uapi: update install list after nvme.h rename
[deliverable/linux.git] / drivers / nvme / host / core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33
34 #define NVME_MINORS (1U << MINORBITS)
35
36 static int nvme_major;
37 module_param(nvme_major, int, 0);
38
39 static int nvme_char_major;
40 module_param(nvme_char_major, int, 0);
41
42 static LIST_HEAD(nvme_ctrl_list);
43 DEFINE_SPINLOCK(dev_list_lock);
44
45 static struct class *nvme_class;
46
47 static void nvme_free_ns(struct kref *kref)
48 {
49 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
50
51 if (ns->type == NVME_NS_LIGHTNVM)
52 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
53
54 spin_lock(&dev_list_lock);
55 ns->disk->private_data = NULL;
56 spin_unlock(&dev_list_lock);
57
58 nvme_put_ctrl(ns->ctrl);
59 put_disk(ns->disk);
60 kfree(ns);
61 }
62
63 static void nvme_put_ns(struct nvme_ns *ns)
64 {
65 kref_put(&ns->kref, nvme_free_ns);
66 }
67
68 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
69 {
70 struct nvme_ns *ns;
71
72 spin_lock(&dev_list_lock);
73 ns = disk->private_data;
74 if (ns && !kref_get_unless_zero(&ns->kref))
75 ns = NULL;
76 spin_unlock(&dev_list_lock);
77
78 return ns;
79 }
80
81 void nvme_requeue_req(struct request *req)
82 {
83 unsigned long flags;
84
85 blk_mq_requeue_request(req);
86 spin_lock_irqsave(req->q->queue_lock, flags);
87 if (!blk_queue_stopped(req->q))
88 blk_mq_kick_requeue_list(req->q);
89 spin_unlock_irqrestore(req->q->queue_lock, flags);
90 }
91
92 struct request *nvme_alloc_request(struct request_queue *q,
93 struct nvme_command *cmd, unsigned int flags)
94 {
95 bool write = cmd->common.opcode & 1;
96 struct request *req;
97
98 req = blk_mq_alloc_request(q, write, flags);
99 if (IS_ERR(req))
100 return req;
101
102 req->cmd_type = REQ_TYPE_DRV_PRIV;
103 req->cmd_flags |= REQ_FAILFAST_DRIVER;
104 req->__data_len = 0;
105 req->__sector = (sector_t) -1;
106 req->bio = req->biotail = NULL;
107
108 req->cmd = (unsigned char *)cmd;
109 req->cmd_len = sizeof(struct nvme_command);
110 req->special = (void *)0;
111
112 return req;
113 }
114
115 /*
116 * Returns 0 on success. If the result is negative, it's a Linux error code;
117 * if the result is positive, it's an NVM Express status code
118 */
119 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
120 void *buffer, unsigned bufflen, u32 *result, unsigned timeout)
121 {
122 struct request *req;
123 int ret;
124
125 req = nvme_alloc_request(q, cmd, 0);
126 if (IS_ERR(req))
127 return PTR_ERR(req);
128
129 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
130
131 if (buffer && bufflen) {
132 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
133 if (ret)
134 goto out;
135 }
136
137 blk_execute_rq(req->q, NULL, req, 0);
138 if (result)
139 *result = (u32)(uintptr_t)req->special;
140 ret = req->errors;
141 out:
142 blk_mq_free_request(req);
143 return ret;
144 }
145
146 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
147 void *buffer, unsigned bufflen)
148 {
149 return __nvme_submit_sync_cmd(q, cmd, buffer, bufflen, NULL, 0);
150 }
151
152 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
153 void __user *ubuffer, unsigned bufflen,
154 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
155 u32 *result, unsigned timeout)
156 {
157 bool write = cmd->common.opcode & 1;
158 struct nvme_ns *ns = q->queuedata;
159 struct gendisk *disk = ns ? ns->disk : NULL;
160 struct request *req;
161 struct bio *bio = NULL;
162 void *meta = NULL;
163 int ret;
164
165 req = nvme_alloc_request(q, cmd, 0);
166 if (IS_ERR(req))
167 return PTR_ERR(req);
168
169 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
170
171 if (ubuffer && bufflen) {
172 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
173 GFP_KERNEL);
174 if (ret)
175 goto out;
176 bio = req->bio;
177
178 if (!disk)
179 goto submit;
180 bio->bi_bdev = bdget_disk(disk, 0);
181 if (!bio->bi_bdev) {
182 ret = -ENODEV;
183 goto out_unmap;
184 }
185
186 if (meta_buffer) {
187 struct bio_integrity_payload *bip;
188
189 meta = kmalloc(meta_len, GFP_KERNEL);
190 if (!meta) {
191 ret = -ENOMEM;
192 goto out_unmap;
193 }
194
195 if (write) {
196 if (copy_from_user(meta, meta_buffer,
197 meta_len)) {
198 ret = -EFAULT;
199 goto out_free_meta;
200 }
201 }
202
203 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
204 if (IS_ERR(bip)) {
205 ret = PTR_ERR(bip);
206 goto out_free_meta;
207 }
208
209 bip->bip_iter.bi_size = meta_len;
210 bip->bip_iter.bi_sector = meta_seed;
211
212 ret = bio_integrity_add_page(bio, virt_to_page(meta),
213 meta_len, offset_in_page(meta));
214 if (ret != meta_len) {
215 ret = -ENOMEM;
216 goto out_free_meta;
217 }
218 }
219 }
220 submit:
221 blk_execute_rq(req->q, disk, req, 0);
222 ret = req->errors;
223 if (result)
224 *result = (u32)(uintptr_t)req->special;
225 if (meta && !ret && !write) {
226 if (copy_to_user(meta_buffer, meta, meta_len))
227 ret = -EFAULT;
228 }
229 out_free_meta:
230 kfree(meta);
231 out_unmap:
232 if (bio) {
233 if (disk && bio->bi_bdev)
234 bdput(bio->bi_bdev);
