Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/timer.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH 1024
49 #define NVME_AQ_DEPTH 256
50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
52
53 /*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
58
59 static int use_threaded_interrupts;
60 module_param(use_threaded_interrupts, int, 0);
61
62 static bool use_cmb_sqes = true;
63 module_param(use_cmb_sqes, bool, 0644);
64 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
65
66 static struct workqueue_struct *nvme_workq;
67
68 struct nvme_dev;
69 struct nvme_queue;
70
71 static int nvme_reset(struct nvme_dev *dev);
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75 /*
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 */
78 struct nvme_dev {
79 struct nvme_queue **queues;
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
82 u32 __iomem *dbs;
83 struct device *dev;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
86 unsigned queue_count;
87 unsigned online_queues;
88 unsigned max_qid;
89 int q_depth;
90 u32 db_stride;
91 struct msix_entry *entry;
92 void __iomem *bar;
93 struct work_struct reset_work;
94 struct work_struct remove_work;
95 struct timer_list watchdog_timer;
96 struct mutex shutdown_lock;
97 bool subsystem;
98 void __iomem *cmb;
99 dma_addr_t cmb_dma_addr;
100 u64 cmb_size;
101 u32 cmbsz;
102 struct nvme_ctrl ctrl;
103 struct completion ioq_wait;
104 };
105
106 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
107 {
108 return container_of(ctrl, struct nvme_dev, ctrl);
109 }
110
111 /*
112 * An NVM Express queue. Each device has at least two (one for admin
113 * commands and one for I/O commands).
114 */
115 struct nvme_queue {
116 struct device *q_dmadev;
117 struct nvme_dev *dev;
118 char irqname[24]; /* nvme4294967295-65535\0 */
119 spinlock_t q_lock;
120 struct nvme_command *sq_cmds;
121 struct nvme_command __iomem *sq_cmds_io;
122 volatile struct nvme_completion *cqes;
123 struct blk_mq_tags **tags;
124 dma_addr_t sq_dma_addr;
125 dma_addr_t cq_dma_addr;
126 u32 __iomem *q_db;
127 u16 q_depth;
128 s16 cq_vector;
129 u16 sq_tail;
130 u16 cq_head;
131 u16 qid;
132 u8 cq_phase;
133 u8 cqe_seen;
134 };
135
136 /*
137 * The nvme_iod describes the data in an I/O, including the list of PRP
138 * entries. You can't see it in this data structure because C doesn't let
139 * me express that. Use nvme_init_iod to ensure there's enough space
140 * allocated to store the PRP list.
141 */
142 struct nvme_iod {
143 struct nvme_queue *nvmeq;
144 int aborted;
145 int npages; /* In the PRP list. 0 means small pool in use */
146 int nents; /* Used in scatterlist */
147 int length; /* Of data, in bytes */
148 dma_addr_t first_dma;
149 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
150 struct scatterlist *sg;
151 struct scatterlist inline_sg[0];
152 };
153
154 /*
155 * Check we didin't inadvertently grow the command struct
156 */
157 static inline void _nvme_check_size(void)
158 {
159 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
160 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
161 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
168 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
169 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
171 }
172
173 /*
174 * Max size of iod being embedded in the request payload
175 */
176 #define NVME_INT_PAGES 2
177 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
178
179 /*
180 * Will slightly overestimate the number of pages needed. This is OK
181 * as it only leads to a small amount of wasted memory for the lifetime of
182 * the I/O.
183 */
184 static int nvme_npages(unsigned size, struct nvme_dev *dev)
185 {
186 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
187 dev->ctrl.page_size);
188 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
189 }
190
191 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
192 unsigned int size, unsigned int nseg)
193 {
194 return sizeof(__le64 *) * nvme_npages(size, dev) +
195 sizeof(struct scatterlist) * nseg;
196 }
197
198 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
199 {
200 return sizeof(struct nvme_iod) +
201 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
202 }
203
204 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
205 unsigned int hctx_idx)
206 {
207 struct nvme_dev *dev = data;
208 struct nvme_queue *nvmeq = dev->queues[0];
209
210 WARN_ON(hctx_idx != 0);
211 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
212 WARN_ON(nvmeq->tags);
213
214 hctx->driver_data = nvmeq;
215 nvmeq->tags = &dev->admin_tagset.tags[0];
216 return 0;
217 }
218
219 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
220 {
221 struct nvme_queue *nvmeq = hctx->driver_data;
222
223 nvmeq->tags = NULL;
224 }
225
226 static int nvme_admin_init_request(void *data, struct request *req,
227 unsigned int hctx_idx, unsigned int rq_idx,
228 unsigned int numa_node)
229 {
230 struct nvme_dev *dev = data;
231 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
232 struct nvme_queue *nvmeq = dev->queues[0];
233
234 BUG_ON(!nvmeq);
235 iod->nvmeq = nvmeq;
236 return 0;
237 }
238
239 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
240 unsigned int hctx_idx)
241 {
242 struct nvme_dev *dev = data;
243 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
244
245 if (!nvmeq->tags)
246 nvmeq->tags = &dev->tagset.tags[hctx_idx];
247
248 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
249 hctx->driver_data = nvmeq;
250 return 0;
251 }
252
253 static int nvme_init_request(void *data, struct request *req,
254 unsigned int hctx_idx, unsigned int rq_idx,
255 unsigned int numa_node)
256 {
257 struct nvme_dev *dev = data;
258 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
259 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
260
261 BUG_ON(!nvmeq);
262 iod->nvmeq = nvmeq;
263 return 0;
264 }
265
266 /**
267 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
268 * @nvmeq: The queue to use
269 * @cmd: The command to send
270 *
271 * Safe to use from interrupt context
272 */
273 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
274 struct nvme_command *cmd)
275 {
276 u16 tail = nvmeq->sq_tail;
277
278 if (nvmeq->sq_cmds_io)
279 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
280 else
281 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
282
283 if (++tail == nvmeq->q_depth)
284 tail = 0;
285 writel(tail, nvmeq->q_db);
286 nvmeq->sq_tail = tail;
287 }
288
289 static __le64 **iod_list(struct request *req)
290 {
291 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
292 return (__le64 **)(iod->sg + req->nr_phys_segments);
293 }
294
295 static int nvme_init_iod(struct request *rq, unsigned size,
296 struct nvme_dev *dev)
297 {
298 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
299 int nseg = rq->nr_phys_segments;
300
301 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
302 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
303 if (!iod->sg)
304 return BLK_MQ_RQ_QUEUE_BUSY;
305 } else {
306 iod->sg = iod->inline_sg;
307 }
308
309 iod->aborted = 0;
310 iod->npages = -1;
311 iod->nents = 0;
312 iod->length = size;
313
314 if (!(rq->cmd_flags & REQ_DONTPREP)) {
315 rq->retries = 0;
316 rq->cmd_flags |= REQ_DONTPREP;
317 }
318 return 0;
319 }
320
321 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
322 {
323 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
324 const int last_prp = dev->ctrl.page_size / 8 - 1;
325 int i;
326 __le64 **list = iod_list(req);
327 dma_addr_t prp_dma = iod->first_dma;
328
329 nvme_cleanup_cmd(req);
330
331 if (iod->npages == 0)
332 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
333 for (i = 0; i < iod->npages; i++) {
334 __le64 *prp_list = list[i];
335 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
336 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
337 prp_dma = next_prp_dma;
338 }
339
340 if (iod->sg != iod->inline_sg)
341 kfree(iod->sg);
342 }
343
344 #ifdef CONFIG_BLK_DEV_INTEGRITY
345 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
346 {
347 if (be32_to_cpu(pi->ref_tag) == v)
348 pi->ref_tag = cpu_to_be32(p);
349 }
350
351 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
352 {
353 if (be32_to_cpu(pi->ref_tag) == p)
354 pi->ref_tag = cpu_to_be32(v);
355 }
356
357 /**
358 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
359 *
360 * The virtual start sector is the one that was originally submitted by the
361 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
362 * start sector may be different. Remap protection information to match the
363 * physical LBA on writes, and back to the original seed on reads.
