb));
1464 if (r < 0) {
1465 dev_warn(zd_usb_dev(usb), "Device resume failed "
1466 "with error code %d. Retrying...\n", r);
1467 if (usb->was_running)
1468 set_bit(ZD_DEVICE_RUNNING, &mac->flags);
1469 usb_queue_reset_device(usb->intf);
1470 return;
1471 }
1472
1473 if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
1474 r = zd_restore_settings(mac);
1475 if (r < 0) {
1476 dev_dbg(zd_usb_dev(usb),
1477 "failed to restore settings, %d\n", r);
1478 return;
1479 }
1480 }
1481 }
1482
1483 static void zd_usb_stop(struct zd_usb *usb)
1484 {
1485 dev_dbg_f(zd_usb_dev(usb), "\n");
1486
1487 zd_op_stop(zd_usb_to_hw(usb));
1488
1489 zd_usb_disable_tx(usb);
1490 zd_usb_disable_rx(usb);
1491 zd_usb_disable_int(usb);
1492
1493 usb->initialized = 0;
1494 }
1495
1496 static int pre_reset(struct usb_interface *intf)
1497 {
1498 struct ieee80211_hw *hw = usb_get_intfdata(intf);
1499 struct zd_mac *mac;
1500 struct zd_usb *usb;
1501
1502 if (!hw || intf->condition != USB_INTERFACE_BOUND)
1503 return 0;
1504
1505 mac = zd_hw_mac(hw);
1506 usb = &mac->chip.usb;
1507
1508 usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags);
1509
1510 zd_usb_stop(usb);
1511
1512 mutex_lock(&mac->chip.mutex);
1513 return 0;
1514 }
1515
1516 static int post_reset(struct usb_interface *intf)
1517 {
1518 struct ieee80211_hw *hw = usb_get_intfdata(intf);
1519 struct zd_mac *mac;
1520 struct zd_usb *usb;
1521
1522 if (!hw || intf->condition != USB_INTERFACE_BOUND)
1523 return 0;
1524
1525 mac = zd_hw_mac(hw);
1526 usb = &mac->chip.usb;
1527
1528 mutex_unlock(&mac->chip.mutex);
1529
1530 if (usb->was_running)
1531 zd_usb_resume(usb);
1532 return 0;
1533 }
1534
1535 static struct usb_driver driver = {
1536 .name = KBUILD_MODNAME,
1537 .id_table = usb_ids,
1538 .probe = probe,
1539 .disconnect = disconnect,
1540 .pre_reset = pre_reset,
1541 .post_reset = post_reset,
1542 .disable_hub_initiated_lpm = 1,
1543 };
1544
1545 struct workqueue_struct *zd_workqueue;
1546
1547 static int __init usb_init(void)
1548 {
1549 int r;
1550
1551 pr_debug("%s usb_init()\n", driver.name);
1552
1553 zd_workqueue = create_singlethread_workqueue(driver.name);
1554 if (zd_workqueue == NULL) {
1555 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1556 return -ENOMEM;
1557 }
1558
1559 r = usb_register(&driver);
1560 if (r) {
1561 destroy_workqueue(zd_workqueue);
1562 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1563 driver.name, r);
1564 return r;
1565 }
1566
1567 pr_debug("%s initialized\n", driver.name);
1568 return 0;
1569 }
1570
1571 static void __exit usb_exit(void)
1572 {
1573 pr_debug("%s usb_exit()\n", driver.name);
1574 usb_deregister(&driver);
1575 destroy_workqueue(zd_workqueue);
1576 }
1577
1578 module_init(usb_init);
1579 module_exit(usb_exit);
1580
1581 static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len,
1582 int *actual_length, int timeout)
1583 {
1584 /* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in
1585 * USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint
1586 * descriptor.
1587 */
1588 struct usb_host_endpoint *ep;
1589 unsigned int pipe;
1590
1591 pipe = usb_sndintpipe(udev, EP_REGS_OUT);
1592 ep = usb_pipe_endpoint(udev, pipe);
1593 if (!ep)
1594 return -EINVAL;
1595
1596 if (usb_endpoint_xfer_int(&ep->desc)) {
1597 return usb_interrupt_msg(udev, pipe, data, len,
1598 actual_length, timeout);
1599 } else {
1600 pipe = usb_sndbulkpipe(udev, EP_REGS_OUT);
1601 return usb_bulk_msg(udev, pipe, data, len, actual_length,
1602 timeout);
1603 }
1604 }
1605
1606 static int usb_int_regs_length(unsigned int count)
1607 {
1608 return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1609 }
1610
1611 static void prepare_read_regs_int(struct zd_usb *usb,
1612 struct usb_req_read_regs *req,
1613 unsigned int count)
1614 {
1615 struct zd_usb_interrupt *intr = &usb->intr;
1616
1617 spin_lock_irq(&intr->lock);
1618 atomic_set(&intr->read_regs_enabled, 1);
1619 intr->read_regs.req = req;
1620 intr->read_regs.req_count = count;
1621 reinit_completion(&intr->read_regs.completion);
1622 spin_unlock_irq(&intr->lock);
1623 }
1624
1625 static void disable_read_regs_int(struct zd_usb *usb)
1626 {
1627 struct zd_usb_interrupt *intr = &usb->intr;
1628
1629 spin_lock_irq(&intr->lock);
1630 atomic_set(&intr->read_regs_enabled, 0);
1631 spin_unlock_irq(&intr->lock);
1632 }
1633
1634 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
1635 unsigned int count)
1636 {
1637 int i;
1638 struct zd_usb_interrupt *intr = &usb->intr;
1639 struct read_regs_int *rr = &intr->read_regs;
1640 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1641
1642 /* The created block size seems to be larger than expected.
