NVMe: Implement namespace list scanning
[deliverable/linux.git] / drivers / nvme / host / core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33
34 #define NVME_MINORS (1U << MINORBITS)
35
36 static int nvme_major;
37 module_param(nvme_major, int, 0);
38
39 static int nvme_char_major;
40 module_param(nvme_char_major, int, 0);
41
42 static LIST_HEAD(nvme_ctrl_list);
43 DEFINE_SPINLOCK(dev_list_lock);
44
45 static struct class *nvme_class;
46
47 static void nvme_free_ns(struct kref *kref)
48 {
49 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
50
51 if (ns->type == NVME_NS_LIGHTNVM)
52 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
53
54 spin_lock(&dev_list_lock);
55 ns->disk->private_data = NULL;
56 spin_unlock(&dev_list_lock);
57
58 nvme_put_ctrl(ns->ctrl);
59 put_disk(ns->disk);
60 kfree(ns);
61 }
62
63 static void nvme_put_ns(struct nvme_ns *ns)
64 {
65 kref_put(&ns->kref, nvme_free_ns);
66 }
67
68 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
69 {
70 struct nvme_ns *ns;
71
72 spin_lock(&dev_list_lock);
73 ns = disk->private_data;
74 if (ns && !kref_get_unless_zero(&ns->kref))
75 ns = NULL;
76 spin_unlock(&dev_list_lock);
77
78 return ns;
79 }
80
81 struct request *nvme_alloc_request(struct request_queue *q,
82 struct nvme_command *cmd, unsigned int flags)
83 {
84 bool write = cmd->common.opcode & 1;
85 struct request *req;
86
87 req = blk_mq_alloc_request(q, write, flags);
88 if (IS_ERR(req))
89 return req;
90
91 req->cmd_type = REQ_TYPE_DRV_PRIV;
92 req->cmd_flags |= REQ_FAILFAST_DRIVER;
93 req->__data_len = 0;
94 req->__sector = (sector_t) -1;
95 req->bio = req->biotail = NULL;
96
97 req->cmd = (unsigned char *)cmd;
98 req->cmd_len = sizeof(struct nvme_command);
99 req->special = (void *)0;
100
101 return req;
102 }
103
104 /*
105 * Returns 0 on success. If the result is negative, it's a Linux error code;
106 * if the result is positive, it's an NVM Express status code
107 */
108 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
109 void *buffer, unsigned bufflen, u32 *result, unsigned timeout)
110 {
111 struct request *req;
112 int ret;
113
114 req = nvme_alloc_request(q, cmd, 0);
115 if (IS_ERR(req))
116 return PTR_ERR(req);
117
118 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
119
120 if (buffer && bufflen) {
121 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
122 if (ret)
123 goto out;
124 }
125
126 blk_execute_rq(req->q, NULL, req, 0);
127 if (result)
128 *result = (u32)(uintptr_t)req->special;
129 ret = req->errors;
130 out:
131 blk_mq_free_request(req);
132 return ret;
133 }
134
135 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
136 void *buffer, unsigned bufflen)
137 {
138 return __nvme_submit_sync_cmd(q, cmd, buffer, bufflen, NULL, 0);
139 }
140
141 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
142 void __user *ubuffer, unsigned bufflen,
143 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
144 u32 *result, unsigned timeout)
145 {
146 bool write = cmd->common.opcode & 1;
147 struct nvme_ns *ns = q->queuedata;
148 struct gendisk *disk = ns ? ns->disk : NULL;
149 struct request *req;
150 struct bio *bio = NULL;
151 void *meta = NULL;
152 int ret;
153
154 req = nvme_alloc_request(q, cmd, 0);
155 if (IS_ERR(req))
156 return PTR_ERR(req);
157
158 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
159
160 if (ubuffer && bufflen) {
161 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
162 GFP_KERNEL);
163 if (ret)
164 goto out;
165 bio = req->bio;
166
167 if (!disk)
168 goto submit;
169 bio->bi_bdev = bdget_disk(disk, 0);
170 if (!bio->bi_bdev) {
171 ret = -ENODEV;
172 goto out_unmap;
173 }
174
175 if (meta_buffer) {
176 struct bio_integrity_payload *bip;
177
178 meta = kmalloc(meta_len, GFP_KERNEL);
179 if (!meta) {
180 ret = -ENOMEM;
181 goto out_unmap;
182 }
183
184 if (write) {
185 if (copy_from_user(meta, meta_buffer,
186 meta_len)) {
187 ret = -EFAULT;
188 goto out_free_meta;
189 }
190 }
191
192 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
193 if (IS_ERR(bip)) {
194 ret = PTR_ERR(bip);
195 goto out_free_meta;
196 }
197
198 bip->bip_iter.bi_size = meta_len;
199 bip->bip_iter.bi_sector = meta_seed;
200
201 ret = bio_integrity_add_page(bio, virt_to_page(meta),
202 meta_len, offset_in_page(meta));
203 if (ret != meta_len) {
204 ret = -ENOMEM;
