NVMe: Simplify device reset failure
[deliverable/linux.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH 1024
49 #define NVME_AQ_DEPTH 256
50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
52
53 /*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57 #define NVME_NR_AEN_COMMANDS 1
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59
60 unsigned char admin_timeout = 60;
61 module_param(admin_timeout, byte, 0644);
62 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
63
64 unsigned char nvme_io_timeout = 30;
65 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
66 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
67
68 unsigned char shutdown_timeout = 5;
69 module_param(shutdown_timeout, byte, 0644);
70 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
71
72 static int use_threaded_interrupts;
73 module_param(use_threaded_interrupts, int, 0);
74
75 static bool use_cmb_sqes = true;
76 module_param(use_cmb_sqes, bool, 0644);
77 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78
79 static LIST_HEAD(dev_list);
80 static struct task_struct *nvme_thread;
81 static struct workqueue_struct *nvme_workq;
82 static wait_queue_head_t nvme_kthread_wait;
83
84 struct nvme_dev;
85 struct nvme_queue;
86
87 static int nvme_reset(struct nvme_dev *dev);
88 static void nvme_process_cq(struct nvme_queue *nvmeq);
89 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
90
91 /*
92 * Represents an NVM Express device. Each nvme_dev is a PCI function.
93 */
94 struct nvme_dev {
95 struct list_head node;
96 struct nvme_queue **queues;
97 struct blk_mq_tag_set tagset;
98 struct blk_mq_tag_set admin_tagset;
99 u32 __iomem *dbs;
100 struct device *dev;
101 struct dma_pool *prp_page_pool;
102 struct dma_pool *prp_small_pool;
103 unsigned queue_count;
104 unsigned online_queues;
105 unsigned max_qid;
106 int q_depth;
107 u32 db_stride;
108 struct msix_entry *entry;
109 void __iomem *bar;
110 struct work_struct reset_work;
111 struct work_struct scan_work;
112 struct work_struct remove_work;
113 struct mutex shutdown_lock;
114 bool subsystem;
115 void __iomem *cmb;
116 dma_addr_t cmb_dma_addr;
117 u64 cmb_size;
118 u32 cmbsz;
119 unsigned long flags;
120
121 #define NVME_CTRL_RESETTING 0
122 #define NVME_CTRL_REMOVING 1
123
124 struct nvme_ctrl ctrl;
125 struct completion ioq_wait;
126 };
127
128 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
129 {
130 return container_of(ctrl, struct nvme_dev, ctrl);
131 }
132
133 /*
134 * An NVM Express queue. Each device has at least two (one for admin
135 * commands and one for I/O commands).
136 */
137 struct nvme_queue {
138 struct device *q_dmadev;
139 struct nvme_dev *dev;
140 char irqname[24]; /* nvme4294967295-65535\0 */
141 spinlock_t q_lock;
142 struct nvme_command *sq_cmds;
143 struct nvme_command __iomem *sq_cmds_io;
144 volatile struct nvme_completion *cqes;
145 struct blk_mq_tags **tags;
146 dma_addr_t sq_dma_addr;
147 dma_addr_t cq_dma_addr;
148 u32 __iomem *q_db;
149 u16 q_depth;
150 s16 cq_vector;
151 u16 sq_head;
152 u16 sq_tail;
153 u16 cq_head;
154 u16 qid;
155 u8 cq_phase;
156 u8 cqe_seen;
157 };
158
159 /*
160 * The nvme_iod describes the data in an I/O, including the list of PRP
161 * entries. You can't see it in this data structure because C doesn't let
162 * me express that. Use nvme_init_iod to ensure there's enough space
163 * allocated to store the PRP list.
164 */
165 struct nvme_iod {
166 struct nvme_queue *nvmeq;
167 int aborted;
168 int npages; /* In the PRP list. 0 means small pool in use */
169 int nents; /* Used in scatterlist */
170 int length; /* Of data, in bytes */
171 dma_addr_t first_dma;
172 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
173 struct scatterlist *sg;
174 struct scatterlist inline_sg[0];
175 };
176
177 /*
178 * Check we didin't inadvertently grow the command struct
179 */
180 static inline void _nvme_check_size(void)
181 {
182 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
183 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
185 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
186 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
187 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
188 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
189 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
190 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
191 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
192 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
193 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
194 }
195
196 /*
197 * Max size of iod being embedded in the request payload
198 */
199 #define NVME_INT_PAGES 2
200 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
201
202 /*
203 * Will slightly overestimate the number of pages needed. This is OK
204 * as it only leads to a small amount of wasted memory for the lifetime of
205 * the I/O.
206 */
207 static int nvme_npages(unsigned size, struct nvme_dev *dev)
208 {
209 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
210 dev->ctrl.page_size);
211 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
212 }
213
214 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
215 unsigned int size, unsigned int nseg)
216 {
217 return sizeof(__le64 *) * nvme_npages(size, dev) +
218 sizeof(struct scatterlist) * nseg;
219 }
220
221 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
222 {
223 return sizeof(struct nvme_iod) +
224 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
225 }
226
227 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
228 unsigned int hctx_idx)
229 {
230 struct nvme_dev *dev = data;
231 struct nvme_queue *nvmeq = dev->queues[0];
232
233 WARN_ON(hctx_idx != 0);
234 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
235 WARN_ON(nvmeq->tags);
236
237 hctx->driver_data = nvmeq;
238 nvmeq->tags = &dev->admin_tagset.tags[0];
239 return 0;
240 }
241
242 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
243 {
244 struct nvme_queue *nvmeq = hctx->driver_data;
245
246 nvmeq->tags = NULL;
247 }
248
249 static int nvme_admin_init_request(void *data, struct request *req,
250 unsigned int hctx_idx, unsigned int rq_idx,
251 unsigned int numa_node)
252 {
253 struct nvme_dev *dev = data;
254 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
255 struct nvme_queue *nvmeq = dev->queues[0];
256
257 BUG_ON(!nvmeq);
258 iod->nvmeq = nvmeq;
259 return 0;
260 }
261
262 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
263 unsigned int hctx_idx)
264 {
265 struct nvme_dev *dev = data;
266 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267
268 if (!nvmeq->tags)
269 nvmeq->tags = &dev->tagset.tags[hctx_idx];
270
271 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
272 hctx->driver_data = nvmeq;
273 return 0;
274 }
275
276 static int nvme_init_request(void *data, struct request *req,
277 unsigned int hctx_idx, unsigned int rq_idx,
278 unsigned int numa_node)
279 {
280 struct nvme_dev *dev = data;
281 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
282 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
283
284 BUG_ON(!nvmeq);
285 iod->nvmeq = nvmeq;
286 return 0;
287 }
288
289 static void nvme_queue_scan(struct nvme_dev *dev)
290 {
291 /*
292 * Do not queue new scan work when a controller is reset during
293 * removal.