235 blk_rq_unmap_user(bio);
236 }
237 out:
238 blk_mq_free_request(req);
239 return ret;
240 }
241
242 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
243 void __user *ubuffer, unsigned bufflen, u32 *result,
244 unsigned timeout)
245 {
246 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
247 result, timeout);
248 }
249
250 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
251 {
252 struct nvme_command c = { };
253 int error;
254
255 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
256 c.identify.opcode = nvme_admin_identify;
257 c.identify.cns = cpu_to_le32(1);
258
259 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
260 if (!*id)
261 return -ENOMEM;
262
263 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
264 sizeof(struct nvme_id_ctrl));
265 if (error)
266 kfree(*id);
267 return error;
268 }
269
270 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
271 {
272 struct nvme_command c = { };
273
274 c.identify.opcode = nvme_admin_identify;
275 c.identify.cns = cpu_to_le32(2);
276 c.identify.nsid = cpu_to_le32(nsid);
277 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
278 }
279
280 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
281 struct nvme_id_ns **id)
282 {
283 struct nvme_command c = { };
284 int error;
285
286 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
287 c.identify.opcode = nvme_admin_identify,
288 c.identify.nsid = cpu_to_le32(nsid),
289
290 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
291 if (!*id)
292 return -ENOMEM;
293
294 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
295 sizeof(struct nvme_id_ns));
296 if (error)
297 kfree(*id);
298 return error;
299 }
300
301 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
302 dma_addr_t dma_addr, u32 *result)
303 {
304 struct nvme_command c;
305
306 memset(&c, 0, sizeof(c));
307 c.features.opcode = nvme_admin_get_features;
308 c.features.nsid = cpu_to_le32(nsid);
309 c.features.prp1 = cpu_to_le64(dma_addr);
310 c.features.fid = cpu_to_le32(fid);
311
312 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
313 }
314
315 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
316 dma_addr_t dma_addr, u32 *result)
317 {
318 struct nvme_command c;
319
320 memset(&c, 0, sizeof(c));
321 c.features.opcode = nvme_admin_set_features;
322 c.features.prp1 = cpu_to_le64(dma_addr);
323 c.features.fid = cpu_to_le32(fid);
324 c.features.dword11 = cpu_to_le32(dword11);
325
326 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
327 }
328
329 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
330 {
331 struct nvme_command c = { };
332 int error;
333
334 c.common.opcode = nvme_admin_get_log_page,
335 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
336 c.common.cdw10[0] = cpu_to_le32(
337 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
338 NVME_LOG_SMART),
339
340 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
341 if (!*log)
342 return -ENOMEM;
343
344 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
345 sizeof(struct nvme_smart_log));
346 if (error)
347 kfree(*log);
348 return error;
349 }
350
351 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
352 {
353 u32 q_count = (*count - 1) | ((*count - 1) << 16);
354 u32 result;
355 int status, nr_io_queues;
356
357 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
358 &result);
359 if (status)
360 return status;
361
362 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
363 *count = min(*count, nr_io_queues);
364 return 0;
365 }
366
367 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
368 {
369 struct nvme_user_io io;
370 struct nvme_command c;
371 unsigned length, meta_len;
372 void __user *metadata;
373
374 if (copy_from_user(&io, uio, sizeof(io)))
375 return -EFAULT;
376
377 switch (io.opcode) {
378 case nvme_cmd_write:
379 case nvme_cmd_read:
380 case nvme_cmd_compare:
381 break;
382 default:
383 return -EINVAL;
384 }
385
386 length = (io.nblocks + 1) << ns->lba_shift;
387 meta_len = (io.nblocks + 1) * ns->ms;
388 metadata = (void __user *)(uintptr_t)io.metadata;
389
390 if (ns->ext) {
391 length += meta_len;
392 meta_len = 0;
393 } else if (meta_len) {
394 if ((io.metadata & 3) || !io.metadata)
395 return -EINVAL;
396 }
397
398 memset(&c, 0, sizeof(c));
399 c.rw.opcode = io.opcode;
400 c.rw.flags = io.flags;
401 c.rw.nsid = cpu_to_le32(ns->ns_id);
402 c.rw.slba = cpu_to_le64(io.slba);
403 c.rw.length = cpu_to_le16(io.nblocks);
404 c.rw.control = cpu_to_le16(io.control);
405 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
406 c.rw.reftag = cpu_to_le32(io.reftag);
407 c.rw.apptag = cpu_to_le16(io.apptag);
408 c.rw.appmask = cpu_to_le16(io.appmask);
409
410 return __nvme_submit_user_cmd(ns->queue, &c,
411 (void __user *)(uintptr_t)io.addr, length,
412 metadata, meta_len, io.slba, NULL, 0);
413 }
414
415 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
416 struct nvme_passthru_cmd __user *ucmd)
417 {
418 struct nvme_passthru_cmd cmd;
419 struct nvme_command c;
420 unsigned timeout = 0;
421 int status;
422
423 if (!capable(CAP_SYS_ADMIN))
424 return -EACCES;