205 goto out_free_meta;
206 }
207 }
208 }
209 submit:
210 blk_execute_rq(req->q, disk, req, 0);
211 ret = req->errors;
212 if (result)
213 *result = (u32)(uintptr_t)req->special;
214 if (meta && !ret && !write) {
215 if (copy_to_user(meta_buffer, meta, meta_len))
216 ret = -EFAULT;
217 }
218 out_free_meta:
219 kfree(meta);
220 out_unmap:
221 if (bio) {
222 if (disk && bio->bi_bdev)
223 bdput(bio->bi_bdev);
224 blk_rq_unmap_user(bio);
225 }
226 out:
227 blk_mq_free_request(req);
228 return ret;
229 }
230
231 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
232 void __user *ubuffer, unsigned bufflen, u32 *result,
233 unsigned timeout)
234 {
235 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
236 result, timeout);
237 }
238
239 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
240 {
241 struct nvme_command c = { };
242 int error;
243
244 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
245 c.identify.opcode = nvme_admin_identify;
246 c.identify.cns = cpu_to_le32(1);
247
248 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
249 if (!*id)
250 return -ENOMEM;
251
252 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
253 sizeof(struct nvme_id_ctrl));
254 if (error)
255 kfree(*id);
256 return error;
257 }
258
259 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
260 {
261 struct nvme_command c = { };
262
263 c.identify.opcode = nvme_admin_identify;
264 c.identify.cns = cpu_to_le32(2);
265 c.identify.nsid = cpu_to_le32(nsid);
266 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
267 }
268
269 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
270 struct nvme_id_ns **id)
271 {
272 struct nvme_command c = { };
273 int error;
274
275 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
276 c.identify.opcode = nvme_admin_identify,
277 c.identify.nsid = cpu_to_le32(nsid),
278
279 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
280 if (!*id)
281 return -ENOMEM;
282
283 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
284 sizeof(struct nvme_id_ns));
285 if (error)
286 kfree(*id);
287 return error;
288 }
289
290 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
291 dma_addr_t dma_addr, u32 *result)
292 {
293 struct nvme_command c;
294
295 memset(&c, 0, sizeof(c));
296 c.features.opcode = nvme_admin_get_features;
297 c.features.nsid = cpu_to_le32(nsid);
298 c.features.prp1 = cpu_to_le64(dma_addr);
299 c.features.fid = cpu_to_le32(fid);
300
301 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
302 }
303
304 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
305 dma_addr_t dma_addr, u32 *result)
306 {
307 struct nvme_command c;
308
309 memset(&c, 0, sizeof(c));
310 c.features.opcode = nvme_admin_set_features;
311 c.features.prp1 = cpu_to_le64(dma_addr);
312 c.features.fid = cpu_to_le32(fid);
313 c.features.dword11 = cpu_to_le32(dword11);
314
315 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
316 }
317
318 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
319 {
320 struct nvme_command c = { };
321 int error;
322
323 c.common.opcode = nvme_admin_get_log_page,
324 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
325 c.common.cdw10[0] = cpu_to_le32(
326 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
327 NVME_LOG_SMART),
328
329 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
330 if (!*log)
331 return -ENOMEM;
332
333 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
334 sizeof(struct nvme_smart_log));
335 if (error)
336 kfree(*log);
337 return error;
338 }
339
340 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
341 {
342 u32 q_count = (*count - 1) | ((*count - 1) << 16);
343 u32 result;
344 int status, nr_io_queues;
345
346 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
347 &result);
348 if (status)
349 return status;
350
351 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
352 *count = min(*count, nr_io_queues);
353 return 0;
354 }
355
356 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
357 {
358 struct nvme_user_io io;
359 struct nvme_command c;
360 unsigned length, meta_len;
361 void __user *metadata;
362
363 if (copy_from_user(&io, uio, sizeof(io)))
364 return -EFAULT;
365
366 switch (io.opcode) {
367 case nvme_cmd_write:
368 case nvme_cmd_read:
369 case nvme_cmd_compare:
370 break;
371 default:
372 return -EINVAL;
373 }
374
375 length = (io.nblocks + 1) << ns->lba_shift;