364 *
365 * Type 0 and 3 do not have a ref tag, so no remapping required.
366 */
367 static void nvme_dif_remap(struct request *req,
368 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
369 {
370 struct nvme_ns *ns = req->rq_disk->private_data;
371 struct bio_integrity_payload *bip;
372 struct t10_pi_tuple *pi;
373 void *p, *pmap;
374 u32 i, nlb, ts, phys, virt;
375
376 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
377 return;
378
379 bip = bio_integrity(req->bio);
380 if (!bip)
381 return;
382
383 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
384
385 p = pmap;
386 virt = bip_get_seed(bip);
387 phys = nvme_block_nr(ns, blk_rq_pos(req));
388 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
389 ts = ns->disk->queue->integrity.tuple_size;
390
391 for (i = 0; i < nlb; i++, virt++, phys++) {
392 pi = (struct t10_pi_tuple *)p;
393 dif_swap(phys, virt, pi);
394 p += ts;
395 }
396 kunmap_atomic(pmap);
397 }
398 #else /* CONFIG_BLK_DEV_INTEGRITY */
399 static void nvme_dif_remap(struct request *req,
400 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
401 {
402 }
403 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
404 {
405 }
406 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
407 {
408 }
409 #endif
410
411 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
412 int total_len)
413 {
414 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
415 struct dma_pool *pool;
416 int length = total_len;
417 struct scatterlist *sg = iod->sg;
418 int dma_len = sg_dma_len(sg);
419 u64 dma_addr = sg_dma_address(sg);
420 u32 page_size = dev->ctrl.page_size;
421 int offset = dma_addr & (page_size - 1);
422 __le64 *prp_list;
423 __le64 **list = iod_list(req);
424 dma_addr_t prp_dma;
425 int nprps, i;
426
427 length -= (page_size - offset);
428 if (length <= 0)
429 return true;
430
431 dma_len -= (page_size - offset);
432 if (dma_len) {
433 dma_addr += (page_size - offset);
434 } else {
435 sg = sg_next(sg);
436 dma_addr = sg_dma_address(sg);
437 dma_len = sg_dma_len(sg);
438 }
439
440 if (length <= page_size) {
441 iod->first_dma = dma_addr;
442 return true;
443 }
444
445 nprps = DIV_ROUND_UP(length, page_size);
446 if (nprps <= (256 / 8)) {
447 pool = dev->prp_small_pool;
448 iod->npages = 0;
449 } else {
450 pool = dev->prp_page_pool;
451 iod->npages = 1;
452 }
453
454 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
455 if (!prp_list) {
456 iod->first_dma = dma_addr;
457 iod->npages = -1;
458 return false;
459 }
460 list[0] = prp_list;
461 iod->first_dma = prp_dma;
462 i = 0;
463 for (;;) {
464 if (i == page_size >> 3) {
465 __le64 *old_prp_list = prp_list;
466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
467 if (!prp_list)
468 return false;
469 list[iod->npages++] = prp_list;
470 prp_list[0] = old_prp_list[i - 1];
471 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
472 i = 1;
473 }
474 prp_list[i++] = cpu_to_le64(dma_addr);
475 dma_len -= page_size;
476 dma_addr += page_size;
477 length -= page_size;
478 if (length <= 0)
479 break;
480 if (dma_len > 0)
481 continue;
482 BUG_ON(dma_len < 0);
483 sg = sg_next(sg);
484 dma_addr = sg_dma_address(sg);
485 dma_len = sg_dma_len(sg);
486 }
487
488 return true;
489 }
490
491 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
492 unsigned size, struct nvme_command *cmnd)
493 {
494 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
495 struct request_queue *q = req->q;
496 enum dma_data_direction dma_dir = rq_data_dir(req) ?
497 DMA_TO_DEVICE : DMA_FROM_DEVICE;
498 int ret = BLK_MQ_RQ_QUEUE_ERROR;
499
500 sg_init_table(iod->sg, req->nr_phys_segments);
501 iod->nents = blk_rq_map_sg(q, req, iod->sg);
502 if (!iod->nents)
503 goto out;
504
505 ret = BLK_MQ_RQ_QUEUE_BUSY;
506 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
507 goto out;
508
509 if (!nvme_setup_prps(dev, req, size))
510 goto out_unmap;
511
512 ret = BLK_MQ_RQ_QUEUE_ERROR;
513 if (blk_integrity_rq(req)) {
514 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
515 goto out_unmap;
516
517 sg_init_table(&iod->meta_sg, 1);
518 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
519 goto out_unmap;
520
521 if (rq_data_dir(req))
522 nvme_dif_remap(req, nvme_dif_prep);
523
524 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
525 goto out_unmap;
526 }
527
528 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
529 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
530 if (blk_integrity_rq(req))
531 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
532 return BLK_MQ_RQ_QUEUE_OK;
533
534 out_unmap:
535 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
536 out:
537 return ret;
538 }
539
540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
541 {
542 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543 enum dma_data_direction dma_dir = rq_data_dir(req) ?
544 DMA_TO_DEVICE : DMA_FROM_DEVICE;
545
546 if (iod->nents) {
547 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
548 if (blk_integrity_rq(req)) {
549 if (!rq_data_dir(req))
550 nvme_dif_remap(req, nvme_dif_complete);
551 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
552 }
553 }
554
555 nvme_free_iod(dev, req);
556 }
557
558 /*
559 * NOTE: ns is NULL when called on the admin queue.
560 */
561 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
562 const struct blk_mq_queue_data *bd)
563 {
564 struct nvme_ns *ns = hctx->queue->queuedata;
565 struct nvme_queue *nvmeq = hctx->driver_data;
566 struct nvme_dev *dev = nvmeq->dev;
567 struct request *req = bd->rq;
568 struct nvme_command cmnd;
569 unsigned map_len;
570 int ret = BLK_MQ_RQ_QUEUE_OK;
571
572 /*
573 * If formated with metadata, require the block layer provide a buffer
574 * unless this namespace is formated such that the metadata can be
575 * stripped/generated by the controller with PRACT=1.