425 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
426 return -EFAULT;
427
428 memset(&c, 0, sizeof(c));
429 c.common.opcode = cmd.opcode;
430 c.common.flags = cmd.flags;
431 c.common.nsid = cpu_to_le32(cmd.nsid);
432 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
433 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
434 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
435 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
436 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
437 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
438 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
439 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
440
441 if (cmd.timeout_ms)
442 timeout = msecs_to_jiffies(cmd.timeout_ms);
443
444 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
445 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
446 &cmd.result, timeout);
447 if (status >= 0) {
448 if (put_user(cmd.result, &ucmd->result))
449 return -EFAULT;
450 }
451
452 return status;
453 }
454
455 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
456 unsigned int cmd, unsigned long arg)
457 {
458 struct nvme_ns *ns = bdev->bd_disk->private_data;
459
460 switch (cmd) {
461 case NVME_IOCTL_ID:
462 force_successful_syscall_return();
463 return ns->ns_id;
464 case NVME_IOCTL_ADMIN_CMD:
465 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
466 case NVME_IOCTL_IO_CMD:
467 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
468 case NVME_IOCTL_SUBMIT_IO:
469 return nvme_submit_io(ns, (void __user *)arg);
470 #ifdef CONFIG_BLK_DEV_NVME_SCSI
471 case SG_GET_VERSION_NUM:
472 return nvme_sg_get_version_num((void __user *)arg);
473 case SG_IO:
474 return nvme_sg_io(ns, (void __user *)arg);
475 #endif
476 default:
477 return -ENOTTY;
478 }
479 }
480
481 #ifdef CONFIG_COMPAT
482 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
483 unsigned int cmd, unsigned long arg)
484 {
485 switch (cmd) {
486 case SG_IO:
487 return -ENOIOCTLCMD;
488 }
489 return nvme_ioctl(bdev, mode, cmd, arg);
490 }
491 #else
492 #define nvme_compat_ioctl NULL
493 #endif
494
495 static int nvme_open(struct block_device *bdev, fmode_t mode)
496 {
497 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
498 }
499
500 static void nvme_release(struct gendisk *disk, fmode_t mode)
501 {
502 nvme_put_ns(disk->private_data);
503 }
504
505 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
506 {
507 /* some standard values */
508 geo->heads = 1 << 6;
509 geo->sectors = 1 << 5;
510 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
511 return 0;
512 }
513
514 #ifdef CONFIG_BLK_DEV_INTEGRITY
515 static void nvme_init_integrity(struct nvme_ns *ns)
516 {
517 struct blk_integrity integrity;
518
519 switch (ns->pi_type) {
520 case NVME_NS_DPS_PI_TYPE3:
521 integrity.profile = &t10_pi_type3_crc;
522 break;
523 case NVME_NS_DPS_PI_TYPE1:
524 case NVME_NS_DPS_PI_TYPE2:
525 integrity.profile = &t10_pi_type1_crc;
526 break;
527 default:
528 integrity.profile = NULL;
529 break;
530 }
531 integrity.tuple_size = ns->ms;
532 blk_integrity_register(ns->disk, &integrity);
533 blk_queue_max_integrity_segments(ns->queue, 1);
534 }
535 #else
536 static void nvme_init_integrity(struct nvme_ns *ns)
537 {
538 }
539 #endif /* CONFIG_BLK_DEV_INTEGRITY */
540
541 static void nvme_config_discard(struct nvme_ns *ns)
542 {
543 u32 logical_block_size = queue_logical_block_size(ns->queue);
544 ns->queue->limits.discard_zeroes_data = 0;
545 ns->queue->limits.discard_alignment = logical_block_size;
546 ns->queue->limits.discard_granularity = logical_block_size;
547 blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
548 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
549 }
550
551 static int nvme_revalidate_disk(struct gendisk *disk)
552 {
553 struct nvme_ns *ns = disk->private_data;
554 struct nvme_id_ns *id;
555 u8 lbaf, pi_type;
556 u16 old_ms;
557 unsigned short bs;
558
559 if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
560 dev_warn(ns->ctrl->dev, "%s: Identify failure nvme%dn%d\n",
561 __func__, ns->ctrl->instance, ns->ns_id);
562 return -ENODEV;
563 }
564 if (id->ncap == 0) {
565 kfree(id);
566 return -ENODEV;
567 }
568
569 if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
570 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
571 dev_warn(ns->ctrl->dev,
572 "%s: LightNVM init failure\n", __func__);
573 kfree(id);
574 return -ENODEV;
575 }
576 ns->type = NVME_NS_LIGHTNVM;
577 }
578
579 if (ns->ctrl->vs >= NVME_VS(1, 1))
580 memcpy(ns->eui, id->eui64, sizeof(ns->eui));
581 if (ns->ctrl->vs >= NVME_VS(1, 2))
582 memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
583
584 old_ms = ns->ms;
585 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
586 ns->lba_shift = id->lbaf[lbaf].ds;
587 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
588 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
589
590 /*
591 * If identify namespace failed, use default 512 byte block size so
592 * block layer can use before failing read/write for 0 capacity.