376 meta_len = (io.nblocks + 1) * ns->ms;
377 metadata = (void __user *)(uintptr_t)io.metadata;
378
379 if (ns->ext) {
380 length += meta_len;
381 meta_len = 0;
382 } else if (meta_len) {
383 if ((io.metadata & 3) || !io.metadata)
384 return -EINVAL;
385 }
386
387 memset(&c, 0, sizeof(c));
388 c.rw.opcode = io.opcode;
389 c.rw.flags = io.flags;
390 c.rw.nsid = cpu_to_le32(ns->ns_id);
391 c.rw.slba = cpu_to_le64(io.slba);
392 c.rw.length = cpu_to_le16(io.nblocks);
393 c.rw.control = cpu_to_le16(io.control);
394 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
395 c.rw.reftag = cpu_to_le32(io.reftag);
396 c.rw.apptag = cpu_to_le16(io.apptag);
397 c.rw.appmask = cpu_to_le16(io.appmask);
398
399 return __nvme_submit_user_cmd(ns->queue, &c,
400 (void __user *)(uintptr_t)io.addr, length,
401 metadata, meta_len, io.slba, NULL, 0);
402 }
403
404 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
405 struct nvme_passthru_cmd __user *ucmd)
406 {
407 struct nvme_passthru_cmd cmd;
408 struct nvme_command c;
409 unsigned timeout = 0;
410 int status;
411
412 if (!capable(CAP_SYS_ADMIN))
413 return -EACCES;
414 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
415 return -EFAULT;
416
417 memset(&c, 0, sizeof(c));
418 c.common.opcode = cmd.opcode;
419 c.common.flags = cmd.flags;
420 c.common.nsid = cpu_to_le32(cmd.nsid);
421 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
422 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
423 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
424 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
425 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
426 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
427 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
428 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
429
430 if (cmd.timeout_ms)
431 timeout = msecs_to_jiffies(cmd.timeout_ms);
432
433 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
434 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
435 &cmd.result, timeout);
436 if (status >= 0) {
437 if (put_user(cmd.result, &ucmd->result))
438 return -EFAULT;
439 }
440
441 return status;
442 }
443
444 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
445 unsigned int cmd, unsigned long arg)
446 {
447 struct nvme_ns *ns = bdev->bd_disk->private_data;
448
449 switch (cmd) {
450 case NVME_IOCTL_ID:
451 force_successful_syscall_return();
452 return ns->ns_id;
453 case NVME_IOCTL_ADMIN_CMD:
454 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
455 case NVME_IOCTL_IO_CMD:
456 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
457 case NVME_IOCTL_SUBMIT_IO:
458 return nvme_submit_io(ns, (void __user *)arg);
459 case SG_GET_VERSION_NUM:
460 return nvme_sg_get_version_num((void __user *)arg);
461 case SG_IO:
462 return nvme_sg_io(ns, (void __user *)arg);
463 default:
464 return -ENOTTY;
465 }
466 }
467
468 #ifdef CONFIG_COMPAT
469 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
470 unsigned int cmd, unsigned long arg)
471 {
472 switch (cmd) {
473 case SG_IO:
474 return -ENOIOCTLCMD;
475 }
476 return nvme_ioctl(bdev, mode, cmd, arg);
477 }
478 #else
479 #define nvme_compat_ioctl NULL
480 #endif
481
482 static int nvme_open(struct block_device *bdev, fmode_t mode)
483 {
484 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
485 }
486
487 static void nvme_release(struct gendisk *disk, fmode_t mode)
488 {
489 nvme_put_ns(disk->private_data);
490 }
491
492 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
493 {
494 /* some standard values */
495 geo->heads = 1 << 6;
496 geo->sectors = 1 << 5;
497 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
498 return 0;
499 }
500
501 #ifdef CONFIG_BLK_DEV_INTEGRITY
502 static void nvme_init_integrity(struct nvme_ns *ns)
503 {
504 struct blk_integrity integrity;
505
506 switch (ns->pi_type) {
507 case NVME_NS_DPS_PI_TYPE3:
508 integrity.profile = &t10_pi_type3_crc;
509 break;
510 case NVME_NS_DPS_PI_TYPE1:
511 case NVME_NS_DPS_PI_TYPE2:
512 integrity.profile = &t10_pi_type1_crc;
513 break;
514 default:
515 integrity.profile = NULL;
516 break;
517 }
518 integrity.tuple_size = ns->ms;
519 blk_integrity_register(ns->disk, &integrity);
520 blk_queue_max_integrity_segments(ns->queue, 1);
521 }
522 #else
523 static void nvme_init_integrity(struct nvme_ns *ns)