576 */
577 if (ns && ns->ms && !blk_integrity_rq(req)) {
578 if (!(ns->pi_type && ns->ms == 8) &&
579 req->cmd_type != REQ_TYPE_DRV_PRIV) {
580 blk_mq_end_request(req, -EFAULT);
581 return BLK_MQ_RQ_QUEUE_OK;
582 }
583 }
584
585 map_len = nvme_map_len(req);
586 ret = nvme_init_iod(req, map_len, dev);
587 if (ret)
588 return ret;
589
590 ret = nvme_setup_cmd(ns, req, &cmnd);
591 if (ret)
592 goto out;
593
594 if (req->nr_phys_segments)
595 ret = nvme_map_data(dev, req, map_len, &cmnd);
596
597 if (ret)
598 goto out;
599
600 cmnd.common.command_id = req->tag;
601 blk_mq_start_request(req);
602
603 spin_lock_irq(&nvmeq->q_lock);
604 if (unlikely(nvmeq->cq_vector < 0)) {
605 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
606 ret = BLK_MQ_RQ_QUEUE_BUSY;
607 else
608 ret = BLK_MQ_RQ_QUEUE_ERROR;
609 spin_unlock_irq(&nvmeq->q_lock);
610 goto out;
611 }
612 __nvme_submit_cmd(nvmeq, &cmnd);
613 nvme_process_cq(nvmeq);
614 spin_unlock_irq(&nvmeq->q_lock);
615 return BLK_MQ_RQ_QUEUE_OK;
616 out:
617 nvme_free_iod(dev, req);
618 return ret;
619 }
620
621 static void nvme_complete_rq(struct request *req)
622 {
623 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
624 struct nvme_dev *dev = iod->nvmeq->dev;
625 int error = 0;
626
627 nvme_unmap_data(dev, req);
628
629 if (unlikely(req->errors)) {
630 if (nvme_req_needs_retry(req, req->errors)) {
631 req->retries++;
632 nvme_requeue_req(req);
633 return;
634 }
635
636 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
637 error = req->errors;
638 else
639 error = nvme_error_status(req->errors);
640 }
641
642 if (unlikely(iod->aborted)) {
643 dev_warn(dev->ctrl.device,
644 "completing aborted command with status: %04x\n",
645 req->errors);
646 }
647
648 blk_mq_end_request(req, error);
649 }
650
651 /* We read the CQE phase first to check if the rest of the entry is valid */
652 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
653 u16 phase)
654 {
655 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
656 }
657
658 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
659 {
660 u16 head, phase;
661
662 head = nvmeq->cq_head;
663 phase = nvmeq->cq_phase;
664
665 while (nvme_cqe_valid(nvmeq, head, phase)) {
666 struct nvme_completion cqe = nvmeq->cqes[head];
667 struct request *req;
668
669 if (++head == nvmeq->q_depth) {
670 head = 0;
671 phase = !phase;
672 }
673
674 if (tag && *tag == cqe.command_id)
675 *tag = -1;
676
677 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
678 dev_warn(nvmeq->dev->ctrl.device,
679 "invalid id %d completed on queue %d\n",
680 cqe.command_id, le16_to_cpu(cqe.sq_id));
681 continue;
682 }
683
684 /*
685 * AEN requests are special as they don't time out and can
686 * survive any kind of queue freeze and often don't respond to
687 * aborts. We don't even bother to allocate a struct request
688 * for them but rather special case them here.
689 */
690 if (unlikely(nvmeq->qid == 0 &&
691 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
692 nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
693 continue;
694 }
695
696 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
697 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
698 memcpy(req->special, &cqe, sizeof(cqe));
699 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
700
701 }
702
703 /* If the controller ignores the cq head doorbell and continuously
704 * writes to the queue, it is theoretically possible to wrap around
705 * the queue twice and mistakenly return IRQ_NONE. Linux only
706 * requires that 0.1% of your interrupts are handled, so this isn't
707 * a big problem.
708 */
709 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
710 return;
711
712 if (likely(nvmeq->cq_vector >= 0))
713 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
714 nvmeq->cq_head = head;
715 nvmeq->cq_phase = phase;
716
717 nvmeq->cqe_seen = 1;
718 }
719
720 static void nvme_process_cq(struct nvme_queue *nvmeq)
721 {
722 __nvme_process_cq(nvmeq, NULL);
723 }
724
725 static irqreturn_t nvme_irq(int irq, void *data)
726 {
727 irqreturn_t result;
728 struct nvme_queue *nvmeq = data;
729 spin_lock(&nvmeq->q_lock);
730 nvme_process_cq(nvmeq);
731 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
732 nvmeq->cqe_seen = 0;
733 spin_unlock(&nvmeq->q_lock);
734 return result;
735 }
736
737 static irqreturn_t nvme_irq_check(int irq, void *data)
738 {
739 struct nvme_queue *nvmeq = data;
740 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
741 return IRQ_WAKE_THREAD;
742 return IRQ_NONE;
743 }
744
745 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
746 {
747 struct nvme_queue *nvmeq = hctx->driver_data;
748
749 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
750 spin_lock_irq(&nvmeq->q_lock);
751 __nvme_process_cq(nvmeq, &tag);
752 spin_unlock_irq(&nvmeq->q_lock);
753
754 if (tag == -1)
755 return 1;
756 }
757
758 return 0;
759 }
760
761 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
762 {
763 struct nvme_dev *dev = to_nvme_dev(ctrl);
764 struct nvme_queue *nvmeq = dev->queues[0];
765 struct nvme_command c;
766
767 memset(&c, 0, sizeof(c));
768 c.common.opcode = nvme_admin_async_event;
769 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
770
771 spin_lock_irq(&nvmeq->q_lock);
772 __nvme_submit_cmd(nvmeq, &c);
773 spin_unlock_irq(&nvmeq->q_lock);
774 }
775
776 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
777 {
778 struct nvme_command c;
779
780 memset(&c, 0, sizeof(c));
781 c.delete_queue.opcode = opcode;
782 c.delete_queue.qid = cpu_to_le16(id);
783
784 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
785 }
786
787 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
788 struct nvme_queue *nvmeq)
789 {
790 struct nvme_command c;
791 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
792
793 /*
794 * Note: we (ab)use the fact the the prp fields survive if no data
795 * is attached to the request.
796 */
797 memset(&c, 0, sizeof(c));
798 c.create_cq.opcode = nvme_admin_create_cq;
799 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
800 c.create_cq.cqid = cpu_to_le16(qid);
801 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
802 c.create_cq.cq_flags = cpu_to_le16(flags);
803 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
804
805 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
806 }
807
808 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
809 struct nvme_queue *nvmeq)
810 {
811 struct nvme_command c;
812 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
813
814 /*
815 * Note: we (ab)use the fact the the prp fields survive if no data
816 * is attached to the request.
817 */
818 memset(&c, 0, sizeof(c));
819 c.create_sq.opcode = nvme_admin_create_sq;
820 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
821 c.create_sq.sqid = cpu_to_le16(qid);
822 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
823 c.create_sq.sq_flags = cpu_to_le16(flags);
824 c.create_sq.cqid = cpu_to_le16(qid);
825
826 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
827 }
828
829 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
830 {
831 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
832 }
833
834 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
835 {
836 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
837 }
838
839 static void abort_endio(struct request *req, int error)
840 {
841 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842 struct nvme_queue *nvmeq = iod->nvmeq;
843 u16 status = req->errors;
844
845 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
846 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
847 blk_mq_free_request(req);
848 }
849
850 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
851 {
852 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
853 struct nvme_queue *nvmeq = iod->nvmeq;
854 struct nvme_dev *dev = nvmeq->dev;
855 struct request *abort_req;
856 struct nvme_command cmd;
857
858 /*
859 * Shutdown immediately if controller times out while starting. The
860 * reset work will see the pci device disabled when it gets the forced
861 * cancellation error. All outstanding requests are completed on
862 * shutdown, so we return BLK_EH_HANDLED.
863 */
864 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
865 dev_warn(dev->ctrl.device,
866 "I/O %d QID %d timeout, disable controller\n",
867 req->tag, nvmeq->qid);
868 nvme_dev_disable(dev, false);
869 req->errors = NVME_SC_CANCELLED;
870 return BLK_EH_HANDLED;
871 }
872
873 /*
874 * Shutdown the controller immediately and schedule a reset if the
875 * command was already aborted once before and still hasn't been
876 * returned to the driver, or if this is the admin queue.