593 */
594 if (ns->lba_shift == 0)
595 ns->lba_shift = 9;
596 bs = 1 << ns->lba_shift;
597 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
598 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
599 id->dps & NVME_NS_DPS_PI_MASK : 0;
600
601 blk_mq_freeze_queue(disk->queue);
602 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
603 ns->ms != old_ms ||
604 bs != queue_logical_block_size(disk->queue) ||
605 (ns->ms && ns->ext)))
606 blk_integrity_unregister(disk);
607
608 ns->pi_type = pi_type;
609 blk_queue_logical_block_size(ns->queue, bs);
610
611 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
612 nvme_init_integrity(ns);
613 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
614 set_capacity(disk, 0);
615 else
616 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
617
618 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
619 nvme_config_discard(ns);
620 blk_mq_unfreeze_queue(disk->queue);
621
622 kfree(id);
623 return 0;
624 }
625
626 static char nvme_pr_type(enum pr_type type)
627 {
628 switch (type) {
629 case PR_WRITE_EXCLUSIVE:
630 return 1;
631 case PR_EXCLUSIVE_ACCESS:
632 return 2;
633 case PR_WRITE_EXCLUSIVE_REG_ONLY:
634 return 3;
635 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
636 return 4;
637 case PR_WRITE_EXCLUSIVE_ALL_REGS:
638 return 5;
639 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
640 return 6;
641 default:
642 return 0;
643 }
644 };
645
646 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
647 u64 key, u64 sa_key, u8 op)
648 {
649 struct nvme_ns *ns = bdev->bd_disk->private_data;
650 struct nvme_command c;
651 u8 data[16] = { 0, };
652
653 put_unaligned_le64(key, &data[0]);
654 put_unaligned_le64(sa_key, &data[8]);
655
656 memset(&c, 0, sizeof(c));
657 c.common.opcode = op;
658 c.common.nsid = cpu_to_le32(ns->ns_id);
659 c.common.cdw10[0] = cpu_to_le32(cdw10);
660
661 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
662 }
663
664 static int nvme_pr_register(struct block_device *bdev, u64 old,
665 u64 new, unsigned flags)
666 {
667 u32 cdw10;
668
669 if (flags & ~PR_FL_IGNORE_KEY)
670 return -EOPNOTSUPP;
671
672 cdw10 = old ? 2 : 0;
673 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
674 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
675 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
676 }
677
678 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
679 enum pr_type type, unsigned flags)
680 {
681 u32 cdw10;
682
683 if (flags & ~PR_FL_IGNORE_KEY)
684 return -EOPNOTSUPP;
685
686 cdw10 = nvme_pr_type(type) << 8;
687 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
688 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
689 }
690
691 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
692 enum pr_type type, bool abort)
693 {
694 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
695 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
696 }
697
698 static int nvme_pr_clear(struct block_device *bdev, u64 key)
699 {
700 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
701 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
702 }
703
704 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
705 {
706 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
707 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
708 }
709
710 static const struct pr_ops nvme_pr_ops = {
711 .pr_register = nvme_pr_register,
712 .pr_reserve = nvme_pr_reserve,
713 .pr_release = nvme_pr_release,
714 .pr_preempt = nvme_pr_preempt,
715 .pr_clear = nvme_pr_clear,
716 };
717
718 static const struct block_device_operations nvme_fops = {
719 .owner = THIS_MODULE,
720 .ioctl = nvme_ioctl,
721 .compat_ioctl = nvme_compat_ioctl,
722 .open = nvme_open,
723 .release = nvme_release,
724 .getgeo = nvme_getgeo,
725 .revalidate_disk= nvme_revalidate_disk,
726 .pr_ops = &nvme_pr_ops,
727 };
728
729 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
730 {
731 unsigned long timeout =
732 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
733 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
734 int ret;
735
736 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
737 if ((csts & NVME_CSTS_RDY) == bit)
738 break;
739
740 msleep(100);
741 if (fatal_signal_pending(current))
742 return -EINTR;
743 if (time_after(jiffies, timeout)) {
744 dev_err(ctrl->dev,
745 "Device not ready; aborting %s\n", enabled ?
746 "initialisation" : "reset");
747 return -ENODEV;
748 }
749 }
750
751 return ret;
752 }
753
754 /*
755 * If the device has been passed off to us in an enabled state, just clear
756 * the enabled bit. The spec says we should set the 'shutdown notification
757 * bits', but doing so may cause the device to complete commands to the
758 * admin queue ... and we don't know what memory that might be pointing at!