524 {
525 }
526 #endif /* CONFIG_BLK_DEV_INTEGRITY */
527
528 static void nvme_config_discard(struct nvme_ns *ns)
529 {
530 u32 logical_block_size = queue_logical_block_size(ns->queue);
531 ns->queue->limits.discard_zeroes_data = 0;
532 ns->queue->limits.discard_alignment = logical_block_size;
533 ns->queue->limits.discard_granularity = logical_block_size;
534 blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
535 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
536 }
537
538 static int nvme_revalidate_disk(struct gendisk *disk)
539 {
540 struct nvme_ns *ns = disk->private_data;
541 struct nvme_id_ns *id;
542 u8 lbaf, pi_type;
543 u16 old_ms;
544 unsigned short bs;
545
546 if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
547 dev_warn(ns->ctrl->dev, "%s: Identify failure nvme%dn%d\n",
548 __func__, ns->ctrl->instance, ns->ns_id);
549 return -ENODEV;
550 }
551 if (id->ncap == 0) {
552 kfree(id);
553 return -ENODEV;
554 }
555
556 if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
557 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
558 dev_warn(ns->ctrl->dev,
559 "%s: LightNVM init failure\n", __func__);
560 kfree(id);
561 return -ENODEV;
562 }
563 ns->type = NVME_NS_LIGHTNVM;
564 }
565
566 old_ms = ns->ms;
567 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
568 ns->lba_shift = id->lbaf[lbaf].ds;
569 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
570 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
571
572 /*
573 * If identify namespace failed, use default 512 byte block size so
574 * block layer can use before failing read/write for 0 capacity.
575 */
576 if (ns->lba_shift == 0)
577 ns->lba_shift = 9;
578 bs = 1 << ns->lba_shift;
579
580 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
581 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
582 id->dps & NVME_NS_DPS_PI_MASK : 0;
583
584 blk_mq_freeze_queue(disk->queue);
585 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
586 ns->ms != old_ms ||
587 bs != queue_logical_block_size(disk->queue) ||
588 (ns->ms && ns->ext)))
589 blk_integrity_unregister(disk);
590
591 ns->pi_type = pi_type;
592 blk_queue_logical_block_size(ns->queue, bs);
593
594 if (ns->ms && !ns->ext)
595 nvme_init_integrity(ns);
596
597 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
598 set_capacity(disk, 0);
599 else
600 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
601
602 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
603 nvme_config_discard(ns);
604 blk_mq_unfreeze_queue(disk->queue);
605
606 kfree(id);
607 return 0;
608 }
609
610 static char nvme_pr_type(enum pr_type type)
611 {
612 switch (type) {
613 case PR_WRITE_EXCLUSIVE:
614 return 1;
615 case PR_EXCLUSIVE_ACCESS:
616 return 2;
617 case PR_WRITE_EXCLUSIVE_REG_ONLY:
618 return 3;
619 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
620 return 4;
621 case PR_WRITE_EXCLUSIVE_ALL_REGS:
622 return 5;
623 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
624 return 6;
625 default:
626 return 0;
627 }
628 };
629
630 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
631 u64 key, u64 sa_key, u8 op)
632 {
633 struct nvme_ns *ns = bdev->bd_disk->private_data;
634 struct nvme_command c;
635 u8 data[16] = { 0, };
636
637 put_unaligned_le64(key, &data[0]);
638 put_unaligned_le64(sa_key, &data[8]);
639
640 memset(&c, 0, sizeof(c));
641 c.common.opcode = op;
642 c.common.nsid = cpu_to_le32(ns->ns_id);
643 c.common.cdw10[0] = cpu_to_le32(cdw10);
644
645 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
646 }
647
648 static int nvme_pr_register(struct block_device *bdev, u64 old,
649 u64 new, unsigned flags)
650 {
651 u32 cdw10;
652
653 if (flags & ~PR_FL_IGNORE_KEY)
654 return -EOPNOTSUPP;
655
656 cdw10 = old ? 2 : 0;
657 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
658 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
659 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
660 }
661
662 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
663 enum pr_type type, unsigned flags)
664 {
665 u32 cdw10;
666
667 if (flags & ~PR_FL_IGNORE_KEY)
668 return -EOPNOTSUPP;
669
670 cdw10 = nvme_pr_type(type) << 8;
671 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
672 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
673 }
674
675 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