877 */
878 if (!nvmeq->qid || iod->aborted) {
879 dev_warn(dev->ctrl.device,
880 "I/O %d QID %d timeout, reset controller\n",
881 req->tag, nvmeq->qid);
882 nvme_dev_disable(dev, false);
883 queue_work(nvme_workq, &dev->reset_work);
884
885 /*
886 * Mark the request as handled, since the inline shutdown
887 * forces all outstanding requests to complete.
888 */
889 req->errors = NVME_SC_CANCELLED;
890 return BLK_EH_HANDLED;
891 }
892
893 iod->aborted = 1;
894
895 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
896 atomic_inc(&dev->ctrl.abort_limit);
897 return BLK_EH_RESET_TIMER;
898 }
899
900 memset(&cmd, 0, sizeof(cmd));
901 cmd.abort.opcode = nvme_admin_abort_cmd;
902 cmd.abort.cid = req->tag;
903 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
904
905 dev_warn(nvmeq->dev->ctrl.device,
906 "I/O %d QID %d timeout, aborting\n",
907 req->tag, nvmeq->qid);
908
909 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
910 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
911 if (IS_ERR(abort_req)) {
912 atomic_inc(&dev->ctrl.abort_limit);
913 return BLK_EH_RESET_TIMER;
914 }
915
916 abort_req->timeout = ADMIN_TIMEOUT;
917 abort_req->end_io_data = NULL;
918 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
919
920 /*
921 * The aborted req will be completed on receiving the abort req.
922 * We enable the timer again. If hit twice, it'll cause a device reset,
923 * as the device then is in a faulty state.
924 */
925 return BLK_EH_RESET_TIMER;
926 }
927
928 static void nvme_free_queue(struct nvme_queue *nvmeq)
929 {
930 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
931 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
932 if (nvmeq->sq_cmds)
933 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
934 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
935 kfree(nvmeq);
936 }
937
938 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
939 {
940 int i;
941
942 for (i = dev->queue_count - 1; i >= lowest; i--) {
943 struct nvme_queue *nvmeq = dev->queues[i];
944 dev->queue_count--;
945 dev->queues[i] = NULL;
946 nvme_free_queue(nvmeq);
947 }
948 }
949
950 /**
951 * nvme_suspend_queue - put queue into suspended state
952 * @nvmeq - queue to suspend
953 */
954 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
955 {
956 int vector;
957
958 spin_lock_irq(&nvmeq->q_lock);
959 if (nvmeq->cq_vector == -1) {
960 spin_unlock_irq(&nvmeq->q_lock);
961 return 1;
962 }
963 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
964 nvmeq->dev->online_queues--;
965 nvmeq->cq_vector = -1;
966 spin_unlock_irq(&nvmeq->q_lock);
967
968 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
969 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
970
971 irq_set_affinity_hint(vector, NULL);
972 free_irq(vector, nvmeq);
973
974 return 0;
975 }
976
977 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
978 {
979 struct nvme_queue *nvmeq = dev->queues[0];
980
981 if (!nvmeq)
982 return;
983 if (nvme_suspend_queue(nvmeq))
984 return;
985
986 if (shutdown)
987 nvme_shutdown_ctrl(&dev->ctrl);
988 else
989 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
990 dev->bar + NVME_REG_CAP));
991
992 spin_lock_irq(&nvmeq->q_lock);
993 nvme_process_cq(nvmeq);
994 spin_unlock_irq(&nvmeq->q_lock);
995 }
996
997 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
998 int entry_size)
999 {
1000 int q_depth = dev->q_depth;
1001 unsigned q_size_aligned = roundup(q_depth * entry_size,
1002 dev->ctrl.page_size);
1003
1004 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1005 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1006 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1007 q_depth = div_u64(mem_per_q, entry_size);
1008
1009 /*
1010 * Ensure the reduced q_depth is above some threshold where it
1011 * would be better to map queues in system memory with the
1012 * original depth
1013 */
1014 if (q_depth < 64)
1015 return -ENOMEM;
1016 }
1017
1018 return q_depth;
1019 }
1020
1021 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1022 int qid, int depth)
1023 {
1024 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1025 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1026 dev->ctrl.page_size);
1027 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1028 nvmeq->sq_cmds_io = dev->cmb + offset;
1029 } else {
1030 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1031 &nvmeq->sq_dma_addr, GFP_KERNEL);
1032 if (!nvmeq->sq_cmds)
1033 return -ENOMEM;
1034 }
1035
1036 return 0;
1037 }
1038
1039 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1040 int depth)
1041 {
1042 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1043 if (!nvmeq)
1044 return NULL;
1045
1046 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1047 &nvmeq->cq_dma_addr, GFP_KERNEL);
1048 if (!nvmeq->cqes)
1049 goto free_nvmeq;
1050
1051 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1052 goto free_cqdma;
1053
1054 nvmeq->q_dmadev = dev->dev;
1055 nvmeq->dev = dev;
1056 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1057 dev->ctrl.instance, qid);
1058 spin_lock_init(&nvmeq->q_lock);
1059 nvmeq->cq_head = 0;
1060 nvmeq->cq_phase = 1;
1061 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1062 nvmeq->q_depth = depth;
1063 nvmeq->qid = qid;
1064 nvmeq->cq_vector = -1;
1065 dev->queues[qid] = nvmeq;
1066 dev->queue_count++;
1067
1068 return nvmeq;
1069
1070 free_cqdma:
1071 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1072 nvmeq->cq_dma_addr);
1073 free_nvmeq:
1074 kfree(nvmeq);
1075 return NULL;
1076 }
1077
1078 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1079 const char *name)
1080 {
1081 if (use_threaded_interrupts)
1082 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1083 nvme_irq_check, nvme_irq, IRQF_SHARED,
1084 name, nvmeq);
1085 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1086 IRQF_SHARED, name, nvmeq);
1087 }
1088
1089 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1090 {
1091 struct nvme_dev *dev = nvmeq->dev;
1092
1093 spin_lock_irq(&nvmeq->q_lock);
1094 nvmeq->sq_tail = 0;
1095 nvmeq->cq_head = 0;
1096 nvmeq->cq_phase = 1;
1097 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1098 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1099 dev->online_queues++;
1100 spin_unlock_irq(&nvmeq->q_lock);
1101 }
1102
1103 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1104 {
1105 struct nvme_dev *dev = nvmeq->dev;
1106 int result;
1107
1108 nvmeq->cq_vector = qid - 1;
1109 result = adapter_alloc_cq(dev, qid, nvmeq);
1110 if (result < 0)
1111 return result;
1112
1113 result = adapter_alloc_sq(dev, qid, nvmeq);
1114 if (result < 0)
1115 goto release_cq;
1116
1117 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1118 if (result < 0)
1119 goto release_sq;
1120
1121 nvme_init_queue(nvmeq, qid);
1122 return result;
1123
1124 release_sq:
1125 adapter_delete_sq(dev, qid);
1126 release_cq:
1127 adapter_delete_cq(dev, qid);
1128 return result;
1129 }
1130
1131 static struct blk_mq_ops nvme_mq_admin_ops = {
1132 .queue_rq = nvme_queue_rq,
1133 .complete = nvme_complete_rq,
1134 .map_queue = blk_mq_map_queue,
1135 .init_hctx = nvme_admin_init_hctx,
1136 .exit_hctx = nvme_admin_exit_hctx,
1137 .init_request = nvme_admin_init_request,
1138 .timeout = nvme_timeout,
1139 };
1140
1141 static struct blk_mq_ops nvme_mq_ops = {
1142 .queue_rq = nvme_queue_rq,
1143 .complete = nvme_complete_rq,
1144 .map_queue = blk_mq_map_queue,
1145 .init_hctx = nvme_init_hctx,
1146 .init_request = nvme_init_request,
1147 .timeout = nvme_timeout,
1148 .poll = nvme_poll,
1149 };
1150
1151 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1152 {
1153 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1154 /*
1155 * If the controller was reset during removal, it's possible
1156 * user requests may be waiting on a stopped queue. Start the
1157 * queue to flush these to completion.