1643 * However results appear to be correct.
1644 */
1645 if (rr->length < usb_int_regs_length(count)) {
1646 dev_dbg_f(zd_usb_dev(usb),
1647 "error: actual length %d less than expected %d\n",
1648 rr->length, usb_int_regs_length(count));
1649 return false;
1650 }
1651
1652 if (rr->length > sizeof(rr->buffer)) {
1653 dev_dbg_f(zd_usb_dev(usb),
1654 "error: actual length %d exceeds buffer size %zu\n",
1655 rr->length, sizeof(rr->buffer));
1656 return false;
1657 }
1658
1659 for (i = 0; i < count; i++) {
1660 struct reg_data *rd = &regs->regs[i];
1661 if (rd->addr != req->addr[i]) {
1662 dev_dbg_f(zd_usb_dev(usb),
1663 "rd[%d] addr %#06hx expected %#06hx\n", i,
1664 le16_to_cpu(rd->addr),
1665 le16_to_cpu(req->addr[i]));
1666 return false;
1667 }
1668 }
1669
1670 return true;
1671 }
1672
1673 static int get_results(struct zd_usb *usb, u16 *values,
1674 struct usb_req_read_regs *req, unsigned int count,
1675 bool *retry)
1676 {
1677 int r;
1678 int i;
1679 struct zd_usb_interrupt *intr = &usb->intr;
1680 struct read_regs_int *rr = &intr->read_regs;
1681 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1682
1683 spin_lock_irq(&intr->lock);
1684
1685 r = -EIO;
1686
1687 /* Read failed because firmware bug? */
1688 *retry = !!intr->read_regs_int_overridden;
1689 if (*retry)
1690 goto error_unlock;
1691
1692 if (!check_read_regs(usb, req, count)) {
1693 dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n");
1694 goto error_unlock;
1695 }
1696
1697 for (i = 0; i < count; i++) {
1698 struct reg_data *rd = &regs->regs[i];
1699 values[i] = le16_to_cpu(rd->value);
1700 }
1701
1702 r = 0;
1703 error_unlock:
1704 spin_unlock_irq(&intr->lock);
1705 return r;
1706 }
1707
1708 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1709 const zd_addr_t *addresses, unsigned int count)
1710 {
1711 int r, i, req_len, actual_req_len, try_count = 0;
1712 struct usb_device *udev;
1713 struct usb_req_read_regs *req = NULL;
1714 unsigned long timeout;
1715 bool retry = false;
1716
1717 if (count < 1) {
1718 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1719 return -EINVAL;
1720 }
1721 if (count > USB_MAX_IOREAD16_COUNT) {
1722 dev_dbg_f(zd_usb_dev(usb),
1723 "error: count %u exceeds possible max %u\n",
1724 count, USB_MAX_IOREAD16_COUNT);
1725 return -EINVAL;
1726 }
1727 if (in_atomic()) {
1728 dev_dbg_f(zd_usb_dev(usb),
1729 "error: io in atomic context not supported\n");
1730 return -EWOULDBLOCK;
1731 }
1732 if (!usb_int_enabled(usb)) {
1733 dev_dbg_f(zd_usb_dev(usb),
1734 "error: usb interrupt not enabled\n");
1735 return -EWOULDBLOCK;
1736 }
1737
1738 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1739 BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT *
1740 sizeof(__le16) > sizeof(usb->req_buf));
1741 BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
1742 sizeof(usb->req_buf));
1743
1744 req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1745 req = (void *)usb->req_buf;
1746
1747 req->id = cpu_to_le16(USB_REQ_READ_REGS);
1748 for (i = 0; i < count; i++)
1749 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1750
1751 retry_read:
1752 try_count++;
1753 udev = zd_usb_to_usbdev(usb);
1754 prepare_read_regs_int(usb, req, count);
1755 r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
1756 if (r) {
1757 dev_dbg_f(zd_usb_dev(usb),
1758 "error in zd_ep_regs_out_msg(). Error number %d\n", r);
1759 goto error;
1760 }
1761 if (req_len != actual_req_len) {
1762 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n"
1763 " req_len %d != actual_req_len %d\n",
1764 req_len, actual_req_len);
1765 r = -EIO;
1766 goto error;
1767 }
1768
1769 timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1770 msecs_to_jiffies(50));
1771 if (!timeout) {
1772 disable_read_regs_int(usb);
1773 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1774 r = -ETIMEDOUT;
1775 goto error;
1776 }
1777
1778 r = get_results(usb, values, req, count, &retry);