759 */
760 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
761 {
762 int ret;
763
764 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
765 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
766
767 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
768 if (ret)
769 return ret;
770 return nvme_wait_ready(ctrl, cap, false);
771 }
772
773 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
774 {
775 /*
776 * Default to a 4K page size, with the intention to update this
777 * path in the future to accomodate architectures with differing
778 * kernel and IO page sizes.
779 */
780 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
781 int ret;
782
783 if (page_shift < dev_page_min) {
784 dev_err(ctrl->dev,
785 "Minimum device page size %u too large for host (%u)\n",
786 1 << dev_page_min, 1 << page_shift);
787 return -ENODEV;
788 }
789
790 ctrl->page_size = 1 << page_shift;
791
792 ctrl->ctrl_config = NVME_CC_CSS_NVM;
793 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
794 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
795 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
796 ctrl->ctrl_config |= NVME_CC_ENABLE;
797
798 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
799 if (ret)
800 return ret;
801 return nvme_wait_ready(ctrl, cap, true);
802 }
803
804 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
805 {
806 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
807 u32 csts;
808 int ret;
809
810 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
811 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
812
813 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
814 if (ret)
815 return ret;
816
817 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
818 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
819 break;
820
821 msleep(100);
822 if (fatal_signal_pending(current))
823 return -EINTR;
824 if (time_after(jiffies, timeout)) {
825 dev_err(ctrl->dev,
826 "Device shutdown incomplete; abort shutdown\n");
827 return -ENODEV;
828 }
829 }
830
831 return ret;
832 }
833
834 /*
835 * Initialize the cached copies of the Identify data and various controller
836 * register in our nvme_ctrl structure. This should be called as soon as
837 * the admin queue is fully up and running.
838 */
839 int nvme_init_identify(struct nvme_ctrl *ctrl)
840 {
841 struct nvme_id_ctrl *id;
842 u64 cap;
843 int ret, page_shift;
844
845 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
846 if (ret) {
847 dev_err(ctrl->dev, "Reading VS failed (%d)\n", ret);
848 return ret;
849 }
850
851 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
852 if (ret) {
853 dev_err(ctrl->dev, "Reading CAP failed (%d)\n", ret);
854 return ret;
855 }
856 page_shift = NVME_CAP_MPSMIN(cap) + 12;
857
858 if (ctrl->vs >= NVME_VS(1, 1))
859 ctrl->subsystem = NVME_CAP_NSSRC(cap);
860
861 ret = nvme_identify_ctrl(ctrl, &id);
862 if (ret) {
863 dev_err(ctrl->dev, "Identify Controller failed (%d)\n", ret);
864 return -EIO;
865 }
866
867 ctrl->oncs = le16_to_cpup(&id->oncs);
868 atomic_set(&ctrl->abort_limit, id->acl + 1);
869 ctrl->vwc = id->vwc;
870 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
871 memcpy(ctrl->model, id->mn, sizeof(id->mn));
872 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
873 if (id->mdts)
874 ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
875 else
876 ctrl->max_hw_sectors = UINT_MAX;
877
878 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
879 unsigned int max_hw_sectors;
880
881 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
882 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
883 if (ctrl->max_hw_sectors) {
884 ctrl->max_hw_sectors = min(max_hw_sectors,
885 ctrl->max_hw_sectors);
886 } else {
887 ctrl->max_hw_sectors = max_hw_sectors;
888 }
889 }
890
891 kfree(id);
892 return 0;
893 }
894
895 static int nvme_dev_open(struct inode *inode, struct file *file)
896 {
897 struct nvme_ctrl *ctrl;
898 int instance = iminor(inode);
899 int ret = -ENODEV;
900
901 spin_lock(&dev_list_lock);
902 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
903 if (ctrl->instance != instance)
904 continue;
905
906 if (!ctrl->admin_q) {
907 ret = -EWOULDBLOCK;
908 break;
909 }
910 if (!kref_get_unless_zero(&ctrl->kref))
911 break;
912 file->private_data = ctrl;
913 ret = 0;
914 break;
915 }
916 spin_unlock(&dev_list_lock);
917
918 return ret;
919 }
920
921 static int nvme_dev_release(struct inode *inode, struct file *file)
922 {
923 nvme_put_ctrl(file->private_data);
924 return 0;
925 }
926
927 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
928 {
929 struct nvme_ns *ns;
930 int ret;
931
932 mutex_lock(&ctrl->namespaces_mutex);
933 if (list_empty(&ctrl->namespaces)) {
934 ret = -ENOTTY;
935 goto out_unlock;
936 }
937