1158 */
1159 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1160 blk_cleanup_queue(dev->ctrl.admin_q);
1161 blk_mq_free_tag_set(&dev->admin_tagset);
1162 }
1163 }
1164
1165 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1166 {
1167 if (!dev->ctrl.admin_q) {
1168 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1169 dev->admin_tagset.nr_hw_queues = 1;
1170
1171 /*
1172 * Subtract one to leave an empty queue entry for 'Full Queue'
1173 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1174 */
1175 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1176 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1177 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1178 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1179 dev->admin_tagset.driver_data = dev;
1180
1181 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1182 return -ENOMEM;
1183
1184 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1185 if (IS_ERR(dev->ctrl.admin_q)) {
1186 blk_mq_free_tag_set(&dev->admin_tagset);
1187 return -ENOMEM;
1188 }
1189 if (!blk_get_queue(dev->ctrl.admin_q)) {
1190 nvme_dev_remove_admin(dev);
1191 dev->ctrl.admin_q = NULL;
1192 return -ENODEV;
1193 }
1194 } else
1195 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1196
1197 return 0;
1198 }
1199
1200 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1201 {
1202 int result;
1203 u32 aqa;
1204 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1205 struct nvme_queue *nvmeq;
1206
1207 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1208 NVME_CAP_NSSRC(cap) : 0;
1209
1210 if (dev->subsystem &&
1211 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1212 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1213
1214 result = nvme_disable_ctrl(&dev->ctrl, cap);
1215 if (result < 0)
1216 return result;
1217
1218 nvmeq = dev->queues[0];
1219 if (!nvmeq) {
1220 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1221 if (!nvmeq)
1222 return -ENOMEM;
1223 }
1224
1225 aqa = nvmeq->q_depth - 1;
1226 aqa |= aqa << 16;
1227
1228 writel(aqa, dev->bar + NVME_REG_AQA);
1229 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1230 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1231
1232 result = nvme_enable_ctrl(&dev->ctrl, cap);
1233 if (result)
1234 goto free_nvmeq;
1235
1236 nvmeq->cq_vector = 0;
1237 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1238 if (result) {
1239 nvmeq->cq_vector = -1;
1240 goto free_nvmeq;
1241 }
1242
1243 return result;
1244
1245 free_nvmeq:
1246 nvme_free_queues(dev, 0);
1247 return result;
1248 }
1249
1250 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1251 {
1252
1253 /* If true, indicates loss of adapter communication, possibly by a
1254 * NVMe Subsystem reset.
1255 */
1256 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1257
1258 /* If there is a reset ongoing, we shouldn't reset again. */
1259 if (work_busy(&dev->reset_work))
1260 return false;
1261
1262 /* We shouldn't reset unless the controller is on fatal error state
1263 * _or_ if we lost the communication with it.
1264 */
1265 if (!(csts & NVME_CSTS_CFS) && !nssro)
1266 return false;
1267
1268 /* If PCI error recovery process is happening, we cannot reset or
1269 * the recovery mechanism will surely fail.
1270 */
1271 if (pci_channel_offline(to_pci_dev(dev->dev)))
1272 return false;
1273
1274 return true;
1275 }
1276
1277 static void nvme_watchdog_timer(unsigned long data)
1278 {
1279 struct nvme_dev *dev = (struct nvme_dev *)data;
1280 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1281
1282 /* Skip controllers under certain specific conditions. */
1283 if (nvme_should_reset(dev, csts)) {
1284 if (queue_work(nvme_workq, &dev->reset_work))
1285 dev_warn(dev->dev,
1286 "Failed status: 0x%x, reset controller.\n",
1287 csts);
1288 return;
1289 }
1290
1291 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1292 }
1293
1294 static int nvme_create_io_queues(struct nvme_dev *dev)
1295 {
1296 unsigned i, max;
1297 int ret = 0;
1298
1299 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1300 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1301 ret = -ENOMEM;
1302 break;
1303 }
1304 }
1305
1306 max = min(dev->max_qid, dev->queue_count - 1);
1307 for (i = dev->online_queues; i <= max; i++) {
1308 ret = nvme_create_queue(dev->queues[i], i);
1309 if (ret) {
1310 nvme_free_queues(dev, i);
1311 break;
1312 }
1313 }
1314
1315 /*
1316 * Ignore failing Create SQ/CQ commands, we can continue with less
1317 * than the desired aount of queues, and even a controller without
1318 * I/O queues an still be used to issue admin commands. This might
1319 * be useful to upgrade a buggy firmware for example.
1320 */
1321 return ret >= 0 ? 0 : ret;
1322 }
1323
1324 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1325 {
1326 u64 szu, size, offset;
1327 u32 cmbloc;
1328 resource_size_t bar_size;
1329 struct pci_dev *pdev = to_pci_dev(dev->dev);
1330 void __iomem *cmb;
1331 dma_addr_t dma_addr;
1332
1333 if (!use_cmb_sqes)
1334 return NULL;
1335
1336 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1337 if (!(NVME_CMB_SZ(dev->cmbsz)))
1338 return NULL;
1339
1340 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1341
1342 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1343 size = szu * NVME_CMB_SZ(dev->cmbsz);
1344 offset = szu * NVME_CMB_OFST(cmbloc);
1345 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1346
1347 if (offset > bar_size)
1348 return NULL;
1349
1350 /*
1351 * Controllers may support a CMB size larger than their BAR,
1352 * for example, due to being behind a bridge. Reduce the CMB to
1353 * the reported size of the BAR
1354 */
1355 if (size > bar_size - offset)
1356 size = bar_size - offset;
1357
1358 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1359 cmb = ioremap_wc(dma_addr, size);
1360 if (!cmb)
1361 return NULL;
1362
1363 dev->cmb_dma_addr = dma_addr;
1364 dev->cmb_size = size;
1365 return cmb;
1366 }
1367
1368 static inline void nvme_release_cmb(struct nvme_dev *dev)
1369 {
1370 if (dev->cmb) {
1371 iounmap(dev->cmb);
1372 dev->cmb = NULL;
1373 }
1374 }
1375
1376 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1377 {
1378 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1379 }
1380
1381 static int nvme_setup_io_queues(struct nvme_dev *dev)
1382 {
1383 struct nvme_queue *adminq = dev->queues[0];
1384 struct pci_dev *pdev = to_pci_dev(dev->dev);
1385 int result, i, vecs, nr_io_queues, size;
1386
1387 nr_io_queues = num_online_cpus();
1388 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1389 if (result < 0)
1390 return result;
1391
1392 if (nr_io_queues == 0)
1393 return 0;
1394
1395 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1396 result = nvme_cmb_qdepth(dev, nr_io_queues,
1397 sizeof(struct nvme_command));
1398 if (result > 0)
1399 dev->q_depth = result;
1400 else
1401 nvme_release_cmb(dev);
1402 }
1403
1404 size = db_bar_size(dev, nr_io_queues);
1405 if (size > 8192) {
1406 iounmap(dev->bar);
1407 do {
1408 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1409 if (dev->bar)
1410 break;
1411 if (!--nr_io_queues)
1412 return -ENOMEM;
1413 size = db_bar_size(dev, nr_io_queues);
1414 } while (1);
1415 dev->dbs = dev->bar + 4096;
1416 adminq->q_db = dev->dbs;
1417 }
1418
1419 /* Deregister the admin queue's interrupt */
1420 free_irq(dev->entry[0].vector, adminq);
1421
1422 /*
1423 * If we enable msix early due to not intx, disable it again before
1424 * setting up the full range we need.