676 enum pr_type type, bool abort)
677 {
678 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
679 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
680 }
681
682 static int nvme_pr_clear(struct block_device *bdev, u64 key)
683 {
684 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
685 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
686 }
687
688 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
689 {
690 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
691 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
692 }
693
694 static const struct pr_ops nvme_pr_ops = {
695 .pr_register = nvme_pr_register,
696 .pr_reserve = nvme_pr_reserve,
697 .pr_release = nvme_pr_release,
698 .pr_preempt = nvme_pr_preempt,
699 .pr_clear = nvme_pr_clear,
700 };
701
702 static const struct block_device_operations nvme_fops = {
703 .owner = THIS_MODULE,
704 .ioctl = nvme_ioctl,
705 .compat_ioctl = nvme_compat_ioctl,
706 .open = nvme_open,
707 .release = nvme_release,
708 .getgeo = nvme_getgeo,
709 .revalidate_disk= nvme_revalidate_disk,
710 .pr_ops = &nvme_pr_ops,
711 };
712
713 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
714 {
715 unsigned long timeout =
716 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
717 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
718 int ret;
719
720 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
721 if ((csts & NVME_CSTS_RDY) == bit)
722 break;
723
724 msleep(100);
725 if (fatal_signal_pending(current))
726 return -EINTR;
727 if (time_after(jiffies, timeout)) {
728 dev_err(ctrl->dev,
729 "Device not ready; aborting %s\n", enabled ?
730 "initialisation" : "reset");
731 return -ENODEV;
732 }
733 }
734
735 return ret;
736 }
737
738 /*
739 * If the device has been passed off to us in an enabled state, just clear
740 * the enabled bit. The spec says we should set the 'shutdown notification
741 * bits', but doing so may cause the device to complete commands to the
742 * admin queue ... and we don't know what memory that might be pointing at!
743 */
744 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
745 {
746 int ret;
747
748 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
749 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
750
751 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
752 if (ret)
753 return ret;
754 return nvme_wait_ready(ctrl, cap, false);
755 }
756
757 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
758 {
759 /*
760 * Default to a 4K page size, with the intention to update this
761 * path in the future to accomodate architectures with differing
762 * kernel and IO page sizes.
763 */
764 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
765 int ret;
766
767 if (page_shift < dev_page_min) {
768 dev_err(ctrl->dev,
769 "Minimum device page size %u too large for host (%u)\n",
770 1 << dev_page_min, 1 << page_shift);
771 return -ENODEV;
772 }
773
774 ctrl->page_size = 1 << page_shift;
775
776 ctrl->ctrl_config = NVME_CC_CSS_NVM;
777 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
778 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
779 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
780 ctrl->ctrl_config |= NVME_CC_ENABLE;
781
782 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
783 if (ret)
784 return ret;
785 return nvme_wait_ready(ctrl, cap, true);
786 }
787
788 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
789 {
790 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
791 u32 csts;
792 int ret;
793
794 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
795 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
796
797 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
798 if (ret)
799 return ret;
800
801 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
802 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
803 break;
804
805 msleep(100);
806 if (fatal_signal_pending(current))
807 return -EINTR;
808 if (time_after(jiffies, timeout)) {
809 dev_err(ctrl->dev,
810 "Device shutdown incomplete; abort shutdown\n");
811 return -ENODEV;
812 }
813 }
814
815 return ret;
816 }
817
818 /*
819 * Initialize the cached copies of the Identify data and various controller
820 * register in our nvme_ctrl structure. This should be called as soon as
821 * the admin queue is fully up and running.