294 */
295 if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
296 return;
297 queue_work(nvme_workq, &dev->scan_work);
298 }
299
300 static void nvme_complete_async_event(struct nvme_dev *dev,
301 struct nvme_completion *cqe)
302 {
303 u16 status = le16_to_cpu(cqe->status) >> 1;
304 u32 result = le32_to_cpu(cqe->result);
305
306 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
307 ++dev->ctrl.event_limit;
308 if (status != NVME_SC_SUCCESS)
309 return;
310
311 switch (result & 0xff07) {
312 case NVME_AER_NOTICE_NS_CHANGED:
313 dev_info(dev->dev, "rescanning\n");
314 nvme_queue_scan(dev);
315 default:
316 dev_warn(dev->dev, "async event result %08x\n", result);
317 }
318 }
319
320 /**
321 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
322 * @nvmeq: The queue to use
323 * @cmd: The command to send
324 *
325 * Safe to use from interrupt context
326 */
327 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
328 struct nvme_command *cmd)
329 {
330 u16 tail = nvmeq->sq_tail;
331
332 if (nvmeq->sq_cmds_io)
333 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
334 else
335 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
336
337 if (++tail == nvmeq->q_depth)
338 tail = 0;
339 writel(tail, nvmeq->q_db);
340 nvmeq->sq_tail = tail;
341 }
342
343 static __le64 **iod_list(struct request *req)
344 {
345 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
346 return (__le64 **)(iod->sg + req->nr_phys_segments);
347 }
348
349 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
350 {
351 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
352 int nseg = rq->nr_phys_segments;
353 unsigned size;
354
355 if (rq->cmd_flags & REQ_DISCARD)
356 size = sizeof(struct nvme_dsm_range);
357 else
358 size = blk_rq_bytes(rq);
359
360 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
361 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
362 if (!iod->sg)
363 return BLK_MQ_RQ_QUEUE_BUSY;
364 } else {
365 iod->sg = iod->inline_sg;
366 }
367
368 iod->aborted = 0;
369 iod->npages = -1;
370 iod->nents = 0;
371 iod->length = size;
372 return 0;
373 }
374
375 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
376 {
377 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
378 const int last_prp = dev->ctrl.page_size / 8 - 1;
379 int i;
380 __le64 **list = iod_list(req);
381 dma_addr_t prp_dma = iod->first_dma;
382
383 if (iod->npages == 0)
384 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
385 for (i = 0; i < iod->npages; i++) {
386 __le64 *prp_list = list[i];
387 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
388 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
389 prp_dma = next_prp_dma;
390 }
391
392 if (iod->sg != iod->inline_sg)
393 kfree(iod->sg);
394 }
395
396 #ifdef CONFIG_BLK_DEV_INTEGRITY
397 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
398 {
399 if (be32_to_cpu(pi->ref_tag) == v)
400 pi->ref_tag = cpu_to_be32(p);
401 }
402
403 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
404 {
405 if (be32_to_cpu(pi->ref_tag) == p)
406 pi->ref_tag = cpu_to_be32(v);
407 }
408
409 /**
410 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
411 *
412 * The virtual start sector is the one that was originally submitted by the
413 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
414 * start sector may be different. Remap protection information to match the
415 * physical LBA on writes, and back to the original seed on reads.
416 *
417 * Type 0 and 3 do not have a ref tag, so no remapping required.
418 */
419 static void nvme_dif_remap(struct request *req,
420 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
421 {
422 struct nvme_ns *ns = req->rq_disk->private_data;
423 struct bio_integrity_payload *bip;
424 struct t10_pi_tuple *pi;
425 void *p, *pmap;
426 u32 i, nlb, ts, phys, virt;
427
428 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
429 return;
430
431 bip = bio_integrity(req->bio);
432 if (!bip)
433 return;
434
435 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
436
437 p = pmap;
438 virt = bip_get_seed(bip);
439 phys = nvme_block_nr(ns, blk_rq_pos(req));
440 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
441 ts = ns->disk->queue->integrity.tuple_size;
442
443 for (i = 0; i < nlb; i++, virt++, phys++) {
444 pi = (struct t10_pi_tuple *)p;
445 dif_swap(phys, virt, pi);
446 p += ts;
447 }
448 kunmap_atomic(pmap);
449 }
450 #else /* CONFIG_BLK_DEV_INTEGRITY */
451 static void nvme_dif_remap(struct request *req,
452 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
453 {
454 }
455 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
456 {
457 }
458 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
459 {
460 }
461 #endif
462
463 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
464 int total_len)
465 {
466 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
467 struct dma_pool *pool;
468 int length = total_len;
469 struct scatterlist *sg = iod->sg;
470 int dma_len = sg_dma_len(sg);
471 u64 dma_addr = sg_dma_address(sg);
472 u32 page_size = dev->ctrl.page_size;
473 int offset = dma_addr & (page_size - 1);
474 __le64 *prp_list;
475 __le64 **list = iod_list(req);
476 dma_addr_t prp_dma;
477 int nprps, i;
478
479 length -= (page_size - offset);
480 if (length <= 0)
481 return true;
482
483 dma_len -= (page_size - offset);
484 if (dma_len) {
485 dma_addr += (page_size - offset);
486 } else {
487 sg = sg_next(sg);
488 dma_addr = sg_dma_address(sg);
489 dma_len = sg_dma_len(sg);
490 }
491
492 if (length <= page_size) {
493 iod->first_dma = dma_addr;
494 return true;
495 }
496
497 nprps = DIV_ROUND_UP(length, page_size);
498 if (nprps <= (256 / 8)) {
499 pool = dev->prp_small_pool;
500 iod->npages = 0;
501 } else {
502 pool = dev->prp_page_pool;
503 iod->npages = 1;
504 }
505
506 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
507 if (!prp_list) {
508 iod->first_dma = dma_addr;
509 iod->npages = -1;
510 return false;
511 }
512 list[0] = prp_list;
513 iod->first_dma = prp_dma;
514 i = 0;
515 for (;;) {
516 if (i == page_size >> 3) {
517 __le64 *old_prp_list = prp_list;
518 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
519 if (!prp_list)
520 return false;
521 list[iod->npages++] = prp_list;
522 prp_list[0] = old_prp_list[i - 1];
523 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
524 i = 1;
525 }
526 prp_list[i++] = cpu_to_le64(dma_addr);
527 dma_len -= page_size;
528 dma_addr += page_size;
529 length -= page_size;
530 if (length <= 0)
531 break;
532 if (dma_len > 0)
533 continue;
534 BUG_ON(dma_len < 0);
535 sg = sg_next(sg);
536 dma_addr = sg_dma_address(sg);
537 dma_len = sg_dma_len(sg);
538 }
539
540 return true;
541 }
542
543 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
544 struct nvme_command *cmnd)
545 {
546 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
547 struct request_queue *q = req->q;
548 enum dma_data_direction dma_dir = rq_data_dir(req) ?
549 DMA_TO_DEVICE : DMA_FROM_DEVICE;
550 int ret = BLK_MQ_RQ_QUEUE_ERROR;
551
552 sg_init_table(iod->sg, req->nr_phys_segments);
553 iod->nents = blk_rq_map_sg(q, req, iod->sg);
554 if (!iod->nents)
555 goto out;
556
557 ret = BLK_MQ_RQ_QUEUE_BUSY;
558 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
559 goto out;
560
561 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
562 goto out_unmap;
563
564 ret = BLK_MQ_RQ_QUEUE_ERROR;
565 if (blk_integrity_rq(req)) {
566 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
567 goto out_unmap;
568
569 sg_init_table(&iod->meta_sg, 1);
570 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
571 goto out_unmap;
572
573 if (rq_data_dir(req))
574 nvme_dif_remap(req, nvme_dif_prep);
575
576 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
577 goto out_unmap;
578 }
579
580 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
581 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
582 if (blk_integrity_rq(req))
583 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
584 return BLK_MQ_RQ_QUEUE_OK;
585
586 out_unmap:
587 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
588 out:
589 return ret;
590 }
591
592 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
593 {
594 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
595 enum dma_data_direction dma_dir = rq_data_dir(req) ?
596 DMA_TO_DEVICE : DMA_FROM_DEVICE;
597
598 if (iod->nents) {
599 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
600 if (blk_integrity_rq(req)) {
601 if (!rq_data_dir(req))
602 nvme_dif_remap(req, nvme_dif_complete);
603 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
604 }
605 }
606
607 nvme_free_iod(dev, req);
608 }
609
610 /*
611 * We reuse the small pool to allocate the 16-byte range here as it is not
612 * worth having a special pool for these or additional cases to handle freeing
613 * the iod.
614 */
615 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
616 struct request *req, struct nvme_command *cmnd)
617 {
618 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
619 struct nvme_dsm_range *range;
620
621 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
622 &iod->first_dma);
623 if (!range)
624 return BLK_MQ_RQ_QUEUE_BUSY;
625 iod_list(req)[0] = (__le64 *)range;
626 iod->npages = 0;
627
628 range->cattr = cpu_to_le32(0);
629 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
630 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
631
632 memset(cmnd, 0, sizeof(*cmnd));
633 cmnd->dsm.opcode = nvme_cmd_dsm;
634 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
635 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
636 cmnd->dsm.nr = 0;
637 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
638 return BLK_MQ_RQ_QUEUE_OK;
639 }
640
641 /*
642 * NOTE: ns is NULL when called on the admin queue.