1425 */
1426 if (pdev->msi_enabled)
1427 pci_disable_msi(pdev);
1428 else if (pdev->msix_enabled)
1429 pci_disable_msix(pdev);
1430
1431 for (i = 0; i < nr_io_queues; i++)
1432 dev->entry[i].entry = i;
1433 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1434 if (vecs < 0) {
1435 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1436 if (vecs < 0) {
1437 vecs = 1;
1438 } else {
1439 for (i = 0; i < vecs; i++)
1440 dev->entry[i].vector = i + pdev->irq;
1441 }
1442 }
1443
1444 /*
1445 * Should investigate if there's a performance win from allocating
1446 * more queues than interrupt vectors; it might allow the submission
1447 * path to scale better, even if the receive path is limited by the
1448 * number of interrupts.
1449 */
1450 nr_io_queues = vecs;
1451 dev->max_qid = nr_io_queues;
1452
1453 result = queue_request_irq(dev, adminq, adminq->irqname);
1454 if (result) {
1455 adminq->cq_vector = -1;
1456 goto free_queues;
1457 }
1458 return nvme_create_io_queues(dev);
1459
1460 free_queues:
1461 nvme_free_queues(dev, 1);
1462 return result;
1463 }
1464
1465 static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
1466 {
1467 struct nvme_dev *dev = to_nvme_dev(ctrl);
1468 struct nvme_queue *nvmeq;
1469 int i;
1470
1471 for (i = 0; i < dev->online_queues; i++) {
1472 nvmeq = dev->queues[i];
1473
1474 if (!nvmeq->tags || !(*nvmeq->tags))
1475 continue;
1476
1477 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1478 blk_mq_tags_cpumask(*nvmeq->tags));
1479 }
1480 }
1481
1482 static void nvme_del_queue_end(struct request *req, int error)
1483 {
1484 struct nvme_queue *nvmeq = req->end_io_data;
1485
1486 blk_mq_free_request(req);
1487 complete(&nvmeq->dev->ioq_wait);
1488 }
1489
1490 static void nvme_del_cq_end(struct request *req, int error)
1491 {
1492 struct nvme_queue *nvmeq = req->end_io_data;
1493
1494 if (!error) {
1495 unsigned long flags;
1496
1497 /*
1498 * We might be called with the AQ q_lock held
1499 * and the I/O queue q_lock should always
1500 * nest inside the AQ one.
1501 */
1502 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1503 SINGLE_DEPTH_NESTING);
1504 nvme_process_cq(nvmeq);
1505 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1506 }
1507
1508 nvme_del_queue_end(req, error);
1509 }
1510
1511 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1512 {
1513 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1514 struct request *req;
1515 struct nvme_command cmd;
1516
1517 memset(&cmd, 0, sizeof(cmd));
1518 cmd.delete_queue.opcode = opcode;
1519 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1520
1521 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1522 if (IS_ERR(req))
1523 return PTR_ERR(req);
1524
1525 req->timeout = ADMIN_TIMEOUT;
1526 req->end_io_data = nvmeq;
1527
1528 blk_execute_rq_nowait(q, NULL, req, false,
1529 opcode == nvme_admin_delete_cq ?
1530 nvme_del_cq_end : nvme_del_queue_end);
1531 return 0;
1532 }
1533
1534 static void nvme_disable_io_queues(struct nvme_dev *dev)
1535 {
1536 int pass, queues = dev->online_queues - 1;
1537 unsigned long timeout;
1538 u8 opcode = nvme_admin_delete_sq;
1539
1540 for (pass = 0; pass < 2; pass++) {
1541 int sent = 0, i = queues;
1542
1543 reinit_completion(&dev->ioq_wait);
1544 retry:
1545 timeout = ADMIN_TIMEOUT;
1546 for (; i > 0; i--, sent++)
1547 if (nvme_delete_queue(dev->queues[i], opcode))
1548 break;
1549
1550 while (sent--) {
1551 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1552 if (timeout == 0)
1553 return;
1554 if (i)
1555 goto retry;
1556 }
1557 opcode = nvme_admin_delete_cq;
1558 }
1559 }
1560
1561 /*
1562 * Return: error value if an error occurred setting up the queues or calling
1563 * Identify Device. 0 if these succeeded, even if adding some of the
1564 * namespaces failed. At the moment, these failures are silent. TBD which
1565 * failures should be reported.
1566 */
1567 static int nvme_dev_add(struct nvme_dev *dev)
1568 {
1569 if (!dev->ctrl.tagset) {
1570 dev->tagset.ops = &nvme_mq_ops;
1571 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1572 dev->tagset.timeout = NVME_IO_TIMEOUT;
1573 dev->tagset.numa_node = dev_to_node(dev->dev);
1574 dev->tagset.queue_depth =
1575 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1576 dev->tagset.cmd_size = nvme_cmd_size(dev);
1577 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1578 dev->tagset.driver_data = dev;
1579
1580 if (blk_mq_alloc_tag_set(&dev->tagset))
1581 return 0;
1582 dev->ctrl.tagset = &dev->tagset;
1583 } else {
1584 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1585
1586 /* Free previously allocated queues that are no longer usable */
1587 nvme_free_queues(dev, dev->online_queues);
1588 }
1589
1590 return 0;
1591 }
1592
1593 static int nvme_pci_enable(struct nvme_dev *dev)
1594 {
1595 u64 cap;
1596 int result = -ENOMEM;
1597 struct pci_dev *pdev = to_pci_dev(dev->dev);
1598
1599 if (pci_enable_device_mem(pdev))
1600 return result;
1601
1602 pci_set_master(pdev);
1603
1604 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1605 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1606 goto disable;
1607
1608 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1609 result = -ENODEV;
1610 goto disable;
1611 }
1612
1613 /*
1614 * Some devices and/or platforms don't advertise or work with INTx
1615 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1616 * adjust this later.
1617 */
1618 if (pci_enable_msix(pdev, dev->entry, 1)) {
1619 pci_enable_msi(pdev);
1620 dev->entry[0].vector = pdev->irq;
1621 }
1622
1623 if (!dev->entry[0].vector) {
1624 result = -ENODEV;
1625 goto disable;
1626 }
1627
1628 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1629
1630 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1631 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1632 dev->dbs = dev->bar + 4096;
1633
1634 /*
1635 * Temporary fix for the Apple controller found in the MacBook8,1 and
1636 * some MacBook7,1 to avoid controller resets and data loss.