1779 if (retry && try_count < 20) {
1780 dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n",
1781 try_count);
1782 goto retry_read;
1783 }
1784 error:
1785 return r;
1786 }
1787
1788 static void iowrite16v_urb_complete(struct urb *urb)
1789 {
1790 struct zd_usb *usb = urb->context;
1791
1792 if (urb->status && !usb->cmd_error)
1793 usb->cmd_error = urb->status;
1794
1795 if (!usb->cmd_error &&
1796 urb->actual_length != urb->transfer_buffer_length)
1797 usb->cmd_error = -EIO;
1798 }
1799
1800 static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
1801 {
1802 int r = 0;
1803 struct urb *urb = usb->urb_async_waiting;
1804
1805 if (!urb)
1806 return 0;
1807
1808 usb->urb_async_waiting = NULL;
1809
1810 if (!last)
1811 urb->transfer_flags |= URB_NO_INTERRUPT;
1812
1813 usb_anchor_urb(urb, &usb->submitted_cmds);
1814 r = usb_submit_urb(urb, GFP_KERNEL);
1815 if (r) {
1816 usb_unanchor_urb(urb);
1817 dev_dbg_f(zd_usb_dev(usb),
1818 "error in usb_submit_urb(). Error number %d\n", r);
1819 goto error;
1820 }
1821
1822 /* fall-through with r == 0 */
1823 error:
1824 usb_free_urb(urb);
1825 return r;
1826 }
1827
1828 void zd_usb_iowrite16v_async_start(struct zd_usb *usb)
1829 {
1830 ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds));
1831 ZD_ASSERT(usb->urb_async_waiting == NULL);
1832 ZD_ASSERT(!usb->in_async);
1833
1834 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1835
1836 usb->in_async = 1;
1837 usb->cmd_error = 0;
1838 usb->urb_async_waiting = NULL;
1839 }
1840
1841 int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
1842 {
1843 int r;
1844
1845 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1846 ZD_ASSERT(usb->in_async);
1847
1848 /* Submit last iowrite16v URB */
1849 r = zd_submit_waiting_urb(usb, true);
1850 if (r) {
1851 dev_dbg_f(zd_usb_dev(usb),
1852 "error in zd_submit_waiting_usb(). "
1853 "Error number %d\n", r);
1854
1855 usb_kill_anchored_urbs(&usb->submitted_cmds);
1856 goto error;
1857 }
1858
1859 if (timeout)
1860 timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds,
1861 timeout);
1862 if (!timeout) {
1863 usb_kill_anchored_urbs(&usb->submitted_cmds);
1864 if (usb->cmd_error == -ENOENT) {
1865 dev_dbg_f(zd_usb_dev(usb), "timed out");
1866 r = -ETIMEDOUT;
1867 goto error;
1868 }
1869 }
1870
1871 r = usb->cmd_error;
1872 error:
1873 usb->in_async = 0;
1874 return r;
1875 }
1876
1877 int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1878 unsigned int count)
1879 {
1880 int r;
1881 struct usb_device *udev;
1882 struct usb_req_write_regs *req = NULL;
1883 int i, req_len;
1884 struct urb *urb;
1885 struct usb_host_endpoint *ep;
1886
1887 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1888 ZD_ASSERT(usb->in_async);
1889
1890 if (count == 0)
1891 return 0;
1892 if (count > USB_MAX_IOWRITE16_COUNT) {
1893 dev_dbg_f(zd_usb_dev(usb),
1894 "error: count %u exceeds possible max %u\n",
1895 count, USB_MAX_IOWRITE16_COUNT);
1896 return -EINVAL;
1897 }
1898 if (in_atomic()) {
1899 dev_dbg_f(zd_usb_dev(usb),
1900 "error: io in atomic context not supported\n");
1901 return -EWOULDBLOCK;
1902 }
1903
1904 udev = zd_usb_to_usbdev(usb);
1905
1906 ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
1907 if (!ep)
1908 return -ENOENT;
1909
1910 urb = usb_alloc_urb(0, GFP_KERNEL);
1911 if (!urb)
1912 return -ENOMEM;
1913
1914 req_len = sizeof(struct usb_req_write_regs) +
1915 count * sizeof(struct reg_data);
1916 req = kmalloc(req_len, GFP_KERNEL);
1917 if (!req) {
1918 r = -ENOMEM;
1919 goto error;
1920 }
1921
1922 req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1923 for (i = 0; i < count; i++) {
1924 struct reg_data *rw = &req->reg_writes[i];
1925 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1926 rw->value = cpu_to_le16(ioreqs[i].value);
1927 }
1928
1929 /* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode
1930 * endpoint is bulk. Select correct type URB by endpoint descriptor.