643 */
644 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
645 const struct blk_mq_queue_data *bd)
646 {
647 struct nvme_ns *ns = hctx->queue->queuedata;
648 struct nvme_queue *nvmeq = hctx->driver_data;
649 struct nvme_dev *dev = nvmeq->dev;
650 struct request *req = bd->rq;
651 struct nvme_command cmnd;
652 int ret = BLK_MQ_RQ_QUEUE_OK;
653
654 /*
655 * If formated with metadata, require the block layer provide a buffer
656 * unless this namespace is formated such that the metadata can be
657 * stripped/generated by the controller with PRACT=1.
658 */
659 if (ns && ns->ms && !blk_integrity_rq(req)) {
660 if (!(ns->pi_type && ns->ms == 8) &&
661 req->cmd_type != REQ_TYPE_DRV_PRIV) {
662 blk_mq_end_request(req, -EFAULT);
663 return BLK_MQ_RQ_QUEUE_OK;
664 }
665 }
666
667 ret = nvme_init_iod(req, dev);
668 if (ret)
669 return ret;
670
671 if (req->cmd_flags & REQ_DISCARD) {
672 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
673 } else {
674 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
675 memcpy(&cmnd, req->cmd, sizeof(cmnd));
676 else if (req->cmd_flags & REQ_FLUSH)
677 nvme_setup_flush(ns, &cmnd);
678 else
679 nvme_setup_rw(ns, req, &cmnd);
680
681 if (req->nr_phys_segments)
682 ret = nvme_map_data(dev, req, &cmnd);
683 }
684
685 if (ret)
686 goto out;
687
688 cmnd.common.command_id = req->tag;
689 blk_mq_start_request(req);
690
691 spin_lock_irq(&nvmeq->q_lock);
692 if (unlikely(nvmeq->cq_vector < 0)) {
693 ret = BLK_MQ_RQ_QUEUE_BUSY;
694 spin_unlock_irq(&nvmeq->q_lock);
695 goto out;
696 }
697 __nvme_submit_cmd(nvmeq, &cmnd);
698 nvme_process_cq(nvmeq);
699 spin_unlock_irq(&nvmeq->q_lock);
700 return BLK_MQ_RQ_QUEUE_OK;
701 out:
702 nvme_free_iod(dev, req);
703 return ret;
704 }
705
706 static void nvme_complete_rq(struct request *req)
707 {
708 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
709 struct nvme_dev *dev = iod->nvmeq->dev;
710 int error = 0;
711
712 nvme_unmap_data(dev, req);
713
714 if (unlikely(req->errors)) {
715 if (nvme_req_needs_retry(req, req->errors)) {
716 nvme_requeue_req(req);
717 return;
718 }
719
720 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
721 error = req->errors;
722 else
723 error = nvme_error_status(req->errors);
724 }
725
726 if (unlikely(iod->aborted)) {
727 dev_warn(dev->dev,
728 "completing aborted command with status: %04x\n",
729 req->errors);
730 }
731
732 blk_mq_end_request(req, error);
733 }
734
735 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
736 {
737 u16 head, phase;
738
739 head = nvmeq->cq_head;
740 phase = nvmeq->cq_phase;
741
742 for (;;) {
743 struct nvme_completion cqe = nvmeq->cqes[head];
744 u16 status = le16_to_cpu(cqe.status);
745 struct request *req;
746
747 if ((status & 1) != phase)
748 break;
749 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
750 if (++head == nvmeq->q_depth) {
751 head = 0;
752 phase = !phase;
753 }
754
755 if (tag && *tag == cqe.command_id)
756 *tag = -1;
757
758 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
759 dev_warn(nvmeq->q_dmadev,
760 "invalid id %d completed on queue %d\n",
761 cqe.command_id, le16_to_cpu(cqe.sq_id));
762 continue;
763 }
764
765 /*
766 * AEN requests are special as they don't time out and can
767 * survive any kind of queue freeze and often don't respond to
768 * aborts. We don't even bother to allocate a struct request
769 * for them but rather special case them here.
770 */
771 if (unlikely(nvmeq->qid == 0 &&
772 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
773 nvme_complete_async_event(nvmeq->dev, &cqe);
774 continue;
775 }
776
777 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
778 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
779 u32 result = le32_to_cpu(cqe.result);
780 req->special = (void *)(uintptr_t)result;
781 }
782 blk_mq_complete_request(req, status >> 1);
783
784 }
785
786 /* If the controller ignores the cq head doorbell and continuously
787 * writes to the queue, it is theoretically possible to wrap around
788 * the queue twice and mistakenly return IRQ_NONE. Linux only
789 * requires that 0.1% of your interrupts are handled, so this isn't
790 * a big problem.
791 */
792 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
793 return;
794
795 if (likely(nvmeq->cq_vector >= 0))
796 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
797 nvmeq->cq_head = head;
798 nvmeq->cq_phase = phase;
799
800 nvmeq->cqe_seen = 1;
801 }
802
803 static void nvme_process_cq(struct nvme_queue *nvmeq)
804 {
805 __nvme_process_cq(nvmeq, NULL);
806 }
807
808 static irqreturn_t nvme_irq(int irq, void *data)
809 {
810 irqreturn_t result;
811 struct nvme_queue *nvmeq = data;
812 spin_lock(&nvmeq->q_lock);
813 nvme_process_cq(nvmeq);
814 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
815 nvmeq->cqe_seen = 0;
816 spin_unlock(&nvmeq->q_lock);
817 return result;
818 }
819
820 static irqreturn_t nvme_irq_check(int irq, void *data)
821 {
822 struct nvme_queue *nvmeq = data;
823 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
824 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
825 return IRQ_NONE;
826 return IRQ_WAKE_THREAD;
827 }
828
829 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
830 {
831 struct nvme_queue *nvmeq = hctx->driver_data;
832
833 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
834 nvmeq->cq_phase) {
835 spin_lock_irq(&nvmeq->q_lock);
836 __nvme_process_cq(nvmeq, &tag);
837 spin_unlock_irq(&nvmeq->q_lock);
838
839 if (tag == -1)
840 return 1;
841 }
842
843 return 0;
844 }
845
846 static void nvme_submit_async_event(struct nvme_dev *dev)
847 {
848 struct nvme_command c;
849
850 memset(&c, 0, sizeof(c));
851 c.common.opcode = nvme_admin_async_event;
852 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit;
853
854 __nvme_submit_cmd(dev->queues[0], &c);
855 }
856
857 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
858 {
859 struct nvme_command c;
860
861 memset(&c, 0, sizeof(c));
862 c.delete_queue.opcode = opcode;
863 c.delete_queue.qid = cpu_to_le16(id);
864
865 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
866 }
867
868 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
869 struct nvme_queue *nvmeq)
870 {
871 struct nvme_command c;
872 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
873
874 /*
875 * Note: we (ab)use the fact the the prp fields survive if no data
876 * is attached to the request.
877 */
878 memset(&c, 0, sizeof(c));
879 c.create_cq.opcode = nvme_admin_create_cq;
880 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
881 c.create_cq.cqid = cpu_to_le16(qid);
882 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
883 c.create_cq.cq_flags = cpu_to_le16(flags);
884 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
885
886 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
887 }
888
889 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
890 struct nvme_queue *nvmeq)
891 {
892 struct nvme_command c;
893 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
894
895 /*
896 * Note: we (ab)use the fact the the prp fields survive if no data
897 * is attached to the request.