822 */
823 int nvme_init_identify(struct nvme_ctrl *ctrl)
824 {
825 struct nvme_id_ctrl *id;
826 u64 cap;
827 int ret, page_shift;
828
829 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
830 if (ret) {
831 dev_err(ctrl->dev, "Reading VS failed (%d)\n", ret);
832 return ret;
833 }
834
835 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
836 if (ret) {
837 dev_err(ctrl->dev, "Reading CAP failed (%d)\n", ret);
838 return ret;
839 }
840 page_shift = NVME_CAP_MPSMIN(cap) + 12;
841
842 if (ctrl->vs >= NVME_VS(1, 1))
843 ctrl->subsystem = NVME_CAP_NSSRC(cap);
844
845 ret = nvme_identify_ctrl(ctrl, &id);
846 if (ret) {
847 dev_err(ctrl->dev, "Identify Controller failed (%d)\n", ret);
848 return -EIO;
849 }
850
851 ctrl->oncs = le16_to_cpup(&id->oncs);
852 atomic_set(&ctrl->abort_limit, id->acl + 1);
853 ctrl->vwc = id->vwc;
854 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
855 memcpy(ctrl->model, id->mn, sizeof(id->mn));
856 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
857 if (id->mdts)
858 ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
859 else
860 ctrl->max_hw_sectors = UINT_MAX;
861
862 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
863 unsigned int max_hw_sectors;
864
865 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
866 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
867 if (ctrl->max_hw_sectors) {
868 ctrl->max_hw_sectors = min(max_hw_sectors,
869 ctrl->max_hw_sectors);
870 } else {
871 ctrl->max_hw_sectors = max_hw_sectors;
872 }
873 }
874
875 kfree(id);
876 return 0;
877 }
878
879 static int nvme_dev_open(struct inode *inode, struct file *file)
880 {
881 struct nvme_ctrl *ctrl;
882 int instance = iminor(inode);
883 int ret = -ENODEV;
884
885 spin_lock(&dev_list_lock);
886 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
887 if (ctrl->instance != instance)
888 continue;
889
890 if (!ctrl->admin_q) {
891 ret = -EWOULDBLOCK;
892 break;
893 }
894 if (!kref_get_unless_zero(&ctrl->kref))
895 break;
896 file->private_data = ctrl;
897 ret = 0;
898 break;
899 }
900 spin_unlock(&dev_list_lock);
901
902 return ret;
903 }
904
905 static int nvme_dev_release(struct inode *inode, struct file *file)
906 {
907 nvme_put_ctrl(file->private_data);
908 return 0;
909 }
910
911 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
912 unsigned long arg)
913 {
914 struct nvme_ctrl *ctrl = file->private_data;
915 void __user *argp = (void __user *)arg;
916 struct nvme_ns *ns;
917
918 switch (cmd) {
919 case NVME_IOCTL_ADMIN_CMD:
920 return nvme_user_cmd(ctrl, NULL, argp);
921 case NVME_IOCTL_IO_CMD:
922 if (list_empty(&ctrl->namespaces))
923 return -ENOTTY;
924 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
925 return nvme_user_cmd(ctrl, ns, argp);
926 case NVME_IOCTL_RESET:
927 dev_warn(ctrl->dev, "resetting controller\n");
928 return ctrl->ops->reset_ctrl(ctrl);
929 case NVME_IOCTL_SUBSYS_RESET:
930 return nvme_reset_subsystem(ctrl);
931 default:
932 return -ENOTTY;
933 }
934 }
935
936 static const struct file_operations nvme_dev_fops = {
937 .owner = THIS_MODULE,
938 .open = nvme_dev_open,
939 .release = nvme_dev_release,
940 .unlocked_ioctl = nvme_dev_ioctl,
941 .compat_ioctl = nvme_dev_ioctl,
942 };
943
944 static ssize_t nvme_sysfs_reset(struct device *dev,
945 struct device_attribute *attr, const char *buf,
946 size_t count)
947 {
948 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
949 int ret;
950
951 ret = ctrl->ops->reset_ctrl(ctrl);
952 if (ret < 0)
953 return ret;
954 return count;
955 }
956 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
957
958 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
959 {
960 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
961 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
962
963 return nsa->ns_id - nsb->ns_id;
964 }
965
966 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
967 {
968 struct nvme_ns *ns;
969
970 list_for_each_entry(ns, &ctrl->namespaces, list) {
971 if (ns->ns_id == nsid)
972 return ns;
973 if (ns->ns_id > nsid)
974 break;
975 }
976 return NULL;
977 }
978
979 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
980 {
981 struct nvme_ns *ns;
982 struct gendisk *disk;
983 int node = dev_to_node(ctrl->dev);
984
985 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
986 if (!ns)
987 return;
988
989 ns->queue = blk_mq_init_queue(ctrl->tagset);
990 if (IS_ERR(ns->queue))
991 goto out_free_ns;
992 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
993 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
994 ns->queue->queuedata = ns;
995 ns->ctrl = ctrl;
996
997 disk = alloc_disk_node(0, node);
998 if (!disk)
999 goto out_free_queue;
1000
1001 kref_init(&ns->kref);
1002 ns->ns_id = nsid;
1003 ns->disk = disk;
1004 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1005 list_add_tail(&ns->list, &ctrl->namespaces);
1006
1007 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1008 if (ctrl->max_hw_sectors) {
1009 blk_queue_max_hw_sectors(ns->queue, ctrl->max_hw_sectors);
1010 blk_queue_max_segments(ns->queue,
1011 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1);
1012 }
1013 if (ctrl->stripe_size)
1014 blk_queue_chunk_sectors(ns->queue, ctrl->stripe_size >> 9);
1015 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1016 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
1017 blk_queue_virt_boundary(ns->queue, ctrl->page_size - 1);
1018
1019 disk->major = nvme_major;
1020 disk->first_minor = 0;
1021 disk->fops = &nvme_fops;
1022 disk->private_data = ns;
1023 disk->queue = ns->queue;
1024 disk->driverfs_dev = ctrl->device;
1025 disk->flags = GENHD_FL_EXT_DEVT;
1026 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, nsid);
1027
1028 /*
1029 * Initialize capacity to 0 until we establish the namespace format and
1030 * setup integrity extentions if necessary. The revalidate_disk after
1031 * add_disk allows the driver to register with integrity if the format
1032 * requires it.