1637 */
1638 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1639 dev->q_depth = 2;
1640 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1641 "queue depth=%u to work around controller resets\n",
1642 dev->q_depth);
1643 }
1644
1645 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1646 dev->cmb = nvme_map_cmb(dev);
1647
1648 pci_enable_pcie_error_reporting(pdev);
1649 pci_save_state(pdev);
1650 return 0;
1651
1652 disable:
1653 pci_disable_device(pdev);
1654 return result;
1655 }
1656
1657 static void nvme_dev_unmap(struct nvme_dev *dev)
1658 {
1659 if (dev->bar)
1660 iounmap(dev->bar);
1661 pci_release_mem_regions(to_pci_dev(dev->dev));
1662 }
1663
1664 static void nvme_pci_disable(struct nvme_dev *dev)
1665 {
1666 struct pci_dev *pdev = to_pci_dev(dev->dev);
1667
1668 if (pdev->msi_enabled)
1669 pci_disable_msi(pdev);
1670 else if (pdev->msix_enabled)
1671 pci_disable_msix(pdev);
1672
1673 if (pci_is_enabled(pdev)) {
1674 pci_disable_pcie_error_reporting(pdev);
1675 pci_disable_device(pdev);
1676 }
1677 }
1678
1679 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1680 {
1681 int i;
1682 u32 csts = -1;
1683
1684 del_timer_sync(&dev->watchdog_timer);
1685
1686 mutex_lock(&dev->shutdown_lock);
1687 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1688 nvme_stop_queues(&dev->ctrl);
1689 csts = readl(dev->bar + NVME_REG_CSTS);
1690 }
1691
1692 for (i = dev->queue_count - 1; i > 0; i--)
1693 nvme_suspend_queue(dev->queues[i]);
1694
1695 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1696 nvme_suspend_queue(dev->queues[0]);
1697 } else {
1698 nvme_disable_io_queues(dev);
1699 nvme_disable_admin_queue(dev, shutdown);
1700 }
1701 nvme_pci_disable(dev);
1702
1703 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1704 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1705 mutex_unlock(&dev->shutdown_lock);
1706 }
1707
1708 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1709 {
1710 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1711 PAGE_SIZE, PAGE_SIZE, 0);
1712 if (!dev->prp_page_pool)
1713 return -ENOMEM;
1714
1715 /* Optimisation for I/Os between 4k and 128k */
1716 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1717 256, 256, 0);
1718 if (!dev->prp_small_pool) {
1719 dma_pool_destroy(dev->prp_page_pool);
1720 return -ENOMEM;
1721 }
1722 return 0;
1723 }
1724
1725 static void nvme_release_prp_pools(struct nvme_dev *dev)
1726 {
1727 dma_pool_destroy(dev->prp_page_pool);
1728 dma_pool_destroy(dev->prp_small_pool);
1729 }
1730
1731 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1732 {
1733 struct nvme_dev *dev = to_nvme_dev(ctrl);
1734
1735 put_device(dev->dev);
1736 if (dev->tagset.tags)
1737 blk_mq_free_tag_set(&dev->tagset);
1738 if (dev->ctrl.admin_q)
1739 blk_put_queue(dev->ctrl.admin_q);
1740 kfree(dev->queues);
1741 kfree(dev->entry);
1742 kfree(dev);
1743 }
1744
1745 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1746 {
1747 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1748
1749 kref_get(&dev->ctrl.kref);
1750 nvme_dev_disable(dev, false);
1751 if (!schedule_work(&dev->remove_work))
1752 nvme_put_ctrl(&dev->ctrl);
1753 }
1754
1755 static void nvme_reset_work(struct work_struct *work)
1756 {
1757 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1758 int result = -ENODEV;
1759
1760 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1761 goto out;
1762
1763 /*
1764 * If we're called to reset a live controller first shut it down before
1765 * moving on.
1766 */
1767 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1768 nvme_dev_disable(dev, false);
1769
1770 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1771 goto out;
1772
1773 result = nvme_pci_enable(dev);
1774 if (result)
1775 goto out;
1776
1777 result = nvme_configure_admin_queue(dev);
1778 if (result)
1779 goto out;
1780
1781 nvme_init_queue(dev->queues[0], 0);
1782 result = nvme_alloc_admin_tags(dev);
1783 if (result)
1784 goto out;
1785
1786 result = nvme_init_identify(&dev->ctrl);
1787 if (result)
1788 goto out;
1789
1790 result = nvme_setup_io_queues(dev);
1791 if (result)
1792 goto out;
1793
1794 /*
1795 * A controller that can not execute IO typically requires user
1796 * intervention to correct. For such degraded controllers, the driver
1797 * should not submit commands the user did not request, so skip
1798 * registering for asynchronous event notification on this condition.
1799 */
1800 if (dev->online_queues > 1)
1801 nvme_queue_async_events(&dev->ctrl);
1802
1803 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1804
1805 /*
1806 * Keep the controller around but remove all namespaces if we don't have
1807 * any working I/O queue.
1808 */
1809 if (dev->online_queues < 2) {
1810 dev_warn(dev->ctrl.device, "IO queues not created\n");
1811 nvme_kill_queues(&dev->ctrl);
1812 nvme_remove_namespaces(&dev->ctrl);
1813 } else {
1814 nvme_start_queues(&dev->ctrl);
1815 nvme_dev_add(dev);
1816 }
1817
1818 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1819 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1820 goto out;
1821 }
1822
1823 if (dev->online_queues > 1)
1824 nvme_queue_scan(&dev->ctrl);
1825 return;
1826
1827 out:
1828 nvme_remove_dead_ctrl(dev, result);
1829 }
1830
1831 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1832 {
1833 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1834 struct pci_dev *pdev = to_pci_dev(dev->dev);
1835
1836 nvme_kill_queues(&dev->ctrl);
1837 if (pci_get_drvdata(pdev))
1838 device_release_driver(&pdev->dev);
1839 nvme_put_ctrl(&dev->ctrl);
1840 }
1841
1842 static int nvme_reset(struct nvme_dev *dev)
1843 {
1844 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1845 return -ENODEV;
1846
1847 if (!queue_work(nvme_workq, &dev->reset_work))
1848 return -EBUSY;
1849
1850 flush_work(&dev->reset_work);
1851 return 0;
1852 }
1853
1854 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1855 {
1856 *val = readl(to_nvme_dev(ctrl)->bar + off);
1857 return 0;
1858 }
1859
1860 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1861 {
1862 writel(val, to_nvme_dev(ctrl)->bar + off);
1863 return 0;
1864 }
1865
1866 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1867 {
1868 *val = readq(to_nvme_dev(ctrl)->bar + off);
1869 return 0;
1870 }
1871
1872 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1873 {
1874 return nvme_reset(to_nvme_dev(ctrl));
1875 }
1876
1877 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1878 .name = "pcie",
1879 .module = THIS_MODULE,
1880 .reg_read32 = nvme_pci_reg_read32,
1881 .reg_write32 = nvme_pci_reg_write32,
1882 .reg_read64 = nvme_pci_reg_read64,
1883 .reset_ctrl = nvme_pci_reset_ctrl,
1884 .free_ctrl = nvme_pci_free_ctrl,
1885 .post_scan = nvme_pci_post_scan,
1886 .submit_async_event = nvme_pci_submit_async_event,
1887 };
1888
1889 static int nvme_dev_map(struct nvme_dev *dev)
1890 {
1891 struct pci_dev *pdev = to_pci_dev(dev->dev);
1892
1893 if (pci_request_mem_regions(pdev, "nvme"))
1894 return -ENODEV;
1895
1896 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1897 if (!dev->bar)
1898 goto release;
1899
1900 return 0;
1901 release:
1902 pci_release_mem_regions(pdev);
1903 return -ENODEV;
1904 }
1905
1906 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1907 {
1908 int node, result = -ENOMEM;
1909 struct nvme_dev *dev;
1910
1911 node = dev_to_node(&pdev->dev);
1912 if (node == NUMA_NO_NODE)
1913 set_dev_node(&pdev->dev, first_memory_node);
1914
1915 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1916 if (!dev)
1917 return -ENOMEM;
1918 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1919 GFP_KERNEL, node);
1920 if (!dev->entry)
1921 goto free;
1922 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1923 GFP_KERNEL, node);
1924 if (!dev->queues)
1925 goto free;
1926
1927 dev->dev = get_device(&pdev->dev);
1928 pci_set_drvdata(pdev, dev);
1929
1930 result = nvme_dev_map(dev);
1931 if (result)
1932 goto free;
1933
1934 INIT_WORK(&dev->reset_work, nvme_reset_work);
1935 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1936 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1937 (unsigned long)dev);
1938 mutex_init(&dev->shutdown_lock);
1939 init_completion(&dev->ioq_wait);
1940
1941 result = nvme_setup_prp_pools(dev);
1942 if (result)
1943 goto put_pci;
1944
1945 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1946 id->driver_data);
1947 if (result)
1948 goto release_pools;
1949
1950 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1951
1952 queue_work(nvme_workq, &dev->reset_work);
1953 return 0;
1954
1955 release_pools:
1956 nvme_release_prp_pools(dev);
1957 put_pci:
1958 put_device(dev->dev);
1959 nvme_dev_unmap(dev);
1960 free:
1961 kfree(dev->queues);
1962 kfree(dev->entry);
1963 kfree(dev);
1964 return result;
1965 }
1966
1967 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1968 {
1969 struct nvme_dev *dev = pci_get_drvdata(pdev);
1970
1971 if (prepare)
1972 nvme_dev_disable(dev, false);
1973 else
1974 queue_work(nvme_workq, &dev->reset_work);
1975 }
1976
1977 static void nvme_shutdown(struct pci_dev *pdev)
1978 {
1979 struct nvme_dev *dev = pci_get_drvdata(pdev);
1980 nvme_dev_disable(dev, true);
1981 }
1982
1983 /*
1984 * The driver's remove may be called on a device in a partially initialized
1985 * state. This function must not have any dependencies on the device state in
1986 * order to proceed.