898 */
899 memset(&c, 0, sizeof(c));
900 c.create_sq.opcode = nvme_admin_create_sq;
901 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
902 c.create_sq.sqid = cpu_to_le16(qid);
903 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
904 c.create_sq.sq_flags = cpu_to_le16(flags);
905 c.create_sq.cqid = cpu_to_le16(qid);
906
907 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
908 }
909
910 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
911 {
912 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
913 }
914
915 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
916 {
917 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
918 }
919
920 static void abort_endio(struct request *req, int error)
921 {
922 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
923 struct nvme_queue *nvmeq = iod->nvmeq;
924 u32 result = (u32)(uintptr_t)req->special;
925 u16 status = req->errors;
926
927 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
928 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
929
930 blk_mq_free_request(req);
931 }
932
933 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
934 {
935 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
936 struct nvme_queue *nvmeq = iod->nvmeq;
937 struct nvme_dev *dev = nvmeq->dev;
938 struct request *abort_req;
939 struct nvme_command cmd;
940
941 /*
942 * Shutdown immediately if controller times out while starting. The
943 * reset work will see the pci device disabled when it gets the forced
944 * cancellation error. All outstanding requests are completed on
945 * shutdown, so we return BLK_EH_HANDLED.
946 */
947 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
948 dev_warn(dev->dev,
949 "I/O %d QID %d timeout, disable controller\n",
950 req->tag, nvmeq->qid);
951 nvme_dev_disable(dev, false);
952 req->errors = NVME_SC_CANCELLED;
953 return BLK_EH_HANDLED;
954 }
955
956 /*
957 * Shutdown the controller immediately and schedule a reset if the
958 * command was already aborted once before and still hasn't been
959 * returned to the driver, or if this is the admin queue.
960 */
961 if (!nvmeq->qid || iod->aborted) {
962 dev_warn(dev->dev,
963 "I/O %d QID %d timeout, reset controller\n",
964 req->tag, nvmeq->qid);
965 nvme_dev_disable(dev, false);
966 queue_work(nvme_workq, &dev->reset_work);
967
968 /*
969 * Mark the request as handled, since the inline shutdown
970 * forces all outstanding requests to complete.
971 */
972 req->errors = NVME_SC_CANCELLED;
973 return BLK_EH_HANDLED;
974 }
975
976 iod->aborted = 1;
977
978 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
979 atomic_inc(&dev->ctrl.abort_limit);
980 return BLK_EH_RESET_TIMER;
981 }
982
983 memset(&cmd, 0, sizeof(cmd));
984 cmd.abort.opcode = nvme_admin_abort_cmd;
985 cmd.abort.cid = req->tag;
986 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
987
988 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
989 req->tag, nvmeq->qid);
990
991 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
992 BLK_MQ_REQ_NOWAIT);
993 if (IS_ERR(abort_req)) {
994 atomic_inc(&dev->ctrl.abort_limit);
995 return BLK_EH_RESET_TIMER;
996 }
997
998 abort_req->timeout = ADMIN_TIMEOUT;
999 abort_req->end_io_data = NULL;
1000 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1001
1002 /*
1003 * The aborted req will be completed on receiving the abort req.
1004 * We enable the timer again. If hit twice, it'll cause a device reset,
1005 * as the device then is in a faulty state.
1006 */
1007 return BLK_EH_RESET_TIMER;
1008 }
1009
1010 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1011 {
1012 struct nvme_queue *nvmeq = data;
1013 int status;
1014
1015 if (!blk_mq_request_started(req))
1016 return;
1017
1018 dev_dbg_ratelimited(nvmeq->q_dmadev,
1019 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1020
1021 status = NVME_SC_ABORT_REQ;
1022 if (blk_queue_dying(req->q))
1023 status |= NVME_SC_DNR;
1024 blk_mq_complete_request(req, status);
1025 }
1026
1027 static void nvme_free_queue(struct nvme_queue *nvmeq)
1028 {
1029 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1030 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1031 if (nvmeq->sq_cmds)
1032 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1033 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1034 kfree(nvmeq);
1035 }
1036
1037 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1038 {
1039 int i;
1040
1041 for (i = dev->queue_count - 1; i >= lowest; i--) {
1042 struct nvme_queue *nvmeq = dev->queues[i];
1043 dev->queue_count--;
1044 dev->queues[i] = NULL;
1045 nvme_free_queue(nvmeq);
1046 }
1047 }
1048
1049 /**
1050 * nvme_suspend_queue - put queue into suspended state
1051 * @nvmeq - queue to suspend
1052 */
1053 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1054 {
1055 int vector;
1056
1057 spin_lock_irq(&nvmeq->q_lock);
1058 if (nvmeq->cq_vector == -1) {
1059 spin_unlock_irq(&nvmeq->q_lock);
1060 return 1;
1061 }
1062 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1063 nvmeq->dev->online_queues--;
1064 nvmeq->cq_vector = -1;
1065 spin_unlock_irq(&nvmeq->q_lock);
1066
1067 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1068 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1069
1070 irq_set_affinity_hint(vector, NULL);
1071 free_irq(vector, nvmeq);
1072
1073 return 0;
1074 }
1075
1076 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1077 {
1078 spin_lock_irq(&nvmeq->q_lock);
1079 if (nvmeq->tags && *nvmeq->tags)
1080 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1081 spin_unlock_irq(&nvmeq->q_lock);
1082 }
1083
1084 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1085 {
1086 struct nvme_queue *nvmeq = dev->queues[0];
1087
1088 if (!nvmeq)
1089 return;
1090 if (nvme_suspend_queue(nvmeq))
1091 return;
1092
1093 if (shutdown)
1094 nvme_shutdown_ctrl(&dev->ctrl);
1095 else
1096 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1097 dev->bar + NVME_REG_CAP));
1098
1099 spin_lock_irq(&nvmeq->q_lock);
1100 nvme_process_cq(nvmeq);
1101 spin_unlock_irq(&nvmeq->q_lock);
1102 }
1103
1104 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1105 int entry_size)
1106 {
1107 int q_depth = dev->q_depth;
1108 unsigned q_size_aligned = roundup(q_depth * entry_size,
1109 dev->ctrl.page_size);
1110
1111 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1112 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1113 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1114 q_depth = div_u64(mem_per_q, entry_size);
1115
1116 /*
1117 * Ensure the reduced q_depth is above some threshold where it
1118 * would be better to map queues in system memory with the
1119 * original depth
1120 */
1121 if (q_depth < 64)
1122 return -ENOMEM;
1123 }
1124
1125 return q_depth;
1126 }
1127
1128 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1129 int qid, int depth)
1130 {
1131 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1132 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1133 dev->ctrl.page_size);
1134 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1135 nvmeq->sq_cmds_io = dev->cmb + offset;
1136 } else {
1137 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1138 &nvmeq->sq_dma_addr, GFP_KERNEL);
1139 if (!nvmeq->sq_cmds)
1140 return -ENOMEM;
1141 }
1142
1143 return 0;
1144 }
1145
1146 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1147 int depth)
1148 {
1149 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1150 if (!nvmeq)
1151 return NULL;
1152
1153 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1154 &nvmeq->cq_dma_addr, GFP_KERNEL);
1155 if (!nvmeq->cqes)
1156 goto free_nvmeq;
1157
1158 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1159 goto free_cqdma;
1160
1161 nvmeq->q_dmadev = dev->dev;
1162 nvmeq->dev = dev;
1163 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1164 dev->ctrl.instance, qid);
1165 spin_lock_init(&nvmeq->q_lock);
1166 nvmeq->cq_head = 0;
1167 nvmeq->cq_phase = 1;
1168 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1169 nvmeq->q_depth = depth;
1170 nvmeq->qid = qid;
1171 nvmeq->cq_vector = -1;
1172 dev->queues[qid] = nvmeq;
1173
1174 /* make sure queue descriptor is set before queue count, for kthread */
1175 mb();
1176 dev->queue_count++;
1177
1178 return nvmeq;
1179
1180 free_cqdma:
1181 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1182 nvmeq->cq_dma_addr);
1183 free_nvmeq:
1184 kfree(nvmeq);
1185 return NULL;
1186 }
1187
1188 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1189 const char *name)
1190 {
1191 if (use_threaded_interrupts)