1931 */
1932 if (usb_endpoint_xfer_int(&ep->desc))
1933 usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
1934 req, req_len, iowrite16v_urb_complete, usb,
1935 ep->desc.bInterval);
1936 else
1937 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1938 req, req_len, iowrite16v_urb_complete, usb);
1939
1940 urb->transfer_flags |= URB_FREE_BUFFER;
1941
1942 /* Submit previous URB */
1943 r = zd_submit_waiting_urb(usb, false);
1944 if (r) {
1945 dev_dbg_f(zd_usb_dev(usb),
1946 "error in zd_submit_waiting_usb(). "
1947 "Error number %d\n", r);
1948 goto error;
1949 }
1950
1951 /* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
1952 * of currect batch except for very last.
1953 */
1954 usb->urb_async_waiting = urb;
1955 return 0;
1956 error:
1957 usb_free_urb(urb);
1958 return r;
1959 }
1960
1961 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1962 unsigned int count)
1963 {
1964 int r;
1965
1966 zd_usb_iowrite16v_async_start(usb);
1967 r = zd_usb_iowrite16v_async(usb, ioreqs, count);
1968 if (r) {
1969 zd_usb_iowrite16v_async_end(usb, 0);
1970 return r;
1971 }
1972 return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
1973 }
1974
1975 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1976 {
1977 int r;
1978 struct usb_device *udev;
1979 struct usb_req_rfwrite *req = NULL;
1980 int i, req_len, actual_req_len;
1981 u16 bit_value_template;
1982
1983 if (in_atomic()) {
1984 dev_dbg_f(zd_usb_dev(usb),
1985 "error: io in atomic context not supported\n");
1986 return -EWOULDBLOCK;
1987 }
1988 if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1989 dev_dbg_f(zd_usb_dev(usb),
1990 "error: bits %d are smaller than"
1991 " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1992 bits, USB_MIN_RFWRITE_BIT_COUNT);
1993 return -EINVAL;
1994 }
1995 if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1996 dev_dbg_f(zd_usb_dev(usb),
1997 "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1998 bits, USB_MAX_RFWRITE_BIT_COUNT);
1999 return -EINVAL;
2000 }
2001 #ifdef DEBUG
2002 if (value & (~0UL << bits)) {
2003 dev_dbg_f(zd_usb_dev(usb),
2004 "error: value %#09x has bits >= %d set\n",
2005 value, bits);
2006 return -EINVAL;
2007 }
2008 #endif /* DEBUG */
2009
2010 dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
2011
2012 r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203);
2013 if (r) {
2014 dev_dbg_f(zd_usb_dev(usb),
2015 "error %d: Couldn't read ZD_CR203\n", r);
2016 return r;
2017 }
2018 bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
2019
2020 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
2021 BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
2022 USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
2023 sizeof(usb->req_buf));
2024 BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
2025 sizeof(usb->req_buf));
2026
2027 req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
2028 req = (void *)usb->req_buf;
2029
2030 req->id = cpu_to_le16(USB_REQ_WRITE_RF);
2031 /* 1: 3683a, but not used in ZYDAS driver */
2032 req->value = cpu_to_le16(2);
2033 req->bits = cpu_to_le16(bits);
2034
2035 for (i = 0; i < bits; i++) {
2036 u16 bv = bit_value_template;
2037 if (value & (1 << (bits-1-i)))
2038 bv |= RF_DATA;
2039 req->bit_values[i] = cpu_to_le16(bv);
2040 }
2041
2042 udev = zd_usb_to_usbdev(usb);
2043 r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
2044 if (r) {
2045 dev_dbg_f(zd_usb_dev(usb),
2046 "error in zd_ep_regs_out_msg(). Error number %d\n", r);
2047 goto out;
2048 }
2049 if (req_len != actual_req_len) {
2050 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()"
2051 " req_len %d != actual_req_len %d\n",
2052 req_len, actual_req_len);
2053 r = -EIO;
2054 goto out;
2055 }
2056
2057 /* FALL-THROUGH with r == 0 */
2058 out:
2059 return r;
2060 }
This page took 0.078554 seconds and 5 git commands to generate.