1987 */
1988 static void nvme_remove(struct pci_dev *pdev)
1989 {
1990 struct nvme_dev *dev = pci_get_drvdata(pdev);
1991
1992 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1993
1994 pci_set_drvdata(pdev, NULL);
1995
1996 if (!pci_device_is_present(pdev))
1997 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1998
1999 flush_work(&dev->reset_work);
2000 nvme_uninit_ctrl(&dev->ctrl);
2001 nvme_dev_disable(dev, true);
2002 nvme_dev_remove_admin(dev);
2003 nvme_free_queues(dev, 0);
2004 nvme_release_cmb(dev);
2005 nvme_release_prp_pools(dev);
2006 nvme_dev_unmap(dev);
2007 nvme_put_ctrl(&dev->ctrl);
2008 }
2009
2010 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2011 {
2012 int ret = 0;
2013
2014 if (numvfs == 0) {
2015 if (pci_vfs_assigned(pdev)) {
2016 dev_warn(&pdev->dev,
2017 "Cannot disable SR-IOV VFs while assigned\n");
2018 return -EPERM;
2019 }
2020 pci_disable_sriov(pdev);
2021 return 0;
2022 }
2023
2024 ret = pci_enable_sriov(pdev, numvfs);
2025 return ret ? ret : numvfs;
2026 }
2027
2028 #ifdef CONFIG_PM_SLEEP
2029 static int nvme_suspend(struct device *dev)
2030 {
2031 struct pci_dev *pdev = to_pci_dev(dev);
2032 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2033
2034 nvme_dev_disable(ndev, true);
2035 return 0;
2036 }
2037
2038 static int nvme_resume(struct device *dev)
2039 {
2040 struct pci_dev *pdev = to_pci_dev(dev);
2041 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2042
2043 queue_work(nvme_workq, &ndev->reset_work);
2044 return 0;
2045 }
2046 #endif
2047
2048 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2049
2050 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2051 pci_channel_state_t state)
2052 {
2053 struct nvme_dev *dev = pci_get_drvdata(pdev);
2054
2055 /*
2056 * A frozen channel requires a reset. When detected, this method will
2057 * shutdown the controller to quiesce. The controller will be restarted
2058 * after the slot reset through driver's slot_reset callback.
2059 */
2060 switch (state) {
2061 case pci_channel_io_normal:
2062 return PCI_ERS_RESULT_CAN_RECOVER;
2063 case pci_channel_io_frozen:
2064 dev_warn(dev->ctrl.device,
2065 "frozen state error detected, reset controller\n");
2066 nvme_dev_disable(dev, false);
2067 return PCI_ERS_RESULT_NEED_RESET;
2068 case pci_channel_io_perm_failure:
2069 dev_warn(dev->ctrl.device,
2070 "failure state error detected, request disconnect\n");
2071 return PCI_ERS_RESULT_DISCONNECT;
2072 }
2073 return PCI_ERS_RESULT_NEED_RESET;
2074 }
2075
2076 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2077 {
2078 struct nvme_dev *dev = pci_get_drvdata(pdev);
2079
2080 dev_info(dev->ctrl.device, "restart after slot reset\n");
2081 pci_restore_state(pdev);
2082 queue_work(nvme_workq, &dev->reset_work);
2083 return PCI_ERS_RESULT_RECOVERED;
2084 }
2085
2086 static void nvme_error_resume(struct pci_dev *pdev)
2087 {
2088 pci_cleanup_aer_uncorrect_error_status(pdev);
2089 }
2090
2091 static const struct pci_error_handlers nvme_err_handler = {
2092 .error_detected = nvme_error_detected,
2093 .slot_reset = nvme_slot_reset,
2094 .resume = nvme_error_resume,
2095 .reset_notify = nvme_reset_notify,
2096 };
2097
2098 /* Move to pci_ids.h later */
2099 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2100
2101 static const struct pci_device_id nvme_id_table[] = {
2102 { PCI_VDEVICE(INTEL, 0x0953),
2103 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2104 NVME_QUIRK_DISCARD_ZEROES, },
2105 { PCI_VDEVICE(INTEL, 0x0a53),
2106 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2107 NVME_QUIRK_DISCARD_ZEROES, },
2108 { PCI_VDEVICE(INTEL, 0x0a54),
2109 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2110 NVME_QUIRK_DISCARD_ZEROES, },
2111 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2112 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2113 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2114 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2115 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2116 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2117 { 0, }
2118 };
2119 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2120
2121 static struct pci_driver nvme_driver = {
2122 .name = "nvme",
2123 .id_table = nvme_id_table,
2124 .probe = nvme_probe,
2125 .remove = nvme_remove,
2126 .shutdown = nvme_shutdown,
2127 .driver = {
2128 .pm = &nvme_dev_pm_ops,
2129 },
2130 .sriov_configure = nvme_pci_sriov_configure,
2131 .err_handler = &nvme_err_handler,
2132 };
2133
2134 static int __init nvme_init(void)
2135 {
2136 int result;
2137
2138 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2139 if (!nvme_workq)
2140 return -ENOMEM;
2141
2142 result = pci_register_driver(&nvme_driver);
2143 if (result)
2144 destroy_workqueue(nvme_workq);
2145 return result;
2146 }
2147
2148 static void __exit nvme_exit(void)
2149 {
2150 pci_unregister_driver(&nvme_driver);
2151 destroy_workqueue(nvme_workq);
2152 _nvme_check_size();
2153 }
2154
2155 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2156 MODULE_LICENSE("GPL");
2157 MODULE_VERSION("1.0");
2158 module_init(nvme_init);
2159 module_exit(nvme_exit);
This page took 0.076487 seconds and 5 git commands to generate.