1192 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1193 nvme_irq_check, nvme_irq, IRQF_SHARED,
1194 name, nvmeq);
1195 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1196 IRQF_SHARED, name, nvmeq);
1197 }
1198
1199 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1200 {
1201 struct nvme_dev *dev = nvmeq->dev;
1202
1203 spin_lock_irq(&nvmeq->q_lock);
1204 nvmeq->sq_tail = 0;
1205 nvmeq->cq_head = 0;
1206 nvmeq->cq_phase = 1;
1207 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1208 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1209 dev->online_queues++;
1210 spin_unlock_irq(&nvmeq->q_lock);
1211 }
1212
1213 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1214 {
1215 struct nvme_dev *dev = nvmeq->dev;
1216 int result;
1217
1218 nvmeq->cq_vector = qid - 1;
1219 result = adapter_alloc_cq(dev, qid, nvmeq);
1220 if (result < 0)
1221 return result;
1222
1223 result = adapter_alloc_sq(dev, qid, nvmeq);
1224 if (result < 0)
1225 goto release_cq;
1226
1227 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1228 if (result < 0)
1229 goto release_sq;
1230
1231 nvme_init_queue(nvmeq, qid);
1232 return result;
1233
1234 release_sq:
1235 adapter_delete_sq(dev, qid);
1236 release_cq:
1237 adapter_delete_cq(dev, qid);
1238 return result;
1239 }
1240
1241 static struct blk_mq_ops nvme_mq_admin_ops = {
1242 .queue_rq = nvme_queue_rq,
1243 .complete = nvme_complete_rq,
1244 .map_queue = blk_mq_map_queue,
1245 .init_hctx = nvme_admin_init_hctx,
1246 .exit_hctx = nvme_admin_exit_hctx,
1247 .init_request = nvme_admin_init_request,
1248 .timeout = nvme_timeout,
1249 };
1250
1251 static struct blk_mq_ops nvme_mq_ops = {
1252 .queue_rq = nvme_queue_rq,
1253 .complete = nvme_complete_rq,
1254 .map_queue = blk_mq_map_queue,
1255 .init_hctx = nvme_init_hctx,
1256 .init_request = nvme_init_request,
1257 .timeout = nvme_timeout,
1258 .poll = nvme_poll,
1259 };
1260
1261 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1262 {
1263 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1264 blk_cleanup_queue(dev->ctrl.admin_q);
1265 blk_mq_free_tag_set(&dev->admin_tagset);
1266 }
1267 }
1268
1269 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1270 {
1271 if (!dev->ctrl.admin_q) {
1272 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1273 dev->admin_tagset.nr_hw_queues = 1;
1274
1275 /*
1276 * Subtract one to leave an empty queue entry for 'Full Queue'
1277 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1278 */
1279 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1280 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1281 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1282 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1283 dev->admin_tagset.driver_data = dev;
1284
1285 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1286 return -ENOMEM;
1287
1288 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1289 if (IS_ERR(dev->ctrl.admin_q)) {
1290 blk_mq_free_tag_set(&dev->admin_tagset);
1291 return -ENOMEM;
1292 }
1293 if (!blk_get_queue(dev->ctrl.admin_q)) {
1294 nvme_dev_remove_admin(dev);
1295 dev->ctrl.admin_q = NULL;
1296 return -ENODEV;
1297 }
1298 } else
1299 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1300
1301 return 0;
1302 }
1303
1304 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1305 {
1306 int result;
1307 u32 aqa;
1308 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1309 struct nvme_queue *nvmeq;
1310
1311 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1312 NVME_CAP_NSSRC(cap) : 0;
1313
1314 if (dev->subsystem &&
1315 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1316 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1317
1318 result = nvme_disable_ctrl(&dev->ctrl, cap);
1319 if (result < 0)
1320 return result;
1321
1322 nvmeq = dev->queues[0];
1323 if (!nvmeq) {
1324 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1325 if (!nvmeq)
1326 return -ENOMEM;
1327 }
1328
1329 aqa = nvmeq->q_depth - 1;
1330 aqa |= aqa << 16;
1331
1332 writel(aqa, dev->bar + NVME_REG_AQA);
1333 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1334 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1335
1336 result = nvme_enable_ctrl(&dev->ctrl, cap);
1337 if (result)
1338 goto free_nvmeq;
1339
1340 nvmeq->cq_vector = 0;
1341 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1342 if (result) {
1343 nvmeq->cq_vector = -1;
1344 goto free_nvmeq;
1345 }
1346
1347 return result;
1348
1349 free_nvmeq:
1350 nvme_free_queues(dev, 0);
1351 return result;
1352 }
1353
1354 static int nvme_kthread(void *data)
1355 {
1356 struct nvme_dev *dev, *next;
1357
1358 while (!kthread_should_stop()) {
1359 set_current_state(TASK_INTERRUPTIBLE);
1360 spin_lock(&dev_list_lock);
1361 list_for_each_entry_safe(dev, next, &dev_list, node) {
1362 int i;
1363 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1364
1365 /*
1366 * Skip controllers currently under reset.
1367 */
1368 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1369 continue;
1370
1371 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1372 csts & NVME_CSTS_CFS) {
1373 if (queue_work(nvme_workq, &dev->reset_work)) {
1374 dev_warn(dev->dev,
1375 "Failed status: %x, reset controller\n",
1376 readl(dev->bar + NVME_REG_CSTS));
1377 }
1378 continue;
1379 }
1380 for (i = 0; i < dev->queue_count; i++) {
1381 struct nvme_queue *nvmeq = dev->queues[i];
1382 if (!nvmeq)
1383 continue;
1384 spin_lock_irq(&nvmeq->q_lock);
1385 nvme_process_cq(nvmeq);
1386
1387 while (i == 0 && dev->ctrl.event_limit > 0)
1388 nvme_submit_async_event(dev);
1389 spin_unlock_irq(&nvmeq->q_lock);
1390 }
1391 }
1392 spin_unlock(&dev_list_lock);
1393 schedule_timeout(round_jiffies_relative(HZ));
1394 }
1395 return 0;
1396 }
1397
1398 static int nvme_create_io_queues(struct nvme_dev *dev)
1399 {
1400 unsigned i;
1401 int ret = 0;
1402
1403 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1404 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1405 ret = -ENOMEM;
1406 break;
1407 }
1408 }
1409
1410 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1411 ret = nvme_create_queue(dev->queues[i], i);
1412 if (ret) {
1413 nvme_free_queues(dev, i);
1414 break;
1415 }
1416 }
1417
1418 /*
1419 * Ignore failing Create SQ/CQ commands, we can continue with less
1420 * than the desired aount of queues, and even a controller without
1421 * I/O queues an still be used to issue admin commands. This might
1422 * be useful to upgrade a buggy firmware for example.
1423 */
1424 return ret >= 0 ? 0 : ret;
1425 }
1426
1427 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1428 {
1429 u64 szu, size, offset;
1430 u32 cmbloc;
1431 resource_size_t bar_size;
1432 struct pci_dev *pdev = to_pci_dev(dev->dev);
1433 void __iomem *cmb;
1434 dma_addr_t dma_addr;
1435
1436 if (!use_cmb_sqes)
1437 return NULL;
1438
1439 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1440 if (!(NVME_CMB_SZ(dev->cmbsz)))
1441 return NULL;
1442
1443 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1444
1445 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1446 size = szu * NVME_CMB_SZ(dev->cmbsz);
1447 offset = szu * NVME_CMB_OFST(cmbloc);
1448 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1449
1450 if (offset > bar_size)
1451 return NULL;
1452
1453 /*
1454 * Controllers may support a CMB size larger than their BAR,
1455 * for example, due to being behind a bridge. Reduce the CMB to
1456 * the reported size of the BAR
1457 */
1458 if (size > bar_size - offset)
1459 size = bar_size - offset;
1460
1461 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1462 cmb = ioremap_wc(dma_addr, size);
1463 if (!cmb)
1464 return NULL;
1465
1466 dev->cmb_dma_addr = dma_addr;
1467 dev->cmb_size = size;
1468 return cmb;
1469 }
1470
1471 static inline void nvme_release_cmb(struct nvme_dev *dev)
1472 {
1473 if (dev->cmb) {
1474 iounmap(dev->cmb);
1475 dev->cmb = NULL;
1476 }
1477 }
1478
1479 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1480 {
1481 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1482 }
1483
1484 static int nvme_setup_io_queues(struct nvme_dev *dev)
1485 {
1486 struct nvme_queue *adminq = dev->queues[0];
1487 struct pci_dev *pdev = to_pci_dev(dev->dev);
1488 int result, i, vecs, nr_io_queues, size;
1489
1490 nr_io_queues = num_possible_cpus();
1491 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1492 if (result < 0)
1493 return result;
1494
1495 /*
1496 * Degraded controllers might return an error when setting the queue
1497 * count. We still want to be able to bring them online and offer
1498 * access to the admin queue, as that might be only way to fix them up.