938 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
939 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
940 dev_warn(ctrl->dev,
941 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
942 ret = -EINVAL;
943 goto out_unlock;
944 }
945
946 dev_warn(ctrl->dev,
947 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
948 kref_get(&ns->kref);
949 mutex_unlock(&ctrl->namespaces_mutex);
950
951 ret = nvme_user_cmd(ctrl, ns, argp);
952 nvme_put_ns(ns);
953 return ret;
954
955 out_unlock:
956 mutex_unlock(&ctrl->namespaces_mutex);
957 return ret;
958 }
959
960 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
961 unsigned long arg)
962 {
963 struct nvme_ctrl *ctrl = file->private_data;
964 void __user *argp = (void __user *)arg;
965
966 switch (cmd) {
967 case NVME_IOCTL_ADMIN_CMD:
968 return nvme_user_cmd(ctrl, NULL, argp);
969 case NVME_IOCTL_IO_CMD:
970 return nvme_dev_user_cmd(ctrl, argp);
971 case NVME_IOCTL_RESET:
972 dev_warn(ctrl->dev, "resetting controller\n");
973 return ctrl->ops->reset_ctrl(ctrl);
974 case NVME_IOCTL_SUBSYS_RESET:
975 return nvme_reset_subsystem(ctrl);
976 default:
977 return -ENOTTY;
978 }
979 }
980
981 static const struct file_operations nvme_dev_fops = {
982 .owner = THIS_MODULE,
983 .open = nvme_dev_open,
984 .release = nvme_dev_release,
985 .unlocked_ioctl = nvme_dev_ioctl,
986 .compat_ioctl = nvme_dev_ioctl,
987 };
988
989 static ssize_t nvme_sysfs_reset(struct device *dev,
990 struct device_attribute *attr, const char *buf,
991 size_t count)
992 {
993 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
994 int ret;
995
996 ret = ctrl->ops->reset_ctrl(ctrl);
997 if (ret < 0)
998 return ret;
999 return count;
1000 }
1001 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1002
1003 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1004 char *buf)
1005 {
1006 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1007 return sprintf(buf, "%pU\n", ns->uuid);
1008 }
1009 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1010
1011 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1012 char *buf)
1013 {
1014 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1015 return sprintf(buf, "%8phd\n", ns->eui);
1016 }
1017 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1018
1019 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1020 char *buf)
1021 {
1022 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1023 return sprintf(buf, "%d\n", ns->ns_id);
1024 }
1025 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1026
1027 static struct attribute *nvme_ns_attrs[] = {
1028 &dev_attr_uuid.attr,
1029 &dev_attr_eui.attr,
1030 &dev_attr_nsid.attr,
1031 NULL,
1032 };
1033
1034 static umode_t nvme_attrs_are_visible(struct kobject *kobj,
1035 struct attribute *a, int n)
1036 {
1037 struct device *dev = container_of(kobj, struct device, kobj);
1038 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1039
1040 if (a == &dev_attr_uuid.attr) {
1041 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1042 return 0;
1043 }
1044 if (a == &dev_attr_eui.attr) {
1045 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1046 return 0;
1047 }
1048 return a->mode;
1049 }
1050
1051 static const struct attribute_group nvme_ns_attr_group = {
1052 .attrs = nvme_ns_attrs,
1053 .is_visible = nvme_attrs_are_visible,
1054 };
1055
1056 #define nvme_show_function(field) \
1057 static ssize_t field##_show(struct device *dev, \
1058 struct device_attribute *attr, char *buf) \
1059 { \
1060 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1061 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
1062 } \
1063 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1064
1065 nvme_show_function(model);
1066 nvme_show_function(serial);
1067 nvme_show_function(firmware_rev);
1068
1069 static struct attribute *nvme_dev_attrs[] = {
1070 &dev_attr_reset_controller.attr,
1071 &dev_attr_model.attr,
1072 &dev_attr_serial.attr,
1073 &dev_attr_firmware_rev.attr,
1074 NULL
1075 };
1076
1077 static struct attribute_group nvme_dev_attrs_group = {
1078 .attrs = nvme_dev_attrs,
1079 };
1080
1081 static const struct attribute_group *nvme_dev_attr_groups[] = {
1082 &nvme_dev_attrs_group,
1083 NULL,
1084 };
1085
1086 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1087 {
1088 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1089 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1090
1091 return nsa->ns_id - nsb->ns_id;
1092 }
1093
1094 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1095 {
1096 struct nvme_ns *ns;
1097
1098 lockdep_assert_held(&ctrl->namespaces_mutex);
1099
1100 list_for_each_entry(ns, &ctrl->namespaces, list) {
1101 if (ns->ns_id == nsid)
1102 return ns;
1103 if (ns->ns_id > nsid)
1104 break;
1105 }
1106 return NULL;
1107 }
1108