1033 */
1034 set_capacity(disk, 0);
1035 if (nvme_revalidate_disk(ns->disk))
1036 goto out_free_disk;
1037
1038 kref_get(&ctrl->kref);
1039 if (ns->type != NVME_NS_LIGHTNVM) {
1040 add_disk(ns->disk);
1041 if (ns->ms) {
1042 struct block_device *bd = bdget_disk(ns->disk, 0);
1043 if (!bd)
1044 return;
1045 if (blkdev_get(bd, FMODE_READ, NULL)) {
1046 bdput(bd);
1047 return;
1048 }
1049 blkdev_reread_part(bd);
1050 blkdev_put(bd, FMODE_READ);
1051 }
1052 }
1053
1054 return;
1055 out_free_disk:
1056 kfree(disk);
1057 list_del(&ns->list);
1058 out_free_queue:
1059 blk_cleanup_queue(ns->queue);
1060 out_free_ns:
1061 kfree(ns);
1062 }
1063
1064 static void nvme_ns_remove(struct nvme_ns *ns)
1065 {
1066 bool kill = nvme_io_incapable(ns->ctrl) &&
1067 !blk_queue_dying(ns->queue);
1068
1069 if (kill)
1070 blk_set_queue_dying(ns->queue);
1071 if (ns->disk->flags & GENHD_FL_UP) {
1072 if (blk_get_integrity(ns->disk))
1073 blk_integrity_unregister(ns->disk);
1074 del_gendisk(ns->disk);
1075 }
1076 if (kill || !blk_queue_dying(ns->queue)) {
1077 blk_mq_abort_requeue_list(ns->queue);
1078 blk_cleanup_queue(ns->queue);
1079 }
1080 list_del_init(&ns->list);
1081 nvme_put_ns(ns);
1082 }
1083
1084 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1085 {
1086 struct nvme_ns *ns;
1087
1088 ns = nvme_find_ns(ctrl, nsid);
1089 if (ns) {
1090 if (revalidate_disk(ns->disk))
1091 nvme_ns_remove(ns);
1092 } else
1093 nvme_alloc_ns(ctrl, nsid);
1094 }
1095
1096 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1097 {
1098 struct nvme_ns *ns;
1099 __le32 *ns_list;
1100 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1101 int ret = 0;
1102
1103 ns_list = kzalloc(0x1000, GFP_KERNEL);
1104 if (!ns_list)
1105 return -ENOMEM;
1106
1107 for (i = 0; i < num_lists; i++) {
1108 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1109 if (ret)
1110 goto out;
1111
1112 for (j = 0; j < min(nn, 1024U); j++) {
1113 nsid = le32_to_cpu(ns_list[j]);
1114 if (!nsid)
1115 goto out;
1116
1117 nvme_validate_ns(ctrl, nsid);
1118
1119 while (++prev < nsid) {
1120 ns = nvme_find_ns(ctrl, prev);
1121 if (ns)
1122 nvme_ns_remove(ns);
1123 }
1124 }
1125 nn -= j;
1126 }
1127 out:
1128 kfree(ns_list);
1129 return ret;
1130 }
1131
1132 static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
1133 {
1134 struct nvme_ns *ns, *next;
1135 unsigned i;
1136
1137 for (i = 1; i <= nn; i++)
1138 nvme_validate_ns(ctrl, i);
1139
1140 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1141 if (ns->ns_id > nn)
1142 nvme_ns_remove(ns);
1143 }
1144 }
1145
1146 void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
1147 {
1148 struct nvme_id_ctrl *id;
1149 unsigned nn;
1150
1151 if (nvme_identify_ctrl(ctrl, &id))
1152 return;
1153
1154 nn = le32_to_cpu(id->nn);
1155 if (ctrl->vs >= NVME_VS(1, 1) &&
1156 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1157 if (!nvme_scan_ns_list(ctrl, nn))
1158 goto done;
1159 }
1160 __nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
1161 done:
1162 list_sort(NULL, &ctrl->namespaces, ns_cmp);
1163 kfree(id);
1164 }
1165
1166 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1167 {
1168 struct nvme_ns *ns, *next;
1169
1170 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1171 nvme_ns_remove(ns);
1172 }
1173
1174 static DEFINE_IDA(nvme_instance_ida);
1175
1176 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1177 {
1178 int instance, error;
1179
1180 do {