1499 */
1500 if (result > 0) {
1501 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1502 nr_io_queues = 0;
1503 result = 0;
1504 }
1505
1506 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1507 result = nvme_cmb_qdepth(dev, nr_io_queues,
1508 sizeof(struct nvme_command));
1509 if (result > 0)
1510 dev->q_depth = result;
1511 else
1512 nvme_release_cmb(dev);
1513 }
1514
1515 size = db_bar_size(dev, nr_io_queues);
1516 if (size > 8192) {
1517 iounmap(dev->bar);
1518 do {
1519 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1520 if (dev->bar)
1521 break;
1522 if (!--nr_io_queues)
1523 return -ENOMEM;
1524 size = db_bar_size(dev, nr_io_queues);
1525 } while (1);
1526 dev->dbs = dev->bar + 4096;
1527 adminq->q_db = dev->dbs;
1528 }
1529
1530 /* Deregister the admin queue's interrupt */
1531 free_irq(dev->entry[0].vector, adminq);
1532
1533 /*
1534 * If we enable msix early due to not intx, disable it again before
1535 * setting up the full range we need.
1536 */
1537 if (!pdev->irq)
1538 pci_disable_msix(pdev);
1539
1540 for (i = 0; i < nr_io_queues; i++)
1541 dev->entry[i].entry = i;
1542 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1543 if (vecs < 0) {
1544 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1545 if (vecs < 0) {
1546 vecs = 1;
1547 } else {
1548 for (i = 0; i < vecs; i++)
1549 dev->entry[i].vector = i + pdev->irq;
1550 }
1551 }
1552
1553 /*
1554 * Should investigate if there's a performance win from allocating
1555 * more queues than interrupt vectors; it might allow the submission
1556 * path to scale better, even if the receive path is limited by the
1557 * number of interrupts.
1558 */
1559 nr_io_queues = vecs;
1560 dev->max_qid = nr_io_queues;
1561
1562 result = queue_request_irq(dev, adminq, adminq->irqname);
1563 if (result) {
1564 adminq->cq_vector = -1;
1565 goto free_queues;
1566 }
1567
1568 /* Free previously allocated queues that are no longer usable */
1569 nvme_free_queues(dev, nr_io_queues + 1);
1570 return nvme_create_io_queues(dev);
1571
1572 free_queues:
1573 nvme_free_queues(dev, 1);
1574 return result;
1575 }
1576
1577 static void nvme_set_irq_hints(struct nvme_dev *dev)
1578 {
1579 struct nvme_queue *nvmeq;
1580 int i;
1581
1582 for (i = 0; i < dev->online_queues; i++) {
1583 nvmeq = dev->queues[i];
1584
1585 if (!nvmeq->tags || !(*nvmeq->tags))
1586 continue;
1587
1588 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1589 blk_mq_tags_cpumask(*nvmeq->tags));
1590 }
1591 }
1592
1593 static void nvme_dev_scan(struct work_struct *work)
1594 {
1595 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1596
1597 if (!dev->tagset.tags)
1598 return;
1599 nvme_scan_namespaces(&dev->ctrl);
1600 nvme_set_irq_hints(dev);
1601 }
1602
1603 static void nvme_del_queue_end(struct request *req, int error)
1604 {
1605 struct nvme_queue *nvmeq = req->end_io_data;
1606
1607 blk_mq_free_request(req);
1608 complete(&nvmeq->dev->ioq_wait);
1609 }
1610
1611 static void nvme_del_cq_end(struct request *req, int error)
1612 {
1613 struct nvme_queue *nvmeq = req->end_io_data;
1614
1615 if (!error) {
1616 unsigned long flags;
1617
1618 spin_lock_irqsave(&nvmeq->q_lock, flags);
1619 nvme_process_cq(nvmeq);
1620 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1621 }
1622
1623 nvme_del_queue_end(req, error);
1624 }
1625
1626 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1627 {
1628 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1629 struct request *req;
1630 struct nvme_command cmd;
1631
1632 memset(&cmd, 0, sizeof(cmd));
1633 cmd.delete_queue.opcode = opcode;
1634 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1635
1636 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1637 if (IS_ERR(req))
1638 return PTR_ERR(req);
1639
1640 req->timeout = ADMIN_TIMEOUT;
1641 req->end_io_data = nvmeq;
1642
1643 blk_execute_rq_nowait(q, NULL, req, false,
1644 opcode == nvme_admin_delete_cq ?
1645 nvme_del_cq_end : nvme_del_queue_end);
1646 return 0;
1647 }
1648
1649 static void nvme_disable_io_queues(struct nvme_dev *dev)
1650 {
1651 int pass;
1652 unsigned long timeout;
1653 u8 opcode = nvme_admin_delete_sq;
1654
1655 for (pass = 0; pass < 2; pass++) {
1656 int sent = 0, i = dev->queue_count - 1;
1657
1658 reinit_completion(&dev->ioq_wait);
1659 retry:
1660 timeout = ADMIN_TIMEOUT;
1661 for (; i > 0; i--) {
1662 struct nvme_queue *nvmeq = dev->queues[i];
1663
1664 if (!pass)
1665 nvme_suspend_queue(nvmeq);
1666 if (nvme_delete_queue(nvmeq, opcode))
1667 break;
1668 ++sent;
1669 }
1670 while (sent--) {
1671 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1672 if (timeout == 0)
1673 return;
1674 if (i)
1675 goto retry;
1676 }
1677 opcode = nvme_admin_delete_cq;
1678 }
1679 }
1680
1681 /*
1682 * Return: error value if an error occurred setting up the queues or calling
1683 * Identify Device. 0 if these succeeded, even if adding some of the
1684 * namespaces failed. At the moment, these failures are silent. TBD which
1685 * failures should be reported.
1686 */
1687 static int nvme_dev_add(struct nvme_dev *dev)
1688 {
1689 if (!dev->ctrl.tagset) {
1690 dev->tagset.ops = &nvme_mq_ops;
1691 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1692 dev->tagset.timeout = NVME_IO_TIMEOUT;
1693 dev->tagset.numa_node = dev_to_node(dev->dev);
1694 dev->tagset.queue_depth =
1695 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1696 dev->tagset.cmd_size = nvme_cmd_size(dev);
1697 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1698 dev->tagset.driver_data = dev;
1699
1700 if (blk_mq_alloc_tag_set(&dev->tagset))
1701 return 0;
1702 dev->ctrl.tagset = &dev->tagset;
1703 }
1704 nvme_queue_scan(dev);
1705 return 0;
1706 }
1707
1708 static int nvme_pci_enable(struct nvme_dev *dev)
1709 {
1710 u64 cap;
1711 int result = -ENOMEM;
1712 struct pci_dev *pdev = to_pci_dev(dev->dev);
1713
1714 if (pci_enable_device_mem(pdev))
1715 return result;
1716
1717 dev->entry[0].vector = pdev->irq;
1718 pci_set_master(pdev);
1719
1720 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1721 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1722 goto disable;
1723
1724 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1725 result = -ENODEV;
1726 goto disable;
1727 }
1728
1729 /*
1730 * Some devices don't advertse INTx interrupts, pre-enable a single
1731 * MSIX vec for setup. We'll adjust this later.
1732 */
1733 if (!pdev->irq) {
1734 result = pci_enable_msix(pdev, dev->entry, 1);
1735 if (result < 0)
1736 goto disable;
1737 }
1738
1739 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1740
1741 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1742 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1743 dev->dbs = dev->bar + 4096;
1744
1745 /*
1746 * Temporary fix for the Apple controller found in the MacBook8,1 and
1747 * some MacBook7,1 to avoid controller resets and data loss.