1109 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1110 {
1111 struct nvme_ns *ns;
1112 struct gendisk *disk;
1113 int node = dev_to_node(ctrl->dev);
1114
1115 lockdep_assert_held(&ctrl->namespaces_mutex);
1116
1117 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1118 if (!ns)
1119 return;
1120
1121 ns->queue = blk_mq_init_queue(ctrl->tagset);
1122 if (IS_ERR(ns->queue))
1123 goto out_free_ns;
1124 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1125 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1126 ns->queue->queuedata = ns;
1127 ns->ctrl = ctrl;
1128
1129 disk = alloc_disk_node(0, node);
1130 if (!disk)
1131 goto out_free_queue;
1132
1133 kref_init(&ns->kref);
1134 ns->ns_id = nsid;
1135 ns->disk = disk;
1136 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1137
1138 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1139 if (ctrl->max_hw_sectors) {
1140 blk_queue_max_hw_sectors(ns->queue, ctrl->max_hw_sectors);
1141 blk_queue_max_segments(ns->queue,
1142 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1);
1143 }
1144 if (ctrl->stripe_size)
1145 blk_queue_chunk_sectors(ns->queue, ctrl->stripe_size >> 9);
1146 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1147 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
1148 blk_queue_virt_boundary(ns->queue, ctrl->page_size - 1);
1149
1150 disk->major = nvme_major;
1151 disk->first_minor = 0;
1152 disk->fops = &nvme_fops;
1153 disk->private_data = ns;
1154 disk->queue = ns->queue;
1155 disk->driverfs_dev = ctrl->device;
1156 disk->flags = GENHD_FL_EXT_DEVT;
1157 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, nsid);
1158
1159 if (nvme_revalidate_disk(ns->disk))
1160 goto out_free_disk;
1161
1162 list_add_tail(&ns->list, &ctrl->namespaces);
1163 kref_get(&ctrl->kref);
1164 if (ns->type == NVME_NS_LIGHTNVM)
1165 return;
1166
1167 add_disk(ns->disk);
1168 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1169 &nvme_ns_attr_group))
1170 pr_warn("%s: failed to create sysfs group for identification\n",
1171 ns->disk->disk_name);
1172 return;
1173 out_free_disk:
1174 kfree(disk);
1175 out_free_queue:
1176 blk_cleanup_queue(ns->queue);
1177 out_free_ns:
1178 kfree(ns);
1179 }
1180
1181 static void nvme_ns_remove(struct nvme_ns *ns)
1182 {
1183 bool kill = nvme_io_incapable(ns->ctrl) &&
1184 !blk_queue_dying(ns->queue);
1185
1186 lockdep_assert_held(&ns->ctrl->namespaces_mutex);
1187
1188 if (kill)
1189 blk_set_queue_dying(ns->queue);
1190 if (ns->disk->flags & GENHD_FL_UP) {
1191 if (blk_get_integrity(ns->disk))
1192 blk_integrity_unregister(ns->disk);
1193 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1194 &nvme_ns_attr_group);
1195 del_gendisk(ns->disk);
1196 }
1197 if (kill || !blk_queue_dying(ns->queue)) {
1198 blk_mq_abort_requeue_list(ns->queue);
1199 blk_cleanup_queue(ns->queue);
1200 }
1201 list_del_init(&ns->list);
1202 nvme_put_ns(ns);
1203 }
1204
1205 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1206 {
1207 struct nvme_ns *ns;
1208
1209 ns = nvme_find_ns(ctrl, nsid);
1210 if (ns) {
1211 if (revalidate_disk(ns->disk))
1212 nvme_ns_remove(ns);
1213 } else
1214 nvme_alloc_ns(ctrl, nsid);
1215 }
1216
1217 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1218 {
1219 struct nvme_ns *ns;
1220 __le32 *ns_list;
1221 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1222 int ret = 0;
1223
1224 ns_list = kzalloc(0x1000, GFP_KERNEL);
1225 if (!ns_list)
1226 return -ENOMEM;
1227
1228 for (i = 0; i < num_lists; i++) {
1229 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1230 if (ret)
1231 goto out;
1232
1233 for (j = 0; j < min(nn, 1024U); j++) {
1234 nsid = le32_to_cpu(ns_list[j]);
1235 if (!nsid)
1236 goto out;
1237
1238 nvme_validate_ns(ctrl, nsid);
1239
1240 while (++prev < nsid) {
1241 ns = nvme_find_ns(ctrl, prev);
1242 if (ns)
1243 nvme_ns_remove(ns);
1244 }
1245 }
1246 nn -= j;
1247 }
1248 out:
1249 kfree(ns_list);
1250 return ret;
1251 }
1252
1253 static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
1254 {
1255 struct nvme_ns *ns, *next;
1256 unsigned i;
1257
1258 lockdep_assert_held(&ctrl->namespaces_mutex);
1259
1260 for (i = 1; i <= nn; i++)
1261 nvme_validate_ns(ctrl, i);
1262
1263 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1264 if (ns->ns_id > nn)
1265 nvme_ns_remove(ns);
1266 }
1267 }
1268
1269 void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
1270 {
1271 struct nvme_id_ctrl *id;
1272 unsigned nn;
1273
1274 if (nvme_identify_ctrl(ctrl, &id))
1275 return;
1276
1277 mutex_lock(&ctrl->namespaces_mutex);
1278 nn = le32_to_cpu(id->nn);
1279 if (ctrl->vs >= NVME_VS(1, 1) &&
1280 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1281 if (!nvme_scan_ns_list(ctrl, nn))
1282 goto done;
1283 }
1284 __nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
1285 done:
1286 list_sort(NULL, &ctrl->namespaces, ns_cmp);
1287 mutex_unlock(&ctrl->namespaces_mutex);
1288 kfree(id);
1289 }
1290
1291 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1292 {
1293 struct nvme_ns *ns, *next;
1294
1295 mutex_lock(&ctrl->namespaces_mutex);
1296 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1297 nvme_ns_remove(ns);
1298 mutex_unlock(&ctrl->namespaces_mutex);
1299 }
1300
1301 static DEFINE_IDA(nvme_instance_ida);
1302
1303 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1304 {
1305 int instance, error;
1306
1307 do {
1308 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1309 return -ENODEV;
1310
1311 spin_lock(&dev_list_lock);
1312 error = ida_get_new(&nvme_instance_ida, &instance);
1313 spin_unlock(&dev_list_lock);
1314 } while (error == -EAGAIN);
1315
1316 if (error)
1317 return -ENODEV;
1318
1319 ctrl->instance = instance;
1320 return 0;
1321 }
1322
1323 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1324 {
1325 spin_lock(&dev_list_lock);
1326 ida_remove(&nvme_instance_ida, ctrl->instance);
1327 spin_unlock(&dev_list_lock);
1328 }
1329
1330 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1331 {
1332 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1333
1334 spin_lock(&dev_list_lock);
1335 list_del(&ctrl->node);
1336 spin_unlock(&dev_list_lock);
1337 }
1338
1339 static void nvme_free_ctrl(struct kref *kref)
1340 {
1341 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1342
1343 put_device(ctrl->device);
1344 nvme_release_instance(ctrl);
1345
1346 ctrl->ops->free_ctrl(ctrl);
1347 }
1348
1349 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1350 {
1351 kref_put(&ctrl->kref, nvme_free_ctrl);
1352 }
1353
1354 /*
1355 * Initialize a NVMe controller structures. This needs to be called during
1356 * earliest initialization so that we have the initialized structured around
1357 * during probing.
1358 */
1359 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1360 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1361 {
1362 int ret;
1363
1364 INIT_LIST_HEAD(&ctrl->namespaces);
1365 mutex_init(&ctrl->namespaces_mutex);
1366 kref_init(&ctrl->kref);
1367 ctrl->dev = dev;
1368 ctrl->ops = ops;
1369 ctrl->quirks = quirks;
1370
1371 ret = nvme_set_instance(ctrl);
1372 if (ret)
1373 goto out;
1374
1375 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1376 MKDEV(nvme_char_major, ctrl->instance),
1377 dev, nvme_dev_attr_groups,
1378 "nvme%d", ctrl->instance);
1379 if (IS_ERR(ctrl->device)) {
1380 ret = PTR_ERR(ctrl->device);
1381 goto out_release_instance;
1382 }
1383 get_device(ctrl->device);
1384 dev_set_drvdata(ctrl->device, ctrl);
1385
1386 spin_lock(&dev_list_lock);
1387 list_add_tail(&ctrl->node, &nvme_ctrl_list);
1388 spin_unlock(&dev_list_lock);
1389
1390 return 0;
1391 out_release_instance:
1392 nvme_release_instance(ctrl);
1393 out:
1394 return ret;
1395 }
1396
1397 void nvme_stop_queues(struct nvme_ctrl *ctrl)
1398 {
1399 struct nvme_ns *ns;
1400
1401 mutex_lock(&ctrl->namespaces_mutex);
1402 list_for_each_entry(ns, &ctrl->namespaces, list) {
1403 spin_lock_irq(ns->queue->queue_lock);
1404 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1405 spin_unlock_irq(ns->queue->queue_lock);
1406
1407 blk_mq_cancel_requeue_work(ns->queue);
1408 blk_mq_stop_hw_queues(ns->queue);
1409 }
1410 mutex_unlock(&ctrl->namespaces_mutex);
1411 }
1412
1413 void nvme_start_queues(struct nvme_ctrl *ctrl)
1414 {
1415 struct nvme_ns *ns;
1416
1417 mutex_lock(&ctrl->namespaces_mutex);
1418 list_for_each_entry(ns, &ctrl->namespaces, list) {
1419 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1420 blk_mq_start_stopped_hw_queues(ns->queue, true);
1421 blk_mq_kick_requeue_list(ns->queue);
1422 }
1423 mutex_unlock(&ctrl->namespaces_mutex);
1424 }
1425
1426 int __init nvme_core_init(void)
1427 {
1428 int result;
1429
1430 result = register_blkdev(nvme_major, "nvme");
1431 if (result < 0)
1432 return result;
1433 else if (result > 0)
1434 nvme_major = result;
1435
1436 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1437 &nvme_dev_fops);
1438 if (result < 0)
1439 goto unregister_blkdev;
1440 else if (result > 0)
1441 nvme_char_major = result;
1442
1443 nvme_class = class_create(THIS_MODULE, "nvme");
1444 if (IS_ERR(nvme_class)) {
1445 result = PTR_ERR(nvme_class);
1446 goto unregister_chrdev;
1447 }
1448
1449 return 0;
1450
1451 unregister_chrdev:
1452 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1453 unregister_blkdev:
1454 unregister_blkdev(nvme_major, "nvme");
1455 return result;
1456 }
1457
1458 void nvme_core_exit(void)
1459 {
1460 unregister_blkdev(nvme_major, "nvme");
1461 class_destroy(nvme_class);
1462 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1463 }
This page took 0.059387 seconds and 5 git commands to generate.