1181 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1182 return -ENODEV;
1183
1184 spin_lock(&dev_list_lock);
1185 error = ida_get_new(&nvme_instance_ida, &instance);
1186 spin_unlock(&dev_list_lock);
1187 } while (error == -EAGAIN);
1188
1189 if (error)
1190 return -ENODEV;
1191
1192 ctrl->instance = instance;
1193 return 0;
1194 }
1195
1196 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1197 {
1198 spin_lock(&dev_list_lock);
1199 ida_remove(&nvme_instance_ida, ctrl->instance);
1200 spin_unlock(&dev_list_lock);
1201 }
1202
1203 static void nvme_free_ctrl(struct kref *kref)
1204 {
1205 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1206
1207 spin_lock(&dev_list_lock);
1208 list_del(&ctrl->node);
1209 spin_unlock(&dev_list_lock);
1210
1211 put_device(ctrl->device);
1212 nvme_release_instance(ctrl);
1213 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1214
1215 ctrl->ops->free_ctrl(ctrl);
1216 }
1217
1218 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1219 {
1220 kref_put(&ctrl->kref, nvme_free_ctrl);
1221 }
1222
1223 /*
1224 * Initialize a NVMe controller structures. This needs to be called during
1225 * earliest initialization so that we have the initialized structured around
1226 * during probing.
1227 */
1228 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1229 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1230 {
1231 int ret;
1232
1233 INIT_LIST_HEAD(&ctrl->namespaces);
1234 kref_init(&ctrl->kref);
1235 ctrl->dev = dev;
1236 ctrl->ops = ops;
1237 ctrl->quirks = quirks;
1238
1239 ret = nvme_set_instance(ctrl);
1240 if (ret)
1241 goto out;
1242
1243 ctrl->device = device_create(nvme_class, ctrl->dev,
1244 MKDEV(nvme_char_major, ctrl->instance),
1245 dev, "nvme%d", ctrl->instance);
1246 if (IS_ERR(ctrl->device)) {
1247 ret = PTR_ERR(ctrl->device);
1248 goto out_release_instance;
1249 }
1250 get_device(ctrl->device);
1251 dev_set_drvdata(ctrl->device, ctrl);
1252
1253 ret = device_create_file(ctrl->device, &dev_attr_reset_controller);
1254 if (ret)
1255 goto out_put_device;
1256
1257 spin_lock(&dev_list_lock);
1258 list_add_tail(&ctrl->node, &nvme_ctrl_list);
1259 spin_unlock(&dev_list_lock);
1260
1261 return 0;
1262
1263 out_put_device:
1264 put_device(ctrl->device);
1265 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1266 out_release_instance:
1267 nvme_release_instance(ctrl);
1268 out:
1269 return ret;
1270 }
1271
1272 int __init nvme_core_init(void)
1273 {
1274 int result;
1275
1276 result = register_blkdev(nvme_major, "nvme");
1277 if (result < 0)
1278 return result;
1279 else if (result > 0)
1280 nvme_major = result;
1281
1282 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1283 &nvme_dev_fops);
1284 if (result < 0)
1285 goto unregister_blkdev;
1286 else if (result > 0)
1287 nvme_char_major = result;
1288
1289 nvme_class = class_create(THIS_MODULE, "nvme");
1290 if (IS_ERR(nvme_class)) {
1291 result = PTR_ERR(nvme_class);
1292 goto unregister_chrdev;
1293 }
1294
1295 return 0;
1296
1297 unregister_chrdev:
1298 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1299 unregister_blkdev:
1300 unregister_blkdev(nvme_major, "nvme");
1301 return result;
1302 }
1303
1304 void nvme_core_exit(void)
1305 {
1306 unregister_blkdev(nvme_major, "nvme");
1307 class_destroy(nvme_class);
1308 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1309 }
This page took 0.058021 seconds and 6 git commands to generate.