1748 */
1749 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1750 dev->q_depth = 2;
1751 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1752 "queue depth=%u to work around controller resets\n",
1753 dev->q_depth);
1754 }
1755
1756 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1757 dev->cmb = nvme_map_cmb(dev);
1758
1759 pci_enable_pcie_error_reporting(pdev);
1760 pci_save_state(pdev);
1761 return 0;
1762
1763 disable:
1764 pci_disable_device(pdev);
1765 return result;
1766 }
1767
1768 static void nvme_dev_unmap(struct nvme_dev *dev)
1769 {
1770 if (dev->bar)
1771 iounmap(dev->bar);
1772 pci_release_regions(to_pci_dev(dev->dev));
1773 }
1774
1775 static void nvme_pci_disable(struct nvme_dev *dev)
1776 {
1777 struct pci_dev *pdev = to_pci_dev(dev->dev);
1778
1779 if (pdev->msi_enabled)
1780 pci_disable_msi(pdev);
1781 else if (pdev->msix_enabled)
1782 pci_disable_msix(pdev);
1783
1784 if (pci_is_enabled(pdev)) {
1785 pci_disable_pcie_error_reporting(pdev);
1786 pci_disable_device(pdev);
1787 }
1788 }
1789
1790 static int nvme_dev_list_add(struct nvme_dev *dev)
1791 {
1792 bool start_thread = false;
1793
1794 spin_lock(&dev_list_lock);
1795 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1796 start_thread = true;
1797 nvme_thread = NULL;
1798 }
1799 list_add(&dev->node, &dev_list);
1800 spin_unlock(&dev_list_lock);
1801
1802 if (start_thread) {
1803 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1804 wake_up_all(&nvme_kthread_wait);
1805 } else
1806 wait_event_killable(nvme_kthread_wait, nvme_thread);
1807
1808 if (IS_ERR_OR_NULL(nvme_thread))
1809 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
1810
1811 return 0;
1812 }
1813
1814 /*
1815 * Remove the node from the device list and check
1816 * for whether or not we need to stop the nvme_thread.
1817 */
1818 static void nvme_dev_list_remove(struct nvme_dev *dev)
1819 {
1820 struct task_struct *tmp = NULL;
1821
1822 spin_lock(&dev_list_lock);
1823 list_del_init(&dev->node);
1824 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
1825 tmp = nvme_thread;
1826 nvme_thread = NULL;
1827 }
1828 spin_unlock(&dev_list_lock);
1829
1830 if (tmp)
1831 kthread_stop(tmp);
1832 }
1833
1834 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1835 {
1836 int i;
1837 u32 csts = -1;
1838
1839 nvme_dev_list_remove(dev);
1840
1841 mutex_lock(&dev->shutdown_lock);
1842 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1843 nvme_stop_queues(&dev->ctrl);
1844 csts = readl(dev->bar + NVME_REG_CSTS);
1845 }
1846 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1847 for (i = dev->queue_count - 1; i >= 0; i--) {
1848 struct nvme_queue *nvmeq = dev->queues[i];
1849 nvme_suspend_queue(nvmeq);
1850 }
1851 } else {
1852 nvme_disable_io_queues(dev);
1853 nvme_disable_admin_queue(dev, shutdown);
1854 }
1855 nvme_pci_disable(dev);
1856
1857 for (i = dev->queue_count - 1; i >= 0; i--)
1858 nvme_clear_queue(dev->queues[i]);
1859 mutex_unlock(&dev->shutdown_lock);
1860 }
1861
1862 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1863 {
1864 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1865 PAGE_SIZE, PAGE_SIZE, 0);
1866 if (!dev->prp_page_pool)
1867 return -ENOMEM;
1868
1869 /* Optimisation for I/Os between 4k and 128k */
1870 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1871 256, 256, 0);
1872 if (!dev->prp_small_pool) {
1873 dma_pool_destroy(dev->prp_page_pool);
1874 return -ENOMEM;
1875 }
1876 return 0;
1877 }
1878
1879 static void nvme_release_prp_pools(struct nvme_dev *dev)
1880 {
1881 dma_pool_destroy(dev->prp_page_pool);
1882 dma_pool_destroy(dev->prp_small_pool);
1883 }
1884
1885 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1886 {
1887 struct nvme_dev *dev = to_nvme_dev(ctrl);
1888
1889 put_device(dev->dev);
1890 if (dev->tagset.tags)
1891 blk_mq_free_tag_set(&dev->tagset);
1892 if (dev->ctrl.admin_q)
1893 blk_put_queue(dev->ctrl.admin_q);
1894 kfree(dev->queues);
1895 kfree(dev->entry);
1896 kfree(dev);
1897 }
1898
1899 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1900 {
1901 dev_warn(dev->dev, "Removing after probe failure status: %d\n", status);
1902
1903 kref_get(&dev->ctrl.kref);
1904 if (!schedule_work(&dev->remove_work))
1905 nvme_put_ctrl(&dev->ctrl);
1906 }
1907
1908 static void nvme_reset_work(struct work_struct *work)
1909 {
1910 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1911 int result = -ENODEV;
1912
1913 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1914 goto out;
1915
1916 /*
1917 * If we're called to reset a live controller first shut it down before
1918 * moving on.
1919 */
1920 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1921 nvme_dev_disable(dev, false);
1922
1923 set_bit(NVME_CTRL_RESETTING, &dev->flags);
1924
1925 result = nvme_pci_enable(dev);
1926 if (result)
1927 goto out;
1928
1929 result = nvme_configure_admin_queue(dev);
1930 if (result)
1931 goto out;
1932
1933 nvme_init_queue(dev->queues[0], 0);
1934 result = nvme_alloc_admin_tags(dev);
1935 if (result)
1936 goto out;
1937
1938 result = nvme_init_identify(&dev->ctrl);
1939 if (result)
1940 goto out;
1941
1942 result = nvme_setup_io_queues(dev);
1943 if (result)
1944 goto out;
1945
1946 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1947
1948 result = nvme_dev_list_add(dev);
1949 if (result)
1950 goto out;
1951
1952 /*
1953 * Keep the controller around but remove all namespaces if we don't have
1954 * any working I/O queue.
1955 */
1956 if (dev->online_queues < 2) {
1957 dev_warn(dev->dev, "IO queues not created\n");
1958 nvme_remove_namespaces(&dev->ctrl);
1959 } else {
1960 nvme_start_queues(&dev->ctrl);
1961 nvme_dev_add(dev);
1962 }
1963
1964 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
1965 return;
1966
1967 out:
1968 nvme_remove_dead_ctrl(dev, result);
1969 }
1970
1971 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1972 {
1973 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1974 struct pci_dev *pdev = to_pci_dev(dev->dev);
1975
1976 if (pci_get_drvdata(pdev))
1977 pci_stop_and_remove_bus_device_locked(pdev);
1978 nvme_put_ctrl(&dev->ctrl);
1979 }
1980
1981 static int nvme_reset(struct nvme_dev *dev)
1982 {
1983 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1984 return -ENODEV;
1985
1986 if (!queue_work(nvme_workq, &dev->reset_work))
1987 return -EBUSY;
1988
1989 flush_work(&dev->reset_work);
1990 return 0;
1991 }
1992
1993 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1994 {
1995 *val = readl(to_nvme_dev(ctrl)->bar + off);
1996 return 0;
1997 }
1998
1999 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2000 {
2001 writel(val, to_nvme_dev(ctrl)->bar + off);
2002 return 0;
2003 }
2004
2005 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2006 {
2007 *val = readq(to_nvme_dev(ctrl)->bar + off);
2008 return 0;
2009 }
2010
2011 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2012 {
2013 struct nvme_dev *dev = to_nvme_dev(ctrl);
2014
2015 return !dev->bar || dev->online_queues < 2;
2016 }
2017
2018 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2019 {
2020 return nvme_reset(to_nvme_dev(ctrl));
2021 }
2022
2023 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2024 .reg_read32 = nvme_pci_reg_read32,
2025 .reg_write32 = nvme_pci_reg_write32,
2026 .reg_read64 = nvme_pci_reg_read64,
2027 .io_incapable = nvme_pci_io_incapable,
2028 .reset_ctrl = nvme_pci_reset_ctrl,
2029 .free_ctrl = nvme_pci_free_ctrl,
2030 };
2031
2032 static int nvme_dev_map(struct nvme_dev *dev)
2033 {
2034 int bars;
2035 struct pci_dev *pdev = to_pci_dev(dev->dev);
2036
2037 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2038 if (!bars)
2039 return -ENODEV;
2040 if (pci_request_selected_regions(pdev, bars, "nvme"))
2041 return -ENODEV;
2042
2043 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2044 if (!dev->bar)
2045 goto release;
2046
2047 return 0;
2048 release:
2049 pci_release_regions(pdev);
2050 return -ENODEV;
2051 }
2052
2053 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2054 {
2055 int node, result = -ENOMEM;
2056 struct nvme_dev *dev;
2057
2058 node = dev_to_node(&pdev->dev);
2059 if (node == NUMA_NO_NODE)
2060 set_dev_node(&pdev->dev, 0);
2061
2062 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2063 if (!dev)
2064 return -ENOMEM;
2065 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2066 GFP_KERNEL, node);
2067 if (!dev->entry)
2068 goto free;
2069 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2070 GFP_KERNEL, node);
2071 if (!dev->queues)
2072 goto free;
2073
2074 dev->dev = get_device(&pdev->dev);
2075 pci_set_drvdata(pdev, dev);
2076
2077 result = nvme_dev_map(dev);
2078 if (result)
2079 goto free;
2080
2081 INIT_LIST_HEAD(&dev->node);
2082 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2083 INIT_WORK(&dev->reset_work, nvme_reset_work);
2084 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2085 mutex_init(&dev->shutdown_lock);
2086 init_completion(&dev->ioq_wait);
2087
2088 result = nvme_setup_prp_pools(dev);
2089 if (result)
2090 goto put_pci;
2091
2092 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2093 id->driver_data);
2094 if (result)
2095 goto release_pools;
2096
2097 queue_work(nvme_workq, &dev->reset_work);
2098 return 0;
2099
2100 release_pools:
2101 nvme_release_prp_pools(dev);
2102 put_pci:
2103 put_device(dev->dev);
2104 nvme_dev_unmap(dev);
2105 free:
2106 kfree(dev->queues);
2107 kfree(dev->entry);
2108 kfree(dev);
2109 return result;
2110 }
2111
2112 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2113 {
2114 struct nvme_dev *dev = pci_get_drvdata(pdev);
2115
2116 if (prepare)
2117 nvme_dev_disable(dev, false);
2118 else
2119 queue_work(nvme_workq, &dev->reset_work);
2120 }
2121
2122 static void nvme_shutdown(struct pci_dev *pdev)
2123 {
2124 struct nvme_dev *dev = pci_get_drvdata(pdev);
2125 nvme_dev_disable(dev, true);
2126 }
2127
2128 /*
2129 * The driver's remove may be called on a device in a partially initialized
2130 * state. This function must not have any dependencies on the device state in
2131 * order to proceed.
2132 */
2133 static void nvme_remove(struct pci_dev *pdev)
2134 {
2135 struct nvme_dev *dev = pci_get_drvdata(pdev);
2136
2137 set_bit(NVME_CTRL_REMOVING, &dev->flags);
2138 pci_set_drvdata(pdev, NULL);
2139 flush_work(&dev->scan_work);
2140 nvme_remove_namespaces(&dev->ctrl);
2141 nvme_uninit_ctrl(&dev->ctrl);
2142 nvme_dev_disable(dev, true);
2143 flush_work(&dev->reset_work);
2144 nvme_dev_remove_admin(dev);
2145 nvme_free_queues(dev, 0);
2146 nvme_release_cmb(dev);
2147 nvme_release_prp_pools(dev);
2148 nvme_dev_unmap(dev);
2149 nvme_put_ctrl(&dev->ctrl);
2150 }
2151
2152 #ifdef CONFIG_PM_SLEEP
2153 static int nvme_suspend(struct device *dev)
2154 {
2155 struct pci_dev *pdev = to_pci_dev(dev);
2156 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2157
2158 nvme_dev_disable(ndev, true);
2159 return 0;
2160 }
2161
2162 static int nvme_resume(struct device *dev)
2163 {
2164 struct pci_dev *pdev = to_pci_dev(dev);
2165 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2166
2167 queue_work(nvme_workq, &ndev->reset_work);
2168 return 0;
2169 }
2170 #endif
2171
2172 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2173
2174 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2175 pci_channel_state_t state)
2176 {
2177 struct nvme_dev *dev = pci_get_drvdata(pdev);
2178
2179 /*
2180 * A frozen channel requires a reset. When detected, this method will
2181 * shutdown the controller to quiesce. The controller will be restarted
2182 * after the slot reset through driver's slot_reset callback.
2183 */
2184 dev_warn(&pdev->dev, "error detected: state:%d\n", state);
2185 switch (state) {
2186 case pci_channel_io_normal:
2187 return PCI_ERS_RESULT_CAN_RECOVER;
2188 case pci_channel_io_frozen:
2189 nvme_dev_disable(dev, false);
2190 return PCI_ERS_RESULT_NEED_RESET;
2191 case pci_channel_io_perm_failure:
2192 return PCI_ERS_RESULT_DISCONNECT;
2193 }
2194 return PCI_ERS_RESULT_NEED_RESET;
2195 }
2196
2197 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2198 {
2199 struct nvme_dev *dev = pci_get_drvdata(pdev);
2200
2201 dev_info(&pdev->dev, "restart after slot reset\n");
2202 pci_restore_state(pdev);
2203 queue_work(nvme_workq, &dev->reset_work);
2204 return PCI_ERS_RESULT_RECOVERED;
2205 }
2206
2207 static void nvme_error_resume(struct pci_dev *pdev)
2208 {
2209 pci_cleanup_aer_uncorrect_error_status(pdev);
2210 }
2211
2212 static const struct pci_error_handlers nvme_err_handler = {
2213 .error_detected = nvme_error_detected,
2214 .slot_reset = nvme_slot_reset,
2215 .resume = nvme_error_resume,
2216 .reset_notify = nvme_reset_notify,
2217 };
2218
2219 /* Move to pci_ids.h later */
2220 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2221
2222 static const struct pci_device_id nvme_id_table[] = {
2223 { PCI_VDEVICE(INTEL, 0x0953),
2224 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2225 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2226 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2227 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2228 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2229 { 0, }
2230 };
2231 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2232
2233 static struct pci_driver nvme_driver = {
2234 .name = "nvme",
2235 .id_table = nvme_id_table,
2236 .probe = nvme_probe,
2237 .remove = nvme_remove,
2238 .shutdown = nvme_shutdown,
2239 .driver = {
2240 .pm = &nvme_dev_pm_ops,
2241 },
2242 .err_handler = &nvme_err_handler,
2243 };
2244
2245 static int __init nvme_init(void)
2246 {
2247 int result;
2248
2249 init_waitqueue_head(&nvme_kthread_wait);
2250
2251 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2252 if (!nvme_workq)
2253 return -ENOMEM;
2254
2255 result = nvme_core_init();
2256 if (result < 0)
2257 goto kill_workq;
2258
2259 result = pci_register_driver(&nvme_driver);
2260 if (result)
2261 goto core_exit;
2262 return 0;
2263
2264 core_exit:
2265 nvme_core_exit();
2266 kill_workq:
2267 destroy_workqueue(nvme_workq);
2268 return result;
2269 }
2270
2271 static void __exit nvme_exit(void)
2272 {
2273 pci_unregister_driver(&nvme_driver);
2274 nvme_core_exit();
2275 destroy_workqueue(nvme_workq);
2276 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2277 _nvme_check_size();
2278 }
2279
2280 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2281 MODULE_LICENSE("GPL");
2282 MODULE_VERSION("1.0");
2283 module_init(nvme_init);
2284 module_exit(nvme_exit);
This page took 0.077211 seconds and 5 git commands to generate.